WO2015174294A1 - 信号処理装置および信号処理方法、並びにプログラム - Google Patents

信号処理装置および信号処理方法、並びにプログラム Download PDF

Info

Publication number
WO2015174294A1
WO2015174294A1 PCT/JP2015/063055 JP2015063055W WO2015174294A1 WO 2015174294 A1 WO2015174294 A1 WO 2015174294A1 JP 2015063055 W JP2015063055 W JP 2015063055W WO 2015174294 A1 WO2015174294 A1 WO 2015174294A1
Authority
WO
WIPO (PCT)
Prior art keywords
unit
processing
transmission path
demodulation
signal processing
Prior art date
Application number
PCT/JP2015/063055
Other languages
English (en)
French (fr)
Inventor
小林 健一
健太郎 中原
弘基 渡部
達紀 網本
Original Assignee
ソニー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニー株式会社 filed Critical ソニー株式会社
Publication of WO2015174294A1 publication Critical patent/WO2015174294A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/06Receivers
    • H04B1/16Circuits
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J11/00Orthogonal multiplex systems, e.g. using WALSH codes

Definitions

  • the present disclosure relates to a signal processing device, a signal processing method, and a program, and more particularly, to a signal processing device, a signal processing method, and a program that can perform demodulation processing by software with lower power consumption.
  • orthogonal frequency division multiplexing (OFDM) is used as modulation of the terrestrial digital broadcasting method.
  • This OFDM system provides a number of orthogonal subcarriers in the transmission band, assigns data to the amplitude and phase of each subcarrier, and uses PSK (Phase Shift Keying) or QAM (Quadrature Amplitude Modulation) Modulation method.
  • PSK Phase Shift Keying
  • QAM Quadrature Amplitude Modulation
  • this OFDM system divides the transmission band with a large number of subcarriers, the band per subcarrier wave becomes narrow and the modulation speed becomes slow, but the total transmission speed is the same as the conventional modulation system. Have.
  • this OFDM system has a feature that multipath tolerance can be improved by providing a guard interval to be described later.
  • IFFT Inverse Fastier Transform
  • FFT Fast FourierourTransform
  • Terrestrial digital broadcasting employing such an OFDM system includes, for example, DVB-T (Digital Video Broadcasting-Terrestrial), ISDB-T (Integrated Services Digital Sequential Broadcasting-Terrestrial), ISDB-TSB (Integrated Services Services Digital Broadcasting-Terrestrial Sound There is a standard called Broadcasting.
  • DVB-T Digital Video Broadcasting-Terrestrial
  • ISDB-T Integrated Services Digital Sequential Broadcasting-Terrestrial
  • ISDB-TSB Integrated Services Services Digital Broadcasting-Terrestrial Sound
  • Broadcasting Integrated Services Digital Broadcasting-Terrestrial Sound
  • Patent Document 1 proposes a receiving apparatus employing such an OFDM system.
  • a method is known in which a digital signal processor is used and a signal processing unit that performs signal processing is implemented by software.
  • OFDM receivers that perform demodulation processing by software are also installed in mobile terminals such as mobile phones. Since the mobile terminal is driven by a battery, in order to suppress the power consumption of the mobile terminal, it is required to reduce the power consumption of the demodulation process by software.
  • the present disclosure has been made in view of such a situation, and makes it possible to perform demodulation processing by software with lower power consumption.
  • a signal processing device includes a state acquisition unit that acquires a state of a transmission path, and a selection unit that performs a determination based on the state of the transmission path acquired by the state acquisition unit and selects a demodulation process And a control unit that controls the predetermined processing unit to stop processing or reduce the number of processing cycles in the demodulation processing selected by the selection unit.
  • a signal processing method or program acquires a state of a transmission path, performs a determination based on the acquired state of the transmission path, selects a demodulation process, and performs a predetermined process in the selected demodulation process. Including a step of controlling the processing unit to stop the processing or to reduce the number of processing cycles.
  • the state of a transmission path is acquired, a determination based on the state of the transmission path is performed, and a demodulation process is selected, and a process is performed on a predetermined processing unit in the selected demodulation process It is stopped or the number of processing cycles is reduced.
  • FIG. 18 is a block diagram illustrating a configuration example of an embodiment of a computer to which the present technology is applied.
  • transmission signals according to the OFDM scheme are transmitted in symbol units called OFDM symbols.
  • This OFDM symbol is composed of an effective symbol that is a signal period during which IFFT is performed at the time of transmission, and a guard interval in which a partial waveform of the latter half of the effective symbol is copied as it is. This guard interval is provided in the first half of the OFDM symbol.
  • multipath tolerance is improved by providing such a guard interval.
  • a plurality of OFDM symbols are collected to form one OFDM transmission frame.
  • one OFDM transmission frame is formed with 204 OFDM symbols.
  • the pilot signal insertion position is determined based on the OFDM transmission frame unit.
  • the amplitude and phase differ for each subcarrier due to the influence of multipath or the like during transmission. Therefore, on the receiving side, it is necessary to equalize the received signal so that the amplitude and phase for each subcarrier are equal.
  • a pilot signal having a predetermined amplitude and a predetermined phase is inserted into a transmission symbol discretely in a transmission signal on the transmission side, and the frequency characteristics of the transmission path with respect to the amplitude and phase of this pilot signal are received on the reception side. The received signal is equalized according to the obtained characteristics of the transmission path.
  • FIG. 2 shows an arrangement pattern of SP signals employed in the DVB-T standard and the ISDB-T standard in the OFDM symbol.
  • SP signals are indicated by black circles ( ⁇ ) and are arranged at predetermined intervals in the carrier (frequency) direction and the OFDM symbol (time) direction.
  • the SP signals are arranged at intervals of once every 12 carriers in the carrier direction and at intervals of once every 4 symbols in the OFDM symbol direction.
  • FIG. 3 is a block diagram showing a configuration example of an embodiment of an OFDM receiving apparatus which is a signal processing apparatus to which the present technology is applied.
  • the OFDM receiver 11 includes an antenna 12, a tuner 13, an A / D (Analog / digital) converter 14, an orthogonal demodulator 15, a signal processor 16, a power management controller 17, and a PLL (Phase Locked Loop) 18. And a regulator 19.
  • a / D Analog / digital
  • PLL Phase Locked Loop
  • the antenna 12 receives, for example, an RF (Radio Frequency) signal, which is a high-frequency signal in a band used in television broadcasting, and supplies it to the tuner 13.
  • the tuner 13 converts the RF signal supplied from the antenna 12 into an IF (Intermediate Frequency) signal that is an intermediate frequency, and supplies the converted signal to the A / D converter 14.
  • the A / D converter 14 performs analog-digital conversion on the IF signal supplied from the tuner 13 and supplies the converted signal to the orthogonal demodulator 15.
  • the orthogonal demodulator 15 performs orthogonal demodulation on the IF signal digitized by the A / D converter 14 and supplies a baseband OFDM signal to the signal processor 16.
  • the baseband OFDM signal output from the quadrature demodulator 15 is a so-called time domain signal before the FFT operation. Therefore, hereinafter, a baseband signal after orthogonal demodulation and before FFT calculation is referred to as an OFDM time domain signal.
  • the OFDM time domain signal becomes a complex signal including a real axis component (I channel signal) and an imaginary axis component (Q channel signal).
  • the signal processing unit 16 is configured by, for example, a digital signal processor (DSP), and realizes a function as an OFDM receiver by executing demodulation processing by software.
  • DSP digital signal processor
  • the power management controller 17 is supplied with a selection result indicating the demodulation processing selected according to the state of the transmission path from the signal processing unit 16 when the signal processing unit 16 performs demodulation processing by software.
  • the power management controller 17 calculates the minimum clock frequency and voltage of the signal processing unit 16 necessary for performing the selected demodulation process, and controls the PLL 18 and the regulator 19.
  • the PLL 18 supplies the signal processing unit 16 with a minimum clock frequency necessary for executing the demodulation processing selected by the signal processing unit 16 according to the control of the power management controller 17.
  • the regulator 19 supplies the signal processing unit 16 with the power of the minimum voltage necessary for executing the demodulation processing selected by the signal processing unit 16 according to the control of the power management controller 17.
  • the signal processing unit 16 includes an FFT operation circuit 21, an FFT interval control unit 22, an SP extraction unit 23, a time varying value generation unit 24, a time interpolation unit 25, a noise estimation unit 26, a path determination unit 27, and an optimum filter coefficient selection. 28, a frequency interpolation unit 29, a frequency interpolation unit 30, a transmission path state information generation unit 31, a division unit 32, an error correction unit 33, and a demodulation process selection unit 34.
  • the OFDM time domain signal output from the quadrature demodulator 15 is supplied to the FFT operation circuit 21. Then, the FFT operation circuit 21 extracts an effective symbol length range signal from one OFDM symbol, that is, removes a guard interval range from one OFDM symbol, and performs an FFT operation on the extracted OFDM time domain signal. Do. Thereby, the FFT operation circuit 21 extracts and outputs data that is orthogonally modulated to each subcarrier.
  • the calculation start position is shown from the OFDM symbol boundary (ie, position A shown in FIG. 1) to the end position of the guard interval (ie, shown in FIG. 1). Any position between position B).
  • This calculation interval is called an FFT interval.
  • the signal output from the FFT block is a so-called frequency domain signal after the FFT. Therefore, the signal after the FFT calculation is referred to as an OFDM frequency domain signal.
  • the OFDM time domain signal output from the orthogonal demodulation unit 15 is supplied to the FFT section control unit 22. Then, the FFT section control unit 22 controls the FFT section in the OFDM demodulation process. For example, means for performing FFT section control by detecting a correlation value in a guard interval period using an OFDM time domain signal, and means for controlling an FFT section by estimating a delay profile of a transmission path are known.
  • An OFDM frequency domain signal output from the FFT operation circuit 21 is supplied to the SP extraction unit 23.
  • the SP extraction unit 23 extracts only the SP signal inserted at the position described above with reference to FIG. By removing the modulation component of the signal, the transmission path characteristic at the SP position is calculated. Then, the SP extraction unit 23 supplies the calculated transmission path characteristic at the SP position to the time-varying value generation unit 24.
  • the time-varying value generation unit 24 compares the transmission path characteristics at the previous SP position with the transmission path characteristics at the current SP position, and calculates a time-varying value indicating how much the transmission path is dynamically changing. To do.
