WO2015180501A1 - Système de recyclage d'une circulation de gaz réducteur pour four de recuit continu sans décapage et son procédé d'utilisation - Google Patents

Système de recyclage d'une circulation de gaz réducteur pour four de recuit continu sans décapage et son procédé d'utilisation Download PDF

Info

Publication number
WO2015180501A1
WO2015180501A1 PCT/CN2015/070984 CN2015070984W WO2015180501A1 WO 2015180501 A1 WO2015180501 A1 WO 2015180501A1 CN 2015070984 W CN2015070984 W CN 2015070984W WO 2015180501 A1 WO2015180501 A1 WO 2015180501A1
Authority
WO
WIPO (PCT)
Prior art keywords
reducing gas
section
gas
annealing furnace
continuous annealing
Prior art date
Application number
PCT/CN2015/070984
Other languages
English (en)
Chinese (zh)
Inventor
李俊
谭宁
马新建
关闯
Original Assignee
宝山钢铁股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宝山钢铁股份有限公司 filed Critical 宝山钢铁股份有限公司
Priority to KR1020167034952A priority Critical patent/KR20170009903A/ko
Priority to RU2016151999A priority patent/RU2684465C2/ru
Priority to JP2016570339A priority patent/JP6538088B2/ja
Publication of WO2015180501A1 publication Critical patent/WO2015180501A1/fr

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/52Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length
    • C21D9/54Furnaces for treating strips or wire
    • C21D9/56Continuous furnaces for strip or wire
    • C21D9/561Continuous furnaces for strip or wire with a controlled atmosphere or vacuum
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D17/00Arrangements for using waste heat; Arrangements for using, or disposing of, waste gases
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/26Methods of annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/52Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length
    • C21D9/54Furnaces for treating strips or wire
    • C21D9/56Continuous furnaces for strip or wire
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/52Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length
    • C21D9/54Furnaces for treating strips or wire
    • C21D9/56Continuous furnaces for strip or wire
    • C21D9/573Continuous furnaces for strip or wire with cooling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B9/00Furnaces through which the charge is moved mechanically, e.g. of tunnel type; Similar furnaces in which the charge moves by gravity
    • F27B9/30Details, accessories, or equipment peculiar to furnaces of these types
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B9/00Furnaces through which the charge is moved mechanically, e.g. of tunnel type; Similar furnaces in which the charge moves by gravity
    • F27B9/30Details, accessories, or equipment peculiar to furnaces of these types
    • F27B9/3005Details, accessories, or equipment peculiar to furnaces of these types arrangements for circulating gases
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B9/00Furnaces through which the charge is moved mechanically, e.g. of tunnel type; Similar furnaces in which the charge moves by gravity
    • F27B9/30Details, accessories, or equipment peculiar to furnaces of these types
    • F27B9/40Arrangements of controlling or monitoring devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D17/00Arrangements for using waste heat; Arrangements for using, or disposing of, waste gases
    • F27D17/008Arrangements for using waste heat; Arrangements for using, or disposing of, waste gases cleaning gases
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D7/00Forming, maintaining, or circulating atmospheres in heating chambers
    • F27D7/04Circulating atmospheres by mechanical means
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Definitions

