WO2015180927A1 - Procédé de production d'un composant dans un système de frittage flash - Google Patents

Procédé de production d'un composant dans un système de frittage flash Download PDF

Info

Publication number
WO2015180927A1
WO2015180927A1 PCT/EP2015/059729 EP2015059729W WO2015180927A1 WO 2015180927 A1 WO2015180927 A1 WO 2015180927A1 EP 2015059729 W EP2015059729 W EP 2015059729W WO 2015180927 A1 WO2015180927 A1 WO 2015180927A1
Authority
WO
WIPO (PCT)
Prior art keywords
component
components
materials
spark plasma
plasma sintering
Prior art date
Application number
PCT/EP2015/059729
Other languages
German (de)
English (en)
Inventor
Thomas Arnold
Jörg FREUDENBERGER
Peter RÖHRER
Steffen Walter
Original Assignee
Siemens Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens Aktiengesellschaft filed Critical Siemens Aktiengesellschaft
Publication of WO2015180927A1 publication Critical patent/WO2015180927A1/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/045Alloys based on refractory metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • B22F3/105Sintering only by using electric current other than for infrared radiant energy, laser radiation or plasma ; by ultrasonic bonding
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • C04B35/645Pressure sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B37/00Joining burned ceramic articles with other burned ceramic articles or other articles by heating
    • C04B37/02Joining burned ceramic articles with other burned ceramic articles or other articles by heating with metallic articles
    • C04B37/021Joining burned ceramic articles with other burned ceramic articles or other articles by heating with metallic articles in a direct manner, e.g. direct copper bonding [DCB]
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/045Alloys based on refractory metals
    • C22C1/0458Alloys based on titanium, zirconium or hafnium
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/66Specific sintering techniques, e.g. centrifugal sintering
    • C04B2235/666Applying a current during sintering, e.g. plasma sintering [SPS], electrical resistance heating or pulse electric current sintering [PECS]
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/32Ceramic
    • C04B2237/36Non-oxidic
    • C04B2237/363Carbon
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/40Metallic
    • C04B2237/403Refractory metals

Definitions

  • the invention relates to a method for producing a component in a spark plasma sintering system.
  • components that are composed of several materials suitable for high temperature use, for example, by pressureless sintering at 2000 ° C to about 2300 ° C, by hot isostatic pressing (HIP) at 1700 ° C to about 2300 ° C or by Spark plasma sintering at 2,000 ° C to about 2,300 ° C.
  • HIP hot isostatic pressing
  • Spark plasma sintering at 2,000 ° C to about 2,300 ° C.
  • These include, among others, graded ceramics in which a succession of different materials (e.g., different coefficients of thermal expansion) follow each other.
  • Rotary anodes with a base body, an energy storage and a focal path also belong to this type of components.
  • the production of the components takes place individually, i. Each workpiece is roughly shaped from powder into one of the target contour and then sintered at high temperatures in a device.
  • a method for producing a base body for a rotary anode of an X-ray tube is, for example, from
  • DE 10 2011 083 064 B4 known.
  • a ceramic base body of a rotary anode is produced individually by means of spark plasma sintering.
  • Materials for the main body include silicon carbide (SiC) or titanium diboride (TiB 2 ).
  • DE 10 2012 210 355 A1 describes a method for producing a rotary anode for an X-ray tube, in which a single base body is produced from a ceramic based on silicon carbide (SiC) and provided separately with a tungsten filament. Between the tungsten focal path and the base body, an intermediate layer is produced which comprises at least one tungsten silicide (WSi) and / or tungsten carbide (WC).
  • WSi tungsten silicide
  • WC tungsten carbide
  • the tungsten filament may be made by diffusion welding, orbital friction welding, selective laser melt or by spark plasma sintering (SPS) are applied. Spark plasma sintering is also referred to as Field Assisted Sintering Technology (FAST, field activated sintering) or Pulsed Electric Current Sintering (PECS).
  • FAST Field Assisted Sintering Technology
  • PECS Pulsed Electric Current Sintering
  • WO 2012/097393 Al discloses a powder metallurgical production process for rotating anodes, in which the starting material in powder form is subjected to a heat treatment by pressing, sintering and forging.
  • Object of the present invention is therefore to provide a method of the type mentioned, which allows the production of several components with a significantly reduced expenditure of time.
  • the object is achieved by a method according to claim 1.
  • Advantageous embodiments of the invention are in each case the subject of further claims.
  • the method according to claim 1 is used to produce a component in a spark plasma sintering system comprising an upper electrode and a lower electrode.
  • materials for at least two components are arranged one above the other between the upper electrode and the lower electrode, wherein in each case a separating agent is introduced between the materials of the at least two components, which remains releasable during the process. Since the release agent remains soluble during the process according to the invention, ie does not sinter, the components sintered after completion of the process can be easily separated from one another.
  • a PLC system is known for example from US 2013/0052442 AI.
  • Crucibles and electrodes, which form the actual pressing tool, are made of graphite.
  • the pulverulent or granular material is filled directly into the pressing tool and pre-compressed manually. During the actual sintering procedure, a high current, low voltage pulsed current is passed through the die and through the sintered body.
  • the materials do not necessarily have to be pulverulent or granular. Rather, the materials may be at least partially alternatively or additionally also as semi-finished products, such as films or (monolithic) base body formed.
  • the method according to the invention is therefore a spark plasma sintering method (SPS method), in which the materials (eg powder, grains, semi-finished products, etc.) for all components, but at least for two components, between the upper Electrode and the lower electrode are arranged one above the other. This flows through the electric current
  • the method according to claim 1 thus allows a production of several components with a significantly reduced expenditure of time.
  • temperatures between about 1700 ° C and about 2300 ° C, pressures of about 30 MPa to about 50 MPa and process times between about 30 min and Approximately 60 minutes for the inventive PLC method advantageously feasible.
  • inventively feasible arrangement of the materials for several components requires / requires only a single device. Compared to a parallel component production of several components, which requires a simultaneous operation of a corresponding number of devices, in the inventive solution no correspondingly increased maintenance effort required. Moreover, in the solution according to the invention, the components manufactured at the same time do not necessarily have to be identical, but may also consist of different materials.
  • an advantageous embodiment according to claim 2 is characterized in that the release agent is powdered boron nitride (BN).
  • BN powdered boron nitride
  • a separating layer is arranged on the material of the uppermost component and / or under the material of the lowermost component.
  • the release layer can be made, for example, from a thin film of molybdenum (Mo).
  • a particularly advantageous embodiment of the invention can be realized by a method according to claim 4.
  • the materials of the components each comprise at least one material for a base body, an energy store and a focal track.
  • anodes in particular rotary anodes, can be reliably produced.
  • the material for the base body is titanium-zirconium-molybdenum (TZM).
  • TZM is a molybdenum alloy containing 0.5% by weight of titanium (Ti) and 0.08% by weight of zirconium (Zr) and 0.04% by weight of carbon (C).
  • the method according to claim 5 is equally well suited for the production of a basic body made of pure molybdenum (Mo) or of a ceramic material.
  • the usable ceramic materials include, for example, silicon carbide (SiC) or a mixed ceramic of silicon carbide and titanium diboride (SiC-TiB 2 ).
  • the material for the energy storage graphite ie carbon (C) having a hexagonal crystal structure.
  • the aforementioned ceramic material silicon carbide (SiC) or a mixed ceramic of silicon carbide and titanium diboride (SiC-TiB 2 ) are used for the production of an energy storage.
  • Molybdenum and an energy storage of graphite and a tungsten interconnect connected.
  • the basic body is in this case e.g. as a plate or as a plate, whereas the energy storage, e.g. is executed as Ronde.
  • both the main body and the energy storage can each be designed as Ronde.
  • the material (tungsten) for the focal path can be introduced into the PLC system, eg as powder.
  • the tungsten powder is both sintered (and compacted), as well as connected to the prefabricated body (TZM).
  • the basic body (TZM) is connected to the prefabricated energy store (graphite).
  • the base body and the energy storage need not necessarily be present as prefabricated semi-finished products. Rather, it is also possible that the materials for the main body and / or the energy storage sam with the material of the focal path in each case in powder form in the PLC system are introduced.
  • the number of anodes produced at the same time is limited only by the height of the PLC system.
  • At least one separating layer is introduced into the PLC system before the start of production.
  • An upper separating layer is arranged on the uppermost component and / or a lower separating layer is arranged under the lowermost component.
  • the release layers are for example made of a carbon-absorbing thin film, e.g. a molybdenum foil produced. If the electrodes, which are part of the actual pressing tool, are made of graphite, this measure reliably prevents contamination of the materials by carbon. Such impurities are disadvantageous because they can lead to embrittlement of the focal path by formation of tungsten carbide (WC).
  • the molybdenum in this case serves as a sacrificial material, since it can not be reused.
  • a release agent e.g. powdered boron nitride introduced.
  • a temperature of about 1650 ° C. to about 1700 ° C., a pressure of about 40 MPa and a holding time of about 30 min are currently regarded as optimal for the production of rotary anodes.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Ceramic Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Metallurgy (AREA)
  • Structural Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Inorganic Chemistry (AREA)
  • Powder Metallurgy (AREA)

Abstract

L'invention concerne un procédé de production d'un composant dans un système de frittage flash qui comprend une électrode supérieure et une électrode inférieure. Selon l'invention, des matières destinées à au moins deux composants sont disposées l'une sur l'autre entre l'électrode supérieure et l'électrode inférieure, un moyen de séparation étant à chaque fois introduit entre les matières des au moins deux composants, lequel moyen reste amovible pendant le processus. Un tel procédé permet de fabriquer une pluralité de composants avec un investissement en termes de temps significativement réduit..
PCT/EP2015/059729 2014-05-28 2015-05-04 Procédé de production d'un composant dans un système de frittage flash WO2015180927A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102014210216.2A DE102014210216A1 (de) 2014-05-28 2014-05-28 Verfahren zum Herstellen eines Bauteils
DE102014210216.2 2014-05-28

Publications (1)

Publication Number Publication Date
WO2015180927A1 true WO2015180927A1 (fr) 2015-12-03

Family

ID=53052858

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2015/059729 WO2015180927A1 (fr) 2014-05-28 2015-05-04 Procédé de production d'un composant dans un système de frittage flash

Country Status (2)

Country Link
DE (1) DE102014210216A1 (fr)
WO (1) WO2015180927A1 (fr)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE589871C (de) * 1930-09-08 1933-12-19 Aeg Verfahren zur Herstellung von sehr duennen, scheibenfoermigen Werkzeugen aus Hartmetallegierungen auf dem Sinterwege
WO2012097393A1 (fr) 2011-01-19 2012-07-26 Plansee Se Anode tournante pour tube à rayons x
US20130052442A1 (en) 2011-08-30 2013-02-28 Gary B. Merrill Material system of co-sintered metal and ceramic layers
DE102011083064B4 (de) 2011-09-20 2013-06-13 Siemens Aktiengesellschaft Drehanode und Verfahren zum Herstellen eines Grundkörpers für eine Drehanode
DE102012210355A1 (de) 2012-06-20 2013-12-24 Siemens Aktiengesellschaft Drehanode und Verfahren zu deren Herstellung

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE589871C (de) * 1930-09-08 1933-12-19 Aeg Verfahren zur Herstellung von sehr duennen, scheibenfoermigen Werkzeugen aus Hartmetallegierungen auf dem Sinterwege
WO2012097393A1 (fr) 2011-01-19 2012-07-26 Plansee Se Anode tournante pour tube à rayons x
US20130052442A1 (en) 2011-08-30 2013-02-28 Gary B. Merrill Material system of co-sintered metal and ceramic layers
DE102011083064B4 (de) 2011-09-20 2013-06-13 Siemens Aktiengesellschaft Drehanode und Verfahren zum Herstellen eines Grundkörpers für eine Drehanode
DE102012210355A1 (de) 2012-06-20 2013-12-24 Siemens Aktiengesellschaft Drehanode und Verfahren zu deren Herstellung

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
GUILLON O ET AL: "Field-Assisted Sintering Technology/Spark Plasma Sintering: Mechanisms, Materials, and Technology Developments", ADVANCED ENGINEERING MATERIALS, vol. 16, no. 7, 30 April 2014 (2014-04-30), Wiley, Hoboken NJ [US], pages 830 - 849, XP055198277, ISSN: 1438-1656, DOI: 10.1002/adem.201300409 *

Also Published As

Publication number Publication date
DE102014210216A1 (de) 2015-12-03

Similar Documents

Publication Publication Date Title
EP3013502B1 (fr) Procédé et machine de traitement de fabrication additive d'un élément tridimensionnel par fusion sélective par laser
DE60206382T2 (de) Reaktionshartlöten eines wolfram- oder molybdänkörpers an einem kohlenstoffhaltigen träger
EP1718777B1 (fr) Procede pour produire un alliage de molybdene
JP6162311B1 (ja) 積層造形法による粉末冶金焼結体の製造方法
DE102010046468B4 (de) Generatives Herstellverfahren und Pulver hierzu
DE102012206125A1 (de) Verfahren zur Herstellung von Niederdruckturbinenschaufeln aus TiAl
DE102015205316A1 (de) Verfahren zum Erzeugen eines Bauteiles aus einer Superlegierung mit einem pulverbettbasierten additiven Herstellungsverfahren und Bauteil aus einer Superlegierung
DE112009000504T5 (de) Werkzeuge mit Arbeitsoberflächen aus verdichtetem Pulvermetall und Verfahren
DE102016002623B4 (de) Verfahren und Vorrichtung zur Herstellung von Bauteilen mit definierten Abmessungen
EP3456440B1 (fr) Procédé de fabrication d'un élément composite et élément composite
WO2014044429A1 (fr) Production d'un élément en métal réfractaire
DE102016115784A1 (de) Hartmetall mit einer Kobalt-Molybdänlegierung als Bindemittel
EP2123377A1 (fr) Procédé de fabrication d'une pièce à usiner, en particulier un outil de bloc de jeu de construction ou une pièce d'outil de bloc de jeu de construction
DE112015004141B4 (de) Verfahren zum Herstellen einer Platingruppenlegierung
EP3368241B1 (fr) Outil de soudage par friction malaxage
EP3240766B1 (fr) Procédé de fabrication d'une pièce en phases max
WO2014044433A1 (fr) Production d'un élément en métal réfractaire
DE102011013894A1 (de) Verfahren zur endformnahen Herstellung von Bauteilen
WO2015180927A1 (fr) Procédé de production d'un composant dans un système de frittage flash
EP3058984A1 (fr) Composant avec une base céramique, avec un conducteur et avec un élément de fixation et un procédé pour sa fabrication
Michalski et al. Microstructure of the cBN/WC6Co composite produced by the pulse plasma sintering (PPS) method
EP3026133B1 (fr) Procede de fusion pour alliages
DE102014115839A1 (de) Verfahren zur Applikation eines Lotmaterials
WO2019011532A1 (fr) Procédé d'impression 3d et dispositif d'impression 3d
DE102015206241B4 (de) SiC-Diamant-Kompositwerkstoff und Verfahren zu seiner Herstellung

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15720709

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15720709

Country of ref document: EP

Kind code of ref document: A1