WO2023050772A1 - 一种晶硅bipv建筑构件及其制造方法 - Google Patents

一种晶硅bipv建筑构件及其制造方法 Download PDF

Info

Publication number
WO2023050772A1
WO2023050772A1 PCT/CN2022/086805 CN2022086805W WO2023050772A1 WO 2023050772 A1 WO2023050772 A1 WO 2023050772A1 CN 2022086805 W CN2022086805 W CN 2022086805W WO 2023050772 A1 WO2023050772 A1 WO 2023050772A1
Authority
WO
WIPO (PCT)
Prior art keywords
crystalline silicon
pvb layer
power generation
generation unit
building component
Prior art date
Application number
PCT/CN2022/086805
Other languages
English (en)
French (fr)
Inventor
魏青竹
姬明良
蒋建彗
王春智
徐坚
何招华
汪献利
Original Assignee
永臻科技股份有限公司
常州永臻智能新幕建筑系统科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 永臻科技股份有限公司, 常州永臻智能新幕建筑系统科技有限公司 filed Critical 永臻科技股份有限公司
Publication of WO2023050772A1 publication Critical patent/WO2023050772A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/048Encapsulation of modules
    • H01L31/0488Double glass encapsulation, e.g. photovoltaic cells arranged between front and rear glass sheets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S20/00Supporting structures for PV modules
    • H02S20/20Supporting structures directly fixed to an immovable object
    • H02S20/22Supporting structures directly fixed to an immovable object specially adapted for buildings
    • H02S20/26Building materials integrated with PV modules, e.g. façade elements
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/60Planning or developing urban green infrastructure
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/10Photovoltaic [PV]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the invention relates to the technical field related to photovoltaic buildings, and more precisely relates to a crystalline silicon BIPV building component and a manufacturing method thereof.
  • passive buildings need to increase the thickness of the external wall insulation layer, increase the building area, and reduce the housing rate; passive buildings need to be adjusted under different climatic conditions, and also need to be adjusted for different types of buildings , the applicability is poor; in addition, passive buildings have limited energy consumption reduction, lack of room for improvement, and the overall cost is relatively high.
  • Rooftop distributed photovoltaic power plants also have some disadvantages: the roof area is limited and other facilities need to be installed, resulting in a small available area for photovoltaic installation, especially for high-rise buildings, with limited energy saving and emission reduction effects; in addition, rooftop distributed photovoltaic power stations and buildings The consistency is poor, affecting the overall aesthetics.
  • BIPV Building Integrated Photovoltaics
  • the purpose of the present invention is to provide a crystalline silicon BIPV building component, designed according to the requirements of the construction industry, combined with a crystalline silicon power generation structure, so as to be suitable for building photovoltaic power generation.
  • Another object of the present invention is to provide a method for manufacturing a crystalline silicon BIPV building component, which is used for manufacturing the crystalline silicon BIPV building component.
  • the present invention provides a crystalline silicon BIPV building component, which sequentially includes an outer plate glass, at least one first transparent PVB layer, a crystalline silicon power generation unit, a third PVB layer and an inner Plate glass; the outer plate glass and the inner plate glass meet the requirements of building codes, and the resistivity of the first transparent PVB layer meets the PID attenuation requirements of the crystalline silicon BIPV building components.
  • At least one second transparent PVB layer is included, the second transparent PVB layer is located between the crystalline silicon power generation unit and the third PVB layer, and the resistivity of the second transparent PVB layer conforms to the specified
  • the PID attenuation requirements of crystalline silicon BIPV building components are described.
  • the color of the third PVB layer is consistent with that of the crystalline silicon power generation unit.
  • the crystalline silicon power generation unit is composed of several crystalline silicon cells, and the crystalline silicon power generation unit has a visible copper strip whose surface is the same color as the crystalline silicon cell.
  • the invention provides a method for manufacturing a crystalline silicon BIPV building component, which is used for the crystalline silicon BIPV building component, comprising the steps of:
  • (E) Encapsulate and laminate the outer glass, at least one first transparent PVB layer, the crystalline silicon power generation unit, the third PVB layer and the inner glass, and install a junction box on the crystalline silicon power generation unit, and seal it with photovoltaic silicone.
  • the invention provides a method for manufacturing a crystalline silicon BIPV building component, which is used for the crystalline silicon BIPV building component, comprising the steps of:
