WO2015180271A1 - 一种高效光伏异构焊带 - Google Patents

一种高效光伏异构焊带 Download PDF

Info

Publication number
WO2015180271A1
WO2015180271A1 PCT/CN2014/085114 CN2014085114W WO2015180271A1 WO 2015180271 A1 WO2015180271 A1 WO 2015180271A1 CN 2014085114 W CN2014085114 W CN 2014085114W WO 2015180271 A1 WO2015180271 A1 WO 2015180271A1
Authority
WO
WIPO (PCT)
Prior art keywords
photovoltaic
tape
isomerization
conductive base
coupling platform
Prior art date
Application number
PCT/CN2014/085114
Other languages
English (en)
French (fr)
Inventor
钱海鹏
Original Assignee
凡登(江苏)新型材料有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 凡登(江苏)新型材料有限公司 filed Critical 凡登(江苏)新型材料有限公司
Publication of WO2015180271A1 publication Critical patent/WO2015180271A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/05Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/02002Arrangements for conducting electric current to or from the device in operations
    • H01L31/02005Arrangements for conducting electric current to or from the device in operations for device characterised by at least one potential jump barrier or surface barrier
    • H01L31/02008Arrangements for conducting electric current to or from the device in operations for device characterised by at least one potential jump barrier or surface barrier for solar cells or solar cell modules
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/05Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells
    • H01L31/0504Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells specially adapted for series or parallel connection of solar cells in a module
    • H01L31/0508Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells specially adapted for series or parallel connection of solar cells in a module the interconnection means having a particular shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/054Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means
    • H01L31/0547Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means comprising light concentrating means of the reflecting type, e.g. parabolic mirrors, concentrators using total internal reflection
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/52PV systems with concentrators