  • the time interpolation unit 25 is supplied with the transmission path characteristic at the SP position calculated by the SP extraction unit 23 and the time-varying value calculated by the time-varying value generation unit 24. Then, the time interpolation unit 25 estimates the transmission path characteristic of the subcarrier in which the SP signal is arranged for each OFDM symbol. As a result, it is possible to estimate channel characteristics for every three subcarriers in the frequency direction for all OFDM symbols.
  • the time interpolation unit 25 estimates the transmission path, a method is used in which a plurality of past SP signals are stored to increase the interpolation accuracy.
  • the noise estimation unit 26 uses the SP signal supplied from the SP extraction unit 23 to calculate the noise amount for every 12 carriers.
  • the route determination unit 27 is supplied with the transmission path characteristics for every three carriers estimated by the time interpolation unit 25, and the transmission path is multipath (not 1 path) or the transmission path is not multipath (1 path). ) Then, the route determination unit 27 supplies a route determination result indicating the result of determining whether or not the transmission path is multipath to the demodulation process selection unit 34.
  • the optimum filter coefficient selection unit 28 is supplied with the OFDM frequency domain signal, the transmission path characteristic estimation value from the time interpolation unit 25, and the path determination result from the path determination unit 27, and is used by the frequency interpolation unit 29 described later. A filter coefficient suitable for transmission path distortion compensation is selected.
  • the frequency interpolation unit 29 is supplied with transmission path characteristic estimation for every three carriers estimated by the time interpolation unit 25. Then, the frequency interpolation unit 30 performs frequency interpolation processing and calculates transmission path characteristics of all subcarriers in the OFDM symbol. For example, the frequency interpolation process is realized by applying a low-pass filter to the three times upsampled. As a result, transmission path characteristics can be estimated for all subcarriers of the OFDM symbol. As the filter coefficient used at this time, the coefficient obtained by the optimum filter coefficient selection unit 28 is used.
  • the frequency interpolation unit 30 interpolates the noise amount for every 12 carriers calculated by the noise estimation unit 26 in the frequency direction, and calculates the noise amount for all subcarriers of the OFDM symbol.
  • the transmission path state information generation unit 31 is based on the transmission path characteristics of all subcarriers in the OFDM symbol calculated by the frequency interpolation unit 29 and the noise amounts of all subcarriers of the OFDM symbol calculated by the frequency interpolation unit 30. SNR (Signal-to-toNoise Ratio) is calculated.
  • the division unit 32 compensates for distortion due to the transmission path by performing division on the OFDM frequency domain signal using the transmission path characteristics of all subcarriers supplied from the frequency interpolation unit 29.
  • the error correction unit 33 is supplied with the OFDM frequency domain signal whose transmission path distortion has been compensated for by the division unit 32 and the SNR calculated by the transmission path state information generation unit 31. Then, the error correction unit 33 performs deinterleaving processing on the signal interleaved on the transmission side, and outputs it as demodulated data through denpuncture, Viterbi demodulation, spread signal removal, and RS demodulation.
  • the demodulation processing selection unit 34 performs a determination based on the time-varying value supplied from the time-varying value generation unit 24 and the path determination result supplied from the path determination unit 27, and performs an appropriate determination according to the transmission path state.
  • a selection process for selecting a demodulation process is performed.
  • the demodulation process selection unit 34 selects a demodulation process that performs the minimum necessary process according to the transmission path state, stops the process for a block that does not require an operation in the demodulation process, and sets the frequency of the process. Control is performed to increase the number of processing cycles for blocks that can be reduced.
  • the OFDM receiver 11 configured as described above analyzes the transmission path state, selects a necessary demodulation process from the result, and is required by the signal processing unit 16 to perform demodulation by the selected process. Each can be adjusted to a minimum voltage and operating frequency. Therefore, for example, as compared with a configuration in which constant processing is always executed as in the conventional demodulation processing, and processing that is not necessarily required when the transmission path is in good condition, the OFDM receiver 11 consumes less power. Reduction of power can be realized.
  • FIG. 4 is a flowchart illustrating the determination process performed by the demodulation process selection unit 34.
  • the processing is started.
  • step S11 the demodulation processing selection unit 34 acquires the time varying value generated by the time varying value generating unit 24 and the route determination result indicating the result of the determination made by the route determining unit 27.
  • step S12 the demodulation process selection unit 34 determines whether the transmission path is one path based on the path determination result supplied from the path determination unit 27, and determines that the transmission path is one path. If so, the process proceeds to step S13.
  • step S ⁇ b> 13 the demodulation processing selection unit 34 determines whether or not the dynamic variation of the transmission path is small based on the time-varying value supplied from the time-varying value generating unit 24, that is, supplied from the time-varying value generating unit 24. It is determined whether the time-varying value is smaller than a predetermined value.
  • step S13 if the demodulation process selection unit 34 determines that the time-varying value is not smaller than the predetermined value (is greater than or equal to the predetermined value), the process proceeds to step S14. That is, in this case, it is determined that the transmission path is one path, but the dynamic fluctuation of the transmission path is not small, together with the determination result of step S12.
  • step S14 the demodulation processing selection unit 34 gives an instruction to each unit of the signal processing unit 16 so as to perform the demodulation processing in one pass. For example, when the transmission path is one path, the SNRs of all subcarriers of the OFDM symbol are close to each other. Therefore, it is necessary to operate the noise estimation unit 26, the frequency interpolation unit 30, and the transmission path state information generation unit 31. Absent. Therefore, the demodulation processing selection unit 34 instructs the blocks to stop the operation, and thereby, the signal processing unit 16 performs the demodulation processing for one pass. After the process of step S14, the process returns to step S11, and the same process is repeated thereafter.
  • step S13 determines whether the time-varying value is a minute value that can be ignored. Determine whether or not.
  • step S15 when the demodulation process selection unit 34 determines that the time-varying value is not a negligible value, the process proceeds to step S16. That is, in this case, it is determined that the time-varying value is not so small as to be negligible, but is a small value to some extent, together with the determination result of step S13.
  • step S16 the demodulation processing selection unit 34 instructs each unit of the signal processing unit 16 to perform the demodulation processing at the time of small fluctuation. For example, when the dynamic fluctuation of the transmission path is small, it is not necessary to frequently perform the FFT section control performed by the FFT section control unit 22 or the filter coefficient selection performed by the optimum filter coefficient selection unit 28. . Furthermore, the interpolation processing in the time interpolation unit 25 can also reduce the number of SP signals to be used, for example, by performing linear interpolation between the SP signal one time before and the current SP signal.
  • the demodulation processing selection unit 34 instructs the FFT interval control unit 22, the time interpolation unit 25, and the optimum filter coefficient selection unit 28 to reduce the number of processing cycles, whereby the signal processing unit 16 Demodulation processing at the time of small fluctuation is performed. After the process of step S16, the process returns to step S11, and the same process is repeated thereafter.
  • step S15 determines in step S15 that the time-varying value is a negligible value
  • the process proceeds to step S17. That is, in this case, together with the determination result of step S12, it is determined that the transmission path is one path and that the dynamic fluctuation of the transmission path is negligibly small.
  • step S17 the demodulation processing selection unit 34 instructs each unit of the signal processing unit 16 so as to perform demodulation processing for one pass and a minute fluctuation.
  • the noise estimation unit 26, the frequency interpolation unit 30, the transmission as in step S14 described above.
  • the operation of the time interpolation unit 25 is stopped and the number of processing cycles is decreased with respect to the FFT section control unit 22 and the optimum filter coefficient selection unit 28.
  • the signal processing unit 16 performs demodulation processing for one pass and a minute fluctuation.
  • the process returns to step S11, and the same process is repeated thereafter.
  • step S12 determines in step S12 that the transmission path is not one path (that is, the transmission path is multipath)
  • the process proceeds to step S18.
  • step S ⁇ b> 18 the demodulation processing selection unit 34 determines whether or not the dynamic variation of the transmission path is small based on the time varying value supplied from the time varying value generation unit 24, that is, supplied from the time varying value generation unit 24. It is determined whether the time-varying value is smaller than a predetermined value.
  • step S18 If it is determined in step S18 that the time-varying value is smaller than the predetermined value, the process proceeds to step S19, and the demodulation process selection unit 34 determines whether or not the time-varying value is a negligible value. Determine.
  • step S19 when the demodulation process selection unit 34 determines that the time-varying value is not a negligible value, the process proceeds to step S20.
  • step S20 the demodulation processing selection unit 34 instructs each unit of the signal processing unit 16 to perform demodulation processing at the time of small fluctuations, as in step S16 described above, and after that processing, the processing proceeds to step S11. Thereafter, the same processing is repeated thereafter.
  • step S19 determines in step S19 that the time-varying value is a negligible value
  • the process proceeds to step S21. In other words, in this case, it is determined that the transmission path is not one path in combination with the determination result of step S12, but the dynamic fluctuation of the transmission path is negligibly small.
  • step S21 the demodulation processing selection unit 34 instructs each unit of the signal processing unit 16 so as to perform demodulation processing at the time of minute fluctuation. For example, when the dynamic fluctuation of the transmission path is negligibly small, the operation of the time interpolation unit 25 is stopped, and the number of processing cycles for the FFT section control unit 22 and the optimum filter coefficient selection unit 28 is stopped. Reduce. As a result, the signal processing unit 16 performs demodulation processing at the time of minute fluctuation. After the process of step S21, the process returns to step S11, and the same process is repeated thereafter.
