WO2015178429A1 - 酸化物焼結体、スパッタリング用ターゲット、及びそれを用いて得られる酸化物半導体薄膜 - Google Patents

酸化物焼結体、スパッタリング用ターゲット、及びそれを用いて得られる酸化物半導体薄膜 Download PDF

Info

Publication number
WO2015178429A1
WO2015178429A1 PCT/JP2015/064527 JP2015064527W WO2015178429A1 WO 2015178429 A1 WO2015178429 A1 WO 2015178429A1 JP 2015064527 W JP2015064527 W JP 2015064527W WO 2015178429 A1 WO2015178429 A1 WO 2015178429A1
Authority
WO
WIPO (PCT)
Prior art keywords
phase
oxide
sintered body
thin film
less
Prior art date
Application number
PCT/JP2015/064527
Other languages
English (en)
French (fr)
Inventor
中山 徳行
英一郎 西村
文彦 松村
正史 井藁
Original Assignee
住友金属鉱山株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友金属鉱山株式会社 filed Critical 住友金属鉱山株式会社
Priority to CN201580013163.6A priority Critical patent/CN106103380A/zh
Priority to US15/306,915 priority patent/US9941415B2/en
Priority to JP2016521135A priority patent/JP6414210B2/ja
Priority to KR1020167025017A priority patent/KR20170009819A/ko
Publication of WO2015178429A1 publication Critical patent/WO2015178429A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/7869Thin film transistors, i.e. transistors with a channel being at least partly a thin film having a semiconductor body comprising an oxide semiconductor material, e.g. zinc oxide, copper aluminium oxide, cadmium stannate
    • H01L29/78693Thin film transistors, i.e. transistors with a channel being at least partly a thin film having a semiconductor body comprising an oxide semiconductor material, e.g. zinc oxide, copper aluminium oxide, cadmium stannate the semiconducting oxide being amorphous
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/03Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on magnesium oxide, calcium oxide or oxide mixtures derived from dolomite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/6261Milling
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • C04B35/645Pressure sintering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • C23C14/081Oxides of aluminium, magnesium or beryllium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • C23C14/082Oxides of alkaline earth metals
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • C23C14/086Oxides of zinc, germanium, cadmium, indium, tin, thallium or bismuth
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3407Cathode assembly for sputtering apparatus, e.g. Target
    • C23C14/3414Metallurgical or chemical aspects of target preparation, e.g. casting, powder metallurgy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/34Gas-filled discharge tubes operating with cathodic sputtering
    • H01J37/3411Constructional aspects of the reactor
    • H01J37/3414Targets
    • H01J37/3426Material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02422Non-crystalline insulating materials, e.g. glass, polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02565Oxide semiconducting materials not being Group 12/16 materials, e.g. ternary compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/0257Doping during depositing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02587Structure
    • H01L21/0259Microstructure
    • H01L21/02592Microstructure amorphous
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/02631Physical deposition at reduced pressure, e.g. MBE, sputtering, evaporation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02656Special treatments
    • H01L21/02664Aftertreatments
    • H01L21/02667Crystallisation or recrystallisation of non-monocrystalline semiconductor materials, e.g. regrowth
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/24Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only semiconductor materials not provided for in groups H01L29/16, H01L29/18, H01L29/20, H01L29/22
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66969Multistep manufacturing processes of devices having semiconductor bodies not comprising group 14 or group 13/15 materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/7869Thin film transistors, i.e. transistors with a channel being at least partly a thin film having a semiconductor body comprising an oxide semiconductor material, e.g. zinc oxide, copper aluminium oxide, cadmium stannate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3206Magnesium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3286Gallium oxides, gallates, indium oxides, indates, thallium oxides, thallates or oxide forming salts thereof, e.g. zinc gallate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5436Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6565Cooling rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • C04B2235/6583Oxygen containing atmosphere, e.g. with changing oxygen pressures
    • C04B2235/6585Oxygen containing atmosphere, e.g. with changing oxygen pressures at an oxygen percentage above that of air
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/72Products characterised by the absence or the low content of specific components, e.g. alkali metal free alumina ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/76Crystal structural characteristics, e.g. symmetry
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/80Phases present in the sintered or melt-cast ceramic products other than the main phase
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/32Processing objects by plasma generation
    • H01J2237/33Processing objects by plasma generation characterised by the type of processing
    • H01J2237/332Coating