Definitions

  • the invention belongs to the technical field of photovoltaic tape processing, and in particular relates to a high-efficiency photovoltaic isomerized ribbon.
  • the slings are important raw materials in the splicing process of the photovoltaic modules.
  • the slings are usually connected to each other by the splicing or conductive adhesive bonding, and the current is good. The bad will directly affect the collection efficiency of the PV module current, which has a great impact on the power of the PV module. How to increase the conversion rate of the cell and reduce the fragmentation rate through the isomerization of the ribbon has always been one of the research topics in the industry.
  • Cida Patent No. CN101789452A discloses a tin-coated strip comprising a copper strip and a tin-coated layer on its surface, the surface of the tin-coated layer having a uniformly distributed pit-like body.
  • This kind of slingband causes diffuse reflection of sunlight in the pit to a certain extent, and enhances the energy of receiving sunlight.
  • the pit-like body only diffusely reflects, the proportion of sunlight reflected back to the cell sheet is small, and the conversion rate is limited; in addition, the pit is prepared during the tin-coating process, which produces an uneven layer of tantalum. And it will produce a phenomenon that the battery is not firmly connected, and there is a vain.
  • Chinese patent CN102569470A provides a V-groove that is prepared perpendicular to the length of the ankle band on the surface of the ankle band to reduce the crack and fragmentation rate of the cell.
  • the patented V-groove is perpendicular to the length direction and has no significant spacing between the V-grooves. Therefore, the strap is unstable when it is spliced to the battery, and the splicing is not strong.
  • Chinese patent CN202004027U provides a sling with a zigzag-shaped reflective structure on the front side of the sash with a plurality of grooves extending along the length of the sash, which is used to make sunlight incident on the sling. Effectively reflected onto the battery to increase component power.
  • the sling is unstable when the battery is spliced, and the splicing is not strong, and the groove structure along the length of the sling has a large cross-sectional loss in the case of the same thickness sling, thereby increasing Resistance is not conducive to power boost.
  • the inventors have found that even in the production process of the sling, the groove angle is set within an angle range that enables the reflected light to be reflected back through the glass/air surface of the assembly to the surface of the battery, and the ability of the reflective multiplex is still not ideal.
  • the technical problem to be solved by the present invention is: in order to reasonably ensure the conduction through the interconnecting strip
  • the surface heterogeneity of the strip realizes the reflective tape multiplexing/stress reduction of the interconnecting layer, and at the same time solves the problem that the bonding fastness between the heterogeneous ribbon and the cell sheet is reduced/false risk increases in the automatic stringer environment, and the present invention is At the same time, partial reflective multiplexing, reduced splicing stress, guaranteed splicing strength, and converging electric loss caused by balanced grooving are provided to provide a cost-effective and efficient photovoltaic heterogeneous enthalpy.
  • a high-efficiency photovoltaic heterogeneous ribbon comprising a conductive base tape, the conductive base tape being a metal elemental or alloy material having two upper and lower wide surfaces,
  • the conductive base tape has at least one wide surface distributed with a V-shaped groove and a coupling platform, and the V-shaped groove has a depth h of 0.055 mm ⁇ h ⁇ 0.15 mm ;
  • the coupling platform has a diameter of the largest inscribed circle greater than 0.10 mm, along the A platform with a maximum length of the conductive tape in the length direction of less than 50 mm.
  • the above technical solution makes a V-shaped groove on the surface of the conductive base tape, on the one hand, a part of the surface reflected light can be re-reflected to the surface of the battery through the glass/air surface of the component, thereby realizing the multiplexing of the reflected light on the surface of the partial ankle band.
  • the actual thickness of the ankle band is partially reduced by the distribution of the V-shaped groove, thereby reducing the stress between the ankle band and the cell due to the thermal expansion and contraction of the battery band after the connection.
  • the solution also has a coupling platform reserved between the V-shaped grooves, thereby solving the problem of the bonding fastness between the ankle strap and the battery sheet.
  • the inventors have found that when using the mainstream automatic stringer on the market, it is necessary to ensure that the material has sufficient splicing fastness to the back silver surface of the battery during the splicing process, and the diameter of the largest inscribed circle of the coupling platform is not required. Less than 0.10mm. At the same time, the maximum length of the coupling platform along the length of the conductive baseband should generally be less than 50 mm. Otherwise, the V-groove density/ ⁇ -band reflective multiplexing capability is not only lost, but is reduced by the V-groove.
  • the effect of the splicing rate is also greatly reduced: because the distance between the V-grooves is already greater than 30% of the width of the general polycrystalline cell, and the entanglement/battery accumulated between the adjacent V-grooves during the splicing process It is difficult to obtain a good release of sheet stress.
  • the depth h of the V-groove is generally selected to be 0.055 mm ⁇ h ⁇ 0.15 mm.
  • the conductive base tape has at least one wide surface formed by the V-shaped groove and the coupling platform, i.e., the same wide surface consists only of the V-shaped groove and the coupling platform.
  • the V-shaped groove is a linear V-shaped groove in which the intersection of the two oblique sides of the groove is a straight line.
  • a coupling platform is left between adjacent V-shaped grooves.
  • the depth h of the V-shaped groove is 0.06 mm h 0.12 mm.
  • the diameter of the largest inscribed circle of the coupling platform is greater than 0.20 mm, and the maximum length of the coupling platform along the length of the conductive base strip is less than 20 mm.
  • the diameter of the largest inscribed circle of the coupling platform is not less than 0.25 mm, and the maximum length of the coupling platform along the length direction of the conductive baseband is less than 5 mm.
  • the diameter of the largest inscribed circle of the coupling platform is not less than 0.25 mm, and the maximum length of the coupling platform along the length direction of the conductive baseband is less than 5 mm.
  • the linear V-shaped groove and the conductive base tape have an inclination angle of 15 ° -75 ° in the longitudinal direction.
  • the reflection of the V-shaped groove will re-reflect through the glass/air surface and will mostly fall back to the surface of the tape, which will not be reused by the cell, and
  • the effective conductive cross-sectional area of the tape is greatly reduced, resulting in an increase in the practical resistance of the tape, resulting in higher package electrical loss.
  • the V-groove direction at this time is favorable for the release of internal stress after the splicing of the sling, which can better reduce the risk of splicing debris caused by thermal expansion and contraction of the sling; when the angle is between 0° and -15 °
  • the reflection of the V-shaped groove is re-reflected by the glass/air surface, it will fall back to the surface of the cell sheet most or all, which is beneficial to the multiplexing of the light, and the effective cross-sectional area of the tape is reduced/package loss.
  • the increase is small, but at this time, it is not conducive to releasing the internal stress after the splicing of the sling.
  • In the process of assisting the reduction of the splicing there is a certain disadvantage in the risk of splicing debris because the sling is much higher than the thermal expansion and contraction coefficient of the battery sheet.
  • the surface area of the coupling platform occupies 5% m 95% of the area of the surface of the conductive layer.
  • the ratio of the surface area of the coupling platform to the surface area of the conductive layer on which it is located is 25% ⁇ m ⁇ 75% o
  • the linear V-shaped grooves are distributed in parallel on the same wide face.
  • the linear V-shaped grooves are distributed across the same wide face.
  • the shape of the coupling platform is a parallelogram or a trapezoid.
  • the surface of the bismuth tin layer will naturally flow, so that the angle of the actual illuminating groove after the splicing is completed becomes larger.
  • the above problem does not occur with a non-splicing method (typically bonding the battery to the interconnecting strip by a conductive adhesive).
  • the V-shaped angle of the V-shaped groove is generally selected between 75 ° and 138 ° to ensure a better ⁇ strap table. The efficiency of surface reflection through the glass/air surface to reflect back to the cell surface.
  • the coupling platform is not lower than the highest point of the V-shaped groove.
  • the outer surface of the tape is coated or plated with a tin-based layer of tantalum so that it can be directly spliced; and a protective layer can be prepared between the conductive base tape and the tin-based layer to prevent aging of the tape and reliable performance.
  • the above-mentioned baseband production scheme is also of great significance for the manner of preparing the ankle tape by using conventional hot-coated coatings: When the conventional thermal coating is used to produce the ankle strap, although the heterogeneity of the surface of the baseband is substantially filled, it is difficult to realize.
  • the outer surface of the tape can also be coated or plated with a conductive reflective layer, which is suitable for bonding between the tape and the battery sheet by means of non-twisting (such as conductive adhesive bonding).
  • a transition layer is also prepared between the tantalum layer or the electrically conductive reflective layer and the conductive base tape.
  • the invention discloses a high-efficiency photovoltaic heterogeneous enthalpy belt, which is prepared by simultaneously preparing a V-shaped groove of a preferred depth on a surface of a conductive base tape, and a coupling platform preferably designed to simultaneously realize partial reflection multiplexing of the ruthenium strip surface and reduce splicing stress.
  • the protection of the connection strength and the converging electric loss caused by the balanced slotting provide a cost-effective custom design.
  • Figure 1 is a schematic view showing the structure of Example 1 of the high-efficiency photovoltaic isomerization enthalpy tape of the present invention.
  • 2 is a schematic view showing the structure of Example 2 of the high-efficiency photovoltaic isomerization enthalpy tape of the present invention.
  • 3 is a schematic view showing the structure of Embodiment 3 of the high-efficiency photovoltaic isomerization enthalpy tape of the present invention.
  • Figure 4 is a schematic view showing the structure of Example 4 of the high-efficiency photovoltaic isomerization tape of the present invention.
  • Figure 5 is a schematic view showing the structure of Example 5 of the high-efficiency photovoltaic isomeric ribbon of the present invention.
  • Figure 6 is a cross-sectional view showing a groove set of Embodiment 5 of the present invention.
  • Figure 7 is a cross-sectional view showing a coupling platform of Embodiment 5 of the present invention.
  • Figure 8 is a schematic view showing the structure of Example 6 of the high-efficiency photovoltaic isomeric ribbon of the present invention.
  • Figure 9 is a schematic view showing the structure of Example 7 of the high-efficiency photovoltaic isomerization tape of the present invention.
  • Figure 10 is a schematic view showing the structure of Example 8 of the high-efficiency photovoltaic isomerization tape of the present invention.
  • Figure 11 is a schematic view showing the structure of Example 9 of the high-efficiency photovoltaic isomerization tape of the present invention.
  • Figure 12 is a schematic view showing the structure of Example 10 of the high-efficiency photovoltaic isomerization tape of the present invention.
  • Figure 13 is a schematic view showing the structure of Example 11 of the high-efficiency photovoltaic isomerization tape of the present invention.
  • the depth h of the V-shaped groove of the invention is greater than 0.055 mm, firstly because under the existing splicing process, the bismuth layer on the surface of the splicing band will naturally flow after splicing, so the V-shaped groove side wall and coupling Part of the material on the joint platform will flow into the V-shaped groove. If the depth of the V-shaped groove is too shallow, most of the V-shaped groove will be blocked by the material, which will lose the original intention of the reflective design.
  • the thickness of the enamel layer is lOum
  • the parallel platform of the coupling platform is 250 um
  • the diameter of the inscribed circle is 250 um
  • the angle of the V-shaped groove is 120 degrees.
  • the V-grooves of different depths are buried. Calculate the remaining approximate depth as follows: Conductive baseband V-groove depth (mm) After welding, V-groove depth (mm)
  • the depth of the V-shaped groove is large, because the overall yield performance of the sling is basically the yield performance of the thinnest portion of the sling caused by the V-shaped groove. Decide.
  • the V-shaped groove is too deep, which will cause the substrate thickness of the substrate after processing to be too large, and the risk of the substrate being interrupted during processing is high.
  • the depth h of the linear V-groove is generally selected to be less than 0.15 mm.
  • TU1 oxygen-free copper is selected as the conductive base tape 1, as shown in FIG. 1, having a groove set 2 along the length direction of the conductive base tape 1 on one wide surface thereof, and two groove sets 2 are respectively disposed on both sides of the wide surface
  • Each groove set 2 is composed of a plurality of continuous V-shaped grooves 3, and the V-shaped groove 3 is a linear V-shaped groove whose intersection of the two oblique sides of the groove is straight, and may of course be two oblique grooves. The intersection of the sides is a curved curved V-shaped groove and other deformations.
  • a rectangular coupling platform 4 extending along the length of the conductive base strip 1 is left between the two sets of grooves 2, and the height of the coupling platform 4 is equal to the highest point of the V-shaped groove 3, and the coupling platform 4 is coupled.
  • the maximum inscribed circle has a diameter of 0.1 mm; the V-shaped groove has a V-shaped angle of 138 °, and the V-shaped groove 3 is parallel to the longitudinal direction of the conductive base strip 1; the depth h of the V-shaped groove 3 is 0.12 mm;
  • the surface area of the platform 4 is 5% of the area ratio m of the wide surface of the conductive base tape 1.
  • the conductive light-reflecting layer was uniformly prepared by electroplating onto the above-mentioned conductive base tape, and the thickness of the reflective layer was 5 ⁇ m to prepare a highly efficient photovoltaic isomerization band.
  • the splicing is adhered to the battery piece by a conductive adhesive, and the V-shaped groove has a depth of 0.12 mm.
  • the power of a set of battery components using this photovoltaic tape was 6W higher than that of a component prepared using a common tape, which was 2.4% higher.
  • the splicing force of the sling is the pulling force required to pull the sling along the direction of the battery sheet 45 degrees until the sling is peeled off from the battery sheet.
  • the splicing force requirement is greater than 3N, and the splicing force of the sling in this embodiment is greater than 3N. fulfil requirements.
  • the fragmentation rate caused by the thermal expansion and contraction is less than two thousandths.
  • TU1 oxygen-free copper is selected as the conductive base tape 1, as shown in FIG. 2, having a groove set 2 on one wide surface thereof, and each groove set 2 is composed of a plurality of continuous V-shaped grooves 3, different groove sets 2
  • the maximum length of the direction is 3.0 mm; the V-shaped groove 3 is present around the coupling platform 4; the V-shaped groove 3 has a V-shaped angle of 75°, and the V-shaped groove 3 is at an angle of 30 degrees with the length of the conductive base tape 1
  • the parallelogram has two sides parallel to the direction of the V-shaped groove 3; the depth h of the V-shaped groove 3 is 0.08 mm ; and the surface area ratio of the surface area of the coupling platform 4 to the wide surface of the conductive base tape 1 is 75%.
  • the tin-lead material was uniformly prepared by electroplating onto the above-mentioned conductive base tape to prepare a highly efficient photovoltaic heterogeneous ribbon, and the thickness of the tantalum layer was 10 ⁇ m.
  • the V-groove depth is 0.048 mm.
  • the power of a set of battery components using this photovoltaic tape was 1W higher than that of a component prepared using a common tape, which was increased by 0.4%.
  • the splicing force of the sling is to pull the sling along the 45 degrees of the battery through the dynamometer until The tension required to peel off the battery strip is generally greater than 3N.
  • the splicing force of the sling is greater than 3N in this embodiment, which satisfies the requirements.
  • the fragmentation rate caused by the thermal expansion and contraction is less than one thousandth.
  • TU1 oxygen-free copper is selected as the conductive base tape 1, as shown in FIG. 3, having a groove set 2 spaced apart along the length direction of the wide surface on one wide surface thereof, each groove set 2 being composed of a plurality of continuous V-shaped grooves 3, a parallel quadrilateral coupling platform 4 is left between the different groove sets 2, and the length of the coupling platform 4 in the width direction of the wide surface is equal to the width of the wide surface, the width is 1.6 mm, and the maximum inscribed circle The diameter is 0.
  • the height of the coupling platform 4 is equal to the highest point of the V-shaped groove 3;
  • the angle of the shape is 120°, the V-shaped groove 3 is at an angle of 15 degrees with the longitudinal direction of the conductive base tape 1; the depth h of the V-shaped groove 3 is 0.10 mm; the surface area of the coupling platform 4 occupies the area of the wide surface of the conductive base tape 1
  • the ratio m is 95%.
  • the tin-lead material was uniformly prepared by electroplating onto the above-mentioned conductive base tape, and the enamel layer and the conductive base tape also had a transition layer of 2 um to prepare a highly efficient photovoltaic isomerization enthalpy, and the thickness of the mash layer was 8 um.
  • the V-groove depth is 0.069 mm.
  • the power of a set of battery components using this photovoltaic tape was 0.5W higher than that of a component prepared using a common tape, which was 0.2% higher.
  • the splicing force of the sling is the pulling force required to pull the sling along the direction of the battery sheet 45 degrees until the sling is peeled off from the battery sheet.
  • the splicing force requirement is greater than 3N, this embodiment
  • the splicing force of the sling is greater than 5N, which meets the requirements.
  • the fragmentation rate caused by the thermal expansion and contraction is less than one thousandth.
  • TU1 oxygen-free copper is selected as the conductive base tape 1, as shown in FIG. 4, having a groove set 2 on one wide surface thereof, and each groove set 2 is composed of a plurality of continuous V-shaped grooves 3, and different groove sets 2
  • a parallelogram-shaped coupling platform 4 the height of the coupling platform 4 is equal to the highest point of the V-shaped groove 3, and the diameter of the largest inscribed circle of the coupling platform 4 is 0.24 mm, coupled to the platform 4
  • the V-shaped groove 3 has a V-shaped angle of 110°, and the V-shaped groove 3
  • the parallelogram has two sides parallel to the direction of the V-shaped groove 3; the depth h of the V-shaped groove 3 is 0.11 mm; the surface area of the
  • the tin-lead material was uniformly prepared by electroplating onto the above-mentioned conductive base tape to prepare a highly efficient photovoltaic heterogeneous ribbon, and the thickness of the tantalum layer was 10 ⁇ m.
  • the V-groove depth is 0.084 mm.
  • the power of a set of battery components using this photovoltaic tape was 2.2W higher than that of a component prepared using a common tape, which was 0.88% higher.
  • the splicing force of the sling is the pulling force required to pull the sling along the 45-degree direction of the battery until the sling is peeled off from the battery.
  • the splicing force is greater than 3N, and the splicing force of the sling is greater than 4N. fulfil requirements.
  • the fragmentation rate caused by the thermal expansion and contraction is less than one thousandth.
  • Example 5 TU1 oxygen-free copper is selected as the conductive base tape 1, as shown in FIG. 5, on one of its wide surfaces, there are two groove sets 2 along the length direction of the conductive base tape 1, and two groove sets 2 are respectively disposed on both sides of the wide surface.
  • Each groove set 2 is composed of a plurality of continuous V-shaped grooves 3, and a rectangular coupling platform 4 extending along the length of the conductive base tape 1 is left between the two groove sets 2, the coupling platform The height of 4 is higher than the highest point of the V-shaped groove 3, the diameter of the largest inscribed circle of the coupling platform 4 is 0.6 mm ; the V-shaped groove 3 has a V-shaped angle of 110°, and the V-shaped groove 3 is connected with the conductive base belt 1 The length direction of the V-shaped groove 3 is 0.10 mm; the surface area ratio of the surface area of the coupling platform 4 to the wide surface of the conductive base tape 1 is 25%.
  • the tantalum layer was uniformly prepared by electroplating onto the above-mentioned conductive base tape to prepare a highly efficient photovoltaic isomerized anthracene, and the thickness of the tantalum layer 5 was 10 ⁇ m.
  • the V-groove depth is 0.070 mm.
  • the power of a set of battery components using this photovoltaic tape was 4W higher than that of a component prepared with a common tape, which was 1.6% higher.
