TWI613151B - 氧化物燒結體、濺鍍用靶、及使用其而得之氧化物半導體薄膜 - Google Patents

氧化物燒結體、濺鍍用靶、及使用其而得之氧化物半導體薄膜 Download PDF

Info

Publication number
TWI613151B
TWI613151B TW104116410A TW104116410A TWI613151B TW I613151 B TWI613151 B TW I613151B TW 104116410 A TW104116410 A TW 104116410A TW 104116410 A TW104116410 A TW 104116410A TW I613151 B TWI613151 B TW I613151B
Authority
TW
Taiwan
Prior art keywords
phase
oxide
sintered body
less
film
Prior art date
Application number
TW104116410A
Other languages
English (en)
Other versions
TW201602004A (zh
Inventor
中山德行
西村英一郎
松村文彦
井藁正史
Original Assignee
住友金屬礦山股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友金屬礦山股份有限公司 filed Critical 住友金屬礦山股份有限公司
Publication of TW201602004A publication Critical patent/TW201602004A/zh
Application granted granted Critical
Publication of TWI613151B publication Critical patent/TWI613151B/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/7869Thin film transistors, i.e. transistors with a channel being at least partly a thin film having a semiconductor body comprising an oxide semiconductor material, e.g. zinc oxide, copper aluminium oxide, cadmium stannate
    • H01L29/78693Thin film transistors, i.e. transistors with a channel being at least partly a thin film having a semiconductor body comprising an oxide semiconductor material, e.g. zinc oxide, copper aluminium oxide, cadmium stannate the semiconducting oxide being amorphous
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/03Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on magnesium oxide, calcium oxide or oxide mixtures derived from dolomite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/6261Milling
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • C04B35/645Pressure sintering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • C23C14/081Oxides of aluminium, magnesium or beryllium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • C23C14/082Oxides of alkaline earth metals
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • C23C14/086Oxides of zinc, germanium, cadmium, indium, tin, thallium or bismuth
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3407Cathode assembly for sputtering apparatus, e.g. Target
    • C23C14/3414Metallurgical or chemical aspects of target preparation, e.g. casting, powder metallurgy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/34Gas-filled discharge tubes operating with cathodic sputtering
    • H01J37/3411Constructional aspects of the reactor
    • H01J37/3414Targets
    • H01J37/3426Material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02422Non-crystalline insulating materials, e.g. glass, polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02565Oxide semiconducting materials not being Group 12/16 materials, e.g. ternary compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/0257Doping during depositing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02587Structure
    • H01L21/0259Microstructure
    • H01L21/02592Microstructure amorphous
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/02631Physical deposition at reduced pressure, e.g. MBE, sputtering, evaporation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02656Special treatments
    • H01L21/02664Aftertreatments
    • H01L21/02667Crystallisation or recrystallisation of non-monocrystalline semiconductor materials, e.g. regrowth
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/24Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only semiconductor materials not provided for in groups H01L29/16, H01L29/18, H01L29/20, H01L29/22
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66969Multistep manufacturing processes of devices having semiconductor bodies not comprising group 14 or group 13/15 materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/7869Thin film transistors, i.e. transistors with a channel being at least partly a thin film having a semiconductor body comprising an oxide semiconductor material, e.g. zinc oxide, copper aluminium oxide, cadmium stannate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3206Magnesium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3286Gallium oxides, gallates, indium oxides, indates, thallium oxides, thallates or oxide forming salts thereof, e.g. zinc gallate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5436Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6565Cooling rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • C04B2235/6583Oxygen containing atmosphere, e.g. with changing oxygen pressures
    • C04B2235/6585Oxygen containing atmosphere, e.g. with changing oxygen pressures at an oxygen percentage above that of air
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/72Products characterised by the absence or the low content of specific components, e.g. alkali metal free alumina ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/76Crystal structural characteristics, e.g. symmetry
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/80Phases present in the sintered or melt-cast ceramic products other than the main phase
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/32Processing objects by plasma generation
    • H01J2237/33Processing objects by plasma generation characterised by the type of processing
    • H01J2237/332Coating

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Organic Chemistry (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Structural Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Plasma & Fusion (AREA)
  • Analytical Chemistry (AREA)
  • Physical Vapour Deposition (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)
  • Optics & Photonics (AREA)

