WO2015180151A1 - 多机变频器的运行控制方法和多机变频器 - Google Patents

多机变频器的运行控制方法和多机变频器 Download PDF

Info

Publication number
WO2015180151A1
WO2015180151A1 PCT/CN2014/078967 CN2014078967W WO2015180151A1 WO 2015180151 A1 WO2015180151 A1 WO 2015180151A1 CN 2014078967 W CN2014078967 W CN 2014078967W WO 2015180151 A1 WO2015180151 A1 WO 2015180151A1
Authority
WO
WIPO (PCT)
Prior art keywords
execution
execution units
unit
frequency converter
synchronization signal
Prior art date
Application number
PCT/CN2014/078967
Other languages
English (en)
French (fr)
Inventor
柯冬生
Original Assignee
深圳市英威腾电气股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市英威腾电气股份有限公司 filed Critical 深圳市英威腾电气股份有限公司
Priority to CN201480019849.1A priority Critical patent/CN105264760B/zh
Priority to PCT/CN2014/078967 priority patent/WO2015180151A1/zh
Publication of WO2015180151A1 publication Critical patent/WO2015180151A1/zh

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/493Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode the static converters being arranged for operation in parallel
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • H02P27/06Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters
    • H02P27/08Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters with pulse width modulation

Definitions

  • the invention mainly relates to the technical field of power electronics, and particularly relates to an operation control method for a multi-machine frequency converter and a multi-machine frequency converter. Background technique
  • the single-unit inverters use a control unit to directly control an inverter unit.
  • the control unit generally does not control the rectifier unit.
  • the specific structure can be as shown in Figure 1-a.
  • the single-machine inverter should be operated synchronously (ie, the speed/torque of the load motor of at least two single-machine inverters is the same or the output of the corresponding or at least two single-machine inverters is connected in parallel with the load motor or asynchronous to realize the factory macro)
  • At least two single-machine inverters form a multi-machine system of the inverter, and each inverter is based on the RS485 bus communication mode.
  • the structure of the 485 bus communication mode is shown in Figure 1-b.
  • the console transmits the system running frequency to each inverter through the 485 bus.
  • Each inverter transmits the status feedback information to the console through the bus.
  • the system gives the shutdown signal and the torque signal sent by the main inverter to the slave inverter through a separate signal line connection.
  • the embodiment of the invention provides an operation control method and a multi-machine frequency converter in a multi-machine frequency converter, in order to improve the synchronous operation performance of the frequency converter.
  • An operation control method for a multi-machine frequency converter comprising a main control unit and M1 execution units for generating a synchronization signal, wherein the M1 execution units have a common DC bus, wherein the M1 is greater than 1.
  • the method includes:
  • Each of the execution units generates a pulse width modulated wave on the above conditions and drives the respective execution unit operations.
  • the method for configuring a pin source of the PWM controller in each execution unit to synchronize the PWM controller in each execution unit with a zero crossing includes:
  • the U, V, W three-phase input pins of the PWM controller are configured to have the same source, all from the synchronization signals in each execution unit.
  • the method for synchronously loading comparison values includes:
  • the method further includes: each execution unit of the M1 execution units generates a synchronization interrupt and/or a process data interface interrupt based on the synchronization signal generated by the M1 execution units.
  • the pulse width modulated wave key data corresponding to the execution unit includes a voltage modulation ratio and a voltage angle corresponding to the execution unit; or the pulse width modulated wave key data corresponding to the execution unit includes a triangular wave corresponding to the execution unit. Compare values.
  • the method further includes: each execution unit of the M1 execution units synchronizes a synchronization signal generated by the synchronization signal with a carrier of the pulse width modulated wave generated thereby.
  • the method for synchronizing the synchronization signal period and the carrier period includes: using a phase-locked loop technique, when the synchronization signal period leads the carrier period, subtracting a carrier period from a value; when the synchronization When the signal period lags behind the carrier period, the carrier period is added with a value, and finally the carrier period is consistent with the synchronization signal period.
  • the method further includes: the M1 execution units generate the synchronization signal.
  • the method for generating a synchronization signal includes: initializing related parameters of the M1 execution units; after the parameter initialization is completed, the main control unit sends initialization data to the M1 execution units, and activates the execution unit. Synchronizing the clock unit to cause the execution unit to generate a synchronization signal.
  • a multi-machine frequency converter wherein the multi-machine frequency converter comprises a main control unit and a M1 generating a synchronization signal
  • An execution unit the M1 execution units have a common DC bus, and the M1 is a positive integer greater than 1.
  • the operation control method of the multi-machine frequency converter is any multi-machine frequency converter provided by the embodiment of the present invention. Run control method.
  • the M1 execution units correct the pulse width modulation (PWM) wave based on the synchronization signal, it is advantageous to enhance the synchronization performance of the PWM waves of the plurality of execution units, so that the plurality of execution units are combined
  • the synchronous running performance of the machine is enhanced, which is beneficial to the synchronous operation of a large number of inverter units, thereby facilitating the realization of large current and large capacity, and improving the synchronization performance of each PWM wave of the M1 execution units; driving with synchronous PWM waves
  • the M1 execution units also make the performance of the multi-machine frequency converter M1 execution units running synchronously.
  • Figure 1-a is a schematic diagram of a stand-alone frequency converter provided by the prior art
  • Figure 1-b is a parallel diagram of a plurality of single-machine frequency converters provided by the prior art
  • FIG. 2-a is a schematic diagram of a multi-machine frequency converter according to an embodiment of the present invention.
  • FIG. 2 is a schematic diagram of another multi-machine frequency converter according to an embodiment of the present invention.
  • 2-c is a schematic diagram of another multi-machine frequency converter according to an embodiment of the present invention.
  • FIG. 3 is a schematic diagram of another multi-machine frequency converter according to an embodiment of the present invention.
  • FIG. 4 is a schematic diagram of an operation control method in a multi-machine frequency converter according to an embodiment of the present invention
  • FIG. 5 - a is a schematic diagram of another multi-machine frequency converter according to an embodiment of the present invention.
  • Figure 5 - b is a schematic diagram of another multi-machine frequency converter according to an embodiment of the present invention.
  • FIG. 5 - c is a schematic diagram of another multi-machine frequency converter according to an embodiment of the present invention. detailed description
  • the embodiment of the invention provides an operation control method and a multi-machine frequency converter in a multi-machine frequency converter, in order to improve the synchronous operation performance of the frequency converter.
  • the present invention provides a method for controlling the operation of a multi-machine frequency converter, wherein the M1 execution units have a common DC bus, wherein the M1 is a positive integer greater than 1.
  • the method includes: configuring each of the executions The three-phase pin source of the PWM controller in the unit is such that the PWM controller in each execution unit simultaneously crosses the zero point; synchronously loads the comparison value; and the multi-machine frequency converter is driven by the pulse width modulation wave generated by the execution unit.
  • the zero-crossing synchronization of the pulse width modulated wave (abbreviation, PWM wave) is realized, and the energy is loaded; and the M1 execution units are driven by the synchronous PWM wave, and the multi-machine frequency converter M1 execution units are also The performance of the machine running synchronously is good.
  • PWM wave pulse width modulated wave
  • the multi-machine frequency converter comprises: a main control unit, at least one rectifying unit and at least two inverter units, wherein the output of the inverter unit is connected to the load motor; and the multi-machine frequency conversion is seen from whether the rectifying unit and the inverter unit are controllable
  • the device includes a master unit and has M1 controllable execution units that need to be synchronized, and the M1 is an integer greater than one.
  • the execution unit is a rectification unit or an inverter unit
  • the switching device that implements power conversion in the controllable execution unit is a controllable device, such as an IGBT, a MOSFET, etc., and accordingly, the power conversion is implemented in the uncontrollable execution unit.
  • the switching device is an uncontrollable device such as a diode.
  • the controllable execution unit that needs to be synchronized includes a controllable rectification unit that is operated by a plurality of parallel machines to achieve power expansion, and/or a plurality of controllable inverter units that need to perform parallel operation, such as at least two inverses Variable unit
  • the machine implements the factory macro.
  • part or all of the rectifying units in the multi-machine frequency converter may be a controllable rectifying unit that can be controlled by the main control unit, or may be an uncontrollable rectifying unit that is not controlled by the main control unit, but in a multi-machine frequency converter
  • the rectifier unit must be operated synchronously.
  • FIG. 2-a is a schematic structural diagram of a multi-machine frequency converter according to an embodiment of the present invention.
  • a multi-machine frequency converter provided by an embodiment of the present invention may include:
  • the main control unit 201 and the N1 execution units 202 connected in series through the communication port, the N1 execution unit common DC bus 210.
  • the first communication port P1 of the main control unit 201 is connected to the second communication port P0 of the first execution unit among the N1 execution units 202.
  • the first execution unit is an execution unit at one end edge position among the above-mentioned N1 execution units connected in series through the communication port (wherein, in the example architecture of FIG. 2-a, one end edge position of the N1 execution units after the series connection is remaining The first execution unit of the second communication port P0, and the other end edge position is the second execution unit of the remaining first communication port P1).
  • the execution unit 202 is a rectification unit or an inverter unit, wherein the N1 execution units 202 include a total of Ni l rectification units and N12 inverter units, wherein the Nil is a positive integer, and the N12 is a positive integer greater than 1.
  • each execution unit 202 in FIG. 2-a includes two communication ports (communication port P0 and communication port P1).