  • the splicing force of the sling is the pulling force required to pull the sling along the 45-degree direction of the battery until the sling is peeled off from the battery.
  • the splicing force is greater than 3N, and the splicing force of the sling is greater than 4N. fulfil requirements.
  • the fragmentation rate caused by the thermal expansion and contraction is less than two thousandths.
  • TU1 oxygen-free copper is selected as the conductive base tape 1, as shown in FIG. 8, having a groove set 2 along the length direction of the conductive base tape 1 on one wide surface thereof, and two groove sets 2 are respectively disposed on both sides of the wide surface
  • Each groove set 2 consists of a plurality of consecutive V-shaped grooves 3
  • a rectangular coupling platform 4 extending along the length of the conductive base strip 1 is left between the two sets of grooves 2, and the height of the coupling platform 4 is equal to the highest point of the V-shaped groove 3, and the coupling platform 4 is coupled.
  • the maximum inscribed circle has a diameter of 0.12 mm, and the maximum length along the length of the conductive base strip 1 is 18 mm ; the V-shaped groove 3 has a V-shaped angle of 110°, and the V-shaped grooves 3 are all parallel to the longitudinal direction of the conductive base strip 1; The depth h of the V-shaped groove 3 is 0.1 mm; the surface area ratio of the surface area of the coupling platform 4 to the wide surface of the conductive base tape 1 is 50%.
  • the opening also has a circular groove 8, and the bottom surface of the groove 8 has a circular arc shape.
  • the tantalum layer was uniformly prepared by electroplating onto the above-mentioned conductive base tape to prepare a highly efficient photovoltaic isomerized anthracene, and the thickness of the tantalum layer was 10 ⁇ m.
  • the V-groove depth is 0.068mm.
  • the power of a set of battery components using this photovoltaic tape was 1.4W higher than that of a component prepared using a common tape, which was increased by 0.56%.
  • the splicing force of the sling is the pulling force required to pull the sling along the 45-degree direction of the battery until the sling is peeled off from the battery.
  • the splicing force is greater than 3N, and the splicing force of the sling is greater than 4N. fulfil requirements.
  • the fragmentation rate caused by the thermal expansion and contraction is less than two thousandths.
  • TU1 oxygen-free copper is selected as the conductive base tape 1, as shown in Fig. 9, having two groove sets 2 on one wide surface thereof, one groove set 2 consisting of a plurality of continuous V-shaped grooves 3, and another concave
  • the groove set 2 is composed of a V-shaped groove 3, and a parallelogram-shaped coupling platform 4 is left between the different groove sets 2, the height of the coupling platform 4 and the highest point of the V-shaped groove 3 Contour, the maximum inscribed circle of the coupling platform 4 has a diameter of 0.26 mm, and the V-shaped groove 3 exists on the upper and lower sides of the coupling platform 4, and there are no V-shaped grooves 3 on the left and right sides, that is, the left and right sides of the coupling platform 4 extend to the width
  • the two sides of the surface; the V-shaped groove 3 has a V-shaped angle of 110°, the V-shaped groove 3 is at an angle of 30 degrees with the longitudinal direction of the conductive base strip 1, and the parallelogram has two sides parallel to the direction of the
  • the tin-lead material was uniformly prepared by electroplating onto the above-mentioned conductive base tape to prepare a highly efficient photovoltaic heterogeneous ribbon, and the thickness of the tantalum layer was 10 ⁇ m.
  • the V-groove depth is 0.07 mm.
  • the power of a set of battery components using this photovoltaic tape was 2W higher than that of a component prepared using a common tape, which was 0.8% higher.
  • the splicing force of the sling is the pulling force required to pull the sling along the 45-degree direction of the battery until the sling is peeled off from the battery.
  • the splicing force is greater than 3N, and the splicing force of the sling is greater than 4N. fulfil requirements.
  • the fragmentation rate caused by the thermal expansion and contraction is less than one thousandth.
  • TU1 oxygen-free copper is selected as the conductive base tape 1, as shown in FIG. 10, having a V-shaped groove 3 on one wide surface thereof, and a parallelogram-shaped coupling platform 4 is left between the adjacent V-shaped grooves 3, the coupling
  • the height of the platform 4 is equal to the highest point of the V-shaped groove 3, and the diameter of the largest inscribed circle of the coupling platform 4 is 1.6 mm, which is consistent with the width of the base tape, and the maximum length along the length of the conductive base tape 1 is 45 mm, coupled.
  • V-shaped grooves 3 on the upper and lower sides of the platform 4, and there are no V-shaped grooves 3 on the left and right sides, that is, the left and right sides of the coupling platform 4 extend to both side edges of the wide surface;
  • the V-shaped groove 3 has a V-shaped angle of 75 °, the V-shaped groove 3 is at an angle of 30 degrees with respect to the longitudinal direction of the conductive base tape 1, and the parallelogram has two sides parallel to the direction of the V-shaped groove 3; the depth of the V-shaped groove 3 h is 0.14 mm.
  • the tin-lead material is uniformly prepared by coating onto the above-mentioned conductive base tape to prepare a highly efficient photovoltaic isomerization band.
  • a set of battery components was prepared using this photovoltaic tape, and the fragmentation rate caused by the thermal expansion and contraction of the crucible was less than one thousandth.
  • the splicing force of the sling is the pulling force required to pull the sling along the 45-degree direction of the battery until the sling is peeled off from the battery.
  • the splicing force is greater than 3N, and the splicing force of the sling is greater than 5N in this embodiment. fulfil requirements.
  • TU1 oxygen-free copper is selected as the conductive base tape 1, as shown in FIG. 11, having a V-shaped groove 3 on one wide surface thereof, and a parallelogram-shaped coupling platform 4 is left between adjacent V-shaped grooves 3, the coupling
  • the height of the platform 4 is equal to the highest point of the V-shaped groove 3, the diameter of the largest inscribed circle of the coupling platform 4 is 0.25 mm, the V-shaped groove 3 is present on the upper and lower sides of the coupling platform 4, and the V-shaped groove 3 is not present on the left and right sides.
  • the left and right sides of the coupling platform 4 extend to both side edges of the wide surface;
  • the V-shaped groove 3 has a V-shaped angle of 120°, and the V-shaped groove 3 is at an angle of 40 degrees with the longitudinal direction of the conductive base belt 1, and the parallelogram has The two sides are parallel to the direction of the V-shaped groove 3;
  • the depth h of the V-shaped groove 3 is 0.10 mm;
  • the surface area ratio of the surface area of the coupling platform 4 to the wide surface of the conductive base tape 1 is 42%.
  • the tin-lead material was uniformly prepared by electroplating onto the above-mentioned conductive base tape to prepare a highly efficient photovoltaic heterogeneous ribbon, and the thickness of the tantalum layer was 8 ⁇ m. After the splicing, the V-groove has a depth of 0.071 mm.
  • the power of a set of battery components using this photovoltaic tape was 3W higher than that of a component prepared using a common tape, which was increased by 1.2%.
  • the splicing force of the sling is the pulling force required to pull the sling along the 45-degree direction of the battery until the sling is peeled off from the battery.
  • the splicing force is greater than 3N, and the splicing force of the sling is greater than 4N. fulfil requirements.
  • the fragmentation rate caused by the thermal expansion and contraction is less than one thousandth.
  • TU1 oxygen-free copper is selected as the conductive base tape 1, as shown in FIG. 12, having a groove set 2 on one wide surface thereof, and each groove set 2 is composed of a plurality of continuous V-shaped grooves 3, and different groove sets 2
  • the maximum length is 2.0 mm; the V-shaped groove 3 is present around the coupling platform 4; the V-shaped groove 3 has a V-shaped angle of 75°, and the V-shaped groove 3 and the length of the conductive base tape 1 are inclined at two angles. Both are 75 degree angles; the depth h of the V-shaped groove 3 is 0.08 mm ; the surface area ratio of the surface area of the coupling platform 4 to the wide surface of the conductive base tape 1 is 55%.
  • the tin-lead material was uniformly prepared by electroplating onto the above-mentioned conductive base tape to prepare a highly efficient photovoltaic heterogeneous ribbon, and the thickness of the tantalum layer was 10 ⁇ m.
  • the V-groove depth is 0.049 mm.
  • the power of a set of battery components using this photovoltaic tape was 1.5W higher than that of a component prepared using a common tape, which was 0.6% higher.
  • the splicing force of the sling is to pull the sling along the 45 degrees of the battery through the dynamometer until The tension required to peel off the battery strip is generally greater than 3N.
  • the splicing force of the sling in this embodiment is greater than 4N, which satisfies the requirements.
  • the fragmentation rate caused by the thermal expansion and contraction is less than one thousandth.
  • TU1 oxygen-free copper is selected as the conductive base tape 1, as shown in FIG. 13, having a V-shaped groove 3 on one wide surface thereof, and a coupling platform 4 is left between the adjacent V-shaped grooves 3, and the coupling platform 4 is The height is equal to the highest point of the V-shaped groove 3, the maximum inscribed circle of the coupling platform 4 has a diameter of 0.5 mm, and the maximum length along the length of the conductive base tape 1 is 2.0 mm ; the V-shaped portion is present around the coupling platform 4.
  • the V-shaped groove 3 has a V-shaped angle of 100°, and the V-shaped groove 3 has two inclination angles with the longitudinal direction of the conductive base belt 1, one is a 45-degree angle, and the other is a 90-degree angle;
  • the depth h of the groove 3 is 0.09 mm;
  • the surface area ratio of the surface area of the coupling platform 4 to the wide surface of the conductive base tape 1 is 82%.
  • the tin-lead material was uniformly prepared by electroplating onto the above-mentioned conductive base tape to prepare a highly efficient photovoltaic heterogeneous ribbon, and the thickness of the tantalum layer was 10 ⁇ m.
  • the V-groove depth is 0.057 mm.
  • the power of a set of battery components using this photovoltaic tape was 0.5W higher than that of a component prepared using a common tape, which was 0.2% higher.
  • the splicing force of the sling is the pulling force required to pull the sling along the 45-degree direction of the battery until the sling is peeled off from the battery.
  • the splicing force is greater than 3N, and the splicing force of the sling is greater than 5N in this embodiment. fulfil requirements.
  • the fragmentation rate caused by the thermal expansion and contraction is less than one thousandth.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Photovoltaic Devices (AREA)
  • Sustainable Energy (AREA)