Description

氧化物燒結體、濺鍍用靶、及使用其而得之氧化物半導體薄膜
本發明關於一種氧化物燒結體、靶、及使用其而得之氧化物半導體薄膜,更詳細而言,係關於一種顯示低載體濃度與高載體遷移率之非晶質的含有銦、鎵及鎂之氧化物半導體薄膜、對其形成而言較佳之含有銦、鎵及鎂之濺鍍用靶、對獲得該濺鍍用靶而言較佳之含有銦、鎵及鎂之氧化物燒結體。
薄膜電晶體(Thin Film Transistor,TFT)係場效電晶體(Field Effect Transistor,以下稱為FET)之一種。TFT係具備閘極端子、源極端子、及汲極端子作為基本構成之三端子元件,且係使用成膜於基板上之半導體薄膜作為供電子或電洞移動之通道層,具有對閘極端子施加電壓,控制於通道層中流動之電流,切換源極端子與汲極端子間之電流之功能之主動元件。TFT係目前最被實用化之電子器件,其代表性之用途有液晶驅動用元件。
作為TFT,目前使用最廣的是以多晶矽膜或非晶質矽膜作為通道層材料之Metal-Insulator-Semiconductor-FET(MIS-FET)。使用矽之MIS-FET由於在可見光為不透明,故而無法構成透明電路。因此,於將 MIS-FET用作液晶顯示器之液晶驅動用切換元件之情形時,該器件使顯示器像素之開口比變小。
又,最近,隨著要求液晶之高精細化,對液晶驅動用切換元 件亦要求高速驅動。為了實現高速驅動,必須將「電子或電洞之遷移率至少較非晶質矽高」之半導體薄膜用於通道層。
對於此種狀況,專利文獻1中提出有一種透明半絕緣性非晶 質氧化物薄膜、以及特徵在於以該透明半絕緣性非晶質氧化物薄膜作為通道層之薄膜電晶體,上述透明半絕緣性非晶質氧化物薄膜係利用氣相成膜法成膜且由In、Ga、Zn及O之元素構成之透明非晶質氧化物薄膜,其特徵在於:該氧化物之組成於結晶化時為InGaO3(ZnO)m(m為未達6之自然數),於不添加雜質離子之情況下,載體遷移率(亦稱為載體電子遷移率)超過1cm2V-1sec-1且載體濃度(亦稱為載體電子濃度)為1016cm-3以下,為半絕緣性。
但是,專利文獻1中所提出之利用濺鍍法、脈衝雷射蒸鍍法 之任一種氣相成膜法成膜且由In、Ga、Zn及O之元素構成之透明非晶質氧化物薄膜(a-IGZO膜)止於大致1~10cm2V-1sec-1範圍的電子載體遷移率,因此被指出於形成為TFT之通道層之情形時遷移率不足。
又,專利文獻2中提出有一種濺鍍靶,其包含含有In、Ga 及Mg且含有選自In2O3所表示之化合物、In(GaMg)O4所表示之化合物、MgGa2O4所表示之化合物及In2MgO4所表示之化合物中之一種以上之化合物的燒結體。
但是,專利文獻2之靶有如下問題:由於包含成為電弧 (arcing)之原因的導電性差之Ga2MgO4等相,故而會引起異常放電。
因此,現狀是難以開發出氧化物導電膜用之氧化物燒成體或 靶中不含成為電弧之原因的該等相者。
[專利文獻1]日本特開2010-219538號公報
[專利文獻2]WO2013/005400號公報
[專利文獻3]WO2003/014409號公報
[非專利文獻1]N.Ueda及其他6人,「New oxide phase with wide band gap and high electroconductivity, MgIn2O4」, Appl. Phys. Lett. 61 (16), 19, October, 1992, p.1954-1955
[非專利文獻2]M.Orita及其他3人,「New Transparent Conductive Oxides with YbFe2O4 Structure」, JJAP, 34, L1550
[非專利文獻3]A. Takagi, K. Nomura, H. Ohta, H. Yanagi, T. Kamiya, M. Hirano, and H. Hosono, Thin Solid Films 486, 38 (2005)
本發明之目的在於提供一種可實現非晶質之氧化物半導體 薄膜之載體濃度降低之濺鍍用靶、對獲得其而言最佳之氧化物燒結體、以及使用其而得之顯示低載體濃度與高載體遷移率之氧化物半導體薄膜。
本發明人等新發現,尤其是使將銦與鎵之Ga/(In+Ga) 比設為0.20以上且0.45以下並且以氧化物之形式含有鎵之氧化物燒結體中含有少量之鎂、具體而言使Mg/(In+Ga+Mg)之比為0.0001以上且未達0.05而含有,藉此燒結而成之氧化物燒結體實質上由方鐵錳礦型結構之In2O3 相及In2O3相以外之生成相構成,該In2O3相以外之生成相為β-Ga2O3型結構之GaInO3相、或β-Ga2O3型結構之GaInO3相與(Ga,In)2O3相,使用該氧化物燒結體而製作之氧化物半導體薄膜之載體遷移率為10cm2V-1sec-1以上。
即,第一發明係一種氧化物燒結體,其特徵在於:以氧化物 之形式含有銦、鎵及鎂,且上述鎵之含量以Ga/(In+Ga)原子數比計為0.20以上且0.45以下,上述鎂之含量以Mg/(In+Ga+Mg)原子數比計為0.0001以上且未達0.05,該氧化物燒結體係由方鐵錳礦型結構之In2O3相及In2O3相以外之生成相構成,該In2O3相以外之生成相為β-Ga2O3型結構之GaInO3相、或β-Ga2O3型結構之GaInO3相與(Ga,In)2O3相,並且該氧化物燒結體實質上不含In(GaMg)O4相、MgGa2O4相、In2MgO4相、Ga2O3相。
第二發明係如第一發明中記載之氧化物燒結體,其中,上述鎂之含量以Mg/(In+Ga+Mg)原子數比計為0.01以上且0.03以下。
第三發明係如第一或第二發明中記載之氧化物燒結體,其中,上述鎵之含量以Ga/(In+Ga)原子數比計為0.20以上且0.30以下。
第四發明係如第一或第二發明中記載之氧化物燒結體,其實質上不含除鎂以外之正二價元素、及除銦與鎵以外之正三價至正六價之元素。
第五發明係如第一或第二發明中記載之氧化物燒結體,其中,下述式1所定義之β-Ga2O3型結構之GaInO3相之X射線繞射峰強度比為2%以上且80%以下之範圍,100×I[GaInO3相(111)]/{I[In2O3相(400)]+I[GaInO3相(111)]}[%]‧‧‧‧式1。
第六發明係一種濺鍍用靶,係對第一或第二發明中記載之氧化物燒結體進行加工而獲得。
第七發明係一種氧化物半導體薄膜,係使用第六發明中記載之濺鍍用靶藉由濺鍍法形成於基板上後,進行熱處理而成之非晶質之氧化物半導體薄膜。
第八發明係如第七發明中記載之氧化物半導體薄膜,其中,載體遷移率為10cm2V-1sec-1以上。
第九發明係如第七或第八發明中記載之氧化物半導體薄膜,其中,載體濃度未達3.0×1018cm-3
本發明之「以氧化物之形式含有銦及鎵且含有以Mg/(In+Ga+Mg)之原子數比計為0.0001以上且未達0.05之鎂」的氧化物燒結體於用作例如濺鍍用靶之情形時,可獲得本發明之非晶質之氧化物半導體薄膜,該非晶質之氧化物半導體薄膜係藉由濺鍍成膜而形成,並且之後藉由熱處理而獲得。上述之非晶質之氧化物半導體薄膜藉由包含特定量之鎵與鎂之效果而不生成微晶等,具有充足之非晶質性,因此可藉由濕式蝕刻而圖案化加工成所需之形狀。又,藉由該效果,本發明之非晶質之氧化物半導體薄膜顯示低載體濃度與高載體遷移率。因此,本發明之非晶質之氧化物半導體薄膜可用作TFT之通道層。因此,本發明之氧化物燒結體、靶、及使用其而得之氧化物半導體薄膜於工業上極為有用。
以下,對本發明之氧化物燒結體、濺鍍用靶及使用其而得之氧化物薄膜進行詳細說明。
本發明之氧化物燒結體之特徵在於:以氧化物之形式含有銦、鎵及鎂,且以Ga/(In+Ga)原子數比計含有0.20以上且0.45以下之鎵,以Mg/(In+Ga+Mg)原子數比計含有0.0001以上且未達0.05之鎂。
鎵之含量以Ga/(In+Ga)原子數比計為0.20以上且0.45以下,更佳為0.20以上且0.30以下。鎵與氧之鍵結力較強,有使本發明之非晶質之氧化物半導體薄膜之氧空位量降低之效果。於鎵之含量以Ga/(In+Ga)原子數比計未達0.20之情形時,無法充分獲得該效果。另一方面,於超過0.45之情形時,無法獲得作為氧化物半導體薄膜而言夠高之載體遷移率。
本發明之氧化物燒結體除如上所述般規定之組成範圍之銦與鎵以外,含有鎂。鎂濃度以Mg/(In+Ga+Mg)之原子數比計為0.0001以上且未達0.05,較佳為0.01以上且0.03以下。
本發明之氧化物燒結體藉由添加上述範圍內之鎂,藉由主要因氧空位所產生之電子被中和之作用而抑制載體濃度,於將本發明之非晶質之氧化物半導體薄膜應用於TFT之情形時,可提高TFT之on/off。
再者,較佳為於本發明之氧化物燒結體中實質上不含除鎂以外之正二價元素及除銦與鎵以外之正三價至正六價之元素即元素M。此處,所謂實質上不含係指分別單獨之M以M/(In+Ga+M)之原子數比 計為500ppm以下,較佳為200ppm以下,更佳為100ppm以下。作為具體之M之例示,作為正二價元素,可例示Cu、Ni、Co、Zn、Ca、Sr、Pb,作為正三價元素,可例示Al、Y、Sc、B、鑭系元素,作為正四價元素,可例示Sn、Ge、Ti、Si、Zr、Hf、C、Ce,作為正五價元素,可例示Nb、Ta,作為正六價元素,可例示W、Mo。
1.氧化物燒結體組織
本發明之氧化物燒結體係由方鐵錳礦型結構之In2O3相及In2O3相以外之生成相構成,該In2O3相以外之生成相為β-Ga2O3型結構之GaInO3相、或β-Ga2O3型結構之GaInO3相與(Ga,In)2O3相。若氧化物燒結體僅由In2O3相構成,則無論是否含有Mg,與例如專利文獻3(WO2003/014409號公報)之比較例11同樣地會產生結核(nodule)。另一方面,由於In(GaMg)O4相、MgGa2O4相及In2MgO4相均為高電阻相,故而會成為產生電弧或結核之原因。由於In2MgO4相之比電阻為10-2Ω‧cm左右(非專利文獻1),與In2O3相或GaInO3相比電阻高1~2位數左右,故而濺鍍成膜時容易挖掘殘留,而容易產生結核。In(GaMg)O4相之比電阻更高為100Ω‧cm左右(非專利文獻2),成為產生結核之原因。由於MgGa2O4相不含In,故而比電阻更高,成為產生電弧之原因。又,使用該等相所生成之氧化物燒結體進行濺鍍成膜而成之氧化物半導體薄膜存在載體遷移率變低之傾向。
鎵及鎂與In2O3相固溶。又,鎵構成GaInO3相或(Ga,In)2O3相。 於與In2O3相固溶之情形時,鎵與鎂係置換至作為正三價離子之銦之晶格位置。因燒結未進行等原因而導致鎵不與In2O3相固溶而形成β-Ga2O3型結構之Ga2O3相時欠佳。Ga2O3相由於缺乏導電性,故而成為異常放電之原因。
本發明之氧化物燒結體較佳為除方鐵錳礦型結構之In2O3相以外,於下述式1所定義之X射線繞射峰強度比為2%以上且80%以下之範圍內僅含有β-Ga2O3型結構之GaInO3相、或含有β-Ga2O3型結構之GaInO3相與(Ga,In)2O3相。
100×I[GaInO3相(111)]/{I[In2O3相(400)]+I[GaInO3相(111)]}[%]‧‧‧‧式1
(式1中,I[In2O3相(400)]為方鐵錳礦型結構之In2O3相之(400)峰強度,I[GaInO3相(111)]表示β-Ga2O3型結構之複合氧化物β-GaInO3相(111)峰強度)
2.氧化物燒結體之製造方法
本發明之氧化物燒結體,以由氧化銦粉末與氧化鎵粉末構成之氧化物粉末、以及氧化鎂粉末作為原料粉末。
於本發明之氧化物燒結體之製造步驟中,將該等原料粉末混合後進行成形,並藉由常壓燒結法對成形物進行燒結。本發明之氧化物燒結體組織之生成相強烈地取決於氧化物燒結體之各步驟中之製造條件、例如原料粉末之粒徑、混合條件及燒結條件。