  • step S18 determines in step S18 that the time-varying value is not smaller than the predetermined value (is greater than or equal to the predetermined value)
  • the process proceeds to step S22. That is, in this case, it is determined that the transmission path is not a single path and that the dynamic fluctuation of the transmission path is not small, together with the determination result of step S12.
  • step S22 there is no block for performing normal demodulation processing, that is, operation stop or processing cycle reduction, and the signal processing unit 16 uses all blocks to perform demodulation processing as usual. I do. After the process of step S22, the process returns to step S11, and the same process is repeated thereafter.
  • the demodulation processing selection unit 34 performs transmission based on the time varying value supplied from the time varying value generation unit 24 and the route determination result supplied from the route determination unit 27.
  • An appropriate demodulation process can be selected according to the road condition. For example, when the demodulation process selection unit 34 selects any one of the demodulation process for one pass, the demodulation process for small fluctuations, the demodulation process for minute fluctuations, or the demodulation process for one path and minute fluctuations, By stopping the driving or reducing the number of processing cycles, the OFDM receiver 11 can suppress power consumption correspondingly.
  • FIG. 5 shows a configuration example of the OFDM receiver 11 in which a block to be driven when the one-pass demodulation process is selected in step S14 of FIG. 4 is shown.
  • the signal processing unit 16 is equivalent to a configuration that does not include the noise estimation unit 26, the frequency interpolation unit 30, and the transmission path state information generation unit 31, as shown in FIG. .
  • the demodulation process selection unit 34 notifies the power management controller 17 of a selection result indicating that the demodulation process for one pass has been selected.
  • the power management controller 17 controls the regulator 19 so as to reduce the voltage supplied to the signal processing unit 16 according to the power consumption in the block that stops the operation when performing the demodulation process in one pass. Accordingly, the regulator 19 reduces the voltage supplied to the signal processing unit 16, so that the OFDM receiver 11 can perform demodulation processing with lower power consumption.
  • FIG. 6 shows a configuration example of the OFDM receiving apparatus 11 in which blocks to be driven when the demodulation process at the time of small fluctuation is selected in step S16 or S20 in FIG. 4 are shown.
  • a block whose number of processing cycles has been reduced is indicated by a broken line.
  • the execution frequency of the processing in the FFT section control unit 22, the time interpolation unit 25, and the optimum filter coefficient selection unit 28 is reduced, or the interpolation process is lightened. For example, the number of processing cycles can be reduced.
  • the power management controller 17 controls the PLL 18 so as to supply the minimum necessary clock frequency to the block that reduces the number of processing cycles when performing the demodulation processing at the time of small fluctuation.
  • the OFDM receiver 11 performs demodulation processing with lower power consumption by reducing the clock frequency supplied to the FFT interval control unit 22, the time interpolation unit 25, and the optimum filter coefficient selection unit 28 by the PLL 18. be able to.
  • FIG. 7 shows a configuration example of the OFDM receiver 11 in which a block to be driven when the demodulation process at the time of minute fluctuation is selected in step S21 of FIG. 4 is shown.
  • a block whose number of processing cycles has been reduced is indicated by a broken line.
  • the regulator 19 reduces the voltage supplied to the signal processing unit 16 by an amount that stops the operation of the time interpolation unit 25, and the PLL 18 sets the clock frequency supplied to the FFT interval control unit 22 and the optimum filter coefficient selection unit 28. Reduce to the minimum necessary. As a result, the OFDM receiver 11 can perform demodulation processing with lower power consumption.
  • FIG. 8 shows a configuration example of the OFDM receiver 11 in which a block to be driven when performing demodulation processing at one pass and a minute fluctuation in step S17 of FIG. 4 is shown.
  • a block whose number of processing cycles has been reduced is indicated by a broken line.
  • the regulator 19 reduces the voltage supplied to the signal processing unit 16 by the amount of stopping the operations of the time interpolation unit 25, the noise estimation unit 26, the frequency interpolation unit 30, and the transmission path state information generation unit 31, and the PLL 18
  • the clock frequency supplied to the FFT interval control unit 22 and the optimum filter coefficient selection unit 28 is reduced to the minimum necessary.
  • the OFDM receiver 11 can perform demodulation processing with lower power consumption.
  • the vertical axis indicates the number of processing cycles
  • the horizontal axis indicates each demodulation process. As shown in FIG. 9, the demodulation process can be performed with lower power consumption as the number of processing cycles is smaller.
  • the number of processing cycles in normal demodulation processing is the same as the number of processing cycles in conventional demodulation processing.
  • the number of processing cycles in the demodulation process at the time of one pass is such that the operations of the noise estimation unit 26, the frequency interpolation unit 30, and the transmission path state information generation unit 31 are stopped. Therefore, the number of processing cycles can be reduced by the noise estimation unit 26, the frequency interpolation unit 30, and the transmission path state information generation unit 31 as compared with normal demodulation processing.
  • the number of processing cycles in the demodulation processing at the time of small fluctuation is a method in which the operation frequency of the FFT section control unit 22 and the optimum filter coefficient selection unit 28 is lowered and the interpolation processing of the time interpolation unit 25 is light. To do. Therefore, the number of processing cycles can be reduced by an amount corresponding to the FFT interval control unit 22, the time interpolation unit 25, and the optimum filter coefficient selection unit 28 as compared with the normal demodulation processing.
  • the number of processing cycles in the demodulation processing at the time of slight fluctuation is the number of processing cycles of the FFT interval control unit 22 and the optimum filter coefficient selection unit 28 while the operation of the time interpolation unit 25 is stopped. Is reduced. Therefore, the number of processing cycles can be reduced by the FFT interval control unit 22, the time interpolation unit 25, and the optimum filter coefficient selection unit 28 as compared with the normal demodulation processing of the embodiment.
  • the number of processing cycles in the demodulating process for one pass and minute fluctuation is as follows: the time interpolation unit 25, the noise estimation unit 26, the frequency interpolation unit 30, and the transmission path state information generation unit 31 While being stopped, the number of processing cycles of the FFT interval control unit 22 and the optimum filter coefficient selection unit 28 is reduced. Therefore, compared with the normal demodulation processing in the embodiment, the FFT interval control unit 22, the time interpolation unit 25, the noise estimation unit 26, the optimum filter coefficient selection unit 28, the frequency interpolation unit 30, and the transmission path state information generation unit The number of processing cycles can be reduced by 31.
  • the demodulation processing selection unit 34 selects the demodulation processing according to the state of the transmission path, so that only necessary blocks are operated or the number of processing cycles is reduced. Demodulation processing can be performed. As a result, the voltage and operating frequency of the signal processing unit 16 can be suppressed to the minimum necessary, and the power consumption of the demodulation process can be reduced compared to a configuration in which such a demodulation process is not selected. .
  • the processes described with reference to the flowcharts described above do not necessarily have to be processed in chronological order in the order described in the flowcharts, but are performed in parallel or individually (for example, parallel processes or objects). Processing).
  • the program may be processed by one CPU, or may be distributedly processed by a plurality of CPUs.
  • the above-described series of processing can be executed by hardware or can be executed by software.
  • a program constituting the software may execute various functions by installing a computer incorporated in dedicated hardware or various programs.
  • the program is installed in a general-purpose personal computer from a program recording medium in which the program is recorded.
  • FIG. 10 is a block diagram showing an example of the hardware configuration of a computer that executes the above-described series of processing by a program.
  • a CPU Central Processing Unit
  • ROM Read Only Memory
  • RAM Random Access Memory
  • An input / output interface 105 is further connected to the bus 104.
  • the input / output interface 105 includes an input unit 106 including a keyboard, a mouse, and a microphone, an output unit 107 including a display and a speaker, a storage unit 108 including a hard disk and nonvolatile memory, and a communication unit 109 including a network interface.
  • a drive 110 for driving a removable medium 111 such as a magnetic disk, an optical disk, a magneto-optical disk, or a semiconductor memory is connected.
  • the CPU 101 loads, for example, the program stored in the storage unit 108 to the RAM 103 via the input / output interface 105 and the bus 104 and executes the program. Is performed.
  • the program executed by the computer (CPU 101) is, for example, a magnetic disk (including a flexible disk), an optical disk (CD-ROM (Compact Disc-Read Only Memory), DVD (Digital Versatile Disc), etc.), a magneto-optical disc, or a semiconductor.
  • the program is recorded on a removable medium 111 that is a package medium including a memory or the like, or is provided via a wired or wireless transmission medium such as a local area network, the Internet, or digital satellite broadcasting.
  • the program can be installed in the storage unit 108 via the input / output interface 105 by attaching the removable medium 111 to the drive 110. Further, the program can be received by the communication unit 109 via a wired or wireless transmission medium and installed in the storage unit 108. In addition, the program can be installed in the ROM 102 or the storage unit 108 in advance.
  • a status acquisition unit for acquiring the status of the transmission path;
  • a selection unit that performs a determination based on the state of the transmission path acquired by the state acquisition unit and selects a demodulation process;
  • a signal processing apparatus comprising: a control unit that performs control to stop a predetermined processing unit in a demodulation process selected by the selection unit or to reduce the number of processing cycles.
  • the selection unit selects a demodulation process performed by the processing unit that performs a minimum necessary process according to a state of the transmission path, among the demodulation processes performed by the plurality of processing units.
  • the state acquisition unit includes a time-varying value generation unit that calculates a time-varying value indicating how much the transmission path is dynamically changing.
  • the state acquisition unit includes a path determination unit that determines whether or not the transmission path is multipath.
  • an operating frequency adjusting unit that calculates a minimum operating frequency necessary for executing the demodulation processing selected by the selecting unit and adjusts the calculated operating frequency to be supplied.