Definitions

  • the present invention relates to an oxide sintered body, a target, and an oxide semiconductor thin film obtained using the oxide sintered body, and more specifically, contains amorphous indium, gallium, and magnesium exhibiting a low carrier concentration and a high carrier mobility.
  • the present invention relates to an oxide semiconductor thin film, a sputtering target containing indium, gallium and magnesium suitable for forming the oxide semiconductor thin film, and an oxide sintered body containing indium, gallium and magnesium suitable for obtaining the target.
  • a thin film transistor is one type of a field effect transistor (hereinafter referred to as FET).
  • a TFT is a three-terminal element having a gate terminal, a source terminal, and a drain terminal as a basic structure, and a semiconductor thin film formed on a substrate is used as a channel layer in which electrons or holes move and is used as a gate terminal.
  • the active element has a function of switching a current between a source terminal and a drain terminal by applying a voltage to control a current flowing in a channel layer.
  • a TFT is an electronic device that is most frequently put into practical use, and a typical application is a liquid crystal driving element.
  • the most widely used TFT is a metal-insulator-semiconductor-FET (MIS-FET) using a polycrystalline silicon film or an amorphous silicon film as a channel layer material. Since the MIS-FET using silicon is opaque to visible light, a transparent circuit cannot be formed. For this reason, when the MIS-FET is applied as a switching element for liquid crystal driving of a liquid crystal display, the device has a small aperture ratio of display pixels.
  • MIS-FET metal-insulator-semiconductor-FET
  • Patent Document 1 discloses a transparent amorphous oxide thin film formed by vapor phase film formation and composed of elements of In, Ga, Zn, and O, and the oxide
  • the composition of the composition is InGaO 3 (ZnO) m (m is a natural number of less than 6) when crystallized, and the carrier mobility (also referred to as carrier electron mobility) is 1 cm without adding impurity ions.
  • a thin film (a-IGZO film) has an electron carrier mobility in the range of approximately 1 to 10 cm 2 V ⁇ 1 sec ⁇ 1 , so that the mobility is insufficient when formed as a TFT channel layer. It was.
  • Patent Document 2 a compound represented by In (GaMg) O 4 containing In, Ga and Mg and represented by In 2 O 3 , a compound represented by MgGa 2 O 4 , and In 2 MgO 4 is disclosed.
  • a sputtering target including a sintered body containing one or more compounds selected from the compounds represented by:
  • Patent Document 2 since the target of Patent Document 2 includes a phase such as Ga 2 MgO 4 having poor conductivity that causes arcing, there is a problem that abnormal discharge occurs.
  • An object of the present invention is to provide a sputtering target that enables reduction of the carrier concentration of an amorphous oxide semiconductor thin film, an oxide sintered body that is optimal for obtaining the sputtering target, and a low carrier concentration obtained by using the target.
  • An object is to provide an oxide semiconductor thin film exhibiting high carrier mobility.
  • the present inventors have made a small amount of magnesium, specifically, an oxide sintered body containing gallium as an oxide with a Ga / (In + Ga) ratio of indium to gallium of 0.20 to 0.45.
  • the sintered oxide sintered body is substantially made of an In 2 O 3 phase having a bixbite structure, and In 2 O A generation phase other than the three phases includes a ⁇ -Ga 2 O 3 type GaInO 3 phase, or a ⁇ -Ga 2 O 3 type GaInO 3 phase and a (Ga, In) 2 O 3 phase, and the oxide
  • an oxide semiconductor thin film manufactured using a sintered body has a carrier mobility of 10 cm 2 V ⁇ 1 sec ⁇ 1 or higher.
  • the first invention contains indium, gallium, and magnesium as oxides, and the gallium content is in a Ga / (In + Ga) atomic ratio of 0.20 or more and 0.45 or less, and the magnesium content
  • the Mg / (In + Ga + Mg) atomic ratio is 0.0001 or more and less than 0.05, and the In 2 O 3 phase having a bixbite structure and ⁇ -Ga 2 O 3 as a generation phase other than the In 2 O 3 phase Type structure GaInO 3 phase, or ⁇ -Ga 2 O 3 type GaInO 3 phase and (Ga, In) 2 O 3 phase, In (GaMg) O 4 phase, MgGa 2 O 4 phase, In 2
  • the oxide sintered body is characterized by being substantially free of MgO 4 phase and Ga 2 O 3 phase.
  • the second invention is the oxide sintered body according to the first invention, wherein the magnesium content is 0.01 to 0.03 in terms of Mg / (In + Ga + Mg) atomic ratio.
  • the third invention is the oxide sintered body according to the first or second invention, wherein the gallium content is in a Ga / (In + Ga) atomic ratio of 0.20 or more and 0.30 or less.
  • an oxide firing according to any one of the first to third aspects of the present invention which does not substantially contain a positive divalent element other than magnesium and a positive trivalent to positive hexavalent element other than indium and gallium. It is a ligation.
  • the X-ray diffraction peak intensity ratio of the GaInO 3 phase having a ⁇ -Ga 2 O 3 type structure defined by the following formula 1 is in the range of 2% to 80%.
  • the sixth invention is a sputtering target obtained by processing the oxide sintered body according to any one of the first to fifth inventions.
  • the seventh invention is an amorphous oxide semiconductor thin film formed on a substrate by a sputtering method using the sputtering target described in the sixth invention and then heat-treated.
  • An eighth invention is the oxide semiconductor thin film according to the seventh invention, wherein the carrier mobility is 10 cm 2 V ⁇ 1 sec ⁇ 1 or more.
  • a ninth invention is the oxide semiconductor thin film according to the seventh or eighth invention, wherein the carrier concentration is less than 3.0 ⁇ 10 18 cm ⁇ 3 .
  • the oxide sintered body containing indium and gallium as an oxide and containing magnesium in an Mg / (In + Ga + Mg) atomic ratio of 0.0001 or more and less than 0.05 is used as, for example, a sputtering target.
  • the amorphous oxide semiconductor thin film of the present invention formed by sputtering film formation and then obtained by heat treatment can be obtained.
  • the amorphous oxide semiconductor thin film has sufficient amorphous properties because it does not generate microcrystals due to the effect of a predetermined amount of gallium and magnesium, and has a desired shape by wet etching. Can be patterned.
  • the amorphous oxide semiconductor thin film of the present invention exhibits low carrier concentration and high carrier mobility. Therefore, the amorphous oxide semiconductor thin film of the present invention can be applied as a channel layer of a TFT. Therefore, the oxide sintered body, the target, and the oxide semiconductor thin film obtained using the oxide sintered body of the present invention are extremely useful industrially.
  • the oxide sintered body of the present invention the sputtering target, and the oxide thin film obtained using the same will be described in detail.
  • the oxide sintered body of the present invention contains indium, gallium and magnesium as oxides, and gallium is in a Ga / (In + Ga) atomic ratio of 0.20 or more and 0.45 or less, and magnesium is Mg / (In + Ga + Mg). ) A sintered oxide containing 0.0001 or more and less than 0.05 in atomic ratio.
  • the gallium content is Ga0 (In + Ga) atomic ratio of 0.20 or more and 0.45 or less, and more preferably 0.20 or more and 0.30 or less.
  • Gallium has a strong bonding force with oxygen and has an effect of reducing the amount of oxygen vacancies in the amorphous oxide semiconductor thin film of the present invention.
  • the gallium content is less than 0.20 in terms of the Ga / (In + Ga) atomic ratio, this effect cannot be obtained sufficiently.
  • it exceeds 0.45 carrier mobility sufficiently high as an oxide semiconductor thin film cannot be obtained.
  • the oxide sintered body of the present invention contains magnesium in addition to indium and gallium in the composition range specified as described above.
  • the magnesium concentration is 0.0001 or more and less than 0.05, and preferably 0.01 or more and 0.03 or less in terms of the atomic ratio of Mg / (In + Ga + Mg).
  • the carrier concentration is suppressed mainly by the action of neutralizing electrons generated by oxygen vacancies, and the amorphous oxide of the present invention.
  • the on / off of the TFT can be increased.
  • the oxide sintered body of the present invention does not substantially contain an element M which is a positive divalent element other than magnesium and a positive trivalent to positive hexavalent element other than indium and gallium.
  • element M which is a positive divalent element other than magnesium and a positive trivalent to positive hexavalent element other than indium and gallium.
  • substantially not contained means that each single M is 500 ppm or less, preferably 200 ppm or less, more preferably 100 ppm or less in terms of the atomic ratio of M / (In + Ga + M).
  • M include Cu, Ni, Co, Zn, Ca, Sr, and Pb as positive divalent elements, and Al, Y, Sc, B, and lanthanoids as positive trivalent elements.
  • Sn, Ge, Ti, Si, Zr, Hf, C, and Ce can be exemplified as positive tetravalent elements
  • Nb and Ta can be exemplified as positive pentavalent elements
  • W and Mo can be exemplified as positive hexavalent elements. It can be illustrated.
  • the oxide sintered body of the oxide sintered body tissue present invention the In 2 O 3 phase bixbyite structure, GaInO 3-phase ⁇ -Ga 2 O 3 -type structure as a product phases other than the In 2 O 3 phase Or a ⁇ -Ga 2 O 3 type GaInO 3 phase and a (Ga, In) 2 O 3 phase.
  • the oxide sintered body is composed of only the In 2 O 3 phase, nodules are generated in the same manner as in Comparative Example 11 of Patent Document 3 (WO2003 / 014409), regardless of the Mg content.
  • the In (GaMg) O 4 phase, the MgGa 2 O 4 phase, and the In 2 MgO 4 phase are all high resistance phases, and therefore cause arcing and nodules.
  • the In 2 MgO 4 phase has a specific resistance of about 10 ⁇ 2 ⁇ ⁇ cm (Non-patent Document 1) and has an electrical resistance that is about 1 to 2 digits higher than that of the In 2 O 3 phase or GaInO 3 phase. Nodules are likely to be dug easily in the film.
  • the In (GaMg) O 4 phase has a higher specific resistance of about 10 0 ⁇ ⁇ cm (Non-patent Document 2), and causes nodules. Since the MgGa 2 O 4 phase does not contain In, it has a higher specific resistance and causes arcing.