Abstract

一种高效光伏异构焊带,包括导电基带(1),所述导电基带(1)为金属单质或合金材料,其具有上、下两个宽表面,所述的导电基带(1)至少有一个宽表面分布有V形槽(3)和耦联平台(4),V形槽(3)的深度h为0.055mm<h<0.15mm;所述耦联平台(4)为最大内接圆的直径不小于0.10mm,沿导电基带(1)长度方向的最大长度小于50mm的平台。通过在导电基带表面制备优化设计的V型槽与耦联平台,为同时实现焊带表面的部分反光复用、降低焊接应力、保障焊接强度、均衡开槽导致的汇流电损提供了高性价比的定制设计方案。

Description

一种高效光伏异构焊带 技术领域
本发明属于光伏悍带加工技术领域,特别涉及一种高效光伏异构 悍带。
背景技术
随着世界经济的快速发展, 能源消耗越来越大, 世界各国都需求 新能源的应用和普及。由于二氧化碳排放导致的温室气体效应致使全 球气候变暖并引发自然灾害,世界各国对清洁的可再生能源的需求尤 其强烈。 在美国 2007年次贷危机导致的全球危机蔓延和扩大以来, 为剌激经济增长,各国都通过了更积极的鼓励使用可再生能源的措施。 美国奥巴马政府提出在未来 10年投资 1500亿美元用于清洁能源;欧 盟设定目标在 2020年将可再生能源占使用能源的比例提高到 20%; 日本提出在 2030 年使 70%以上的新建住宅安装太阳能电池板 (约 70GW)。 为缓解光电产品国内需求不足, 2009年 3月 26日, 中国财 政部宣布将推动实施 "太阳能屋顶计划"示范工程。 财政部、 住房和 城乡建设部联合出台的《关于加快推进太阳能光电建筑应用的实施意 见》 中明确提出, 实施 "太阳能屋顶计划", 对光电建筑应用示范工 程予以资金补助、鼓励技术进歩与科技创新、鼓励地方政府出台相关 财政扶持政策、加强建设领域政策扶持等一系列原则措施。现阶段在 经济发达、产业基础较好的大中城市积极推进太阳能屋顶、光伏幕墙 等光电建筑一体化示范;积极支持在农村与偏远地区发展离网式发电, 实施送电下乡等有关规定,更是给太阳能技术的应用指明了方向。 以 太阳能屋顶、光伏幕墙等光电建筑一体化为突破口, 可能在短期内让 人们看到应用太阳能的诸多好处, 也有利于今后大面积推广, 激发产 业资本投资太阳能领域的积极性。各国的新能源政策或许将成为下一 个影响我们此后 15年世界发展的重要政策之一。 2009年的哥本哈根 气候会议再次唤醒、强化了人们关注清洁能源的意识。伴随新能源的 应用和普及, 光伏行业的迅猛增长势头得到进一歩的加强和重视。
悍带(包括互连带和汇流带)是光伏组件悍接过程中的重要原材 料,悍带通常是通过悍接或导电胶粘结的方式将电池片互相连接和汇 流电流, 悍带质量的好坏将直接影响到光伏组件电流的收集效率, 对 光伏组件的功率影响很大。如何通过悍带的异构化, 来增加电池片的 转化率, 降低碎片率, 一直是悍带行业研究的课题之一。
中国专利 CN101789452A给出了一种涂锡悍带, 其包括铜带及其 表面的涂锡层, 涂锡层表面具有均匀分布的坑状体。这种悍带在一定 程度上使太阳光在坑状体中发生漫反射, 提高了接受太阳光的能量。 但是, 其坑状体仅发生漫反射, 反射回电池片的太阳光比例很小, 提 高的转化率有限; 此外, 其凹坑是在涂锡过程中制备, 会产生不均匀 的悍料层, 并会产生与电池片悍接不牢的现象, 出现虚悍。
中国专利 CN102569470A给出了一种在悍带表面制备垂直于悍带 长度方向的 V型槽,以此来降低电池片的隐裂和碎片率。 但此专利悍 带 V型槽是垂直于长度方向且 V型槽间无明显的间距,因此这种悍带 在与电池片悍接时不稳定, 悍接不牢。 中国专利 CN202004027U给出了一种悍带,在悍带正面具有多个 沿悍带长度方向延伸的凹槽排列构成的截面呈锯齿型的反光结构,以 此结构来让入射到悍带上太阳光有效反射到电池片上,来提高组件功 率。但这种悍带在与电池片悍接时不稳定, 悍接不牢, 且这种沿悍带 长度方向的凹槽结构, 在同等厚度悍带的情况下, 截面积损耗大, 从 而增加了电阻, 不利于功率的提升。
中 国 专 禾 lj ZL201320071240.1 , ZL201320071182.2 , ZL201320110484.6, ZL201320463993.7, ZL201320466223.8等, 提出 了通过对悍带的导电基带进行不同形式的异构,实现悍带表面反射光 的部分复用, 调整悍带与电池片之间的悍接牢度, 降低悍带带来的汇 流电损,以及降低悍带的屈服应力以提高组件的耐候安全和生产过程 中的碎片率。 实践证实, 上述专利群尚存一类共同的不足: 即当采用 市场上现行的自动串悍机悍接时,除非大幅提高异构宽表面上基带平 面的总面积占异构宽表面总面积比例,否则接触背银的异构宽表面与 背银之间出现虚悍的风险较高。然而大幅提高异构宽表面上基带平面 的总面积占异构宽表面总面积比例的后果,正是导致处于正银面的悍 带表面反射光复用能力大幅下降的原因, 违背产品设计的主要初衷。
同时, 发明人发现, 即使在悍带的生产过程中将凹槽角度设置在 能够使反射光通过组件的玻璃 /空气表面重新反射到电池表面发生全 反射的角度范围内, 反光复用的能力仍不理想。
发明内容
本发明要解决的技术问题是:为了在合理确保通过互联带导电基 带的表面异构实现互联带反光复用 /应力降低的同时, 解决在自动串 悍机环境下异构悍带与电池片之间的悍接牢度降低 /虚悍风险增大, 本发明为同时实现悍带表面的部分反光复用、 降低悍接应力、保障悍 接强度、均衡开槽导致的汇流电损提供了高性价比的高效光伏异构悍 带。
本发明解决其技术问题所采用的技术方案是:一种高效光伏异构 悍带, 包括导电基带, 所述导电基带为金属单质或合金材料, 其具有 上、下两个宽表面,所述的导电基带至少有一个宽表面分布有 V形槽 和耦联平台, V形槽的深度 h为 0.055mm< h<0.15mm ; 所述耦联平 台为最大内接圆的直径大于 O.lOmm , 沿导电基带长度方向的最大长 度小于 50 mm的平台。
上述技术方案通过在导电基带的表面制作 V形槽,一方面使得部 分表面反射光能够通过组件的玻璃 /空气表面重新反射到电池表面, 从而实现了部分悍带表面反射光的复用的能力,同时通过 V形槽的分 布局部降低了悍带的实际厚度,从而降低了悍接后因为悍带的远高于 电池片的热胀冷缩幅度而带来的悍带与电池片之间的应力。尤其重要 的是, 本方案同时在 V形槽之间预留有耦联平台,从而同歩解决了悍 带与电池片的结合牢度问题。发明人发现, 使用当前市场上的主流自 动串悍机时,欲保证悍接过程中悍料对电池的背银表面有足够的悍接 牢度, 耦联平台的最大内接圆的直径须不小于 0.10mm。 与此同时, 一般应选择耦联平台沿导电基带长度方向的最大长度小于 50 mm ,否 则不仅无谓损失 V型槽密度 /悍带反光复用的能力, 通过 V型槽降低 悍接碎片率的效果也会大打折扣:因为此时 V型槽之间距离已经大于 一般多晶电池片宽度的 30%,相邻 V型槽之间在悍接过程中积累的悍 带 /电池片应力难以得到较好释放。
发明人发现, 在现有悍带悍接工艺条件下, 悍接后悍带表面的悍 锡层会发生自然流淌,因此 V形槽侧壁和耦联平台上的部分悍料会流 入 V形槽内, 如果 V形槽深度太浅, 会造成 V形槽大部分被悍料堵 死, 损失反光设计的初衷。若 V型槽过深, 则会带来悍带的包络厚度 过大, 制备过程中断线风险高等弊端。 因此, 一般选择 V形槽的深度 h为 0.055mm <h <0.15mm。
所述的导电基带至少有一个宽表面由所述 V 形槽和所述耦联平 台构成, 即同一个宽表面仅由所述的 V形槽和所述的耦联平台构成。
所述 V形槽为槽的两个斜边的交线为直线的直线型 V形槽。
相邻 V形槽之间均留有耦联平台。
在当前晶硅电池组件的封装环境下, 优选 V 形槽的深度 h 在 0.06mm h 0.12mm。
进一歩地, 宜优选所述耦联平台的最大内接圆的直径大于 0.20mm,且所述耦联平台沿导电基带长度方向的最大长度小于 20mm。
进一歩地, 宜优选所述耦联平台的最大内接圆的直径不小于 0.25mm,且所述耦联平台沿导电基带长度方向的最大长度小于 5mm。 在当前市场上的主流自动串悍机环境下,并从工业化稳定生产高可悍 悍带的成本效益出发,在保证悍带可悍接或粘结并满足悍带剥离拉力 的情况下, 可以得到较佳的耦联平台与反光 V形槽的比例。 优选直线型 V 形槽与导电基带的长度方向的倾斜角度为 15 ° -75° 。当夹角在 75° -90° 之间时, V形槽的反光通过玻璃 /空气表面 重新反射后会大部或者全部落回到悍带表面,起不到被电池片复用的 作用, 且悍带的有效导电横截面积降低较大, 导致悍带的实用电阻增 大, 带来较高的封装电损。但此时的 V形槽走向有利于悍带悍接后的 内应力释放,从而能够更好地降低因为悍带的热胀冷缩导致的悍接碎 片风险; 当夹角在 0° -15 ° 之间时, V形槽的反光通过玻璃 /空气表 面重新反射后会大部或者全部落回到电池片表面, 有利于光的复用, 且悍带的有效横截面积降低小 /封装电损增加小, 但此时不利于释放 悍带悍接后的内应力,在辅助降低悍接过程中因为悍带远高于电池片 的热胀冷缩系数而导致悍接碎片风险方面有一定劣势。
所述耦联平台的表面积占其所在导电基带宽表面的面积比例 m 为 5% m 95%。
所述耦联平台的表面积占其所在导电基带宽表面的面积比例 m 为 25%^ m^75% o
所述直线型 V形槽在同一宽面平行分布。