  • the functions of the two communication ports may be the same or similar, and in some scenarios, the two communication The ports are interchangeable.
  • the communication port P0 and the communication port P1 of each of the execution units in the intermediate position in the N1 execution units 202 are connected to the other execution units 202, respectively, to realize the concatenation of the N1 execution units 202.
  • the main control unit 201 can send a command word, a data word (for example, a data word including a pulse width modulation (PWM), such as a voltage angle and a voltage modulation ratio) and/or a state through the first communication port P1.
  • a data word for example, a data word including a pulse width modulation (PWM), such as a voltage angle and a voltage modulation ratio
  • PWM pulse width modulation
  • the first execution unit can receive the command word, data word and/or status word from the main control unit 201 through its second communication port P0, and the first execution unit can be forwarded through its first communication port P1 (for The transparently transmitted data can be directly forwarded, and the data to be processed can be forwarded after processing) the received command word and data from the main control unit 201.
  • Receive command words, data words, and/or status words for example, a data word including a pulse width modulation (PWM), such as a voltage angle and a voltage modulation ratio
  • the "forwarding" in the embodiments of the present invention may be that the received data is directly forwarded without modification, or may be forwarded after the received data is correspondingly repaired, for example, for the received command.
  • the transparently transceivable content of the word, data word and/or status word can be directly forwarded without modification, and the content of the received command word, data word and/or status word cannot be transparently transmitted. It is forwarded after modification.
  • the N1 execution units 202 may generate a synchronization signal according to information such as a reference clock and a time compensation value sent by the main control unit; and may also be based on a command word and a data word from the main control unit 201 (eg, including a voltage angle and a voltage modulation ratio, etc.) The data word of the PWM wave key data) and/or the status word are correspondingly operated.
  • the N1 execution units 202 can enter a state of power-on startup or hibernation according to a command word from the main control unit 201.
  • the N1 execution units 202 may generate synchronized pulse width modulated waves according to data words from the main control unit 201 including PWM voltage key data such as voltage angle and voltage modulation ratio; and use the generated pulse width wave to drive the motor to operate.
  • the main control unit 201 further includes a second communication port P0, and the main control unit 201 can transmit a command word, a data word and/or a status word and the like through the second communication port P0.
  • the second communication port P0 of the main control unit 201 may also be connected to the first communication port P1 of the second execution unit of the N1 execution units 202.
  • the main control unit 201 can send a command word, a data word, and/or a status word to each execution unit 202 through the second communication port P0 and/or the first communication port P1, which is equivalent to providing two
  • the communication channel for transmitting information and the introduction of the communication loop enable the communication channel between the units to have a redundant backup function, and the anti-fault and fault tolerance capabilities are enhanced, which is beneficial to further improve the stability and reliability of the system operation.
  • the multi-machine frequency converter may further include N2 execution units 203 connected in series through a communication port, wherein the N2 execution units 203 share a common DC bus 210.
  • the second communication port P0 of the main control unit 201 is connected to the first communication port P1 of the third execution unit among the N2 execution units 203 connected in series through the communication port, wherein the N2 is A positive integer, the N2 execution units include a rectification unit and/or an inverter unit, wherein the third execution unit is an execution unit at one end edge position of the N2 execution units 203 connected in series through the communication port.
  • main control unit 201 includes two communication ports, both of which are connected to the communication port of the execution unit, and the main difference from the architecture shown in FIG. 2-b is that the main control unit A communication loop is not formed between the 201 and the execution unit.
  • the main control unit 201 can also include more communication ports, and each communication port of the main control unit 201 can be connected to the communication port of the execution unit in the manner shown in Figure 2-c.
  • the rectifying unit and the inverter unit may be staggered with each other.
  • the rectifying unit and the inverting unit may not be staggered with each other.
  • the communication port of the execution unit and the control unit may be a fiber optic communication port or an Ethernet communication port or a level signal communication port or a differential communication interface or other type of communication port.
  • FIG. 3 is a schematic structural diagram of another multi-machine frequency converter according to another embodiment of the present invention.
  • the multi-machine frequency converter includes:
  • the main control unit 301 N3 execution units 302 connected in series through the communication port, and N4 execution units 303 connected in series through the communication port.
  • the N3 execution units and the N4 execution units share a common DC bus 310.
  • the first communication port P1 of the main control unit 301 is connected to the second communication port P0 of the sixth execution unit of the N3 execution units connected in series through the communication port, and the second communication port P0 and the pass of the main control unit are The first communication port P1 of the seventh execution unit of the above-described N4 execution units connected in series with the communication port is connected.
  • the N3 execution units and the N4 execution units include XI rectification units and X2 inverter units, wherein the XI is a positive integer, the X2 is a positive integer greater than 1, and the sixth execution unit passes An execution unit at one end edge position among the above-mentioned N3 execution units connected in series with the communication port, wherein the seventh execution unit is an execution unit at one end edge position among the N4 execution units connected in series through the communication port.
  • N3 and N4 are positive integers, and the sum of N3 and N4 is greater than or equal to 3.
  • the N3 execution units and the N4 execution units located on both sides of the main control unit 301 are included in the architecture shown in FIG. 3 of the embodiment.
  • XI rectifying units and X2 inverter units that is, at least one inverter unit can be respectively disposed on both sides of the main control unit 301, and in the architecture shown in FIG. 2-a, one side of the main control unit 301 is At least two inverter units and at least one rectifier unit are deployed (N1 execution units 202 include a total of Nil rectifier units and N12 inverter units).
  • the main control unit 301 can send a command word, a data word, and/or a status word to the N3 execution units 302 and the N4 execution units 303 through the first communication port P1 and the second communication port P0, respectively, and specifically send and forward.
  • the process is similar to the previous part and will not be described here.
  • the rectifying unit and the inverter unit can be staggered with each other.
  • the rectifying unit and the inverting unit may not be staggered with each other.
  • the communication port of the execution unit and the control unit may be a fiber optic communication port or an Ethernet communication port or a level signal communication port or a differential communication interface or other type of communication port.
  • the above is a plurality of components of the multi-machine frequency converter.
  • the communication port of the main control unit includes but is not limited to the first communication port P1 and the second communication port P0, and may further include more communication ports, each of the main control units.
  • Each of the communication ports can be connected to at least one execution unit connected in series through the communication port; of course, in order to improve the stability of the system for redundancy control, the two communication ports of the main control unit can be respectively connected to the plurality of execution units connected in series through the communication port.
  • the communication loop is formed in series, as in the embodiment shown in Figure 2-b.
  • the embodiment of the present invention further provides an operation control method for a multi-machine frequency converter, wherein the multi-machine frequency converter includes a main control unit and M1 execution units that generate a synchronization signal, and the M1 execution units share a common DC bus, wherein , the M1 is a positive integer greater than one;
  • the operation control method of the above multi-machine frequency converter includes:
  • the execution units generate pulse width modulated waves on the above conditions, and drive the respective execution units to operate.
  • the "synchronization" in the embodiment of the present invention may mean that the interval time is less than a threshold value, for example, "synchronous zero-crossing point", which may refer to a zero-crossing point at the same time, and may also mean that the interval between zero-crossing points is less than Wide value.
  • the synchronous loading of the comparison value may refer to loading the comparison value at the same time, or may mean that the interval between loading the comparison value is less than the threshold value. Other cases and so on.
  • the method for configuring a pin source of the PWM controller in each execution unit to synchronize a PWM controller in each execution unit with a zero crossing may include: configuring a U, V, The source of the W three-phase input pins is the same, and the sources of the U, V, W three-phase input pins are all derived from the synchronization signals in each execution unit.
  • the above PWM controller is a module for controlling the off-controllable switching tube (such as IGBT or MOSFET) of the execution unit in the inverter.
  • the following is an example of an inverter unit including six switch tubes.
  • the inverter unit includes a PWM controller.
  • the PWM controller includes three phases of U, V, and W.
  • the PWM waves generated by each phase respectively control two.
  • Corresponding switch tube Specifically, the synchronous input pins of the U, V, and W phases of the PWM controller in the inverter are configured to have the same source, and are all derived from the synchronization signals generated by each execution unit.
  • Each inverter unit generates a synchronization signal SYNC_0, and inputs the generated synchronization signal SYNC_0 to the synchronous input pin of the respective PWM controller, that is, the U-phase synchronous input pin SYNCIN: SYNC_0, and the U-phase SYNCOUT passes the software.
  • Configured as SYNCOUT from SYNCIN, where the SYNCOUT of the U phase is interconnected with the SYNCIN of the V phase, so that the SYNCIN SYNC_0 of the V phase is obtained by signal transmission.
  • the method for synchronously loading the comparison value may include: the main control unit is configured to modulate the key data in each synchronization wave; and each execution unit receives the corresponding pulse width modulated wave key data in the process data interface interrupt. After that, the comparison value of the current cycle is calculated to be loaded synchronously, and the collected data is sent to the main control unit to provide key data for calculating the comparison value for the next cycle.
  • Each execution unit in the row unit can generate a synchronous interrupt and/or a process data interface (PDI) interrupt based on the synchronization signal it generates, since the PDI interrupt is synchronized to the synchronization signal at an adjustable interval, which is equivalent to the PDI interrupt being synchronized, That is, synchronization of the load comparison value is achieved.
  • PDI process data interface
  • the method may further include: each execution unit of the M1 execution units generates a synchronization interrupt and/or a process data interface interrupt based on the synchronization signal generated by the M1 execution units.
  • the pulse width modulated wave key data corresponding to the execution unit includes a voltage modulation ratio and a voltage angle corresponding to the execution unit; or the pulse width modulated wave key data corresponding to the execution unit includes a triangular wave corresponding to the execution unit. Compare values. If the key data is the voltage modulation ratio and the voltage angle, the comparison value of the corresponding triangular wave can be obtained by calculation.
  • the method may further include: each of the M1 execution units synchronizing the synchronization signal generated by the M1 execution units with the generated carrier of the pulse width modulated wave.
  • the synchronization signal period is the same as the carrier period in the synchronization process, but since the synchronization signal period is somewhat jittery, the period counter (incremental decrement mode) in the execution unit may not be 0 when the synchronization signal is triggered, which may cause the synchronization signal period to lead or lag. Carrier cycle, if not controlled, the error may be larger and larger.
  • the method for synchronizing the synchronization signal period and the carrier period may include: using a phase-locked loop technology, where the synchronization signal period leads the carrier period, and subtracts 1 value from the carrier period; When the synchronization signal period lags behind the carrier period, the carrier period is incremented by one value, and finally the carrier period is consistent with the synchronization signal period.
  • the experimental results show that the synchronous jitter deviation can be no more than 150 ns, which is basically negligible, which is equivalent to the PWM wave of each inverter unit. Basic zero crossing at the same time, and then realize the PWM zero-crossing synchronization of each inverter unit.
  • the M1 execution units correct the pulse width modulation (PWM) wave based on the synchronization signal
  • PWM pulse width modulation
  • the rectifying unit corrects the PWM wave based on the synchronization signal, thereby further enhancing the synchronization performance of the PWM waves of the plurality of rectifying units, so that the parallel running performance of the plurality of rectifying units is enhanced, thereby facilitating the synchronous operation of the plurality of rectifying units.
  • the output is more powerful, which is beneficial to achieve large current and large capacity.
  • the M1 execution units generate a synchronization signal.
  • the method for generating a synchronization signal includes: initializing related parameters of the M1 execution units; after the parameter initialization is completed, the main control unit sends initialization data to the M1 execution units, and activates the execution unit. Synchronizing the clock unit to cause the execution unit to generate a synchronization signal.
  • the main control unit can read the number of execution units and the networking situation of the communication unit connected to the main control unit before initializing the related parameters of the M1 synchronization execution units.
  • the execution unit communicatively coupled to the main control unit is an execution unit capable of communicating with the main control unit.
  • the N1 execution units shown in FIG. 2-a are execution units communicatively coupled to the main control unit.
  • M1 execution units that need to be synchronized are some or all execution units that are in communication with the main control unit.
  • the method for generating a synchronization signal by the M1 execution units may include:
  • the main control unit may periodically transmit the first system reference clock signal generated by the first system reference clock through the communication port.
  • the main control unit calculates a time compensation value corresponding to each of the M1 execution units, and transmits the time compensation value corresponding thereto to each of the M1 execution units.
  • the M1 execution units can receive the first system reference clock signal from the autonomous control unit through the communication port.
  • the period in which the main control unit periodically sends the first system reference clock signal generated by the first system reference clock may be a fixed period or a variable period, and the specific period duration may be set according to specific needs, and the period may be set. For example, it can be 100 microseconds, 500 microseconds, 1 millisecond, 5 milliseconds, 50 milliseconds, or 100 milliseconds or other duration.
  • the execution unit After the execution unit receives the time compensation value corresponding to the M1 execution units, the time offset compensation is performed on the local clock by using the received time compensation value, and the current phase is received based on the phase locked loop.
  • the above first system reference clock signal sent by the above main control unit The sync signal generated by the raw clock signal.
  • the above-mentioned main control unit periodically transmits the first system reference clock signal generated by the first system reference clock, and the above-mentioned main control unit calculates the time corresponding to each of the above-mentioned M1 execution units. There is no inevitable chronological order between the steps of compensating the value and transmitting the above-mentioned time compensation value to each of the above-mentioned M1 execution units.
  • the main control unit sends the first time compensation value to the first execution unit, so that the first execution unit is receiving After the first time compensation value is received, time offset compensation is performed on the first local clock of the first execution unit, and the currently received system reference clock signal sent by the main control unit is time-shifted based on the phase locked loop.
  • the compensated first local clock performs step lock, and based on the clock signal generated by the first local clock, generates a first synchronization signal for synchronously correcting the pulse width modulated wave generated by the first execution unit.
  • the main control unit may send the second time compensation value to the second execution unit, so that the second execution unit may perform time on the second local clock of the second execution unit after receiving the second time compensation value.
  • Offset compensation based on the phase-locked loop, stepping and locking the currently received system reference clock signal sent by the main control unit and the second local clock after time offset compensation, based on the clock signal generated by the second local clock And generating a second synchronization signal for synchronously correcting the pulse width modulated wave generated by the second execution unit.
  • the first time compensation value may be obtained based on the first time deviation value and the first time delay value, where the first time deviation value is a deviation between the first local clock and the system reference clock,
  • the first time delay value is a transmission delay value between the foregoing main control unit and the first execution unit.
  • the first time compensation value may be equal to the first time deviation value minus or plus the first delay value.
  • the first time compensation value may be obtained based on the first time offset value, the first delay value, and the first dynamic clock compensation value, where the first dynamic clock compensation value may be based on the transmission jitter and/or the first
  • the crystal vibration of the execution unit is determined, for example, the first time compensation value may be equal to the first time deviation value minus or plus the first delay value, plus or minus the first dynamic clock compensation value.
  • the calculating manner of the second time compensation value is similar to the manner of the first time compensation value, This will not be repeated here.
  • the above embodiment is a method for generating a synchronization signal by the M1 execution units, but the method for generating the synchronization signal according to the present invention includes, but is not limited to, the above method for generating a synchronization signal, and includes other synchronization signals that can be generated in the prior art. Methods.
  • the M1 execution units correct the pulse width modulation (PWM) wave based on the synchronization signal, it is advantageous to enhance the synchronization performance of the PWM waves of the plurality of execution units, so that the plurality of execution units are
  • the synchronous running performance of the machine is enhanced, which is beneficial to the synchronous operation of a large number of inverter units, thereby facilitating the realization of large current and large capacity, and improving the synchronization performance of each PWM wave of the M1 execution units; driving with synchronous PWM waves
  • the M1 execution units also make the performance of the multi-machine frequency converter M1 execution units running synchronously.
  • an embodiment of the present invention further provides a multi-machine frequency converter 800.
  • the specific structure may be as shown in FIG. 5-a to FIG. 5-c, wherein the multi-machine frequency converter 800
  • the main control unit 801 and the M1 execution units 802 are included, and the M1 execution units 802 share a DC bus 803, wherein the M1 is a positive integer greater than 1.
  • the multi-machine inverter 800 can also have a similar structure as shown in Figs. 2-a to 3.
  • the operation control method of the multi-machine frequency converter 800 can be any one of the operation control methods of the multi-machine frequency converter provided by the above embodiments.
  • each functional unit in each embodiment of the present invention may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the above integrated unit can be implemented in the form of hardware or in the form of a software functional unit.
  • the above-described integrated unit, if implemented in the form of a software functional unit and sold or used as a stand-alone product, may be stored in a computer readable storage medium.
  • the technical solution of the present invention which is essential or contributes to the prior art, or all or part of the technical solution, may be embodied in the form of a software product stored in a storage medium.
  • a number of instructions are included to cause a computer device (which may be a personal computer, server, frequency converter, processor or network device, etc.) to perform all or part of the steps of the above-described methods of various embodiments of the present invention.
  • the foregoing storage medium may include, for example, a USB flash drive, a removable hard disk, a read-only memory (ROM), a magnetic disk, an optical disk, or a random access memory (RAM). Medium.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Inverter Devices (AREA)

Abstract

一种多机变频器中的运行控制方法和多机变频器,其中,所述多机变频器包括主控单元和产生同步信号的M1个执行单元,所述M1个执行单元共直流母线,所述M1为大于1的正整数;所述方法包括:配置所述每个执行单元中的PWM控制器的同步输入管脚来源以使每个执行单元中的PWM控制器同步过零点;同步装载比较值;在上述条件上各个执行单元产生脉冲宽度调制波,并驱动所述各个执行单元工作。上述方案有利于提高变频器同步运行性能。

Description

多机变频器的运行控制方法和多机变频器 技术领域
本发明主要涉及电力电子技术领域,具体涉及多机变频器的运行控制方法 和多机变频器。 背景技术
当前, 市场上大多数变频器为单机变频器,单机变频器都釆用的是一个控 制单元直接控制一个逆变单元,控制单元一般不控制整流单元, 具体结构可如 图 1-a所示。
单机变频器要做并机同步运行(即至少两个单机变频器的负载电机的速度 /转矩相同或相应或至少两个单机变频器的输出并联后带负载电机或非同步来 实现工厂宏)时, 至少两个单机变频器组成变频器多机系统, 各变频器之间基 于 RS485总线通信方式。 485总线通信方式的结构如图 1-b所示, 控制台通过 485总线将系统运行频率传送至各变频器, 各变频器将状态反馈信息通过总线 传送至控制台。此外,控制台给出的系统起停机信号及主变频器发送给从变频 器的转矩信号均是通过单独信号线连接来实现。
研究和实践过程中发明人发现,由于现有技术中多个单机变频器相连以实 现并机同步运行时多个单机变频器工作时仍然相对独立,多个单机变频器相连 以并机同步运行的同步性能较差。 发明内容
本发明实施例提供多机变频器中的运行控制方法和多机变频器,以期提高 变频器同步运行性能。
一种多机变频器的运行控制方法,所述多机变频器包括主控单元和产生同 步信号的 Ml个执行单元, 所述 Ml个执行单元共直流母线, 其中, 所述 Ml为 大于 1的正整数;
其中, 所述方法包括:
配置所述每个执行单元中的 PWM控制器的同步输入管脚来源以使每个执 行单元中的 PWM控制器同步过零点; 同步装载比较值;
在上述条件上各个执行单元产生脉冲宽度调制波,并驱动所述各个执行单 元工作。
可选的, 配置所述每个执行单元中的 PWM控制器的引脚来源以使每个执 行单元中的 PWM控制器同步过零点的方法包括:
配置所述 PWM控制器的 U、 V、 W三相的输入管脚的来源相同, 均来自于 每个执行单元中的同步信号。
可选的, 所述同步装载比较值的方法包括:
所述主控单元在每个同步信号周期内向所述 Ml个执行单元中的每个执行 单元发送与之对应的脉冲宽度调制波关键数据;所述每个执行单元在过程数据 接口中断里接收对应的脉冲宽度调制波关键数据后,算出当前周期的比较值同 步进行装载, 并将釆集的数据发送给所述主控单元。
可选的, 所述方法还包括: 所述 Ml个执行单元中的每个执行单元基于其 生成的同步信号产生同步中断和 /或过程数据接口中断。
可选的,所述执行单元对应的脉冲宽度调制波关键数据包括该执行单元对 应的电压调制比和电压角度; 或, 所述执行单元对应的脉冲宽度调制波关键数 据包括该执行单元对应的三角波比较值。
可选的, 所述方法还包括: 所述 Ml个执行单元中的每个执行单元将其生 成的同步信号和其产生的脉冲宽度调制波的载波进行同步。
可选的,使所述同步信号周期和载波周期同步的方法包括: 釆用锁相环技 术, 所述同步信号周期超前于所述载波周期时, 使载波周期减去一个值; 当所 述同步信号周期滞后于所述载波周期时,使所述载波周期加上一个值, 最终使 所述载波周期与所述同步信号周期保持一致。
可选的, 所述方法还包括: Ml个执行单元产生同步信号。
可选的, 所述产生同步信号的方法包括: 初始化所述 Ml个执行单元的相 关参数; 参数初始化完成后, 所述主控单元将初始化数据发送给所述 Ml个执 行单元, 激活执行单元的同步时钟单元, 使所述执行单元产生同步信号。
一种多机变频器,, 所述多机变频器包括主控单元和产生同步信号的 Ml 个执行单元, 所述 Ml个执行单元共直流母线, 所述 Ml为大于 1的正整数; 其 中,所述多机变频器的运行控制方法为本发明实施例提供的任意一种多机变频 器的运行控制方法。
可以看出, 在本发明一些实施例中, 由于 Ml个执行单元基于同步信号校 正脉冲宽度调制 (PWM )波, 进而有利于增强多个执行单元的 PWM波的同步 性能,使得多个执行单元并机同步运行性能得到增强, 进而有利于同步运行数 量较多的逆变单元, 进而有利于实现大电流大容量, 可提升所述 Ml个执行单 元的各个 PWM波同步性能; 用同步的 PWM波驱动所述 Ml个执行单元, 也会 使多机变频器 Ml个执行单元并机同步运行的性能好。 附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施 例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地, 下面描述 中的附图仅仅是本发明的一些实施例, 对于本领域普通技术人员来讲,在不付 出创造性劳动性的前提下, 还可以根据这些附图获得其它的附图。
图 1-a是现有技术提供的一种单机变频器的示意图;
图 1-b是现有技术提供的一种多个单机变频器的并机示意图;
图 2-a是本发明实施例提供的一种多机变频器的示意图;
图 2-b是本发明实施例提供的另一种多机变频器的示意图;
图 2-c是本发明实施例提供的另一种多机变频器的示意图;
图 3是本发明实施例提供的另一种多机变频器的示意图;
图 4是本发明实施例提供的多机变频器中的运行控制方法的示意图; 图 5 - a是本发明实施例提供的另一种多机变频器的示意图;
图 5 - b是本发明实施例提供的另一种多机变频器的示意图;
图 5 - c是本发明实施例提供的另一种多机变频器的示意图。 具体实施方式
本发明实施例提供多机变频器中的运行控制方法和多机变频器,以期提高 变频器同步运行性能。
为使得本发明的发明目的、 特征、 优点能够更加的明显和易懂, 下面将结 合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、 完整地描 述, 显然, 下面所描述的实施例仅仅是本发明一部分实施例, 而非全部的实施 例。基于本发明中的实施例, 本领域普通技术人员在没有做出创造性劳动前提 下所获得的所有其它实施例, 都属于本发明保护的范围。
本发明的说明书和权利要求书及上述附图中的术语 "第一"、 "第二"、 "第 三" "第四" 等是用于区别不同的对象, 而不是用于描述特定顺序。 此外, 术 语 "包括" 和 "具有" 以及它们任何变形, 意图在于覆盖不排他的包含。 例如 包含了一系列步骤或单元的过程、 方法、 系统、 产品或设备没有限定于已列出 的步骤或单元, 而是可选地还包括没有列出的步骤或单元, 或可选地还包括对 于这些过程、 方法、 产品或设备固有的其它步骤或单元。
本发明提供了一种多机变频器的运行控制方法, 所述 Ml个执行单元共直 流母线, 其中, 所述 Ml为大于 1的正整数; 其中, 所述方法包括: 配置所述每 个执行单元中的 PWM控制器三相引脚来源以使每个执行单元中的 PWM控制 器同时过零点; 同步装载比较值; 利用执行单元产生的脉冲宽度调制波驱动所 述多机变频器工作。