  • step (C1) is performed after the step (C) to treat the surface of the visible copper strip of the crystalline silicon power generation unit by using a film or coating method, so that the color of the visible copper strip is consistent with that of the crystalline silicon of the crystalline silicon power generation unit.
  • the color of the cells is the same.
  • the advantages of a crystalline silicon BIPV building component and its manufacturing method disclosed in the present invention are: the crystalline silicon BIPV building component can be installed in more positions and has stronger applicability; the crystalline silicon BIPV The building components can be designed in multiple colors, which can match a variety of different architectural styles, and have better aesthetics; the crystalline silicon BIPV building components have better reliability and longer service life; the crystalline silicon BIPV building components have higher power generation high.
  • the manufacturing method of the crystalline silicon BIPV building components is efficient and quick.
  • FIG. 1 is a schematic structural view of a crystalline silicon BIPV building component of the present invention.
  • FIG. 2 is a flow chart of a method for manufacturing a crystalline silicon BIPV building component of the present invention.
  • a crystalline silicon BIPV building component of the present application includes an outer plate glass 1, at least one first transparent PVB layer 2, a crystalline silicon power generation unit 3, at least one layer of the first transparent PVB layer from the sunny side from the outside to the inside.
  • both the outer glass 1 and the inner glass 6 are made of glass that meets architectural requirements, such as 5mm ultra-clear tempered glass, 5mm ordinary white tempered glass, and the like.
  • the outer plate glass 1 and the inner plate glass 6 are set to meet the building requirements, which is conducive to improving the mechanical properties of the crystalline silicon BIPV building components, thereby improving the reliability and service life of the crystalline silicon BIPV building components.
  • Both the resistivity of the first transparent PVB layer 2 and the second transparent PVB layer 4 meet the PID attenuation requirements of the crystalline silicon BIPV building components.
  • the resistivities of the first transparent PVB layer 2 and the second transparent PVB layer 4 to meet the PID attenuation requirements of the crystalline silicon BIPV building components, the power generation of the crystalline silicon BIPV building components can be ensured.
  • the power generation capacity of the crystalline silicon BIPV building components can be further ensured.
  • the second transparent PVB layer 4 can be omitted to simplify the component structure.
  • the crystalline silicon power generation unit 3 is composed of a number of crystalline silicon cells, and the crystalline silicon cells can be set in blue, black, red and other colors. Crystalline silicon cells can be in various forms, including but not limited to monocrystalline silicon and polycrystalline silicon.
  • the process of conductive connection between crystalline silicon cells includes solder ribbon interconnection and conductive adhesive bonding, and the electrical connection between strings includes series connection, parallel connection, first series connection and then parallel connection, and first parallel connection and then series connection.
  • the crystalline silicon power generation unit 3 has a visible copper strip, the surface of the visible copper strip can be pasted, and the surface of the visible copper strip can also be coated (including but not limited to the color treatment of the conductive copper strip before welding, or after welding). Spraying treatment, printing treatment, etc.), so that the surface of the visible copper strip is consistent with the color of the crystalline silicon cell.
  • the overall color of the crystalline silicon power generation unit 3 is consistent and more beautiful.
  • the color of the third PVB layer 5 is consistent with that of the crystalline silicon power generation unit 3 .
  • the third PVB layer 5 can choose dark blue PVB film or black film; when the crystalline silicon power generation unit 3 is light blue, the third PVB layer 5 can be light blue. Blue PVB adhesive film; when the crystalline silicon power generation unit 3 is red, the third PVB layer 5 can choose red PVB adhesive film.
  • the overall color of the crystalline silicon BIPV building components is consistent, and the appearance is consistent and more beautiful.
  • a method for manufacturing a crystalline silicon BIPV building component of the present application includes steps:
  • step (C1) is carried out after step (C) to process the surface of the visible copper strip of the crystalline silicon power generation unit by using a film or coating method, so that the color of the visible copper strip is consistent with the color of the crystalline silicon cell of the crystalline silicon power generation unit. unanimous.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Architecture (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Joining Of Glass To Other Materials (AREA)