所述直线型 V形槽在同一宽面交叉分布。
所述耦联平台的形状为平行四边形或梯形。
悍带悍接后, 表面的悍锡层会发生自然流淌, 使得悍接完成后的 实际发光凹槽角度变大。对于采用非悍接方式(典型地如通过导电胶 粘结电池与互联带), 上述问题则不会发生。 根据具体应用方法, 一 般选择 V形槽的 V形夹角在 75 ° - 138° 之间, 以保障较佳的悍带表 面反光通过玻璃 /空气表面重新反射到电池表面的效率。
所述耦联平台不低于所述 V形槽的最高点。
悍带的外表面涂敷或电镀有锡基悍料层, 从而可以直接悍接; 且 在导电基带与锡基悍料层之间可制备保护层, 以防止悍带老化, 性能 可靠。上述基带制作方案,对于采用常规热涂敷悍料制备悍带的方式, 同样具备重要意义: 采用常规热涂悍料生产悍带时, 虽然基带表面的 异构会被基本填平, 从而难以实现悍带表面的反光复用, 但采用本方 案的 V形槽基带,仍可降低悍接应力, 同时又不会因为 V形槽的存在 而过多损失有效导电截面积。
悍带的外表面也可涂敷或电镀有导电反光层,适用于悍带与电池 片之间通过非悍接 (如导电胶粘结) 方式结合的情况。
所述悍料层或导电反光层与导电基带之间还制备有过渡层。
本发明公布的一种高效光伏异构悍带,通过在导电基带表面制备 优选深度的 V形槽,和优选设计的耦联平台, 为同时实现悍带表面的 部分反光复用、 降低悍接应力、 保障悍接强度、 均衡开槽导致的汇流 电损提供了高性价比的定制设计方案。对于忽略反光复用能力的常规 热涂悍带的制备, 同样具备优化指导意义。
附图说明
图 1 是本发明的高效光伏异构悍带的实施例 1的结构示意图。 图 2是本发明的高效光伏异构悍带的实施例 2的结构示意图。 图 3是本发明的高效光伏异构悍带的实施例 3的结构示意图。 图 4是本发明的高效光伏异构悍带的实施例 4的结构示意图。 图 5是本发明的高效光伏异构悍带的实施例 5的结构示意图。 图 6是本发明的实施例 5的凹槽集合的剖面图。
图 7是本发明的实施例 5的耦联平台的剖面图。
图 8 是本发明的高效光伏异构悍带的实施例 6的结构示意图。 图 9是本发明的高效光伏异构悍带的实施例 7的结构示意图。 图 10是本发明的高效光伏异构悍带的实施例 8的结构示意图。 图 11是本发明的高效光伏异构悍带的实施例 9的结构示意图。 图 12是本发明的高效光伏异构悍带的实施例 10的结构示意图。 图 13是本发明的高效光伏异构悍带的实施例 11的结构示意图。 具体实施方式
本发明选择 V形槽的深度 h大于 0.055mm, 首先是因为在现有 悍带悍接工艺条件下, 悍接后悍带表面的悍锡层会发生自然流淌, 因 此 V形槽侧壁和耦联平台上的部分悍料会流入 V形槽内, 如果 V形 槽深度太浅,会造成 V形槽大部分被悍料堵死,损失反光设计的初衷。 例如悍料层厚度是 lOum , 耦联平台的为平行四边形, 内接圆的直径 为 250um, V形槽夹角 120度, 此时模拟计算悍接后, 不同深度 V形 槽悍料填埋后计算剩余大致深度如下表: 导电基带 V形槽深度 (mm) 焊接后焊带 V形槽深度 (mm)
0. 050 0. 021
0. 060 0. 031
0. 070 0. 039
0. 080 0. 047
0. 090 0. 056
0. 100 0. 065 由上表可以看出, V形槽深度小于或等于 0.05mm时, 会有超过
50%的深度被悍接后的悍料填平, 极大地损失了悍带反光的复用能 力。 同时, 从辅助降低悍接应力的作用方面, 也希望 V形槽的深度较 大为好, 因为悍带整体的屈服性能,基本是由 V形槽造成的悍带的最 薄处的屈服性能所决定。
但从其他方面看, V形槽过深, 会带来加工后的基材包络厚度过 大, 基材在加工过程中断线风险高等问题。实用中一般会选择直线型 V形槽的深度 h小于 0.15mm。
实施例 1
选用 TU1无氧铜作为导电基带 1, 如图 1所示, 在其一个宽表面 具有两个沿导电基带 1长度方向的凹槽集合 2, 两个凹槽集合 2分别 设置在宽表面的两侧, 每个凹槽集合 2由多个连续的 V形槽 3组成, V形槽 3为槽的两个斜边的交线为直线的直线型 V形槽, 当然也可以 是槽的两个斜边的交线为曲线的曲线型 V形槽等其他变形。
所述两个凹槽集合 2之间留有沿导电基带 1长度方向延伸的矩形 的耦联平台 4, 所述耦联平台 4的高度与 V形槽 3的最高点等高, 耦 联平台 4的最大内接圆的直径为 0.1 mm; V形槽的 V形夹角为 138 ° , V形槽 3均与导电基带 1的长度方向平行; V形槽 3的深度 h是 0.12mm; 耦联平台 4的表面积占其所在导电基带 1宽表面的面积比例 m为 5%。
通过电镀方式将导电反光层均匀的制备到上述的导电基带上,反 光层厚度为 5um, 制备成高效光伏异构悍带。
悍接通过导电胶粘帖电池片上, 悍带 V形槽深度 0.12mm。 采用 60片 156*156多晶硅片, 使用此光伏悍带制备一组电池组 件的功率比使用普通悍带制备的组件功率高出 6W, 提高了 2.4%。
悍带的悍接力是通过拉力计, 沿着电池片 45度方向拉悍带直至 悍带从电池片剥离所需的拉力, 一般悍接力要求大于 3N , 本实施例 的悍带悍接力大于 3N, 满足要求。
由悍带热胀冷缩而导致的碎片率低于千分之二。
实施例 2
选用 TU1无氧铜作为导电基带 1, 如图 2所示, 在其一个宽表面 具有凹槽集合 2, 每个凹槽集合 2由多个连续的 V形槽 3组成, 不同 凹槽集合 2之间留有平行四边形的耦联平台 4, 所述耦联平台 4的高 度与 V形槽 3 的最高点等高, 耦联平台 4 的最大内接圆的直径为 0.5mm , 沿导电基带 1长度方向的最大长度为 3.0mm; 耦联平台 4的 周围都存在 V形槽 3; V形槽 3的 V形夹角为 75° , V形槽 3与导电 基带 1的长度方向成 30度角, 平行四边形有两条边与 V形槽 3的方 向平行; V形槽 3的深度 h是 0.08mm ; 耦联平台 4的表面积占其所 在导电基带 1宽表面的面积比例 m为 75%。
通过电镀的方式将锡铅悍料均匀的制备到上述的导电基带上,制 备成高效光伏异构悍带, 悍料层厚度为 10um。
悍接后悍带 V形槽深度为 0.048mm。
采用 60片 156*156多晶硅片, 使用此光伏悍带制备一组电池组 件的功率比使用普通悍带制备的组件功率高出 1W, 提高了 0.4%。
悍带的悍接力是通过拉力计, 沿着电池片 45度方向拉悍带直至 悍带从电池片剥离所需的拉力, 一般悍接力要求大于 3N , 本实施例 的悍带悍接力大于 3N, 满足要求。
由悍带热胀冷缩而导致的碎片率低于千分之一。
实施例 3
选用 TU1无氧铜作为导电基带 1, 如图 3所示, 在其一个宽表面 具有沿宽表面的长度方向间隔设置的凹槽集合 2, 每个凹槽集合 2由 多个连续的 V形槽 3组成,不同凹槽集合 2之间留有平行四边形的耦 联平台 4, 耦联平台 4在宽表面宽度方向的长度与所述宽表面的宽度 相等, 宽度为 1.6mm, 最大内接圆的直径为 0. 5mm , 小于其所在宽 表面的宽度,沿导电基带 1长度方向的最大长度为 0.5mm; 耦联平台 4的高度与 V形槽 3的最高点等高; V形槽 3的 V形夹角为 120° , V 形槽 3与导电基带 1的长度方向成 15度角; V形槽 3的深度 h是 0.10mm; 耦联平台 4的表面积占其所在导电基带 1宽表面的面积比 例 m为 95%。
通过电镀的方式将锡铅悍料均匀的制备到上述的导电基带上,悍 料层与导电基带还有 2um 的过渡层, 制备成高效光伏异构悍带, 悍 料层的厚度为 8um。
悍接后悍带 V形槽深度为 0.069mm。
采用 60片 156*156多晶硅片, 使用此光伏悍带制备一组电池组 件的功率比使用普通悍带制备的组件功率高出 0.5W, 提高了 0.2%。
悍带的悍接力是通过拉力计, 沿着电池片 45度方向拉悍带直至 悍带从电池片剥离所需的拉力, 一般悍接力要求大于 3N , 本实施例 的悍带悍接力大于 5N, 满足要求。
由悍带热胀冷缩而导致的碎片率低于千分之一。
实施例 4
选用 TU1无氧铜作为导电基带 1, 如图 4所示, 在其一个宽表面 具有凹槽集合 2, 每个凹槽集合 2由多个连续的 V形槽 3组成, 不同 凹槽集合 2之间留有平行四边形的耦联平台 4, 所述耦联平台 4的高 度与 V形槽 3 的最高点等高, 耦联平台 4 的最大内接圆的直径为 0.24mm,耦联平台 4的上下都存在 V形槽 3,左右两边没有 V形槽 3, 即耦联平台 4左右两边均延伸到宽表面的两侧边缘; V形槽 3的 V形 夹角为 110° , V形槽 3与导电基带 1的长度方向成 30度角,平行四 边形有两条边与 V形槽 3的方向平行; V形槽 3的深度 h是 0.11mm; 耦联平台 4的表面积占其所在导电基带 1宽表面的面积比例 m为 55%。
通过电镀的方式将锡铅悍料均匀的制备到上述的导电基带上,制 备成高效光伏异构悍带, 悍料层厚度为 10um。
悍接后悍带 V形槽深度为 0.084mm。
采用 60片 156*156多晶硅片, 使用此光伏悍带制备一组电池组 件的功率比使用普通悍带制备的组件功率高出 2.2W, 提高了 0.88%。
悍带的悍接力是通过拉力计, 沿着电池片 45度方向拉悍带直至 悍带从电池片剥离所需的拉力, 一般悍接力要求大于 3N , 本实施例 的悍带悍接力大于 4N, 满足要求。
