WO2015172724A1 - 扫描成像系统 - Google Patents

扫描成像系统 Download PDF

Info

Publication number
WO2015172724A1
WO2015172724A1 PCT/CN2015/078941 CN2015078941W WO2015172724A1 WO 2015172724 A1 WO2015172724 A1 WO 2015172724A1 CN 2015078941 W CN2015078941 W CN 2015078941W WO 2015172724 A1 WO2015172724 A1 WO 2015172724A1
Authority
WO
WIPO (PCT)
Prior art keywords
imaging system
data
encoder
ray generator
inspected
Prior art date
Application number
PCT/CN2015/078941
Other languages
English (en)
French (fr)
Inventor
张丽
张金宇
黄清萍
唐虎
丁辉
任乾鲁
Original Assignee
同方威视技术股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 同方威视技术股份有限公司 filed Critical 同方威视技术股份有限公司
Priority to BR112015015755A priority Critical patent/BR112015015755B8/pt
Priority to AU2015202773A priority patent/AU2015202773B2/en
Priority to RU2015125700A priority patent/RU2612617C2/ru
Publication of WO2015172724A1 publication Critical patent/WO2015172724A1/zh

Links

Images

Classifications

    • G01V5/226
    • G01V5/22
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • G06F17/40Data acquisition and logging
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/02Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material
    • G01N23/04Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and forming images of the material