  • an oxide semiconductor thin film formed by sputtering using an oxide sintered body in which these phases are generated tends to have low carrier mobility.
  • Gallium and magnesium are dissolved in the In 2 O 3 phase. Further, gallium constitutes a GaInO 3 phase or a (Ga, In) 2 O 3 phase. In the case of solid solution in the In 2 O 3 phase, gallium and magnesium substitute for lattice positions of indium which is a positive trivalent ion. For reasons such as the sintering not progressing, it is not preferable to form a Ga 2 O 3 phase of ⁇ -Ga 2 O 3 type structure without causing gallium to dissolve in the In 2 O 3 phase. Since the Ga 2 O 3 phase has poor conductivity, it causes abnormal discharge.
  • the oxide sintered body of the present invention includes not only a bixbite type In 2 O 3 phase but also a ⁇ -Ga 2 O 3 type GaInO 3 phase or a ⁇ -Ga 2 O 3 type GaInO 3 phase. It is preferable that the (Ga, In) 2 O 3 phase is contained in the range where the X-ray diffraction peak intensity ratio defined by the following formula 1 is 2% or more and 80% or less.
  • the oxide sintered body of the present invention uses oxide powder composed of indium oxide powder and gallium oxide powder, and magnesium oxide powder as raw material powder.
  • the oxide sintered body of the present invention In the manufacturing process of the oxide sintered body of the present invention, these raw material powders are mixed and then molded, and the molded product is sintered by a normal pressure sintering method.
  • the formation phase of the oxide sintered body structure of the present invention strongly depends on the production conditions in each step of the oxide sintered body, for example, the particle diameter of the raw material powder, the mixing conditions, and the sintering conditions.
  • GaInO 3-phase ⁇ -Ga 2 O 3 -type structure as a product phases other than the In 2 O 3 phase or ⁇ - It is preferable that the GaInO 3 phase and the (Ga, In) 2 O 3 phase having a Ga 2 O 3 type structure are configured in a desired ratio, and for this purpose, the average particle diameter of each raw material powder is set to 3 ⁇ m or less. It is preferable that the thickness is 1.5 ⁇ m or less.
  • the average particle diameter of each raw material powder is 1.5 ⁇ m or less.
  • Indium oxide powder is a raw material of ITO (indium-tin oxide), and the development of fine indium oxide powder excellent in sinterability has been promoted along with the improvement of ITO. Since indium oxide powder is continuously used in large quantities as a raw material for ITO, it is possible to obtain a raw material powder having an average particle size of 0.8 ⁇ m or less recently.
  • ITO indium-tin oxide
  • gallium oxide powder or magnesium oxide powder since the amount used is still smaller than that of indium oxide powder, it is difficult to obtain a raw material powder having an average particle size of 1.5 ⁇ m or less. Therefore, when only coarse gallium oxide powder is available, it is necessary to grind to an average particle size of 1.5 ⁇ m or less.
  • the atmospheric pressure sintering method is a simple and industrially advantageous method, and is also a preferable means from the viewpoint of low cost.
  • a molded body is first prepared as described above.
  • the raw material powder is put in a resin pot and mixed with a binder (for example, PVA) by a wet ball mill or the like.
  • a binder for example, PVA
  • a wet ball mill or the like In the production of the oxide sintered body of the present invention, in addition to the In 2 O 3 phase, a ⁇ -Ga 2 O 3 type GaInO 3 phase, or a ⁇ -Ga 2 O 3 type GaInO 3 phase and (Ga, In order to suppress excessive formation of the In) 2 O 3 phase or not to form a ⁇ 2 -Ga 2 O 3 type Ga 2 O 3 phase, it is preferable to carry out the ball mill mixing for 18 hours or more.
  • a hard ZrO 2 ball may be used as the mixing ball.
  • the slurry is taken out, filtered, dried and granulated. Thereafter, the granulated product obtained was molded by applying a pressure of about 9.8MPa (0.1ton / cm 2) ⁇ 294MPa (3ton / cm 2) cold isostatic pressing, the molded body.
  • an atmosphere in which oxygen is present is preferable, and the oxygen volume fraction in the atmosphere is more preferably more than 20%.
  • the oxygen volume fraction exceeds 20%, the oxide sintered body is further densified. Due to the excessive oxygen in the atmosphere, the sintering of the surface of the compact proceeds first in the early stage of sintering. Subsequently, sintering in a reduced state inside the molded body proceeds, and finally a high-density oxide sintered body is obtained.
  • the temperature range of atmospheric pressure sintering is preferably 1200 ° C. or more and 1550 ° C. or less, and more preferably, sintering is performed at 1350 ° C. or more and 1450 ° C. or less in an atmosphere in which oxygen gas is introduced into the atmosphere in the sintering furnace.
  • the sintering time is preferably 10 to 30 hours, more preferably 15 to 25 hours.
  • the oxide powder composed of indium oxide powder and gallium oxide powder adjusted to the average particle size of 1.5 ⁇ m or less, and magnesium oxide powder as raw material powder the bixbite structure
  • the In 2 O 3 phase and the ⁇ -Ga 2 O 3 type GaInO 3 phase or the ⁇ -Ga 2 O 3 type GaInO 3 phase and the (Ga, In) 2 as a generation phase other than the In 2 O 3 phase An oxide sintered body constituted by the O 3 phase is obtained.
  • the sintering temperature is less than 1200 ° C., the sintering reaction does not proceed sufficiently, and the density of the oxide sintered body becomes less than 6.4 g / cm 3 .
  • the sintering temperature exceeds 1550 ° C., the formation of the (Ga, In) 2 O 3 phase becomes significant.
  • the (Ga, In) 2 O 3 phase has a higher electrical resistance than the GaInO 3 phase, and therefore causes a decrease in the deposition rate.
  • a sintering temperature of 1550 ° C. or lower, that is, a small amount of (Ga, In) 2 O 3 phase is not a problem. From such a viewpoint, the sintering temperature is preferably 1200 ° C. or higher and 1550 ° C. or lower, and more preferably 1350 ° C. or higher and 1450 ° C. or lower.
  • the heating rate up to the sintering temperature is preferably in the range of 0.2 to 5 ° C./min in order to prevent cracking of the sintered body and to proceed with debinding. If it is this range, you may heat up to sintering temperature combining a different temperature increase rate as needed.
  • it in order to promote the solid solution of magnesium in the In 2 O 3 phase, it is effective to hold at a temperature of 1100 ° C. or lower for a certain period of time.
  • the binder may be held for a certain time at a specific temperature for the purpose of progressing debinding and sintering.
  • the holding time is not particularly limited, but is preferably 1 hour or more and 10 hours or less.
  • the introduction of oxygen is stopped, and the temperature can be lowered to 1000 ° C. at a rate of 0.2 to 5 ° C./min, particularly 0.2 ° C./min or more and less than 1 ° C./min. preferable.
  • Target The target of the present invention can be obtained by cutting the oxide sintered body into a predetermined size, polishing the surface, and adhering it to a backing plate.
  • the target shape is preferably a flat plate shape, but may be a cylindrical shape. When a cylindrical target is used, it is preferable to suppress particle generation due to target rotation.
  • the density of the oxide sintered body of the present invention is preferably 6.4 g / cm 3 or more.
  • the density is less than 6.4 g / cm 3 , it causes nodules during mass production and is not preferable.
  • the amorphous oxide semiconductor thin film of the present invention is formed by forming an amorphous thin film once on a substrate by sputtering using the sputtering target and then subjecting it to a heat treatment. It is obtained by applying.
  • the sputtering target is obtained from an oxide sintered body, and is basically formed by the oxide sintered body structure, that is, the In 2 O 3 phase having a bixbite type structure and the GaInO 3 phase having a ⁇ -Ga 2 O 3 type structure.
  • the organized organization is important.
  • it is important that the amorphous oxide thin film has a high crystallization temperature, which is related to the oxide sintered body structure. . That is, when the oxide sintered body used in the present invention includes not only the In 2 O 3 phase of the bixbite type structure but also the GaInO 3 phase of the ⁇ -Ga 2 O 3 type structure, it is obtained from this.
  • the formed oxide thin film has a high crystallization temperature, that is, preferably a crystallization temperature of 250 ° C. or higher, more preferably 300 ° C. or higher, and further preferably 350 ° C. or higher, and becomes a stable amorphous state.
  • the oxide sintered body is constituted only by the In 2 O 3 phase having a bixbite structure
  • the oxide thin film after film formation has a low crystallization temperature of about 190 to 230 ° C., It is no longer stable amorphous. For this reason, when it heat-processes at about 250 degreeC, it may crystallize. In this case, microcrystals are already generated after film formation, and the amorphous state is not maintained, and patterning processing by wet etching becomes difficult. This is well known in general ITO (tin-added indium oxide) transparent conductive films.
  • a general sputtering method is used.
  • the direct current (DC) sputtering method is industrial because it is less affected by heat during film formation and enables high-speed film formation. Is advantageous.
  • a mixed gas composed of an inert gas and oxygen, particularly argon and oxygen as a sputtering gas.
  • the substrate is typically a glass substrate and is preferably alkali-free glass, but any resin plate or resin film that can withstand the temperature of the above process can be used.
  • the target Pre-sputtering can be carried out by generating direct current plasma by applying direct current power so that the direct current power with respect to the area, that is, the direct current power density is in the range of about 1 to 7 W / cm 2 .
  • the direct current power input within an allowable range is increased.
  • the amorphous oxide semiconductor thin film of the present invention can be obtained by heat-treating the amorphous thin film after the formation.
  • the heat treatment condition is a temperature lower than the crystallization temperature in an oxidizing atmosphere.
  • an atmosphere containing oxygen, ozone, water vapor, nitrogen oxide, or the like is preferable.
  • the heat treatment temperature is preferably 250 to 600 ° C, more preferably 300 to 550 ° C, and further preferably 350 to 500 ° C.
  • the heat treatment time is preferably 1 to 120 minutes, more preferably 5 to 60 minutes, which is maintained at the heat treatment temperature.
  • an amorphous film is formed at a low temperature such as near room temperature, and then heat-treated in the above temperature range below the crystallization temperature to maintain the amorphous semiconductor thin film Get.
  • the substrate is heated to a temperature lower than the crystallization temperature of the oxide thin film, preferably 100 to 300 ° C., to form an amorphous oxide semiconductor thin film. This may be followed by further heat treatment.
  • the composition of indium, gallium, and magnesium of the thin film before the heat treatment and the amorphous oxide semiconductor thin film after the heat treatment is almost the same as the composition of the oxide sintered body of the present invention. That is, it is an amorphous oxide-baked semiconductor thin film containing indium and gallium as oxides and containing magnesium.
  • Gallium content is 0.20 or more and 0.45 or less in Ga / (In + Ga) atomic ratio
  • magnesium content is 0.0001 or more and less than 0.05 in Mg / (In + Ga + Mg) atomic ratio.
  • the gallium content is more preferably 0.20 or more and 0.30 or less, and further preferably 0.25 or more and 0.30 or less in terms of Ga / (In + Ga) atomic ratio.
  • the magnesium content is more preferably 0.01 or more and 0.03 or less in terms of the Mg / (In + Ga + Mg) atomic ratio.
  • the amorphous oxide semiconductor thin film of the present invention is formed by using an oxide sintered body having a controlled composition and structure as described above as a sputtering target and heat-treating it under the appropriate conditions described above.
  • the carrier concentration is reduced to 3 ⁇ 10 18 cm ⁇ 3 or less, more preferably a carrier concentration of 1 ⁇ 10 18 cm ⁇ 3 or less, and particularly preferably 8 ⁇ 10 17 cm ⁇ 3 or less.
  • the amorphous oxide semiconductor thin film composed of indium, gallium, and zinc described in Non-Patent Document 3 the amorphous oxide semiconductor thin film containing a large amount of indium has a carrier concentration of 4 ⁇ 10 6.
  • the amorphous oxide semiconductor thin film according to the present invention is convenient because the carrier concentration is controlled in a range in which the above TFT shows normally-off.
  • the carrier mobility is 10 cm 2 V ⁇ 1 sec ⁇ 1 or more, and more preferably the carrier mobility is 15 cm 2 V ⁇ 1 sec ⁇ 1 or more.
  • the amorphous oxide semiconductor thin film of the present invention is subjected to fine processing necessary for applications such as TFT by wet etching or dry etching.
  • fine processing by wet etching can be performed.
  • the etchant any weak acid can be used, but a weak acid mainly composed of oxalic acid or hydrochloric acid is preferred.
  • commercially available products such as ITO-06N manufactured by Kanto Chemical Co., Ltd. can be used.
  • dry etching may be selected.
  • the thickness of the amorphous oxide semiconductor thin film of the present invention is not limited, but is 10 to 500 nm, preferably 20 to 300 nm, and more preferably 30 to 100 nm. If the thickness is less than 10 nm, high carrier mobility cannot be realized. On the other hand, if it exceeds 500 nm, a problem of productivity occurs, which is not preferable.
  • the average transmittance in the visible region (400 to 800 nm) is preferably 80% or more, more preferably 85% or more, and further preferably 90% or more. It is.
  • the average transmittance is less than 80%, the light extraction efficiency of a liquid crystal element or an organic EL element as a transparent display device is lowered.
  • the composition of the obtained oxide thin film was examined by ICP emission spectroscopy.
  • the film thickness of the oxide thin film was measured with a surface roughness meter (manufactured by Tencor).
  • the film formation rate was calculated from the film thickness and the film formation time.
  • the carrier concentration and carrier mobility of the oxide thin film were determined by a Hall effect measuring device (manufactured by Toyo Technica).
  • the formation phase of the film was identified by X-ray diffraction measurement.
  • Indium oxide powder, gallium oxide powder, and magnesium oxide powder were adjusted to have an average particle size of 1.5 ⁇ m or less to obtain raw material powder. These raw material powders were prepared so that the Ga / (In + Ga) atomic number ratio and Mg / (In + Ga + Mg) atomic ratio in the examples and comparative examples in Tables 1 and 2 were as shown in FIG. And mixed with a wet ball mill. At this time, hard ZrO 2 balls were used and the mixing time was 18 hours. After mixing, the slurry was taken out, filtered, dried and granulated. The granulated product was molded by applying a pressure of 3 ton / cm 2 with a cold isostatic press.
  • the compact was sintered as follows. Sintering was performed at a sintering temperature of 1000 to 1550 ° C. for 20 hours in an atmosphere in which oxygen was introduced into the atmosphere in the sintering furnace at a rate of 5 liters / minute per 0.1 m 3 of the furnace volume. At this time, the temperature was raised at 1 ° C./min. When cooling after sintering, the introduction of oxygen was stopped, and the temperature was lowered to 1000 ° C. at 10 ° C./min.
  • the oxide sintered body was processed into a size of 152 mm in diameter and 5 mm in thickness, and the sputtering surface was polished with a cup grindstone so that the maximum height Rz was 3.0 ⁇ m or less.
  • the processed oxide sintered body was bonded to a backing plate made of oxygen-free copper using metallic indium to obtain a sputtering target.
  • a mixed gas of argon and oxygen was introduced so as to have an appropriate oxygen ratio according to the amount of gallium in each target, and the gas pressure was adjusted to 0.6 Pa.
  • a DC plasma was generated by applying a DC power of 300 W (1.64 W / cm 2 ).
  • an oxide thin film having a thickness of 50 nm was formed by placing the substrate directly above the sputtering target, that is, at a stationary facing position. It was confirmed that the composition of the obtained oxide thin film was almost the same as that of the target. Further, as a result of X-ray diffraction measurement, it was confirmed to be amorphous.
  • the obtained amorphous oxide thin film was heat-treated at 250 to 400 ° C. for 30 minutes or less in the atmosphere using a RTA (Rapid Thermal Annealing) apparatus.
  • the oxide thin film after the heat treatment was confirmed to be amorphous as a result of X-ray diffraction measurement, and had In 2 O 3 (111) as the main peak.
  • the Hall effect of the obtained amorphous oxide semiconductor thin film was measured to determine the carrier concentration and carrier mobility. The evaluation results obtained are summarized in Table 2.
  • Nodule generation evaluation The sputtering targets of Examples 2 and 10 and Comparative Example 2 were evaluated for nodule generation by sputtering film formation simulating mass production.
  • a load lock type pass magnetron sputtering apparatus manufactured by ULVAC
  • the target was a square target having a length of 5 inches and a width of 15 inches.
  • Sputtering film formation evaluation After evacuating the sputtering chamber to 7 ⁇ 10 ⁇ 5 Pa or less, a mixed gas of argon and oxygen was introduced so as to have an appropriate oxygen ratio according to the amount of gallium in each target, and the gas pressure was reduced to 0.
  • the reason why the sputtering gas under such conditions is selected is that when the degree of vacuum in the sputtering chamber exceeds 1 ⁇ 10 ⁇ 4 Pa and the moisture pressure in the chamber is high, or hydrogen gas is added, a legitimate evaluation is made. It is because it becomes impossible.
  • ITO or the like when H + derived from moisture or hydrogen gas is taken into the film, the crystallization temperature of the film becomes high, and the film adhering to the target non-erosion part is likely to become amorphous. As a result, since the film stress is lowered, it is difficult to peel off from the non-erosion portion, and nodules are hardly generated.
  • the DC power is set to 2500 W (DC power density 5.17 W / cm 2 ) considering that the DC power density generally used in mass production is about 3 to 6 W / cm 2 .
  • the target surface was observed after the continuous sputtering discharge of 50 kWh under the above conditions, and the presence or absence of nodule generation was evaluated.
  • the gallium content in Examples 1 to 11 is 0.20 or more and 0.45 or less in the Ga / (In + Ga) atomic ratio, and the magnesium content is in the Mg / (In + Ga + Mg) atomic ratio. If it is less than 0.0001 or more 0.05, and in 2 O 3 phase bixbyite structure, GaInO 3-phase ⁇ -Ga 2 O 3 -type structure as a product phases other than the in 2 O 3 phase or beta It was constituted by a GaInO 3 phase and a (Ga, In) 2 O 3 phase having a —Ga 2 O 3 type structure.
  • the magnesium content is 0.05 or more in terms of Mg / (In + Ga + Mg) atomic weight ratio
  • the In 2 O 3 phase having a bixbite structure
  • it includes Ga 2 O 3 phase not the oxide sintered body for the purpose of the present invention can be obtained.
  • Table 2 shows an amorphous oxide semiconductor thin film containing indium, gallium, and magnesium as oxides, and the gallium content is in a Ga / (In + Ga) atomic ratio of 0.20 or more and 0.45.
  • characteristics of the oxide semiconductor thin film in which the magnesium content is controlled to be 0.0001 or more and less than 0.05 in terms of the Mg / (In + Ga + Mg) atomic weight ratio are shown.
  • the oxide semiconductor thin film of the example has a carrier concentration of less than 3.0 ⁇ 10 18 cm ⁇ 3 and a carrier mobility of 10 cm 2 V ⁇ 1 sec ⁇ 1 or more.
  • Examples 2 to 6 having a gallium content of Ga / (In + Ga) atomic weight ratio of 0.20 to 0.30 and a magnesium content of Mg / (In + Ga + Mg) atomic weight ratio of 0.01 to 0.03.
  • the oxide semiconductor thin films of No. 8 and No. 8 exhibit excellent characteristics with a carrier concentration of 1.0 ⁇ 10 18 cm ⁇ 3 or less and a carrier mobility of 20 cm 2 V ⁇ 1 sec ⁇ 1 or more.
  • the magnesium content is 0.05 or more in terms of the Mg / (In + Ga + Mg) atomic weight ratio, and the carrier mobility is less than 10 cm 2 V ⁇ 1 sec ⁇ 1. Therefore, the oxide semiconductor thin film targeted by the present invention has not been obtained.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Organic Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Metallurgy (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Structural Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Plasma & Fusion (AREA)
  • Analytical Chemistry (AREA)
  • Physical Vapour Deposition (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)
  • Optics & Photonics (AREA)