本發明之氧化物燒結體之組織較佳為由方鐵錳礦型結構之In2O3相、及In2O3相以外之生成相之β-Ga2O3型結構之GaInO3相或β-Ga2O3型結構之GaInO3相與(Ga,In)2O3相以所需之比率構成,為此,較佳為將上述各原料粉末之平均粒徑設為3μm以下,更佳設為1.5μm以下。如上所述,由於除In2O3相以外包含β-Ga2O3型結構之GaInO3相,或包含β-Ga2O3型結構之GaInO3相與(Ga,In)2O3相,故而為了抑制生成過量之該等相,較佳 為將各原料粉末之平均粒徑設為1.5μm以下。
氧化銦粉末係ITO(銦-錫氧化物)之原料,燒結性優異之 微細之氧化銦粉末之開發隨著ITO之改良而得以推進。由於氧化銦粉末繼續大量用作ITO用原料,故而最近可獲取平均粒徑0.8μm以下之原料粉末。
且說,於氧化鎵粉末或氧化鎂粉末之情形時,與氧化銦粉末 相比使用量仍然較少,因此難以獲取平均粒徑1.5μm以下之原料粉末。因此,於僅能獲取粗大之氧化鎵粉末之情形時,必須粉碎至平均粒徑1.5μm以下。
於本發明之氧化物燒結體之燒結步驟中,較佳為應用常壓燒 結法。常壓燒結法係簡便且工業上有利之方法,就低成本之觀點而言亦為較佳之手段。
於使用常壓燒結法之情形時,如上所述,首先製作成形體。 將原料粉末添加至樹脂製容器中,與黏合劑(例如為PVA)等一併利用濕式球磨機等進行混合。於本發明之氧化物燒結體之製作中,為了抑制除In2O3相以外生成過量之β-Ga2O3型結構之GaInO3相或β-Ga2O3型結構之GaInO3相與(Ga,In)2O3相、或者為了不生成β-Ga2O3型結構之Ga2O3相,較佳為進行上述球磨機混合18小時以上。此時,作為混合用球,只要使用硬質ZrO2球即可。混合後,取出漿料,進行過濾、乾燥、造粒。其後,對所獲得之造粒物以冷均壓壓製施加9.8MPa(0.1ton/cm2)~294MPa(3ton/cm2)左右之壓力而進行成形,製成成形體。
於常壓燒結法之燒結步驟中,較佳設為存在氧之環境,更佳 為環境中之氧體積分率超過20%。尤其是藉由氧體積分率超過20%,氧化 物燒結體更進一步高密度化。藉由環境中之過量之氧而於燒結初期先進行成形體表面之燒結。繼而,進行成形體內部之還原狀態下之燒結,最終獲得高密度之氧化物燒結體。
於不存在氧之環境下,成形體表面之燒結不先進行,因此結 果燒結體之高密度化不會進行。若不存在氧,則尤其是於900~1000℃左右下氧化銦分解而生成金屬銦,因此難以獲得目標氧化物燒結體。
常壓燒結之溫度範圍較佳為設為1200℃以上且1550℃以 下,更佳為於燒結爐內之大氣中導入氧氣之環境下在1350℃以上且1450℃以下進行燒結。燒結時間較佳為10~30小時,更佳為15~25小時。
藉由將燒結溫度設為上述範圍且使用將上述平均粒徑調整 為1.5μm以下之由氧化銦粉末與氧化鎵粉末構成之氧化物粉末、以及氧化鎂粉末作為原料粉末,可獲得由方鐵錳礦型結構之In2O3相、及In2O3相以外之生成相構成之氧化物燒結體,其中,該In2O3相以外之生成相係β-Ga2O3型結構之GaInO3相、或β-Ga2O3型結構之GaInO3相與(Ga,In)2O3相。
於燒結溫度未達1200℃之情形時,產生燒結反應未充分進 行,氧化物燒結體之密度成為未達6.4g/cm3之不良情況。另一方面,若燒結溫度超過1550℃,則(Ga,In)2O3相之形成變得顯著。(Ga,In)2O3相之電阻高於GaInO3相,因此成為成膜速度降低之原因。若燒結溫度為1550℃以下、即為少量之(Ga,In)2O3相,則不成問題。就此種觀點而言,較佳為將燒結溫度設為1200℃以上且1550℃以下,更佳設為1350℃以上且1450℃以下。
關於達到燒結溫度之前之升溫速度,為了防止燒結體之破 裂,並且進行脫黏合劑,較佳為將升溫速度設為0.2~5℃/分鐘之範圍。 若為該範圍,則視需要亦可組合不同之升溫速度,以升溫至燒結溫度。尤其是為了促進鎂與In2O3相固溶,有效的是於1100℃以下之溫度保持一定時間。於升溫過程中,以進行脫黏合劑或燒結為目的,亦可於特定溫度下保持一定時間。保持時間並無特別限制,較佳為1小時以上且10小時以下。 較佳為燒結後進行冷卻時停止氧導入,以0.2~5℃/分鐘、尤其是0.2℃/分鐘以上且未達1℃/分鐘之範圍之降溫速度降溫至1000℃。
3.靶
本發明之靶能以如下方式獲得:將上述氧化物燒結體切斷為特定之大小,對表面進行研磨加工,接著於背襯板(backing plate)而獲得。靶形狀較佳為平板形,亦可為圓筒形。於使用圓筒形靶之情形時,較佳為抑制因靶旋轉所致之顆粒產生。
為了用作濺鍍用靶,本發明之氧化物燒結體之密度較佳為 6.4g/cm3以上。於密度未達6.4g/cm3之情形時,會成為量產使用時之結核產生之原因,故而欠佳。
4.氧化物半導體薄膜及其成膜方法
本發明之非晶質之氧化物半導體薄膜係藉由使用上述濺鍍用靶,利用濺鍍法於基板上暫且形成非晶質之薄膜,繼而實施熱處理而獲得。
上述濺鍍用靶係由氧化物燒結體所獲得,重要的是該氧化物 燒結體組織、即由方鐵錳礦型結構之In2O3相及β-Ga2O3型結構之GaInO3相作為基本構成之組織。為了獲得本發明之非晶質之氧化物半導體薄膜,重要的是非晶質之氧化物薄膜之結晶化溫度較高,氧化物燒結體組織與其相關。即,於如本發明所使用之氧化物燒結體般,不僅含有方鐵錳礦型結 構之In2O3相,而且亦含有β-Ga2O3型結構之GaInO3相之情形時,由其獲得之成膜後之氧化物薄膜顯示較高之結晶化溫度、即較佳為250℃以上、更佳為300℃以上、進而較佳為350℃以上之結晶化溫度,成為穩定之非晶質。 相對於此,於氧化物燒結體僅由方鐵錳礦型結構之In2O3相構成時,成膜後之氧化物薄膜之結晶化溫度為較低之190~230℃左右,並非為穩定之非晶質。因此,若以250℃左右進行熱處理,則有發生結晶化之情形。再者,於該情形時,成膜後已生成微晶而無法維持非晶質,利用濕式蝕刻之圖案化加工變得困難。對此,於通常之ITO(添錫氧化銦)透明導電膜中為大眾所熟知。