Definitions

  • the present application relates to a scanning imaging system, particularly a scanning imaging system having a DR imaging system and a CT imaging system.
  • the present application provides a scanning imaging system including: a conveying device that conveys an object to be inspected in a conveying direction; a first imaging system having a first ray generator and a first detecting a second imaging system disposed downstream of the first imaging system in the transport direction, having a second ray generator and a second detector, wherein the first ray generator of the first imaging system has a beam
  • the beam of the second ray generator of the second imaging system is spaced apart by a distance L in the conveying direction;
  • the encoder outputs a signal every predetermined distance D of the conveying device;
  • the code counting module is used for The output signal of the encoder is counted; and the controller obtains data of a position in the conveying direction of the object to be inspected collected by the first imaging system based on the count value of the code counting module, and collects data with the second imaging system Corresponding relationship of data of the one position in the conveying direction of the object to be inspected: acquired by the first imaging system
  • the present application provides a scanning imaging system including: a conveying device that conveys an object to be inspected in a conveying direction; a first imaging system having a first ray generator and a first detecting a second imaging system disposed downstream of the first imaging system in the transport direction, having a second ray generator and a second detector, wherein the first ray generator of the first imaging system has a beam The beam of the second ray generator of the second imaging system is spaced apart by a distance L in the conveying direction;
  • An encoder that outputs a signal every time a predetermined distance D is run by the conveyor; a code counting module for counting an output signal of the encoder; and a controller that obtains a number based on the count value of the code counting module
  • Data of a position in the transport direction of the object to be inspected collected by the imaging system, and the second imaging system Corresponding relationship of the data of the one location in the transport direction of the inspected object: the corresponding encoder count value of the data of the one location collected by the first imaging system and the second imaging
  • the corresponding encoder count value of the data of the one location collected by the system is substantially different (L - ⁇ ) / D + d, wherein ⁇ is a compensation value, and the second imaging system is from the foremost distance of the object to be inspected
  • the distance of the beam of the second ray generator of the system is ⁇ to start collecting data
  • d is the correction value and is equal to the data of the object to be inspected from the second imaging system to the front end of the object to
  • the conveying device comprises a conveyor belt, and the encoder outputs a signal every time the conveyor belt runs a predetermined distance D.
  • the first imaging system is a DR imaging system and the second imaging system is a CT imaging system.
  • the first imaging system is a CT imaging system and the second imaging system is a DR imaging system.
  • the correction value d is obtained from an encoder count value corresponding to non-object partial projection data in a sinogram obtained by the CT imaging system.
  • the alignment of the DR data image and the DT data image can be achieved in accordance with the scanning imaging system of the present application. By using the correction values, a very accurate alignment can be obtained.
  • FIG. 1 is a schematic diagram of a scanning imaging system in accordance with an embodiment of the present application.
  • FIG. 2 is a diagram of a mapping relationship between an object to be inspected and a sinogram (left) according to an embodiment of the present application.
  • a scanning imaging system includes: a conveying device that conveys an object A to be inspected in a conveying direction, a first imaging system 10, and is disposed in the conveying direction of the first imaging system 10.
  • the second imaging system 20 downstream.
  • the first imaging system 10 has a first ray generator 11 and a first detector 12, and the second imaging system 20 has a second ray generator 21 and a second detector 22.
  • the beam 14 of the first ray generator 11 of the first imaging system 10 and the beam 24 of the second ray generator 21 of the second imaging system 20 are spaced apart by a distance L in the transport direction.
  • the scanning imaging system further includes an encoder 30, a code counting module 32, and a controller 33.
  • the encoder 30 outputs a signal every time the conveyor moves a predetermined distance D and transmits it to the code counting module via the encoder signal line 31. 32.
  • the code counting module 32 is configured to count the output signals of the encoder 30.
  • Controller 33 is coupled to code count module 32 via communication line 34 and to first detector 12 and second detector 22 via data communication lines 35, 36, respectively.
  • the controller 33 can be a workstation or a computer.
  • the controller 33 obtains data of a position in the transport direction of the object A to be inspected collected by the first imaging system 10 based on the count value of the code counting module 32, and the transport of the object A to be inspected collected by the second imaging system 20. Correspondence of data of the one location in the direction: a corresponding encoder count value of the data of the one location acquired by the first imaging system 10 and the one collected by the second imaging system 20 The corresponding encoder count values of the position data are approximately different by L/D.
  • the conveyor includes a conveyor belt 40 that outputs a signal each time the conveyor belt travels a predetermined distance D.
  • the first imaging system 10 can be a DR imaging system (correspondingly the ray generator can be a DR X ray generator, the detector can be a DR detector) and the second imaging system 20 can be a CT imaging system (correspondingly a ray generator) It may be a CT X-ray generator, the detector may be a CT detector, or the first imaging system 10 is a CT imaging system and the second imaging system 20 is a DR imaging system.
  • the data obtained by the DR imaging system is in units of columns, that is, each time the belt moves for a certain length, a column of DR data can be collected, and each column of DR data is bound to a unique belt code value.
  • the data obtained by the CT imaging system is in units of projection (sinogram, Figure 2).
  • the horizontal axis represents the CT detector channel and the vertical axis represents the projection angle, so a single projection is depicted in the sinogram as a set of samples on a horizontal line, as shown in Figure 2.
  • a sinogram is composed of all projections of different perspectives, so that a single projection is represented by a horizontal line in the sinogram, and the projection of each individual point forms a sinusoid in the sinogram.
  • Each CT projection is bound by the imaging system with a unique belt code value, which meets the requirements by matching the DR column data with the CT projection data.
  • the scanning method may be that A first passes the DR scan and then passes the CT scan, or A may first pass the CT scan and then pass the DR scanning system.
  • the X-ray generated by the X-ray generator passes through the object A and hits the corresponding detector.
  • the detector converts the ray energy into a corresponding sinogram, which is packaged and transmitted to the controller through the data line (for example Data reconstruction and image display are performed in the workstation/IPC D).
  • the encoder 30 is an encoder of a conveying device such as a belt drive belt capable of counting and positioning a running distance of a conveying device (corresponding to an object A) such as a conveying belt.
  • the code counting module 32 counts the output signal of the encoder 30 and transmits the count value to the controller 33 such as a workstation/IPC through communication.
  • the DR image and the CT tomographic image displayed on the human-machine interface such as the display should be The aligned, ie, the DR image and the CT tomographic image at a certain position displayed on the image should be in the same position.
  • the DR column data and the CT sinogram data (spiral data) collected by the controller 33 such as the workstation/IPC must contain corresponding object position information (coding count) to The specific location of the object A corresponding to the corresponding data is collected. At the same time, it is necessary to associate the DR data of the position point with the CT sinogram data.
  • Embodiments of the present application utilize drive belt encoder 30 to count the distance traveled by object A on the channel conveyor to track the specific location of the object in the channel.
  • the first imaging system 10 is a DR imaging system and the second imaging system 20 is a CT imaging system, and the delivery device is a conveyor belt 40:
  • the encoded information of the CT data ⁇ Data2 ⁇ is n2, and the data information thereof should correspond to the DR data information (i.e., Data1 data) whose encoder count value is n2-L/D.
  • the alignment of the data images of Data1 and Data2 also realizes the alignment of the DR data image and the DT data image.
  • the DR and CT data cannot be accurately aligned, and can only be roughly aligned.
  • the data of the one location collected by the first imaging system 10 corresponds.
  • the encoder count value is substantially different from the corresponding encoder count value of the data of the one position collected by the second imaging system 20 (L- ⁇ )/D+d, where ⁇ is a compensation value, and the second imaging The system 20 collects data starting from the distance of the foremost end of the object to be inspected from the beam of the second ray generator of the second imaging system 20, ⁇ being the correction value and equal to the data acquisition of the object under inspection from the second imaging system 20.
  • the encoder count value of the beam 26 of the second ray generator that travels to the forefront of the object under inspection to the second imaging system 20.
  • the compensation value ⁇ is to ensure that the second imaging system 20 collects the complete data of the object under inspection, rather than collecting data from the middle of the object to be inspected.
  • the correction value d can be determined by the data obtained by the second imaging system to determine the corresponding encoder count value when the foremost end of the object under inspection travels to the beam 24 of the second ray generator of the second imaging system 20.
  • the correction value d can be obtained from the encoder count value corresponding to the non-object partial projection data in the sinogram obtained by the CT imaging system. After finding the foremost CT data of the object A (ie, the first sinogram of the object separated by the belt coded value information), by identifying the head sinogram, the position of the object in the first sinogram is obtained. The numerical value is used as the correction value d of the alignment of the DR and CT image data, and a very accurate alignment effect can be obtained.
  • the encoded information of the CT data ⁇ Data2 ⁇ is n2, and the data information should be The DR data information (i.e., Data1 data) whose encoder count value is n2-((L- ⁇ )/D+d) corresponds.
  • the transmitting device may be any suitable transmitting device capable of transporting an object to be inspected
  • the encoder may be any suitable encoder as long as it is obtained The transfer position of the object to be inspected is sufficient.
  • aspects of the embodiments disclosed herein may be implemented in an integrated circuit as a whole or in part, as one or more of one or more computers running on one or more computers.
  • a computer program eg, implemented as one or more programs running on one or more computer systems
  • implemented as one or more programs running on one or more processors eg, implemented as one or One or more programs running on a plurality of microprocessors, implemented as firmware, or substantially in any combination of the above, and those skilled in the art, in accordance with the present disclosure, will be provided with design circuitry and/or write software and / or firmware code capabilities.
  • signal bearing media include, but are not limited to, recordable media such as floppy disks, hard drives, compact disks (CDs), digital versatile disks (DVDs), digital tapes, computer memories, and the like; and transmission-type media such as digital and / or analog communication media (eg, fiber optic cable, waveguide, wired communication link, wireless communication link, etc.).

Abstract

一种扫描成像系统包括:输送装置(40)、第一成像系统(10)、第二成像系统(20)。第一成像系统(10)的第一射线发生器(11)的射线束(14)与第二成像系统(20)的第二射线发生器(21)的射线束(24)在所述输送方向上间隔的间距大致为L。控制器(33)基于编码计数模块(32)的计数值,获得第一成像系统(10)采集到的被检查物体(A)的输送方向上的一个位置的数据,与第二成像系统(20)采集到的被检查物体的输送方向上的所述一个位置的数据的对应关系:所述第一成像系统(10)采集到的所述一个位置的数据的对应的编码器计数值与所述第二成像系统(20)采集到的所述一个位置的数据的对应的编码器计数值大致相差L/D。本系统通过简单的方式可以实现DR数据图像和DT数据图像的对齐。

Description

扫描成像系统 技术领域
本申请涉及一种扫描成像系统,特别是具有DR成像系统和CT成像系统的扫描成像系统。
背景技术
目前,DR成像系统以及CT成像系统得到了广泛的应用,尤其在安检领域。
发明内容
本申请的目的是提供一种扫描成像系统,特别是具有DR成像系统和CT成像系统的扫描成像系统,通过简单的方式实现DR成像系统和CT成像系统的数据的对齐。
根据本申请的一方面,本申请提供了一种扫描成像系统,该扫描成像系统包括:在输送方向上输送被检查物体的输送装置;第一成像系统,具有第一射线发生器和第一探测器;设置在第一成像系统的所述输送方向上的下游的第二成像系统,具有第二射线发生器和第二探测器,其中第一成像系统的第一射线发生器的射线束与第二成像系统的第二射线发生器的射线束在所述输送方向上间隔的间距大致为L;编码器,该编码器在输送装置每运行预定距离D输出一个信号;编码计数模块,用于对编码器的输出信号进行计数;以及控制器,该控制器基于编码计数模块的计数值,获得第一成像系统采集到的被检查物体的输送方向上的一个位置的数据,与第二成像系统采集到的被检查物体的输送方向上的所述一个位置的数据的对应关系:所述第一成像系统采集到的所述一个位置的数据的对应的编码器计数值与所述第二成像系统采集到的所述一个位置的数据的对应的编码器计数值大致相差L/D。
根据本申请的一方面,本申请提供了一种扫描成像系统,该扫描成像系统包括:在输送方向上输送被检查物体的输送装置;第一成像系统,具有第一射线发生器和第一探测器;设置在第一成像系统的所述输送方向上的下游的第二成像系统,具有第二射线发生器和第二探测器,其中第一成像系统的第一射线发生器的射线束与第二成像系统的第二射线发生器的射线束在所述输送方向上间隔的间距大致为L;
编码器,该编码器在输送装置每运行预定距离D输出一个信号;编码计数模块,用于对编码器的输出信号进行计数;以及控制器,该控制器基于编码计数模块的计数值,获得第一成像系统采集到的被检查物体的输送方向上的一个位置的数据,与第二成像系 统采集到的被检查物体的输送方向上的所述一个位置的数据的对应关系:所述第一成像系统采集到的所述一个位置的数据的对应的编码器计数值与所述第二成像系统采集到的所述一个位置的数据的对应的编码器计数值大致相差(L-Δ)/D+d,其中Δ为补偿值,第二成像系统从被检查物体的最前端距第二成像系统的第二射线发生器的射线束的距离为Δ开始采集数据,d为校正值并等于被检查物体从第二成像系统开始数据采集到被检查物体的最前端行进到第二成像系统的第二射线发生器的射线束的编码器计数值。
根据本申请的一方面,所述输送装置包括输送带,编码器在输送带每运行预定距离D输出一个信号。
根据本申请的一方面,第一成像系统是DR成像系统,而第二成像系统是CT成像系统。
根据本申请的一方面,第一成像系统是CT成像系统,而第二成像系统是DR成像系统。
根据本申请的一方面,校正值d由CT成像系统获得的正弦图中的非物体部分投影数据所对应的编码器计数值获得。
根据本申请的扫描成像系统可实现DR数据图像和DT数据图像的对齐。通过采用校正值,可以获得十分准确的对齐效果。
附图说明
图1为根据本申请实施例的扫描成像系统的示意图;以及
图2为根据本申请实施例的被检物体和正弦图(左)之间的映射关系图。
具体实施方式
下面结合附图及具体实施方式对本申请做进一步说明。
如图1所示,根据本申请的实施例的扫描成像系统包括:在输送方向上输送被检查物体A的输送装置、第一成像系统10、设置在第一成像系统10的所述输送方向上的下游的第二成像系统20。第一成像系统10具有第一射线发生器11和第一探测器12,第二成像系统20具有第二射线发生器21和第二探测器22。第一成像系统10的第一射线发生器11的射线束14与第二成像系统20的第二射线发生器21的射线束24在所述输送方向上间隔的间距大致为L。
扫描成像系统还包括:编码器30、编码计数模块32、控制器33。该编码器30在输送装置每运行预定距离D输出一个信号,并经由编码器信号线31传送给编码计数模块 32,编码计数模块32用于对编码器30的输出信号进行计数。控制器33通过通信线34与编码计数模块32相连,并通过数据通信线35、36分别与第一探测器12和第二探测器22连接。控制器33可以是工作站或工控机。
控制器33基于编码计数模块32的计数值,获得第一成像系统10采集到的被检查物体A的输送方向上的一个位置的数据,与第二成像系统20采集到的被检查物体A的输送方向上的所述一个位置的数据的对应关系:所述第一成像系统10采集到的所述一个位置的数据的对应的编码器计数值与所述第二成像系统20采集到的所述一个位置的数据的对应的编码器计数值大致相差L/D。
如图1所示,输送装置包括输送带40,编码器在输送带每运行预定距离D输出一个信号。第一成像系统10可以是DR成像系统(相应地射线发生器可以是DR X射线发生器,探测器可以是DR探测器),而第二成像系统20可以是CT成像系统(相应地射线发生器可以是CT X射线发生器,探测器可以是CT探测器),或者第一成像系统10是CT成像系统,而第二成像系统20是DR成像系统。
DR成像系统获得的数据是以列为单位,即皮带每走动一定的长度,可以采集到一列DR数据,每一列DR数据绑定唯一的皮带编码值。CT成像系统获得的数据是以投影(正弦图,如图2)为单位。在正弦图中,水平轴表示CT探测器通道,垂直轴表示投影角度,于是,一个单独投影在正弦图中被描述为位于一条水平线上的一组采样,如图2所示。正弦图是通过堆积不同视角的全部投影组成的,从而单次投影用正弦图中的一条水平线表示,每个单独点的投影形成了正弦图中的一条正弦曲线。每一个CT投影都会由成像系统绑定一个唯一的皮带编码值,将DR列数据与CT投影数据一一对应即达到要求。
扫描方式可以是A先通过DR扫描后通过CT扫描,也可以是A先通过CT扫描后通过DR扫描系统。X射线发生器产生的X射线穿过物体A后打在相应的探测器上,探测器把射线能量转换为相应的正弦图,该正弦图经过封装整理后,通过数据线传送到控制器(例如工作站/工控机D)中进行数据重建、图像显示。
编码器30是诸如通道传动带的输送装置的编码器,能够对诸如传送皮带的输送装置(相当于物体A)运行距离进行计数和定位。编码计数模块32对编码器30的输出信号进行计数,并把该计数值通过通信传送给诸如工作站/工控机的控制器33,显示器等人机交互界面上显示的DR图像和CT断层图像应该是对齐的,即图像上显示的某一位置的DR图像和CT断层图像应该是同一位置的。所以诸如工作站/工控机的控制器33采集到的DR列数据和CT正弦图数据(螺旋数据)必须含有相应的物体位置信息(编码计数),以表 明相应采集数据所对应的物体A的具体位置。同时需要把该位置点的DR数据和CT正弦图数据对应起来。
本申请的实施例利用传动皮带编码器30对物体A在通道传送带上运行的距离进行计数计算,以跟踪该物体在通道中的具体位置。
假设第一成像系统10是DR成像系统,而第二成像系统20是CT成像系统,输送装置是传送皮带40:
(1)物体A首先通过M点,然后通过N点(反之类似)
(2)物体A的P点经过DR光路(M点)时皮带的累计计数值为n1,采集到的DR数据包为{Data1}
(3)物体A的P点经过CT光路(N点)时皮带的累计计数值为n2,采集到的CT数据包为{Data2}
(4)皮带编码器30计数变化1对应的皮带传送距离为D(mm)。
那么CT数据{Data2}的编码信息为n2,其数据信息应和编码器计数值为n2-L/D位置的DR数据信息(即Data1数据)相对应。在人机交互界面上成像时,Data1和Data2的数据图像进行对齐也就实现了DR数据图像和DT数据图像的对齐。在实际实现过程中,由于各方面的系统误差,导致DR和CT数据无法精确对齐,只能大致对齐,为了实现精确对齐,所述第一成像系统10采集到的所述一个位置的数据的对应的编码器计数值与所述第二成像系统20采集到的所述一个位置的数据的对应的编码器计数值大致相差(L-Δ)/D+d,其中Δ为补偿值,第二成像系统20从被检查物体的最前端距第二成像系统20的第二射线发生器的射线束的距离为Δ开始采集数据,d为校正值并等于被检查物体从第二成像系统20开始数据采集到被检查物体的最前端行进到第二成像系统20的第二射线发生器的射线束26的编码器计数值。
补偿值Δ是为了保证第二成像系统20采集到被检查物体的完整数据,而不是从被检查物体的中间开始采集数据。校正值d可以通过第二成像系统获得的数据确定被检查物体的最前端行进到第二成像系统20的第二射线发生器的射线束24时对应的编码器计数值。
在第二成像系统20是CT成像系统的情况下,校正值d可由CT成像系统获得的正弦图中的非物体部分投影数据所对应的编码器计数值获得。在找到物体A的最前端CT数据后(即通过皮带编码值信息分出来的物体第一圈正弦图),通过识别头部正弦图,得到物体在第一圈正弦图中的位置,以该位置数值作为DR和CT图像数据对齐的校正值d,可以获得十分准确的对齐效果,那么CT数据{Data2}的编码信息为n2,其数据信息应和 编码器计数值为n2-((L-Δ)/D+d)位置的DR数据信息(即Data1数据)相对应。
尽管描述了根据本申请的实施例,但是本申请不限于上述实施例,例如,传送装置可以是任何合适的能够运输被检查物体的传送装置,编码器也可以是任何合适的编码器,只要获得被检查物体的传送位置即可。
以上的详细描述通过使用示意图、流程图和/或示例,已经阐述了扫描成像系统的众多实施例。在这种示意图、流程图和/或示例包含一个或多个功能和/或操作的情况下,本领域技术人员应理解,这种示意图、流程图或示例中的每一功能和/或操作可以通过各种结构、硬件、软件、固件或实质上它们的任意组合来单独和/或共同实现。在一个实施例中,本申请的实施例所述主题的若干部分可以通过专用集成电路(ASIC)、现场可编程门阵列(FPGA)、数字信号处理器(DSP)、或其他集成格式来实现。然而,本领域技术人员应认识到,这里所公开的实施例的一些方面在整体上或部分地可以等同地实现在集成电路中,实现为在一台或多台计算机上运行的一个或多个计算机程序(例如,实现为在一台或多台计算机系统上运行的一个或多个程序),实现为在一个或多个处理器上运行的一个或多个程序(例如,实现为在一个或多个微处理器上运行的一个或多个程序),实现为固件,或者实质上实现为上述方式的任意组合,并且本领域技术人员根据本公开,将具备设计电路和/或写入软件和/或固件代码的能力。此外,本领域技术人员将认识到,本公开所述主题的机制能够作为多种形式的程序产品进行分发,并且无论实际用来执行分发的信号承载介质的具体类型如何,本公开所述主题的示例性实施例均适用。信号承载介质的示例包括但不限于:可记录型介质,如软盘、硬盘驱动器、紧致盘(CD)、数字通用盘(DVD)、数字磁带、计算机存储器等;以及传输型介质,如数字和/或模拟通信介质(例如,光纤光缆、波导、有线通信链路、无线通信链路等)。
虽然已参照几个典型实施例描述了本申请,但应当理解,所用的术语是说明和示例性、而非限制性的术语。由于本申请能够以多种形式具体实施而不脱离发明的精神或实质,所以应当理解,上述实施例不限于任何前述的细节,而应在随附权利要求所限定的精神和范围内广泛地解释,因此落入权利要求或其等效范围内的全部变化和改型都应为随附权利要求所涵盖。

Claims (9)

  1. 一种扫描成像系统,包括:
    在输送方向上输送被检查物体的输送装置;
    第一成像系统,具有第一射线发生器和第一探测器;
    设置在第一成像系统的所述输送方向上的下游的第二成像系统,具有第二射线发生器和第二探测器,其中第一成像系统的第一射线发生器的射线束与第二成像系统的第二射线发生器的射线束在所述输送方向上间隔的间距大致为L;
    编码器,该编码器在输送装置每运行预定距离D输出一个信号;
    编码计数模块,用于对编码器的输出信号进行计数;以及
    控制器,该控制器基于编码计数模块的计数值,获得第一成像系统采集到的被检查物体的输送方向上的一个位置的数据,与第二成像系统采集到的被检查物体的输送方向上的所述一个位置的数据的对应关系:所述第一成像系统采集到的所述一个位置的数据的对应的编码器计数值与所述第二成像系统采集到的所述一个位置的数据的对应的编码器计数值大致相差L/D。
  2. 根据权利要求1所述的扫描成像系统,其中
    所述输送装置包括输送带,编码器在输送带每运行预定距离D输出一个信号。
  3. 根据权利要求1所述的扫描成像系统,其中
    第一成像系统是DR成像系统,而第二成像系统是CT成像系统。
  4. 根据权利要求1所述的扫描成像系统,其中
    第一成像系统是CT成像系统,而第二成像系统是DR成像系统。
  5. 一种扫描成像系统,包括:
    在输送方向上输送被检查物体的输送装置;
    第一成像系统,具有第一射线发生器和第一探测器;
    设置在第一成像系统的所述输送方向上的下游的第二成像系统,具有第二射线发生器和第二探测器,其中第一成像系统的第一射线发生器的射线束与第二成像系统的第二射线发生器的射线束在所述输送方向上间隔的间距大致为L;
    编码器,该编码器在输送装置每运行预定距离D输出一个信号;
    编码计数模块,用于对编码器的输出信号进行计数;以及
    控制器,该控制器基于编码计数模块的计数值,获得第一成像系统采集到的被检查物体的输送方向上的一个位置的数据,与第二成像系统采集到的被检查物体的输送方向 上的所述一个位置的数据的对应关系:所述第一成像系统采集到的所述一个位置的数据的对应的编码器计数值与所述第二成像系统采集到的所述一个位置的数据的对应的编码器计数值大致相差(L-Δ)/D+d,其中Δ为补偿值,第二成像系统从被检查物体的最前端距第二成像系统的第二射线发生器的射线束的距离为Δ开始采集数据,d为校正值并等于被检查物体从第二成像系统开始数据采集到被检查物体的最前端行进到第二成像系统的第二射线发生器的射线束的编码器计数值。
  6. 根据权利要求5所述的扫描成像系统,其中
    所述输送装置包括输送带,编码器在输送带每运行预定距离D输出一个信号。
  7. 根据权利要求5所述的扫描成像系统,其中
    第一成像系统是DR成像系统,而第二成像系统是CT成像系统。
  8. 根据权利要求5所述的扫描成像系统,其中
    第一成像系统是CT成像系统,而第二成像系统是DR成像系统。
  9. 根据权利要求7所述的扫描成像系统,其中
    校正值d由CT成像系统获得的正弦图中的非物体部分投影数据所对应的编码器计数值获得。
PCT/CN2015/078941 2014-05-14 2015-05-14 扫描成像系统 WO2015172724A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
BR112015015755A BR112015015755B8 (pt) 2014-05-14 2015-05-14 sistema de imageamento de varredura
AU2015202773A AU2015202773B2 (en) 2014-05-14 2015-05-14 Scanning imaging systems
RU2015125700A RU2612617C2 (ru) 2014-05-14 2015-05-14 Сканирующие системы получения изображения

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410203124.XA CN105092610B (zh) 2014-05-14 2014-05-14 扫描成像系统
CN201410203124.X 2014-05-14

Publications (1)

Publication Number Publication Date
WO2015172724A1 true WO2015172724A1 (zh) 2015-11-19

Family

ID=53181125

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/078941 WO2015172724A1 (zh) 2014-05-14 2015-05-14 扫描成像系统

Country Status (10)

Country Link
US (1) US9500764B2 (zh)
EP (1) EP2944983B1 (zh)
JP (1) JP6055025B2 (zh)
KR (1) KR101697867B1 (zh)
CN (1) CN105092610B (zh)
AU (1) AU2015202773B2 (zh)
BR (1) BR112015015755B8 (zh)
HK (1) HK1217766A1 (zh)
RU (1) RU2612617C2 (zh)
WO (1) WO2015172724A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105956657A (zh) * 2016-04-27 2016-09-21 梧州市自动化技术研究开发院 用于对运动物体进行计数的具有易识别功能的系统
CN105956656B (zh) * 2016-04-27 2018-06-15 梧州市自动化技术研究开发院 一种用于对运动物体进行计数的设备
CN109932376B (zh) * 2019-04-30 2023-11-28 王振 一种液体检测方法及装置
CN112107323A (zh) * 2020-09-29 2020-12-22 赛诺威盛科技(北京)有限公司 旋转式x光机结构、扫描装置和扫描系统
CN116095932A (zh) * 2021-11-05 2023-05-09 同方威视技术股份有限公司 成像系统中光机出束控制方法、装置、ct成像系统
CN114947922B (zh) * 2022-06-09 2024-04-19 上海西门子医疗器械有限公司 构建ct装置在双源宽体模式下的图像数据的方法及介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1460849A (zh) * 2003-06-27 2003-12-10 清华大学 箱包或行李的γ辐射成像无损检测系统
US20060067471A1 (en) * 2004-09-30 2006-03-30 General Electric Company Linear array detector system and inspection method
CN1916611A (zh) * 2006-09-08 2007-02-21 清华大学 集装箱多重dr/ct检测装置
CN101936924A (zh) * 2009-06-30 2011-01-05 同方威视技术股份有限公司 物品检查系统、dr成像装置和ct成像装置

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6370223B1 (en) * 2001-04-06 2002-04-09 Ut-Battelle, Llc Automatic detection of bone fragments in poultry using multi-energy x-rays
US6763083B2 (en) * 2002-08-30 2004-07-13 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Article screening system
US7324625B2 (en) * 2004-05-27 2008-01-29 L-3 Communications Security And Detection Systems, Inc. Contraband detection systems using a large-angle cone beam CT system
CN101071109B (zh) * 2006-05-08 2010-05-12 清华大学 一种多段直线轨迹成像的货物安全检查系统
CN101403710B (zh) * 2007-10-05 2013-06-19 清华大学 液态物品检查方法和设备
CN201145672Y (zh) * 2007-10-30 2008-11-05 清华大学 检查系统、ct装置以及探测装置
US20100230242A1 (en) * 2009-03-11 2010-09-16 Samit Kumar Basu Systems and method for scanning a continuous stream of objects
CN102313753B (zh) * 2010-06-30 2014-07-16 清华大学 物品检测设备及其检测方法
CN203341744U (zh) * 2013-06-19 2013-12-18 无锡开威尔系统科技有限公司 基于无线传输的dr或ct扫描系统

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1460849A (zh) * 2003-06-27 2003-12-10 清华大学 箱包或行李的γ辐射成像无损检测系统
US20060067471A1 (en) * 2004-09-30 2006-03-30 General Electric Company Linear array detector system and inspection method
CN1916611A (zh) * 2006-09-08 2007-02-21 清华大学 集装箱多重dr/ct检测装置
CN101936924A (zh) * 2009-06-30 2011-01-05 同方威视技术股份有限公司 物品检查系统、dr成像装置和ct成像装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
HUANG, YIBIN: "The Design and Realization of Control Subsystem for Luggage DR-CT Inspection System", NUCLEAR ELECTRONICS & DETECTION TECHNOLOGY, vol. 4, no. 26, 31 July 2006 (2006-07-31), pages 405 - 408 *

Also Published As

Publication number Publication date
RU2015125700A (ru) 2017-01-10
HK1217766A1 (zh) 2017-01-20
US9500764B2 (en) 2016-11-22
KR101697867B1 (ko) 2017-01-23
CN105092610B (zh) 2017-09-26
AU2015202773A1 (en) 2015-12-03
JP6055025B2 (ja) 2016-12-27
BR112015015755B8 (pt) 2020-12-15
EP2944983A3 (en) 2015-11-25
AU2015202773B2 (en) 2017-03-16
BR112015015755A2 (pt) 2017-09-26
RU2612617C2 (ru) 2017-03-09
BR112015015755B1 (pt) 2020-10-27
CN105092610A (zh) 2015-11-25
US20150331140A1 (en) 2015-11-19
KR20150130947A (ko) 2015-11-24
JP2015222254A (ja) 2015-12-10
EP2944983A2 (en) 2015-11-18
EP2944983B1 (en) 2020-10-14

Similar Documents

Publication Publication Date Title
WO2015172724A1 (zh) 扫描成像系统
CN100512759C (zh) 台装备识别方法和医疗成像装备
US8779367B2 (en) System and method for correcting timing errors in a medical imaging system
CN104749197A (zh) Ct系统及其方法
EA033450B1 (ru) Система и способ рентгеновского досмотра физических лиц с определением дозы облучения, превышающей пороговое значение
US20150014545A1 (en) Method and system for synchronizing positron emission tomography (pet) detector modules
US20130062526A1 (en) Positron ct apparatus and a timing correction method
CN105556342A (zh) 基于模拟和实验数据使pet数据标准化的混合方法
CN101825585A (zh) 用于扫描对象流的方法和系统
CN103575745A (zh) 瓶体内异物检测装置
CN102047143B (zh) 保留列表模式格式的几何变换
JP2004233177A (ja) 3次元計測装置および3次元計測方法
JP6217373B2 (ja) 動作判定方法、動作判定装置および動作判定プログラム
CN102113881A (zh) 核医学诊断装置
CN107525815A (zh) 用于检测成像系统中的行李的系统和方法
CN102865822B (zh) 光栅尺尺板绝对码道刻线精度的非接触式自动检测装置
US9989653B2 (en) Detector, nuclear medical imaging apparatus, PET-CT apparatus, and PET-MRI apparatus
US20150192435A1 (en) Cart movement detection system for a dynamics track
US20100230242A1 (en) Systems and method for scanning a continuous stream of objects
JP6606602B2 (ja) 軌条車両の速度を決定する方法
US20230144259A1 (en) Method and device for controlling output beam of ray machine in imaging system, and ct imaging system
US20240115220A1 (en) Pet apparatus, method, and storage medium
SE0400010D0 (sv) Scanning-based detection of ionizing radiation for tomosynthesis
JP5524095B2 (ja) 放射性廃棄体の測定データ識別システムおよび測定データ識別方法
CN100565160C (zh) 放疗设备机械精度数字化测试装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2015202773

Country of ref document: AU

ENP Entry into the national phase

Ref document number: 2015125700

Country of ref document: RU

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15793182

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15793182

Country of ref document: EP

Kind code of ref document: A1

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112015015755

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112015015755

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20150629