Abstract

 スパッタリング法によって酸化物半導体薄膜とした場合に、低キャリア濃度、高キャリア移動度が得られる酸化物焼結体、及びそれを用いたスパッタリング用ターゲットを提供する。 この酸化物焼結体は、インジウム、ガリウム及びマグネシウムを酸化物として含有する。ガリウムの含有量がGa/(In+Ga)原子数比で0.20以上0.45以下でありマグネシウムの含有量がMg/(In+Ga+Mg)原子数比で0.0001以上0.05未満であって、1200℃以上1550℃以下で焼成することが好ましい。この酸化物焼結体をスパッタリング用ターゲットとして形成した非晶質の酸化物半導体薄膜は、キャリア濃度3.0×1018cm-3未満で、キャリア移動度10cm-1sec-1以上が得られる。

Description

酸化物焼結体、スパッタリング用ターゲット、及びそれを用いて得られる酸化物半導体薄膜
 本発明は、酸化物焼結体、ターゲット、及びそれを用いて得られる酸化物半導体薄膜に関し、より詳しくは、低いキャリア濃度と高いキャリア移動度を示す非晶質のインジウム、ガリウム及びマグネシウムを含有する酸化物半導体薄膜、その形成に好適なインジウム、ガリウム及びマグネシウムを含有するスパッタリング用ターゲット、それを得るのに好適なインジウム、ガリウム及びマグネシウムを含有する酸化物焼結体に関する。
 薄膜トランジスタ(Thin Film Transistor、TFT)は、電界効果トランジスタ(Field Effect Transistor、以下FET)の1種である。TFTは、基本構成として、ゲート端子、ソース端子、及び、ドレイン端子を備えた3端子素子であり、基板上に成膜した半導体薄膜を、電子またはホールが移動するチャネル層として用い、ゲート端子に電圧を印加して、チャネル層に流れる電流を制御し、ソース端子とドレイン端子間の電流をスイッチングする機能を有するアクティブ素子である。TFTは、現在、最も多く実用化されている電子デバイスであり、その代表的な用途として液晶駆動用素子がある。
 TFTとして、現在、最も広く使われているのは多結晶シリコン膜又は非晶質シリコン膜をチャネル層材料としたMetal-Insulator-Semiconductor-FET(MIS-FET)である。シリコンを用いたMIS-FETは、可視光に対して不透明であるため、透明回路を構成することができない。このため、MIS-FETを液晶ディスプレイの液晶駆動用スイッチング素子として応用した場合、該デバイスは、ディスプレイ画素の開口比が小さくなる。
 また、最近では、液晶の高精細化が求められるのに伴い、液晶駆動用スイッチング素子にも高速駆動が求められるようになってきている。高速駆動を実現するためには、電子またはホールの移動度が少なくとも非晶質シリコンのそれより高い半導体薄膜をチャネル層に用いる必要が出てきている。
 このような状況に対して、特許文献1では、気相成膜法で成膜され、In、Ga、Zn及びOの元素から構成される透明非晶質酸化物薄膜であって、該酸化物の組成は、結晶化したときの組成がInGaO(ZnO)(mは6未満の自然数)であり、不純物イオンを添加することなしに、キャリア移動度(キャリア電子移動度ともいう)が1cm-1sec-1超、かつキャリア濃度(キャリア電子濃度ともいう)が1016cm-3以下である半絶縁性であることを特徴とする透明半絶縁性非晶質酸化物薄膜、ならびに、この透明半絶縁性非晶質酸化物薄膜をチャネル層としたことを特徴とする薄膜トランジスタが提案されている。
 しかし、特許文献1で提案された、スパッタ法、パルスレーザー蒸着法のいずれかの気相成膜法で成膜され、In、Ga、Zn及びOの元素から構成される透明非晶質酸化物薄膜(a-IGZO膜)は、概ね1~10cm-1sec-1の範囲の電子キャリア移動度にとどまるため、TFTのチャネル層として形成した場合に移動度が不足することが指摘されていた。
 また、特許文献2には、In、Ga及びMgを含みInで表される化合物In(GaMg)Oで表される化合物、MgGaで表される化合物及びInMgOで表される化合物から選択される1種以上の化合物を含む焼結体を含むスパッタリングターゲットが提案されている。
 しかし、特許文献2のターゲットでは、アーキングの原因となる導電性の劣るGaMgO等の相を含んでいるため、異常放電を起こしてしまうという問題がある。
 そのため、酸化物導電膜用の酸化物焼成体やターゲットにおいてアーキングの原因となるこれらの相を含まないものは、開発が難しいというのが現状である。
特開2010-219538号公報 WO2013/005400号公報 WO2003/014409号公報 N.Ueda,他6名、「New oxide phase with wide band gap and high electroconductivity,MgIn2O4」、Appl.Phys.Lett.61(16)、19、October、1992、p.1954-1955 M.Orita,他3名、「New Transparent Conductive Oxides with YbFe2O4 Structure」、JJAP、34、L1550 A.Takagi,K.Nomura,H.Ohta,H.Yanagi,T. Kamiya,M.Hirano,and H.Hosono,Thin Solid Films 486,38(2005)
 本発明の目的は、非晶質の酸化物半導体薄膜のキャリア濃度低減を可能にするスパッタリング用ターゲット、それを得るのに最適な酸化物焼結体、ならびにそれを用いて得られる低いキャリア濃度と高いキャリア移動度を示す酸化物半導体薄膜を提供することにある。
 本発明者等は、特に、インジウムとガリウムのGa/(In+Ga)比を0.20以上0.45以下としてガリウムを酸化物として含有する酸化物焼結体に、少量のマグネシウム、具体的にはMg/(In+Ga+Mg)の比を0.0001以上0.05未満で含有させることで、焼結された酸化物焼結体が実質的にビックスバイト型構造のIn相と、In相以外の生成相としてβ-Ga型構造のGaInO相、あるいはβ-Ga型構造のGaInO相と(Ga,In)相によって構成され、当該酸化物焼結体を用いて作製された酸化物半導体薄膜が、キャリア移動度10cm-1sec-1以上であることを新たに見出した。
 すなわち、第一の発明は、インジウム、ガリウム及びマグネシウムを酸化物として含有し、前記ガリウムの含有量がGa/(In+Ga)原子数比で0.20以上0.45以下であり、前記マグネシウムの含有量がMg/(In+Ga+Mg)原子数比で0.0001以上0.05未満であり、ビックスバイト型構造のIn相と、In相以外の生成相としてβ-Ga型構造のGaInO相、あるいはβ-Ga型構造のGaInO相と(Ga,In)相によって構成され、In(GaMg)O相、MgGa相、InMgO相、Ga相を実質的に含まないことを特徴とする酸化物焼結体である。
 第二の発明は、前記マグネシウムの含有量がMg/(In+Ga+Mg)原子数比で0.01以上0.03以下である第一の発明に記載の酸化物焼結体である。
 第三の発明は、前記ガリウムの含有量がGa/(In+Ga)原子数比で0.20以上0.30以下である第一又は第二の発明に記載の酸化物焼結体である。
 第四の発明は、マグネシウム以外の正二価元素、及び、インジウムとガリウム以外の正三価から正六価の元素、を実質的に含有しない第一から第三のいずれかの発明に記載の酸化物焼結体である。
 第五の発明は、下記の式1で定義されるβ-Ga型構造のGaInO相のX線回折ピーク強度比が2%以上80%以下の範囲である第一から第四のいずれかの発明に記載の酸化物焼結体である。
  100×I[GaInO相(111)]/{I[In相(400)]+I[GaInO相(111)]} [%]・・・・式1
 第六の発明は、第一から第五のいずれかの発明に記載の酸化物焼結体を加工して得られるスパッタリング用ターゲットである。
 第七の発明は、第六の発明に記載のスパッタリング用ターゲットを用いてスパッタリング法によって基板上に形成された後、熱処理された非晶質の酸化物半導体薄膜である。
 第八の発明は、キャリア移動度が10cm-1sec-1以上である第七の発明に記載の酸化物半導体薄膜である。
 第九の発明は、キャリア濃度が3.0×1018cm-3未満である第七又は第八の発明に記載の酸化物半導体薄膜である。
 本発明のインジウムおよびガリウムを酸化物として含有し、かつマグネシウムをMg/(In+Ga+Mg)の原子数比で0.0001以上0.05未満含有する酸化物焼結体は、例えばスパッタリング用ターゲットとして用いられた場合に、スパッタリング成膜によって形成され、その後熱処理によって得られた、本発明の非晶質の酸化物半導体薄膜を得ることができる。前記の非晶質の酸化物半導体薄膜は、所定量のガリウムとマグネシウムが含む効果により、微結晶などが生成せず、十分な非晶質性を有しているため、ウエットエッチングによって所望の形状にパターニング加工することができる。また、同効果により、本発明の非晶質の酸化物半導体薄膜は、低いキャリア濃度と高いキャリア移動度を示す。よって、本発明の非晶質の酸化物半導体薄膜は、TFTのチャネル層として適用することができる。したがって、本発明の酸化物焼結体、ターゲット、及びそれを用いて得られる酸化物半導体薄膜は工業的に極めて有用である。
 以下に、本発明の酸化物焼結体、スパッタリング用ターゲット、及びそれを用いて得られる酸化物薄膜について詳細に説明する。
 本発明の酸化物焼結体は、インジウム、ガリウム及びマグネシウムを酸化物として含有し、かつガリウムがGa/(In+Ga)原子数比で0.20以上、0.45以下、マグネシウムがMg/(In+Ga+Mg)原子数比で0.0001以上0.05未満を含有する酸化物焼結体であることを特徴とする。
 ガリウムの含有量は、Ga/(In+Ga)原子数比で0.20以上0.45以下であり、0.20以上0.30以下であることがより好ましい。ガリウムは酸素との結合力が強く、本発明の非晶質の酸化物半導体薄膜の酸素欠損量を低減させる効果がある。ガリウムの含有量がGa/(In+Ga)原子数比で0.20未満の場合、この効果が十分得られない。一方、0.45を超える場合、酸化物半導体薄膜として十分高いキャリア移動度を得ることができない。
 本発明の酸化物焼結体は、上記のとおり規定される組成範囲のインジウムとガリウムに加え、マグネシウムを含有する。マグネシウム濃度はMg/(In+Ga+Mg)の原子数比で0.0001以上0.05未満であり、0.01以上0.03以下であることが好ましい。
 本発明の酸化物焼結体は、上記範囲内のマグネシウムを添加することで、主に酸素欠損によって生成した電子が中和される作用によってキャリア濃度が抑制され、本発明の非晶質の酸化物半導体薄膜をTFTに適用した場合には、TFTのon/offを高めることが可能になるものである。
 なお、本発明の酸化物焼結体には、マグネシウム以外の正二価元素、及び、インジウムとガリウム以外の正三価から正六価の元素、である元素Mを実質的に含有しないことが好ましい。ここで、実質的に含有しないとは、それぞれ単独のMが、M/(In+Ga+M)の原子数比で500ppm以下であり、好ましくは200ppm以下、より好ましくは100ppm以下である。具体的なMの例示としては、正二価元素としては、Cu、Ni、Co、Zn、Ca、Sr、Pbが例示でき、正三価元素としては、Al、Y、Sc、B、ランタノイドが例示でき、正四価元素としては、Sn、Ge、Ti、Si、Zr、Hf、C、Ceが例示でき、正五価元素としては、Nb、Taが例示でき、正六価元素としては、W、Moが例示できる。
 1.酸化物焼結体組織
 本発明の酸化物焼結体は、ビックスバイト型構造のIn相と、In相以外の生成相としてβ-Ga型構造のGaInO相、あるいはβ-Ga型構造のGaInO相と(Ga,In)相によって構成される。酸化物焼結体がIn相のみによって構成されると、Mgの含有に関係なく、例えば特許文献3(WO2003/014409号公報)の比較例11と同様にノジュールが発生する。一方、In(GaMg)O相、MgGa相およびInMgO相は、いずれも高抵抗相であるため、アーキングやノジュールの発生原因となる。InMgO相は、比抵抗が10-2Ω・cm程度(非特許文献1)でIn相やGaInO相と比較して1~2桁程度電気抵抗が高いため、スパッタリング成膜で掘れ残りやすくノジュールが発生しやすい。In(GaMg)O相は、比抵抗が10Ω・cm程度とより高く(非特許文献2)、ノジュール発生の原因となる。MgGa相はInを含まないためさらに比抵抗が高く、アーキング発生の原因となる。また、これらの相が生成した酸化物焼結体を用いてスパッタリング成膜された酸化物半導体薄膜は、キャリア移動度が低くなる傾向にある。
 ガリウムおよびマグネシウムはIn相に固溶する。また、ガリウムはGaInO相や(Ga,In)相を構成する。In相に固溶する場合、ガリウムとマグネシウムは正三価イオンであるインジウムの格子位置に置換する。焼結が進行しないなどの理由によって、ガリウムがIn相に固溶せずに、β-Ga型構造のGa相を形成することは好ましくない。Ga相は導電性に乏しいため、異常放電の原因となる。
 本発明の酸化物焼結体は、ビックスバイト型構造のIn相以外にβ-Ga型構造のGaInO相のみ、あるいはβ-Ga型構造のGaInO相と(Ga,In)相を、下記の式1で定義されるX線回折ピーク強度比が2%以上80%以下の範囲において含むことが好ましい。
  100×I[GaInO相(111)]/{I[In相(400)]+I[GaInO相(111)]} [%]・・・・式1
 (式中、I[In相(400)]は、ビックスバイト型構造のIn相の(400)ピーク強度であり、I[GaInO相(111)]は、β-Ga型構造の複合酸化物β-GaInO相(111)ピーク強度を示す。)
 2.酸化物焼結体の製造方法
 本発明の酸化物焼結体は、酸化インジウム粉末と酸化ガリウム粉末からなる酸化物粉末、ならびに酸化マグネシウム粉末を原料粉末とする。
 本発明の酸化物焼結体の製造工程では、これらの原料粉末が混合された後、成形され、成形物を常圧焼結法によって焼結される。本発明の酸化物焼結体組織の生成相は、酸化物焼結体の各工程における製造条件、例えば原料粉末の粒径、混合条件および焼結条件に強く依存する。
 本発明の酸化物焼結体の組織が、ビックスバイト型構造のIn相と、In相以外の生成相としてβ-Ga型構造のGaInO相、あるいはβ-Ga型構造のGaInO相と(Ga,In)相によって所望の比率で構成されることが好ましく、そのためには、上記の各原料粉末の平均粒径を3μm以下とすることが好ましく、1.5μm以下とすることがより好ましい。前記の通り、In相以外にβ-Ga型構造のGaInO相、あるいはβ-Ga型構造のGaInO相と(Ga,In)相が含まれるため、これらの相の過剰な生成を抑制するためには、各原料粉末の平均粒径を1.5μm以下とすることが好ましい。
 酸化インジウム粉末は、ITO(インジウム-スズ酸化物)の原料であり、焼結性に優れた微細な酸化インジウム粉末の開発は、ITOの改良とともに進められてきた。酸化インジウム粉末は、ITO用原料として大量に継続して使用されているため、最近では平均粒径0.8μm以下の原料粉末を入手することが可能である。
 ところが、酸化ガリウム粉末や酸化マグネシウム粉末の場合、酸化インジウム粉末に比べて依然使用量が少ないため、平均粒径1.5μm以下の原料粉末を入手することは困難である。したがって、粗大な酸化ガリウム粉末しか入手できない場合、平均粒径1.5μm以下まで粉砕することが必要である。
 本発明の酸化物焼結体の焼結工程では、常圧焼結法の適用が好ましい。常圧焼結法は、簡便かつ工業的に有利な方法であって、低コストの観点からも好ましい手段である。
 常圧焼結法を用いる場合、前記の通り、まず成形体を作製する。原料粉末を樹脂製ポットに入れ、バインダー(例えば、PVA)などともに湿式ボールミル等で混合する。本発明の酸化物焼結体の作製においては、In相以外にβ-Ga型構造のGaInO相、あるいはβ-Ga型構造のGaInO相と(Ga,In)相の過剰な生成を抑制する、あるいはβ-Ga型構造のGa相を生成させないために、上記ボールミル混合を18時間以上行うことが好ましい。この際、混合用ボールとしては、硬質ZrOボールを用いればよい。混合後、スラリーを取り出し、濾過、乾燥、造粒を行う。その後、得られた造粒物を、冷間静水圧プレスで9.8MPa(0.1ton/cm)~294MPa(3ton/cm)程度の圧力をかけて成形し、成形体とする。
 常圧焼結法の焼結工程では、酸素の存在する雰囲気とすることが好ましく、雰囲気中の酸素体積分率が20%を超えることがより好ましい。特に、酸素体積分率が20%を超えることで、酸化物焼結体がより一層高密度化する。雰囲気中の過剰な酸素によって、焼結初期には成形体表面の焼結が先に進行する。続いて成形体内部の還元状態での焼結が進行し、最終的に高密度の酸化物焼結体が得られる。
 酸素が存在しない雰囲気では、成形体表面の焼結が先行しないため、結果として焼結体の高密度化が進まない。酸素が存在しなければ、特に900~1000℃程度において酸化インジウムが分解して金属インジウムが生成するようになるため、目的とする酸化物焼結体を得ることは困難である。
 常圧焼結の温度範囲は、1200℃以上1550℃以下にするのが好ましく、より好ましくは焼結炉内の大気に酸素ガスを導入する雰囲気において1350℃以上1450℃以下で焼結する。焼結時間は10~30時間であることが好ましく、より好ましくは15~25時間である。
 焼結温度を上記範囲とし、前記の平均粒径1.5μm以下に調整した酸化インジウム粉末と酸化ガリウム粉末からなる酸化物粉末、ならびに酸化マグネシウム粉末を原料粉末として用いることで、ビックスバイト型構造のIn相と、In相以外の生成相としてβ-Ga型構造のGaInO相、あるいはβ-Ga型構造のGaInO相と(Ga,In)相によって構成される酸化物焼結体が得られる。
 焼結温度1200℃未満の場合には焼結反応が十分進行せず、酸化物焼結体の密度が6.4g/cm未満になるという不都合が生じる。一方、焼結温度が1550℃を超えると、(Ga,In)相の形成が著しくなる。(Ga,In)相は、GaInO相より電気抵抗が高く、そのため成膜速度低下の原因となる。焼結温度1550℃以下、すなわち少量の(Ga,In)相であれば問題にはならない。このような観点から、焼結温度を1200℃以上1550℃以下にすることが好ましく、1350℃以上1450℃以下とすることがより好ましい。
 焼結温度までの昇温速度は、焼結体の割れを防ぎ、脱バインダーを進行させるためには、昇温速度を0.2~5℃/分の範囲とすることが好ましい。この範囲であれば、必要に応じて、異なる昇温速度を組み合わせて、焼結温度まで昇温してもよい。特にIn相へのマグネシウムの固溶を促進させるために、1100℃以下の温度で一定時間保持することは有効である。昇温過程において、脱バインダーや焼結を進行させる目的で、特定温度で一定時間保持してもよい。保持時間は、特に制限はないが、1時間以上10時間以下が好ましい。焼結後、冷却する際は酸素導入を止め、1000℃までを0.2~5℃/分、特に、0.2℃/分以上1℃/分未満の範囲の降温速度で降温することが好ましい。
 3.ターゲット
 本発明のターゲットは、上記酸化物焼結体を所定の大きさに切断、表面を研磨加工し、バッキングプレートに接着して得ることができる。ターゲット形状は、平板形が好ましいが、円筒形でもよい。円筒形ターゲットを用いる場合には、ターゲット回転によるパーティクル発生を抑制することが好ましい。
 スパッタリング用ターゲットとして用いるため、本発明の酸化物焼結体の密度は6.4g/cm以上であることが好ましい。密度が6.4g/cm未満である場合、量産使用時のノジュール発生の原因となるため好ましくない。
 4.酸化物半導体薄膜とその成膜方法
 本発明の非晶質の酸化物半導体薄膜は、前記のスパッタリング用ターゲットを用いて、スパッタリング法で基板上に一旦非晶質の薄膜を形成し、次いで熱処理を施すことによって得られる。
 前記のスパッタリング用ターゲットは酸化物焼結体より得られるが、その酸化物焼結体組織、すなわちビックスバイト型構造のIn相及びβ-Ga型構造のGaInO相によって基本構成されている組織が重要である。本発明に係る非晶質の酸化物半導体薄膜を得るためには、非晶質の酸化物薄膜の結晶化温度が高いことが重要であるが、これには酸化物焼結体組織が関係する。すなわち、本発明に用いられる酸化物焼結体のように、ビックスバイト型構造のIn相だけでなく、β-Ga型構造のGaInO相も含む場合には、これから得られる成膜後の酸化物薄膜は高い結晶化温度、すなわち好ましくは250℃以上、より好ましくは300℃以上、さらに好ましくは350℃以上の結晶化温度を示し、安定な非晶質となる。これに対して、酸化物焼結体がビックスバイト型構造のIn相のみによって構成される場合、成膜後の酸化物薄膜は、その結晶化温度が190~230℃程度と低く、安定な非晶質ではなくなる。このため、250℃程度で熱処理すると結晶化してしまう場合がある。なお、この場合には、成膜後にすでに微結晶が生成して非晶質が維持されず、ウエットエッチングによるパターニング加工が困難になる。これについては、一般的なITO(スズ添加酸化インジウム)透明導電膜においてよく知られている。
 非晶質の薄膜形成工程では、一般的なスパッタリング法が用いられるが、特に、直流(DC)スパッタリング法であれば、成膜時の熱影響が少なく、高速成膜が可能であるため工業的に有利である。本発明の酸化物半導体薄膜を直流スパッタリング法で形成するには、スパッタリングガスとして不活性ガスと酸素、特にアルゴンと酸素からなる混合ガスを用いることが好ましい。また、スパッタリング装置のチャンバー内を0.1~1Pa、特に0.2~0.8Paの圧力として、スパッタリングすることが好ましい。
 基板は、ガラス基板が代表的であり、無アルカリガラスが好ましいが、樹脂板や樹脂フィルムのうち上記プロセスの温度に耐えうるものであれば使用できる。
 前記の非晶質の薄膜形成工程は、例えば、2×10-4Pa以下まで真空排気後、アルゴンと酸素からなる混合ガスを導入し、ガス圧を0.2~0.5Paとし、ターゲットの面積に対する直流電力、すなわち直流電力密度が1~7W/cm程度の範囲となるよう直流電力を印加して直流プラズマを発生させ、プリスパッタリングを実施することができる。このプリスパッタリングを5~30分間行った後、必要により基板位置を修正したうえでスパッタリング成膜することが好ましい。スパッタリング成膜では、成膜速度を向上させるために、許容される範囲で投入する直流電力を高めることが行われる。
 本発明の非晶質の酸化物半導体薄膜は、前記の非晶質の薄膜形成後、これを熱処理することによって得られる。熱処理条件は、酸化性雰囲気において、結晶化温度未満の温度である。酸化性雰囲気としては、酸素、オゾン、水蒸気、あるいは窒素酸化物などを含む雰囲気が好ましい。熱処理温度は、250~600℃が好ましく、300~550℃がより好ましく、350~500℃がさらに好ましい。熱処理時間は、熱処理温度に保持される時間が1~120分間であることが好ましく、5~60分間がより好ましい。熱処理までの方法の1つとしては、例えば室温近傍など低温で非晶質膜を形成し、その後、結晶化温度未満の前記温度範囲で熱処理して、非晶質を維持したまま酸化物半導体薄膜を得る。もう1つの方法としては、基板を酸化物薄膜の結晶化温度未満の温度、好ましくは100~300℃に加熱して、非晶質の酸化物半導体薄膜を成膜する。これに続いて、さらに熱処理してもよい。