通过上述步骤分别实现脉冲宽度调制波 (简称, PWM波)的过零点同步、装 能; 用所述同步的 PWM波驱动所述 Ml个执行单元, 也会使多机变频器 Ml个 执行单元并机同步运行的性能好。
所述多机变频器包括:主控单元、至少一个整流单元和至少两个逆变单元, 所述逆变单元输出接负载电机; 从整流单元和逆变单元是否可控来看, 多机变 频器包括主控单元和有 Ml个需要同步的可控执行单元, 所述 Ml为大于 1的整 数。 具体地, 所述执行单元为整流单元或逆变单元, 可控执行单元中实现电力 变换的开关器件为可控器件, 如 IGBT、 MOSFET等开关管, 相应地, 不可控 执行单元中实现电力变换的开关器件为不可控器件,如二极管等。 所述需要同 步的可控执行单元包括通过多个并机同步运行以实现功率扩展的可控整流单 元, 和 /或需要做并机同步运行的多个可控逆变单元, 如至少两个逆变单元的 机实现工厂宏。其中, 所述多机变频器中部分或全部整流单元可以是可受主控 单元控制的可控整流单元, 或者也可以是不受主控单元控制的不可控整流单 元,但是多机变频器中的整流单元必须同步运行, 下面结合附图对多机变频器 的结构进行举例说明。
首先请参见图 2-a, 图 2-a是本发明的一个实施例提供的一种多机变频器的 结构示意图。 其中, 如图 2-a所示, 本发明一个实施例提供的一种多机变频器 可包括:
主控单元 201、 通过通信端口串联的 N1个执行单元 202, 上述 N1个执行单 元共直流母线 210。
其中, 主控单元 201的第一通信端口 P1和上述 N1个执行单元 202之中的第 一执行单元的第二通信端口 P0连接。其中,第一执行单元为通过通信端口串联 的上述 N1个执行单元之中处于一端边缘位置的执行单元(其中, 图 2-a举例架 构中, 串联后的 N1个执行单元的一端边缘位置是剩余第二通信端口 P0的第一 执行单元, 另一端边缘位置是剩余第一通信端口 P1的第二执行单元 )。
上述执行单元 202为整流单元或逆变单元, 其中, N1个执行单元 202共包 括 Ni l个整流单元和 N12个逆变单元, 上述 Nil为正整数, 上述 N12为大于 1的 正整数。
其中, 图 2-a中以每个执行单元 202均包括两个通信端口 (通信端口 P0和通 信端口 Pl ), 当然, 两个通信端口的功能可以相同或相近, 在一些场景下这两 个通信端口可以互换。 串联后的 N1个执行单元 202中处于中间位置的每个执行 单元的通信端口 P0和通信端口 P1分别连接其它执行单元 202, 以实现 N1个执行 单元 202的串联。
其中, 主控单元 201可以通过第一通信端口 P1发送命令字、 数据字 (例如 包含电压角度和电压调制比等脉冲宽度调制 (PWM, Pulse Width Modulation ) 波关键数据的数据字)和 /或状态字等。 而第一执行单元则可通过其第二通信 端口 P0接收来自主控单元 201的命令字、 数据字和 /或状态字等, 第一执行单元 则可通过其第一通信端口 P1转发 (对于可透传的数据可直接转发,对于需处理 的数据则可在进行处理之后转发)接收到的来自主控单元 201的命令字、 数据 接收命令字、 数据字和 /或状态字等。
需要说明的是, 本发明各实施例中的 "转发", 可能是将接收到的数据不 做修改而直接转发,也可能是将接收到的数据进行相应修之后转发, 例如对于 接收到的命令字、 数据字和 /或状态字中可透传的内容, 则可不做修改而直接 转发, 而对于接收到的命令字、 数据字和 /或状态字中不可透传的内容, 则可 在对其进行修改之后转发。
其中, N1个执行单元 202可根据主控单元发送的参考时钟及时间补偿值等 信息产生同步信号; 还可根据来自主控单元 201的命令字、 数据字 (例如包含 电压角度和电压调制比等 PWM波关键数据的数据字 )和 /或状态字等进行对应 的操作。 例如, N1个执行单元 202可以根据来自主控单元 201命令字进入上电 启动或休眠等状态。 又例如, N1个执行单元 202可以根据来自主控单元 201的 包含电压角度和电压调制比等 PWM波关键数据的数据字, 产生同步的脉冲宽 度调制波; 利用产生的脉冲宽度波驱动电机工作。
在图 2-a的基础上, 主控单元 201还包括第二通信端口 P0, 主控单元 201可 以通过第二通信端口 P0发送命令字、 数据字和 /或状态字等。
在本发明的一些实施例中, 如图 2-b所示, 主控单元 201的第二通信端口 P0 还可与上述 N1个执行单元 202中的第二执行单元的第一通信端口 P1连接从而 形成通信环路设计结构,主控单元 201可以通过第二通信端口 P0和 /或第一通信 端口 P1向各执行单元 202发送命令字、 数据字和 /或状态字等, 相当于提供了两 条传递信息的通信通道,引入通信环路可以使得各单元之间的通信通道具有冗 余备份功能,抗故障和容错能力得到增强,有利于进一步提升系统运行的稳定 可靠性。
在本发明的另一些实施例中, 如图 2-c所示, 上述多机变频器还可包括通 过通信端口串联的 N2个执行单元 203, 其中, 上述 N2个执行单元 203共直流母 线 210。
其中, 上述主控单元 201的第二通信端口 P0与通过通信端口串联的上述 N2 个执行单元 203之中的第三执行单元的第一通信端口 P1连接, 其中, 上述 N2为 正整数, 上述 N2个执行单元包括整流单元和 /或逆变单元, 其中, 第三执行单 元为通过通信端口串联的上述 N2个执行单元 203中处于一端边缘位置的执行 单元。
其中, 图 2-c举例示出上述主控单元 201包括两个通信端口, 这两个通信端 口都与执行单元的通信端口连接, 与图 2-b所示架构的主要区别在于, 主控单 元 201与执行单元之间未形成通信环路。 当然, 主控单元 201也可包括更多通信 端口, 主控单元 201的每个通信端口均可按照图 2-c所示方式与执行单元的通信 端口连接。
可以理解, 在通过通信端口串联的 N1个执行单元中, 整流单元和逆变单 元可以相互交错排列, 当然整流单元和逆变单元也可以不相互交错排列。
在本发明的一些实施例中,执行单元和控制单元的通信端口可以为光纤通 信端口或以太网通信端口或电平信号通信端口或差分通信接口或者其它类型 的通信端口。 请参见图 3,图 3是本发明另一个实施例提供的另一种多机变频器的结构示 意图, 该多机变频器包括:
主控单元 301、 通过通信端口串联的 N3个执行单元 302和通过通信端口串 联的 N4个执行单元 303。
其中, 上述 N3个执行单元和上述 N4个执行单元共直流母线 310。
其中, 上述主控单元 301的第一通信端口 P1和通过通信端口串联的上述 N3 个执行单元中的第六执行单元的第二通信端口 P0连接,上述主控单元的第二通 信端口 P0和通过通信端口串联的上述 N4个执行单元中的第七执行单元的第一 通信端口 P1连接。
其中, 上述 N3个执行单元和上述 N4个执行单元中共包括 XI个整流单元和 X2个逆变单元, 其中, 上述 XI为正整数, 上述 X2为大于 1的正整数, 上述第 六执行单元为通过通信端口串联的上述 N3个执行单元中处于一端边缘位置的 执行单元, 其中, 第七执行单元为通过通信端口串联的上述 N4个执行单元中 处于一端边缘位置的执行单元。 其中, 上述 N3和 N4为正整数, 上述 N3与 N4 之和大于或等于 3。 其中, 与前述实施例中举例的图 2-a所示架构相比, 本实施例图 3所示架构 中,位于主控单元 301两侧的上述 N3个执行单元和上述 N4个执行单元中共包括 XI个整流单元和 X2个逆变单元, 也就是说, 主控单元 301两侧可以分别部署至 少 1个逆变单元, 而图 2-a所示架构中, 主控单元 301的其中一侧就部署了至少 两个逆变单元和至少一个整流单元(N1个执行单元 202共包括 Nil个整流单元 和 N12个逆变单元)。
其中, 主控单元 301可以通过第一通信端口 P1和第二通信端口 P0分别发送 命令字、 数据字和 /或状态字等至 N3个执行单元 302和 N4个执行单元 303, 具体 发送和转发等过程与前述部分相似, 在此不再赘述。
可以理解, 在通过通信端口串联的 N3个执行单元中, 整流单元和逆变单 元可以相互交错排列, 当然整流单元和逆变单元也可以不相互交错排列。
在本发明的一些实施例中,执行单元和控制单元的通信端口可以为光纤通 信端口或以太网通信端口或电平信号通信端口或差分通信接口或者其它类型 的通信端口。
上述为多机变频器的几种组成形式,所述主控单元的通信端口包括但不仅 限于第一通信端口 P1和第二通信端口 P0,还可以包括更多的通信端口,主控单 元的每个通信端口都可以连接至少 1个通过通信端口串联的执行单元; 当然为 了提高系统的稳定性实现冗余控制,主控单元的两个通信端口可与分别与通过 通信端口串联的多个执行单元串联形成通信环路, 如图 2-b所示的实施例。 由 于使用的主控单元的通信端口数量和每个通信端口所连接的执行单元的连接 数量及排列方式(主要指可控整流单元和逆变单元之间的排列顺序)不同, 导 致系统更多组网情况也不同。
本发明实施例还提供一种多机变频器的运行控制方法, 其中, 所述多机变 频器包括主控单元和产生同步信号的 Ml个执行单元, 所述 Ml个执行单元共直 流母线, 其中, 所述 Ml为大于 1的正整数;
参见图 4, 上述多机变频器的运行控制方法包括:
401、配置所述每个执行单元中的 PWM控制器的同步输入管脚来源以使每 个执行单元中的 PWM控制器同步过零点; 同步装载比较值。 402、 在上述条件上各个执行单元产生脉冲宽度调制波, 并驱动所述各个 执行单元工作。
其中, 本发明实施例所述的 "同步", 可以是指同时, 也可以是指间隔时 间小于阔值, 例如 "同步过零点", 可以指同时过零点, 也可指过零点的间隔 时间小于阔值。 又例如, 同步装载比较值, 可以指同时装载比较值, 也可指装 载比较值的间隔时间小于阔值。 其它情况以此类推。
可选的, 配置所述每个执行单元中的 PWM控制器的引脚来源以使每个执 行单元中的 PWM控制器同步过零点的方法可以包括: 配置所述 PWM控制器的 U、 V、 W三相的输入管脚的来源相同, 其中, U、 V、 W三相的输入管脚的来 源均来自于每个执行单元中的同步信号。
上述 PWM控制器为变频器中控制执行单元可控开关管 (如 IGBT或 MOSFET等)关断的模块。 下面以包括 6个开关管的逆变单元为例做详细说明, 逆变单元包括一个 PWM控制器, 所述 PWM控制器包括 U、 V、 W三相, 每相 产生的 PWM波分别控制两个对应的开关管。 具体地, 配置逆变器中 PWM控制 器的 U、 V、 W三相的同步输入管脚的来源相同, 均来自于每个执行单元产生 的同步信号。 各个逆变单元均产生同步信号 SYNC_0, 并将产生的同步信号 SYNC_0输入到各自 PWM控制器的同步输入管脚, 即 U相的同步输入管脚 SYNCIN: SYNC—0 , 将 U相的 SYNCOUT通过软件配置为 SYNCOUT来源于 SYNCIN, 其中, U相的 SYNCOUT与 V相的 SYNCIN互联的, 这样通过信号传 递得到 V相的 SYNCIN= SYNC_0, 同样的道理, 可以得到 W相的 S YNCIN= SYNC_0, 这样就可以使每个逆变单元 U、 V、 W三相的同步输入管脚的来源均 为同步信号 SYNC_0,从而使每个逆变单元各个 PWM比较器同时过零点。 由于 各个逆变单元的同步信号 SYNC_0之间基本同步, 因此相互之间的偏差很小。
可选的, 所述同步装载比较值的方法可以包括: 所述主控单元在每个同步 调制波关键数据;所述每个执行单元在过程数据接口中断里接收对应的脉冲宽 度调制波关键数据后, 算出当前周期的比较值同步进行装载, 并将釆集的数据 发送给所述主控单元, 为下一个周期计算比较值提供关键数据。 所述 Ml个执 行单元中的每个执行单元可基于其生成的同步信号产生同步中断和 /或过程数 据接口 (PDI ) 中断, 由于 PDI中断以可调间隔时间同步于同步信号, 相当于 是 PDI中断是同步的, 也即实现了装载比较值的同步。
可选的, 所述方法还可进一步包括: 所述 Ml个执行单元中的每个执行单 元基于其生成的同步信号产生同步中断和 /或过程数据接口中断。
可选的,所述执行单元对应的脉冲宽度调制波关键数据包括该执行单元对 应的电压调制比和电压角度; 或, 所述执行单元对应的脉冲宽度调制波关键数 据包括该执行单元对应的三角波比较值。如果关键数据为电压调制比和电压角 度, 则可通过计算得到对应三角波的比较值。
在上述过零点同步和装载值同步的条件下, 可以保证逆变单元的各个 多机变频器的 Ml个执行单元, 会使多机变频器 Ml个执行单元并机同步运行的 性能好。
可选的, 所述方法还可进一步包括: 所述 Ml个执行单元中的每个执行单 元将其生成的同步信号和其产生的脉冲宽度调制波的载波进行同步。理论上同 步过程中同步信号周期与载波周期是一样的, 但由于同步信号周期有些抖动, 同步信号触发时执行单元中的周期计数器 (递增递减模式)可能不是 0, 导致 同步信号周期可能超前或者滞后载波周期,如果不加以控制的话,误差可能会 越来越大。
可选的,使所述同步信号周期和载波周期同步的方法可包括: 釆用锁相环 技术, 所述同步信号周期超前于所述载波周期时, 使载波周期减去 1个值; 当 所述同步信号周期滞后于所述载波周期时, 使所述载波周期加上 1个值, 最终 使所述载波周期与所述同步信号周期保持一致。
以多机变频器包括 6个并机同步运行的逆变单元为例, 实验得到, 同步抖 动偏差可做到最大不超过 150ns, 基本可以忽略不计, 这就相当于各逆变单元 的 PWM波可基本同时过零点, 进而实现各逆变单元的 PWM波过零点同步。
可以看出, 本实施例的方案中, 由于 Ml个执行单元基于同步信号校正脉 冲宽度调制 ( PWM )波,进而有利于增强多个执行单元的 PWM波的同步性能, 使得多个执行单元并机同步运行性能得到增强,进而有利于同步运行数量较多 的执行单元, 进而有利于实现大电流大容量。
进一步的, 整流单元基于同步信号校正 PWM波, 进而有利于增强多个整 流单元的 PWM波的同步性能,使得多个整流单元并机同步运行性能得到增强, 进而有利于同步运行数量较多整流单元,输出更大功率, 进而有利于实现大电 流大容量。
可选的, Ml个执行单元产生同步信号。
可选的, 所述产生同步信号的方法包括: 初始化所述 Ml个执行单元的相 关参数; 参数初始化完成后, 所述主控单元将初始化数据发送给所述 Ml个执 行单元, 激活执行单元的同步时钟单元, 使所述执行单元产生同步信号。
其中, 在初始化所述 Ml个需同步的执行单元的相关参数之前, 主控单元 可读取与主控单元通信连接的执行单元的个数和组网情况。其中, 与主控单元 通信连接的执行单元是能够与主控单元进行通信的执行单元, 例如图 2-a中示 出的 N1个执行单元均为与主控单元通信连接的执行单元。 其中, Ml个需同 步的执行单元为与主控单元通信连接的部分或全部执行单元。
其中, Ml个执行单元产生同步信号的方法可包括:
其中,上述主控单元可通过通信端口周期性地发送由第一系统参考时钟所 产生的第一系统参考时钟信号。 上述主控单元计算出与上述 Ml个执行单元中 的每个执行单元对应的时间补偿值, 并向上述 Ml个执行单元中的每个执行单 元发送与之对应的上述时间补偿值。
其中, Ml个执行单元可通过通信端口接收到来自主控单元的第一系统参 考时钟信号。其中, 上述主控单元周期性地发送由第一系统参考时钟所产生的 第一系统参考时钟信号的周期可为固定周期或可变周期,而具体得周期时长可 根据具体需要进行设定, 周期例如可为 100微秒、 500微秒、 1毫秒、 5毫秒、 50 毫秒或 100毫秒或其他时长。
其中, 上述 Ml个执行单元中的每个执行单元接收到与之对应的上述时间 补偿值之后, 利用接收到的上述时间补偿值对本地时钟进行时间偏移补偿,基 于锁相环将当前接收到的上述主控单元发送的上述第一系统参考时钟信号与 生的时钟信号生成的同步信号。
可以理解,上述主控单元周期性地发送由第一系统参考时钟产生的第一系 统参考时钟信号的步骤、以及上述主控单元计算出与上述 Ml个执行单元中的 每个执行单元对应的时间补偿值,并向上述 Ml个执行单元中的每个执行单元 发送与之对应的上述时间补偿值的步骤之间没有必然的时间顺序。
举例来说,假设上述 Ml个执行单元之中包括第一执行单元和第二执行单 元, 则主控单元向上述第一执行单元发送上述第一时间补偿值, 以使得上述第 一执行单元在接收到上述第一时间补偿值之后,对上述第一执行单元的第一本 地时钟进行时间偏移补偿,基于锁相环将当前接收到的上述主控单元发送的系 统参考时钟信号与进行时间偏移补偿后的第一本地时钟进行步调锁定,基于上 述第一本地时钟所产生的时钟信号,生成用于同步校正上述第一执行单元所产 生的脉冲宽度调制波的第一同步信号。主控单元可向上述第二执行单元发送上 述第二时间补偿值,以使得上述第二执行单元在接收到上述第二时间补偿值之 后, 可对上述第二执行单元的第二本地时钟进行时间偏移补偿,基于锁相环将 当前接收到的上述主控单元发送的系统参考时钟信号与进行时间偏移补偿之 后的第二本地时钟进行步调锁定, 基于上述第二本地时钟所产生的时钟信号, 生成用于同步校正上述第二执行单元所产生的脉冲宽度调制波的第二同步信 号。
具体举例来说,上述第一时间补偿值可基于上述第一时间偏差值和第一时 延值得到, 其中, 上述第一时间偏差值为上述第一本地时钟与上述系统参考时 钟的偏差,上述第一时延值为上述主控单元和上述第一执行单元之间的传输时 延值。举例来说, 上述第一时间补偿值可等于上述第一时间偏差值减去或加上 第一时延值。 或者, 上述第一时间补偿值可以基于上述第一时间偏差值、 第一 时延值和第一动态时钟补偿值得到, 其中, 上述第一动态时钟补偿值可基于传 输抖动和 /或上述第一执行单元的晶振抖动等确定, 例如, 上述第一时间补偿 值可等于上述第一时间偏差值减去或加上第一时延值,再加上或减去第一动态 时钟补偿值。
其中, 上述第二时间补偿值的计算方式与第一时间补偿值的方式类似,在 此不再赘述。
上述实施例为 Ml个执行单元产生同步信号的一种方法,但是本发明中所 述的同步信号的产生方法包括但不仅限于上述产生同步信号的方法,还包括现 有技术中其他可产生同步信号的方法。
可以看出, 在本发明一些实施例中, 由于 Ml个执行单元基于同步信号校 正脉冲宽度调制 (PWM ) 波, 进而有利于增强多个执行单元的 PWM波的同 步性能,使得多个执行单元并机同步运行性能得到增强, 进而有利于同步运行 数量较多的逆变单元, 进而有利于实现大电流大容量, 可提升所述 Ml个执行 单元的各个 PWM波同步性能; 用同步的 PWM波驱动所述 Ml个执行单元, 也会使多机变频器 Ml个执行单元并机同步运行的性能好。
参见图 5-a〜图 5-c, 本发明实施例还提供一种多机变频器 800, 具体结构可 如图 5-a〜图 5-c所示, 其中, 所述多机变频器 800包括主控单元 801和 Ml个执行 单元 802, 所述 Ml个执行单元 802共直流母线 803, 其中, 所述 Ml为大于 1的正 整数。 当然, 多机变频器 800也可具有图 2-a〜图 3所示的类似结构。
其中, 多机变频器 800的运行控制方法可如上述实施例提供的任意一种多 机变频器的运行控制方法。
在上述实施例中, 对各个实施例的描述都各有侧重, 某个实施例中没 有详述的部分, 可以参见其他实施例的相关描述。
所属领域的技术人员可以清楚地了解到, 为描述的方便和简洁, 上述描述 的装置的具体工作过程, 可以参考前述方法实施例中的对应过程,在此不再赘 述。 在本申请所提供的几个实施例中, 应该理解到, 所揭露的装置和方法, 可 以通过其它的方式实现。 例如, 以上所描述的装置实施例仅仅是示意性的, 例 如, 上述单元的划分, 仅仅为一种逻辑功能划分, 实际实现时可以有另外的划 分方式, 例如多个单元或组件可以结合或者可以集成到另一个系统, 或一些特 征可以忽略, 或不执行。 另一点, 所显示或讨论的相互之间的耦合或直接輛合 或通信连接可以是通过一些端口, 装置或单元的间接耦合或通信连接, 可以是 电性或其它的形式。上述作为分离部件说明的单元可以是或者也可以不是物理 上分开的,作为单元显示的部件可以是或者也可以不是物理单元, 即可以位于 一个地方, 或者也可以分布到多个网络单元上。可以才艮据实际的需要选择其中 的部分或者全部单元来实现本实施例方案的目的。 另外,在本发明各个实施例 中的各功能单元可以集成在一个处理单元中, 也可以是各个单元单独物理存 在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以釆 用硬件的形式实现,也可以釆用软件功能单元的形式实现。上述集成的单元如 果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一 个计算机可读取存储介质中。
基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的 部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机 软件产品存储在一个存储介质中, 包括若干指令用以使得一台计算机设备(可 以是个人计算机, 服务器, 变频器、 处理器或者网络设备等)执行本发明各个 实施例上述方法的全部或部分步骤。 而前述的存储介质例如可包括: U盘、 移 动硬盘、 只读存储器(ROM, Read-Only Memory )、 磁碟、 光盘或者随机存取 存储器 (RAM, Random Access Memory )等各种可存储程序代码的介质。 以 上上述, 以上实施例仅用以说明本发明的技术方案, 而非对其限制; 尽管参照 前述实施例对本发明进行了详细的说明, 本领域的普通技术人员应当理解: 其 依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特 征进行等同替换; 而这些修改或者替换, 并不使相应技术方案的本质脱离本发 明各实施例技术方案的精神和范围。

Claims

权 利 要 求
1、 一种多机变频器的运行控制方法, 其特征在于,
所述多机变频器包括主控单元和产生同步信号的 Ml个执行单元, 所述 Ml 个执行单元共直流母线, 其中, 所述 Ml为大于 1的正整数;
其中, 所述方法包括:
配置所述每个执行单元中的 PWM控制器的同步输入管脚来源以使每个执 行单元中的 PWM控制器同步过零点;
同步装载比较值;
在上述条件上各个执行单元产生脉冲宽度调制波,并驱动所述各个执行单 元工作。
2、 根据权利要求 1所述的方法, 其特征在于, 配置所述每个执行单元中的 PWM控制器的引脚来源以使每个执行单元中的 PWM控制器同步过零点的方 法包括: 配置所述 PWM控制器的 U、 V、 W三相的输入管脚的来源相同, 均来 自于每个执行单元中的同步信号。
3、 根据权利要求 1或 2所述的方法, 其特征在于, 所述同步装载比较值的 方法包括:
所述主控单元在每个同步信号周期内向所述 Ml个执行单元中的每个执行 单元发送与之对应的脉冲宽度调制波关键数据;所述每个执行单元在过程数据 接口中断里接收对应的脉冲宽度调制波关键数据后,算出当前周期的比较值同 步进行装载, 并将釆集的数据发送给所述主控单元。
4、 根据权利要求 3 所述的方法, 其特征在于, 所述方法还包括: 所述 Ml 个执行单元中的每个执行单元基于其生成的同步信号产生同步中断和 /或 过程数据接口中断。
5、 根据权利要求 3所述的方法, 其特征在于, 所述执行单元对应的脉冲 宽度调制波关键数据包括该执行单元对应的电压调制比和电压角度; 或, 所述 执行单元对应的脉冲宽度调制波关键数据包括该执行单元对应的三角波比较 值。
6、 根据权利要求 1或 2所述的方法, 其特征在于, 所述方法还包括: 所述 制波的载波进行同步。
7、根据权利要求 6所述的方法, 其特征在于, 使所述同步信号周期和载波 周期同步的方法包括: 釆用锁相环技术, 所述同步信号周期超前于所述载波周 期时, 使载波周期减去一个值; 当所述同步信号周期滞后于所述载波周期时, 使所述载波周期加上一个值,最终使所述载波周期与所述同步信号周期保持一 致。
8、 根据权利要求 1所述的方法, 其特征在于, 所述方法还包括: Ml个执 行单元产生同步信号。
9、 根据权利要求 8所述的方法, 其特征在于, 所述产生同步信号的方法 包括: 所述主控单元初始化所述 Ml个执行单元的相关参数; 参数初始化完成 后, 所述主控单元将初始化数据发送给所述 Ml个执行单元, 激活执行单元的 同步时钟单元, 使所述执行单元产生同步信号。
10、 一种多机变频器, 其特征在于, 所述多机变频器包括主控单元和产生 同步信号的 M 1个执行单元, 所述 M 1个执行单元共直流母线, 所述 M 1为大 于 1 的正整数; 其中, 所述多机变频器的运行控制方法为如权利要求 1 至 9 任意一项所述的多机变频器的运行控制方法。
PCT/CN2014/078967 2014-05-30 2014-05-30 多机变频器的运行控制方法和多机变频器 WO2015180151A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201480019849.1A CN105264760B (zh) 2014-05-30 2014-05-30 多机变频器的运行控制方法和多机变频器
PCT/CN2014/078967 WO2015180151A1 (zh) 2014-05-30 2014-05-30 多机变频器的运行控制方法和多机变频器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2014/078967 WO2015180151A1 (zh) 2014-05-30 2014-05-30 多机变频器的运行控制方法和多机变频器

Publications (1)

Publication Number Publication Date
WO2015180151A1 true WO2015180151A1 (zh) 2015-12-03

Family

ID=54697928

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/078967 WO2015180151A1 (zh) 2014-05-30 2014-05-30 多机变频器的运行控制方法和多机变频器

Country Status (2)

Country Link
CN (1) CN105264760B (zh)
WO (1) WO2015180151A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111835450A (zh) * 2020-09-17 2020-10-27 华夏天信(北京)智能低碳技术研究院有限公司 一种高精度分布式变频器同步控制通讯系统
CN113676069A (zh) * 2021-09-08 2021-11-19 新风光电子科技股份有限公司 一种级联式高压变频器并联环流抑制方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5757634A (en) * 1996-12-24 1998-05-26 Siemans Electric Limited Multiparalleling system of voltage source power converters
US20080207237A1 (en) * 2005-04-14 2008-08-28 Koninklijke Philips Electronics N.V. Communication in Phase Shifted Driven Power Converters
US20110267854A1 (en) * 2011-03-29 2011-11-03 American Superconductor Corporation Power converter with dual ring network control
CN102355195A (zh) * 2011-10-24 2012-02-15 乔鸣忠 一种用于传动系统的多逆变模块并联变频装置及控制策略
CN103124160A (zh) * 2011-11-18 2013-05-29 伊顿公司 使用两个串行信号控制和监视功率半导体装置的电力系统

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102122896A (zh) * 2011-04-15 2011-07-13 国网电力科学研究院 具有可变电流比的正弦波逆变器并联系统
CN103219904B (zh) * 2013-04-10 2014-12-17 哈尔滨工程大学 一种三相逆变器并联同步控制方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5757634A (en) * 1996-12-24 1998-05-26 Siemans Electric Limited Multiparalleling system of voltage source power converters
US20080207237A1 (en) * 2005-04-14 2008-08-28 Koninklijke Philips Electronics N.V. Communication in Phase Shifted Driven Power Converters
US20110267854A1 (en) * 2011-03-29 2011-11-03 American Superconductor Corporation Power converter with dual ring network control
CN102355195A (zh) * 2011-10-24 2012-02-15 乔鸣忠 一种用于传动系统的多逆变模块并联变频装置及控制策略
CN103124160A (zh) * 2011-11-18 2013-05-29 伊顿公司 使用两个串行信号控制和监视功率半导体装置的电力系统

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111835450A (zh) * 2020-09-17 2020-10-27 华夏天信(北京)智能低碳技术研究院有限公司 一种高精度分布式变频器同步控制通讯系统
CN113676069A (zh) * 2021-09-08 2021-11-19 新风光电子科技股份有限公司 一种级联式高压变频器并联环流抑制方法

Also Published As

Publication number Publication date
CN105264760B (zh) 2018-10-23
CN105264760A (zh) 2016-01-20

Similar Documents

Publication Publication Date Title
WO2015180150A1 (zh) 多机变频器产生同步信号方法和多机变频器
US11539313B2 (en) System and method of synchronizing a switching signal
EP2408110B1 (en) Power layer generation of inverter gate drive signals
JP5188656B1 (ja) インバータシステム、及び通信方法
JP5901861B1 (ja) 電力変換システム及び電力変換装置
US20150357822A1 (en) Inverter electric generator system and inverter electric generator thereof
JP5398380B2 (ja) Pwm半導体電力変換装置システムおよびpwm半導体電力変換装置
CN111030514B (zh) 一种变频器并机控制系统
JP2007295647A (ja) インバータの同期運転方式
JP2009153311A (ja) 同期制御システム、制御装置及び同期制御方法
JP6029433B2 (ja) マイコン
WO2015180151A1 (zh) 多机变频器的运行控制方法和多机变频器
EP3072209A1 (en) Method to select optimal synchronization source in a multiple uninterruptible power supply system
JP6601668B2 (ja) 電力変換装置
JP2013090358A (ja) 直列多重インバータ装置
KR101695503B1 (ko) 다중레벨 인버터 제어장치
WO2015090046A1 (zh) 数字均流方法和电源模块
WO2015073227A1 (en) Method to select optimal synchronization source in a multiple uninterruptible power supply system
JP3551373B2 (ja) 系統連系用電力変換装置及びその制御方法
JP5200781B2 (ja) 並列運転インバータ装置の位相同期回路
WO2015180152A1 (zh) 多机变频器
JP7338558B2 (ja) 複数台電力変換装置の位相同期制御装置および位相同期制御方法
WO2014054332A1 (ja) 電力変換装置
JP2020077276A (ja) 半導体装置、制御装置および制御方法
Kannan et al. Novel unified control strategies for seamless transfer of operation of three-phase PV-inverter from grid-tied to islanded mode

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480019849.1

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14893259

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14893259

Country of ref document: EP

Kind code of ref document: A1