Abstract

一种晶硅BIPV建筑构件,由朝阳的一面从外至内依次包括外板玻璃、至少一层第一透明PVB层、晶硅发电单元、第三PVB层以及内板玻璃;所述外板玻璃和所述内板玻璃符合建筑规范要求,所述第一透明PVB层的电阻率符合所述晶硅BIPV建筑构件的PID衰减要求。本发明还提供一种晶硅BIPV建筑构件的制造方法,用于制造所述晶硅BIPV建筑构件。所述晶硅BIPV建筑构件可安装的位置更多,适用性更强;所述晶硅BIPV建筑构件能够设计为多种颜色,可匹配多种不同的建筑风格,美观性更好;所述晶硅BIPV建筑构件可靠性更好,使用寿命更长;所述晶硅BIPV建筑构件发电量较高。所述晶硅BIPV建筑构件的制造方法高效快捷。

Description

一种晶硅BIPV建筑构件及其制造方法
本申请要求于2021年9月29日提交中国专利局、申请号为202111155484.3、申请名称为“一种晶硅BIPV建筑构件及其制造方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及光伏建筑相关技术领域,更准确的说涉及一种晶硅BIPV建筑构件及其制造方法。
背景技术
为了推动建筑节能减排,现有技术主要从两方面着手:一方面通过提升材料效率,推广使用低碳材料、高效隔热建筑围护结构等进行“被动式”减排;另一方面大力推广屋顶分布式光伏电站,充分利用屋顶面积进行减排。
但是,被动式建筑存在一些缺点:首先,被动式建筑需要增加外墙保温层的厚度,增加建筑面积,降低得房率;被动式建筑在不同气候条件下需要进行调整,针对不同类型的建筑也需要进行调整,适用性较差;此外,被动式建筑降低能耗有限,缺少提升空间,同时整体成本较高。
屋顶分布式光伏电站也存在一些缺点:屋顶面积有限,且需要安装其他设施,导致安装光伏设置的可用面积较小,尤其对于高层建筑,节能减排效果有限;此外,屋顶分布式光伏电站与建筑的一致性较差,影响整体美观性。
光伏建筑一体化(BIPV)作为建筑和光伏的结合点,可以解决现有被动 式建筑和屋顶分布光伏电站的问题,有着广阔的发展前景。综上,本领域需要一种应用场景较广、美观度较高且发电性能较高的BIPV建筑部件。
申请内容
有鉴于此,本发明的目的在于提供一种晶硅BIPV建筑构件,依照建筑行业要求设计,结合晶硅发电结构,以适用于建筑光伏发电。
本发明的另一个目的在于提供一种晶硅BIPV建筑构件的制造方法,用于制造所述晶硅BIPV建筑构件。
为了达到上述目的,本发明提供一种晶硅BIPV建筑构件,由朝阳的一面从外至内依次包括外板玻璃、至少一层第一透明PVB层、晶硅发电单元、第三PVB层以及内板玻璃;所述外板玻璃和所述内板玻璃符合建筑规范要求,所述第一透明PVB层的电阻率符合所述晶硅BIPV建筑构件的PID衰减要求。
优选地,包括至少一层第二透明PVB层,所述第二透明PVB层位于所述晶硅发电单元和所述第三PVB层之间,且所述第二透明PVB层的电阻率符合所述晶硅BIPV建筑构件的PID衰减要求。
优选地,所述第三PVB层与所述晶硅发电单元的颜色一致。
优选地,所述晶硅发电单元由若干晶硅电池片组成,晶硅发电单元具有可视铜带,可视铜带表面与晶硅电池片的颜色一致。
本发明提供一种晶硅BIPV建筑构件的制造方法,用于所述晶硅BIPV建筑构件,包括步骤:
(A)选取满足建筑要求的玻璃作为外板玻璃和内板玻璃;
(B)选取满足构件PID衰减要求的第一透明PVB层;
(C)制备晶硅发电单元;
(D)根据晶硅发电单元的颜色选择颜色一致的第三PVB层;
(E)将外板玻璃、至少一层第一透明PVB层、晶硅发电单元、第三PVB层以及内板玻璃封装压层,并对晶硅发电单元进行接线盒安装,光伏硅胶密封处理。
本发明提供一种晶硅BIPV建筑构件的制造方法,用于所述晶硅BIPV建筑构件,包括步骤:
(A)选取满足建筑要求的玻璃作为外板玻璃和内板玻璃;
(B)选取满足构件PID衰减要求的第一透明PVB层和第二透明PVB层;
(C)制备晶硅发电单元;
(D)根据晶硅发电单元的颜色选择颜色一致的第三PVB层;
(E)将外板玻璃、至少一层第一透明PVB层、晶硅发电单元、至少一层第二透明PVB层、第三PVB层以及内板玻璃封装压层,并对晶硅发电单元进行接线盒安装,光伏硅胶密封处理。