 前記の熱処理前の薄膜および熱処理後の非晶質の酸化物半導体薄膜のインジウム、ガリウム、およびマグネシウムの組成は、本発明の酸化物焼結体の組成とほぼ同じである。すなわち、インジウムおよびガリウムを酸化物として含有し、かつマグネシウムを含有する非晶質の酸化物焼半導体薄膜である。ガリウムの含有量がGa/(In+Ga)原子数比で0.20以上0.45以下であり、前記マグネシウムの含有量がMg/(In+Ga+Mg)原子数比で0.0001以上0.05未満である。ガリウムの含有量はGa/(In+Ga)原子数比で0.20以上0.30以下であることがより好ましく、さらに好ましくは0.25以上0.30以下である。また、前記マグネシウムの含有量はMg/(In+Ga+Mg)原子数比で0.01以上0.03以下であることがより好ましい。
 本発明の非晶質の酸化物半導体薄膜は、前記のような組成及び組織が制御された酸化物焼結体をスパッタリングターゲットなどに用いて成膜し、上記の適当な条件で熱処理することで、キャリア濃度が3×1018cm-3以下に低下し、より好ましくはキャリア濃度1×1018cm-3以下、特に好ましくは8×1017cm-3以下が得られる。非特許文献3に記載のインジウム、ガリウム、及び亜鉛からなる非晶質の酸化物半導体薄膜に代表されるように、インジウムを多く含む非晶質の酸化物半導体薄膜は、キャリア濃度が4×1018cm-3以上で縮退状態となるため、これをチャネル層に適用したTFTはノーマリーオフを示さなくなる。したがって、本発明に係る非晶質の酸化物半導体薄膜は、上記のTFTがノーマリーオフを示す範囲にキャリア濃度が制御されるため都合がよい。また、キャリア移動度は10cm-1sec-1以上を示し、より好ましくはキャリア移動度15cm-1sec-1以上を示す。
 本発明の非晶質の酸化物半導体薄膜は、ウエットエッチングあるいはドライエッチングによって、TFTなどの用途で必要な微細加工を施される。通常、結晶化温度未満の温度、例えば室温から300℃までの範囲から適当な基板温度を選択して一旦非晶質の酸化物薄膜を形成した後、ウエットエッチングによる微細加工を施すことができる。エッチャントとしては、弱酸であれば概ね使用できるが、蓚酸あるいは塩酸を主成分とする弱酸が好ましい。例えば、関東化学製ITO-06Nなどの市販品が使用できる。TFTの構成によっては、ドライエッチングを選択してもよい。
 本発明の非晶質の酸化物半導体薄膜の膜厚は限定されるものではないが、10~500nm、好ましくは20~300nm、さらに好ましくは30~100nmである。10nm未満であると高いキャリア移動度が実現しない。一方、500nmを超えると生産性の問題が生じてしまうので好ましくない。
 また、本発明の非晶質の酸化物半導体薄膜は、可視域(400~800nm)での平均透過率が80%以上であることが好ましく、85%以上がより好ましく、さらに好ましくは90%以上である。透明TFTへ適用する場合には、平均透過率が80%未満であると、透明表示デバイスとして液晶素子や有機EL素子などの光の取り出し効率が低下する。
 以下に、本発明の実施例を用いて、さらに詳細に説明するが、本発明は、これら実施例によって限定されるものではない。
 <酸化物焼結体の評価>
 得られた酸化物焼結体の金属元素の組成をICP発光分光法によって調べた。得られた酸化物焼結体の端材を用いて、X線回折装置(フィリップス製)を用いて粉末法による生成相の同定を行った。
 <酸化物薄膜の基本特性評価>
 得られた酸化物薄膜の組成をICP発光分光法によって調べた。酸化物薄膜の膜厚は表面粗さ計(テンコール社製)で測定した。成膜速度は、膜厚と成膜時間から算出した。酸化物薄膜のキャリア濃度およびキャリア移動度は、ホール効果測定装置(東陽テクニカ製)によって求めた。膜の生成相はX線回折測定によって同定した。
(焼結体の作製および評価)
 酸化インジウム粉末と酸化ガリウム粉末、ならびに酸化マグネシウム粉末を平均粒径1.5μm以下となるよう調整して原料粉末とした。これらの原料粉末を、表1及び表2の実施例及び比較例のGa/(In+Ga)原子数比、Mg/(In+Ga+Mg)原子数比の通りになるように調合し、水とともに樹脂製ポットに入れ、湿式ボールミルで混合した。この際、硬質ZrOボールを用い、混合時間を18時間とした。混合後、スラリーを取り出し、濾過、乾燥、造粒した。造粒物を、冷間静水圧プレスで3ton/cmの圧力をかけて成形した。
 次に、成形体を次のように焼結した。炉内容積0.1m当たり5リットル/分の割合で、焼結炉内の大気に酸素を導入する雰囲気で、1000~1550℃の焼結温度で20時間焼結した。この際、1℃/分で昇温し、焼結後の冷却の際は酸素導入を止め、1000℃までを10℃/分で降温した。
 得られた酸化物焼結体の組成分析をICP発光分光法にて行ったところ、金属元素について、原料粉末の配合時の仕込み組成とほぼ同じであることがいずれの実施例でも確認された。
 次に、X線回折測定による酸化物焼結体の相同定を行ったところ、表1のように、ビックスバイト型構造のIn相による回折ピークのみ、あるいはビックスバイト型構造のIn相、β-Ga型構造のGaInO相、および(Ga,In)相の回折ピークのみが確認された。
 なお、β-Ga型構造のGaInO相を含む場合には、下記の式1で定義されるβ-Ga型構造のGaInO相のX線回折ピーク強度比を表1に示した。
  100×I[GaInO相(111)]/{I[In相(400)]+I[GaInO相(111)]} [%]・・・・式1
Figure JPOXMLDOC01-appb-T000001
 酸化物焼結体を、直径152mm、厚み5mmの大きさに加工し、スパッタリング面をカップ砥石で最大高さRzが3.0μm以下となるように研磨した。加工した酸化物焼結体を、無酸素銅製のバッキングプレートに金属インジウムを用いてボンディングして、スパッタリング用ターゲットとした。
(スパッタリング成膜評価)
 実施例及び比較例のスパッタリング用ターゲットならびに無アルカリのガラス基板(コーニング製EagleXG)を用いて、基板加熱せずに室温で直流スパッタリングによる成膜を行った。アーキング抑制機能のない直流電源を装備した直流マグネトロンスパッタリング装置(トッキ製)のカソードに、上記スパッタリングターゲットを取り付けた。このときターゲット-基板(ホルダー)間距離を60mmに固定した。1×10-4Pa以下まで真空排気後、アルゴンと酸素の混合ガスを各ターゲットのガリウム量に応じて適当な酸素の比率になるように導入し、ガス圧を0.6Paに調整した。直流電力300W(1.64W/cm)を印加して直流プラズマを発生させた。10分間のプリスパッタリング後、スパッタリングターゲットの直上、すなわち静止対向位置に基板を配置して、膜厚50nmの酸化物薄膜を形成した。得られた酸化物薄膜の組成は、ターゲットとほぼ同じであることが確認された。また、X線回折測定の結果、非晶質であることが確認された。得られた非晶質の酸化物薄膜には、RTA(Rapid Thermal Annealing)装置を用いて、大気中、250~400℃において30分間以内の熱処理を施した。熱処理後の酸化物薄膜は、X線回折測定の結果、非晶質であることが確認され、In(111)を主ピークとしていた。得られた非晶質の酸化物半導体薄膜のホール効果測定を行い、キャリア濃度およびキャリア移動度を求めた。得られた評価結果を、表2にまとめて記載した。
Figure JPOXMLDOC01-appb-T000002
(ノジュール発生評価)
実施例2、10及び比較例2のスパッタリング用ターゲットについて、量産を模擬したスパッタリング成膜によるノジュール発生の評価を実施した。スパッタリング装置は、アーキング抑制機能のない直流電源を装備したロードロック式通過型マグネトロンスパッタリング装置(アルバック製)を用いた。ターゲットは、縦5インチ、横15インチの角型のターゲットを用いた。スパッタリング成膜評価スパッタ室を7×10-5Pa以下まで真空排気後、アルゴンと酸素の混合ガスを各ターゲットのガリウム量に応じて適当な酸素の比率になるように導入し、ガス圧を0.6Paに調整した。このような条件のスパッタリングガスを選択した理由は、スパッタ室の真空度が1×10-4Paを超えてチャンバー内の水分圧が高い、あるいは水素ガスが添加される場合には、正当な評価ができなくなるためである。ITOなどでよく知られるように膜中に水分や水素ガス由来のHが取り込まれると膜の結晶化温度が高くなり、ターゲット非エロージョン部に付着する膜が非晶質化し易くなる。その結果、膜応力が低下するため非エロージョン部から剥がれにくくなり、ノジュールが発生し難くなる。直流電力は、一般に量産で採用される直流電力密度は3~6W/cm程度であることを考慮し、2500W(直流電力密度5.17W/cm)とした。
ノジュール発生評価は、上記条件にて、50kWhの連続スパッタリング放電後に、ターゲット表面を観察し、ノジュール発生の有無を評価した。
「評価」
 表1に示すように、実施例1~11のガリウム含有量がGa/(In+Ga)原子数比で0.20以上0.45以下であり、マグネシウムの含有量がMg/(In+Ga+Mg)原子量比で0.0001以上0.05未満の場合には、ビックスバイト型構造のIn相と、In相以外の生成相としてβ-Ga型構造のGaInO相、あるいはβ-Ga型構造のGaInO相と(Ga,In)相によって構成されていた。
 これに対して、比較例2~4の酸化物焼結体では、マグネシウムの含有量がMg/(In+Ga+Mg)原子量比で0.05以上であるため、ビックスバイト型構造のIn相、β-Ga型構造のGaInO相、及び(Ga,In)相以外の生成相として、ノジュールやアーキング発生原因となるIn(GaMg)O相、MgGa相、あるいはGa相を含んでしまっており、本発明の目的とする酸化物焼結体が得られていない。なお、比較例3、4の焼結体にはMgGa相が含まれていたため、実施例1~11や他の比較例1、2と比較して、アーキング発生頻度が高かった。また、比較例5では、焼結体にGa相が多量に発生し、成膜ができなかった。
 実施例2、10及び比較例2のノジュール発生評価では、本発明の酸化物焼結体である実施例2、10のターゲットではノジュールの発生は認められなかった。一方、比較例2のターゲットでは、多数のノジュール発生が認められた。比較例2では、焼結体密度が低いこと、ならびに電気抵抗の高くスパッタリングで掘れ残りやすいIn(GaMg)O相が含まれていたことが原因として考えられる。
 また、表2には、インジウム、ガリウム及びマグネシウムを酸化物として含有する非晶質の酸化物半導体薄膜であって、ガリウム含有量がGa/(In+Ga)原子数比で0.20以上0.45以下、マグネシウム含有量がMg/(In+Ga+Mg)原子量比で0.0001以上0.05未満に制御された酸化物半導体薄膜の特性を示した。
 実施例の酸化物半導体薄膜は、キャリア濃度が3.0×1018cm-3未満であり、キャリア移動度が10cm-1sec-1以上であることがわかる。
 なかでも、ガリウム含有量がGa/(In+Ga)原子量比0.20以上0.30以下で、マグネシウム含有量がMg/(In+Ga+Mg)原子量比で0.01以上0.03以下の実施例2~6及び8の酸化物半導体薄膜は、キャリア濃度1.0×1018cm-3以下、キャリア移動度20cm-1sec-1以上の優れた特性を示す。
 これに対して、比較例3の酸化物半導体薄膜では、マグネシウムの含有量がMg/(In+Ga+Mg)原子量比で0.05以上であり、キャリア移動度が10cm-1sec-1を下回っているため、本発明の目的とする酸化物半導体薄膜が得られていない。

Claims (9)

  1.  インジウム、ガリウム及びマグネシウムを酸化物として含有し、
     前記ガリウムの含有量がGa/(In+Ga)原子数比で0.20以上0.45以下であり、
     前記マグネシウムの含有量がMg/(In+Ga+Mg)原子数比で0.0001以上0.05未満であり、
     ビックスバイト型構造のIn相と、In相以外の生成相としてβ-Ga型構造のGaInO相、あるいはβ-Ga型構造のGaInO相と(Ga,In)相によって構成され、In(GaMg)O相、MgGa相、InMgO相、Ga相を実質的に含まないことを特徴とする酸化物焼結体。
  2.  前記マグネシウムの含有量がMg/(In+Ga+Mg)原子数比で0.01以上0.03以下である請求項1に記載の酸化物焼結体。
  3.  前記ガリウムの含有量がGa/(In+Ga)原子数比で0.20以上0.30以下である請求項1又は2に記載の酸化物焼結体。
  4.  マグネシウム以外の正二価元素、及び、インジウムとガリウム以外の正三価から正六価の元素、を実質的に含有しない請求項1から3のいずれかに記載の酸化物焼結体。
  5.  下記の式1で定義されるβ-Ga型構造のGaInO相のX線回折ピーク強度比が2%以上80%以下の範囲である請求項1から4のいずれかに記載の酸化物焼結体。
      100×I[GaInO相(111)]/{I[In相(400)]+I[GaInO相(111)]} [%]・・・・式1
  6.  請求項1から5のいずれかに記載の酸化物焼結体を加工して得られるスパッタリング用ターゲット。
  7.  請求項6に記載のスパッタリング用ターゲットを用いてスパッタリング法によって基板上に形成された後、熱処理された非晶質の酸化物半導体薄膜。
  8.  キャリア移動度が10cm-1sec-1以上である請求項7に記載の酸化物半導体薄膜。
  9.  キャリア濃度が3.0×1018cm-3未満である請求項7又は8に記載の酸化物半導体薄膜。
PCT/JP2015/064527 2014-05-23 2015-05-20 酸化物焼結体、スパッタリング用ターゲット、及びそれを用いて得られる酸化物半導体薄膜 WO2015178429A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201580013163.6A CN106103380A (zh) 2014-05-23 2015-05-20 氧化物烧结体、溅射用靶及使用该靶得到的氧化物半导体薄膜
US15/306,915 US9941415B2 (en) 2014-05-23 2015-05-20 Oxide sintered body, sputtering target, and oxide semiconductor thin film obtained using sputtering target
JP2016521135A JP6414210B2 (ja) 2014-05-23 2015-05-20 酸化物焼結体、スパッタリング用ターゲット、及びそれを用いて得られる酸化物半導体薄膜
KR1020167025017A KR20170009819A (ko) 2014-05-23 2015-05-20 산화물 소결체, 스퍼터링용 타겟 및 그것을 이용하여 얻어지는 산화물 반도체 박막

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014107148 2014-05-23
JP2014-107148 2014-05-23

Publications (1)

Publication Number Publication Date
WO2015178429A1 true WO2015178429A1 (ja) 2015-11-26

Family

ID=54554095

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2015/064528 WO2015178430A1 (ja) 2014-05-23 2015-05-20 酸化物焼結体、スパッタリング用ターゲット、及びそれを用いて得られる酸化物半導体薄膜
PCT/JP2015/064527 WO2015178429A1 (ja) 2014-05-23 2015-05-20 酸化物焼結体、スパッタリング用ターゲット、及びそれを用いて得られる酸化物半導体薄膜

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/064528 WO2015178430A1 (ja) 2014-05-23 2015-05-20 酸化物焼結体、スパッタリング用ターゲット、及びそれを用いて得られる酸化物半導体薄膜

Country Status (6)

Country Link
US (2) US9941415B2 (ja)
JP (2) JP6376215B2 (ja)
KR (2) KR20170008724A (ja)
CN (2) CN106103380A (ja)
TW (2) TWI613151B (ja)
WO (2) WO2015178430A1 (ja)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6376215B2 (ja) * 2014-05-23 2018-08-22 住友金属鉱山株式会社 酸化物焼結体、スパッタリング用ターゲット、及びそれを用いて得られる酸化物半導体薄膜
JP2017154910A (ja) * 2016-02-29 2017-09-07 住友金属鉱山株式会社 酸化物焼結体及びスパッタリング用ターゲット
GB201705755D0 (en) 2017-04-10 2017-05-24 Norwegian Univ Of Science And Tech (Ntnu) Nanostructure
JP6834062B2 (ja) * 2018-08-01 2021-02-24 出光興産株式会社 結晶構造化合物、酸化物焼結体、及びスパッタリングターゲット
KR20220094735A (ko) * 2020-12-29 2022-07-06 에이디알씨 주식회사 결정성 산화물 반도체 박막 및 그 형성 방법, 박막 트랜지스터 및 그 제조 방법, 표시 패널 및 전자 장치
CN114361276A (zh) * 2021-12-28 2022-04-15 仲恺农业工程学院 非晶MgGaO薄膜的光伏探测器及其制备方法和应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008114588A1 (ja) * 2007-03-20 2008-09-25 Idemitsu Kosan Co., Ltd. スパッタリングターゲット、酸化物半導体膜及び半導体デバイス
WO2009008297A1 (ja) * 2007-07-06 2009-01-15 Sumitomo Metal Mining Co., Ltd. 酸化物焼結体とその製造方法、ターゲット、及びそれを用いて得られる透明導電膜ならびに透明導電性基材
WO2010032422A1 (ja) * 2008-09-19 2010-03-25 出光興産株式会社 酸化物焼結体及びスパッタリングターゲット
WO2013005400A1 (ja) * 2011-07-06 2013-01-10 出光興産株式会社 スパッタリングターゲット

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5407602A (en) * 1993-10-27 1995-04-18 At&T Corp. Transparent conductors comprising gallium-indium-oxide
EP2280092A1 (en) 2001-08-02 2011-02-02 Idemitsu Kosan Co., Ltd. Sputtering target, transparent conductive film, and their manufacturing method
EP1737044B1 (en) 2004-03-12 2014-12-10 Japan Science and Technology Agency Amorphous oxide and thin film transistor
JP4816116B2 (ja) 2006-02-08 2011-11-16 住友金属鉱山株式会社 スパッタリングターゲット用酸化物焼結体および、それを用いて得られる酸化物膜、それを含む透明基材
JP4231967B2 (ja) * 2006-10-06 2009-03-04 住友金属鉱山株式会社 酸化物焼結体、その製造方法、透明導電膜、およびそれを用いて得られる太陽電池
KR20110027805A (ko) * 2008-06-27 2011-03-16 이데미쓰 고산 가부시키가이샤 InGaO3(ZnO) 결정상을 포함하는 산화물 반도체용 스퍼터링 타겟 및 그의 제조 방법
EP2544237B1 (en) 2009-09-16 2017-05-03 Semiconductor Energy Laboratory Co., Ltd. Transistor and display device
JP5327282B2 (ja) * 2011-06-24 2013-10-30 住友金属鉱山株式会社 透明導電膜製造用焼結体ターゲット
JP6376215B2 (ja) * 2014-05-23 2018-08-22 住友金属鉱山株式会社 酸化物焼結体、スパッタリング用ターゲット、及びそれを用いて得られる酸化物半導体薄膜

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008114588A1 (ja) * 2007-03-20 2008-09-25 Idemitsu Kosan Co., Ltd. スパッタリングターゲット、酸化物半導体膜及び半導体デバイス
WO2009008297A1 (ja) * 2007-07-06 2009-01-15 Sumitomo Metal Mining Co., Ltd. 酸化物焼結体とその製造方法、ターゲット、及びそれを用いて得られる透明導電膜ならびに透明導電性基材
WO2010032422A1 (ja) * 2008-09-19 2010-03-25 出光興産株式会社 酸化物焼結体及びスパッタリングターゲット
WO2013005400A1 (ja) * 2011-07-06 2013-01-10 出光興産株式会社 スパッタリングターゲット

Also Published As

Publication number Publication date
TW201602004A (zh) 2016-01-16
TW201602048A (zh) 2016-01-16
US20170047206A1 (en) 2017-02-16
JPWO2015178429A1 (ja) 2017-04-20
KR20170009819A (ko) 2017-01-25
US20170092780A1 (en) 2017-03-30
CN106132902A (zh) 2016-11-16
KR20170008724A (ko) 2017-01-24
JP6376215B2 (ja) 2018-08-22
JPWO2015178430A1 (ja) 2017-04-27
TWI613151B (zh) 2018-02-01
WO2015178430A1 (ja) 2015-11-26
JP6414210B2 (ja) 2018-10-31
TWI613176B (zh) 2018-02-01
CN106103380A (zh) 2016-11-09
US9941415B2 (en) 2018-04-10

Similar Documents

Publication Publication Date Title
JP6424892B2 (ja) 酸化物焼結体、スパッタリング用ターゲット、及びそれを用いて得られる酸化物半導体薄膜
JP6414210B2 (ja) 酸化物焼結体、スパッタリング用ターゲット、及びそれを用いて得られる酸化物半導体薄膜
JP6387823B2 (ja) 酸化物焼結体、スパッタリング用ターゲット、及びそれを用いて得られる酸化物半導体薄膜
JP6358329B2 (ja) 酸化物焼結体、スパッタリング用ターゲット、及びそれを用いて得られる酸化物半導体薄膜
JP6358083B2 (ja) 酸化物焼結体、スパッタリング用ターゲット、及びそれを用いて得られる酸化物半導体薄膜
WO2017150050A1 (ja) 酸化物焼結体及びスパッタリング用ターゲット

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15795408

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20167025017

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15306915

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2016521135

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15795408

Country of ref document: EP

Kind code of ref document: A1