於非晶質之薄膜形成步驟中,使用通常之濺鍍法,尤其是若 為直流(DC)濺鍍法,則成膜時之熱影響較少,可高速成膜,因此工業上有利。於利用直流濺鍍法形成本發明之氧化物半導體薄膜時,較佳為使用由惰性氣體與氧、尤其是氬與氧構成之混合氣體作為濺鍍氣體。又,較佳為將濺鍍裝置之腔室內設為0.1~1Pa、尤其是0.2~0.8Pa之壓力而進行濺鍍。
基板係以玻璃基板為代表,較佳為無鹼玻璃,但只要為樹脂 板或樹脂膜中可耐上述製程之溫度者則可使用。
上述非晶質之薄膜形成步驟例如真空排氣至2×104Pa以下 後,導入由氬與氧構成之混合氣體,將氣壓設為0.2~0.5Pa,以直流電力相對於靶之面積、即直流電力密度成為1~7W/cm2左右之範圍的方式施加直流電力而產生直流電漿,從而可實施預濺鍍。較佳為將該預濺鍍進行5~30分鐘後,視需要修正基板位置後進行濺鍍成膜。濺鍍成膜時,為了提高成 膜速度,而提高容許範圍內所投入之直流電力。
本發明之非晶質之氧化物半導體薄膜,係藉由在上述之非晶 質之薄膜形成後,對其進行熱處理而獲得。熱處理條件係於氧化性環境下為未達結晶化溫度之溫度。作為氧化性環境,較佳為包含氧、臭氧、水蒸氣、或氮氧化物等之環境。熱處理溫度較佳為250~600℃,更佳為300~550℃,進而較佳為350~500℃。熱處理時間較佳為保持在熱處理溫度之時間為1~120分鐘,更佳為5~60分鐘。作為直到熱處理為止之方法,例如於室溫附近等低溫下形成非晶質膜,其後於未達結晶化溫度之上述溫度範圍進行熱處理,於維持非晶質之狀態下獲得氧化物半導體薄膜。另一種方法係將基板加熱至未達氧化物薄膜之結晶化溫度之溫度、較佳為100~300℃,而成膜非晶質之氧化物半導體薄膜。繼而,亦可進而進行熱處理。
上述熱處理前之薄膜及熱處理後之非晶質的氧化物半導體 薄膜之銦、鎵、及鎂之組成與本發明之氧化物燒結體之組成大致相同。即,為以氧化物之形式含有銦及鎵,且含有鎂之非晶質之氧化物半導體薄膜。 鎵之含量以Ga/(In+Ga)原子數比計為0.20以上且0.45以下,上述鎂之含量以Mg/(In+Ga+Mg)原子數比計為0.0001以上且未達0.05。鎵之含量更佳為以Ga/(In+Ga)原子數比計為0.20以上且0.30以下,進而較佳為0.25以上且0.30以下。又,上述鎂之含量更佳為以Mg/(In+Ga+Mg)原子數比計為0.01以上且0.03以下。
本發明之非晶質之氧化物半導體薄膜係將控制如上所述之 組成及組織之氧化物燒結體用於濺鍍靶等而進行成膜,於上述適當之條件下進行熱處理,藉此載體濃度降低至3×1018cm-3以下,更佳為獲得1×1018cm-3 以下之載體濃度,尤佳為獲得8×1017cm-3以下之載體濃度。如以非專利文獻3中記載之由銦、鎵、及鋅構成的非晶質之氧化物半導體薄膜為代表,含有較多銦之非晶質之氧化物半導體薄膜之載體濃度為4×1018cm-3以上而成為簡併狀態,因此將其應用於通道層之TFT變得不顯示常閉(normally off)。因此,本發明之非晶質之氧化物半導體薄膜將載體濃度控制為上述之TFT顯示常閉之範圍,故而較為適宜。又,載體遷移率顯示10cm2V-1sec-1以上,更佳為載體遷移率顯示15cm2V-1sec-1以上。
本發明之非晶質之氧化物半導體薄膜藉由濕式蝕刻或乾式 蝕刻而被實施TFT等用途中所必需之微細加工。通常,於自未達結晶化溫度之溫度、例如室溫至300℃之範圍選擇適當之基板溫度暫且形成非晶質之氧化物薄膜後,可實施利用濕式蝕刻之微細加工。作為蝕刻劑,只要為弱酸則可大致使用,較佳為以草酸或鹽酸作為主成分之弱酸。例如可使用關東化學製造之ITO-06N等市售品。根據TFT之構成,亦可選擇乾式蝕刻。
本發明之非晶質之氧化物半導體薄膜之膜厚並無限定,為 10~500nm、較佳為20~300nm、進而較佳為30~100nm。若未達10nm,則無法實現高載體遷移率。另一方面,若超過500nm,則會產生生產性之問題,故而欠佳。
又,本發明之非晶質之氧化物半導體薄膜於可見光區域(400 ~800nm)之平均透光率較佳為80%以上,更佳為85%以上,進而較佳為90%以上。於應用在透明TFT之情形時,若平均透光率未達80%,則作為透明顯示器件之液晶元件或有機EL元件等之光提取效率降低。
[實施例]
以下,使用本發明之實施例更詳細地進行說明,但本發明並 不限定於該等實施例。
<氧化物燒結體之評價>
藉由ICP發射光譜法分析所獲得之氧化物燒結體之金屬元素之組成。使用所獲得之氧化物燒結體之端材,使用X射線繞射裝置(Philips製造)進行利用粉末法之生成相之鑑定。
<氧化物薄膜之基本特性評價>
藉由ICP發射光譜法分析所獲得之氧化物薄膜之組成。氧化物薄膜之膜厚係利用表面粗糙度計(Tencor公司製造)進行測定。成膜速度係根據膜厚及成膜時間而算出。氧化物薄膜之載體濃度及載體遷移率係藉由霍爾效應測定裝置(東陽技術製造)而求出。膜之生成相係藉由X射線繞射測定而鑑定。
(燒結體之製作及評價)
將氧化銦粉末與氧化鎵粉末、以及氧化鎂粉末以成為平均粒徑1.5μm以下之方式進行調整而製成原料粉末。將該等原料粉末以成為如表1及表2之實施例及比較例之Ga/(In+Ga)原子數比、Mg/(In+Ga+Mg)原子數比之方式進行調合,與水一併放入至樹脂製容器中,利用濕式球磨機進行混合。此時,使用硬質ZrO2球,將混合時間設為18小時。混合後,取出漿料,進行過濾、乾燥、造粒。對造粒物利用冷均壓壓製施加3ton/cm2之壓力而進行成形。
其次,以如下方式對成形體進行燒結。以爐內容積每0.1m3為5升/分鐘之比率,於燒結爐內之大氣中導入氧,並且在該環境下以1000 ~1550℃之燒結溫度燒結20小時。此時,以1℃/分鐘進行升溫,於燒結後之冷卻時停止氧導入,以10℃/分鐘降溫至1000℃。