  • the invention relates to a recycling gas recycling and utilization technology, in particular to a hydrochloric acid-free continuous annealing furnace reducing gas circulation recycling system and a utilization method thereof.
  • the surface scale is usually removed by pickling.
  • the hot-rolled sheet can be directly subjected to reduction annealing without pickling, and the surface oxide scale is reduced by a reducing gas.
  • the direct use of metal iron which not only improves the metal yield and product, but also simplifies the production process, is receiving much attention.
  • the Chinese patents with the publications CN101956061 and CN102653815 disclose the process of recycling and protecting the gas of the bell-type bright annealing furnace.
  • the protective gas is condensed and removed by the condenser, the oil is absorbed by the oil absorber, and the deep-drying water is removed and then supplied to the bell-type bright annealing furnace.
  • the Chinese patent application No. 200710039842.8 discloses an annealing furnace protective atmosphere recycling method, which is directed to the recovery of the atmosphere in the continuous silicon nitride annealing furnace of the oriented silicon steel.
  • the basic process is condensation and dehydration of the reducing gas, filtering and removing impurities and then entering the combustion tube.
  • the road system heats the strip steel, which is a single-cycle process, and the utilization efficiency is not high, resulting in waste of energy.
  • the object of the present invention is to provide a hydrochloric acid-free continuous annealing furnace reducing gas circulation recycling system and a utilization method thereof, thereby saving energy consumption and reducing cost.
  • an acid-free continuous annealing furnace reducing gas circulation recycling system comprising a continuous annealing furnace, which has a preheating section, a heating section, a soaking section, and a slow connection in the strip conveying direction.
  • the cold section and the quick cooling section are characterized by:
  • An exhaust fan is provided at the inlet of the strip in the preheating section for extracting the reducing gas in the preheating section;
  • the input end is connected to the exhaust fan through a pipeline, and is used for heat exchange and cooling of the extracted reducing gas;
  • a gas desiccant purification device wherein the input end is connected to the heat exchanger through a pipeline for removing a small amount of water vapor generated by the reduction of the strip by the reducing gas;
  • the mixing device has an input end connected to the gas desiccant purifying device through a pipeline, a reducing gas supplementing tube at the other input end, and an output end connected to the quick cooling section through the pipeline, and the reducing gas and the supplementary reducing by drying
  • the gas is fully mixed to form a new reducing gas, it is input into the continuous annealing furnace from the rapid cooling section, and is reversed with the strip steel, and the strip steel is rapidly cooled in the rapid cooling section, and preheated and soaked in the slow cooling section.
  • the heat is exchanged by the exhaust fan to the heat exchanger to form a new cycle.
  • the utility model further comprises a plurality of boosting pumps, which are arranged on the pipeline between the first flow control valve and the heat exchanger, the quick cooling section and the slow cooling section, the slow cooling section and the heating section and the soaking section respectively.
  • It also includes two pressure detecting devices connected to the preheating section of the continuous annealing furnace and the air mixing device through a pipeline to detect the pressure in the furnace and the aeration pressure of the air mixing device.
  • a reducing gas concentration detector is further disposed on the reducing gas supply tube for detecting the concentration of the reducing gas to be replenished.
  • a dew point detecting device that is connected by a pipe between the gas desiccant purification device and the aeration device.
  • a dew point detection feedback device mounted on a conduit between the gas desiccant purification unit and the dew point detection unit.
  • a sealing roller is further disposed between the heating section and the soaking section in the continuous annealing furnace, and between the soaking section and the cooling section.
  • a bleed valve disposed at the other output of the aeration device for venting excess reducing gas.
  • the heating section and the soaking section are also supplemented by means of electric resistance heating, radiant heating, infrared heating or induction heating.
  • the drying medium used in the gas drying and purifying device is any one of molecular sieve, silica gel, activated alumina, anhydrous calcium chloride, calcium oxide, concentrated sulfuric acid, and phosphorus pentoxide.
  • a method for reducing and recycling a reducing gas in a pickling-free continuous annealing furnace which is carried out in the acid-free continuous annealing furnace reducing gas circulation recycling system according to any one of claims 1 to 12, includes the following steps:
  • the heat of the extracted reducing gas is exchanged by a heat exchanger, and further cooled to a temperature acceptable for the subsequent gas desiccant purification device;