由悍带热胀冷缩而导致的碎片率低于千分之一。
实施例 5 选用 TU1无氧铜作为导电基带 1, 如图 5所示, 在其一个宽表面 具有两个沿导电基带 1长度方向的凹槽集合 2, 两个凹槽集合 2分别 设置在宽表面的两侧, 每个凹槽集合 2由多个连续的 V形槽 3组成, 所述两个凹槽集合 2之间留有沿导电基带 1长度方向延伸的矩形的耦 联平台 4, 所述耦联平台 4的高度高于 V形槽 3的最高点, 耦联平台 4的最大内接圆的直径为 0.6mm ; V形槽 3的 V形夹角为 110° , V 形槽 3均与导电基带 1的长度方向平行; V形槽 3的深度 h是 0.10mm; 耦联平台 4的表面积占其所在导电基带 1宽表面的面积比例 m为 25%。
通过电镀的方式将悍料层均匀的制备到上述的导电基带上,制备 成高效光伏异构悍带,悍料层 5的厚度为 10um。如图 6、图 7所示, 分别是凹槽集合 2和耦联平台 4处的横剖示意图。
悍接后悍带 V形槽深度为 0.070mm。
采用 60片 156*156多晶硅片, 使用此光伏悍带制备一组电池组 件的功率比使用普通悍带制备的组件功率高出 4W, 提高了 1.6%。
悍带的悍接力是通过拉力计, 沿着电池片 45度方向拉悍带直至 悍带从电池片剥离所需的拉力, 一般悍接力要求大于 3N , 本实施例 的悍带悍接力大于 4N, 满足要求。
由悍带热胀冷缩而导致的碎片率低于千分之二。
实施例 6
选用 TU1无氧铜作为导电基带 1, 如图 8所示, 在其一个宽表面 具有两个沿导电基带 1长度方向的凹槽集合 2, 两个凹槽集合 2分别 设置在宽表面的两侧, 每个凹槽集合 2由多个连续的 V形槽 3组成, 所述两个凹槽集合 2之间留有沿导电基带 1长度方向延伸的矩形的耦 联平台 4, 所述耦联平台 4的高度与 V形槽 3的最高点等高, 耦联平 台 4的最大内接圆的直径为 0.12mm, 沿导电基带 1长度方向的最大 长度为 18mm; V形槽 3的 V形夹角为 110° , V形槽 3均与导电基 带 1的长度方向平行; V形槽 3的深度 h是 0.1mm; 耦联平台 4的表 面积占其所在导电基带 1宽表面的面积比例 m为 50%。
在同一宽表面上, 还具有开口为圆形凹槽 8, 所述凹槽 8底面为 圆弧形。
通过电镀的方式将悍料层均匀的制备到上述的导电基带上,制备 成高效光伏异构悍带, 悍料层厚度为 10um。
悍接后悍带 V形槽深度为 0.068mm。
采用 60片 156*156多晶硅片, 使用此光伏悍带制备一组电池组 件的功率比使用普通悍带制备的组件功率高出 1.4W, 提高了 0.56%。
悍带的悍接力是通过拉力计, 沿着电池片 45度方向拉悍带直至 悍带从电池片剥离所需的拉力, 一般悍接力要求大于 3N , 本实施例 的悍带悍接力大于 4N, 满足要求。
由悍带热胀冷缩而导致的碎片率低于千分之二。
实施例 7
选用 TU1无氧铜作为导电基带 1, 如图 9所示, 在其一个宽表面 具有两种凹槽集合 2, 一种凹槽集合 2由多个连续的 V形槽 3组成, 另一种凹槽集合 2由一个 V形槽 3组成,不同凹槽集合 2之间留有平 行四边形的耦联平台 4, 所述耦联平台 4的高度与 V形槽 3的最高点 等高, 耦联平台 4的最大内接圆的直径为 0.26mm, 耦联平台 4的上 下都存在 V形槽 3, 左右两边没有 V形槽 3, 即耦联平台 4左右两边 均延伸到宽表面的两侧边缘; V形槽 3的 V形夹角为 110° , V形槽 3与导电基带 1的长度方向成 30度角, 平行四边形有两条边与 V形 槽 3的方向平行; V形槽 3的深度 h是 0.10mm; 耦联平台 4的表面 积占其所在导电基带 1宽表面的面积比例 m为 55%。
通过电镀的方式将锡铅悍料均匀的制备到上述的导电基带上,制 备成高效光伏异构悍带, 悍料层厚度为 10um。
悍接后悍带 V形槽深度为 0.07mm。
采用 60片 156*156多晶硅片, 使用此光伏悍带制备一组电池组 件的功率比使用普通悍带制备的组件功率高出 2W, 提高了 0.8%。
悍带的悍接力是通过拉力计, 沿着电池片 45度方向拉悍带直至 悍带从电池片剥离所需的拉力, 一般悍接力要求大于 3N , 本实施例 的悍带悍接力大于 4N, 满足要求。
由悍带热胀冷缩而导致的碎片率低于千分之一。
实施例 8
选用 TU1无氧铜作为导电基带 1, 如图 10所示, 在其一个宽表 面具有 V形槽 3,相邻 V形槽 3之间均留有平行四边形的耦联平台 4, 所述耦联平台 4的高度与 V形槽 3的最高点等高,耦联平台 4的最大 内接圆的直径为 1.6mm,与基带的宽度一致,沿导电基带 1长度方向 的最大长度为 45mm, 耦联平台 4的上下都存在 V形槽 3, 左右两边 没有 V形槽 3, 即耦联平台 4左右两边均延伸到宽表面的两侧边缘; V形槽 3的 V形夹角为 75 ° , V形槽 3与导电基带 1的长度方向成 30度角,平行四边形有两条边与 V形槽 3的方向平行; V形槽 3的深 度 h是 0.14mm。
通过涂覆的方式将锡铅悍料均匀的制备到上述的导电基带上,制 备成高效光伏异构悍带。
采用 60片 156*156多晶硅片, 使用此光伏悍带制备一组电池组 件, 由悍带热胀冷缩而导致的碎片率低于千分之一。
悍带的悍接力是通过拉力计, 沿着电池片 45度方向拉悍带直至 悍带从电池片剥离所需的拉力, 一般悍接力要求大于 3N , 本实施例 的悍带悍接力大于 5N, 满足要求。
实施例 9
选用 TU1无氧铜作为导电基带 1, 如图 11所示, 在其一个宽表 面具有 V形槽 3,相邻 V形槽 3之间均留有平行四边形的耦联平台 4, 所述耦联平台 4的高度与 V形槽 3的最高点等高,耦联平台 4的最大 内接圆的直径为 0.25mm, 耦联平台 4的上下都存在 V形槽 3, 左右 两边没有 V形槽 3, 即耦联平台 4左右两边均延伸到宽表面的两侧边 缘; V形槽 3的 V形夹角为 120° , V形槽 3与导电基带 1的长度方 向成 40度角,平行四边形有两条边与 V形槽 3的方向平行; V形槽 3 的深度 h是 0.10mm ; 耦联平台 4的表面积占其所在导电基带 1宽表 面的面积比例 m为 42%。
通过电镀的方式将锡铅悍料均匀的制备到上述的导电基带上,制 备成高效光伏异构悍带, 悍料层厚度为 8um。 悍接后悍带 V形槽深度为 0.071mm。
采用 60片 156*156多晶硅片, 使用此光伏悍带制备一组电池组 件的功率比使用普通悍带制备的组件功率高出 3W, 提高了 1.2%。
悍带的悍接力是通过拉力计, 沿着电池片 45度方向拉悍带直至 悍带从电池片剥离所需的拉力, 一般悍接力要求大于 3N , 本实施例 的悍带悍接力大于 4N, 满足要求。
由悍带热胀冷缩而导致的碎片率低于千分之一。
实施例 10
选用 TU1无氧铜作为导电基带 1, 如图 12所示, 在其一个宽表 面具有凹槽集合 2, 每个凹槽集合 2由多个连续的 V形槽 3组成, 不 同凹槽集合 2之间留有梯形的耦联平台 4, 所述耦联平台 4的高度与 V形槽 3的最高点等高, 耦联平台 4的最大内接圆的直径为 0.5mm, 沿导电基带 1长度方向的最大长度为 2.0mm;耦联平台 4的周围都存 在 V形槽 3; V形槽 3的 V形夹角为 75° , V形槽 3与导电基带 1的 长度方向成两种倾斜角度,均为 75度角; V形槽 3的深度 h是 0.08mm ; 耦联平台 4的表面积占其所在导电基带 1宽表面的面积比例 m为 55%。
通过电镀的方式将锡铅悍料均匀的制备到上述的导电基带上,制 备成高效光伏异构悍带, 悍料层厚度为 10um。
悍接后悍带 V形槽深度为 0.049mm。
采用 60片 156*156多晶硅片, 使用此光伏悍带制备一组电池组 件的功率比使用普通悍带制备的组件功率高出 1.5W, 提高了 0.6%。
悍带的悍接力是通过拉力计, 沿着电池片 45度方向拉悍带直至 悍带从电池片剥离所需的拉力, 一般悍接力要求大于 3N , 本实施例 的悍带悍接力大于 4N, 满足要求。
由悍带热胀冷缩而导致的碎片率低于千分之一。
实施例 11
选用 TU1无氧铜作为导电基带 1, 如图 13所示, 在其一个宽表 面具有 V形槽 3, 相邻的 V形槽 3之间留有耦联平台 4, 所述耦联平 台 4的高度与 V形槽 3的最高点等高,耦联平台 4的最大内接圆的直 径为 0.5mm, 沿导电基带 1长度方向的最大长度为 2.0mm ; 耦联平 台 4的周围都存在 V形槽 3; V形槽 3的 V形夹角为 100° , V形槽 3 与导电基带 1的长度方向成两种倾斜角度, 一种为 45度角, 另一种 为 90度角; V形槽 3的深度 h是 0.09mm; 耦联平台 4的表面积占其 所在导电基带 1宽表面的面积比例 m为 82%。
通过电镀的方式将锡铅悍料均匀的制备到上述的导电基带上,制 备成高效光伏异构悍带, 悍料层厚度为 10um。
悍接后悍带 V形槽深度为 0.057mm。
采用 60片 156*156多晶硅片, 使用此光伏悍带制备一组电池组 件的功率比使用普通悍带制备的组件功率高出 0.5W, 提高了 0.2%。
悍带的悍接力是通过拉力计, 沿着电池片 45度方向拉悍带直至 悍带从电池片剥离所需的拉力, 一般悍接力要求大于 3N , 本实施例 的悍带悍接力大于 5N, 满足要求。
由悍带热胀冷缩而导致的碎片率低于千分之一。

