WO2015178080A1 - 酸化物セラミックス、及びセラミック電子部品 - Google Patents

酸化物セラミックス、及びセラミック電子部品 Download PDF

Info

Publication number
WO2015178080A1
WO2015178080A1 PCT/JP2015/057871 JP2015057871W WO2015178080A1 WO 2015178080 A1 WO2015178080 A1 WO 2015178080A1 JP 2015057871 W JP2015057871 W JP 2015057871W WO 2015178080 A1 WO2015178080 A1 WO 2015178080A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetic field
ceramic
polarity
electric polarization
polarization
Prior art date
Application number
PCT/JP2015/057871
Other languages
English (en)
French (fr)
Inventor
廣瀬 左京
木村 剛
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Priority to JP2016520971A priority Critical patent/JP6308376B2/ja
Publication of WO2015178080A1 publication Critical patent/WO2015178080A1/ja
Priority to US15/355,400 priority patent/US10497499B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/34Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials non-metallic substances, e.g. ferrites
    • H01F1/342Oxides
    • H01F1/344Ferrites, e.g. having a cubic spinel structure (X2+O)(Y23+O3), e.g. magnetite Fe3O4
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B18/00Layered products essentially comprising ceramics, e.g. refractory products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/26Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on ferrites
    • C04B35/2608Compositions containing one or more ferrites of the group comprising manganese, zinc, nickel, copper or cobalt and one or more ferrites of the group comprising rare earth metals, alkali metals, alkaline earth metals or lead
    • C04B35/2625Compositions containing one or more ferrites of the group comprising manganese, zinc, nickel, copper or cobalt and one or more ferrites of the group comprising rare earth metals, alkali metals, alkaline earth metals or lead containing magnesium
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/26Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on ferrites
    • C04B35/2608Compositions containing one or more ferrites of the group comprising manganese, zinc, nickel, copper or cobalt and one or more ferrites of the group comprising rare earth metals, alkali metals, alkaline earth metals or lead
    • C04B35/2633Compositions containing one or more ferrites of the group comprising manganese, zinc, nickel, copper or cobalt and one or more ferrites of the group comprising rare earth metals, alkali metals, alkaline earth metals or lead containing barium, strontium or calcium
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/6261Milling
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62645Thermal treatment of powders or mixtures thereof other than sintering
    • C04B35/62675Thermal treatment of powders or mixtures thereof other than sintering characterised by the treatment temperature
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62685Treating the starting powders individually or as mixtures characterised by the order of addition of constituents or additives
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • C04B35/634Polymers
    • C04B35/63404Polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C04B35/6342Polyvinylacetals, e.g. polyvinylbutyral [PVB]
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/638Removal thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F21/00Variable inductances or transformers of the signal type
    • H01F21/02Variable inductances or transformers of the signal type continuously variable, e.g. variometers
    • H01F21/08Variable inductances or transformers of the signal type continuously variable, e.g. variometers by varying the permeability of the core, e.g. by varying magnetic bias
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/24Magnetic cores
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/28Coils; Windings; Conductive connections
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/28Coils; Windings; Conductive connections
    • H01F27/29Terminals; Tapping arrangements for signal inductances
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3206Magnesium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3213Strontium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3215Barium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • C04B2235/3222Aluminates other than alumino-silicates, e.g. spinel (MgAl2O4)
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/327Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3272Iron oxides or oxide forming salts thereof, e.g. hematite, magnetite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/327Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3272Iron oxides or oxide forming salts thereof, e.g. hematite, magnetite
    • C04B2235/3274Ferrites
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/327Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3275Cobalt oxides, cobaltates or cobaltites or oxide forming salts thereof, e.g. bismuth cobaltate, zinc cobaltite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/327Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3275Cobalt oxides, cobaltates or cobaltites or oxide forming salts thereof, e.g. bismuth cobaltate, zinc cobaltite
    • C04B2235/3277Co3O4
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/44Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
    • C04B2235/443Nitrates or nitrites
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/602Making the green bodies or pre-forms by moulding
    • C04B2235/6025Tape casting, e.g. with a doctor blade
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/66Specific sintering techniques, e.g. centrifugal sintering
    • C04B2235/661Multi-step sintering
    • C04B2235/662Annealing after sintering
    • C04B2235/663Oxidative annealing
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/76Crystal structural characteristics, e.g. symmetry
    • C04B2235/767Hexagonal symmetry, e.g. beta-Si3N4, beta-Sialon, alpha-SiC or hexa-ferrites
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/32Ceramic
    • C04B2237/34Oxidic

Definitions

  • the present invention relates to oxide ceramics and ceramic electronic components, and more particularly, oxide ceramics formed of a ferromagnetic dielectric material exhibiting an electromagnetic effect, and ceramic electronic components such as variable inductors using the oxide ceramics. About.
  • ferromagnetic dielectric (multiferroics) materials that exhibit a combined action in which ferromagnetism and ferroelectricity coexist have attracted attention and are actively researched and developed.
  • This ferromagnetic dielectric material induces a helical magnetic order when a magnetic field is applied and exhibits ferroelectricity, causing an electric polarization, changing an electric polarization and a dielectric constant, and applying an electric field. It is known to exhibit a so-called electromagnetic effect in which magnetization occurs or changes in magnetization.
  • the ferromagnetic dielectric material can cause a change in magnetization due to an electric field and a change in electric polarization due to a magnetic field due to the above-described electromagnetic effect.
  • Application to various magnetic electronic devices such as a variable magnetization device for a write head of a storage medium, a magnetic sensor for detecting magnetism, and a nonvolatile memory is expected.
  • Patent Document 1 discloses a spin structure in which ferroelectricity and spin direction rotate so that the spin direction is along the outside of a cone (open angle ⁇ of the apex of the cone is in the range of 0 ° ⁇ ⁇ 90 °).
  • a multiferroic element has been proposed in which the direction of electric polarization substantially orthogonal to the external magnetic field is controlled by applying an external magnetic field to a multiferroic solid material having both ferromagnetism.
  • Patent Document 2 discloses a multiferroic solid material containing both iron and iron as a main raw material and having both ferroelectricity and ferromagnetism, and a multiferrous that is induced by a weak external magnetic field of 300 G (gauss) or less. Loic elements have been proposed.
  • Patent Document 2 when a ferrite compound of Ba 2 Mg 2 Fe 12 O 22 is used as a ferromagnetic dielectric material (multiferroic material) and a low magnetic field of 300 G (0.03 T) is applied, It is described that an electric current flows in response to application of an alternating magnetic field at ⁇ 268 ° C. (5 K), and the electric polarization alternately generates positive and negative.
  • Patent Document 3 includes a general formula (Sr 1- ⁇ Ba ⁇ ) 3 (Co 1- ⁇ B ⁇ ) 2 Fe 24 O 41 + ⁇ (where B represents Ni, Zn, Mn, Mg And one or more elements selected from the group consisting of Cu and ⁇ , ⁇ , and ⁇ are 0 ⁇ ⁇ ⁇ 0.3, 0 ⁇ ⁇ ⁇ 0.3, and ⁇ 1 ⁇ ⁇ ⁇ 1, respectively.
  • An electromagnet effect material having an electromagnetism effect in a temperature range of 250 to 350 K and a magnetic field range of 0.05 T (Tesla) or less is proposed.
  • Patent Document 3 a ferromagnetic dielectric material having a hexagonal Z-type crystal structure represented by the above general formula is used, and is swept between ⁇ 0.05 T to +0.05 T.
  • Patent Document 3 although a maximum electromagnetic coupling coefficient of about 470 ps / m is obtained near room temperature by using a ferromagnetic dielectric material having a hexagonal Z-type crystal structure, it is apparent from the above general formula. Thus, the crystal structure is complicated, and it is difficult to obtain a ferromagnetic dielectric material having a stable crystal structure in which no heterogeneous phase is formed.
  • the present invention has been made in view of such circumstances, and oxide ceramics capable of easily producing a much larger electromagnetic effect at room temperature than conventional ones, and ceramic electronic parts using the oxide ceramics.
  • the purpose is to provide.
  • An oxide ceramic made of a ferrite compound represented by the general formula (Sr, Ba) 2 Co 2 Fe 12 O 22 can generate and control electric polarization in a low magnetic field. Moreover, the oxide ceramics can maintain the helical magnetic order capable of exhibiting ferroelectricity stably up to a relatively high temperature, so that the electromagnetism effect can be exhibited at room temperature by making improvements. it is conceivable that.
  • the present inventors conducted extensive research on the above-mentioned (Sr, Ba) 2 Co 2 Fe 12 O 22- based compound.
  • the mixing ratio of Ba and Sr at the Sr site was set within a predetermined range, and one of Co Part is replaced with Mg at a predetermined blending ratio, and a part of Fe is replaced with Al at a predetermined blending ratio, so that even at room temperature, it is much larger than previously possible in the vicinity of the zero magnetic field.
  • the inventors have obtained the knowledge that a ferromagnetic dielectric oxide ceramic can be obtained which can obtain an electromagnetic coupling coefficient and has a good electric polarization in a low magnetic field.
  • the oxide ceramics may contain Mg as described above, so that the polarity of the electric polarization is not reversed even if the polarity of the applied magnetic field is reversed. I understood.
  • the (Sr, Ba) 2 Co 2 Fe 12 O 22 -based compound typically has a hexagonal Y-type crystal structure, but is symmetric from the hexagonal system. If the ferrite compound contains Sr, Ba, Co, and Fe in the main component, even if the crystal structure is slightly displaced and the crystal system is less symmetric than the hexagonal crystal, the above-described forms of Mg and Al It was found that the same effect can be obtained by adding a predetermined amount.
  • the oxide ceramic according to the present invention is formed of a ferrite compound containing at least Sr, Ba, Co, and Fe, and the Ba is made of the Sr.
  • X is 0.7 to 1.3 when the content of Ba is x / 2 in terms of molar ratio with respect to the total amount of Ba and Sr.
  • Mg is contained in a form that replaces a part of the Co, and when the content of the Mg is y / 2 in terms of a molar ratio with respect to the total amount of the Mg and the Co, y is 0.
  • Al is contained in a form that replaces part of the Fe, and when the content of the Al is z / 12 in terms of molar ratio with respect to the total amount of the Al and the Fe, z is 0.8 to 1.2. To have.
  • the oxide ceramics of the present invention have the general formula [Sr 2-x Ba x Co 2-y Zn y Fe 12-z Al z O 22] ( but, 0.7 ⁇ x ⁇ 1.3,0 ⁇ y ⁇ 0.8, 0.8 ⁇ z ⁇ 1.2).
  • y is 0.4 or more.
  • the polarity of the electric polarization does not reverse when the polarity of the magnetic field is reversed.
  • the ceramic electronic component according to the present invention is a ceramic electronic component in which external electrodes are formed on the surface of a component element body, and the component element body is formed of any of the oxide ceramics described above. It is characterized by that.
  • the coil is arranged so as to have an inductance corresponding to the magnetic permeability of the component element body.
  • the internal electrode is embedded in the component element body.
  • the ceramic electronic component according to the present invention is a ceramic electronic component in which an external electrode is formed on a surface of a component element body, wherein the component element body is formed of the oxide ceramic. .
  • the internal electrode is embedded in the component element body.
  • the oxide ceramic of the present invention is formed of a ferrite compound containing at least Sr, Ba, Co, and Fe, and the Ba is contained in a form that replaces a part of the Sr, and the Ba
  • the content is x / 2 in terms of molar ratio
  • x is 0.7 to 1.3
  • Mg is contained in a form that substitutes a part of Co
  • y is 0.8 or less
  • Al is contained in a form that replaces a part of the Fe
  • the content of Al is converted in terms of molar ratio.
  • z / 12 z is 0.8 to 1.2. Therefore, even at room temperature, a large electromagnetic coupling coefficient can be obtained in the vicinity of the zero magnetic field, and good electrical characteristics can be obtained with a low magnetic field. A ferromagnetic dielectric having polarization can be obtained.
  • the oxide ceramics do not reverse the polarity of the electric polarization even if the polarity of the applied magnetic field is reversed, they are applied to various ceramic electronic components that are expected to exhibit this type of electromagnetic effect. Is possible.
  • a ceramic electronic component in which external electrodes are formed on the surface of the component element body, wherein the component element body is formed of any of the oxide ceramics described above Therefore, even at room temperature, a large electromagnetic coupling coefficient can be obtained in the vicinity of the zero magnetic field, it has a large electric polarization at a low magnetic field, and even if the polarity of the applied magnetic field is reversed, the electric field Since the polarity does not reverse, various ceramic electronic components such as variable inductors that are required to exhibit this type of electromagnetic effect can be realized.
  • FIG. 1 It is a front view which shows one Embodiment of the ceramic electronic component formed using the oxide ceramics based on this invention. It is sectional drawing of FIG. It is the perspective view which showed typically the polarization processing apparatus used in the Example. It is the perspective view which showed typically the electromagnetic current measuring apparatus used in the Example. It is a figure which shows the time-dependent change of the current density of sample number 3, and a magnetic field. It is a figure which shows the time-dependent change of the current density of sample number 3, and an electric polarization. It is a figure which shows the relationship between the magnetic field of sample number 3, and an electromagnetic coupling coefficient.
  • the oxide ceramic as an embodiment of the present invention has a hexagonal Y-type crystal structure containing at least Sr, Ba, Co, and Fe.
  • an S block of a spinel structure (CoO.Fe 2 O 3 ) and a T block of a hexagonal close-packed structure of (Sr, Ba) and O (oxygen atoms) are formed by TS It has a laminated structure laminated in the order of -TSSTS ....
  • Ba is contained in a form in which a part of Sr is substituted, and when the content of Ba is x / 2 in terms of molar ratio with respect to the total amount of Ba and Sr, x is 0.7. It is assumed to be 1.3.
  • Mg is contained in a form in which a part of Co is substituted
  • y is 0.8. It is as follows.
  • the oxide ceramic is mainly composed of an SrBaCo 2 Fe 12 O 22- based compound having a hexagonal Y-type crystal structure, that is, an (Sr, Ba) O 2. (CoO) 2. (Fe 2 O 3 ) 6- based compound.
  • SrBaCo 2 Fe 12 O 22- based compound having a hexagonal Y-type crystal structure that is, an (Sr, Ba) O 2.
  • CoO CoO
  • Fe 2 O 3 6- based compound.
  • A general formula (A).
  • the present oxide ceramics can obtain a large electromagnetic coupling coefficient in the vicinity of the zero magnetic field even at room temperature when the general formula (A) satisfies the formulas (1) to (3).
  • the present oxide ceramics can provide a ferromagnetic dielectric material in which the polarity of the electric polarization P is not reversed even when the polarity of the applied magnetic field B is reversed.
  • an electric polarization P is induced when a helical magnetic order occurs, and the magnetic order can be manipulated by manipulating the direction of the electric polarization by an electric field.
  • the electromagnetic coupling coefficient ⁇ is defined as the electromagnetic coupling coefficient ⁇ as shown in the equation (4), the electromagnetic coupling coefficient ⁇ Ferromagnetic dielectric properties can be evaluated.
  • ⁇ 0 (dP / dB) (4)
  • the current density J of the electromagnetic current can be expressed by Equation (5).
  • the electric polarization P can be obtained by integrating the current density J of the electromagnetic current with time t.
  • dB / dt indicates the magnetic field sweep rate.
  • the electromagnetic coupling coefficient ⁇ can be expressed by the formula (7).
  • the electromagnetic coupling coefficient ⁇ can be obtained by dividing the product of the vacuum permeability ⁇ 0 and the current density J by the sweep speed (dB / dt) of the magnetic field B.
  • the electromagnetic coupling coefficient ⁇ increases as the current density J of the electromagnetic current increases. Therefore, as the rate of change of the electric polarization P related to the current density J becomes larger from the equation (5), the electromagnetic coupling coefficient ⁇ becomes larger, and a huge electromagnetic effect can be obtained. Become.
  • the electromagnetic coupling coefficient ⁇ is obtained from the electric polarization P generated by sweeping the magnetic field B, and is almost equivalent to a change in magnetization when an electric field is applied. Therefore, the larger the electromagnetic coupling coefficient ⁇ , the larger the change in magnetization and permeability when an electric field is applied.
  • the electric polarization P is induced in a specific direction with a low magnetic field, the electric polarization P disappears or decreases in the vicinity of the zero magnetic field, and then the polarity of the magnetic field B is reversed with the zero magnetic field interposed therebetween.
  • the polarity of the electric polarization P is not reversed.
  • the direction of the electric polarization P is determined by voltage polarization in a magnetic field, and the direction can be freely changed by performing the polarization process in an arbitrary direction.
  • x is in the range of 0.7 to 1.3 as shown in the above formula (1) because when x is less than 0.7 or more than 1.3, the helical magnetic ordering is performed at room temperature. This is because it is difficult to induce the phase and the electric polarization P cannot be generated.
  • y is set to 0.8 or less as shown in the above formula (2).
  • y exceeds 0.8, the molar amount of Co is so small that the electromagnetic current can be measured at room temperature. This is because the electric polarization may not be generated.
  • y in the general formula (A) is 0.8 or less, even if the polarity of the magnetic field B is reversed, the polarity of the electric polarization P can be prevented from being reversed. 0.4 ⁇ y ⁇ 0.8. That is, by setting y within this range, even if the polarity of the magnetic field B is reversed, the polarity of the electric polarization P is not reversed, and an oxide ceramic having a good electromagnetic effect at room temperature can be reliably obtained. it can.
  • Mg is an essential component in order to obtain oxide ceramics in which the polarity of the electric polarization P is not reversed even if the polarity of the applied magnetic field B is reversed.
  • the ferrite compound having the hexagonal Y-type crystal structure having the stacking period of the S block and the T block has been described in detail.
  • the periodic structure of the stacking period is partially broken and the crystal symmetry is hexagonal.
  • the crystal system may be lower than the system.
  • a crystal system in which ions coordinated at a predetermined atomic position of the crystal lattice are slightly displaced from the predetermined atomic position and the symmetry of the crystal is lower than that of the hexagonal system.
  • ions such as O 2 ⁇ , Co 2+ , and Mg 2+ composing the crystal are predetermined atoms whose space group describing the symmetry of the crystal is defined by P6 3 / mmc. Arranged in position.
  • the present invention provides a crystal structure in which the ions move from the predetermined atomic position and are arranged at atomic positions defined by other space groups, and the symmetry of the crystal is lower than that of the hexagonal system. Is also applicable.
  • the ferrite compound containing at least Sr, Ba, Co, and Fe contains the above-mentioned predetermined amounts of Mg and Al, and the crystal symmetry is slightly higher than that of the hexagonal system. Even with a low crystal system, the intended object of the present invention can be achieved.
  • Fe compound such as Fe 2 O 3 , Sr compound such as SrCO 3 , Ba compound such as BaCO 3 , Mg compound such as MgO, Co compound such as Co 3 O 4 , Al 2 O 3 and the like
  • An Al compound is prepared.
  • each ceramic raw material is weighed so that the general formula (A) satisfies the formulas (1) to (3).
  • these weighed ceramic raw materials are put into a pulverizer such as a pot mill together with a pulverizing medium such as partially stabilized zirconium (hereinafter referred to as “PSZ”) balls, a dispersant and a solvent such as pure water. Mix and grind to obtain a mixture.
  • a pulverizer such as a pot mill together with a pulverizing medium such as partially stabilized zirconium (hereinafter referred to as “PSZ”) balls, a dispersant and a solvent such as pure water.
  • PSZ partially stabilized zirconium
  • the mixture is dried and sized, and then calcined at a temperature of 1000 to 1100 ° C. in an air atmosphere for a predetermined time to obtain a calcined product.
  • this calcined product After sizing this calcined product, it is again put into a pulverizer together with a pulverizing medium, a dispersant, and an organic solvent such as ethanol and toluene, sufficiently mixed and pulverized, and then a binder solution is added sufficiently. To obtain a ceramic slurry.
  • the binder solution is not particularly limited.
  • an organic binder such as polyvinyl butyral resin is dissolved in an organic solvent such as ethanol or toluene, and an additive such as a plasticizer is added as necessary. can do.
  • the ceramic slurry thus formed is formed into a sheet shape using a forming method such as a doctor blade method, and cut into predetermined dimensions to obtain a ceramic green sheet. Then, a predetermined number of the ceramic green sheets are laminated and pressure-bonded, and then cut into predetermined dimensions to obtain a ceramic molded body.
  • a forming method such as a doctor blade method
  • the ceramic molded body is treated to remove the binder at 300 to 500 ° C. in an air atmosphere, and then fired at 1150 to 1250 ° C. in the air atmosphere to obtain a ceramic sintered body.
  • the present oxide ceramics it is formed of a ferrite compound containing at least Sr, Ba, Co, and Fe, and the general formula (A) satisfies the formulas (1) to (3). Even at room temperature, a large electromagnetic coupling coefficient ⁇ can be obtained in the vicinity of the zero magnetic field without requiring a magnetic bias. In addition, it is possible to obtain a favorable electric polarization P with a low magnetic field, and without reversing the electric polarization P even if the polarity of the applied magnetic field is reversed, a ferromagnetic dielectric material capable of producing a huge electric magnetic effect at room temperature. Oxide ceramics can be obtained.
  • FIG. 1 is a front view showing an embodiment of a variable inductor as a ceramic electronic component according to the present invention
  • FIG. 2 is a sectional view thereof.
  • the variable inductor has a component body 1 made of the above oxide ceramics and external electrodes 2a and 2b formed at both ends of the component body 1.
  • the variable inductor is provided with a coil so that the magnetic flux passes through the component body 1 when a high-frequency signal flows.
  • the coil 4 formed of a conductive material such as Cu is wound so as to suspend the external electrode 2a and the external electrode 2b.
  • internal electrodes 3a to 3c are embedded in the component body 1 in parallel.
  • the internal electrodes 3a and 3c are electrically connected to one external electrode 2a, and the internal electrode 3b is connected to the other external electrode 2b.
  • This ceramic electronic component can acquire capacitance between the internal electrode 3a and the internal electrode 3b and between the internal electrode 3b and the internal electrode 3c.
  • the electrode material for forming the external electrodes 2a and 2b and the internal electrodes 3a to 3c is not particularly limited as long as it has good conductivity. Various materials such as Pd, Pt, Ag, Ni, and Cu are used. Metal materials can be used.
  • the component body 1 is formed of the above-described oxide ceramics made of a ferromagnetic dielectric, and the coil 4 is wound so as to suspend the external electrode 2a and the external electrode 2b. Therefore, when a high frequency signal is input to the coil 4, the magnetic flux generated in the direction of arrow A passes through the component element body 1, and the number of turns of the coil, the element shape, and the permeability of the component element body 1 are changed. A corresponding inductance is obtained. Further, when a voltage (electric field) is applied to the external electrodes 2a and 2b, a change in magnetization occurs due to the electromagnetic effect, and the inductance L of the coil can be changed. Therefore, the change rate ⁇ L of the inductance L can be controlled by changing the voltage.
  • a voltage electric field
  • the component body 1 is made of the above-described oxide ceramics of the present invention, a magnetic bias may be required because a large electromagnetic coupling coefficient is obtained in the vicinity of the zero magnetic field even at room temperature.
  • electric polarization can be obtained in a low magnetic field, a variable inductor having a huge electromagnetic effect can be obtained.
  • variable inductor can be manufactured as follows.
  • a ceramic green sheet is prepared by the same method and procedure as the above oxide ceramic manufacturing method.
  • a conductive paste for internal electrodes whose main component is a conductive material such as Pd is prepared. Then, a conductive paste for internal electrodes is applied to the ceramic green sheet, and a conductive layer having a predetermined pattern is formed on the surface of the ceramic green sheet.
  • a ceramic green sheet on which a conductive layer is formed and a ceramic green sheet on which a conductive film is not formed are laminated in a predetermined order, and then cut into predetermined dimensions to obtain a ceramic molded body.
  • the ceramic molded body is treated to remove the binder at 300 to 500 ° C. in an air atmosphere, and then fired at 1150 to 1250 ° C. in the air atmosphere to obtain a ceramic sintered body. Thereafter, heat treatment is performed in a predetermined oxygen atmosphere to produce the component body 1.
  • a conductive paste for an external electrode mainly composed of Ag or the like is applied to both ends of the component element body 1 and subjected to a baking treatment, followed by a polarization treatment.
  • magnetic field polarization is performed by applying a predetermined magnetic field at room temperature, and then a predetermined electric field is applied in a direction orthogonal to the direction of the magnetic field to perform electric field polarization, thereby producing a variable inductor.
  • the present invention is not limited to the above embodiment.
  • the oxide ceramic of the present invention can obtain a large electromagnetic coupling coefficient at room temperature and in the vicinity of a zero magnetic field, and can induce a large electromagnetic effect by inducing electric polarization in a low magnetic field. And even if the polarity of the applied magnetic field is reversed, the polarity of the electric polarization P is not reversed. Therefore, although the variable inductor has been described in the above embodiment, the present invention can also be applied to various ceramic electronic components that require the above-described effects.
  • a magnetic sensor that outputs current according to the magnitude of the magnetic field
  • a current sensor that outputs current according to the magnitude of the magnetic field formed by the current flowing in the coil
  • a non-volatile memory that controls magnetization with an electric field
  • a variable capacitor Applicable to devices and the like.
  • the electric field polarization is performed in a direction perpendicular to the magnetic field direction in the magnetic field.
  • the magnetic field direction and the electric field polarization direction are the same direction. Can also obtain a large electromagnetic effect.
  • the general formula (A) is given as an example of the present oxide ceramic, but it is sufficient that at least Sr, Ba, Co, Mg, Fe, and Al are included within a predetermined range.
  • an additive such as ZrO 2 may be contained.
  • the molar ratio of O (oxygen) a slight deviation from the stoichiometric ratio is allowed as long as the characteristics are not affected.
  • Fe 2 O 3 , SrCO 3 , BaCO 3 , Co 3 O 4 , MgO, and Al 2 O 3 were prepared as ceramic raw materials.
  • the ceramic raw material was weighed so that the oxide ceramics, which was a ceramic sintered body, had the composition shown in Table 1.
  • the ceramic raw material, the aqueous polymer dispersant (Kao Co., Kaosela 2210) and pure water thus weighed are put into a polyethylene pot mill together with PSZ balls, mixed and ground for 16 hours, and the mixture is obtained. Obtained.
  • the mixture was dried and sized, and calcined at a temperature of 1100 ° C. for 4 hours in an air atmosphere to obtain a calcined product.
  • polyvinyl butyral binder resin (Sekisui Chemical Co., Ltd., ESREC B “BM-2”) was dissolved in a mixed solvent of ethanol and toluene, and a plasticizer was added to prepare a binder solution.
  • a solvent-based dispersant manufactured by Kao Corporation, Kaosela 8000
  • a mixed solvent of ethanol and toluene are put into a pot mill together with PSZ balls, mixed and ground for 24 hours, and then the binder The solution was added and mixed again for 12 hours, thereby obtaining a ceramic slurry.
  • the ceramic slurry thus prepared was formed into a sheet having a thickness of about 50 ⁇ m by using a doctor blade method, and cut into a predetermined size using a mold to obtain a ceramic green sheet. Then, a predetermined number of the ceramic green sheets were laminated, pressure-bonded at a pressure of 196 MPa, and cut to prepare ceramic molded bodies of sample numbers 1 to 21 having a length: 12 mm, a width: 12 mm, and a thickness: 0.6 mm.
  • the ceramic compacts of sample numbers 1 to 21 were subjected to a binder removal treatment at 500 ° C. in an air atmosphere, and then subjected to a firing treatment at 1200 ° C. in an air atmosphere for 18 hours.
  • a ceramic sintered body was prepared.
  • the ceramic sintered bodies of sample numbers 1 to 21 were heat-treated in a 1 MPa oxygen atmosphere at a temperature of 1090 ° C. for 10 hours, thereby producing the component bodies of sample numbers 1 to 21.
  • the dimensions of the component body were length: 10 mm, width: 10 mm, and thickness: 0.5 mm.
  • DC sputtering was performed using Pt as a target material on both main surfaces of the component element body to produce a surface electrode having a thickness of about 300 nm, and samples Nos. 1 to 21 were obtained. Note that DC sputtering was performed by supplying Ar gas into a vacuum vessel adjusted to a temperature of 25 ° C. and a magnetic field of 5 mmT, and supplying 150 W of power.
  • each of the samples Nos. 1 to 21 was subjected to composition analysis using inductively coupled plasma emission spectroscopy (ICP) method and fluorescent X-ray analysis (XRF) method. As a result, each sample had the composition shown in Table 1. It was confirmed to have. Further, when the crystal structure of each sample was examined by an X-ray diffraction (XRD) method, it was confirmed that it had a hexagonal Y-type crystal structure.
  • ICP inductively coupled plasma emission spectroscopy
  • XRF fluorescent X-ray analysis
  • sample evaluation About each sample of sample numbers 1 to 21, when using a high resistance meter (US Keithley Instruments Inc., 6487) and measuring the specific resistance ⁇ , the specific resistance ⁇ of 50 M ⁇ ⁇ cm or more, It was confirmed that sufficient insulation was obtained.
  • each sample Nos. 1 to 21 was subjected to polarization treatment.
  • FIG. 3 is a perspective view schematically showing the polarization processing apparatus.
  • signal lines 24 a and 24 b are connected to a sample 23 in which surface electrodes 22 a and 22 b are formed on both main surfaces of a component body 21, and the signal lines 24 a and 24 b are connected between the signal lines 24 a and 24 b.
  • a DC power supply 25 is interposed.
  • the sample 23 has an internal electrode as described above, the direction of the magnetic field applied to the sample 23 (indicated by arrow B) and the direction of the electric field in which electric polarization is performed (indicated by arrow C). Are arranged so as to be orthogonal to each other.
  • the first 1.5 T direct current magnetic field is magnetized from a special magnetic structure (helical magnetism) that causes the electromagnetism effect to a magnetic structure (ferrimagnetism) that does not exhibit the electromagnetism effect.
  • a special magnetic structure helical magnetism
  • magnetic structure ferrrimagnetism
  • the magnetic field in which this magnetic transition occurs shifts to the high magnetic field side in a low temperature environment, and shifts to the low magnetic field side in a high temperature environment. Therefore, when magnetic field polarization is performed at a low temperature, it is preferable to apply a high magnetic field. On the other hand, at a high temperature, magnetic field polarization is possible even when a low magnetic field is applied.
  • the 0.5 T DC magnetic field means a magnetic field in which the helical magnetism becomes stable, and may not be 0.5 T as long as the magnetic field in which the helical magnetism becomes stable at the temperature at which magnetic field polarization is performed.
  • electric polarization was performed by applying an electric field of 800 V / mm, but the larger the applied electric field, the better.
  • the sample was arranged so that the applied magnetic field and the electric field were orthogonal to each other, and the magnetic field polarization was performed.
  • This is the largest electric current in the above arrangement in the shape of the sample produced in this example. This is because a magnetic effect can be obtained, and the electromagnetic effect can be obtained even if the magnetic field and the electric field are not arranged orthogonally.
  • FIG. 4 is a perspective view schematically showing a characteristic evaluation apparatus for the sample 23.
  • This characteristic evaluation apparatus is provided with a pier-conmeter (made by Keithley Instruments, Inc., 6487) 26 in place of the DC power supply 25 of FIG. 4, and the evaluation sample is the direction of the applied magnetic field as in FIG. And the direction of the electric field at the time of electric polarization are orthogonal to each other.
  • the current density J of the measured electromagnetic current was integrated over time, and the electric polarization P serving as a ferroelectric index was obtained. Further, for each sample from which the electric polarization P was obtained, it was examined whether or not the polarity of the electric polarization P was reversed when the polarity of the applied magnetic field was reversed.
  • Table 1 shows the composition, electric polarization P, and presence / absence of polarity inversion for each of the sample numbers 1 to 21.
  • the polarity reversal means that the polarity of the electric polarization P is not reversed even if the polarity of the applied magnetic field is reversed, and the polarity of the electric polarization P is reversed when the polarity of the applied magnetic field is reversed.
  • x was marked with x.
  • Sample No. 1 had an y value of 1.0 and an excessively high Mg content, and therefore could not exhibit an electromagnetic effect.
  • Sample No. 2 had y of 0.9, and also in this case, the content of Mg was large, so that the electromagnetism current could not be measured and the electric polarization P could not be obtained.
  • Sample No. 7 had an x of 1.4, and the molar ratio of Sr to Ba was relatively small. Therefore, the electromagnetism current could not be measured at room temperature, and the electric polarization P was not obtained.
  • Sample No. 9 had x of 0.6, and the molar ratio of Sr to Ba was relatively large. Also in this case, the electromagnetism current could not be measured at room temperature, and the electric polarization P was not obtained. .
  • Sample Nos. 10 and 11 had z as small as 0.7, and a helical magnetic structure that generates electric polarization P was not induced at room temperature, and an electromagnetism current could not be measured.
  • Sample Nos. 16 and 17 have a large z of 1.3, and a heterogeneous phase is generated.
  • the generation of the heterogeneous phase inhibits the expression of the electromagnetic characteristics, and the electromagnetism current cannot be measured at room temperature, and the electric polarization P is obtained. There wasn't.
  • Sample Nos. 5, 13, and 15 had good electric polarization P of 15.1 to 17.5 ⁇ C / m 2 , but y was 0.0 and Mg was not contained in the sample. When the polarity of the applied magnetic field was reversed, the polarity of the electric polarization P was also reversed.
  • sample numbers 3, 4, 6, 8, 12, 14, and 18 to 21 are such that x is 0.7 to 1.3, y is 0.8 or less, and z is 0.8 to 1.2. Since both are within the scope of the present invention, the electric polarization P has a good electric polarization P of 6.0 ⁇ C / m 2 or more at a room temperature of 298 K, and even if the polarity of the applied magnetic field is reversed, the polarity of the electric polarization P It was found that a ferromagnetic dielectric exhibiting a desired electromagnetic effect that does not invert can be obtained.
  • FIG. 5 is a diagram showing the change over time of the magnetic field and current density J of Sample No. 3, where the horizontal axis represents time (s), the right vertical axis represents magnetic field B (T), and the left vertical axis represents current density J ( ⁇ A / m 2 ).
  • FIG. 6 is a diagram showing the change over time in the electric polarization P and the current density J of sample No. 3.
  • the horizontal axis represents time (s)
  • the right vertical axis represents electric polarization P ( ⁇ C / m 2 )
  • the left vertical axis represents The current density is J ( ⁇ A / m 2 ).
  • the electromagnetic coupling coefficient ⁇ was determined based on the mathematical formula (7) described in [Mode for Carrying Out the Invention].
  • ( ⁇ 0 ⁇ J) / (dB / dt) (7)
  • the vacuum permeability ⁇ 0 is 4 ⁇ ⁇ 10 ⁇ 7 H / m.
  • FIG. 7 is a diagram showing the relationship between the magnetic field of sample number 3 and the electromagnetic coupling coefficient ⁇ , where the horizontal axis represents the magnetic field (T) and the vertical axis represents the electromagnetic coupling coefficient ⁇ (ps / m).
  • the electromagnetic coupling coefficient ⁇ is about 600 ps / m at about ⁇ 0.025 T at room temperature of 298 K, and a ferromagnetic dielectric material having a large electromagnetic coupling coefficient ⁇ can be obtained. did it.
  • the oxide ceramics of the present invention can obtain a large electric polarization P of 6.0 to 13.3 ⁇ C / m 2 at a low magnetic field even at room temperature, and about 600 ps / s in the vicinity of the zero magnetic field. It is possible to obtain a ferromagnetic dielectric material capable of obtaining a large electromagnetic coupling coefficient ⁇ of m and exhibiting a desired electromagnetic effect in which the polarity of the electric polarization P is not reversed even when the polarity of the applied magnetic field is reversed. I understood.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Power Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Magnetic Ceramics (AREA)
  • Compounds Of Iron (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

 酸化物セラミックスは、一般式[Sr2-xBaCo2-yMgFe12-zAl22](ただし、0.7≦x≦1.3、0<y≦0.8、0.8≦z≦1.2)で表される。yは好ましくは0.4以上である。この酸化物セラミックスは、印加される磁界の極性が反転しても、電気分極の極性は反転しない。セラミック電子部品としての可変インダクタは、部品素体1が、この酸化物セラミックスで形成されている。そして、Cu等の導電性材料で形成されたコイル4が、外部電極2aと外部電極2bとを懸架するように巻回されている。これにより、従来に比べ室温で格段に大きな電気磁気効果の発現が容易に可能な酸化物セラミックス、及びこの酸化物セラミックスを使用したセラミック電子部品を実現する。

Description

酸化物セラミックス、及びセラミック電子部品
 本発明は、酸化物セラミックス、及びセラミック電子部品に関し、より詳しくは電気磁気効果を示す強磁性誘電体材料で形成された酸化物セラミックス、及びこの酸化物セラミックスを使用した可変インダクタ等のセラミック電子部品に関する。
 近年、強磁性と強誘電性とが共存して複合的な作用を奏する強磁性誘電体(マルチフェロイックス(Multiferroics))材料が注目され、盛んに研究・開発されている。
 この強磁性誘電体材料は、磁界を作用させると螺旋型の磁気秩序を誘起させて強誘電性を発現し、電気分極を生じさせたり、電気分極や誘電率が変化し、電界を作用させると磁化が生じたり、磁化が変化するいわゆる電気磁気効果を示すことが知られている。
 強磁性誘電体材料は、上述した電気磁気効果により、電界による磁化の変化や磁界による電気分極の変化を生じさせることができることから、例えば、電界の印加によって透磁率や磁化が変化する可変インダクタや記憶媒体の書き込みヘッド用の可変磁化デバイス、或いは磁気を検出する磁気センサ、更には不揮発性メモリ等の各種セラミック電子部品への応用が期待されている。
 そして、特許文献1には、強誘電性と、スピンの向きが円錐(円錐の頂点の開き角度αは0度<α≦90度の範囲)の外側を沿うように回転しているスピン構造を有する強磁性を合わせ持つマルチフェロイック固体材料に、外部磁場を印加することにより、前記外部磁場とほぼ直交した電気分極の向きを制御するようにしたマルチフェロイック素子が提案されている。
 この特許文献1では、強磁性誘電体材料(マルチフェロイック材料)としてCoCr(M=Mn,Fe,Co,Ni)を使用することにより、26K付近の極低温領域で磁界の作用によって電気分極を生じさせ、5K付近で2μC/mの電気分極を得ている。
 また、特許文献2には、酸化鉄を主原料として含む強誘電性と強磁性を併せもつマルチフェロイック固体材料で、300G(ガウス)以下の弱い外部磁場により電流を誘起させるようにしたマルチフェロイック素子が提案されている。
 この特許文献2では、強磁性誘電体材料(マルチフェロイック材料)として、BaMgFe1222のフェライト化合物を使用し、300G(0.03T)の低磁界を作用させた場合に、-268℃(5K)で交流磁場印加に相応して電流が流れ、電気分極も正負が交互に発生していることが記載されている。
 さらに、特許文献3には、一般式(Sr1-αBaα(Co1-ββFe2441+δ(但し、式中、Bは、Ni、Zn、Mn、Mg及びCuからなる群から選ばれる一種以上の元素であり、α、β、δは、それぞれ、0≦α≦0.3、0≦β≦0.3、-1≦δ≦1である。)で示される酸化物セラミックスを主要成分として構成され、250~350Kの温度範囲かつ0.05T(テスラ)以下の磁場範囲において、電気磁気効果を有する電気磁気効果材料が提案されている。
 この特許文献3では、上記一般式で示される六方晶Z型結晶構造を有する強磁性誘電体材料を使用し、-0.05T~+0.05Tの間で掃引したところ、室温付近かつ0.05T以下の磁界範囲で電気分極が1.0~9.5μC/mであって電気磁気結合係数が100ps/m以上の領域を有し、最大で470ps/mを有する強磁性誘電体材料を得ている。
国際公開2007/135817(請求項1、3、段落番号〔0031〕、図7等) 特開2009-224563号(請求項1、3、段落番号〔0032〕、図7等) 特開2012-1396号公報(請求項1、段落番号〔0010〕、〔0061〕、表3、図3等)
 ところで、強磁性誘電体材料を可変インダクタや不揮発性メモリ等の各種電子部品に応用するためには、室温で電気磁気効果を発現させる必要がある。
 しかしながら、上記特許文献1及び2では、室温よりも遥かに低い低温域でのみ電気磁気効果が発現されており、室温で発現させることができないため、電気磁気効果を利用した実用的な各種セラミック電子部品を実現するのは困難な状況にある。
 また、特許文献3では、六方晶Z型結晶構造を有する強磁性誘電体材料を使用することにより、室温付近で最大470ps/mの電気磁気結合係数を得ているものの、上述した一般式から明らかなように、結晶構造が複雑であり、このため異相が形成されることのない安定した結晶構造を有する強磁性誘電体材料を得るのが困難である。
 本発明はこのような事情に鑑みなされたものであって、従来に比べ室温で格段に大きな電気磁気効果の発現が容易に可能な酸化物セラミックス、及びこの酸化物セラミックスを使用したセラミック電子部品を提供することを目的とする。
 一般式(Sr,Ba)CoFe1222で表されるフェライト化合物からなる酸化物セラミックスは、低磁界での電気分極の生成及び制御が可能である。しかも、この酸化物セラミックスは、強誘電性の発現が可能な螺旋型の磁気秩序が比較的高温まで安定的に維持できることから、改良を加えることによって室温での電気磁気効果の発現が可能であると考えられる。
 そこで、本発明者らは、上記(Sr,Ba)CoFe1222系化合物について鋭意研究を行ったところ、SrサイトのBaとSrの配合比率を所定範囲とすると共に、Coの一部を所定の配合比率でMgと置換し、かつFeの一部を所定の配合比率でAlと置換することにより、室温であっても、ゼロ磁界近傍域で従来では実現できなかった格段に大きな電気磁気結合係数を得ることができ、かつ低磁界で良好な電気分極を有する強磁性誘電体の酸化物セラミックスを得ることができるという知見を得た。
 更に、本発明者らが鋭意研究を重ねたところ、この酸化物セラミックスは、上述したMgを含有させることにより、印加される磁界の極性が反転しても、電気分極の極性が反転しないことが分かった。
 また、本発明者らの更なる鋭意研究の結果、上記(Sr,Ba)CoFe1222系化合物は、典型的には六方晶Y型結晶構造を有するが、六方晶系から対称性が若干変位し、該六方晶よりも対称性の低い晶系であっても、主成分中にSr、Ba、Co、及びFeを含有したフェライト化合物であれば、Mg及びAlを上述した形態で所定量含有させることにより、同様の効果が得られることが分かった。
 本発明はこのような知見に基づきなされたものであって、本発明に係る酸化物セラミックスは、少なくともSr、Ba、Co、及びFeを含有したフェライト化合物で形成され、前記Baは、前記Srの一部を置換する形態で含有されると共に、前記Baの含有量を前記Ba及び前記Srの総量に対しモル比換算でx/2としたときに、xは0.7~1.3であり、Mgが、前記Coの一部を置換する形態で含有されると共に、前記Mgの含有量を前記Mg及び前記Coの総量に対しモル比換算でy/2としたときに、yは0.8以下であり、Alが、前記Feの一部を置換する形態で含有されると共に、前記Alの含有量を前記Al及び前記Feの総量に対しモル比換算でz/12としたときに、zは0.8~1.2であることを特徴としている。
 また、本発明の酸化物セラミックスは、一般式[Sr2-xBaCo2-yZnFe12-zAl22](ただし、0.7≦x≦1.3、0<y≦0.8、0.8≦z≦1.2)で表されるのが好ましい。
 また、本発明の酸化物セラミックスは、前記yが、0.4以上であるのが好ましい。
 また、本発明の酸化物セラミックスは、電気分極の極性は、磁界の極性が反転した場合に反転しないのが好ましい。
 また、本発明に係るセラミック電子部品は、部品素体の表面に外部電極が形成されたセラミック電子部品であって、前記部品素体が、上記いずれかに記載の酸化物セラミックスで形成されていることを特徴としている。
 また、本発明のセラミック電子部品は、コイルが、前記部品素体の透磁率に応じたインダクタンスを有するように配されているのが好ましい。
 これにより これにより強磁性誘電特性を活用した磁化スイッチや可変インダクタ等の各種セラミック電子部品を容易に得ることができる。
 また、本発明のセラミック電子部品は、内部電極が、前記部品素体に埋設されているのが好ましい。
 また、本発明に係るセラミック電子部品は、部品素体の表面に外部電極が形成されたセラミック電子部品であって、前記部品素体が、上記酸化物セラミックスで形成されていることを特徴としている。
 さらに、本発明のセラミック電子部品は、内部電極が、前記部品素体に埋設されているのも好ましい。
 本発明の酸化物セラミックスによれば、少なくともSr、Ba、Co、及びFeを含有したフェライト化合物で形成され、前記Baは、前記Srの一部を置換する形態で含有されると共に、前記Baの含有量をモル比換算でx/2としたときに、xは0.7~1.3であり、Mgが、前記Coの一部を置換する形態で含有されると共に、前記Znの含有量をモル比換算でy/2としたときに、yは0.8以下であり、Alが、前記Feの一部を置換する形態で含有されると共に、前記Alの含有量をモル比換算でz/12としたときに、zは0.8~1.2であるので、室温であっても、ゼロ磁界近傍域で大きな電気磁気結合係数を得ることができ、かつ低磁界で良好な電気分極を有する強磁性誘電体を得ることができる。
 しかも、上記酸化物セラミックスは、印加される磁界の極性が反転しても電気分極の極性が反転しないことから、このようなタイプの電気磁気効果の発現が期待される各種セラミック電子部品への応用が可能となる。
 また、本発明のセラミック電子部品によれば、部品素体の表面に外部電極が形成されたセラミック電子部品であって、前記部品素体が、上記いずれかに記載の酸化物セラミックスで形成されるので、室温であっても、ゼロ磁界近傍域で大きな電気磁気結合係数を得ることができ、かつ低磁界で大きな電気分極を有し、また、印加される磁界の極性が反転しても電界の極性が反転しないことから、この種のタイプの電気磁気効果の発現が要請される可変インダクタ等の各種セラミック電子部品を実現することができる。
本発明に係る酸化物セラミックスを使用して形成されたセラミック電子部品の一実施の形態を示す正面図である。 図1の断面図である。 実施例で使用した分極処理装置を模式的に示した斜視図である。 実施例で使用した電気磁気電流測定装置を模式的に示した斜視図である。 試料番号3の電流密度及び磁界の経時変化を示す図である。 試料番号3の電流密度及び電気分極の経時変化を示す図である。 試料番号3の磁界と電気磁気結合係数との関係を示す図である。
 次に、本発明の実施の形態を詳説する。
 本発明の一実施の形態としての酸化物セラミックスは、少なくともSr、Ba、Co、及びFeを含有した六方晶Y型結晶構造を有している。
 この六方晶Y型結晶構造は、スピネル構造(CoO・Fe)のSブロックと(Sr,Ba)及びO(酸素原子)による六方最密充填構造のTブロックとがが、T-S-T-S-T-S-・・・の順序で積層された積層構造を有している。
 そして、Baは、Srの一部を置換する形態で含有されると共に、Baの含有量を前記Ba及び前記Srの総量に対しモル比換算でx/2としたときに、xは0.7~1.3とされている。
 また、Mgが、Coの一部を置換する形態で含有されると共に、Mgの含有量を前記Mg及び前記Coの総量に対しモル比換算でy/2としたときに、yは0.8以下とされている。
 さらに、Alが、Feの一部を置換する形態で含有されると共に、Alの含有量を前記Fe及び前記Alの総量に対しモル比換算でz/12としたときに、zは0.8~1.2とされている。
 すなわち、上記酸化物セラミックスは、六方晶Y型結晶構造を有するSrBaCoFe1222系化合物、すなわち(Sr,Ba)O・(CoO)・(Fe系化合物を主成分とし、下記一般式(A)で表すことができる。
 Sr2-xBaCo2-yMgFe12-zAl22 ...(A)
 そして、一般式(A)中、x、y、zは数式(1)~(3)を満足している。
 0.7≦x≦1.3 ...(1)
 0<y≦0.8   ...(2)
 0.8≦z≦1.2 ...(3)
 このように本酸化物セラミックスは、一般式(A)が数式(1)~(3)を満足することにより、室温であっても、ゼロ磁界近傍域で大きな電気磁気結合係数を得ることができ、かつ低磁界で良好な電気分極を得ることが可能となり、これにより大きな電気磁気効果を発現することができる。
 しかも、本酸化物セラミックスは、印加される磁界Bの極性が反転しても、電気分極Pの極性が反転しない強磁性誘電体材料を得ることができる。
 電気磁気効果を示す強磁性誘電体材料では、螺旋型の磁気秩序が生じると電気分極Pが誘起され、電界によって電気分極の方向を操作することにより磁気秩序が操作できることから、電気分極Pと磁気秩序との間には密接な関係があり、数式(4)に示すように、磁界Bの変化に対する電気分極Pの変化を電気磁気結合係数αと定義することにより、該電気磁気結合係数αで強磁性誘電特性を評価することができる。
 α=μ(dP/dB)...(4)
 ここで、μは真空の透磁率(=4π×10-7H/m)である。
 一方、電気磁気電流の電流密度Jは、数式(5)で表わすことができる。
 J=dP/dt ...(5)
 したがって、電気磁気電流の電流密度Jを時間tで積分することにより、電気分極Pを求めることができる。
 また、磁界Bの変化に対する電気分極Pの変化は、数式(6)で表わされる。
 dP/dB=(dP/dt)/(dB/dt)=J/(dB/dt)...(6)
 ここで、dB/dtは磁場の掃引速度を示している。
 数式(6)に上記数式(4)を代入すると電気磁気結合係数αは数式(7)で表わすことができる。
 α=(μ・J)/(dB/dt)...(7)
 したがって、電気磁気結合係数αは、真空の透磁率μと電流密度Jとの積を磁界Bの掃引速度(dB/dt)で除算することにより求めることができる。
 数式(7)から明らかなように、電気磁気結合係数αは、電気磁気電流の電流密度Jが大きくなればなるほど大きくなる。したがって、数式(5)より電流密度Jに関連する電気分極Pの変化率が大きくなればなるほど、電気磁気結合係数αは大きくなり、巨大な電気磁気効果を得ることができ、強磁性誘電体となる。また、電気磁気結合係数αは、磁界Bの掃引によって発生する電気分極Pから求められるが、電界を印加した際の磁化の変化とほぼ等価となる。したがって、電気磁気結合係数αが大きいほど、電界を印加した際の磁化や透磁率の変化も大きくなる。
 そして、本実施の形態では、上記一般式(A)が上記数式(1)~(3)を満足しているので、室温であっても、低磁界で良好な電気分極Pを得ることができ、ゼロ磁界近傍域で大きな電気磁気結合係数αを得ることができる。
 また、本実施の形態では、電気分極Pは低磁界で特定方向に誘起し、ゼロ磁界近傍域で電気分極Pは消滅若しくは低下し、その後、ゼロ磁界を挟んで磁界Bの極性が反転しても、電気分極Pの極性は反転しない。例えば、印加磁界の極性が正から負に反転しても、電気分極の極性は反転することなく正磁界を維持する。また、電気分極Pの向きは、磁界中での電圧分極によって決定され、分極処理を任意の方向で行うことにより、自由に向きを変えることができる。
 このように磁界Bの極性が反転しても、強誘電分極は同一方向に誘起され、電気分極Pの極性が反転しないタイプの電気磁気効果を発現することができる。
 ここで、xを、上記数式(1)に示すように0.7~1.3の範囲としたのは、xが0.7未満又は1.3超になると、室温で螺旋型の磁気秩序相を誘起するのが困難となり、電気分極Pを生成できなくなるおそれがあるからである。
 また、yを、上記数式(2)に示すように0.8以下としたのは、yが0.8を超えると、Coの含有モル量が過少となって室温で電気磁気電流を計測できなくなり、電気分極を生成できなくなるおそれがあるからである。
 そして、一般式(A)中のyが0.8以下であれば、磁界Bの極性が反転しても、電気分極Pの極性が反転しないようにすることができるが、yは、好ましくは0.4≦y≦0.8である。すなわち、yをこの範囲とすることにより、磁界Bの極性が反転しても電気分極Pの極性が反転することもなく、室温で良好な電気磁気効果を有する酸化物セラミックスを確実に得ることができる。
 尚、酸化物セラミックス中にMgを含有しない場合、すなわちyが0の場合であっても、室温かつ低磁界で大きな電気分極Pを得ることができるが、この場合は、ゼロ磁界を挟んで磁界Bの極性が反転すると、電気分極Pの極性も反転する。したがって、印加される磁界Bの極性が反転しても電気分極Pの極性が反転しない酸化物セラミックスを得るためにはMgは必須の成分となる。
 また、zを、上記数式(3)に示すように0.8~1.2の範囲としたのは以下の理由による。
 すなわち、zが0.8未満になると、室温で螺旋型の磁気秩序相を誘起するのが困難となり、電気分極Pを生成できなくなるおそれがある。
 一方、zが1.2を超えると、Alの固溶限界を超えてしまって六方晶Y型結晶相以外の異相が生成されやすくなり、このため異相が電気磁気特性の発現を阻害し、その結果電気分極Pを得るのが困難になる。
 尚、上記実施の形態では、Sブロック、Tブロックの積層周期を有する六方晶Y型結晶構造のフェライト化合物について詳述したが、積層周期の周期構造が一部崩れ、結晶の対称性が六方晶系よりも低い晶系であってもよい。
 また、結晶格子の所定原子位置に配位されたイオンが、前記所定原子位置から若干変位し、結晶の対称性が六方晶系よりも低い晶系であってもよい。例えば、六方晶Z型結晶構造では、結晶を構成するO2-、Co2+、Mg2+等のイオンは、結晶の対称性を記述する空間群がP6/mmcで定義される所定原子位置に配される。しかるに、本発明は、上記イオンが前記所定原子位置から移動して他の空間群で定義される原子位置に配され、結晶の対称性が六方晶系よりも低くなっているような結晶構造にも適用できる。
 すなわち、本酸化物セラミックスは、少なくともSr、Ba、Co、Feを含有したフェライト化合物に上述した所定量のMg、Alを含有させるのが重要であり、結晶の対称性が六方晶系よりも若干低い晶系であっても、本発明の所期の目的を達成することができる。
 次に、本酸化物セラミックスの製造方法を詳述する。
 まず、セラミック素原料としてFe等のFe化合物、SrCO等のSr化合物、BaCO等のBa化合物、MgO等のMg化合物、Co等のCo化合物、及びAl等のAl化合物を用意する。
 そして、焼成後の組成において、上記一般式(A)が数式(1)~(3)を満足するように、各セラミック素原料を秤量する。
 次に、これら秤量されたセラミック素原料を部分安定化ジルコニウム(以下、「PSZ」という。)ボール等の粉砕媒体、分散剤及び純水等の溶媒と共にポットミル等の粉砕機に投入し、十分に混合粉砕し、混合物を得る。
 次に、上記混合物を乾燥させ、整粒した後、1000~1100℃の温度で大気雰囲気下、所定時間仮焼し、仮焼物を得る。
 次いで、この仮焼物を整粒した後、粉砕媒体、分散剤、及びエタノールやトルエン等の有機溶媒と共に、再度粉砕機に投入し、十分に混合粉砕を行い、その後、バインダ溶液を添加し、十分に混合し、これによりセラミックスラリーを得る。
 尚、バインダ溶液は、特に限定されるものではなく、例えばポリビニルブチラール樹脂等の有機バインダをエタノールやトルエン等の有機溶媒に溶解させ、必要に応じて可塑剤等の添加物を添加したものを使用することができる。
 次いで、このように形成されたセラミックスラリーをドクターブレード法等の成形加工法を使用してシート状に成形し、所定寸法に切断し、セラミックグリーンシートを得る。そして、このセラミックグリーンシートを所定枚数積層して圧着した後、所定寸法に切断し、セラミック成形体を得る。
 次に、このセラミック成形体を、大気雰囲気下、300~500℃で脱バインダ処理し、その後1150~1250℃で大気雰囲気下、焼成処理を行ない、セラミック焼結体を得る。
 そしてその後、0.2~1.0MPaの酸素濃度雰囲気下、十分に熱処理を行い、これにより酸化物セラミックスが作製される。
 このように本酸化物セラミックスによれば、少なくともSr、Ba、Co、及びFeを含有したフェライト化合物で形成され、一般式(A)が数式(1)~(3)を満足しているので、室温であっても、磁気バイアスを要することなくゼロ磁界近傍域で大きな電気磁気結合係数αを得ることができる。また、低磁界で良好な電気分極Pを得ることができ、印加磁界の極性が反転しても電気分極Pが反転することもなく、室温で巨大な電気磁気効果を発現できる強磁性誘電体の酸化物セラミックスを得ることができる。
 次に、本酸化物セラミックスを使用したセラミック電子部品について詳述する。
 図1は、本発明に係るセラミック電子部品としての可変インダクタの一実施の形態を示す正面図であり、図2は、その断面図である。
 この可変インダクタは、上記酸化物セラミックスで形成された部品素体1と、該部品素体1の両端部に形成された外部電極2a、2bとを有している。
 また、この可変インダクタは、高周波信号が流れた際に部品素体1内を磁束が通過するようにコイルが配されている。具体的には、この実施の形態では、Cu等の導電性材料で形成されたコイル4が、外部電極2aと外部電極2bとを懸架するように巻回されている。
 さらに、部品素体1には、内部電極3a~3cが並列状に埋設されている。そして、これら内部電極3a~3cのうち、内部電極3a、3cは一方の外部電極2aに電気的に接続され、内部電極3bは他方の外部電極2bに接続されている。このセラミック電子部品は、内部電極3aと内部電極3b、及び内部電極3bと内部電極3cとの間で静電容量の取得が可能とされている。
 尚、外部電極2a、2b及び内部電極3a~3cを形成する電極材料としては、良導電性を有するものであれば、特に限定されるものではなく、Pd、Pt、Ag、Ni、Cu等各種金属材料を使用することができる。
 このように構成された可変インダクタでは、部品素体1が、上述した強磁性誘電体からなる酸化物セラミックスで形成され、かつコイル4が外部電極2aと外部電極2bとを懸架するように巻回されているので、コイル4に高周波信号が入力されると、矢印A方向に生じた磁束が部品素体1内を通過し、コイルの巻き数や素子形状、及び部品素体1の透磁率に応じたインダクタンスが得られる。また、外部電極2a、2bに電圧(電界)が印加されると、電気磁気効果により磁化の変化が生じ、コイルのインダクタンスLを変化させることが可能となる。したがって、電圧を変化させることにより、インダクタンスLの変化率ΔLを制御することが可能となる。
 そして、部品素体1が、上述した本発明の酸化物セラミックスで形成されているので、室温であっても、ゼロ磁界近傍域で大きな電気磁気結合係数が得られることから磁気バイアスを要することもなく、また、低磁場で電気分極を得ることができることから巨大な電気磁気効果を有する可変インダクタを得ることができる。
 上記可変インダクタは、以下のようにして製造することができる。
 まず、上記酸化物セラミックスの製造方法と同様の方法・手順で、セラミックグリーンシートを作製する。
 次いで、Pd等の導電性材料を主成分とする内部電極用導電性ペーストを用意する。そして、内部電極用導電性ペーストをセラミックグリーンシートに塗布し、該セラミックグリーンシートの表面に所定パターンの導電層を形成する。
 この後、導電層の形成されたセラミックグリーンシートと導電膜の形成されていないセラミックグリーンシートとを所定順序で積層し、その後、所定寸法に切断し、セラミック成形体を得る。
 次に、このセラミック成形体を、大気雰囲気下、300~500℃で脱バインダ処理し、その後1150~1250℃で大気雰囲気下、焼成処理を行ない、セラミック焼結体を得る。そしてこの後、所定の酸素雰囲気中で熱処理を行い、部品素体1を作製する。
 次いで、この部品素体1の両端部にAg等を主成分とする外部電極用導電性ペーストを塗布し、焼付処理を行い、その後、分極処理を行う。
 まず、室温で所定の磁界を印加して磁界分極を行い、次いで、磁界の方向と直交する方向に所定の電界を印加し、電界分極を行い、これにより可変インダクタが作製される。このように磁界中で分極処理を行うことにより、より大きな電気磁気効果を得ることができる。
 尚、本発明は、上記実施の形態に限定されるものではない。本発明の酸化物セラミックスは、上述したように室温かつゼロ磁界近傍域で大きな電気磁気結合係数を得ることができ、低磁界で電気分極を誘起して大きな電気磁気効果を発現できる。そして、印加磁界の極性が反転しても電気分極Pの極性は反転しない。したがって、上記実施の形態では、可変インダクタについて説明したが、上述した作用効果が求められる各種セラミック電子部品にも適用可能である。例えば、磁界の大きさに応じて電流を出力する磁気センサ、コイルに流れた電流が形成する磁界の大きさに応じて電流を出力する電流センサ、電界で磁化を制御する不揮発性メモリ、可変容量デバイス等に適用可能である。
 また、上記実施の形態では、磁界中で磁界方向と直交する方向に電界分極を行なっているが、結晶粒子が多結晶体の場合は、磁界の方向と電界分極の方向は同一方向であっても大きな電気磁気効果を得ることができる。
 また、磁界分極後に、磁界を非印加状態とし、電界分極を行なっても大きな電気磁気効果を得ることができ、使用形態や環境等に応じて適宜選択することができる。
 また、上記実施の形態では、本酸化物セラミックスの一例として、一般式(A)を挙げたが、少なくともSr、Ba、Co、Mg、Fe、Alを所定範囲内で含んでいればよく、例えば絶縁抵抗の改善のためにZrO等の添加物を含有していても良い。また、O(酸素)の含有モル比についても、特性に影響を及ぼさない範囲で理論化学量論比からの若干の偏移は許容される。
 次に、本発明の実施例を具体的に説明する。
 セラミック素原料としてFe、SrCO、BaCO、Co、MgO、及びAlを用意した。
 そして、セラミック焼結体である酸化物セラミックスが、表1に示す組成となるようにセラミック素原料を秤量した。
 次に、このようにして秤量されたセラミック素原料、水系高分子分散剤(花王社製、カオーセラ2210)及び純水をPSZボールと共にポリエチレン製のポットミルに投入し、16時間混合粉砕し、混合物を得た。
 次に、上記混合物を乾燥させ、整粒した後、大気雰囲気下、1100℃の温度で4時間仮焼し、仮焼物を得た。
 一方、別途、ポリビニルブチラール系バインダ樹脂(積水化学工業社製、エスレックB「BM-2」)をエタノールとトルエンの混合溶媒に溶解させ、可塑剤を添加してバインダ溶液を作製した。
 次いで、上記仮焼物を整粒した後、溶剤系分散剤(花王社製、カオーセラ8000)、及びエタノールとトルエンの混合溶媒をPSZボールと共にポットミルに投入し、24時間混合粉砕し、その後、上記バインダ溶液を添加し、再度12時間混合し、これによりセラミックスラリーを得た。
 次いで、このように作製されたセラミックスラリーについて、ドクターブレード法を使用し、厚みが約50μmのシート状に成形し、金型を使用して所定寸法に切断し、セラミックグリーンシートを得た。そして、このセラミックグリーンシートを所定枚数積層し、196MPaの圧力で圧着し、切断して長さ:12mm、幅:12mm、厚み:0.6mmの試料番号1~21のセラミック成形体を作製した。
 次に、試料番号1~21のセラミック成形体を、大気雰囲気下、500℃で脱バインダ処理を行い、その後、1200℃で大気雰囲気下、18時間焼成処理を行ない、これにより試料番号1~21のセラミック焼結体を作製した。
 次いで、試料番号1~21のセラミック焼結体を1MPaの酸素雰囲気中、1090℃の温度で10時間熱処理を行ない、これにより試料番号1~21の各部品素体を作製した。
 部品素体の寸法は、長さ:10mm、幅:10mm、厚み:0.5mmであった。
 次に、上記部品素体の両主面にPtをターゲット物質にしてDCスパッタリングを行い、厚みが約300nmの表面電極を作製し、試料番号1~21の各試料を得た。尚、DCスパッタリングは、温度が25℃、磁界が5mmTに調整された真空容器中にArガスを供給し、150Wの電力を供給して行った。
 そして、試料番号1~21の各試料について、誘導結合プラズマ発光分光(ICP)法及び蛍光X線分析(XRF)法を使用して組成分析したところ、各試料は表1で表される組成を有することが確認された。また、各試料について、X線回折(XRD)法で結晶構造を調べたところ、六方晶Y型結晶構造を有していることが確認された。
〔試料の評価〕
 試料番号1~21の各試料について、高抵抗測定計(米国ケースレー・インスツルメント社製、6487)を使用し、比抵抗ρを測定したところ、50MΩ・cm以上の比抵抗ρを有し、十分な絶縁性が得られたことが確認された。
 次に、試料番号1~21の各試料に分極処理を施した。
 図3は、分極処理装置を模式的に示した斜視図である。
 すなわち、この分極処理装置は、部品素体21の両主面に表面電極22a、22bが形成された試料23に信号線24a、24bが接続され、該信号線24aと信号線24bとの間には直流電源25が介装されている。
 尚、試料23は、上述したよう内部電極を有しており、該試料23に印加される磁界の方向(矢印Bで示す。)と電気分極が行われる電界の方向(矢印Cで示す。)とが直交するように配されている。
 そして、まず、電磁石(図示せず。)を使用し、室温で1.5Tの直流磁界を1分間印加し、矢印B方向に磁場分極を行った。次いで、表面電極22a、22b間に800V/mmの電界を印加しつつ、磁場の大きさを1.5Tから0.5Tまで徐々に低下させ、0.5Tの磁場中で3分間、矢印C方向に電気分極を行った。このように磁場中で分極処理を行うことにより、より大きな電気磁気効果を得ることが可能となる。
 尚、上述の磁場分極において、最初に印加する1.5Tの直流磁界は電気磁気効果の起源となる特殊な磁気構造(螺旋磁性)から電気磁気効果を示さなくなる磁気構造(フェリ磁性)へと磁気転移する磁界に相当する。この磁気転移が生じる磁界は、低温環境下では高磁界側にシフトし、高温環境下では低磁界側にシフトする。したがって、低温で磁場分極を行う場合は高磁界を印加するのが好ましく、一方、高温では低磁界の印加でも磁場分極が可能である。また、0.5Tの直流磁界は、螺旋磁性が安定となる磁界を意味しており、磁場分極を行う温度で螺旋磁性が安定となる磁界であれば0.5Tでなくてもよい。上記実施例では、800V/mmの電界を印加して電気分極を行ったが、印加する電界は大きいほど好ましい。
 尚、この実施例では、印加する磁界と電界とが直交するように試料を配置して磁場分極を行ったが、これは本実施例で作製された試料の形状では、上記配置で最も大きな電気磁気効果が得られるからであり、磁界と電界とが直交する配置でなくても電気磁気効果を得ることができる。
 次に、電界及び磁界を非印加状態とし、評価試料を1時間程度放置した。このように分極処理を行った後、所定時間放置することにより、更に大きな電気磁気効果を得ることが可能となる。
 次に、各試料の電気磁気電流を測定し、特性を評価した。
 図4は、試料23の特性評価装置を模式的に示した斜視図である。
 この特性評価装置は、図4の直流電源25に代えてピアコンメータ(米国ケースレー・インスツルメント社製、6487)26が設けられており、評価試料は、図3と同様、印加する磁界の方向と電気分極時の電界の方向とが直交するように配されている。
 そして、低温クライオスタット(東陽テクニカ製社製、LN-Z型)で25℃(298K)の温度に制御しながら、電磁石を使用し、-0.21T~+0.21Tの磁場範囲で、約0.13T/分の速度で複数回往復掃引し、その時に試料から吐き出される電荷、すなわち電気磁気電流をピアコンメータ26で計測した。
 次いで、これら計測された電気磁気電流の電流密度Jを時間で積分し、強誘電体の指標となる電気分極Pを求めた。また、電気分極Pが得られた各試料について、印加磁界の極性が反転した場合、電気分極Pの極性が反転するか否かを調べた。
 表1は、試料番号1~21の各試料について、その組成、電気分極P、及び極性反転の有無を示している。
 尚、極性反転の有無は、印加磁界の極性が反転しても、電気分極Pの極性が反転しなかった場合を〇印、印加磁界の極性が反転すると、電気分極Pの極性も反転する場合を×印とした。
Figure JPOXMLDOC01-appb-T000001
 試料番号1は、yが1.0であり、Mgの含有量が過度に多いため、電気磁気効果を示すことができなかった。
 試料番号2は、yが0.9であり、この場合もMgの含有量が多く、このため電気磁気電流を測定できず、電気分極Pを得ることができなかった。
 試料番号7は、xが1.4であり、Baに対するSrのモル比が相対的に少なくなり、このため室温では電気磁気電流を測定することができず、電気分極Pが得られなかった。
 試料番号9は、xが0.6であり、Baに対するSrのモル比が相対的に多くなり、この場合も室温では電気磁気電流を測定することができず、電気分極Pが得られなかった。
 試料番号10及び11は、zが0.7と少なく、室温では電気分極Pを生じる螺旋型の磁気構造が誘起されず、電気磁気電流を測定することができなかった。
 試料番号16及び17は、zが1.3と多く、異相が生成し、該異相の生成によって電気磁気特性の発現が阻害され、室温では電気磁気電流を測定できず、電気分極Pが得られなかった。
 試料番号5、13、及び15は、電気分極Pは15.1~17.5μC/mと良好であったが、yが0.0であり、試料中にMgが含有されていないため、印加磁界の極性が反転すると、電気分極Pの極性も反転した。
 これに対し試料番号3、4、6、8、12、14、及び18~21は、xが0.7~1.3、yが0.8以下、及びzが0.8~1.2であり、いずれも本発明範囲内にあるので、298Kの室温で6.0μC/m以上の良好な電気分極Pを有し、しかも印加磁界の極性が反転しても、電気分極Pの極性は反転しない所望の電気磁気効果を発現する強磁性誘電体が得られることが分かった。
 図5は、試料番号3の磁界及び電流密度Jの経時変化を示す図であり、横軸は時間(s)、右縦軸は磁界B(T)、左縦軸は電流密度J(μA/m)である。
 この図5に示すように、磁界を約-0.2T~+0.2Tの範囲で一定の速度で複数回往復掃引すると、ゼロ磁界近傍で試料から電気磁気電流が流れ、電流密度Jが得られる。すなわち、約-0.2T~+0.2T~-0.2Tと連続掃引しても減衰することなく、ゼロ磁場で電気磁気電流が観測されている。
 このように電気分極Pは弱磁場中で誘起され、ゼロ磁場で消滅乃至低下しており、これにより室温で電気磁気効果を発現していることが分かった。
 そして、この電気磁気電流の電流密度Jを積分すると、電気分極Pが求まり、電気分極特性が得られる。
 図6は、試料番号3の電気分極P及び電流密度Jの経時変化を示す図であり、横軸は時間(s)、右縦軸は電気分極P(μC/m)、左縦軸は電流密度J(μA/m)である。
 この図6から明らかなように、298Kの室温かつ低磁界で電気分極Pが13.3μC/mとなり、特許文献3のような六方晶Z型結晶構造と同等以上の電気分極Pが得られることが分かった。
 また、この図5及び図6から、磁界Bの極性が負から正、又は正から負に反転しても、強誘電分極が同一方向に誘起されて電気分極Pは反転しないことが確認された。
 次に、電気磁気結合係数αを〔発明を実施するための形態〕でも述べた数式(7)に基づき求めた。
 α=(μ・J)/(dB/dt)...(7)
 ここで、真空の透磁率μは、4π×10-7H/mである。
 図7は、試料番号3の磁界と電気磁気結合係数αとの関係を示す図であり、横軸が磁界(T)、縦軸が電気磁気結合係数α(ps/m)である。
 この図7から明らかであるように、298Kの室温下、約-0.025Tで電気磁気結合係数αが約600ps/mとなり、大きな電気磁気結合係数αを有する強磁性誘電体材料を得ることができた。
 このように本発明の酸化物セラミックスは、室温であっても、低磁界で6.0~13.3μC/mの大きな電気分極Pを得ることができ、さらにゼロ磁場近傍域で約600ps/mの大きな電気磁気結合係数αを得ることができ、かつ印加磁界の極性が反転しても電気分極Pの極性は反転しない所望の電気磁気効果を発現する強磁性誘電体材料が得られることが分かった。
 室温であっても、ゼロ磁界近傍域で従来に比べ格段に大きな電気磁気結合係数を得ることができ、低磁界で良好な電気分極Pを有する強磁性誘電特性の発現可能であり、また、印加磁界の極性が反転しても電気分極Pの極性は反転しない酸化物セラミックスを得ることができる。この酸化物セラミックスを使用して可変インダクタや磁気センサ、不揮発性メモリ等の各種セラミック電子部品の実現が可能となる。
1 部品素体
2a、2b 外部電極
3a~3c 内部電極