利用ICP發射光譜法進行所獲得之氧化物燒結體之組成分 析,結果關於金屬元素,於任一實施例中均確認到與原料粉末之調配時之添加組成大致相同。
其次,進行利用X射線繞射測定之氧化物燒結體之相鑑定, 結果如表1般僅確認到基於方鐵錳礦型結構之In2O3相之繞射峰,或僅確認到方鐵錳礦型結構之In2O3相、β-Ga2O3型結構之GaInO3相、及(Ga,In)2O3相之繞射峰。
再者,於包含β-Ga2O3型結構之GaInO3相之情形時,將下 述式1所定義之β-Ga2O3型結構之GaInO3相之X射線繞射峰值強度比示於表1。
100×I[GaInO3相(111)]/{I[In2O3相(400)]+I[GaInO3相(111)]} [%]‧‧‧‧式1
Figure TWI613151BD00001
將氧化物燒結體加工成直徑152mm、厚度5mm之大小, 利用杯型磨石以最大高度Rz成為3.0nm以下之方式對濺鍍面進行研磨。使用金屬銦將加工而成之氧化物燒結體接合於無氧銅製之背襯板而製成濺鍍用靶。
(濺鍍成膜評價)
使用實施例及比較例之濺鍍用靶以及無鹼之玻璃基板(康寧製造之Eagle XG),不進行基板加熱而於室溫進行利用直流濺鍍之成膜。於裝備有無電弧抑制功能之直流電源之直流磁控濺鍍裝置(Tokki製造)之陰極安裝上述濺鍍靶。此時,將靶-基板(固持器)間距離固定為60mm。真空排氣至1×10-4Pa以下後,視各靶之鎵量以成為適當之氧之比率之方式導入氬與氧之混合氣體,將氣壓調整為0.6Pa。施加直流電力300W(1.64W/cm2)而產生直流電漿。10分鐘之預濺鍍後,於濺鍍靶之正上方、即靜止對向位 置配置基板,形成膜厚50nm之氧化物薄膜。確認到所獲得之氧化物薄膜之組成與靶大致相同。又,X射線繞射測定之結果確認到為非晶質。對所獲得之非晶質之氧化物薄膜,使用RTA(Rapid Thermal Annealing,快速熱退火)裝置,於大氣中在250~400℃下實施30分鐘以內之熱處理。對熱處理後之氧化物薄膜進行X射線繞射測定,結果確認到為非晶質,以In2O3(111)作為主峰。進行所獲得之非晶質之氧化物半導體薄膜之霍爾效應測定,求出載體濃度及載體遷移率。將所獲得之評價結果彙總記載於表2。
Figure TWI613151BD00002
(結核產生評價)
針對實施例2、10及比較例2之濺鍍用靶,實施基於模擬量產之濺鍍成膜之結核產生之評價。濺鍍裝置係使用裝備有無電弧抑制功能之直流電源的裝載鎖固(load lock)式通過型磁控濺鍍裝置(ULVAC製造)。關於靶,使用縱5英吋、橫15英吋之方型之靶。將濺鍍成膜評價濺鍍室真空排氣至7×10-5Pa以下後,視各靶之鎵量以成為適當之氧之比率之方式導入氬與氧之 混合氣體,將氣壓調整為0.6Pa。選擇此種條件之濺鍍氣體之原因在於,於濺鍍室之真空度超過1×10-4Pa而腔室內之水分壓較高或添加氫氣之情形時,變得無法進行正確之評價。如於ITO等中所熟知般,若膜中被放入源自水分或氫氣之H+,則膜之結晶化溫度變高,附著於靶非剝蝕部之膜變得容易非晶質化。其結果,膜應力降低,因此變得不易自非剝蝕部剝離,變得不易產生結核。考慮通常量產中所採用之直流電力密度為3~6W/cm2左右而將直流電力設為2500W(直流電力密度5.17W/cm2)。
結核產生評價係於上述條件下,於50kWh之連續濺鍍放電後,觀察靶表面,評價結核產生之有無。
「評價」
如表1所示,於實施例1~11之鎵含量以Ga/(In+Ga)原子數比計為0.20以上且0.45以下,鎂含量以Mg/(In+Ga+Mg)原子量比計為0.0001以上且未達0.05之情形時,由方鐵錳礦型結構之In2O3相、及In2O3相以外之生成相之β-Ga2O3型結構之GaInO3相或β-Ga2O3型結構之GaInO3相與(Ga,In)2O3相構成。
相對於此,比較例2~4之氧化物燒結體中,鎂之含量以Mg/(In+Ga+Mg)原子量比計為0.05以上,因此包含方鐵錳礦型結構之In2O3相、β-Ga2O3型結構之GaInO3相、及(Ga,In)2O3相以外之生成相的成為結核或電弧產生原因之In(GaMg)O4相、MgGa2O4相、或Ga2O3相,未獲得本發明之目標氧化物燒結體。再者,由於比較例3、4之燒結體中包含MgGa2O4相,故而與實施例1~11或其他比較例1、2相比,電弧產生頻率較高。又,於比較例5中,燒結體中產生大量Ga2O3相而無法成膜。
於實施例2、10及比較例2之結核產生評價中,作為本發明 之氧化物燒結體之實施例2、10之靶中未確認到結核之產生。另一方面,於比較例2之靶中,確認到大量之結核產生。可認為其原因在於,比較例2中,燒結體密度較低,以及包含電阻較高且於濺鍍中容易挖掘殘留之In(GaMg)O4相。
又,表2中顯示氧化物半導體薄膜之特性,該氧化物半導體 薄膜係以氧化物之形式含有銦、鎵及鎂之非晶質之氧化物半導體薄膜,且鎵含量以Ga/(In+Ga)原子數比計控制為0.20以上且0.45以下,鎂含量以Mg/(In+Ga+Mg)原子量比計控制為0.0001以上且未達0.05。
可知實施例之氧化物半導體薄膜之載體濃度未達3.0×1018 cm-3,載體遷移率為10cm2V-1sec-1以上。
其中,鎵含量以Ga/(In+Ga)原子量比計為0.20以上且 0.30以下,鎂含量以Mg/(In+Ga+Mg)原子量比計為0.01以上且0.03以下之實施例2~6及8之氧化物半導體薄膜顯示載體濃度1.0×1018cm-3以下、載體遷移率20cm2V-1sec-1以上之優異特性。
相對於此,於比較例3之氧化物半導體薄膜中,鎂含量以 Mg/(In+Ga+Mg)原子量比計為0.05以上,載體遷移率低於10cm2V-1sec-1,因此未獲得本發明之目標氧化物半導體薄膜。