优选地,所述步骤(C)之后进行步骤(C1)使用贴膜或涂布方式对晶硅发电单元的可视铜带表面进行处理,使得可视铜带的颜色与晶硅发电单元的晶硅电池片颜色一致。
与现有技术相比,本发明公开的一种晶硅BIPV建筑构件及其制造方法的优点在于:所述晶硅BIPV建筑构件可安装的位置更多,适用性更强;所述晶硅BIPV建筑构件能够设计为多种颜色,可匹配多种不同的建筑风格,美观性更好;所述晶硅BIPV建筑构件可靠性更好,使用寿命更长;所述晶硅BIPV建筑构件发电量较高。所述晶硅BIPV建筑构件的制造方法 高效快捷。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
如图1所示为本发明一种晶硅BIPV建筑构件的结构示意图。
如图2所示为本发明一种晶硅BIPV建筑构件的制造方法的流程图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
如图1所示,本申请一种晶硅BIPV建筑构件由朝阳的一面从外至内依次包括外板玻璃1、至少一层第一透明PVB层2、晶硅发电单元3、至少一层第二透明PVB层4、第三PVB层5以及内板玻璃6。
其中,外板玻璃1和内板玻璃6均采用满足建筑要求的玻璃,例如5mm超白钢化玻璃、5mm普白钢化玻璃等。设置外板玻璃1和内板玻璃6满足建筑要求,有利于提高所述晶硅BIPV建筑构件的机械性能,从而提高所 述晶硅BIPV建筑构件的可靠性和使用寿命。
第一透明PVB层2和第二透明PVB层4的电阻率均符合所述晶硅BIPV建筑构件的PID衰减要求。通过设置第一透明PVB层2和第二透明PVB层4的电阻率均符合所述晶硅BIPV建筑构件的PID衰减要求,可以确保所述晶硅BIPV建筑构件的发电量。此外,由于第一透明PVB层2的透光率较高,可以进一步确保所述晶硅BIPV建筑构件的发电量。
值得注意的是,当第三PVB层5的电阻率均符合所述晶硅BIPV建筑构件的PID衰减要求时,可以取消第二透明PVB层4,简化构件结构。
晶硅发电单元3由若干晶硅电池片组成,晶硅电池片可设置为蓝色、黑色、红色等颜色。晶硅电池片可以采用多种形式,包括但不限于单晶硅、多晶硅。晶硅电池片之间相导通连接的工艺包括焊带互联和导电胶粘结等工艺、组串之间电气连接包含串联、并联、先串联后并联、以及先并联后再串联等形式。晶硅发电单元3具有可视铜带,可视铜带表面可进行贴膜处理,可视铜带表面还可以进行涂布处理(包括但不限于导电铜带焊接前的颜色处理、或是焊接后的喷涂处理、打印处理等方式),使得可视铜带表面与晶硅电池片的颜色一致。晶硅发电单元3的整体颜色一致,更加美观。
进一步的,第三PVB层5与晶硅发电单元3的颜色一致。例如,当晶硅发电单元3为深蓝色时,第三PVB层5可以选择深蓝色PVB胶膜或黑色胶膜;当晶硅发电单元3为浅蓝色时,第三PVB层5可选择浅蓝色PVB胶膜;当晶硅发电单元3为红色时,第三PVB层5可选择红色PVB胶膜。所述晶硅BIPV建筑构件整体颜色一致,外观一致性好,更加美观。
如图2所示,本申请一种晶硅BIPV建筑构件的制造方法,包括步骤:
(A)选取满足建筑要求的玻璃作为外板玻璃和内板玻璃;
(B)选取满足构件PID衰减要求的第一透明PVB层和第二透明PVB层;
(C)制备晶硅发电单元;
(D)根据晶硅发电单元的颜色选择颜色一致的第三PVB层;
(E)将外板玻璃、至少一层第一透明PVB层、晶硅发电单元、至少一层第二透明PVB层、第三PVB层以及内板玻璃封装压层,并对晶硅发电单元进行接线盒安装,光伏硅胶密封处理。
其中,步骤(C)之后进行步骤(C1)使用贴膜或涂布方式对晶硅发电单元的可视铜带表面进行处理,使得可视铜带的颜色与晶硅发电单元的晶硅电池片颜色一致。
对所公开的实施例的上述说明,使本领域专业技术人员能够实现或使用本发明。对这些实施例的多种修改对本领域的专业技术人员来说将是显而易见的,本文中所定义的一般原理可以在不脱离本发明的精神或范围的情况下,在其它实施例中实现。因此,本发明将不会被限制于本文所示的这些实施例,而是要符合与本文所公开的原理和新颖特点相一致的最宽的范围。