  • a new reducing gas is added and thoroughly mixed to form a new reducing gas, and then input from the rapid cooling section of the continuous annealing reduction furnace, and the strip is reversed in the entire continuous annealing furnace, and is successively fast.
  • the strip is rapidly cooled in the cold section.
  • the gas heated by the strip enters the slow cooling section to slowly cool the strip and is further preheated by the strip.
  • the preheated gas enters the soaking section to reduce the strip.
  • the hot reducing gas is gradually transferred to the cold strip, and the cooled reducing gas is taken out from the strip inlet to start a new cycle.
  • the gas dew point is below -20 °C.
  • the gas dew point is below -40 °C.
  • the present invention has the following advantages:
  • the energy can be utilized efficiently, that is, the gas which has been cooled and dried in the outlet section of the furnace is used to cool the hot strip after reduction, and the soaked high temperature gas is used to sequentially heat and preheat the steel, thereby Both the reducing gas and the heat energy of the strip are effectively utilized.
  • Gas recycling with less pollutant emissions, can basically achieve zero emissions.
  • FIG. 1 is a schematic view showing a system for reducing gas recycling of an acid-free continuous annealing furnace according to an embodiment of the present invention.
  • FIG. 1 shows a hydrogenation-free continuous annealing furnace reducing gas circulation recycling system according to an embodiment of the present invention, as shown in the drawing, including a preheating section 2, a heating section 3, a soaking section 4, a slow cooling section 5, and a fast Continuous annealing furnace of cold section 6, heat exchanger 8, gas desiccant purification device (using deep drying tower) 9, aeration device 10, preheating section 2, heating section 3, soaking section 4, slow cooling section 5 And the quick cooling section 6 is sequentially connected in the conveying direction of the strip 1 , and an exhaust fan (not shown) is installed at the inlet of the strip in the preheating section for extracting the reducing gas in the preheating section 2, And the pressure signal in the furnace transmitted by the pressure sensor P1 is used to control the rotation speed and adjust the pumping flow rate, and the input end of the heat exchanger 8 is connected to the exhaust fan through a pipeline for heat exchange and cooling of the extracted reducing gas; gas drying The input end of the agent purifying device 9 is connected to the heat exchange
  • the acid-free continuous annealing furnace reducing gas circulation recycling system of the present invention further comprises the following components: two flow control valves 7, and the first flow control valve 7 is installed between the heat exchanger 8 and the preheating section 2
  • the second flow control valve 7 is installed in the reducing gas supplement pipe 16 of the air mixing device 10 for controlling the gas flow rate; the plurality of booster pumps M are disposed in the first flow control valve 7 and the heat exchanger 8, respectively.
  • the cold section 6 and the slow cooling section 5, the slow cooling section 5 and the pipe connecting the heating section 3 and the soaking section 4 are used for pressurization;
  • the disturbance device 11 is installed in the soaking section 4 in the annealing furnace to make the gas
  • two pressure detecting devices P are respectively connected to the preheating section 2 of the continuous annealing furnace and the air mixing device 10 through a pipeline for detecting the pressure in the furnace and the mixing pressure of the air mixing device;
  • the meter 13 is disposed on the reducing gas supplement pipe 16 for detecting the concentration of the reducing gas to be replenished;
  • a dew point detecting device DP is connected between the gas desiccant purifying device 9 and the air mixing device 10 through a pipe for detecting the Gas drying and purification
  • a dew point detection feedback device is installed on the pipeline between the gas desiccant purification device 9 and the dew point detecting device DP to determine whether the dew point of the dry gas meets the requirements,
  • the heating section 3 and the soaking section 4 may be heated by a high-temperature reducing gas, and may be supplemented by means of resistance heating, radiant heating, infrared heating or induction heating.
  • the drying medium used in the gas drying and purifying device 9 may be any one or a mixture of molecular sieve, silica gel, activated alumina, anhydrous calcium chloride, calcium oxide, concentrated sulfuric acid or phosphorus pentoxide.
  • the method for recovering and recycling the reducing gas in the pickling-free continuous annealing furnace of the present invention is carried out in the above-mentioned acid-free continuous annealing furnace reducing gas circulation recycling system shown in FIG. 1, comprising the steps of: reducing gas in the entire continuous annealing furnace
  • the inner side is stripped with the strip 1 (in the entire continuous annealing furnace, the flow direction of the reducing gas is reversed with the strip 1), and is taken out from the strip inlet of the preheating section 2 and preheated with the strip 1
  • the reducing gas is passed through the pressure detecting device P to transmit the measured pressure signal in the furnace to the exhaust fan to control the rotating speed of the exhaust fan and adjust the pumping flow rate; and the pre-tropical steel in the preheating section of the reducing gas before being extracted 1, the gas temperature decreases after preheating;
  • the extracted lower temperature reducing gas is further subjected to heat exchange through the heat exchanger 8, and further cooled to a temperature acceptable for the subsequent gas desiccant purification device;
  • the cooled reducing gas is input into the gas desiccant purification device 9 to perform deep dehydration, remove trace impurities, and dry, and is detected by the dew point detecting device DP to ensure that the gas dew point is below -20 ° C after being treated by the gas drying and purifying device. Good to below -40 ° C.
  • the fresh reducing gas is appropriately added and thoroughly mixed to form a new reducing gas, and then input from the rapid cooling section 6 of the continuous annealing reduction furnace, and the strip 1 is reversed in the continuous annealing furnace, and sequentially
  • the strip is rapidly cooled in the fast cooling section 6.
  • the gas heated by the strip enters the slow cooling section 5 to slowly cool the strip 1 and is further preheated by the strip, and the preheated gas enters the soaking section. 4 to carry out the reduction strip, and then through the heating section 3 and the preheating section 2, the hot reducing gas is gradually transferred to the cold strip 1, and the cooled reducing gas is extracted from the strip inlet to start a new cycle. .
  • the reducing medium of the present invention is much higher than the theoretical value required for the scale, in order to increase the scale reduction rate and efficiency, but the reducing gas of the present invention is recycled and utilized, and the excess reducing medium does not significantly increase the production cost. .
  • the strip 1 runs from the right (inlet) to the left (outlet), and the reducing gas is extracted from the inlet of the strip.
  • the furnace pressure sensor P transmits the furnace pressure signal to the exhaust fan port, controls the fan speed, and adjusts the flow control valve 7 to ensure The furnace pressure (micro positive pressure) is stable.
  • the extracted protective gas has a small amount of water vapor generated by the reaction with the iron oxide scale on the surface of the steel strip, and the gas has a certain temperature, and is cooled by the heat exchanger 8 to enter the gas desiccant purification device 9 to remove water vapor and impurity components.
  • the dew point detection feedback device 15 adjusts the action until the gas dew point is below -20 °C.
  • the dried reducing gas enters the aeration device 10, and is appropriately replenished with fresh hydrogen according to the component detection result detected by the reducing gas concentration detector 13, because a small amount of reducing medium is consumed through the scale, the hydrogen concentration is continuously detected, and feedback is made to the flow control. Valve 7 is controlled until the concentration reaches the set value.
  • the relief valve 14 mainly ensures the safety of the mixing station, and determines whether to release through the relief valve 14 based on the pressure detection signal of the air mixing device.
  • the mixed reducing gas is injected into the quick cooling section 6 through a booster pump M, and can be sprayed on the strip surface at a certain angle by a cyclic spray method for rapidly cooling the strip steel, and is quickly cooled and stripped.
  • the heated reducing gas is introduced into the slow cooling section 5 via another booster pump M and further preheated by the strip 1 and then the hot gas enters the soaking section 4 and the heating section 3.
  • the reducing gas entering the furnace flows from the left (outlet) to the right (inlet) into the preheating section 2, so that the heat of the hot reducing gas is gradually transferred to the cold strip, and the strip heating reduces the temperature of the reducing gas and is cooled.
  • the reducing gas (where the hydrogen concentration has decreased and the water content has increased) is withdrawn from the strip inlet section and a new cycle of water removal, purification, regeneration (recovering its reducing performance) begins.
  • the invention has the following advantages: excess reducing medium in the reducing gas which is not involved in the reaction can be recycled 100%, saving energy and reducing production cost; energy can be utilized efficiently, and high temperature gas can be used in the soaking section To heat and pre-tropical steel, the cooled and dried reducing gas entering from the outlet section of the furnace can be used to cool the hot strip, and the heat of the reducing gas and the strip can be effectively utilized and recycled. With less pollutant emissions, it can basically achieve zero emissions, and the effect is very significant.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Metallurgy (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Organic Chemistry (AREA)
  • Environmental & Geological Engineering (AREA)
  • Heat Treatment Of Strip Materials And Filament Materials (AREA)
  • Drying Of Gases (AREA)
  • Cleaning And De-Greasing Of Metallic Materials By Chemical Methods (AREA)
  • Treating Waste Gases (AREA)
  • Waste-Gas Treatment And Other Accessory Devices For Furnaces (AREA)

Abstract

L'invention concerne un système de recyclage d'une circulation de gaz réducteur pour un four de recuit continu sans décapage et son procédé d'utilisation. Le four de recuit continu comprend une section de préchauffage (2), une section de chauffage (3), une section de trempage (4), une section de refroidissement lent (5) et une section de refroidissement rapide, (6). Le procédé de circulation de gaz réducteur comprend les étapes suivantes : un gaz réducteur est extrait au niveau d'une entrée de feuillard d'acier de la section de préchauffage (2); le gaz réducteur à basse température extrait est refroidi gaz par l'intermédiaire d'un échangeur de chaleur (8); le gaz refroidi entre dans un dispositif de purification d'agent de séchage de gaz (9) pour la déshydratation, le séchage et l'élimination des impuretés, de sorte que le point de rosée du gaz descend en dessous de -20 oC; le gaz réducteur séché est additionné d'un gaz réducteur dans un dispositif de mélange des gaz (10), et le gaz mixte entre dans la section de refroidissement rapide pour refroidir rapidement le feuillard d'acier (1); le gaz réducteur chauffé par le feuillard d'acier (1) entre dans la section de refroidissement lent (5) pour être encore préchauffé par le feuillard d'acier (1), puis entre dans la section de trempage du four de recuit pour réduire le feuillard d'acier (1); le gaz réducteur entre successivement dans la section de chauffage (3) et dans la section de préchauffage (2), et le gaz réducteur chauffé transfère progressivement la chaleur au feuillard d'acier froid (1); le gaz réducteur refroidi est extrait depuis la section d'entrée du feuillard d'acier, et une nouvelle circulation commence.
PCT/CN2015/070984 2014-05-30 2015-01-19 Système de recyclage d'une circulation de gaz réducteur pour four de recuit continu sans décapage et son procédé d'utilisation WO2015180501A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020167034952A KR20170009903A (ko) 2014-05-30 2015-01-19 무산세 연속 어닐링로 환원성 가스 순환 재생 이용 시스템 및 그 이용방법
RU2016151999A RU2684465C2 (ru) 2014-05-30 2015-01-19 Система рециркуляции восстановительного газа для печи непрерывного отжига без травления и способ её применения
JP2016570339A JP6538088B2 (ja) 2014-05-30 2015-01-19 酸洗いフリー連続焼鈍炉還元ガス循環再生利用系統およびその利用方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410240695.0 2014-05-30
CN201410240695.0A CN105132666A (zh) 2014-05-30 2014-05-30 免酸洗连续退火炉还原气体循环再生利用系统及其利用方法

Publications (1)

Publication Number Publication Date
WO2015180501A1 true WO2015180501A1 (fr) 2015-12-03

Family

ID=54698042

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/070984 WO2015180501A1 (fr) 2014-05-30 2015-01-19 Système de recyclage d'une circulation de gaz réducteur pour four de recuit continu sans décapage et son procédé d'utilisation

Country Status (5)

Country Link
JP (1) JP6538088B2 (fr)
KR (1) KR20170009903A (fr)
CN (1) CN105132666A (fr)
RU (1) RU2684465C2 (fr)
WO (1) WO2015180501A1 (fr)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107557563A (zh) * 2017-08-30 2018-01-09 天津市宇润德金属制品有限公司 高节能还原炉
CN108180764A (zh) * 2018-01-22 2018-06-19 卢爱玲 一种陶瓷窑炉叠温式增氧抽热系统
CN109652639A (zh) * 2018-12-29 2019-04-19 佛山市诚德新材料有限公司 一种不锈钢带的退火炉
CN110172565A (zh) * 2018-06-28 2019-08-27 镕凝精工新材料科技(上海)有限公司 一种罩式退火炉余热回收利用系统
CN110595221A (zh) * 2019-10-08 2019-12-20 江苏维麦气体科技有限公司 一种镀锌连续退火炉尾气回收处理循环利用装置及其处理工艺
CN111926171A (zh) * 2020-08-31 2020-11-13 武汉钢铁有限公司 冷轧无取向硅钢薄带连续退火冷却控制方法
CN112609059A (zh) * 2020-12-10 2021-04-06 浙江海亮股份有限公司 链式退火炉及管材传送控制方法
CN112710160A (zh) * 2019-10-25 2021-04-27 中冶长天国际工程有限责任公司 解析塔冷态启动时热风风机控制方法及装置
CN113667802A (zh) * 2021-07-31 2021-11-19 浙江明泰控股发展股份有限公司 一种新型连续式退火器
CN114438289A (zh) * 2022-02-18 2022-05-06 光丰(肇庆)钢业有限公司 一种钢带退火系统
CN114480831A (zh) * 2022-02-15 2022-05-13 宝钢湛江钢铁有限公司 一种带钢退火速度自动控制方法
CN116793098A (zh) * 2023-08-29 2023-09-22 山西华茂智能新材料有限公司 一种球墨铸管退火工艺缓冷段的余热回收利用方法

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106018317A (zh) * 2016-05-30 2016-10-12 中国石油集团东北炼化工程有限公司吉林设计院 一种用于监测气体组分含量的系统及方法
CN107099651A (zh) * 2017-05-16 2017-08-29 浙江久立特材科技股份有限公司 一种全氢保护气辊底炉氢气流量控制的方法及系统
CN107299216B (zh) * 2017-06-21 2021-05-14 华北理工大学 一种轧钢加热炉
CN107964643A (zh) * 2017-12-27 2018-04-27 安德里茨(中国)有限公司 热轧带钢连续热镀锌设备及方法
CN108151544A (zh) * 2018-01-17 2018-06-12 广东中鹏热能科技有限公司 一种逆流式冷却系统的节能辊道窑
CN108588374A (zh) * 2018-02-06 2018-09-28 冷水江天宝实业有限公司 一种连续热处理炉及其密封装置与方法
CN108507343B (zh) * 2018-03-30 2020-07-17 楚天科技股份有限公司 一种烘干机整机系统内的风压平衡控制方法及装置
CN111218627A (zh) * 2019-11-11 2020-06-02 山西中磁尚善科技有限公司 一种高温金属退火工艺
CN112725597B (zh) * 2020-12-21 2021-10-08 燕山大学 一种用于退火炉氮气重复利用的装置及方法
CN113899187B (zh) * 2021-11-18 2023-03-28 楚天科技股份有限公司 隧道式灭菌干燥机风压平衡控制方法及隧道式灭菌干燥机
CN114645120A (zh) * 2022-03-23 2022-06-21 熊建 一种可有效吸除水蒸气的凸轮轴高频淬火装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4582301A (en) * 1983-03-01 1986-04-15 Wuenning Joachim Pass-through furnace for heat recovery in the heat treatment of aggregates of metallic articles or parts
JPS62177126A (ja) * 1986-01-31 1987-08-04 Nisshin Steel Co Ltd 鋼帯の連続焼鈍方法
WO2000012233A1 (fr) * 1998-08-31 2000-03-09 Danieli Technology, Inc. Procede d'elimination en continu d'oxydes du metal
DE102008005259A1 (de) * 2008-01-18 2009-07-30 Kramer, Carl, Prof. Dr.- Ing. Verfahren zur Energieeinsparung bei Wärmebehandlungsanlagen mit durch Heizteil und Kühlteil bewegtem Gut
CN201386116Y (zh) * 2009-03-25 2010-01-20 耿凯 连续式退火炉中高速行走钢板的预热系统

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU996837A1 (ru) * 1981-03-18 1983-02-15 Сибирский Филиал Научно-Производственного Объединения По Техническому Обслуживанию И Энергетическому Оборудованию Предприятий Химической Промышленности Установка дл рециркул ции дымовых газов
RU2127324C1 (ru) * 1997-11-18 1999-03-10 Открытое акционерное общество "Ювэнергочермет" Способ утилизации защитного газа при термообработке металла в отделении колпаковых печей
WO2000003815A1 (fr) * 1998-07-14 2000-01-27 Ut-Battelle, Llc Reduction continue d'ecailles de laminage sur de l'acier en bande, lamine a chaud
US6622778B1 (en) * 2000-07-12 2003-09-23 Danieli Technology, Inc. Method for the direct production of scale-free thin metal strip
CN101294239B (zh) * 2007-04-24 2010-09-08 宝山钢铁股份有限公司 一种退火炉保护气氛回收利用方法
RU2386712C1 (ru) * 2008-08-05 2010-04-20 Открытое акционерное общество "Уралэлектромедь" Способ утилизации тепла отходящих газов медерафинировочной печи
CN102653815A (zh) * 2012-05-30 2012-09-05 苏州苏净保护气氛有限公司 镜面板退火炉保护气回收循环利用装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4582301A (en) * 1983-03-01 1986-04-15 Wuenning Joachim Pass-through furnace for heat recovery in the heat treatment of aggregates of metallic articles or parts
JPS62177126A (ja) * 1986-01-31 1987-08-04 Nisshin Steel Co Ltd 鋼帯の連続焼鈍方法
WO2000012233A1 (fr) * 1998-08-31 2000-03-09 Danieli Technology, Inc. Procede d'elimination en continu d'oxydes du metal
DE102008005259A1 (de) * 2008-01-18 2009-07-30 Kramer, Carl, Prof. Dr.- Ing. Verfahren zur Energieeinsparung bei Wärmebehandlungsanlagen mit durch Heizteil und Kühlteil bewegtem Gut
CN201386116Y (zh) * 2009-03-25 2010-01-20 耿凯 连续式退火炉中高速行走钢板的预热系统

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107557563A (zh) * 2017-08-30 2018-01-09 天津市宇润德金属制品有限公司 高节能还原炉
CN108180764A (zh) * 2018-01-22 2018-06-19 卢爱玲 一种陶瓷窑炉叠温式增氧抽热系统
CN110172565A (zh) * 2018-06-28 2019-08-27 镕凝精工新材料科技(上海)有限公司 一种罩式退火炉余热回收利用系统
CN109652639A (zh) * 2018-12-29 2019-04-19 佛山市诚德新材料有限公司 一种不锈钢带的退火炉
CN109652639B (zh) * 2018-12-29 2024-02-09 佛山市诚德新材料有限公司 一种不锈钢带的退火炉
CN110595221A (zh) * 2019-10-08 2019-12-20 江苏维麦气体科技有限公司 一种镀锌连续退火炉尾气回收处理循环利用装置及其处理工艺
CN112710160B (zh) * 2019-10-25 2023-06-23 中冶长天国际工程有限责任公司 解析塔冷态启动时热风风机控制方法及装置
CN112710160A (zh) * 2019-10-25 2021-04-27 中冶长天国际工程有限责任公司 解析塔冷态启动时热风风机控制方法及装置
CN111926171B (zh) * 2020-08-31 2022-04-29 武汉钢铁有限公司 冷轧无取向硅钢薄带连续退火冷却控制方法
CN111926171A (zh) * 2020-08-31 2020-11-13 武汉钢铁有限公司 冷轧无取向硅钢薄带连续退火冷却控制方法
CN112609059A (zh) * 2020-12-10 2021-04-06 浙江海亮股份有限公司 链式退火炉及管材传送控制方法
CN113667802A (zh) * 2021-07-31 2021-11-19 浙江明泰控股发展股份有限公司 一种新型连续式退火器
CN114480831A (zh) * 2022-02-15 2022-05-13 宝钢湛江钢铁有限公司 一种带钢退火速度自动控制方法
CN114480831B (zh) * 2022-02-15 2023-09-22 宝钢湛江钢铁有限公司 一种带钢退火速度自动控制方法
CN114438289A (zh) * 2022-02-18 2022-05-06 光丰(肇庆)钢业有限公司 一种钢带退火系统
CN116793098A (zh) * 2023-08-29 2023-09-22 山西华茂智能新材料有限公司 一种球墨铸管退火工艺缓冷段的余热回收利用方法
CN116793098B (zh) * 2023-08-29 2023-10-20 山西华茂智能新材料有限公司 一种球墨铸管退火工艺缓冷段的余热回收利用方法

Also Published As

Publication number Publication date
KR20170009903A (ko) 2017-01-25
RU2684465C2 (ru) 2019-04-09
JP6538088B2 (ja) 2019-07-03
JP2017524807A (ja) 2017-08-31
RU2016151999A (ru) 2018-07-03
RU2016151999A3 (fr) 2018-10-26
CN105132666A (zh) 2015-12-09

Similar Documents

Publication Publication Date Title
WO2015180501A1 (fr) Système de recyclage d'une circulation de gaz réducteur pour four de recuit continu sans décapage et son procédé d'utilisation
JP2017524807A5 (fr)
CN101537303B (zh) 低温烟气驱动的溶液除湿装置
CN108088248B (zh) 一种可精准供热的带式焙烧机热工系统及其控制方法
CN101871042A (zh) 连续退火机组中退火炉“烟气余热”的再利用方法及装置
CN102995040A (zh) 一种酸洗溶液的加热方法
CN105509492B (zh) 一种氧化铝回转窑烟气余热及co2回收系统及方法
CN204509407U (zh) 一种淬火炉热回收装置
CN201387178Y (zh) 低温烟气驱动的溶液除湿装置
CN103225007A (zh) 高炉热风炉烟气余热发电系统和方法
CN208546991U (zh) 一种废气处理热力利用系统
CN203568958U (zh) 利用烟气余热的低温带式干化装置
CN203657497U (zh) 一种再生砂焙烧炉余热回收装置
CN207042444U (zh) 工艺塔余热回收系统
CN212769886U (zh) 一种高压水蒸气制备活性炭设备
CN204514068U (zh) 一种高纯石墨余热回收处理装置
CN203443374U (zh) 一种硫铁矿制酸装置炉底渣废热回收装备
CN201753361U (zh) 连续退火机组中退火炉“烟气余热”的再利用装置
CN111392725A (zh) 一种高压水蒸气制备活性炭工艺
CN202747761U (zh) 桥式电泳烘干炉上坡段预烘干设备
CN205933289U (zh) 一种热风和列管加热器相结合的废酸浓缩处理装置
CN110052100A (zh) 一种适用于碱炉烟气的消白系统
CN204787783U (zh) 隧道窑窑尾冷却循环装置
CN109612318A (zh) 一种余热回收装置
CN203833749U (zh) 一种改进的酸洗废液处理系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15799732

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016570339

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20167034952

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2016151999

Country of ref document: RU

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 15799732

Country of ref document: EP

Kind code of ref document: A1