Claims (8)

  1. 一種氧化物燒結體,其以氧化物之形式含有銦、鎵及鎂,上述鎵之含量以Ga/(In+Ga)原子數比計為0.20以上且0.45以下,上述鎂之含量以Mg/(In+Ga+Mg)原子數比計為0.0001以上且未達0.05,該氧化物燒結體係由方鐵錳礦型結構之In2O3相及In2O3相以外之生成相構成,該In2O3相以外之生成相為β-Ga2O3型結構之GaInO3相、或β-Ga2O3型結構之GaInO3相與(Ga,In)2O3相,並且,該氧化物燒結體實質上不含In(GaMg)O4相、MgGa2O4相、In2MgO4相、Ga2O3相;且,該氧化物燒結體之下述式1所定義之β-Ga2O3型結構之GaInO3相之X射線繞射峰強度比為2%以上且80%以下之範圍,100×I[GaInO3相(111)]/{I[In2O3相(400)]+I[GaInO3相(111)]}[%]‧‧‧‧式1。
  2. 如申請專利範圍第1項之氧化物燒結體,其中,上述鎂之含量以Mg/(In+Ga+Mg)原子數比計為0.01以上且0.03以下。
  3. 如申請專利範圍第1或2項之氧化物燒結體,其中,上述鎵之含量以Ga/(In+Ga)原子數比計為0.20以上且0.30以下。
  4. 如申請專利範圍第1或2項之氧化物燒結體,其實質上不含除鎂以外之正二價元素、及除銦與鎵以外之正三價至正六價之元素。
  5. 一種濺鍍用靶,係對申請專利範圍第1或2項之氧化物燒結體進行加 工而獲得。
  6. 一種氧化物半導體薄膜,係使用申請專利範圍第5項之濺鍍用靶,藉由濺鍍法形成於基板上後,進行熱處理而成之非晶質之氧化物半導體薄膜。
  7. 如申請專利範圍第6項之氧化物半導體薄膜,其載體遷移率為10cm2V-1sec-1以上。
  8. 如申請專利範圍第6或7項之氧化物半導體薄膜,其載體濃度未達3.0×1018cm-3
TW104116410A 2014-05-23 2015-05-22 氧化物燒結體、濺鍍用靶、及使用其而得之氧化物半導體薄膜 TWI613151B (zh)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014107148 2014-05-23