Claims (7)

  1. 一种晶硅BIPV建筑构件,其特征在于,由朝阳的一面从外至内依次包括外板玻璃、至少一层第一透明PVB层、晶硅发电单元、第三PVB层以及内板玻璃;所述外板玻璃和所述内板玻璃符合建筑规范要求,所述第一透明PVB层的电阻率符合所述晶硅BIPV建筑构件的PID衰减要求。
  2. 如权利要求1所述的BIPV建筑构件,其特征在于,包括至少一层第二透明PVB层,所述第二透明PVB层位于所述晶硅发电单元和所述第三PVB层之间,且所述第二透明PVB层的电阻率符合所述晶硅BIPV建筑构件的PID衰减要求。
  3. 如权利要求2所述的BIPV建筑构件,其特征在于,所述第三PVB层与所述晶硅发电单元的颜色一致。
  4. 如权利要求2所述的BIPV建筑构件,其特征在于,所述晶硅发电单元由若干晶硅电池片组成,晶硅发电单元具有可视铜带,可视铜带表面与晶硅电池片的颜色一致。
  5. 一种晶硅BIPV建筑构件的制造方法,用于制造如权利要求1所述的晶硅BIPV建筑构件,其特征在于,包括步骤:
    (A)选取满足建筑要求的玻璃作为外板玻璃和内板玻璃;
    (B)选取满足构件PID衰减要求的第一透明PVB层;
    (C)制备晶硅发电单元;
    (D)根据晶硅发电单元的颜色选择颜色一致的第三PVB层;
    (E)将外板玻璃、至少一层第一透明PVB层、晶硅发电单元、第三PVB层以及内板玻璃封装压层,并对晶硅发电单元进行接线盒安装,光伏 硅胶密封处理。
  6. 一种晶硅BIPV建筑构件的制造方法,用于制造如权利要求2至4中任一项所述的晶硅BIPV建筑构件,其特征在于,包括步骤:
    (A)选取满足建筑要求的玻璃作为外板玻璃和内板玻璃;
    (B)选取满足构件PID衰减要求的第一透明PVB层和第二透明PVB层;
    (C)制备晶硅发电单元;
    (D)根据晶硅发电单元的颜色选择颜色一致的第三PVB层;
    (E)将外板玻璃、至少一层第一透明PVB层、晶硅发电单元、至少一层第二透明PVB层、第三PVB层以及内板玻璃封装压层,并对晶硅发电单元进行接线盒安装,光伏硅胶密封处理。
  7. 如权利要求5或6所述的晶硅BIPV建筑构件的制造方法,其特征在于,所述步骤(C)之后进行步骤(C1)使用贴膜或涂布方式对晶硅发电单元的可视铜带表面进行处理,使得可视铜带的颜色与晶硅发电单元的晶硅电池片颜色一致。
PCT/CN2022/086805 2021-09-29 2022-04-14 一种晶硅bipv建筑构件及其制造方法 WO2023050772A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111155484.3A CN114171616A (zh) 2021-09-29 2021-09-29 一种晶硅bipv建筑构件及其制造方法
CN202111155484.3 2021-09-29

Publications (1)

Publication Number Publication Date
WO2023050772A1 true WO2023050772A1 (zh) 2023-04-06

Family

ID=80476963

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/086805 WO2023050772A1 (zh) 2021-09-29 2022-04-14 一种晶硅bipv建筑构件及其制造方法

Country Status (2)