Abstract

 本開示は、ソフトウェアによる復調処理をより低消費電力で行うことができるようにする信号処理装置および信号処理方法、並びにプログラムに関する。 信号処理装置は、伝送路の状態を取得する状態取得部と、状態取得手段により取得された伝送路の状態に基づいた判定を行って、復調処理を選択する選択部と、選択部により選択された復調処理において所定の処理部に対して処理を停止させ、または、処理サイクル数を低下させる制御を行う制御部とを備える。そして、選択部は、複数の処理部により処理が行われて実行される復調処理のうちの、伝送路がどの程度動的に変化しているかを表す時変値、および、伝送路がマルチパスであるか否かを判定した判定結果に基づいて、最低限必要な処理を行う処理部による復調処理を選択する。本技術は、例えば、OFDM受信装置に適用できる。

Description

信号処理装置および信号処理方法、並びにプログラム
 本開示は、信号処理装置および信号処理方法、並びにプログラムに関し、特に、ソフトウェアによる復調処理をより低消費電力で行うことができるようにした信号処理装置および信号処理方法、並びにプログラムに関する。
 従来、地上デジタル放送方式の変調として、直交周波数分割多重方式(OFDM:Orthogonal Frequency Division Multiplexing)と呼ばれる変調方式が用いられる。このOFDM方式は、伝送帯域内に多数の直交する副搬送波(サブキャリア)を設け、それぞれのサブキャリアの振幅および位相にデータを割り当て、PSK(Phase Shift Keying)やQAM(Quadrature Amplitude Modulation)によりデジタル変調する方式である。
 このOFDM方式は、多数のサブキャリアで伝送帯域を分割するため、サブキャリア1波あたりの帯域は狭くなり変調速度は遅くなるが、トータルの伝送速度は、従来の変調方式と変わらないという特徴を有している。また、このOFDM方式は、後述するガードインターバルを設けることでマルチパス耐性を向上できると言う特徴を有している。
 また、OFDM方式は、複数のサブキャリアに対してデータの割り当てが行なわれることから、変調時には逆フーリエ変換を行なうIFFT(Inverse Fast Fourier Transform) 演算回路、復調時にはフーリエ変換を行なうFFT(Fast Fourier Transform)演算回路を用いることにより、送受信回路を構成することができると言う特徴を有している。
 以上のような特徴からOFDM方式は、マルチパス妨害の影響を強く受ける地上デジタル放送に適用されることが多い。このようなOFDM方式を採用した地上デジタル放送としては、例えば、DVB-T(Digital Video Broadcasting-Terrestrial)やISDB-T(Integrated Services Digital Broadcasting-Terrestrial)、ISDB-TSB(Integrated Services Digital Broadcasting-Terrestrial Sound Broadcasting)といった規格がある。
 このようなOFDM方式を採用した受信装置について、例えば、特許文献1などで提案されている。その実現方法の1つとして、デジタルシグナルプロセッサを使用し、信号処理を行う信号処理部をソフトウェアで実現する方法が知られている。
特開2011-29922号公報
 ところで、近年、ソフトウェアにより復調処理を行うOFDM受信装置は、携帯電話などのモバイル端末にも搭載されている。モバイル端末はバッテリーにより駆動することより、モバイル端末の電力消費を抑制するために、ソフトウェアによる復調処理を低消費電力化することが求められている。
 本開示は、このような状況に鑑みてなされたものであり、ソフトウェアによる復調処理をより低消費電力で行うことができるようにするものである。
 本開示の一側面の信号処理装置は、伝送路の状態を取得する状態取得部と、前記状態取得手段により取得された伝送路の状態に基づいた判定を行って、復調処理を選択する選択部と、前記選択部により選択された復調処理において所定の処理部に対して処理を停止させ、または、処理サイクル数を低下させる制御を行う制御部とを備える。
 本開示の一側面の信号処理方法またはプログラムは、伝送路の状態を取得し、取得された伝送路の状態に基づいた判定を行って、復調処理を選択し、選択された復調処理において所定の処理部に対して処理を停止させ、または、処理サイクル数を低下させる制御を行うステップを含む。
 本開示の一側面においては、伝送路の状態が取得され、その伝送路の状態に基づいた判定を行って復調処理が選択され、その選択された復調処理において所定の処理部に対して処理が停止され、または、処理サイクル数が低下される。
 本開示の一側面によれば、ソフトウェアによる復調処理をより低消費電力で行うことができる。
OFDMシンボルを説明する図である。 SP信号のOFDMシンボル内での配置パターンを示す図である。 本技術を適用した信号処理装置であるOFDM受信装置の一実施の形態の構成例を示すブロック図である。 復調処理選択部が行う選択処理を説明するフローチャートである。 1パス時の復調処理を行うOFDM受信装置の構成例を示すブロック図である。 小変動時の復調処理を行うOFDM受信装置の構成例を示すブロック図である。 微小変動時の復調処理を行うOFDM受信装置の構成例を示すブロック図である。 1パスかつ微小変動時の復調処理を行うOFDM受信装置の構成例を示すブロック図である。 各復調処理時における処理サイクル数を比較する図である。 本技術を適用したコンピュータの一実施の形態の構成例を示すブロック図である。
 以下、本技術を適用した具体的な実施の形態について、図面を参照しながら詳細に説明する。
 まず、図1および図2を参照して、OFDM方式による送信信号について説明する。
 図1に示すように、OFDM方式による送信信号は、OFDMシンボルと呼ばれるシンボル単位で伝送される。このOFDMシンボルは、送信時にIFFTが行なわれる信号期間である有効シンボルと、この有効シンボルの後半の一部の波形がそのままコピーされたガードインターバルとから構成されている。このガードインターバルは、OFDMシンボルの前半部分に設けられている。
 OFDM方式では、このようなガードインターバルが設けられることにより、マルチパス耐性を向上させている。またOFDMシンボルを複数集めて一つのOFDM伝送フレームを形成する。例えば、ISDB-T規格においては、204OFDMシンボルで1OFDM伝送フレームを形成している。このOFDM伝送フレーム単位を基準として、パイロット信号の挿入位置が定められている。
 また、各サブキャリアに対する変調方式としてQAM系の変調を用いるOFDM方式においては、伝送時にマルチパス等の影響によりサブキャリア毎に振幅および位相が異なるものとなってしまう。そのため、受信側では、サブキャリア毎の振幅および位相が等しくなるように、受信信号を等化する必要がある。OFDM方式では、送信側で伝送信号中に所定の振幅および所定の位相のパイロット信号を伝送シンボル内に離散的に挿入しておき、受信側でこのパイロット信号の振幅および位相に関して伝送路の周波数特性を求め、この求めた伝送路の特性により受信信号を等化するようにしている。
 そして、伝送路特性を算出するために用いられるパイロット信号のことをSP(Scattered Pilot:スキャッタードパイロット)信号と称する。図2には、DVB-T規格やISDB-T規格で採用されているSP信号のOFDMシンボル内での配置パターンが示されている。
 図2において、SP信号は、黒丸(●)により示されており、キャリア(周波数)方向およびOFDMシンボル(時間)方向に所定の間隔ごとに配置される。図2の例では、SP信号は、キャリア方向には12キャリアごとに1回の間隔で、かつ、OFDMシンボル方向には4シンボルごとに1回の間隔で配置されている。
 次に、図3は、本技術を適用した信号処理装置であるOFDM受信装置の一実施の形態の構成例を示すブロック図である。
 図3において、OFDM受信装置11は、アンテナ12、チューナ13、A/D(Analog / digital)変換部14、直交復調部15、信号処理部16、パワーマネジメントコントローラ17、PLL(Phase Locked Loop)18、およびレギュレータ19を備えて構成される。
 アンテナ12は、例えば、テレビジョン放送で使われている帯域の高周波信号であるRF(Radio Frequency)信号を受信して、チューナ13に供給する。チューナ13は、アンテナ12から供給されるRF信号を、中間周波数であるIF(Intermediate Frequency)信号に周波数変換してA/D変換部14に供給する。A/D変換部14は、チューナ13から供給されるIF信号をアナログデジタル変換して、直交復調部15に供給する。
 直交復調部15は、A/D変換部14によりデジタル化されたIF信号を直交復調し、ベースバンドのOFDM信号を信号処理部16に供給する。なお、直交復調部15から出力されるベースバンドのOFDM信号は、FFT演算される前のいわゆる時間領域の信号である。このことから、以下、直交復調後でFFT演算される前のベースバンド信号をOFDM時間領域信号と称する。このOFDM時間領域信号は、直交復調された結果、実軸成分(Iチャンネル信号)と、虚軸成分(Qチャンネル信号)とを含んだ複素信号となる。
 信号処理部16は、例えば、デジタルシグナルプロセッサ(DSP:Digital Signal Processor)により構成され、ソフトウェアによる復調処理を実行することにより、OFDM受信装置としての機能を実現する。
 パワーマネジメントコントローラ17は、信号処理部16においてソフトウェアによる復調処理が実行される際に、伝送路の状態に応じて選択された復調処理を示す選択結果が信号処理部16から供給される。そして、パワーマネジメントコントローラ17は、選択された復調処理を行うのに必要最低限の信号処理部16のクロック周波数および電圧を算出し、PLL18およびレギュレータ19に対する制御を行う。
 PLL18は、パワーマネジメントコントローラ17の制御に従って、信号処理部16おいて選択された復調処理を実行するのに必要最低限のクロック周波数を、信号処理部16に供給する。
 レギュレータ19は、パワーマネジメントコントローラ17の制御に従って、信号処理部16おいて選択された復調処理を実行するのに必要最低限の電圧の電力を、信号処理部16に供給する。
 また、信号処理部16は、FFT演算回路21、FFT区間制御部22、SP抽出部23、時変値生成部24、時間補間部25、ノイズ推定部26、経路判定部27、最適フィルタ係数選択部28、周波数補間部29、周波数補間部30、伝送路状態情報生成部31、除算部32、誤り訂正部33、および復調処理選択部34を備えて構成される。
 FFT演算回路21には、直交復調部15から出力されるOFDM時間領域信号が供給される。そして、FFT演算回路21は、1つのOFDMシンボルから有効シンボル長の範囲の信号を抜き出し、すなわち、1つのOFDMシンボルからガードインターバル分の範囲を除き、抜き出したOFDM時間領域信号に対してFFT演算を行なう。これにより、FFT演算回路21は、各サブキャリアに直交変調されているデータを抽出して出力する。
 具体的には、その演算開始位置は、上述した図1に示すように、OFDMシンボルの境界(即ち、図1に示される位置A)から、ガードインターバルの終了位置(即ち、図1に示される位置B)までの間のいずれかの位置となる。この演算区間のことをFFT区間と呼ぶ。このFFTブロックから出力される信号は、FFTされた後のいわゆる周波数領域の信号である。このことから、FFT演算後の信号をOFDM周波数領域信号と称する。
 FFT区間制御部22には、直交復調部15から出力されるOFDM時間領域信号が供給される。そして、FFT区間制御部22は、OFDM復調処理おけるFFT区間の制御を行う。例えば、OFDM時間領域信号を用いて、ガードインターバル期間の相関値検出によりFFT区間制御を行なう手段や、伝送路の遅延プロファイルを推定し、FFT区間を制御する手段が知られている。
 SP抽出部23には、FFT演算回路21から出力されるOFDM周波数領域信号が供給され、SP抽出部23は、図2を参照して上述した位置に挿入されたSP信号のみを抽出し、SP信号の変調成分の除去を行なうことで、SP位置での伝送路特性を算出する。そして、SP抽出部23は、算出したSP位置での伝送路特性を、時変値生成部24に供給する。
 時変値生成部24は、過去のSP位置での伝送路特性と現在のSP位置での伝送路特性を比較し、伝送路がどの程度動的に変化しているかを表す時変値を算出する。
 時間補間部25には、SP抽出部23で算出されたSP位置での伝送路特性と、時変値生成部24で算出された時変値が供給される。そして、時間補間部25は、OFDMシンボル毎に、SP信号が配置されているサブキャリアの伝送路特性を推定する。その結果、全てのOFDMシンボルに対して、周波数方向に3サブキャリア毎の伝送路特性を推定することができる。時間補間部25が伝送路を推定する際には、複数の過去のSP信号を保存しておき、補間精度を高める方法が用いられる。
 ノイズ推定部26は、SP抽出部23から供給されたSP信号を使用し、12キャリア毎のノイズ量を算出する。
 経路判定部27は、時間補間部25で推定された3キャリア毎の伝送路特性が供給され、伝送路がマルチパスである(1パスでない)か、伝送路がマルチパスでない(1パスである)かを判定する。そして、経路判定部27は、伝送路がマルチパスであるか否かを判定した結果を示す経路判定結果を復調処理選択部34に供給する。
 最適フィルタ係数選択部28は、OFDM周波数領域信号と、時間補間部25からの伝送路特性推定値と、経路判定部27からの経路判定結果が供給され、後述する周波数補間部29で使用される伝送路歪み補償に適したフィルタ係数を選択する。
 周波数補間部29には、時間補間部25で推定された3キャリア毎の伝送路特性推定が供給される。そして、周波数補間部30は、周波数補間処理を行ない、OFDMシンボル内の全サブキャリアの伝送路特性を算出する。例えば、周波数補間処理は、3倍アップサンプリングされたものに対して低域通過フィルタをかけて実現する。その結果、OFDMシンボル全てのサブキャリアに対して、伝送路特性を推定することができる。この際に用いられるフィルタ係数には、最適フィルタ係数選択部28で求められた係数が使用される。
 周波数補間部30は、ノイズ推定部26により算出された12キャリア毎のノイズ量を周波数方向に補間し、OFDMシンボル全てのサブキャリアに対してノイズ量を算出する。
 伝送路状態情報生成部31は、周波数補間部29で算出されたOFDMシンボル内の全サブキャリアの伝送路特性と、周波数補間部30で算出されたOFDMシンボル全てのサブキャリアのノイズ量とに基づいて、SNR(Signal-to- Noise Ratio:信号雑音比)を算出する。
 除算部32は、OFDM周波数領域信号に対して、周波数補間部29から供給される全てのサブキャリアの伝送路特性を用いて、除算を行なうことで、伝送路による歪みを補償する。
 誤り訂正部33には、除算部32で伝送路歪みを補償されたOFDM周波数領域信号と、伝送路状態情報生成部31で算出されたSNRが供給される。そして、誤り訂正部33は、送信側でインターリーブされている信号に対してデインターリーブ処理を施し、デンパンクチャ、ビタビ復調、拡散信号除去、およびRS復調を通して、復調データとして出力する。
 復調処理選択部34は、時変値生成部24から供給される時変値、および、経路判定部27から供給される経路判定結果に基づいた判定を行って、伝送路状態に応じた適切な復調処理を選択する選択処理を行う。例えば、復調処理選択部34は、伝送路状態に応じて最低限必要な処理を行う復調処理を選択し、その復調処理において動作が不要なブロックに対して処理を停止させたり、処理の頻度を低下させることができるブロックに対して処理サイクル数をさせたりする制御を行う。
 このように構成されるOFDM受信装置11は、伝送路状態の解析を行い、その結果から必要な復調処理を選択し、その選択された処理で復調を行うために信号処理部16が必要とする最低限の電圧、および動作周波数にそれぞれを調整することができる。従って、例えば、従来の復調処理のように、常に一定の処理が実行され、伝送路の状態が良い場合には必ずしも必要ではない処理も実行される構成と比較し、OFDM受信装置11は、消費電力の削減を実現することができる。
 次に、図4は、復調処理選択部34が行う判定処理を説明するフローチャートである。
 例えば、信号処理部16に直交復調部15からベースバンドのOFDM信号の供給が開始されると処理が開始される。
 ステップS11において、復調処理選択部34は、時変値生成部24により生成された時変値、および、経路判定部27により判定が行われた結果を示す経路判定結果を取得する。
 ステップS12において、復調処理選択部34は、経路判定部27から供給される経路判定結果に基づいて、伝送路が1パスであるか否かを判定し、伝送路が1パスであると判定した場合、処理はステップS13に進む。
 ステップS13において、復調処理選択部34は、時変値生成部24から供給される時変値基づいて、伝送路の動的な変動が小さいか否か、即ち、時変値生成部24から供給される時変値は所定の値よりも小さいか否かを判定する。
 ステップS13において、復調処理選択部34が時変値は所定の値よりも小さくない(所定の値以上である)と判定した場合、処理はステップS14に進む。即ち、この場合、ステップS12の判定結果と合わせて、伝送路は1パスであるが伝送路の動的な変動は小さくないと判定されたことになる。
 ステップS14において、復調処理選択部34は、1パス時の復調処理を行うように、信号処理部16の各部に対する指示を行う。例えば、伝送路が1パスである場合には、OFDMシンボル全てのサブキャリアのSNRが近い値になるため、ノイズ推定部26、周波数補間部30、伝送路状態情報生成部31を動作させる必要がない。従って、復調処理選択部34は、それらのブロックに対し動作を停止するように指示を行い、これにより、信号処理部16において1パス時の復調処理が行われる。ステップS14の処理後、処理はステップS11に戻り、以下、同様の処理が繰り返される。
 一方、ステップS13において、時変値は所定の値よりも小さいと判定された場合、処理はステップS15に進み、復調処理選択部34は、時変値は無視できる程度に微小な値であるか否かを判定する。
 ステップS15において、復調処理選択部34が、時変値は無視できる程度に微小な値でないと判定した場合、処理はステップS16に進む。即ち、この場合、ステップS13の判定結果と合わせて、時変値は無視できる程度に微小ではないが、ある程度は小さな値であると判定されたことになる。
 ステップS16において、復調処理選択部34は、小変動時の復調処理を行うように、信号処理部16の各部に対する指示を行う。例えば、伝送路の動的な変動が小さい場合には、FFT区間制御部22で行っているFFT区間制御や、最適フィルタ係数選択部28で行っているフィルタ係数の選択を頻繁に行う必要がない。さらに、時間補間部25での補間処理も、例えば、一時刻前のSP信号と現在のSP信号での線形補間を行うなど、使用するSP信号の数を減らすことができる。従って、復調処理選択部34は、FFT区間制御部22、時間補間部25、および最適フィルタ係数選択部28に対して処理サイクル数を低下するように指示を行い、これにより、信号処理部16において小変動時の復調処理が行われる。ステップS16の処理後、処理はステップS11に戻り、以下、同様の処理が繰り返される。
 一方、ステップS15において、復調処理選択部34が、時変値は無視できる程度に微小な値であると判定した場合、処理はステップS17に進む。即ち、この場合、ステップS12の判定結果と合わせて、伝送路は1パスであり、かつ、伝送路の動的な変動は無視できる程度に微小であると判定されたことになる。
 ステップS17において、復調処理選択部34は、1パスかつ微小変動時の復調処理を行うように、信号処理部16の各部に対する指示を行う。例えば、伝送路は1パスであり、かつ、伝送路の動的な変動は無視できる程度に微小である場合には、上述したステップS14と同様に、ノイズ推定部26、周波数補間部30、伝送路状態情報生成部31の動作を停止させるのに加えて、時間補間部25の動作を停止させるとともに、FFT区間制御部22および最適フィルタ係数選択部28に対して処理サイクル数を低下させる。これにより、信号処理部16において1パスかつ微小変動時の復調処理が行われる。ステップS17の処理後、処理はステップS11に戻り、以下、同様の処理が繰り返される。
 一方、ステップS12において、復調処理選択部34が、伝送路が1パスでない(即ち、伝送路はマルチパスである)と判定した場合、処理はステップS18に進む。
 ステップS18において、復調処理選択部34は、時変値生成部24から供給される時変値基づいて、伝送路の動的な変動が小さいか否か、即ち、時変値生成部24から供給される時変値は所定の値よりも小さいかか否かを判定する。
 ステップS18において、時変値は所定の値よりも小さいと判定された場合、処理はステップS19に進み、復調処理選択部34は、時変値は無視できる程度に微小な値であるか否かを判定する。
 ステップS19において、復調処理選択部34が、時変値は無視できる程度に微小な値でないと判定した場合、処理はステップS20に進む。ステップS20において、復調処理選択部34は、上述したステップS16と同様に、小変動時の復調処理を行うように、信号処理部16の各部に対する指示を行い、その処理後、処理はステップS11に戻り、以下、同様の処理が繰り返される。
 一方、ステップS19において、復調処理選択部34が、時変値は無視できる程度に微小な値であると判定した場合、処理はステップS21に進む。即ち、この場合、ステップS12の判定結果と合わせて、伝送路は1パスではないが、伝送路の動的な変動は無視できる程度に微小であると判定されたことになる。
 ステップS21において、復調処理選択部34は、微小変動時の復調処理を行うように、信号処理部16の各部に対する指示を行う。例えば、伝送路の動的な変動は無視できる程度に微小である場合には、時間補間部25の動作を停止させるとともに、FFT区間制御部22および最適フィルタ係数選択部28に対して処理サイクル数を低下させる。これにより、信号処理部16において微小変動時の復調処理が行われる。ステップS21の処理後、処理はステップS11に戻り、以下、同様の処理が繰り返される。
 一方、ステップS18において、復調処理選択部34が、時変値は所定の値よりも小さくない(所定の値以上である)と判定した場合、処理はステップS22に進む。即ち、この場合、ステップS12の判定結果と合わせて、伝送路は1パスではく、かつ、伝送路の動的な変動は小さくないと判定されたことになる。
 従って、この場合、ステップS22において、通常時の復調処理、即ち、動作の停止や処理サイクルの低下などを行わせるブロックはなく、信号処理部16は、全てのブロックを用いて通常通りに復調処理を行う。ステップS22の処理後、処理はステップS11に戻り、以下、同様の処理が繰り返される。
 以上のように、信号処理部16において、復調処理選択部34は、時変値生成部24から供給される時変値、および、経路判定部27から供給される経路判定結果に基づいて、伝送路状態に応じて、適切な復調処理を選択することができる。例えば、復調処理選択部34が、1パス時の復調処理、小変動時の復調処理、微小変動時の復調処理、または1パスかつ微小変動時の復調処理のいずれかを選択したとき、ブロックの駆動を停止させ、または、処理サイクル数を低下させることにより、OFDM受信装置11では、その分だけ消費電力を抑制することができる。
 例えば、図5には、図4のステップS14において1パス時の復調処理が選択されたときに駆動するブロックが示されたOFDM受信装置11の構成例が示されている。
 上述したように、1パス時の復調処理では、ノイズ推定部26、周波数補間部30、および伝送路状態情報生成部31の動作が停止される。従って、1パス時の処理を行う場合、信号処理部16は、図5に示すように、ノイズ推定部26、周波数補間部30、および伝送路状態情報生成部31を備えない構成と等しくとなる。
 そして、復調処理選択部34は、1パス時の復調処理が選択されたことを示す選択結果をパワーマネジメントコントローラ17に通知する。パワーマネジメントコントローラ17は、1パス時の復調処理を行う際に動作を停止するブロックにおける消費電力に応じて、信号処理部16に供給する電圧を低下するように、レギュレータ19に対する制御を行う。これに従って、レギュレータ19が、信号処理部16に供給する電圧を低下させることにより、OFDM受信装置11では、より低消費電力で復調処理を行うことができる。
 また、図6には、図4のステップS16またはS20において小変動時の復調処理が選択されたときに駆動するブロックが示されたOFDM受信装置11の構成例が示されている。なお、図6では、処理サイクル数が低下されたブロックが破線で示されている。
 図6に示すように、小変動時の復調処理を行うときには、FFT区間制御部22、時間補間部25、および最適フィルタ係数選択部28における処理の実行頻度を下げたり、補間処理を軽くしたりするなどして、処理サイクル数を低下させることができる。そして、パワーマネジメントコントローラ17は、小変動時の復調処理を行う際に処理サイクル数を低下させるブロックに必要最低限のクロック周波数を供給するように、PLL18に対する制御を行う。これに従って、PLL18が、FFT区間制御部22、時間補間部25、および最適フィルタ係数選択部28に供給するクロック周波数を低下させることにより、OFDM受信装置11では、より低消費電力で復調処理を行うことができる。
 また、図7には、図4のステップS21において微小変動時の復調処理が選択されたときに駆動するブロックが示されたOFDM受信装置11の構成例が示されている。なお、図6では、処理サイクル数が低下されたブロックが破線で示されている。
 図7に示すように、微小変動時の復調処理を行うときには、時間補間部25の動作が停止されるとともに、FFT区間制御部22および最適フィルタ係数選択部28の処理サイクル数を低下させることができる。従って、レギュレータ19は、時間補間部25の動作を停止させる分だけ信号処理部16に供給する電圧を低下させ、PLL18は、FFT区間制御部22および最適フィルタ係数選択部28に供給するクロック周波数を必要最低限に低下させる。これにより、OFDM受信装置11では、より低消費電力で復調処理を行うことができる。
 また、図8には、図4のステップS17において1パスかつ微小変動時の復調処理を行うときに駆動するブロックが示されたOFDM受信装置11の構成例が示されている。なお、図6では、処理サイクル数が低下されたブロックが破線で示されている。
 図8に示すように、1パスかつ微小変動時の復調処理を行うときには、時間補間部25、ノイズ推定部26、周波数補間部30、伝送路状態情報生成部31の動作が停止されるとともに、FFT区間制御部22および最適フィルタ係数選択部28の処理サイクル数を低下させることができる。従って、レギュレータ19は、時間補間部25、ノイズ推定部26、周波数補間部30、および伝送路状態情報生成部31の動作を停止させる分だけ信号処理部16に供給する電圧を低下させ、PLL18は、FFT区間制御部22および最適フィルタ係数選択部28に供給するクロック周波数を必要最低限に低下させる。これにより、OFDM受信装置11では、より低消費電力で復調処理を行うことができる。
 次に、図9を参照して、各復調処理時における処理サイクル数を比較して説明する。
 図9は、縦軸が処理サイクル数を示し、横軸に各復調処理が配置されている。図9に示すように、処理サイクル数が少ないほど低消費電力で復調処理を行うことができる。
 図9では、横軸の左側から順に、従来の復調処理における処理サイクル数、通常の復調処理における処理サイクル数、1パス時の復調処理における処理サイクル数、小変動時の復調処理における処理サイクル数、微小変動時の復調処理における処理サイクル数、および、1パスかつ微小変動時の復調処理における処理サイクル数が示されている。
 図9に示すように、通常の復調処理における処理サイクル数は、従来の復調処理における処理サイクル数と変わらないものとなる。
 また、1パス時の復調処理における処理サイクル数は、図5に示したように、ノイズ推定部26、周波数補間部30、および伝送路状態情報生成部31の動作が停止される。そのため、通常の復調処理と比較して、ノイズ推定部26、周波数補間部30、および伝送路状態情報生成部31の分だけ処理サイクル数を削減することができる。
 また、小変動時の復調処理における処理サイクル数は、図6に示したように、FFT区間制御部22および最適フィルタ係数選択部28の動作頻度を下げ、時間補間部25の補間処理を軽い方法で行う。そのため、通常の復調処理と比較して、FFT区間制御部22、時間補間部25、および最適フィルタ係数選択部28の分だけ処理サイクル数を削減することができる。
 また、微小変動時の復調処理における処理サイクル数は、図7に示したように、時間補間部25の動作が停止されるとともに、FFT区間制御部22および最適フィルタ係数選択部28の処理サイクル数が低下される。そのため、実施例の通常時の復調処理と比較して、FFT区間制御部22、時間補間部25、および最適フィルタ係数選択部28の分だけ処理サイクル数を削減することができる。
 また、1パスかつ微小変動時の復調処理における処理サイクル数は、図8に示したように、時間補間部25、ノイズ推定部26、周波数補間部30、伝送路状態情報生成部31の動作が停止されるとともに、FFT区間制御部22および最適フィルタ係数選択部28の処理サイクル数が低下される。そのため、実施例の通常時の復調処理と比較して、FFT区間制御部22、時間補間部25、ノイズ推定部26、最適フィルタ係数選択部28、周波数補間部30、および伝送路状態情報生成部31の分だけ処理サイクル数を削減することができる。
 以上のように、OFDM受信装置11では、復調処理選択部34が、伝送路の状態に応じて復調処理の選択を行うことにより、必要なブロックのみが動作し、または処理サイクル数を低減させて復調処理を実行することができる。これにより、信号処理部16の電圧および動作周波数を必要最小限に抑制することができ、そのような復調処理の選択を行わない構成と比較して、復調処理の消費電力を削減することができる。
 なお、上述のフローチャートを参照して説明した各処理は、必ずしもフローチャートとして記載された順序に沿って時系列に処理する必要はなく、並列的あるいは個別に実行される処理(例えば、並列処理あるいはオブジェクトによる処理)も含むものである。また、プログラムは、1のCPUにより処理されるものであっても良いし、複数のCPUによって分散処理されるものであっても良い。
 また、上述した一連の処理(情報処理方法)は、ハードウェアにより実行することもできるし、ソフトウェアにより実行することもできる。一連の処理をソフトウェアにより実行する場合には、そのソフトウェアを構成するプログラムが、専用のハードウェアに組み込まれているコンピュータ、または、各種のプログラムをインストールすることで、各種の機能を実行することが可能な、例えば汎用のパーソナルコンピュータなどに、プログラムが記録されたプログラム記録媒体からインストールされる。
 図10は、上述した一連の処理をプログラムにより実行するコンピュータのハードウェアの構成例を示すブロック図である。
 コンピュータにおいて、CPU(Central Processing Unit)101,ROM(Read Only Memory)102,RAM(Random Access Memory)103は、バス104により相互に接続されている。
 バス104には、さらに、入出力インタフェース105が接続されている。入出力インタフェース105には、キーボード、マウス、マイクロホンなどよりなる入力部106、ディスプレイ、スピーカなどよりなる出力部107、ハードディスクや不揮発性のメモリなどよりなる記憶部108、ネットワークインタフェースなどよりなる通信部109、磁気ディスク、光ディスク、光磁気ディスク、或いは半導体メモリなどのリムーバブルメディア111を駆動するドライブ110が接続されている。
 以上のように構成されるコンピュータでは、CPU101が、例えば、記憶部108に記憶されているプログラムを、入出力インタフェース105及びバス104を介して、RAM103にロードして実行することにより、上述した一連の処理が行われる。
 コンピュータ(CPU101)が実行するプログラムは、例えば、磁気ディスク(フレキシブルディスクを含む)、光ディスク(CD-ROM(Compact Disc-Read Only Memory),DVD(Digital Versatile Disc)等)、光磁気ディスク、もしくは半導体メモリなどよりなるパッケージメディアであるリムーバブルメディア111に記録して、あるいは、ローカルエリアネットワーク、インターネット、デジタル衛星放送といった、有線または無線の伝送媒体を介して提供される。
 そして、プログラムは、リムーバブルメディア111をドライブ110に装着することにより、入出力インタフェース105を介して、記憶部108にインストールすることができる。また、プログラムは、有線または無線の伝送媒体を介して、通信部109で受信し、記憶部108にインストールすることができる。その他、プログラムは、ROM102や記憶部108に、あらかじめインストールしておくことができる。
 なお、本技術は以下のような構成も取ることができる。
(1)
 伝送路の状態を取得する状態取得部と、
 前記状態取得手段により取得された伝送路の状態に基づいた判定を行って、復調処理を選択する選択部と、
 前記選択部により選択された復調処理において所定の処理部に対して処理を停止させ、または、処理サイクル数を低下させる制御を行う制御部と
 を備える信号処理装置。
(2)
 前記選択部は、複数の前記処理部により処理が行われて実行される復調処理のうちの、前記伝送路の状態に応じて最低限必要な処理を行う前記処理部による復調処理を選択する
 上記(1)に記載の信号処理装置。
(3)
 前記状態取得部は、伝送路がどの程度動的に変化しているかを表す時変値を算出する時変値生成部を含む
 上記(1)または(2)に記載の信号処理装置。
(4)
 前記状態取得部は、伝送路がマルチパスであるか否かを判定する経路判定部を含む
 上記(1)から(3)までのいずれかに記載の信号処理装置。
(5)
 前記選択部により選択された復調処理を実行するのに必要最低限な動作周波数を算出し、その算出した動作周波数が供給されるように調整する動作周波数調整部をさらに備える
 上記(1)から(4)までのいずれかに記載の信号処理装置。
(6)
 前記選択部により選択された復調処理を実行するのに必要最低限な電圧を算出し、その算出した電圧が供給されるように調整する電圧調整部をさらに備える
 上記(1)から(5)までのいずれかに記載の信号処理装置。
(7)
 伝送路の状態を取得し、
 取得された伝送路の状態に基づいた判定を行って、復調処理を選択し、
 選択された復調処理において所定の処理部に対して処理を停止させ、または、処理サイクル数を低下させる制御を行う
 ステップを含む信号処理方法。
(8)
 伝送路の状態を取得し、
 取得された伝送路の状態に基づいた判定を行って、復調処理を選択し、
 選択された復調処理において所定の処理部に対して処理を停止させ、または、処理サイクル数を低下させる制御を行う
 ステップを含む信号処理をコンピュータに実行させるプログラム。
 なお、本実施の形態は、上述した実施の形態に限定されるものではなく、本開示の要旨を逸脱しない範囲において種々の変更が可能である。
 11 OFDM受信装置, 12 アンテナ, 13 チューナ, 14 A/D変換部, 15 直交復調部, 16 信号処理部, 17 パワーマネジメントコントローラ, 18 PLL, 19 レギュレータ, 21 FFT演算回路, 22 FFT区間制御部, 23 SP抽出部, 24 時変値生成部, 25 時間補間部, 26 ノイズ推定部, 27 経路判定部, 28 最適フィルタ係数選択部, 29 周波数補間部, 30 周波数補間部, 31 伝送路状態情報生成部, 32 除算部, 33 誤り訂正部, 34 復調処理選択部

Claims (8)

  1.  伝送路の状態を取得する状態取得部と、
     前記状態取得手段により取得された伝送路の状態に基づいた判定を行って、復調処理を選択する選択部と、
     前記選択部により選択された復調処理において所定の処理部に対して処理を停止させ、または、処理サイクル数を低下させる制御を行う制御部と
     を備える信号処理装置。
  2.  前記選択部は、複数の前記処理部により処理が行われて実行される復調処理のうちの、前記伝送路の状態に応じて最低限必要な処理を行う前記処理部による復調処理を選択する
     請求項1に記載の信号処理装置。
  3.  前記状態取得部は、伝送路がどの程度動的に変化しているかを表す時変値を算出する時変値生成部を含む
     請求項1に記載の信号処理装置。
  4.  前記状態取得部は、伝送路がマルチパスであるか否かを判定する経路判定部を含む
     請求項1に記載の信号処理装置。
  5.  前記選択部により選択された復調処理を実行するのに必要最低限な動作周波数を算出し、その算出した動作周波数が供給されるように調整する動作周波数調整部をさらに備える
     請求項1に記載の信号処理装置。
  6.  前記選択部により選択された復調処理を実行するのに必要最低限な電圧を算出し、その算出した電圧が供給されるように調整する電圧調整部をさらに備える
     請求項1に記載の信号処理装置。
  7.  伝送路の状態を取得し、
     取得された伝送路の状態に基づいた判定を行って、復調処理を選択し、
     選択された復調処理において所定の処理部に対して処理を停止させ、または、処理サイクル数を低下させる制御を行う
     ステップを含む信号処理方法。
  8.  伝送路の状態を取得し、
     取得された伝送路の状態に基づいた判定を行って、復調処理を選択し、
     選択された復調処理において所定の処理部に対して処理を停止させ、または、処理サイクル数を低下させる制御を行う
     ステップを含む信号処理をコンピュータに実行させるプログラム。
PCT/JP2015/063055 2014-05-14 2015-05-01 信号処理装置および信号処理方法、並びにプログラム WO2015174294A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014100183 2014-05-14
JP2014-100183 2014-05-14

Publications (1)

Publication Number Publication Date
WO2015174294A1 true WO2015174294A1 (ja) 2015-11-19

Family

ID=54479835

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/063055 WO2015174294A1 (ja) 2014-05-14 2015-05-01 信号処理装置および信号処理方法、並びにプログラム

Country Status (1)

Country Link
WO (1) WO2015174294A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017183797A (ja) * 2016-03-28 2017-10-05 Kddi株式会社 光通信システムおよび方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007148452A1 (ja) * 2006-06-21 2007-12-27 Panasonic Corporation ダイバーシティ受信装置およびダイバーシティ受信方法
WO2008078480A1 (ja) * 2006-12-22 2008-07-03 Megachips Corporation 信号処理装置、プログラムおよび信号処理方法
JP2008227622A (ja) * 2007-03-08 2008-09-25 Sanyo Electric Co Ltd 受信装置及び通信方法
WO2009098965A1 (ja) * 2008-02-05 2009-08-13 Megachips Corporation Ofdm受信装置
JP2011146872A (ja) * 2010-01-13 2011-07-28 Sharp Corp Ofdm復調装置、復調方法、ofdm復調プログラムおよび記録媒体
JP2013160043A (ja) * 2012-02-01 2013-08-19 Toyota Motor Corp エンジン制御装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007148452A1 (ja) * 2006-06-21 2007-12-27 Panasonic Corporation ダイバーシティ受信装置およびダイバーシティ受信方法
WO2008078480A1 (ja) * 2006-12-22 2008-07-03 Megachips Corporation 信号処理装置、プログラムおよび信号処理方法
JP2008227622A (ja) * 2007-03-08 2008-09-25 Sanyo Electric Co Ltd 受信装置及び通信方法
WO2009098965A1 (ja) * 2008-02-05 2009-08-13 Megachips Corporation Ofdm受信装置
JP2011146872A (ja) * 2010-01-13 2011-07-28 Sharp Corp Ofdm復調装置、復調方法、ofdm復調プログラムおよび記録媒体
JP2013160043A (ja) * 2012-02-01 2013-08-19 Toyota Motor Corp エンジン制御装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017183797A (ja) * 2016-03-28 2017-10-05 Kddi株式会社 光通信システムおよび方法

Similar Documents

Publication Publication Date Title
US10148480B2 (en) Methods and apparatus for synchronization in multiple-channel communication systems
US8085859B2 (en) Platform noise mitigation
US20070036232A1 (en) Ofdm reception apparatus and ofdm reception method
JP5493803B2 (ja) 受信装置および方法、プログラム、並びに受信システム
JPWO2009122727A1 (ja) 受信装置、受信方法、受信プログラム、集積回路及びデジタルテレビ
JP2004228853A (ja) Ofdm受信装置及びデータ復調方法
US20100202552A1 (en) Ofdm demodulator, ofdm demodulation method, ofdm demodulation program, and storage medium
JP4157159B1 (ja) 受信装置及び受信方法
JP2013192107A (ja) 等化装置、受信装置及び等化方法
US9210017B2 (en) Reception device, reception method, and program
JP4444229B2 (ja) Ofdm復調装置、ofdm復調方法、プログラム及びコンピュータ読み取り可能な記録媒体
US20130315351A1 (en) Reception device, reception method, and program
WO2015174294A1 (ja) 信号処理装置および信号処理方法、並びにプログラム
JP2008167116A (ja) 受信装置および方法、並びにプログラム
JP2010050834A (ja) Ofdmデジタル信号等化装置、等化方法及び中継装置
JP2009111749A (ja) 受信装置、受信方法、およびプログラム
JP2002026865A (ja) 復調装置及び復調方法
US20150181305A1 (en) Reception apparatus, method, and program
JP2010087744A (ja) 受信装置、受信方法、およびプログラム
WO2012124495A1 (ja) 信号処理装置、信号処理方法、並びにプログラム
JP2005191662A (ja) Ofdm信号の復調方法
JP5072680B2 (ja) 受信方法および装置
JP2010041627A (ja) 受信方法および装置
WO2015151950A1 (ja) 受信装置および方法
JP2012015647A (ja) Ofdm受信装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15792399

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 15792399

Country of ref document: EP

Kind code of ref document: A1