Claims

权 利 要 求 书
1. 一种高效光伏异构悍带,其特征在于:包括导电基带(1),所述导电基带(1) 为金属单质或合金材料, 其具有上、 下两个宽表面, 所述的导电基带 (1) 至少有一个宽表面分布有 V形槽 (3) 和耦联平台 (4), V形槽 (3) 的深度 h为 0.055mm<h<0.15mm; 所述耦联平台 (4) 为最大内接圆的直径不小于 0.10mm, 沿导电基带 (1) 长度方向的最大长度小于 50 mm的平台。
2. 如权利要求 1所述的光伏异构悍带, 其特征在于: 所述的导电基带 (1) 至 少有一个宽表面由所述 V形槽 (3) 和所述耦联平台 (4) 构成。
3. 如权利要求 1所述的光伏异构悍带, 其特征在于: 所述 V形槽 (3) 为槽的 两个斜边的交线为直线的直线型 V形槽。
4. 如权利要求 1所述的光伏异构悍带, 其特征在于: 相邻 V形槽之间均留有耦 联平台 (4)。
5. 如权利要求 1-4中任一项所述的光伏异构悍带,其特征在于:所述 V形槽(3) 的深度 h为 0.06mm h 0.12mm。
6. 如权利要求 1-5中任一项所述的光伏异构悍带, 其特征在于: 所述耦联平台
(4)的最大内接圆的直径大于 0.20mm,且所述耦联平台(4)沿导电基带(1) 长度方向的最大长度小于 20 mm。
7. 如权利要求 5或 6所述的光伏异构悍带, 其特征在于: 所述耦联平台 (4) 的最大内接圆的直径不小于 0.25mm, 且所述耦联平台 (4) 沿导电基带 (1) 长度方向的最大长度小于 5mm。
8. 如权利要求 3所述的光伏异构悍带, 其特征在于: 所述直线型 V形槽 (3) 与导电基带 (1) 的长度方向的倾斜角度为 15° -75° 。
9. 如权利要求 1-8中任一项所述的光伏异构悍带, 其特征在于: 所述耦联平台
(4) 的表面积占其所在导电基带 (1) 宽表面的面积比例 m为 5% m 95%。
10. 如权利要求 9所述的光伏悍带, 其特征在于: 所述耦联平台 (4) 的表面 积占其所在导电基带 (1 ) 宽表面的面积比例 m为 25% m 75%。
11. 如权利要求 3所述的光伏异构悍带, 其特征在于: 所述直线型 V形槽(3 ) 在同一宽面平行分布。
12. 如权利要求 3所述的光伏异构悍带, 其特征在于: 所述直线型 V形槽(3 ) 在同一宽面交叉分布。
13. 如权利要求 1所述的光伏异构悍带, 其特征在于: 所述耦联平台 (4) 的 形状为平行四边形或梯形。
14. 如权利要求 1-3中任一项所述的光伏异构悍带, 其特征在于: 所述 V形 槽 (3 ) 的 V形夹角在 75 ° - 138° 之间。
15. 如权利要求 1-4中任一项所述的光伏异构悍带, 其特征在于: 所述耦联 平台 (4) 不低于所述 V形槽 (4) 的最高点。
16. 如权利要求 1所述的光伏异构悍带, 其特征在于: 所述导电基带 (1 ) 的 表面涂敷或电镀有悍料层 (5)。
17. 如权利要求 1所述的光伏异构悍带, 其特征在于: 所述导电基带 (1 ) 的 表面涂敷或电镀有导电反光层。
18.如权利要求 16或 17所述的光伏悍带, 其特征在于: 所述悍料层 (5 ) 或导 电反光层与导电基带 (1 ) 之间还制备有过渡层。
PCT/CN2014/085114 2014-05-29 2014-08-25 一种高效光伏异构焊带 WO2015180271A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410236303.3A CN103985775B (zh) 2014-05-29 2014-05-29 一种高效光伏异构焊带
CN201410236303.3 2014-05-29

Publications (1)

Publication Number Publication Date
WO2015180271A1 true WO2015180271A1 (zh) 2015-12-03

Family

ID=51277674

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/085114 WO2015180271A1 (zh) 2014-05-29 2014-08-25 一种高效光伏异构焊带

Country Status (3)

Country Link
CN (1) CN103985775B (zh)
TW (1) TWI553895B (zh)
WO (1) WO2015180271A1 (zh)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015172457A1 (zh) * 2014-05-14 2015-11-19 凡登(江苏)新型材料有限公司 一种高可焊高效光伏焊带
CN103985775B (zh) * 2014-05-29 2016-08-24 凡登(江苏)新型材料有限公司 一种高效光伏异构焊带
CN105374885B (zh) * 2014-09-29 2017-04-12 凡登(江苏)新型材料有限公司 一种异构高效光伏焊带及导电基带的制备方法和生产线
CN104576767B (zh) * 2015-01-27 2017-01-25 苏州阿特斯阳光电力科技有限公司 一种用于太阳能电池组件的焊带
CN104867988B (zh) * 2015-04-15 2017-04-26 江苏东昇光伏科技有限公司 焊带及其制备工艺、太阳能电池组件
EP3444850A4 (en) * 2016-04-14 2020-01-01 Kaneka Corporation ELEMENT FOR SOLAR CELL WIRING AND SOLAR CELL MODULE
CN107845698A (zh) * 2016-09-19 2018-03-27 无锡市斯威克科技有限公司 高效预涂锡反光焊带
CN107254647A (zh) * 2017-05-08 2017-10-17 江苏东昇光伏科技有限公司 一种太阳能光伏焊带镀锡工艺
CN107195564B (zh) * 2017-07-05 2019-09-20 苏州阿特斯阳光电力科技有限公司 光伏焊带内反射系数的测定方法及测定不同焊带组件的isc差异的方法
CN107681008B (zh) * 2017-09-20 2024-01-30 苏州宇邦新型材料股份有限公司 一种光伏组件用汇流带
CN108169829A (zh) * 2017-12-28 2018-06-15 常州华威新材料有限公司 光伏用反光膜及其制备方法
CN113644153A (zh) * 2021-08-13 2021-11-12 上海晶澳太阳能科技有限公司 一种光伏组件以及制备工艺

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62112381A (ja) * 1985-11-11 1987-05-23 Sharp Corp 太陽電池モジユ−ル製造方法
US20070125415A1 (en) * 2005-12-05 2007-06-07 Massachusetts Institute Of Technology Light capture with patterned solar cell bus wires
CN101980372A (zh) * 2010-09-26 2011-02-23 常州天合光能有限公司 具有高反光栅线的太阳电池
CN102737754A (zh) * 2012-04-13 2012-10-17 江苏宇邦光伏材料有限公司 光伏组件的表面异形高功率涂锡铜带及其制造方法
WO2013001860A1 (ja) * 2011-06-30 2013-01-03 三洋電機株式会社 太陽電池モジュール及びその製造方法
CN103794672A (zh) * 2013-02-07 2014-05-14 凡登(常州)新型金属材料技术有限公司 异构光伏焊带及其制备方法
CN103985775A (zh) * 2014-05-29 2014-08-13 蒙特集团(香港)有限公司 一种高效光伏异构焊带
CN203859130U (zh) * 2014-05-29 2014-10-01 蒙特集团(香港)有限公司 一种高效光伏异构焊带

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2109894A2 (en) * 2007-01-31 2009-10-21 Renewable Energy Corporation ASA Interconnecting reflector ribbon for solar cell modules
DE102011009006A1 (de) * 2011-01-20 2012-07-26 Schlenk Metallfolien Gmbh & Co. Kg Verfahren zum Herstellen von vorverzinnten Verbindern für PV-Zellen
CN202004027U (zh) * 2011-04-30 2011-10-05 常州天合光能有限公司 一种太阳能电池组件以及焊接组件焊带的焊接工具

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62112381A (ja) * 1985-11-11 1987-05-23 Sharp Corp 太陽電池モジユ−ル製造方法
US20070125415A1 (en) * 2005-12-05 2007-06-07 Massachusetts Institute Of Technology Light capture with patterned solar cell bus wires
CN101980372A (zh) * 2010-09-26 2011-02-23 常州天合光能有限公司 具有高反光栅线的太阳电池
WO2013001860A1 (ja) * 2011-06-30 2013-01-03 三洋電機株式会社 太陽電池モジュール及びその製造方法
CN102737754A (zh) * 2012-04-13 2012-10-17 江苏宇邦光伏材料有限公司 光伏组件的表面异形高功率涂锡铜带及其制造方法
CN103794672A (zh) * 2013-02-07 2014-05-14 凡登(常州)新型金属材料技术有限公司 异构光伏焊带及其制备方法
CN103985775A (zh) * 2014-05-29 2014-08-13 蒙特集团(香港)有限公司 一种高效光伏异构焊带
CN203859130U (zh) * 2014-05-29 2014-10-01 蒙特集团(香港)有限公司 一种高效光伏异构焊带

Also Published As

Publication number Publication date
CN103985775B (zh) 2016-08-24
TW201545366A (zh) 2015-12-01
TWI553895B (zh) 2016-10-11
CN103985775A (zh) 2014-08-13

Similar Documents

Publication Publication Date Title
WO2015180271A1 (zh) 一种高效光伏异构焊带
CN104009108B (zh) 一种高可焊高效光伏焊带
WO2015014219A1 (zh) 光伏焊带
JP6686116B2 (ja) 光方向付け媒体を備える光起電モジュール及びこれを作製する方法
US9716198B2 (en) Photovoltaic interconnect wire
WO2016049980A1 (zh) 一种异构高效光伏焊带及导电基带的制备方法和生产线
CN102623553A (zh) 一种太阳能电池组件的制备方法
CN111192933A (zh) 一种太阳能光伏组件及建筑光伏一体化组件
WO2023050772A1 (zh) 一种晶硅bipv建筑构件及其制造方法
CN203839390U (zh) 一种高可焊高效光伏焊带
WO2015172457A1 (zh) 一种高可焊高效光伏焊带
CN203859130U (zh) 一种高效光伏异构焊带
CN204179090U (zh) 一种异构高效光伏焊带及导电基带的制备生产线
CN203386786U (zh) 一种光伏焊带
CN203644804U (zh) 用于太阳能电池的焊带
CN203674233U (zh) 太阳能电池焊带
CN208028077U (zh) 一种兼具减反射和高反射的双面发电双玻组件背板玻璃
CN206921836U (zh) 一种高反射焊带结构的光伏电池
CN208521943U (zh) 柔性太阳光重定向膜、光重定向膜和光伏模块
CN106847972A (zh) 一种太阳能电池组件及其制备方法
CN203746878U (zh) 一种用于光伏组件的高效互联带
CN209515687U (zh) 光伏组件
CN203644803U (zh) 一种太阳能电池焊带
CN206992120U (zh) 一种新型切片叠瓦电池
WO2015154365A1 (zh) 用于光伏组件的高效互联带及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14893605

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14893605

Country of ref document: EP

Kind code of ref document: A1