Country Link
CN (1) CN114171616A (zh)
WO (1) WO2023050772A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114171616A (zh) * 2021-09-29 2022-03-11 永臻科技股份有限公司 一种晶硅bipv建筑构件及其制造方法
CN115274898A (zh) * 2022-08-01 2022-11-01 永臻科技股份有限公司 一种网格状晶硅bipv建筑构件

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102956734A (zh) * 2012-11-26 2013-03-06 中山市创科科研技术服务有限公司 一种可调透光率的多晶硅电池组件
CN103746020A (zh) * 2013-12-21 2014-04-23 揭阳市宏光镀膜玻璃有限公司 一种太阳能电池组件
CN203950818U (zh) * 2014-05-26 2014-11-19 海润光伏科技股份有限公司 低成本抗pid光伏组件
CN111769171A (zh) * 2019-03-29 2020-10-13 北京汉能光伏技术有限公司 彩色太阳能组件、彩色太阳能幕墙及其制备方法
CN212129713U (zh) * 2020-04-26 2020-12-11 北京金茂绿建科技有限公司 一种智能pv-led发光玻璃
CN114171616A (zh) * 2021-09-29 2022-03-11 永臻科技股份有限公司 一种晶硅bipv建筑构件及其制造方法
CN216213485U (zh) * 2021-09-29 2022-04-05 永臻科技股份有限公司 一种晶硅bipv建筑构件

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102956734A (zh) * 2012-11-26 2013-03-06 中山市创科科研技术服务有限公司 一种可调透光率的多晶硅电池组件
CN103746020A (zh) * 2013-12-21 2014-04-23 揭阳市宏光镀膜玻璃有限公司 一种太阳能电池组件
CN203950818U (zh) * 2014-05-26 2014-11-19 海润光伏科技股份有限公司 低成本抗pid光伏组件
CN111769171A (zh) * 2019-03-29 2020-10-13 北京汉能光伏技术有限公司 彩色太阳能组件、彩色太阳能幕墙及其制备方法
CN212129713U (zh) * 2020-04-26 2020-12-11 北京金茂绿建科技有限公司 一种智能pv-led发光玻璃
CN114171616A (zh) * 2021-09-29 2022-03-11 永臻科技股份有限公司 一种晶硅bipv建筑构件及其制造方法
CN216213485U (zh) * 2021-09-29 2022-04-05 永臻科技股份有限公司 一种晶硅bipv建筑构件

Also Published As

Publication number Publication date
CN114171616A (zh) 2022-03-11

Similar Documents

Publication Publication Date Title
WO2023050772A1 (zh) 一种晶硅bipv建筑构件及其制造方法
KR102360087B1 (ko) 컬러필름 적용 태양광 모듈 및 이의 제조방법
US20220190178A1 (en) Solar cell module having excellent visibility
CN212129598U (zh) 一种pv-led建筑幕墙
CN107154440A (zh) 一种太阳能电池真空玻璃窗
CN108023537A (zh) 一种彩钢瓦屋顶光伏组件结构
CN107195715A (zh) 太阳能光伏组件及建筑幕墙
US20190036475A1 (en) Solar module
JP2000243989A (ja) 透明フィルム型太陽電池モジュール
CN202839697U (zh) 一种新型bipv太阳能电池组件
WO2023197759A1 (zh) 一种晶硅bipv建筑构件
CN216213485U (zh) 一种晶硅bipv建筑构件
CN201527981U (zh) 一种隔热型薄膜太阳能电池结构
CN211017097U (zh) 一种新型bipv光伏组件
CN101820033B (zh) 彩晶中空光伏组件的制作方法
CN114695585A (zh) 一种光伏瓦组件及其制备方法
CN109036855B (zh) 石墨烯复合透明发电薄片及其制备方法
CN210073875U (zh) 太阳能幕墙组件及太阳能幕墙
CN209963068U (zh) 太阳能复合封装板及太阳能组件
CN102587545A (zh) 一种光伏建筑玻璃幕墙组件
CN112909115A (zh) 一种双面发电玻璃组件及其制备方法
CN207968385U (zh) 一种彩钢瓦屋顶光伏组件结构
CN202332893U (zh) 一种薄膜光伏建筑一体化组件
CN205248288U (zh) 双玻璃太阳能电池板组件
KR20090102912A (ko) 스크린 프린팅 또는 식각에 의해 디자인처리된 장식부를구비한 태양전지모듈 및 그 제조방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22874172

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE