WO2015180927A1 - Method for producing a component in a spark plasma sintering system - Google Patents

Method for producing a component in a spark plasma sintering system Download PDF

Info

Publication number
WO2015180927A1
WO2015180927A1 PCT/EP2015/059729 EP2015059729W WO2015180927A1 WO 2015180927 A1 WO2015180927 A1 WO 2015180927A1 EP 2015059729 W EP2015059729 W EP 2015059729W WO 2015180927 A1 WO2015180927 A1 WO 2015180927A1
Authority
WO
WIPO (PCT)
Prior art keywords
component
components
materials
spark plasma
plasma sintering
Prior art date
Application number
PCT/EP2015/059729
Other languages
German (de)
French (fr)
Inventor
Thomas Arnold
Jörg FREUDENBERGER
Peter RÖHRER
Steffen Walter
Original Assignee
Siemens Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens Aktiengesellschaft filed Critical Siemens Aktiengesellschaft
Publication of WO2015180927A1 publication Critical patent/WO2015180927A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/045Alloys based on refractory metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • B22F3/105Sintering only by using electric current other than for infrared radiant energy, laser radiation or plasma ; by ultrasonic bonding
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • C04B35/645Pressure sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B37/00Joining burned ceramic articles with other burned ceramic articles or other articles by heating
    • C04B37/02Joining burned ceramic articles with other burned ceramic articles or other articles by heating with metallic articles
    • C04B37/021Joining burned ceramic articles with other burned ceramic articles or other articles by heating with metallic articles in a direct manner, e.g. direct copper bonding [DCB]
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/045Alloys based on refractory metals
    • C22C1/0458Alloys based on titanium, zirconium or hafnium
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/66Specific sintering techniques, e.g. centrifugal sintering
    • C04B2235/666Applying a current during sintering, e.g. plasma sintering [SPS], electrical resistance heating or pulse electric current sintering [PECS]
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/32Ceramic
    • C04B2237/36Non-oxidic
    • C04B2237/363Carbon
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/40Metallic
    • C04B2237/403Refractory metals

Definitions

  • the invention relates to a method for producing a component in a spark plasma sintering system.
  • components that are composed of several materials suitable for high temperature use, for example, by pressureless sintering at 2000 ° C to about 2300 ° C, by hot isostatic pressing (HIP) at 1700 ° C to about 2300 ° C or by Spark plasma sintering at 2,000 ° C to about 2,300 ° C.
  • HIP hot isostatic pressing
  • Spark plasma sintering at 2,000 ° C to about 2,300 ° C.
  • These include, among others, graded ceramics in which a succession of different materials (e.g., different coefficients of thermal expansion) follow each other.
  • Rotary anodes with a base body, an energy storage and a focal path also belong to this type of components.
  • the production of the components takes place individually, i. Each workpiece is roughly shaped from powder into one of the target contour and then sintered at high temperatures in a device.
  • a method for producing a base body for a rotary anode of an X-ray tube is, for example, from
  • DE 10 2011 083 064 B4 known.
  • a ceramic base body of a rotary anode is produced individually by means of spark plasma sintering.
  • Materials for the main body include silicon carbide (SiC) or titanium diboride (TiB 2 ).
  • DE 10 2012 210 355 A1 describes a method for producing a rotary anode for an X-ray tube, in which a single base body is produced from a ceramic based on silicon carbide (SiC) and provided separately with a tungsten filament. Between the tungsten focal path and the base body, an intermediate layer is produced which comprises at least one tungsten silicide (WSi) and / or tungsten carbide (WC).
  • WSi tungsten silicide
  • WC tungsten carbide
  • the tungsten filament may be made by diffusion welding, orbital friction welding, selective laser melt or by spark plasma sintering (SPS) are applied. Spark plasma sintering is also referred to as Field Assisted Sintering Technology (FAST, field activated sintering) or Pulsed Electric Current Sintering (PECS).
  • FAST Field Assisted Sintering Technology
  • PECS Pulsed Electric Current Sintering
  • WO 2012/097393 Al discloses a powder metallurgical production process for rotating anodes, in which the starting material in powder form is subjected to a heat treatment by pressing, sintering and forging.
  • Object of the present invention is therefore to provide a method of the type mentioned, which allows the production of several components with a significantly reduced expenditure of time.
  • the object is achieved by a method according to claim 1.
  • Advantageous embodiments of the invention are in each case the subject of further claims.
  • the method according to claim 1 is used to produce a component in a spark plasma sintering system comprising an upper electrode and a lower electrode.
  • materials for at least two components are arranged one above the other between the upper electrode and the lower electrode, wherein in each case a separating agent is introduced between the materials of the at least two components, which remains releasable during the process. Since the release agent remains soluble during the process according to the invention, ie does not sinter, the components sintered after completion of the process can be easily separated from one another.
  • a PLC system is known for example from US 2013/0052442 AI.
  • Crucibles and electrodes, which form the actual pressing tool, are made of graphite.
  • the pulverulent or granular material is filled directly into the pressing tool and pre-compressed manually. During the actual sintering procedure, a high current, low voltage pulsed current is passed through the die and through the sintered body.
  • the materials do not necessarily have to be pulverulent or granular. Rather, the materials may be at least partially alternatively or additionally also as semi-finished products, such as films or (monolithic) base body formed.
  • the method according to the invention is therefore a spark plasma sintering method (SPS method), in which the materials (eg powder, grains, semi-finished products, etc.) for all components, but at least for two components, between the upper Electrode and the lower electrode are arranged one above the other. This flows through the electric current
  • the method according to claim 1 thus allows a production of several components with a significantly reduced expenditure of time.
  • temperatures between about 1700 ° C and about 2300 ° C, pressures of about 30 MPa to about 50 MPa and process times between about 30 min and Approximately 60 minutes for the inventive PLC method advantageously feasible.
  • inventively feasible arrangement of the materials for several components requires / requires only a single device. Compared to a parallel component production of several components, which requires a simultaneous operation of a corresponding number of devices, in the inventive solution no correspondingly increased maintenance effort required. Moreover, in the solution according to the invention, the components manufactured at the same time do not necessarily have to be identical, but may also consist of different materials.
  • an advantageous embodiment according to claim 2 is characterized in that the release agent is powdered boron nitride (BN).
  • BN powdered boron nitride
  • a separating layer is arranged on the material of the uppermost component and / or under the material of the lowermost component.
  • the release layer can be made, for example, from a thin film of molybdenum (Mo).
  • a particularly advantageous embodiment of the invention can be realized by a method according to claim 4.
  • the materials of the components each comprise at least one material for a base body, an energy store and a focal track.
  • anodes in particular rotary anodes, can be reliably produced.
  • the material for the base body is titanium-zirconium-molybdenum (TZM).
  • TZM is a molybdenum alloy containing 0.5% by weight of titanium (Ti) and 0.08% by weight of zirconium (Zr) and 0.04% by weight of carbon (C).
  • the method according to claim 5 is equally well suited for the production of a basic body made of pure molybdenum (Mo) or of a ceramic material.
  • the usable ceramic materials include, for example, silicon carbide (SiC) or a mixed ceramic of silicon carbide and titanium diboride (SiC-TiB 2 ).
  • the material for the energy storage graphite ie carbon (C) having a hexagonal crystal structure.
  • the aforementioned ceramic material silicon carbide (SiC) or a mixed ceramic of silicon carbide and titanium diboride (SiC-TiB 2 ) are used for the production of an energy storage.
  • Molybdenum and an energy storage of graphite and a tungsten interconnect connected.
  • the basic body is in this case e.g. as a plate or as a plate, whereas the energy storage, e.g. is executed as Ronde.
  • both the main body and the energy storage can each be designed as Ronde.
  • the material (tungsten) for the focal path can be introduced into the PLC system, eg as powder.
  • the tungsten powder is both sintered (and compacted), as well as connected to the prefabricated body (TZM).
  • the basic body (TZM) is connected to the prefabricated energy store (graphite).
  • the base body and the energy storage need not necessarily be present as prefabricated semi-finished products. Rather, it is also possible that the materials for the main body and / or the energy storage sam with the material of the focal path in each case in powder form in the PLC system are introduced.
  • the number of anodes produced at the same time is limited only by the height of the PLC system.
  • At least one separating layer is introduced into the PLC system before the start of production.
  • An upper separating layer is arranged on the uppermost component and / or a lower separating layer is arranged under the lowermost component.
  • the release layers are for example made of a carbon-absorbing thin film, e.g. a molybdenum foil produced. If the electrodes, which are part of the actual pressing tool, are made of graphite, this measure reliably prevents contamination of the materials by carbon. Such impurities are disadvantageous because they can lead to embrittlement of the focal path by formation of tungsten carbide (WC).
  • the molybdenum in this case serves as a sacrificial material, since it can not be reused.
  • a release agent e.g. powdered boron nitride introduced.
  • a temperature of about 1650 ° C. to about 1700 ° C., a pressure of about 40 MPa and a holding time of about 30 min are currently regarded as optimal for the production of rotary anodes.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Ceramic Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Metallurgy (AREA)
  • Structural Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Inorganic Chemistry (AREA)
  • Powder Metallurgy (AREA)

Abstract

The invention relates to a method for producing a component in a spark plasma sintering system which comprises an upper electrode and a lower electrode. According to the invention, materials for at least two components are arranged one over the other between the upper electrode and the lower electrode, and a separating means is introduced between the materials of the at least two components, said separating means remaining removable during the method. By using such a method, multiple components can be produced in a substantially reduced amount of time.

Description

Beschreibung description
VERFAHREN ZUM HERSTELLEN EINES BAUTEILS IN EINER FUNKENPLASMASINTERANLAGE Die Erfindung betrifft ein Verfahren zum Herstellen eines Bauteils in einer Spark-Plasma-Sintering-Anlage .  The invention relates to a method for producing a component in a spark plasma sintering system. 2. Discussion of the Related Art
Die Herstellung von Bauteilen, die aus mehreren für den Hochtemperatureinsatz geeigneten Materialien zusammengesetzt sind, erfolgt beispielsweise durch druckloses Sintern bei 2.000 °C bis ca. 2.300 °C, durch heißisostatisches Pressen (HIP) bei 1.700 °C bis ca. 2.300 °C oder durch Spark-Plasma- Sintern bei 2.000 °C bis ca. 2.300 °C. Hierzu gehören unter anderem gradierte Keramiken, in denen eine Abfolge von unter- schiedlichen Materialen (z.B. verschiedene Wärmeausdehnungskoeffizienten) aufeinander folgt. Auch Drehanoden mit einem Grundkörper, einem Energiespeicher und einer Brennbahn gehören zu dieser Art von Bauteilen. Die Herstellung der Bauteile erfolgt jeweils einzeln, d.h. jedes Werkstück wird aus Pul- vern grob in eine der Zielkontur nahe Form gebracht und dann bei hohen Temperaturen in einer Vorrichtung gesintert. The production of components that are composed of several materials suitable for high temperature use, for example, by pressureless sintering at 2000 ° C to about 2300 ° C, by hot isostatic pressing (HIP) at 1700 ° C to about 2300 ° C or by Spark plasma sintering at 2,000 ° C to about 2,300 ° C. These include, among others, graded ceramics in which a succession of different materials (e.g., different coefficients of thermal expansion) follow each other. Rotary anodes with a base body, an energy storage and a focal path also belong to this type of components. The production of the components takes place individually, i. Each workpiece is roughly shaped from powder into one of the target contour and then sintered at high temperatures in a device.
Ein Verfahren zum Herstellen eines Grundkörpers für eine Drehanode einer Röntgenröhre ist beispielsweise aus der A method for producing a base body for a rotary anode of an X-ray tube is, for example, from
DE 10 2011 083 064 B4 bekannt. Im bekannten Fall wird ein keramischer Grundkörper einer Drehanode mittels Spark-Plasma- Sintering einzeln hergestellt. Materialien für den Grundkörper sind z.B. Siliziumcarbid (SiC) oder Titandiborid (TiB2) . Weiterhin ist in der DE 10 2012 210 355 AI ein Verfahren zum Herstellen einer Drehanode für eine Röntgenröhre beschrieben, bei welchem ein einzelner Grundkörper aus einer Keramik auf der Basis von Siliziumcarbid (SiC) erzeugt und separat mit einer Wolframbrennbahn versehen wird. Zwischen der Wolfram- brennbahn und dem Grundkörper wird eine Zwischenschicht erzeugt, die zumindest ein Wolframsilicid (WSi) und/oder Wolf- ramcarbid (WC) umfasst. Die Wolframbrennbahn kann durch Diffusionsschweißen, orbitales Reibschweißen, selektives Laser- schmelzen oder durch Spark-Plasma-Sintern (SPS) aufgebracht werden. Spark-Plasma-Sintern wird auch als Field Assisted Sintering Technology (FAST, feldaktiviertes Sintern) oder als Pulsed Electric Current Sintering (PECS) bezeichnet. DE 10 2011 083 064 B4 known. In the known case, a ceramic base body of a rotary anode is produced individually by means of spark plasma sintering. Materials for the main body include silicon carbide (SiC) or titanium diboride (TiB 2 ). Furthermore, DE 10 2012 210 355 A1 describes a method for producing a rotary anode for an X-ray tube, in which a single base body is produced from a ceramic based on silicon carbide (SiC) and provided separately with a tungsten filament. Between the tungsten focal path and the base body, an intermediate layer is produced which comprises at least one tungsten silicide (WSi) and / or tungsten carbide (WC). The tungsten filament may be made by diffusion welding, orbital friction welding, selective laser melt or by spark plasma sintering (SPS) are applied. Spark plasma sintering is also referred to as Field Assisted Sintering Technology (FAST, field activated sintering) or Pulsed Electric Current Sintering (PECS).
Ferner offenbart die WO 2012/097393 AI ein pulvermetallurgisches Herstellverfahren für Drehanoden, bei der das als Pulver vorliegende Ausgangsmaterial durch Verpressen, Sintern und Schmieden einer Wärmebehandlung unterzogen wird. Furthermore, WO 2012/097393 Al discloses a powder metallurgical production process for rotating anodes, in which the starting material in powder form is subjected to a heat treatment by pressing, sintering and forging.
Bei den bekannten Verfahren zur Herstellung von Bauteilen müssen die Bauteile jeweils einzeln und damit entsprechend zeitaufwendig gefertigt werden. Aufgabe der vorliegenden Erfindung ist es deshalb, ein Verfahren der eingangs genannten Art zu schaffen, das eine Herstellung von mehreren Bauteilen mit einem deutlich reduzierten Zeitaufwand ermöglicht. Die Aufgabe wird erfindungsgemäß durch ein Verfahren nach Anspruch 1 gelöst. Vorteilhafte Ausgestaltungen der Erfindung sind jeweils Gegentand von weiteren Ansprüchen. In the known method for the production of components, the components must be made individually and therefore correspondingly time-consuming. Object of the present invention is therefore to provide a method of the type mentioned, which allows the production of several components with a significantly reduced expenditure of time. The object is achieved by a method according to claim 1. Advantageous embodiments of the invention are in each case the subject of further claims.
Das Verfahren nach Anspruch 1 dient zum Herstellen eines Bau- teils in einer Spark-Plasma-Sintering-Anlage, die eine obere Elektrode und eine untere Elektrode umfasst. Erfindungsgemäß sind zwischen der oberen Elektrode und der unteren Elektrode Materialien für wenigstens zwei Bauteile übereinander angeordnet, wobei zwischen den Materialien der wenigstens zwei Bauteile jeweils ein Trennmittel eingebracht ist, welches während des Verfahrens lösbar bleibt. Da das Trennmittel während des erfindungsgemäßen Verfahrens lösbar bleibt, also nicht sintert, können die nach Abschluss des Verfahrens gesinterten Bauteile problemlos voneinander getrennt werden. The method according to claim 1 is used to produce a component in a spark plasma sintering system comprising an upper electrode and a lower electrode. According to the invention, materials for at least two components are arranged one above the other between the upper electrode and the lower electrode, wherein in each case a separating agent is introduced between the materials of the at least two components, which remains releasable during the process. Since the release agent remains soluble during the process according to the invention, ie does not sinter, the components sintered after completion of the process can be easily separated from one another.
Die bei dem Verfahren gemäß Anspruch 1 verwendete Spark- Plasma-Sintering-Anlage (SPS-Anlage) umfasst beispielsweise einen Tiegel in Form eines Hohlzylinders, in dem eine obere Elektrode und eine untere Elektrode eingepasst sind. Eine derartige SPS-Anlage ist z.B. aus der US 2013/0052442 AI bekannt. Tiegel und Elektroden, die das eigentliche Presswerkzeug bilden, sind aus Grafit hergestellt. Das pulverförmige bzw. körnerförmige Material wird direkt in das Presswerkzeug gefüllt und manuell vorverdichtet. Während der eigentlichen Sinterprozedur wird ein gepulster Strom mit hoher Stromstärke und niedriger Spannung durch das Presswerkzeug und durch den Sinterkörper geleitet. Im Rahmen der Erfindung müssen die Ma- terialien nicht zwingend pulverförmig oder körnerförmig sein. Vielmehr können die Materialien zumindest teilweise alternativ oder zusätzlich auch als Halbzeuge, beispielsweise Folien oder (monolithische) Grundkörper, ausgebildet sein. The spark plasma sintering system (SPS system) used in the method according to claim 1, for example, comprises a crucible in the form of a hollow cylinder, in which a top Electrode and a lower electrode are fitted. Such a PLC system is known for example from US 2013/0052442 AI. Crucibles and electrodes, which form the actual pressing tool, are made of graphite. The pulverulent or granular material is filled directly into the pressing tool and pre-compressed manually. During the actual sintering procedure, a high current, low voltage pulsed current is passed through the die and through the sintered body. In the context of the invention, the materials do not necessarily have to be pulverulent or granular. Rather, the materials may be at least partially alternatively or additionally also as semi-finished products, such as films or (monolithic) base body formed.
Bei dem erfindungsgemäßen Verfahren handelt es sich also um ein Spark-Plasma-Sintering-Verfahren (SPS-Verfahren) , bei dem die Materialien (z.B. Pulver, Körner, Halbzeuge usw.) für alle Bauteile, zumindest jedoch für zwei Bauteile, zwischen der oberen Elektrode und der unteren Elektrode übereinander angeordnet sind. Damit durchströmt der elektrische Strom The method according to the invention is therefore a spark plasma sintering method (SPS method), in which the materials (eg powder, grains, semi-finished products, etc.) for all components, but at least for two components, between the upper Electrode and the lower electrode are arranged one above the other. This flows through the electric current
(resistiver Heizstrom) die in die SPS-Anlage eingebrachten Materialien seriell. Das Verfahren nach Anspruch 1 erlaubt damit eine Herstellung von mehreren Bauteilen mit einem deutlich reduzierten Zeitaufwand.  (resistive heating current) the materials introduced into the PLC system serially. The method according to claim 1 thus allows a production of several components with a significantly reduced expenditure of time.
Abhängig von den bei der Herstellung eingesetzten Materialien und der Form der zu fertigenden Bauteile sind beispielsweise Temperaturen zwischen ca. 1.700 °C und ca. 2.300 °C, Drücke von ca. 30 MPa bis ca. 50 MPa sowie Prozesszeiten zwischen ca. 30 min und ca. 60 min für das erfindungsgemäße SPS- Verfahren vorteilhaft realisierbar. Depending on the materials used in the production and the shape of the components to be manufactured, for example, temperatures between about 1700 ° C and about 2300 ° C, pressures of about 30 MPa to about 50 MPa and process times between about 30 min and Approximately 60 minutes for the inventive PLC method advantageously feasible.
Die erfindungsgemäß realisierbare Anordnung der Materialien für mehrere Bauteile erfordert/benötigt nur eine einzige Vor- richtung. Gegenüber einer parallelen Bauteilefertigung von mehreren Bauteilen, die einen gleichzeitigen Betrieb einer entsprechenden Anzahl an Vorrichtungen erfordert, ist bei der erfindungsgemäßen Lösung kein entsprechend erhöhter Wartungs- aufwand erforderlich. Darüber hinaus müssen bei der erfindungsgemäßen Lösung die gleichzeitig gefertigten Bauteile nicht notwendigerweise identisch sein, sondern können auch aus unterschiedlichen Materialien bestehen. The inventively feasible arrangement of the materials for several components requires / requires only a single device. Compared to a parallel component production of several components, which requires a simultaneous operation of a corresponding number of devices, in the inventive solution no correspondingly increased maintenance effort required. Moreover, in the solution according to the invention, the components manufactured at the same time do not necessarily have to be identical, but may also consist of different materials.
Eine vorteilhafte Ausgestaltung gemäß Anspruch 2 ist dadurch gekennzeichnet, dass das Trennmittel pulverförmiges Bornitrid (BN) ist. Gemäß einer weiteren bevorzugten Ausgestaltung nach Anspruch 3 ist auf dem Material des obersten Bauteils und/oder unter dem Material des untersten Bauteils jeweils eine Trennschicht angeordnet. Die Trennschicht kann beispielsweise aus einer dünnen Folie aus Molybdän (Mo) hergestellt sein. An advantageous embodiment according to claim 2 is characterized in that the release agent is powdered boron nitride (BN). According to a further preferred embodiment according to claim 3, in each case a separating layer is arranged on the material of the uppermost component and / or under the material of the lowermost component. The release layer can be made, for example, from a thin film of molybdenum (Mo).
Eine besonders vorteilhafte Ausgestaltung der Erfindung ist durch ein Verfahren gemäß Anspruch 4 realisierbar. Bei diesem bevorzugten Verfahren umfassen die Materialien der Bauteile jeweils wenigstens ein Material für einen Grundkörper, einen Energiespeicher und eine Brennbahn. Mit einem Verfahren gemäß Anspruch 4 sind Anoden, insbesondere Drehanoden, zuverlässig herstellbar . A particularly advantageous embodiment of the invention can be realized by a method according to claim 4. In this preferred method, the materials of the components each comprise at least one material for a base body, an energy store and a focal track. With a method according to claim 4, anodes, in particular rotary anodes, can be reliably produced.
Bei einer Ausführungsform des Verfahrens gemäß Anspruch 5 ist das Material für den Grundkörper Titan-Zirkon-Molybdän (TZM) . TZM ist eine Molybdän-Legierung, die 0,5 Gew.-% Titan (Ti) und 0,08 Gew.-% Zirkon (Zr) sowie 0,04 Gew.-% Kohlenstoff (C) enthält. Das Verfahren gemäß Anspruch 5 ist gleichermaßen gut auch für die Herstellung eines Grundkörpers aus reinem Molyb- dän (Mo) oder aus einem Keramikwerkstoff geeignet. Zu den einsetzbaren Keramikwerkstoffen zählen z.B. Siliziumcarbid (SiC) oder eine Mischkeramik aus Siliziumcarbid und Titan- diborid (SiC-TiB2) . In one embodiment of the method according to claim 5, the material for the base body is titanium-zirconium-molybdenum (TZM). TZM is a molybdenum alloy containing 0.5% by weight of titanium (Ti) and 0.08% by weight of zirconium (Zr) and 0.04% by weight of carbon (C). The method according to claim 5 is equally well suited for the production of a basic body made of pure molybdenum (Mo) or of a ceramic material. The usable ceramic materials include, for example, silicon carbide (SiC) or a mixed ceramic of silicon carbide and titanium diboride (SiC-TiB 2 ).
Gemäß einer Ausgestaltung des Verfahrens nach Anspruch 6 ist das Material für den Energiespeicher Grafit, also Kohlenstoff (C) mit einer hexagonalen Kristallstruktur. Alternativ können bei dem Verfahren nach Anspruch 6 anstelle von Grafit z.B. auch der vorgenannte Keramikwerkstoff Siliziumcarbid (SiC) oder eine Mischkeramik aus Siliziumcarbid und Titandiborid (SiC-TiB2) für die Herstellung eines Energiespeichers verwendet werden. According to one embodiment of the method according to claim 6, the material for the energy storage graphite, ie carbon (C) having a hexagonal crystal structure. Alternatively, in the method according to claim 6 instead of graphite, for example Also, the aforementioned ceramic material silicon carbide (SiC) or a mixed ceramic of silicon carbide and titanium diboride (SiC-TiB 2 ) are used for the production of an energy storage.
Ein Verfahren nach Anspruch 7 ist dadurch gekennzeichnet, dass das Material für die Brennbahn Wolfram (W) ist. Für die Brennbahn kann als alternatives Material auch Rhenium (Re) eingesetzt werden. A method according to claim 7, characterized in that the material for the focal track is tungsten (W). Rhenium (Re) can also be used as alternative material for the focal track.
Die Erfindung wird nachfolgend exemplarisch an der gleichzeitigen Herstellung von wenigstens zwei Bauteilen erläutert. Bei der nachfolgenden Beschreibung handelt es sich um den speziellen Fall der Herstellung von Drehanoden. The invention is explained below by way of example with the simultaneous production of at least two components. The following description is the specific case of manufacturing rotary anodes.
Mit dem erfindungsgemäßen Verfahren können in einem Spark- Plasma-Sintering-Prozess , mehrere Bauteile (Drehanoden) gleichzeitig hergestellt werden. Hierbei werden jeweils ein Grundkörper aus Titan-Zirkon-With the method according to the invention, several components (rotary anodes) can be produced simultaneously in a spark plasma sintering process. Here, a basic body made of titanium-zirconium
Molybdän (TZM) und ein Energiespeicher aus Grafit sowie eine Brennbahn aus Wolfram miteinander verbunden. Der Grundkörper ist hierbei z.B. als Plättchen bzw. als Platte ausgeführt, wohingegen der Energiespeicher z.B. als Ronde ausgeführt ist. Alternativ können sowohl der Grundkörper als auch der Energiespeicher jeweils als Ronde ausgeführt sein. Molybdenum (TZM) and an energy storage of graphite and a tungsten interconnect connected. The basic body is in this case e.g. as a plate or as a plate, whereas the energy storage, e.g. is executed as Ronde. Alternatively, both the main body and the energy storage can each be designed as Ronde.
Das Material (Wolfram) für die Brennbahn kann dazu in die SPS-Anlage z.B. als Pulver eingebracht werden. Das Wolfram- pulver wird dabei sowohl gesintert (und dabei verdichtet) , als auch mit dem vorgefertigten Grundkörper (TZM) verbunden. Gleichzeitig wird der Grundkörper (TZM) mit dem vorgefertigten Energiespeicher (Grafit) verbunden. Im Rahmen der Erfindung müssen der Grundkörper und der Energiespeicher nicht notwendigerweise als vorgefertigte Halbzeuge vorliegen. Vielmehr ist es auch möglich, dass die Materialien für den Grundkörper und/oder den Energiespeicher gemein- sam mit dem Material der Brennbahn jeweils in Pulverform in die SPS-Anlage eingebracht werden. The material (tungsten) for the focal path can be introduced into the PLC system, eg as powder. The tungsten powder is both sintered (and compacted), as well as connected to the prefabricated body (TZM). At the same time, the basic body (TZM) is connected to the prefabricated energy store (graphite). In the context of the invention, the base body and the energy storage need not necessarily be present as prefabricated semi-finished products. Rather, it is also possible that the materials for the main body and / or the energy storage sam with the material of the focal path in each case in powder form in the PLC system are introduced.
Die Anzahl der gleichzeitig hergestellten Anoden ist hierbei nur durch die Bauhöhe der SPS-Anlage begrenzt. The number of anodes produced at the same time is limited only by the height of the PLC system.
Es hat sich als vorteilhaft erwiesen, wenn vor dem Beginn der Herstellung in die SPS-Anlage wenigstens eine Trennschicht eingebracht wird. Eine obere Trennschicht ist auf dem obers- ten Bauteil und/oder eine untere Trennschicht ist unter dem untersten Bauteil angeordnet. Die Trennschichten sind beispielsweise aus einer kohlenstoffabsorbierenden dünnen Folie, z.B. einer Molybdänfolie, hergestellt. Falls die Elektroden, die Teil des eigentlichen Presswerkzeugs sind, aus Grafit ge- fertigt sind, werden durch diese Maßnahme Verunreinigungen der Materialien durch Kohlenstoff zuverlässig verhindert. Derartige Verunreinigungen sind nachteilig, da sie zu einer Versprödung der Brennbahn durch Bildung von Wolframcarbid (WC) führen können. Das Molybdän dient in diesem Fall also als Opfermaterial, da es nicht mehr wiederverwendet werden kann . It has proved to be advantageous if at least one separating layer is introduced into the PLC system before the start of production. An upper separating layer is arranged on the uppermost component and / or a lower separating layer is arranged under the lowermost component. The release layers are for example made of a carbon-absorbing thin film, e.g. a molybdenum foil produced. If the electrodes, which are part of the actual pressing tool, are made of graphite, this measure reliably prevents contamination of the materials by carbon. Such impurities are disadvantageous because they can lead to embrittlement of the focal path by formation of tungsten carbide (WC). The molybdenum in this case serves as a sacrificial material, since it can not be reused.
Jeweils über einem Bauteil und unter einem Bauteil ist erfindungsgemäß ein Trennmittel, z.B. pulverförmiges Bornitrid, eingebracht. In each case above a component and below a component is according to the invention a release agent, e.g. powdered boron nitride introduced.
Nach Durchführung einer Vielzahl von Versuchen werden für die Herstellung von Drehanoden derzeit eine Temperatur von ca. 1.650 °C bis ca. 1.700 °C, ein Druck von ca. 40 MPa und eine Haltezeit von ca. 30 min als optimal betrachtet. After carrying out a large number of experiments, a temperature of about 1650 ° C. to about 1700 ° C., a pressure of about 40 MPa and a holding time of about 30 min are currently regarded as optimal for the production of rotary anodes.
Wie aus der Beschreibung des erfindungsgemäßen SPS-Verfahrens anhand der Herstellung von Drehanoden ersichtlich ist, können mit diesem Verfahren mehr als eine Drehanode pro Sinterpro- zess hergestellt werden. As can be seen from the description of the SPS process according to the invention on the basis of the production of rotary anodes, more than one rotary anode per sintering process can be produced with this process.
Obwohl die Erfindung anhand der Herstellung einer Drehanode erläutert ist, versteht es sich für den Fachmann von selbst, dass das erfindungsgemäße Verfahren zur Herstellung beliebiger Bauteile geeignet ist. Although the invention is explained with reference to the production of a rotary anode, it is obvious to the person skilled in the art, that the inventive method is suitable for the production of any components.

Claims

Patentansprüche claims
1. Verfahren zum Herstellen eines Bauteils in einer Spark- Plasma-Sintering-Anlage , die eine obere Elektrode und eine untere Elektrode umfasst, dadurch gekennzeichnet, dass zwischen der oberen Elektrode und der unteren Elektrode Materialien für wenigstens zwei Bauteile übereinander angeordnet sind, wobei zwischen den Materialien der wenigstens zwei Bauteile jeweils ein Trennmittel eingebracht ist, welches wäh- rend des Verfahrens lösbar bleibt. A method for manufacturing a component in a spark plasma sintering system, comprising an upper electrode and a lower electrode, characterized in that between the upper electrode and the lower electrode materials for at least two components are arranged one above the other, wherein between The materials of the at least two components in each case a release agent is introduced, which remains releasable during the process.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass das Trennmittel pulverförmiges Bornitrid ist. 2. The method according to claim 1, characterized in that the release agent is powdered boron nitride.
3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass auf dem Material des obersten Bauteils und/oder unter dem Material des untersten Bauteils jeweils eine Trennschicht angeordnet ist. 3. The method according to claim 1 or 2, characterized in that in each case a separating layer is arranged on the material of the uppermost component and / or under the material of the lowermost component.
4. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass die Materialien des Bauteils jeweils wenigstens ein Material für einen Grundkörper, einen Energiespeicher und eine Brennbahn umfassen. 4. The method according to claim 1, characterized in that the materials of the component in each case comprise at least one material for a base body, an energy store and a focal path.
5. Verfahren nach Anspruch 4, dadurch gekennzeichnet, dass das Material für den Grundkörper Titan-Zirkon-Molybdän ist. 5. The method according to claim 4, characterized in that the material for the base body is titanium-zirconium-molybdenum.
6. Verfahren nach Anspruch 4, dadurch gekennzeichnet, dass das Material für den Energiespeicher Grafit ist. 6. The method according to claim 4, characterized in that the material for the energy storage is graphite.
7. Verfahren nach Anspruch 4, dadurch gekennzeichnet, dass das Material für die Brennbahn Wolfram ist. 7. The method according to claim 4, characterized in that the material for the focal track is tungsten.
PCT/EP2015/059729 2014-05-28 2015-05-04 Method for producing a component in a spark plasma sintering system WO2015180927A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102014210216.2A DE102014210216A1 (en) 2014-05-28 2014-05-28 Method for producing a component
DE102014210216.2 2014-05-28

Publications (1)

Publication Number Publication Date
WO2015180927A1 true WO2015180927A1 (en) 2015-12-03

Family

ID=53052858

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2015/059729 WO2015180927A1 (en) 2014-05-28 2015-05-04 Method for producing a component in a spark plasma sintering system

Country Status (2)

Country Link
DE (1) DE102014210216A1 (en)
WO (1) WO2015180927A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE589871C (en) * 1930-09-08 1933-12-19 Aeg Process for the production of very thin, disk-shaped tools from hard metal alloys by sintering
WO2012097393A1 (en) 2011-01-19 2012-07-26 Plansee Se Rotary x-ray anode
US20130052442A1 (en) 2011-08-30 2013-02-28 Gary B. Merrill Material system of co-sintered metal and ceramic layers
DE102011083064B4 (en) 2011-09-20 2013-06-13 Siemens Aktiengesellschaft Rotary anode and method for producing a base body for a rotary anode
DE102012210355A1 (en) 2012-06-20 2013-12-24 Siemens Aktiengesellschaft Rotary anode and method for its production

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE589871C (en) * 1930-09-08 1933-12-19 Aeg Process for the production of very thin, disk-shaped tools from hard metal alloys by sintering
WO2012097393A1 (en) 2011-01-19 2012-07-26 Plansee Se Rotary x-ray anode
US20130052442A1 (en) 2011-08-30 2013-02-28 Gary B. Merrill Material system of co-sintered metal and ceramic layers
DE102011083064B4 (en) 2011-09-20 2013-06-13 Siemens Aktiengesellschaft Rotary anode and method for producing a base body for a rotary anode
DE102012210355A1 (en) 2012-06-20 2013-12-24 Siemens Aktiengesellschaft Rotary anode and method for its production

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
GUILLON O ET AL: "Field-Assisted Sintering Technology/Spark Plasma Sintering: Mechanisms, Materials, and Technology Developments", ADVANCED ENGINEERING MATERIALS, vol. 16, no. 7, 30 April 2014 (2014-04-30), Wiley, Hoboken NJ [US], pages 830 - 849, XP055198277, ISSN: 1438-1656, DOI: 10.1002/adem.201300409 *

Also Published As

Publication number Publication date
DE102014210216A1 (en) 2015-12-03

Similar Documents

Publication Publication Date Title
EP3013502B1 (en) Method and processing machine for creating a three-dimensional component by selective laser melting
DE60206382T2 (en) REACTION BRAZING A TUNGSTEN OR MOLYBDEN BODY ON A CARBON-BASED CARRIER
EP1718777B1 (en) Method for the production of a molybdenum alloy
JP6162311B1 (en) Manufacturing method of powder metallurgy sintered body by additive manufacturing method
DE102010046468B4 (en) Generative manufacturing process and powder for this purpose
DE102012206125A1 (en) Process for the production of low-pressure turbine blades made of TiAl
DE102015205316A1 (en) A method of producing a superalloy member having a powder bed-based additive manufacturing method and superalloy member
DE112009000504T5 (en) Tools with work surfaces of compacted powder metal and process
DE102016002623B4 (en) Method and device for producing components with defined dimensions
EP3456440B1 (en) Composite member manufacturing method and composite member
WO2014044429A1 (en) Production of a refractory metal component
DE102016115784A1 (en) Carbide with a cobalt-molybdenum alloy as a binder
EP2123377A1 (en) Method for manufacturing a workpiece, in particular a forming tool or a forming tool component
DE112015004141B4 (en) Method of making a platinum group alloy
EP3368241B1 (en) Friction stir welding tool
EP3240766B1 (en) Method for producing a component from max phases
WO2014044433A1 (en) Production of a refractory metal component
DE102011013894A1 (en) Final shape production of components made of material comprising intermetallic phases of trimolybdenum silicide and molybdenum borosilicide distributed in matrix, comprises e.g. subjecting powder mixture to grinding and producing suspension
WO2015180927A1 (en) Method for producing a component in a spark plasma sintering system
EP3058984A1 (en) Component with a ceramic base, with a conductor and with a fastening element and a method for its manufacture
Michalski et al. Microstructure of the cBN/WC6Co composite produced by the pulse plasma sintering (PPS) method
EP3026133B1 (en) Melting method for alloys
DE102014115839A1 (en) Method for applying a solder material
WO2019011532A1 (en) 3d printing method and 3d printing device
DE102015206241B4 (en) SiC-diamond composite material and process for its production

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15720709

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15720709

Country of ref document: EP

Kind code of ref document: A1