Publications (2)

Publication Number Publication Date
TW201602004A TW201602004A (zh) 2016-01-16
TWI613151B true TWI613151B (zh) 2018-02-01

Family

ID=54554095

Family Applications (2)

Application Number Title Priority Date Filing Date
TW104116410A TWI613151B (zh) 2014-05-23 2015-05-22 氧化物燒結體、濺鍍用靶、及使用其而得之氧化物半導體薄膜
TW104116409A TWI613176B (zh) 2014-05-23 2015-05-22 氧化物燒結體、濺鍍用靶、及使用其而得之氧化物半導體薄膜

Family Applications After (1)

Application Number Title Priority Date Filing Date
TW104116409A TWI613176B (zh) 2014-05-23 2015-05-22 氧化物燒結體、濺鍍用靶、及使用其而得之氧化物半導體薄膜

Country Status (6)

Country Link
US (2) US9941415B2 (zh)
JP (2) JP6414210B2 (zh)
KR (2) KR20170009819A (zh)
CN (2) CN106103380A (zh)
TW (2) TWI613151B (zh)
WO (2) WO2015178430A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI836206B (zh) * 2020-04-06 2024-03-21 日商Jx金屬股份有限公司 靶及其製造方法、以及燒結體

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9941415B2 (en) * 2014-05-23 2018-04-10 Sumitomo Metal Mining Co., Ltd. Oxide sintered body, sputtering target, and oxide semiconductor thin film obtained using sputtering target
JP2017154910A (ja) * 2016-02-29 2017-09-07 住友金属鉱山株式会社 酸化物焼結体及びスパッタリング用ターゲット
GB201705755D0 (en) 2017-04-10 2017-05-24 Norwegian Univ Of Science And Tech (Ntnu) Nanostructure
CN116240630A (zh) * 2018-08-01 2023-06-09 出光兴产株式会社 晶体化合物、氧化物烧结体、溅射靶、晶质及无定形氧化物薄膜、薄膜晶体管及电子设备
KR20220094735A (ko) * 2020-12-29 2022-07-06 에이디알씨 주식회사 결정성 산화물 반도체 박막 및 그 형성 방법, 박막 트랜지스터 및 그 제조 방법, 표시 패널 및 전자 장치
EP4350029A1 (en) * 2021-05-25 2024-04-10 Sumitomo Metal Mining Co., Ltd. Sputtering target and method for forming cesium tungsten oxide film
CN114361276A (zh) * 2021-12-28 2022-04-15 仲恺农业工程学院 非晶MgGaO薄膜的光伏探测器及其制备方法和应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200909380A (en) * 2007-07-06 2009-03-01 Sumitomo Metal Mining Co Oxide sintered compact and method of manufacturing the same, target, transparent conductive film obtained by using the same, and transparent conductive substrate
JP2011195963A (ja) * 2011-06-24 2011-10-06 Sumitomo Metal Mining Co Ltd 透明導電膜製造用焼結体ターゲット
TW201307598A (zh) * 2011-07-06 2013-02-16 Idemitsu Kosan Co 濺鍍靶材

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5407602A (en) * 1993-10-27 1995-04-18 At&T Corp. Transparent conductors comprising gallium-indium-oxide
WO2003014409A1 (fr) 2001-08-02 2003-02-20 Idemitsu Kosan Co., Ltd. Cible de pulverisation, film conducteur transparent et leur procede de fabrication
JP4620046B2 (ja) 2004-03-12 2011-01-26 独立行政法人科学技術振興機構 薄膜トランジスタ及びその製造方法
JP4816116B2 (ja) 2006-02-08 2011-11-16 住友金属鉱山株式会社 スパッタリングターゲット用酸化物焼結体および、それを用いて得られる酸化物膜、それを含む透明基材
JP4231967B2 (ja) * 2006-10-06 2009-03-04 住友金属鉱山株式会社 酸化物焼結体、その製造方法、透明導電膜、およびそれを用いて得られる太陽電池
CN101680081B (zh) * 2007-03-20 2012-10-31 出光兴产株式会社 溅射靶、氧化物半导体膜及半导体器件
TWI473896B (zh) * 2008-06-27 2015-02-21 Idemitsu Kosan Co From InGaO 3 (ZnO) crystal phase, and a method for producing the same
JPWO2010032422A1 (ja) * 2008-09-19 2012-02-02 出光興産株式会社 酸化物焼結体及びスパッタリングターゲット
KR102111264B1 (ko) 2009-09-16 2020-05-15 가부시키가이샤 한도오따이 에네루기 켄큐쇼 트랜지스터
US9941415B2 (en) * 2014-05-23 2018-04-10 Sumitomo Metal Mining Co., Ltd. Oxide sintered body, sputtering target, and oxide semiconductor thin film obtained using sputtering target

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200909380A (en) * 2007-07-06 2009-03-01 Sumitomo Metal Mining Co Oxide sintered compact and method of manufacturing the same, target, transparent conductive film obtained by using the same, and transparent conductive substrate
JP2011195963A (ja) * 2011-06-24 2011-10-06 Sumitomo Metal Mining Co Ltd 透明導電膜製造用焼結体ターゲット
TW201307598A (zh) * 2011-07-06 2013-02-16 Idemitsu Kosan Co 濺鍍靶材

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI836206B (zh) * 2020-04-06 2024-03-21 日商Jx金屬股份有限公司 靶及其製造方法、以及燒結體

Also Published As

Publication number Publication date
KR20170009819A (ko) 2017-01-25
TW201602004A (zh) 2016-01-16
JPWO2015178429A1 (ja) 2017-04-20
WO2015178429A1 (ja) 2015-11-26
JP6376215B2 (ja) 2018-08-22
KR20170008724A (ko) 2017-01-24
TWI613176B (zh) 2018-02-01
TW201602048A (zh) 2016-01-16
US20170047206A1 (en) 2017-02-16
US9941415B2 (en) 2018-04-10
JP6414210B2 (ja) 2018-10-31
US20170092780A1 (en) 2017-03-30
JPWO2015178430A1 (ja) 2017-04-27
WO2015178430A1 (ja) 2015-11-26
CN106132902A (zh) 2016-11-16
CN106103380A (zh) 2016-11-09

Similar Documents

Publication Publication Date Title
TWI613151B (zh) 氧化物燒結體、濺鍍用靶、及使用其而得之氧化物半導體薄膜
TWI550145B (zh) An oxide sintered body, a sputtering target, and an oxide semiconductor thin film obtained therefrom
JPWO2016084636A1 (ja) 酸化物焼結体、スパッタリング用ターゲット、及びそれを用いて得られる酸化物半導体薄膜
TWI557246B (zh) An oxide sintered body, a sputtering target, and an oxide semiconductor thin film obtained therefrom
TWI544097B (zh) An oxide sintered body, a target for sputtering, and an oxide semiconductor thin film obtained by using the same
TW201638013A (zh) 氧化物燒結體、濺鍍用靶、及使用其而得之氧化物半導體薄膜
TWI591195B (zh) 氧化物燒結體、濺鍍用靶、及使用其而獲得之氧化物半導體薄膜
TWI547573B (zh) 氧化物燒結體、濺鍍用靶、及使用其而獲得之氧化物半導體薄膜
WO2017150050A1 (ja) 酸化物焼結体及びスパッタリング用ターゲット

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees