WO2015178017A1 - 通信装置 - Google Patents

通信装置 Download PDF

Info

Publication number
WO2015178017A1
WO2015178017A1 PCT/JP2015/002516 JP2015002516W WO2015178017A1 WO 2015178017 A1 WO2015178017 A1 WO 2015178017A1 JP 2015002516 W JP2015002516 W JP 2015002516W WO 2015178017 A1 WO2015178017 A1 WO 2015178017A1
Authority
WO
WIPO (PCT)
Prior art keywords
communication
data
communication device
state
transmission
Prior art date
Application number
PCT/JP2015/002516
Other languages
English (en)
French (fr)
Inventor
浩一 二瓶
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Priority to US15/129,589 priority Critical patent/US20170142610A1/en
Priority to JP2016520937A priority patent/JPWO2015178017A1/ja
Publication of WO2015178017A1 publication Critical patent/WO2015178017A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/0231Traffic management, e.g. flow control or congestion control based on communication conditions
    • H04W28/0236Traffic management, e.g. flow control or congestion control based on communication conditions radio quality, e.g. interference, losses or delay
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L43/00Arrangements for monitoring or testing data switching networks
    • H04L43/08Monitoring or testing based on specific metrics, e.g. QoS, energy consumption or environmental parameters
    • H04L43/0823Errors, e.g. transmission errors
    • H04L43/0847Transmission error
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0002Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission rate
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L43/00Arrangements for monitoring or testing data switching networks
    • H04L43/08Monitoring or testing based on specific metrics, e.g. QoS, energy consumption or environmental parameters
    • H04L43/0852Delays
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L47/00Traffic control in data switching networks
    • H04L47/10Flow control; Congestion control
    • H04L47/11Identifying congestion
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L47/00Traffic control in data switching networks
    • H04L47/10Flow control; Congestion control
    • H04L47/25Flow control; Congestion control with rate being modified by the source upon detecting a change of network conditions
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L47/00Traffic control in data switching networks
    • H04L47/10Flow control; Congestion control
    • H04L47/32Flow control; Congestion control by discarding or delaying data units, e.g. packets or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0044Arrangements for allocating sub-channels of the transmission path allocation of payload
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L65/00Network arrangements, protocols or services for supporting real-time applications in data packet communication
    • H04L65/40Support for services or applications
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/08Testing, supervising or monitoring using real traffic
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L2001/0092Error control systems characterised by the topology of the transmission link
    • H04L2001/0097Relays
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/16Central resource management; Negotiation of resources or communication parameters, e.g. negotiating bandwidth or QoS [Quality of Service]
    • H04W28/18Negotiating wireless communication parameters

Definitions

  • the present invention relates to a communication device, a communication control method, a communication system, and a communication device that communicates with other communication devices by the action of a program.
  • TCP TransmissioncolControl ⁇ ⁇ ⁇ Protocol
  • TCP operates a timer when transmitting a packet, and if a packet containing an ACK (Acknowledgement) signal is not received by the timeout value, it is determined that the transmission packet has been lost, and the retransmission operation Has been proposed as a first related technique related to the present invention (see, for example, Patent Document 1).
  • a reception packet including an ACK signal for a packet transmitted from a communication device to another communication device is received at an early stage, a delay is set so that a predetermined RTT (Round Trip Time) is reached. And output to TCP.
  • RTT Red Trip Time
  • the communication device calculates the data loss occurrence probability from the data loss occurrence state at the time of data transmission / reception, and acquires the data loss occurrence probability calculated by the communication destination. Then, when the data loss occurrence probability exceeds a predetermined value, the communication device performs control to reduce the data size per data transmission according to the increase in the data loss occurrence probability.
  • VoIP Voice over Internet Protocol
  • MCS Modulation and Coding
  • LTE Long Term Evolution
  • MCS is controlled according to the radio state between a base station and a terminal.
  • the wireless state is good, a high communication throughput is realized by reducing redundant data using a modulation scheme with high coding efficiency.
  • the redundant data is increased by using a modulation method with low encoding efficiency that is unlikely to cause a transmission error, thereby allowing communication to be continued although throughput is lowered.
  • the MCS is controlled so that transmission errors occur at a certain rate.
  • An object of the present invention is to provide a communication device that solves the above-described problem, that is, it is difficult to perform communication at a higher bit rate while suppressing a delay caused by a transmission error.
  • a communication apparatus is: A communication device that communicates with another communication device via a relay device, Detecting means for detecting a state of a communication path with the relay device; Control means for controlling a transmission time of data to be transmitted to the other communication device in accordance with the state of the communication path.
  • a communication control method is a communication control method executed by a communication device that communicates with another communication device via a relay device, and a state of a communication path with the relay device And the transmission time of data to be transmitted to the other communication device is controlled in accordance with the state of the communication path.
  • a program for detecting a state of a communication path between a computer that communicates with another communication apparatus via a relay apparatus and a state of the communication path It is made to function as a control means for controlling the transmission time of data to be transmitted to the other communication device according to the state.
  • a communication system is a communication system in which a first communication device and a second communication device communicate via a relay device, and the first communication device includes the relay device.
  • Detecting means for detecting a state of a communication path with the apparatus, and control means for controlling a transmission time of data to be transmitted to the second communication apparatus in accordance with the state of the communication path.
  • the present invention Since the present invention has the above-described configuration, it becomes possible to perform communication at a higher bit rate while suppressing transmission errors.
  • FIG. 1 is a configuration diagram of a communication system 10 according to the first embodiment of this invention.
  • the communication system 10 includes a first communication device 1, a second communication device 2, and a relay device 3.
  • the first communication device 1 and the second communication device 2 are connected via a relay device 3.
  • a plurality of relay devices 3 may exist between the first communication device 1 and the second communication device 2.
  • the first communication device 1 and the relay device 3 are connected by a network in which one or both of the modulation scheme and the coding rate are controlled according to the signal strength and the like.
  • FIG. 2 is a configuration diagram of the first communication device 1.
  • the first communication device 1 includes a communication unit 11, a state estimation unit 12, a parameter storage unit 13, a data determination unit 14, a data input unit 15, and a data conversion unit 16.
  • the communication unit 11 communicates with the relay device 3.
  • the state estimation unit 12 acquires information from the communication unit 11 and estimates a communication state with the relay device 3.
  • the parameter storage unit 13 stores a predetermined set value (parameter).
  • the data determination unit 14 determines the size and time of data to be transmitted / received based on the output of the state estimation unit 12 and the parameters stored in the parameter storage unit 13. Data to be transmitted is input to the data input unit 15.
  • FIG. 3 is a flowchart for explaining the operation of the first communication device 1 according to the first embodiment of the present invention.
  • the first communication device 1 stores parameters necessary for determining the data size and time in the parameter storage unit 13 at the start of operation (step S301), and starts communication (step S302).
  • the state estimation unit 12 acquires information that can be acquired from the network between the first communication device 1 and the relay device 3 from the communication unit 11 (step S303), and estimates the state of the network from the acquired information (Ste S304). If the information itself that can be acquired from the network represents the state of the network, step S304 may be omitted.
  • the data determination unit 14 determines a data size and a transmission time for suppressing a delay of data to be transmitted based on information on the network acquired and estimated by the state estimation unit 12, and the determined content is determined as data.
  • the conversion unit 16 is instructed (step S305).
  • the first communication device 1 executes the above processing with a fixed interval or state change as a trigger.
  • the first communication device 1 sends the data to the data conversion unit 16. Then, the data conversion unit 16 converts the data received from the data input unit 15 so as to have a size designated by the data determination unit 14 (step S308). The data conversion unit 16 sends the converted data to the communication unit 11 at the time instructed by the data determination unit 14 and transmits from the communication unit 11 (step S309). The first communication device 1 executes the above process until the communication is completed (S306 and S310).
  • the data determination unit 14 determines the data size and transmission time of the transmission data based on the information acquired from the state estimation unit 12 and the parameters stored in the parameter storage unit 13. As a result, communication can be performed at a higher bit rate while suppressing the occurrence of transmission errors. In this embodiment, delay due to retransmission is suppressed, and low-delay communication is possible. [Second Embodiment] Next, a second embodiment of the present invention will be described in detail with reference to the drawings.
  • FIG. 4 is a configuration diagram of the first communication device 1 according to the second embodiment.
  • the data determining unit 14 and the communication unit 11 are connected to each other, and the data determining unit 14 is connected to the second communication device 2 via the communication unit 11.
  • the point which designates a data size and transmission time differs from 1st Embodiment. That is, in the present embodiment, not only the data transmitted by the first communication device 1 but also the data received by the first communication device 1 from the second communication device 2 is the size of the first communication device 1. And the transmission time are controlled.
  • FIG. 5 is a flowchart for explaining the operation of the first communication device 1 of the present embodiment.
  • step S1001 is provided following information acquisition (step S303), state estimation (step S304), data size and transmission time determination (step S305).
  • step S1001 processing similar to that in the uplink direction is performed not only in the uplink direction transmitted from the first communication device 1, but also in the downlink direction in which the data transmitted by the second communication device 2 is received.
  • a data size and a transmission time are instructed to the device 2.
  • the second communication device 2 includes portions corresponding to the data input unit 15, the data conversion unit 16, and the communication unit 11 in FIG. 2, and the data size and transmission instructed from the first communication device 1 are transmitted. According to the time, the data conversion unit 16 of the second communication device 2 controls the size of data input from the data input unit 15 of the second communication device 2 and the transmission time.
  • the third embodiment is more specific than the first embodiment.
  • FIG. 6 is a configuration diagram of the communication system 20 according to the third embodiment.
  • the first communication device 1 included in the communication system 20 is a smartphone 100
  • the second communication device 2 is a personal computer (PC) 200
  • the relay device 3 in the first embodiment includes an eNodeB (Evolved Node B) 301 that is an LTE base station device and an EPC (Evolved Packet Core) 302 that is a core network.
  • the smartphone 100 and the LTE base station 301 communicate based on the LTE system defined by 3GPP (3rd Generation Generation Partnership Project).
  • the LTE core network 302 and the PC 200 are connected to each other via the Internet and a LAN (Local Area Network).
  • the communication unit 11 of the smartphone 100 includes an LTE communication device and a device driver.
  • the state estimation unit 12, the data determination unit 14, and the data conversion unit 16 are configured by a CPU and a program executed thereon.
  • the parameter storage unit 13 is a storage area secured on the main memory of the smartphone 100.
  • the data input unit 15 is an input device such as a microphone, a camera, a button, or a touch panel mounted on the smartphone.
  • the data input unit 15 may be a sensor device such as a GPS (Global Positioning System) receiver, an acceleration sensor, or a temperature sensor.
  • PC 200 is a general personal computer and has input devices such as a keyboard, a mouse, a microphone, and a camera.
  • the PC 200 can execute an arbitrary application program and can be connected to a network via a network interface.
  • the data input unit 15 of the smartphone 100 is a microphone.
  • the voice input from the data input unit 15 is transmitted to the G.M. 711, encoded with a voice codec such as AMR (Adaptive Multi-Rate).
  • the encoded audio data is transmitted from the communication unit 11 with headers such as RTP (Real-time Transport Protocol) and UDP (User Datagram Protocol) added.
  • the voice packet transmitted from the communication unit 11 arrives at the PC 200 via the LTE base station 301 and the LTE core network 302.
  • the arrived voice packet is decoded by an application program executed on the PC 200 and output from the speaker.
  • audio input from the microphone of the PC 200 is encoded and transmitted to the smartphone 100, received by the communication unit 11 of the smartphone, and then decoded and reproduced (not shown).
  • the state estimation unit 12 acquires the wireless network information from the communication unit 11.
  • the acquired information includes, for example, the type of MCS currently used, SINR (Signal-to-InterferenceInterand Noise power Ratio), the number of retransmission occurrences, and the like.
  • SINR is a parameter that indicates whether the radio wave condition is good or bad.
  • the information acquisition procedure in the information estimation unit 12 may be a polling method that is periodically acquired, or may be a callback method that is notified from the communication unit 11 when information changes.
  • the data determination unit 14 determines the optimum data size and transmission time according to the following procedure based on the information acquired by the state estimation unit 12 and the parameters stored in the parameter storage unit 13.
  • the main causes of increased delay in LTE are a transmission error of control information and a transmission error of user data (voice packet in the case of this embodiment).
  • the control information transmission error occurs due to a message error for notifying the resource allocation information from the base station to the terminal.
  • a base station manages radio resources. The base station determines which resource is allocated to which terminal every millisecond, and notifies the determined allocation to the terminal as control information. This control information is transmitted to all the subordinate terminals collectively. For this reason, the base station uses a modulation scheme with low coding efficiency so that a terminal that is far from the base station and in a bad wireless state can receive control information. As a result, a lot of redundant data is added to the control information and transmitted. However, there are still cases where a terminal having a poor wireless state cannot receive control information. If the control information is lost, the terminal cannot know that transmission / reception is possible.
  • the terminal cannot transmit / receive data for a long time until timeout and retransmission of the control information is performed. If the probability that the control information is lost is constant, the probability that a delay due to the overlap between the loss of the control information and the transmission time occurs decreases as the voice transmission interval increases. Therefore, when the smartphone 100 is in an environment where the radio wave condition is poor, the transmission interval of voice packets is increased.
  • the optimum packet transmission interval for each value of MCS or SINR is stored in the parameter storage unit 13 as a parameter based on verification performed in advance, and transmission is performed based on the current MCS or SINR. The interval may be controlled. At this time, the latest measured value may be used for MCS and SINR, or a value smoothed using a past measured value may be used.
  • FIG. 7 shows an example of information stored in the parameter storage unit 13.
  • the transmission interval of voice packets is stored corresponding to the value of MCS.
  • the entry in the first row stores that if the MCS value is 20 or more, the voice packet transmission interval should be 10 ms.
  • the entry in the fourth row stores that the voice packet transmission interval should be 80 ms if the MCS value is 4 or less.
  • FIG. 8 shows another example of information stored in the parameter storage unit 13.
  • the voice packet transmission interval is stored in correspondence with the SINR value.
  • the entry in the first row stores that the voice packet transmission interval should be 10 ms if the SINR value is 10 dB or more.
  • the entry in the fourth row stores that the voice packet transmission interval should be 80 ms if the SINR value is 0 dB or less.
  • the size of the voice packet that is transmitted per unit time is controlled so that the number of resource blocks used per unit time is below a certain level. Good.
  • the number of resource blocks per unit time need not be constant.
  • the occurrence probability of transmission error may be estimated from MCS and SINR, and the number of resource blocks per unit time may be controlled so that the probability that a transmission error continues for a certain number of times or less is constant. At this time, the number of resource blocks per unit time may be determined in consideration of past transmission errors and the number of retransmissions.
  • the MCS control is not in time, the transmission error rate increases, and the delay may increase. Therefore, in an environment in which the radio wave environment is fluctuating significantly, the probability that the timing at which the radio wave environment has deteriorated rapidly matches the packet transmission timing can be lowered by widening the transmission interval.
  • the dispersion of SINR within a certain past period can be used.
  • FIG. 9 shows still another example of information stored in the parameter storage unit 13.
  • voice packet transmission intervals are stored corresponding to the dispersion of SINR.
  • the entry in the first row stores that the voice packet transmission interval should be 10 ms if the SINR variance is less than V1.
  • the entry in the second row stores that the voice packet transmission interval should be 20 ms if the SINR variance is V1 or more and less than V2.
  • the entry in the fourth row stores that the voice packet transmission interval should be 80 ms if the SINR variance is V3 or more.
  • V1, V2, and V3 are preset threshold values.
  • the fluctuation amount of the radio wave environment is evaluated using the SINR variances V1 to V3, and the transmission interval of the voice packet is controlled according to the magnitude of the change amount.
  • the severity of changes in the communication environment may be evaluated based on information other than SINR dispersion.
  • step S801 of FIG. 10 the value of MCS or SINR is calculated, and a transmission interval for suppressing delay due to a transmission error of control information is determined based on the calculated value. Further, in step S802, SINR variance is calculated, and a transmission interval for suppressing a delay due to rapid deterioration of the radio wave environment is determined based on the calculated variance. In step S803, the optimum transmission interval is determined by a procedure such as adopting the larger one of the transmission intervals from the results of S801 and S802. Further, in step S804 in FIG.
  • the optimum number of resource blocks used per unit time is obtained in order to make the delay occurrence probability in a stationary environment below a certain level.
  • the audio bit rate is determined based on the result.
  • G. 711 is 64 kbps;
  • the bit rate is defined for each codec type, such as 729 is 8 kbps. Therefore, the bit rate is controlled by switching the audio codec type.
  • the bit rate may be changed instead of switching the codec.
  • video communication such as videophone and videoconferencing.
  • data input from the data input unit 15 is video input from the camera of the smartphone 100, for example.
  • the data converter 16 converts the video to H.264.
  • the data is encoded by a video codec such as H.264, and the encoded data is transmitted from the communication unit 11 to the PC 200.
  • the data conversion unit 16 controls the size and frame rate of each video frame at the time of encoding based on an instruction from the data determination unit 14.
  • the embodiment is not limited to this.
  • the delay can be suppressed by controlling the time interval of the operation information to be transmitted and the resolution of the position information (coordinates).
  • delay can be suppressed by controlling the data transmission interval and accuracy.
  • FIG. 12 is a block diagram of a communication apparatus 1000 according to the fifth embodiment of this invention.
  • the communication device 1000 has a function of communicating with other communication devices via a relay device (not shown).
  • the communication apparatus 1000 includes a detection unit 1100 and a control unit 1200.
  • the detecting means 1100 has a function of detecting the state of the communication path with the relay device.
  • the detection unit 1100 may have a function of determining the state of the communication channel based on at least one of a modulation scheme, a coding rate, and a signal to interference noise power ratio.
  • the control unit 1200 has a function of controlling the transmission time of data to be transmitted to other communication devices according to the state of the communication path.
  • the control unit 1200 may have a function of controlling the transmission interval of data to be transmitted according to the state of the communication path.
  • the control unit 1200 may have a function of controlling the transmission interval of data to be transmitted according to the fluctuation amount of the communication path state.
  • the control unit 1200 may have a function of controlling the amount of data to be transmitted according to the state of the communication path.
  • the control unit 1200 may have a function of controlling the amount of data to be transmitted so that the communication resource amount used per unit time on the communication path is equal to or less than a specified value.
  • the control unit 1200 may have a function of controlling the data amount by changing the type or bit rate of the audio codec to be used.
  • the control unit 1200 determines that the communication channel state is deteriorated.
  • the system is changed to a highly efficient system, when the coding rate increases, or when the signal-to-interference noise power ratio increases, it may have a function to determine that the communication path state is improved. .
  • control unit 1200 may have a function of controlling the transmission time by changing the packetization period of the voice packet.
  • the control unit 1200 controls at least one of the data transmission interval and the amount of data according to the state of the communication path, and transmits the data transmission interval and data to be transmitted to the own communication device 1000 to other communication devices. It may have a function of performing communication for requesting at least one of the amounts.
  • the function of the detection unit 1100 and the function of the control unit 1200 can be realized by a program executed by a computer constituting the communication apparatus 1000.
  • the program may be recorded on a non-temporary fixed recording medium included in the communication apparatus 1000.
  • a recording medium a semiconductor memory or a fixed magnetic disk device may be used.
  • the detection unit 1100 detects the state of the communication path with the relay apparatus, and the control unit 1200 transmits data to be transmitted to other communication apparatuses according to the state of the communication path. Control the time.
  • the communication apparatus 1000 of this embodiment it is possible to perform communication at a higher bit rate while suppressing a delay due to a transmission error.
  • the reason is that the communication apparatus 1000 controls the transmission time of data to be transmitted to other communication apparatuses according to the state of the communication path.
  • the state of the communication path is bad, it is possible to further suppress the occurrence of transmission errors by waiting for a longer time and starting the next data transmission. Therefore, by shortening the standby time within a range where occurrence of transmission errors can be suppressed, communication at a higher bit rate can be performed while suppressing delay due to transmission errors.
  • the sixth embodiment differs from the third embodiment in the method of determining the transmission interval and the audio codec type.
  • the operation flow of the first communication device 1 of the sixth embodiment is basically the same as that of FIG.
  • the state estimation unit 12 of the first communication device 1 acquires ARQ and HARQ information in addition to MCS and SINR in step S303 of FIG.
  • the delay until the station 301 is reached is calculated. This delay becomes almost zero when no transmission error occurs, and becomes longer according to the number of ARQ and HARQ performed when a transmission error occurs and retransmission by ARQ or HARQ is performed.
  • step S305 the data determination unit 14 predicts the call quality of the counterpart terminal (PC 200 in FIG. 6) when the transmission interval and the voice codec type (bit rate) are changed based on the calculated delay, and the call Choose the combination that gives the highest quality.
  • FIG. 13 is a flowchart for explaining the detailed operation of step S305 of FIG. 3 in the present embodiment.
  • step S3051 the sound interruption occurrence frequency (number of sound interruption occurrences per unit time) at the partner terminal is calculated from the delay of each voice packet calculated in step S303.
  • the sound interruption occurs when the arrival of the packet is delayed, for example, it is determined that the sound interruption has occurred when the delay time of the packet due to retransmission increases more than a certain value in the network between the smartphone 100 and the LTE base station 301. May be.
  • a predicted value of the frequency of occurrence of sound interruption when the voice packet transmission interval and codec type are changed is calculated.
  • the ratio of the sound interruption occurrence frequency to the combination of the transmission interval and the codec type is measured in advance, the current transmission interval, the observed value of the number of sound interruption occurrences for the codec type,
  • the predicted value may be calculated based on the ratio of occurrence frequencies measured in advance.
  • the number of sound interruptions for the codec type c1 is In the case of 10 times per minute, if the codec type is set to c2, it can be predicted that the number of sound interruptions will be 20 times per minute.
  • the frequency of sound interruption may be predicted from the theoretical value of the fluctuation frequency of sound interruption.
  • prediction may be performed using the following two relationships.
  • the first relationship is that when the voice packet transmission interval is multiplied by n, the frequency of sound interruptions becomes 1 / n.
  • the second relationship is that when the size of a voice packet is 1 / n, the occurrence frequency of sound interruption is 1 / n.
  • FIG. 14 is an example of the frequency of occurrence of sound interruption for the transmission interval and codec type predicted by the above method.
  • an estimated value of call quality for each combination of transmission interval and codec type is calculated.
  • ITU-T G. R value calculated by E-model specified in 107 is given.
  • ITU-T is an abbreviation for The International, Telecommunication, Union, Telecommunication, standardization, and sector.
  • E-model is the time (mouth-to-ear delay) until the audio input from one terminal is output from the speaker of the other terminal, codec type, packet loss rate ( This is a method of calculating an R value (numerical value of 0 or more and 100 or less) that is an evaluation value of call quality from a parameter such as a loss).
  • FIG. 15 shows an example of the R value calculated for the sound interruption occurrence frequency of FIG.
  • step S3054 the combination of the transmission interval and codec type with the highest estimated call quality value calculated in step S3053 is selected.
  • the transmission interval is 40 ms and the codec type is G.264. Since the R value in the case of 711 is the maximum (80), this combination is selected.
  • the seventh embodiment is different from the sixth embodiment in that information on packet delay is not acquired from ARQ and HARQ information but is received from the counterpart terminal.
  • the PC 200 in the present embodiment notifies the smartphone 100 that sound interruption due to packet delay has occurred. This notification may be transmitted immediately upon occurrence of sound interruption, or the number of occurrences may be transmitted at regular intervals.
  • RTCP Real-time Transport Control Protocol
  • RFC Request for Comments
  • the state estimation unit 12 analyzes the notification message and calculates the occurrence frequency of sound interruption. Subsequent operations are the same as those in the sixth embodiment.
  • the first communication device 1 determines the transmission interval and codec type with the highest voice call quality based on the information about ARQ and HARQ or the frequency of sound interruption, The communication device 2 is instructed.
  • FIG. 16 is a configuration diagram illustrating a modification of the third and fourth embodiments. In the communication system 30 illustrated in FIG. 16, communication is performed between the two smartphones 101 and 201. In FIG. 16, the smartphone 101 and the smartphone 201 are connected via an LTE base station 301, an LTE core network 302, and an LTE base station 303.
  • each embodiment an example in which the network is LTE has been described. However, each embodiment can also be applied when the network is 3G, WiMAX, Wi-Fi, or the like.
  • a part or all of the above embodiments can be described as in the following supplementary notes, but is not limited thereto.
  • Appendix 1 A communication device that communicates with another communication device via a relay device, Detecting means for detecting a state of a communication path with the relay device; And a control unit that controls a transmission time of data to be transmitted to the other communication device according to a state of the communication path.
  • Appendix 2 The control means controls a transmission interval of the data according to a state of the communication path; The communication apparatus according to attachment 1.
  • the control means controls a transmission interval of the data according to a variation amount of a state of the communication path; The communication apparatus according to appendix 1 or 2.
  • the control means controls the amount of data to be transmitted according to the state of the communication path.
  • the communication apparatus according to any one of appendices 1 to 3.
  • the control means controls the amount of the data so that a communication resource amount used per unit time in the communication path is equal to or less than a specified value.
  • the control means estimates a quality evaluation value when at least one of the transmission time, the transmission interval, and the amount of data of the data transmitted via the communication path is changed, and the quality evaluation value is also obtained.
  • the communication device according to any one of appendices 1 to 5, which controls at least one of the transmission time, the transmission interval, and the amount of data.
  • the control means predicts a sound interruption occurrence frequency of a voice call when at least one of the transmission time, the transmission interval, and the data amount of the data is changed, and the quality is calculated using the sound interruption occurrence frequency.
  • [Appendix 8] The communication apparatus according to appendix 7, wherein the control means predicts the sound interruption occurrence frequency when the transmission time, the transmission interval, and the amount of data of the data are changed based on a past sound interruption occurrence frequency. .
  • Appendix 9 The communication device according to any one of appendices 6 to 8, wherein the control unit selects the transmission interval and the data amount at which the quality evaluation value is highest.
  • the detection means determines the state of the communication path based on at least one of a modulation scheme, a coding rate, and a signal-to-interference noise power ratio.
  • the communication device according to any one of appendices 1 to 9.
  • the control means determines that the state of the communication channel is deteriorated when the modulation method is changed to a low-efficiency method, when the coding rate decreases, or when the signal-to-interference noise power ratio decreases.
  • the modulation scheme is changed to a high-efficiency scheme, when the coding rate is increased, when the signal-to-interference noise power ratio is increased, it is determined that the communication path state is improved.
  • the communication apparatus according to attachment 10.
  • the data is a voice packet;
  • the control means controls a transmission time by changing a packetization period of the voice packet;
  • the communication device according to any one of appendices 1 to 11.
  • the control means controls the data amount by changing a voice codec type or a bit rate to be used.
  • the communication device according to any one of appendices 4 to 11.
  • the control means controls at least one of the data transmission interval and the amount of data according to the state of the communication path, and controls the data transmission interval and the data transmission rate with respect to the other communication device.
  • the communication apparatus according to appendix 1, which performs communication for requesting at least one of the quantities.
  • a communication system in which a first communication device and a second communication device communicate via a relay device The first communication device is: Detecting means for detecting a state of a communication path with the relay device; Control means for controlling a transmission time of data to be transmitted to the second communication device according to a state of the communication path; A communication system.
  • the control means of the first communication device controls a transmission interval of the data according to a state of the communication path; The communication system according to attachment 15.
  • the control means of the first communication device controls a transmission interval of the data according to a fluctuation amount of the state of the communication path; The communication system according to appendix 15 or 16.
  • the control means of the first communication device controls the amount of data to be transmitted according to a state of the communication path; The communication system according to any one of supplementary notes 15 to 17.
  • the control means of the first communication device controls the amount of the data so that a communication resource amount used per unit time in the communication path is equal to or less than a specified value.
  • the control means estimates a quality evaluation value when at least one of the transmission time, the transmission interval, and the amount of data of the data transmitted via the communication path is changed, and the quality evaluation value is also obtained.
  • the communication system according to any one of supplementary notes 15 to 19, which controls at least one of the transmission time, the transmission interval, and the amount of data.
  • the control means predicts a sound interruption occurrence frequency of a voice call when at least one of the transmission time, the transmission interval, and the data amount of the data is changed, and the quality is calculated using the sound interruption occurrence frequency.
  • [Appendix 22] The communication system according to appendix 21, wherein the control means predicts the sound interruption occurrence frequency when the transmission time of the data, the transmission interval, and the amount of data are changed based on a past sound interruption occurrence frequency. .
  • the detection means of the first communication device determines the state of the communication path based on at least one of a modulation scheme, a coding rate, and a signal-to-interference noise power ratio; The communication system according to any one of appendices 15 to 23.
  • the control means of the first communication device is configured to change the communication path when the modulation scheme is changed to a low-efficiency scheme, when the coding rate decreases, or when the signal-to-interference noise power ratio decreases. If the modulation method is changed to a high-efficiency method, the coding rate increases, or the signal-to-interference noise power ratio increases, the communication channel state is good. To determine The communication system according to attachment 24.
  • the data is a voice packet;
  • the control means of the first communication device controls a transmission time by changing a packetization period of the voice packet;
  • the communication system according to any one of appendices 15 to 25.
  • the control means of the first communication device controls the amount of data by changing a voice codec type or a bit rate to be used;
  • the communication system according to any one of appendices 18 to 25.
  • the control means of the first communication device controls at least one of the data transmission interval and the amount of data according to the state of the communication path, and controls the data with respect to the other communication device. Communication for requesting at least one of the transmission interval and the amount of data, The communication system according to attachment 15.
  • Appendix 29 A communication control method executed by a communication device that communicates with another communication device via a relay device, Detecting the state of the communication path with the relay device, Controlling the transmission time of data to be transmitted to the other communication device according to the state of the communication path; Communication control method.
  • Appendix 30 A computer that communicates with a communication device via a relay device; Detecting means for detecting a state of a communication path with the relay device; Control means for controlling a transmission time of data to be transmitted to the other communication device according to the state of the communication path; Program to function as.
  • the present invention can be used for real-time services such as voice calls, videophones, games, and thin clients via mobile networks such as LTE.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Environmental & Geological Engineering (AREA)
  • Quality & Reliability (AREA)
  • Multimedia (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Communication Control (AREA)

Abstract

 伝送エラーによって発生する遅延を抑えつつより高いビットレートで通信を行うという課題を解決するために、通信装置は検出手段と制御手段とを有し、中継装置を介して他の通信装置と通信し、検出手段は中継装置との間の通信路の状態を検出し、制御手段は通信路の状態に応じて他の通信装置へ送信するデータの送信時刻を制御する。

Description

通信装置
 本発明は、通信装置、通信制御方法、通信システム、およびプログラムの作用により他の通信装置と通信する通信装置に関する。
 信頼性の高いデータ通信を実現するために、伝送エラー発生時に再送を行う通信装置や通信システムが提案され、あるいは実用化されている。
 例えば、無線通信装置においてTCP(Transmission Control Protocol)がパケット送信時にタイマを動作させ、ACK(Acknowledgement)信号を含むパケットをタイムアウト値までに受信しない場合には送信パケットが損失したと判定し、再送動作を行うことが、本発明に関連する第1の関連技術として提案されている(例えば特許文献1参照)。また、この第1の関連技術では、通信装置から他の通信装置へ送信したパケットに対するACK信号を含む受信パケットが早期に受信された場合、予め規定したRTT(Round Trip Time)になるように遅延してTCPに出力される。これにより、TCPにおける再送機能の動作が抑制されるため、再送パケットの発生も抑制される。
 また、通信装置間を接続する複数の通信経路のそれぞれの経路においてデータロスが生じた場合に、それぞれの経路における通信プロトコルによりデータの再送を行うことが、本発明に関連する第2の関連技術として提案されている(例えば特許文献2参照)。この第2の関連技術では、通信装置はデータ送受信時のデータロス発生状態からデータロス発生確率を算出すると共に、通信先が算出したデータロス発生確率を取得する。そして、通信装置は、データロス発生確率が所定の値を超えた場合に、データロス発生確率の増加に応じて1回のデータ送信あたりのデータサイズを縮小する制御を行う。
 また、本発明に関連する第3の関連技術として、無線インタフェースを介したVoIP(Voice over Internet Protocol)通信において、無線状態をもとに決定される変調方式および符号化率(MCS、Modulation and Coding Scheme)に合わせてVoIP音声のビットレートを制御する技術がある(例えば特許文献3参照)。
特開平11-220512号公報 国際公開第2011/037245号 特表2008-543168号公報
 携帯電話向けの通信規格であるLTE(Long Term Evolution)では、基地局と端末との間の無線状態に応じてMCSが制御される。無線状態がよい場合には符号化効率の高い変調方式を使用して冗長データを減らすことで、高い通信スループットが実現される。一方で無線状態が悪い場合には、伝送エラーの発生しにくい符号化効率の低い変調方式を使用して冗長データを増やすことで、スループットは下がるものの通信の継続を可能にする。LTEでは、通信スループットを最大化するために、ある程度の割合で伝送エラーが発生するようにMCSが制御される。そして、伝送エラー発生時にはARQ(Automatic Repeat reQuest)やHARQ(Hybrid ARQ)と呼ばれる再送を行うことでエラー回復が行われる。しかしながら、伝送エラーが発生して再送を行うと通信遅延が増加するため、VoIP等のリアルタイム通信ではユーザの体感品質が低下する。特に、伝送エラーが連続して発生した場合には、当該データの遅延が突発的に増加するため、音切れが発生し、ユーザの体感品質が大幅に低下する。そのため、伝送エラーをなるべく発生させないことが重要である。伝送エラーの発生率はMCSが同一であっても基地局や端末の設定、無線状態の変動の大きさなどによって大きく異なる。このため、上記第3の関連技術のようなMCSに合わせてビットレートを制御する方法では、伝送エラーによって発生する遅延を抑制できない。
 上記のような問題は、LTEに限られたものではなく、3G(3rd Generation)、WiMAX(Worldwide Interoperability for Microwave Access)、Wi-Fi(Wireless Fidelity)など多くの無線通信システムでも発生する。上記第2の関連技術を用いてデータロス発生確率の増加に応じて1回のデータ送信あたりのデータサイズを縮小しても、直ちに次回のデータ送信が開始される場合には、1回のデータ送信あたりのデータサイズが大きい場合と比較して伝送エラーに遭遇する確率は変わらない。
[発明の目的]
 本発明の目的は、上述した課題、すなわち、伝送エラーによって発生する遅延を抑えつつより高いビットレートで通信を行うことは困難である、という課題を解決する通信装置を提供することである。
 本発明の第1の観点に係る通信装置は、
 中継装置を介して他の通信装置と通信する通信装置であって、
 上記中継装置との間の通信路の状態を検出する検出手段と、
 上記通信路の状態に応じて上記他の通信装置へ送信するデータの送信時刻を制御する制御手段と
を有する。
 また本発明の第2の観点に係る通信制御方法は、中継装置を介して他の通信装置と通信する通信装置が実行する通信制御方法であって、上記中継装置との間の通信路の状態を検出し、上記通信路の状態に応じて上記他の通信装置へ送信するデータの送信時刻を制御する。
 また本発明の第3の観点に係るプログラムは、中継装置を介して他の通信装置と通信するコンピュータを、上記中継装置との間の通信路の状態を検出する検出手段と、上記通信路の状態に応じて上記他の通信装置へ送信するデータの送信時刻を制御する制御手段として機能させる。
 また本発明の第4の観点に係る通信システムは、第1の通信装置と第2の通信装置とが中継装置を介して通信する通信システムであって、上記第1の通信装置は、上記中継装置との間の通信路の状態を検出する検出手段と、上記通信路の状態に応じて上記第2の通信装置へ送信するデータの送信時刻を制御する制御手段とを有する。
 本発明は上述した構成を有するため、伝送エラーを抑えつつより高いビットレートで通信を行うことが可能になる。
本発明の第1の実施の形態の通信システムの構成図である。 本発明の第1の実施の形態の第1の通信装置の構成図である。 本発明の第1の実施の形態の第1の通信装置の動作を表すフローチャートである。 本発明の第2の実施の形態の第1の通信装置の構成図である。 本発明の第2の実施の形態の第1の通信装置の動作を表すフローチャートである。 本発明の第3、第4の実施の形態の通信システムの構成図である。 本発明の第1の通信装置のパラメータ記憶部に記憶されているテーブルの一例である。 本発明の第1の通信装置のパラメータ記憶部に記憶されているテーブルの他の例である。 本発明の第1の通信装置のパラメータ記憶部に記憶されているテーブルのさらに他の例である。 本発明の第3の実施形態の第1の通信装置のデータ決定部の動作を表す第1のフローチャートである。 本発明の第3の実施形態の第1の通信装置のデータ決定部の動作を表す第2のフローチャートである。
本発明の第5の実施の形態の通信装置の構成図である。 本発明の第6の実施の形態における、ステップS305の詳細な動作を説明するフローチャートである。 本発明の第6の実施の形態における、予測した送信間隔とコーデック種別に対する音切れの発生頻度の一例である。 本発明の第6の実施の形態における、R値の算出例である。 本発明の第3の実施の形態と第4の実施の形態との変形例を説明する構成図である。
 次に、本発明の実施の形態について図面を参照して詳細に説明する。
[第1の実施の形態]
 図1は本発明の第1の実施の形態の通信システム10の構成図である。通信システム10は、第1の通信装置1と、第2の通信装置2と、中継装置3とから構成される。第1の通信装置1と第2の通信装置2とは、中継装置3を介して接続されている。図1では中継装置3は1台のみ記載されているが、第1の通信装置1と第2の通信装置2との間に複数の中継装置3が存在してもよい。第1の通信装置1と中継装置3との間は、信号強度等に応じて変調方式と符号化率とのいずれか一方または両方が制御されるネットワークで接続される。
 図2は第1の通信装置1の構成図である。第1の通信装置1は、通信部11と、状態推定部12と、パラメータ記憶部13と、データ決定部14と、データ入力部15と、データ変換部16と、を備える。通信部11は、中継装置3との間で通信を行う。状態推定部12は、通信部11から情報を取得して中継装置3との間の通信状態を推定する。パラメータ記憶部13は、所定の設定値(パラメータ)を記憶する。データ決定部14は、状態推定部12の出力とパラメータ記憶部13に記憶されるパラメータとをもとに、送受信するデータのサイズと時刻とを決定する。データ入力部15には、送信されるデータが入力される。データ変換部16は、データ入力部15から入力されたデータのサイズをデータ決定部14の指示に基づいて変換し、変換されたデータを指示された時刻に通信部11に送出する。
[動作の説明]
 図3は、本発明の第1の実施の形態における第1の通信装置1の動作を説明するフローチャートである。第1の通信装置1は、動作開始時にパラメータ記憶部13に対してデータサイズと時刻との決定に必要なパラメータを保存し(ステップS301)、通信を開始する(ステップS302)。
 状態推定部12は、第1の通信装置1と中継装置3との間のネットワークから取得可能な情報を通信部11から取得し(ステップS303)、取得した情報から当該ネットワークの状態を推定する(ステップS304)。ネットワークから取得可能な情報自体が当該ネットワークの状態を表している場合、ステップS304を省略してよい。次に、データ決定部14は、状態推定部12で取得及び推定したネットワークに関する情報を元に、送信するデータの遅延を抑制するためのデータサイズと送信時刻とを決定し、決定した内容をデータ変換部16に指示する(ステップS305)。第1の通信装置1は、上記処理を一定間隔あるいは状態変動等をトリガとして実行する。
 また、第1の通信装置1は、送信するデータがデータ入力部15から入力されると(ステップS307)、そのデータをデータ変換部16に送る。そして、データ変換部16は、データ決定部14から指示されたサイズになるようにデータ入力部15から受け取ったデータを変換する(ステップS308)。データ変換部16は、変換されたデータをデータ決定部14から指示された時刻に通信部11に送り、通信部11から送信する(ステップS309)。第1の通信装置1は、通信が終了するまで上記処理を実行する(S306及びS310)。
 次に、本実施の形態の効果について説明する。本実施の形態では、データ決定部14が、状態推定部12から取得した情報とパラメータ記憶部13に記憶したパラメータとをもとに送信データのデータサイズと送信時刻とを決定する。その結果、伝送エラーの発生を抑制しつつより高いビットレートで通信することができる。また、本実施の形態では、再送による遅延を抑制し、低遅延な通信が可能である。
[第2の実施の形態]
 次に、本発明の第2の実施の形態について図面を参照して詳細に説明する。
 図4は、第2の実施の形態の第1の通信装置1の構成図である。本実施の形態の第1の通信装置1では、データ決定部14と通信部11とが互いに接続されており、データ決定部14が通信部11を介して第2の通信装置2に対して、データサイズおよび送信時刻を指示する点が第1の実施の形態と異なる。すなわち、本実施の形態では、第1の通信装置1が送信するデータだけでなく、第1の通信装置1が第2の通信装置2から受信するデータに関しても、第1の通信装置1がサイズと送信時刻とを制御する。
 図5は本実施の形態の第1の通信装置1の動作を説明するフローチャートである。本実施の形態では、情報取得(ステップS303)、状態推定(ステップS304)、データサイズ及び送信時刻の決定(ステップS305)に続いて、ステップS1001を備える点が第1の実施の形態と異なる。ステップS1001では、第1の通信装置1から送信する上り方向だけでなく、第2の通信装置2が送信したデータを受信する下り方向についても上り方向と同様の処理が行われ、第2の通信装置2に対してデータサイズと送信時刻とが指示される。なお、第2の通信装置2は、図2のデータ入力部15、データ変換部16、通信部11に相当する部分を有しており、第1の通信装置1から指示されたデータサイズと送信時刻とに従って、第2の通信装置2のデータ変換部16が第2の通信装置2のデータ入力部15から入力されたデータのサイズと送信時刻とを制御する。
 次に、本実施の形態の効果について説明する。本実施の形態では、データサイズと送信時刻とを第1の通信装置1から第2の通信装置2に指示することで、第1の通信装置1が受信するデータの遅延も抑制することが可能である。
[第3の実施の形態]
 第3の実施の形態では第1の実施の形態をより具体化している。
 図6は、第3の実施の形態の通信システム20の構成図である。
 通信システム20に含まれる第1の通信装置1はスマートフォン100であり、第2の通信装置2はパーソナルコンピュータ(PC)200である。第1の実施形態における中継装置3は、LTEの基地局装置であるeNodeB(Evolved Node B)301およびコア網であるEPC(Evolved Packet Core)302から構成される。スマートフォン100とLTE基地局301とは3GPP(3rd Generation Partnership Project)で規定されたLTEの方式に基づいて通信を行う。また、LTEコア網302とPC200は、インターネットおよびLAN(Local Area Network)で接続されている。
 スマートフォン100の通信部11は、LTE通信用デバイスおよびデバイスドライバ等で構成される。スマートフォン100において、状態推定部12とデータ決定部14とデータ変換部16とはCPUおよびその上で実行されるプログラムによって構成される。パラメータ記憶部13はスマートフォン100のメインメモリ上に確保された記憶領域である。また、データ入力部15は、スマートフォンに搭載されたマイク、カメラ、ボタン、タッチパネル等の入力デバイスである。データ入力部15は、GPS(Global Positioning System)受信機、加速度センサ、温度センサ等のセンサデバイスであってもよい。
 PC200は、一般的なパーソナルコンピュータであり、キーボード、マウス、マイク、カメラ等の入力デバイスを持つ。PC200は、任意のアプリケーションプログラムを実行可能であり、ネットワークインタフェースを介してネットワークに接続可能である。
 まず、スマートフォン100とPC200の間の音声通話について考える。この場合、スマートフォン100のデータ入力部15はマイクである。データ入力部15から入力された音声は、データ変換部16でG.711、AMR(Adaptive Multi-Rate)等の音声コーデックでエンコードされる。エンコードされた音声データは、RTP(Real-time Transport Protocol)、UDP(User Datagram Protocol)等のヘッダが付加されて通信部11から送信される。通信部11から送信された音声パケットは、LTE基地局301とLTEコア網302を介してPC200に到着する。到着した音声パケットは、PC200上で実行されるアプリケーションプログラムでデコードされ、スピーカーから出力される。同様に、PC200のマイクから入力された音声は、エンコードされてスマートフォン100に送信され、スマートフォンの通信部11で受信された後、デコードされて再生される(図示せず)。
 音声パケットの通信が開始されると、状態推定部12は、通信部11から無線ネットワークの情報を取得する。取得される情報は、例えば、現在使用しているMCSの種類、SINR(Signal-to-Interference and Noise power Ratio)、再送発生回数などである。SINRは、電波状態の良否を表すパラメータである。情報推定部12における情報の取得手順は、定期的に取得するポーリング方式でもよく、情報の変化時に通信部11から通知されるコールバック方式でもよい。
 データ決定部14は、状態推定部12で取得した情報とパラメータ記憶部13に記憶したパラメータとをもとに、以下の手順で最適なデータサイズと送信時刻とを決定する。
 LTEで遅延が増加する主な原因は、制御情報の伝送エラーとユーザデータ(本実施形態の場合には音声パケット)の伝送エラーとである。
 制御情報の伝送エラーは、基地局から端末へリソース割り当て情報を通知するためのメッセージのエラーによって発生する。LTEでは、基地局が無線リソースを管理する。基地局は、1ミリ秒ごとにどのリソースをどの端末に割り当てるかを決定し、決定した割り当てを制御情報として端末に通知する。この制御情報は、配下の全端末に一括して送信される。このため、基地局からの距離が遠く無線状態の悪い端末でも制御情報を受信できるように、基地局は符号化効率の低い変調方式を使用する。その結果、制御情報には多くの冗長データが付加されて送信される。しかし、それでも、無線状態の悪い端末は端末が制御情報を受信できない場合もある。制御情報がロスすると端末は送受信可能であることを知ることができないため、タイムアウトして制御情報の再送が行われるまでの長い時間、端末はデータを送受信できない。この制御情報がロスする確率を一定とすると、音声の送信間隔を大きくするほど、制御情報のロスと送信時刻との重複による遅延が発生する確率が低下する。そこで、スマートフォン100が電波状態の悪い環境にある場合には、音声パケットの送信間隔が拡大される。送信間隔の制御手順として、事前に実施した検証にもとづいてMCSまたはSINRのそれぞれの値に対する最適なパケット送信間隔をパラメータとしてパラメータ記憶部13に記憶させておき、現在のMCSやSINRに基づいて送信間隔を制御してもよい。このとき、MCSやSINRは最新の測定値を使ってもよいし、過去の測定値を用いて平滑化した値を使用してもよい。
 図7はパラメータ記憶部13に記憶される情報の例を示す。図7の例では、MCSの値に対応して音声パケットの送信間隔が記憶されている。例えば、1行目のエントリには、MCSの値が20以上であれば、音声パケットの送信間隔は10msとすべきことが記憶されている。また、4行目のエントリには、MCSの値が4以下であれば、音声パケットの送信間隔は80msとすべきことが記憶されている。
 図8はパラメータ記憶部13に記憶される情報の他の例を示す。図8の例では、SINR値に対応して音声パケットの送信間隔が記憶されている。例えば、1行目のエントリには、SINRの値が10dB以上であれば、音声パケットの送信間隔は10msとすべきことが記憶されている。また、4行目のエントリには、SINRの値が0dB以下であれば、音声パケットの送信間隔は80msとすべきことが記憶されている。
 一方、ユーザデータの伝送エラーは定常的に発生するが、通常は1回程度の再送(HARQ)で回復可能であるため、遅延時間の増加は数ミリ秒程度である。しかし、MCSが小さい(すなわち、符号化効率が低い)環境で大量のデータを送信すると、使用する無線リソース(「リソースブロック」と呼ばれる)の数が増加する。その結果、伝送エラーが発生しやすくなり、伝送エラーが連続的に発生して遅延が大きくなる。従って、MCSまたはSINRに応じて音声パケットのサイズ(音声品質)を制御し、連続した伝送エラーの発生確率を下げることが重要である。そこで、MCSの値から1つのリソースブロックで送信可能なデータ量を算出し、単位時間あたりに使用するリソースブロック数が一定以下になるように単位時間に送信する音声パケットのサイズを制御してもよい。単位時間あたりのリソースブロック数は一定である必要はない。例えば、MCSとSINRとから伝送エラーの発生確率を推定し、伝送エラーがある回数以上連続する確率が一定以下になるように単位時間あたりのリソースブロック数を制御してもよい。このとき、過去の伝送エラーおよび再送の回数を考慮して単位時間あたりのリソースブロック数を決定してもよい。
 また、制御情報およびユーザデータともに、電波環境(すなわち、通信環境)が急激に悪化した場合にはMCSの制御が間に合わずに伝送エラーの発生率が上昇し、遅延が増加する場合もある。そのため、電波環境の変動が激しい環境では送信間隔を広げることで、電波環境が急激に悪化したタイミングとパケット送信タイミングとが一致する確率を下げることができる。通信環境の変動の激しさを表す指標としては、例えば過去一定期間内におけるSINRの分散を使用することができる。
 図9はパラメータ記憶部13に記憶される情報のさらに他の例を示す。図9の例では、SINRの分散に対応して音声パケットの送信間隔が記憶される。例えば、1行目のエントリには、SINRの分散がV1未満であれば、音声パケットの送信間隔は10msとすべきことが記憶されている。また、2行目のエントリには、SINRの分散がV1以上V2未満であれば、音声パケットの送信間隔は20msとすべきことが記憶されている。さらに、4行目のエントリには、SINRの分散がV3以上であれば、音声パケットの送信間隔は80msとすべきことが記憶されている。ここで、V1、V2、V3は予め設定された閾値である。
 図9を用いた例では、SINRの分散V1~V3を用いて電波環境の変動量を評価し、変化量の大きさに応じて音声パケットの送信間隔を制御した。しかし、SINRの分散以外の情報によって通信環境の変動の激しさを評価してもよい。
 図10及び図11は、それぞれ、第3の実施形態におけるデータ決定部14の動作を表す第1及び第2のフローチャートである。図10のステップS801では、MCSまたはSINRの値が算出され、算出された値に基づいて制御情報の伝送エラーによる遅延を抑制するための送信間隔が決定される。また、ステップS802では、SINRの分散が算出され、算出された分散に基づいて電波環境の急激な悪化による遅延を抑制するための送信間隔が決定される。ステップS803では、S801とS802との結果のうち、送信間隔の大きい方を採用する等の手順により、最適な送信間隔が決定される。また、図11のステップS804では、定常的な環境での遅延発生確率を一定以下にするため、単位時間あたりに使用される最適なリソースブロック数が求められる。ステップS805では、その結果をもとに音声ビットレートが決定される。多くの音声コーデックでは、G.711が64kbps、G.729が8kbpsといったように、コーデック種別ごとにビットレートが規定されている。そのため、音声コーデック種別を切り替えることで、ビットレートが制御される。AMRのようにビットレートが可変のコーデックでは、コーデックを切り換えるのではなく、ビットレートを変更すればよい。
 このようにすることで、大きな遅延を発生させることなく、できる限り高いビットレートでの音声通話が可能になる。
 次に、テレビ電話やテレビ会議等の映像通信を実施することを考える。映像通信の場合、データ入力部15から入力されるデータは、例えば、スマートフォン100のカメラから入力される映像である。データ変換部16は、映像をH.264等の映像コーデックでエンコードし、エンコードされたデータを通信部11からPC200へ送信する。データ変換部16は、データ決定部14からの指示に基づいて、エンコード時に各映像フレームのサイズとフレームレートを制御する。
 本実施の形態では、音声通信と映像通信との場合を記載した。しかし、実施形態はこれに限定されない。例えば、タッチパネルから入力された操作情報を送信する場合には、送信する操作情報の時間間隔や位置情報(座標)の分解能を制御することで、遅延を抑制することが可能である。同様に、センサ情報の通信の場合にも、データの送信間隔や精度を制御することで、遅延の抑制が可能である。
[第4の実施の形態]
 第4の実施の形態では、第2の実施の形態をより具体化している。
 第4の実施の形態の通信システムも、第3の実施の形態と同様に図6に示した構成を備える。本実施の形態の状態推定部12は、LTE基地局301からスマートフォン100への下り方向の通信についても第3の実施形態と同様に状態の取得と推定を行い、データ決定部14も同様に下り方向のデータサイズと時刻とを決定する。次に、データ決定部14は、通信部11を介してPC200に対して決定した内容を指示する。PC200は、指示に基づいて音声パケットのビットレートと送信時刻とを制御することで、遅延のない通信を可能にする。
[第5の実施の形態]
 図12は本発明の第5の実施の形態の通信装置1000のブロック図である。この通信装置1000は、図示しない中継装置を介して他の通信装置と通信する機能を有する。通信装置1000は、検出手段1100と制御手段1200とを有する。
 検出手段1100は、中継装置との間の通信路の状態を検出する機能を有する。検出手段1100は、通信路の状態を、変調方式、符号化率、信号対干渉雑音電力比の少なくとも一つをもとに判定する機能を有していてよい。
 制御手段1200は、通信路の状態に応じて他の通信装置へ送信するデータの送信時刻を制御する機能を有する。制御手段1200は、通信路の状態に応じて送信するデータの送信間隔を制御する機能を有してもよい。制御手段1200は、通信路の状態の変動量に応じて送信するデータの送信間隔を制御する機能を有してもよい。制御手段1200は、通信路の状態に応じて送信するデータの量を制御する機能を有してもよい。制御手段1200は、通信路で単位時間あたりに使用する通信リソース量が規定値以下になるように送信するデータの量を制御する機能を有してもよい。制御手段1200は、使用する音声コーデック種別またはビットレートを変更することでデータ量を制御する機能を有してもよい。
 制御手段1200は、変調方式が効率の低い方式に変更された場合、符号化率が低下した場合、あるいは信号対干渉雑音電力比が低下した場合には通信路の状態の悪化と判定し、変調方式が効率の高い方式に変更された場合、符号化率が上昇した場合、あるいは信号対干渉雑音電力比が上昇した場合には通信路の状態の良化と判定する機能を有していてよい。
 データが音声パケットである場合には、制御手段1200は、音声パケットのパケット化周期を変更することで送信時刻を制御する機能を有してもよい。
 制御手段1200は、通信路の状態に応じてデータの送信間隔とデータの量の少なくとも一方を制御し、且つ、他の通信装置に対して、自通信装置1000に送信するデータの送信間隔とデータの量の少なくとも一方をリクエストするための通信を行う機能を有してもよい。
 検出手段1100の機能と制御手段1200の機能とは、通信装置1000を構成するコンピュータで実行されるプログラムによって実現することができる。プログラムは、通信装置1000が備える、一時的でない固定された記録媒体に記録されてもよい。記録媒体として、半導体メモリや固定磁気ディスク装置が用いられてもよい。
 このように構成された通信装置1000は、検出手段1100が中継装置との間の通信路の状態を検出し、制御手段1200が通信路の状態に応じて他の通信装置へ送信するデータの送信時刻を制御する。
 本実施形態の通信装置1000によれば、伝送エラーによる遅延を抑えつつより高いビットレートで通信することが可能になる。その理由は、通信装置1000は、通信路の状態に応じて他の通信装置へ送信するデータの送信時刻を制御するからである。一般的に、通信路の状態が悪い場合、より長い時間待機して次回のデータ送信を開始することにより、伝送エラーの発生をより抑えることができる。従って、伝送エラーの発生を抑えることができる範囲で待機時間を短くすることにより、伝送エラーによる遅延を抑えつつ、より高いビットレートで通信できるようになる。
[第6の実施形態]
 第6の実施形態は、送信間隔および音声コーデック種別の決定方法が第3の実施形態と異なる。第6の実施形態の第1の通信装置1の動作フローは、基本的に図3と同様である。本実施の形態では、第1の通信装置1の状態推定部12は、図3のステップS303において、MCSやSINRに加えて、ARQやHARQの情報を取得し、送信した各音声パケットがLTE基地局301に到達するまでの遅延を算出する。この遅延は、伝送エラーが発生しない場合にはほぼ0となり、伝送エラーが発生しARQやHARQによる再送が行われた場合には、実施されたARQやHARQの回数に応じて長くなる。
 次にステップS305においてデータ決定部14は、算出した遅延をもとに送信間隔と音声コーデック種別(ビットレート)を変化させた場合の相手端末(図6におけるPC200)の通話品質を予測し、通話品質が最も高くなる組み合わせを選択する。
 図13は、本実施の形態における、図3のステップS305の詳細な動作を説明するフローチャートである。まず、ステップS3051において、ステップS303で算出した各音声パケットの遅延から相手端末での音切れ発生頻度(単位時間あたりの音切れ発生回数)が算出される。
 音切れはパケットの到着が遅延した場合に発生するため、例えば、スマートフォン100とLTE基地局301の間のネットワークで再送によるパケットの遅延時間が一定以上に増加した場合に音切れが発生したと判定してもよい。
 次に、ステップS3052において、音声パケットの送信間隔とコーデック種別を変更した場合の音切れ発生頻度の予測値が算出される。予測値の算出方法の一例としては、事前に送信間隔とコーデック種別の組み合わせに対する音切れ発生頻度の比を計測しておき、現在の送信間隔と、コーデック種別に対する音切れ発生回数の観測値と、事前に計測した発生頻度の比と、をもとに予測値を算出してもよい。
 例えば、パケット送信間隔を20msとしたときのコーデック種別c1とコーデック種別c2の音切れ発生回数の比が1:2であることが事前に観測されていた場合、コーデック種別c1での音切れ回数が毎分10回であった場合には、コーデック種別をc2にすると音切れ回数が毎分20回になると予測できる。
 あるいは、音切れの発生頻度変動の理論値から、音切れの発生頻度を予測してもよい。一例として、以下の2つの関係を用いて予測してもよい。第1の関係は、音声パケットの送信間隔をn倍にすると、音切れの発生頻度は1/nになることである。第2の関係は、音声パケットのサイズを1/nにすると、音切れの発生頻度は1/nになることである。図14は、上記の方法で予測した送信間隔とコーデック種別に対する音切れの発生頻度の一例である。
 次に、ステップS3053において、各送信間隔とコーデック種別の組み合わせに対する通話品質の推定値が算出される。通話品質の推定値の一例として、ITU-T G.107で規定されたE-modelで算出されるR値が挙げられる。ITU-Tは、The International Telecommunication Union Telecommunication standardization sectorの略である。E-modelは、一方の端末で入力された音声がもう一方の端末のスピーカーから出力されるまでの時間(mouth-to-ear delay)や、コーデック種別、パケットロス率(遅延による音切れはパケットロスとして扱われる)等のパラメータから、通話品質の評価値であるR値(0以上100以下の数値)を算出する手法である。図15は、図14の音切れ発生頻度に対して算出されたR値の例を示す。
 最後に、ステップS3054において、ステップS3053で算出した通話品質の推定値が最高となる送信間隔とコーデック種別の組み合わせが選択される。図15の例では、送信間隔を40msとし、コーデック種別をG.711とした場合のR値が最大(80)となるため、この組み合わせが選択される。
 次に本実施の形態の効果について説明する。本実施の形態では、音切れによる通話品質劣化を考慮して音声パケットの送信間隔とコーデック種別を決定することで、音声通話品質を向上させることが可能になる。
[第7の実施形態]
 第7の実施形態は、パケットの遅延に関する情報をARQ、HARQの情報から取得するのではなく、相手端末から受信する点が第6の実施形態と異なる。
 本実施の形態におけるPC200は、パケットの遅延による音切れが発生したことをスマートフォン100へ通知する。この通知は、音切れ発生時に即座に送信してもよく、一定時間ごとに発生回数を送信してもよい。
 通知には、例えばRFC(Request for Comments)3550で規定されたRTCP(Real-time Transport Control Protocol)メッセージを使用することができる。
 スマートフォン100は、通信部11で通知を受信すると、状態推定部12で通知メッセージを解析し、音切れの発生頻度を算出する。以降の動作は、第6の実施形態と同様である。
 次に本実施の形態の効果について説明する。本実施の形態では、遅延に関する情報を相手端末から受信するため、自端末の無線情報を取得できない場合でも、音声通話品質を考慮した送信間隔とコーデック種別の制御が可能になる。
[第8の実施形態]
 第6及び第7の実施形態では、スマートフォン100から送信するデータの制御について記載した。しかし、第6及び第7の実施形態の手順は、第2の実施形態のようにPC200から受信する音声の制御にも利用できる。
 第8の実施形態における第1の通信装置1は、ARQやHARQの情報、または、音切れの発生頻度をもとに、音声通話品質が最も高くなる送信間隔とコーデック種別を決定し、第2の通信装置2へ指示する。
[その他の実施形態]
 第3、第4の実施形態では、LTE基地局に接続されたスマートフォン100とPC200との間の通信を記載した。しかし、本発明はこの構成に限定されない。図16は、第3及び第4の実施の形態の変形例を説明する構成図である。図16に示す通信システム30では、2台のスマートフォン101と201との間で通信が行われる。図16では、スマートフォン101とスマートフォン201とは、LTE基地局301、LTEコア網302、LTE基地局303を介して接続されている。
 また、各実施形態ではネットワークがLTEである例を記載した。しかし、各実施形態は、ネットワークが3G、WiMAX、Wi-Fi等である場合にも適用できる。
 上記の実施形態の一部又は全部は、以下の付記のようにも記載され得るが、以下には限られない。
[付記1]
 中継装置を介して他の通信装置と通信する通信装置であって、
 前記中継装置との間の通信路の状態を検出する検出手段と、
 前記通信路の状態に応じて前記他の通信装置へ送信するデータの送信時刻を制御する制御手段と
を有する通信装置。
[付記2]
 前記制御手段は、前記通信路の状態に応じて前記データの送信間隔を制御する、
付記1に記載の通信装置。
[付記3]
 前記制御手段は、前記通信路の状態の変動量に応じて前記データの送信間隔を制御する、
付記1または2に記載の通信装置。
[付記4]
 前記制御手段は、前記通信路の状態に応じて前記送信するデータの量を制御する、
付記1乃至3の何れかに記載の通信装置。
[付記5]
 前記制御手段は、前記通信路で単位時間あたりに使用する通信リソース量が規定値以下になるように前記データの量を制御する、
付記4に記載の通信装置。
[付記6]
 前記制御手段は、前記通信路を介して送信する前記データの前記送信時刻と前記送信間隔と前記データの量の少なくとも一つを変更した場合の品質評価値を推定し、前記品質評価値をもとに前記送信時刻と前記送信間隔と前記データの量との少なくとも一つを制御する
付記1乃至5の何れかに記載の通信装置。
[付記7]
  前記制御手段は、前記データの前記送信時刻と前記送信間隔と前記データの量の少なくとも一つを変更した場合の音声通話の音切れ発生頻度を予測し、前記音切れ発生頻度を用いて前記品質評価値を算出する付記6に記載の通信装置。
[付記8]
 前記制御手段は、過去の音切れ発生頻度をもとに前記データの前記送信時刻と前記送信間隔と前記データの量を変更した場合の前記音切れ発生頻度を予測する付記7に記載の通信装置。
[付記9]
 前記制御手段は、前記品質評価値が最も高くなる前記送信間隔と前記データ量を選択する、付記6乃至8の何れかに記載の通信装置。
[付記10]
 前記検出手段は、前記通信路の状態を、変調方式、符号化率、信号対干渉雑音電力比の少なくとも一つをもとに判定する、
付記1乃至9の何れかに記載の通信装置。
[付記11]
 前記制御手段は、前記変調方式が効率の低い方式に変更された場合、前記符号化率が低下した場合、前記信号対干渉雑音電力比が低下した場合に前記通信路の状態の悪化と判定し、前記変調方式が効率の高い方式に変更された場合、前記符号化率が上昇した場合、前記信号対干渉雑音電力比が上昇した場合に前記通信路の状態の良化と判定する、
付記10に記載の通信装置。
[付記12]
 前記データが音声パケットであり、
 前記制御手段は、前記音声パケットのパケット化周期を変更することで送信時刻を制御する、
付記1乃至11の何れかに記載の通信装置。
[付記13]
 前記制御手段は、使用する音声コーデック種別またはビットレートを変更することで前記データ量を制御する、
付記4乃至11のいずれかに記載の通信装置。
[付記14]
 前記制御手段は、前記通信路の状態に応じて前記データの送信間隔と前記データの量の少なくとも一方を制御し、且つ、前記他の通信装置に対して、前記データの送信間隔と前記データの量の少なくとも一方をリクエストするための通信を行う
付記1に記載の通信装置。
[付記15]
 第1の通信装置と第2の通信装置とが中継装置を介して通信する通信システムであって、
 前記第1の通信装置は、
 前記中継装置との間の通信路の状態を検出する検出手段と、
 前記通信路の状態に応じて前記第2の通信装置へ送信するデータの送信時刻を制御する制御手段と、
を有する通信システム。
[付記16]
 前記第1の通信装置の前記制御手段は、前記通信路の状態に応じて前記データの送信間隔を制御する、
付記15に記載の通信システム。
[付記17]
 前記第1の通信装置の前記制御手段は、前記通信路の状態の変動量に応じて前記データの送信間隔を制御する、
付記15または16に記載の通信システム。
[付記18]
 前記第1の通信装置の前記制御手段は、前記通信路の状態に応じて前記送信するデータの量を制御する、
付記15乃至17の何れかに記載の通信システム。
[付記19]
 前記第1の通信装置の前記制御手段は、前記通信路で単位時間あたりに使用する通信リソース量が規定値以下になるように前記データの量を制御する、
付記18に記載の通信システム。
[付記20]
 前記制御手段は、前記通信路を介して送信する前記データの前記送信時刻と前記送信間隔と前記データの量の少なくとも一つを変更した場合の品質評価値を推定し、前記品質評価値をもとに前記送信時刻と前記送信間隔と前記データの量との少なくとも一つを制御する
付記15乃至19の何れかに記載の通信システム。
[付記21]
  前記制御手段は、前記データの前記送信時刻と前記送信間隔と前記データの量の少なくとも一つを変更した場合の音声通話の音切れ発生頻度を予測し、前記音切れ発生頻度を用いて前記品質評価値を算出する付記20に記載の通信システム。
[付記22]
 前記制御手段は、過去の音切れ発生頻度をもとに前記データの前記送信時刻と前記送信間隔と前記データの量を変更した場合の前記音切れ発生頻度を予測する付記21に記載の通信システム。
[付記23]
 前記制御手段は、前記品質評価値が最も高くなる前記送信間隔と前記データ量を選択する、付記20乃至22の何れかに記載の通信システム。
[付記24]
 前記第1の通信装置の前記検出手段は、前記通信路の状態を、変調方式、符号化率、信号対干渉雑音電力比の少なくとも一つをもとに判定する、
付記15乃至23の何れかに記載の通信システム。
[付記25]
 前記第1の通信装置の前記制御手段は、前記変調方式が効率の低い方式に変更された場合、前記符号化率が低下した場合、前記信号対干渉雑音電力比が低下した場合に前記通信路の状態の悪化と判定し、前記変調方式が効率の高い方式に変更された場合、前記符号化率が上昇した場合、前記信号対干渉雑音電力比が上昇した場合に前記通信路の状態の良化と判定する、
付記24に記載の通信システム。
[付記26]
 前記データが音声パケットであり、
 前記第1の通信装置の前記制御手段は、前記音声パケットのパケット化周期を変更することで送信時刻を制御する、
付記15乃至25の何れかに記載の通信システム。
[付記27]
 前記第1の通信装置の前記制御手段は、使用する音声コーデック種別またはビットレートを変更することで前記データ量を制御する、
付記18乃至25のいずれかに記載の通信システム。
[付記28]
 前記第1の通信装置の前記制御手段は、前記通信路の状態に応じて前記データの送信間隔と前記データの量の少なくとも一方を制御し、且つ、前記他の通信装置に対して、前記データの送信間隔と前記データの量の少なくとも一方をリクエストするための通信を行う、
付記15に記載の通信システム。
[付記29]
 中継装置を介して他の通信装置と通信する通信装置が実行する通信制御方法であって、
 前記中継装置との間の通信路の状態を検出し、
 前記通信路の状態に応じて前記他の通信装置へ送信するデータの送信時刻を制御する、
通信制御方法。
[付記30]
 中継装置を介して通信装置と通信するコンピュータを、
 前記中継装置との間の通信路の状態を検出する検出手段と、
 前記通信路の状態に応じて前記他の通信装置へ送信するデータの送信時刻を制御する制御手段と、
して機能させるプログラム。
 以上、実施形態を参照して本願発明の実施形態を説明した。しかし、本願発明が適用可能な形態は上述した実施形態に限定されない。本願発明の構成や詳細説明には、本願発明のスコープ内で当業者が理解し得る様々な変更をすることができる。
 この出願は、2014年5月22日に出願された日本出願特願2014-105797を基礎とする優先権を主張し、その開示の全てをここに取り込む。
 本発明の活用例として、LTEなどのモバイルネットワークを介した音声通話、テレビ電話、ゲーム、シンクライアントなどのリアルタイムサービスに利用できる。
 1  第1の通信装置
 2  第2の通信装置
 3  中継装置
 10、20、30  通信システム
 11  通信部
 12  状態推定部
 13  パラメータ記憶部
 14  データ決定部
 15  データ入力部
 16  データ変換部
 100、101、200、201  スマートフォン
 301  LTE基地局(eNodeB)
 302  LTEコア網(EPC)
 1000  通信装置
 1100  検出手段
 1200  制御手段

Claims (10)

  1.  中継装置を介して他の通信装置と通信する通信装置であって、
     前記中継装置との間の通信路の状態を検出する検出手段と、
     前記通信路の状態に応じて前記他の通信装置へ送信するデータの送信時刻を制御する制御手段と、
    を有する通信装置。
  2.  前記制御手段は、前記通信路の状態に応じて前記データの送信間隔を制御する、
    請求項1に記載の通信装置。
  3.  前記制御手段は、前記通信路の状態の変動量に応じて前記データの送信間隔を制御する、
    請求項1または2に記載の通信装置。
  4.  前記制御手段は、前記通信路の状態に応じて前記送信するデータの量を制御する、
    請求項1乃至3の何れかに記載の通信装置。
  5.  前記制御手段は、前記通信路で単位時間あたりに使用する通信リソース量が規定値以下になるように前記データの量を制御する、
    請求項4に記載の通信装置。
  6.  前記制御手段は、前記通信路を介して送信する前記データの前記送信時刻と前記送信間隔と前記データの量の少なくとも一つを変更した場合の品質評価値を推定し、前記品質評価値をもとに前記送信時刻と前記送信間隔と前記データの量の少なくとも一つを制御する
    請求項1乃至5の何れかに記載の通信装置。
  7.  前記制御手段は、前記通信路の状態に応じて前記データの送信間隔と前記データの量の少なくとも一方を制御し、且つ、前記他の通信装置に対して、前記データの送信間隔と前記データの量の少なくとも一方をリクエストするための通信を行う、
    請求項1に記載の通信装置。
  8.  中継装置を介して他の通信装置と通信する通信装置が実行する通信制御方法であって、
     前記中継装置との間の通信路の状態を検出し、
     前記通信路の状態に応じて前記他の通信装置へ送信するデータの送信時刻を制御する、
    通信制御方法。
  9.  中継装置を介して通信装置と通信するコンピュータを、前記中継装置との間の通信路の状態を検出する検出手段と、前記通信路の状態に応じて前記他の通信装置へ送信するデータの送信時刻を制御する制御手段と、して機能させるプログラムを記録した、一時的でないプログラムの記録媒体。
  10.  第1の通信装置と第2の通信装置とが中継装置を介して通信する通信システムであって、前記第1の通信装置は、
     前記中継装置との間の通信路の状態を検出する検出手段と、
     前記通信路の状態に応じて前記第2の通信装置へ送信するデータの送信時刻を制御する制御手段と、
    を有する通信システム。
PCT/JP2015/002516 2014-05-22 2015-05-19 通信装置 WO2015178017A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US15/129,589 US20170142610A1 (en) 2014-05-22 2015-05-19 Communication device
JP2016520937A JPWO2015178017A1 (ja) 2014-05-22 2015-05-19 通信装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014105797 2014-05-22
JP2014-105797 2014-05-22

Publications (1)

Publication Number Publication Date
WO2015178017A1 true WO2015178017A1 (ja) 2015-11-26

Family

ID=54553698

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/002516 WO2015178017A1 (ja) 2014-05-22 2015-05-19 通信装置

Country Status (3)

Country Link
US (1) US20170142610A1 (ja)
JP (1) JPWO2015178017A1 (ja)
WO (1) WO2015178017A1 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2735309C1 (ru) * 2016-09-30 2020-10-29 Телефонактиеболагет Лм Эрикссон (Пабл) Апериодическая информация о состоянии канала (csi) и организация пула ресурсов csi-опорного сигнала (rs)
IT201600130103A1 (it) * 2016-12-22 2018-06-22 St Microelectronics Srl Procedimento di compensazione dello skew di orologio e relativo sistema
EP3573282B1 (en) * 2017-01-18 2021-09-08 Sony Interactive Entertainment Inc. Communication device, generated data size control method, and program
WO2019193668A1 (ja) * 2018-04-04 2019-10-10 株式会社ソニー・インタラクティブエンタテインメント 通信装置、生成データサイズ制御方法及びプログラム

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008131262A (ja) * 2006-11-20 2008-06-05 Fujitsu Ltd 通話サーバ、通話端末、通話システム、転送処理方法および転送処理プログラム
JP2008543168A (ja) * 2005-05-25 2008-11-27 テレフオンアクチーボラゲット エル エム エリクソン(パブル) 選択された変調及びコーディングスキーム(mcs)に基づく音声エンコーディングの適合化によるvoipメディアフロー品質の拡張
JP2012253618A (ja) * 2011-06-03 2012-12-20 Nippon Hoso Kyokai <Nhk> データ伝送装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008543168A (ja) * 2005-05-25 2008-11-27 テレフオンアクチーボラゲット エル エム エリクソン(パブル) 選択された変調及びコーディングスキーム(mcs)に基づく音声エンコーディングの適合化によるvoipメディアフロー品質の拡張
JP2008131262A (ja) * 2006-11-20 2008-06-05 Fujitsu Ltd 通話サーバ、通話端末、通話システム、転送処理方法および転送処理プログラム
JP2012253618A (ja) * 2011-06-03 2012-12-20 Nippon Hoso Kyokai <Nhk> データ伝送装置

Also Published As

Publication number Publication date
JPWO2015178017A1 (ja) 2017-04-20
US20170142610A1 (en) 2017-05-18

Similar Documents

Publication Publication Date Title
US11082956B2 (en) Scheduling systems and methods for wireless networks
JP5044012B2 (ja) アップリンク送信時間の動的な調節のための方法及び装置
JP4827652B2 (ja) 中継装置、中継方法および中継プログラム
JP4697525B2 (ja) 送受信システム、送信装置および送信方法、受信装置および受信方法、並びにプログラム
EP2137883B1 (en) Method of transmitting data in a communication system
US8520525B2 (en) Method of transmitting data and communication device
US9167473B2 (en) Communication processing method, apparatus and gateway device
JP4000895B2 (ja) リアルタイム通信のためのビットレート制御方法および装置
EP2950473B1 (en) Anti-packet-loss real-time communication method, system and related device based on hierarchical coding
US20150124604A1 (en) Systems and Methods for Proactive Congestion Detection in Radio Access Networks
WO2013051975A1 (en) Methods providing packet communications including jitter buffer emulation and related network nodes
WO2015178017A1 (ja) 通信装置
EP2706695A2 (en) Wireless communication system, base station, and wireless communication method
JP5270410B2 (ja) 無線送信装置および無線送信方法
JP2009130659A (ja) 通信装置及び適応変調方法
JP2005101815A (ja) 携帯通信端末
WO2018097073A1 (ja) 情報通知装置、情報通知方法およびプログラムが記録された記録媒体
JP2014068087A (ja) バッファ制御装置、バッファ制御装置による制御方法、メディア通信装置、並びにコンピュータ・プログラム
US10206124B1 (en) Method and apparatus for bidirectional modem
JP2007150911A (ja) 無線通信システム及び方法並びに無線基地局
JP2016054333A (ja) データ転送制御装置、方法及びプログラム
JP2008028828A (ja) 無線通信端末装置
Nihei et al. Study on mechanism and reduction approaches of delay spikes occurrence on mobile networks
Ţurcanu et al. The optimization of video transmission quality in wireless networks
JP2005341361A (ja) 無線画像伝送システムおよびその伝送方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15796544

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016520937

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15129589

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15796544

Country of ref document: EP

Kind code of ref document: A1