Claims (7)

  1.  少なくともSr、Ba、Co、及びFeを含有したフェライト化合物で形成され、
     前記Baは、前記Srの一部を置換する形態で含有されると共に、前記Baの含有量を前記Ba及び前記Srの総量に対しモル比換算でx/2としたときに、xは0.7~1.3であり、
     Mgが、前記Coの一部を置換する形態で含有されると共に、前記Mgの含有量を前記Mg及び前記Coの総量に対しモル比換算でy/2としたときに、yは0.8以下であり、
     Alが、前記Feの一部を置換する形態で含有されると共に、前記Alの含有量を前記Al及び前記Feの総量に対しモル比換算でz/12としたときに、zは0.8~1.2であることを特徴とする酸化物セラミックス。
  2.  一般式[Sr2-xBaCo2-yMgFe12-zAl22](ただし、0.7≦x≦1.3、0<y≦0.8、0.8≦z≦1.2)で表されることを特徴とする請求項1記載の酸化物セラミックス。
  3.  前記yは、0.4以上であることを特徴とする請求項1又は請求項2記載の酸化物セラミックス。
  4.  電気分極の極性は、磁界の極性が反転した場合に反転しないことを特徴とする請求項1乃至請求項3のいずれかに記載の酸化物セラミックス。
  5.  部品素体の表面に外部電極が形成されたセラミック電子部品であって、
     前記部品素体が、請求項1乃至請求項4のいずれかに記載の酸化物セラミックスで形成されていることを特徴とするセラミック電子部品。
  6.  コイルが、前記部品素体の透磁率に応じたインダクタンスを有するように配されていることを特徴とする請求項5記載のセラミック電子部品。
  7.  内部電極が、前記部品素体に埋設されていることを特徴とする請求項5又は請求項6記載のセラミック電子部品。
PCT/JP2015/057871 2014-05-21 2015-03-17 酸化物セラミックス、及びセラミック電子部品 WO2015178080A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2016520971A JP6308376B2 (ja) 2014-05-21 2015-03-17 酸化物セラミックス、及びセラミック電子部品
US15/355,400 US10497499B2 (en) 2014-05-21 2016-11-18 Oxide ceramic and ceramic electronic component

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-105339 2014-05-21
JP2014105339 2014-05-21

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/355,400 Continuation US10497499B2 (en) 2014-05-21 2016-11-18 Oxide ceramic and ceramic electronic component

Publications (1)

Publication Number Publication Date
WO2015178080A1 true WO2015178080A1 (ja) 2015-11-26

Family

ID=54553757

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/057871 WO2015178080A1 (ja) 2014-05-21 2015-03-17 酸化物セラミックス、及びセラミック電子部品

Country Status (3)

Country Link
US (1) US10497499B2 (ja)
JP (1) JP6308376B2 (ja)
WO (1) WO2015178080A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114380588B (zh) * 2020-10-20 2023-03-24 海安南京大学高新技术研究院 一种干压异性永磁铁氧体的制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007055832A (ja) * 2005-08-23 2007-03-08 Taiyo Yuden Co Ltd 酸化物磁性組成物及び高周波用磁性材料
JP2012001396A (ja) * 2010-06-17 2012-01-05 Osaka Univ 電気磁気効果材料及びその製造方法
WO2014061671A1 (ja) * 2012-10-18 2014-04-24 株式会社村田製作所 酸化物セラミックス、及びセラミック電子部品
JP2015040151A (ja) * 2013-08-22 2015-03-02 株式会社村田製作所 酸化物セラミックス、及びセラミック電子部品

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3078234A (en) * 1958-04-24 1963-02-19 Jr Charles M Davis Magnetostrictive ferrite
US3638207A (en) * 1969-11-17 1972-01-25 Bell Telephone Labor Inc Magnetic devices
JPH0672018B2 (ja) * 1989-04-22 1994-09-14 戸田工業株式会社 磁気記録用板状複合フェライト微粒子粉末及びその製造法
DE69028360T2 (de) * 1989-06-09 1997-01-23 Matsushita Electric Ind Co Ltd Verbundmaterial sowie Verfahren zu seiner Herstellung
WO1999016086A1 (fr) * 1997-09-19 1999-04-01 Tdk Corporation Corps d'oxyde magnetique, particules de ferrite, aimant agglomere, aimant fritte, procede de fabrication de ces materiaux, et support d'enregistrement magnetique
EP1453070B1 (en) * 1998-01-23 2010-03-31 Hitachi Metals, Ltd. Bonded magnet, method for producing same and magnet roll
US6537463B2 (en) * 1999-03-12 2003-03-25 Hitachi Metals, Ltd. Resin-bonded magnet, its product, and ferrite magnet powder and compound used therefor
JP4100562B2 (ja) * 2003-06-13 2008-06-11 日本化学工業株式会社 スピネル系複合酸化物焼成体およびその製造方法
CN102945718B (zh) * 2003-09-12 2016-03-30 日立金属株式会社 铁氧体烧结磁铁
BRPI0709010A2 (pt) * 2006-03-10 2011-06-21 Hitachi Metals Ltd máquina rotativa, ìmã aglutinado, rolete ìmã, e método para produzir ìmã de ferrita sinterizada
US20090196818A1 (en) 2006-05-24 2009-08-06 Japan Science And Technologyagency Multiferroic element
CN101542646B (zh) * 2007-03-01 2012-07-11 Tdk株式会社 铁氧体烧结磁铁
JP2009224563A (ja) 2008-03-17 2009-10-01 Japan Science & Technology Agency マルチフェロイック素子
JP5853381B2 (ja) * 2011-03-09 2016-02-09 Tdk株式会社 アンテナ用磁性材料、並びに、アンテナ及び無線通信機器
WO2015025589A1 (ja) * 2013-08-22 2015-02-26 株式会社村田製作所 酸化物セラミックス、及びセラミック電子部品

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007055832A (ja) * 2005-08-23 2007-03-08 Taiyo Yuden Co Ltd 酸化物磁性組成物及び高周波用磁性材料
JP2012001396A (ja) * 2010-06-17 2012-01-05 Osaka Univ 電気磁気効果材料及びその製造方法
WO2014061671A1 (ja) * 2012-10-18 2014-04-24 株式会社村田製作所 酸化物セラミックス、及びセラミック電子部品
JP2015040151A (ja) * 2013-08-22 2015-03-02 株式会社村田製作所 酸化物セラミックス、及びセラミック電子部品

Also Published As

Publication number Publication date
US20170069413A1 (en) 2017-03-09
US10497499B2 (en) 2019-12-03
JPWO2015178080A1 (ja) 2017-04-20
JP6308376B2 (ja) 2018-04-11

Similar Documents

Publication Publication Date Title
Soman et al. Dielectric and magnetic properties of Mg–Ti substituted barium hexaferrite
Dong et al. Crystal structure and highly enhanced ferroelectric properties of (Tb, Cr) co-doped BiFeO3 thin films fabricated by a sol–gel method
Gao et al. A comparative study of the dielectric, ferroelectric and anomalous magnetic properties of Mn0. 5Mg0. 5Fe2O4/Ba0. 8Sr0. 2Ti0. 9Zr0. 1O3 composite ceramics
Wang et al. Investigation of structural, ferroelectric and magnetic properties of Ca modified BiFeO3–BaTiO3 ceramics
Cai et al. Microstructure, dielectric and ferroelectric properties of xBaZr0. 2Ti0. 8O3-(1− x) BiFeO3 solid solution ceramics
Das et al. Effect of equiproprotional substitution of Zn and Mn in BaTiO 3 ceramic—An index to multiferroic applications
Redhu et al. Role of charge compensation mechanism and defect dipoles on properties of Mn doped BCT ceramics
Rout et al. Effect of co-substitutions (Ca–Mn) on structural, electrical and magnetic characteristics of bismuth ferrite
Sahoo et al. Influence of compositional variation on structural, electrical and magnetic characteristics of (Ba1− xGd)(Ti1− xFex) O3 (0.2≤ x≤ 0.5)
Li et al. Dielectric, multiferroic and magnetodielectric properties of (1-x) BaTiO3-xSr2CoMoO6 solid solution
Deng et al. Crystal structure, impedance, and multiferroic property of SrZrO3 and MnO2 modified 0.725 BiFeO3− 0.275 BaTiO3 ceramics
Wu et al. Effects of HfO2 dopant on the structure, magnetic and electrical properties of NiZnCo ferrites
Zhao et al. Enhanced dielectric and multiferroic properties in BaTiO3 doped Bi0. 85Nd0. 15Fe0. 98Mn0. 02O3 ceramics
Zhong et al. Structure and energy storage properties of (1-x) Ba0. 98Li0. 02TiO3 based ceramics with xBi (Mg1/2Sn1/2) O3 addition
US9947460B2 (en) Oxide ceramic and ceramic electronic component
Gao et al. Effect of Ti doping on the dielectric, ferroelectric and magnetic properties of Bi0. 86La0. 08Sm0. 14FeO3 ceramics
US9815742B2 (en) Oxide ceramic and ceramic electronic component
JP6308376B2 (ja) 酸化物セラミックス、及びセラミック電子部品
Goel et al. Investigations on magnetoelectric response in binary ferroelectric {0.94 Na0. 5Bi0. 5TiO3 (NBT)-0.06 Ba0. 85Sr0. 15Zr0. 1Ti0. 9O3 (BSZT)}-ferrimagnetic (NiFe2O4) particulate composites
Zhou et al. Structure and multiferroic properties of ternary (1− x)(0.8 BiFeO3-0.2 BaTiO3)-xK0. 5Na0. 5NbO3 (0≤ x≤ 0.5) solid solutions
WO2014142318A1 (ja) 電気磁気効果材料、及びセラミック電子部品
JP6150061B2 (ja) 酸化物セラミックスの製造方法、酸化物セラミックス、及びセラミック電子部品
Rani et al. Multiferroic properties of 0.05 NZF-0.95 Ba0. 9
Zeng et al. Structure, dielectric, and multiferroic properties of Bi0. 85Nd0. 15Fe0. 98Zr0. 02O3 in Ba and Ti co-doping
Sun et al. Effects of NiO addition on the structural, microstructural and electromagnetic properties of manganese–zinc ferrite

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15796231

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016520971

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15796231

Country of ref document: EP

Kind code of ref document: A1