WO2015172375A1 - 一种通信方法、装置及系统 - Google Patents

一种通信方法、装置及系统 Download PDF

Info

Publication number
WO2015172375A1
WO2015172375A1 PCT/CN2014/077647 CN2014077647W WO2015172375A1 WO 2015172375 A1 WO2015172375 A1 WO 2015172375A1 CN 2014077647 W CN2014077647 W CN 2014077647W WO 2015172375 A1 WO2015172375 A1 WO 2015172375A1
Authority
WO
WIPO (PCT)
Prior art keywords
pam
order
bit
onu
data stream
Prior art date
Application number
PCT/CN2014/077647
Other languages
English (en)
French (fr)
Inventor
叶志成
李胜平
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2014/077647 priority Critical patent/WO2015172375A1/zh
Priority to CN201480001088.7A priority patent/CN105359433B/zh
Publication of WO2015172375A1 publication Critical patent/WO2015172375A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/25Arrangements specific to fibre transmission

Definitions

  • the present invention relates to the field of communications, and in particular, to a communication method, apparatus, and system.
  • PON Passive Optical Network
  • a PON network includes one installed on OLT (Optical Line Terminal) of the central control station, and a batch of supporting equipment ONU (Optical Network Unit) or ONT installed in the user's premises (Optical Network Terminal, optical network terminal).
  • ODN between OLT and ONU Optical Distribution Network, optical distribution network
  • ODN contains optical fibers and passive optical splitters Or coupler.
  • PON eliminates the active devices between the central office and the client, thus making maintenance simple. Single, high reliability, low cost, and can save fiber resources, is the future FTTH (Fiber To The Home, fiber-to-the-home solutions.
  • EPON Error Network Passive Optical
  • 10G-EPON 10Gigabit EPON, 10 Gigabit) Ethernet Passive Optical Network
  • GPON Gigabit Passive Optical Network
  • 10G-GPON 10Gigabit PON, 10 Gigabit passive optical network
  • 40G-TWDM PON 40Gigabit Time Wavelength Division Multiplex PON, Gigabit time division wavelength division multiplexing passive optical network.
  • the total link bandwidth ranges from 1G to 10G or even 40G. According to the analysis of user bandwidth requirements, the current bandwidth can meet the needs of users for a long time. begging. In the case of a total downlink bandwidth of 10G or 40G, it is not necessary for each user to reach 10G. the above.
  • Pulse Amplitude Modulation is the amplitude of the pulse carrier A modulation method in which the degree varies with the baseband signal, and multiple orders can be formed according to different bit combinations. PAM modulation. If the downlink wants to implement different PAM order modulation, there will be a downlink burst, which cannot achieve.
  • Embodiments of the present invention provide a communication method, apparatus, and system for solving The problem of different PAM order modulation is implemented in the downlink.
  • a communication method includes determining a pulse amplitude modulation PAM order F, F is 2 P power, 1 ⁇ P ⁇ m; feedback the pulse amplitude modulation PAM order to the ONU; Extending the pulse amplitude modulation PAM order to a PAM N order, using the expanded The PAM N order communicates with the ONU, wherein the N is a power of 2 m, m ⁇ 2.
  • the method further Including the PAM 2nd-order coding extension to PAM N-order coding to achieve ONU registration.
  • the PAM2 order coding is extended to PAM N-th order coding, specifically including every 1 in the data stream.
  • the bit is expanded to m bits, and the expanded second bit to mth bit are the same as the first bit.
  • the pulse amplitude is adjusted
  • the PAM order is extended to the PAM-N order, specifically including extending each P bit in the data stream to m.
  • the bits, and the expanded p+1th to mth bits are all the same as the first bit, 1 ⁇ p ⁇ m.
  • a method of communicating includes receiving a PAM-N order transmitted by the OLT Modulated data, where N is the mth power of 2, where m ⁇ 2;
  • the P-th power of the PAM order is 2, and the number of PAM-N-order modulations transmitted by the OLT is demodulated. According to which, 1 ⁇ p ⁇ m.
  • the ONU In conjunction with the second aspect, in a first possible implementation of the second aspect, the ONU The PAM second-order coding is extended to the PAM N-order coding registration, where N is 2 m-th power, M ⁇ 2.
  • each bit is expanded to m bits, and the expanded second bit to the mth bit Both are the same as the first bit.
  • the method further includes The data stream is divided into multiple sub-data streams in units of m, and the p+1 ratio in each sub-data stream is discarded. Up to the mth bit, reconstituting a new data stream for the ONU with a PAM order of 2 The p-th power is demodulated.
  • a communication device in a third aspect, includes a processing unit for determining a pulse amplitude modulation PAM An order of 2 to the power of P, an integer of 1 ⁇ P ⁇ m1; a transmitting unit for adjusting the amplitude of the pulse The PAM order is fed back to the ONU; the processing unit is further configured to adjust the pulse amplitude The PAM order is expanded to a PAM-N order, and the extended PAM-N order is used ONU communication, wherein the N is a power of 2 m, m ⁇ 2.
  • the processing The element is also used to implement registration of the ONU with PAM 2nd-order coding extension for PAM N-order coding.
  • each bit is expanded to m bits, and the expanded second bit to the mth bit Both are the same as the first bit.
  • each P bit in the data stream is expanded.
  • Spread to m bits, and the expanded p+1th to mth bits are the same as the first bit, 1 ⁇ p ⁇ m.
  • a communication device comprising: a receiving unit, configured to receive, sent by the OLT Data modulated in PAM-N order, where N is the power of 2 m, where m ⁇ 2; processing unit, P-th power demodulation for the pulse amplitude modulation PAM order of 2 transmitted by the OLT Data modulated in PAM-N order, where 1 ⁇ p ⁇ m.
  • the processing The element is also used to register the PAM N-order code with the PAM2 order code extension, where N is 2 m
  • the power where m is an integer greater than or equal to 2.
  • the processing unit is specifically configured to expand each bit in the data stream to m bits, and after expanding The second bit to the mth bit are the same as the first bit.
  • the processing unit is further configured to The entire data stream is divided into multiple sub-data streams in m, and the p+1 in each sub-data stream is discarded. Bit to the mth bit, reconstituting a new data stream for the ONU to have a PAM order Demodulation is performed on the p-th power of 2.
  • an optical line terminal OLT includes a processor, and the processor is configured to execute The method of any of the first aspect and the first aspect.
  • an optical network unit ONU includes a processor, and the processor is configured to execute The method of any of the second aspect and the second aspect.
  • a passive optical network system PON includes an OLT and an ONU, wherein the OLT The OLT as described in the fifth aspect, or the ONU comprising the ONU as described in the sixth aspect.
  • FIG. 1 is a schematic structural diagram of a PON network system networking
  • FIG. 2 is a flowchart of interaction between an OLT and an ONU according to an embodiment of the present invention
  • FIG. 3 is a schematic structural diagram of a multi-stage PAM flexible PON network system according to an embodiment of the present invention.
  • FIG. 4 is a schematic structural diagram of a signal using PAM-8 coding according to an embodiment of the present invention.
  • FIG. 5 is a schematic diagram of forming a pseudo PAM-4 code by using extended coding according to an embodiment of the present invention. Signal structure diagram;
  • FIG. 6 is a schematic diagram of forming a pseudo PAM-2 code by using extended coding according to an embodiment of the present invention. Signal structure diagram;
  • FIG. 7 is a schematic flowchart of a downlink data stream coding extension process according to an embodiment of the present disclosure.
  • FIG. 8a illustrates a PAM-8 implementation using a programmable array FPGA according to an embodiment of the present invention.
  • FIG. 8b illustrates a PAM-4 implementation using a programmable array FPGA according to an embodiment of the present invention.
  • FIG. 8c is a schematic diagram of implementing PAM-2 by using a programmable array FPGA according to an embodiment of the present invention. Schematic diagram of coding extension to PAM-8 coding;
  • FIG. 9 is a schematic diagram of an OLT medium access control MAC of an optical line terminal according to an embodiment of the present invention.
  • FIG. 10 is a schematic diagram of a PAM of an optical network unit ONU according to an embodiment of the present invention. Schematic diagram of adaptive demodulation of orders;
  • FIG. 11 is a schematic structural diagram of an apparatus according to an embodiment of the present disclosure.
  • FIG. 12 is a schematic structural diagram of another apparatus according to an embodiment of the present disclosure.
  • FIG. 13 is a schematic structural diagram of an OLT according to an embodiment of the present disclosure.
  • FIG. 14 is a schematic structural diagram of an ONU according to an embodiment of the present invention.
  • the Passive Optical Network is on the side of the office.
  • OLT Optical Line Terminal
  • ONU optical network unit on the user side
  • ONT Optical Network Terminal
  • ODN Optical Distribution Network
  • GPON Gigabit-Capable Passive Optical Network, thousand Mega Passive Optical Network
  • EPON Ethernet Passive Optical Network
  • 10G-GPON also known as XG-PON
  • 10G-EPON 10G-EPON.
  • the OLT provides a network side interface to the PON system and connects one or more ODNs.
  • ONU is The PON system provides a user-side interface and is connected to the ODN. If the ONU provides the user port directly Features, such as an Ethernet user port for personal computers (PCs), It is called ONT. Unless otherwise stated, the ONUs mentioned below refer to ONUs and ONTs.
  • ODN It is a network of optical fibers and passive optical splitting devices for connecting OLT devices and ONU devices. Used to distribute or multiplex data signals between the OLT and the ONU. In the PON system, from the OLT The ONU is called the downlink; otherwise, it is the uplink from the ONU to the OLT.
  • the embodiment of the invention discloses a communication method, as shown in FIG. 2, including:
  • the OLT determines that the pulse amplitude modulation PAM order is F-order, and the PAM order is Send to the ONU, F is the Pth power of 2, p is an integer greater than or equal to 1, and is less than or equal to m;
  • S202 The OLT expands the PAM order to the Fth order to the PAM order to the Nth order, and adopts the PAM.
  • N-order modulation communicates with the ONU, where N is 2 m-th power and m is greater than or equal to 2 Integer
  • the ONU receives the PAM N-th order modulated data sent by the OLT.
  • the pulse amplitude modulation PAM order is F-order demodulation sent by the OLT with PAM N tone Data.
  • the OLT determines a pulse amplitude modulation PAM order, which can be performed by the following steps achieve:
  • the ONU detects the received optical power, and feeds back the received optical power to the optical line terminal OLT;
  • the OLT determines the PAM order as F according to the received optical power of the ONU, where F is 2 p
  • the power, p is an integer greater than or equal to 1, and less than or equal to m;
  • the PAM order is determined, and can be pre-stored by the OLT.
  • the PAM order corresponding to the power can also be manually entered by manually inputting the command line and the network management system. Line configuration; other solutions disclosed in the prior art can also be used, and details are not described herein again.
  • the OLT feeds back the determined PAM order to the ONU.
  • the OLT determines a pulse amplitude modulation PAM order, and may also adopt the following steps. Realization:
  • SNR Signal Noise Ratio
  • the OLT determines that the PAM order is F, F is the p-th power of 2, and p is greater than An integer equal to 1, and less than or equal to m;
  • the PAM order is determined, and the SNR can be pre-stored through the OLT.
  • the mapping table with the PAM order is used to obtain the corresponding PAM order by querying the table; Manually input the command line, network management system to manually configure; can also use the existing technology to disclose Other programs are not mentioned here.
  • the OLT feeds back the determined PAM order to the ONU.
  • the method further includes:
  • the OLT and the ONU implement ONU registration online through extended coding.
  • the extension The code may be a PAM-2 order modulation that is extended to PAM-N order modulation, and N is 2 m.
  • m is an integer greater than or equal to 2.
  • the PAM-2 is extended to PAM-N coding, including:
  • the step of expanding the pulse amplitude modulation PAM is extended to a PAM-N order, Body includes:
  • the P-th power of the PAM order of 2 is demodulated by the pulse amplitude modulation by the OLT
  • the data transmitted in PAM-N order modulation including:
  • the PON network system of the present invention adopts single-wave multi-stage PAM modulation in the downlink, such as PAM-2, PAM-4 order, PAM-8 order, etc., through TDMA (Time Division Multiplexing Access,
  • TDMA Time Division Multiplexing Access
  • the time division multiplexing access form satisfies the requirements of different levels of ONU link adaptation.
  • PAM-2, PAM-4, PAM-8 Different modulation orders such as order can achieve the corresponding link level rate of downlink 10G, 20G, 30G (PAM-2 order corresponds to 10G, PAM-4 order corresponds to 20G, PAM-8 order corresponds to 30G).
  • PAM-2 order corresponds to 10G
  • PAM-4 order corresponds to 20G
  • PAM-8 order corresponds to 30G
  • the PON network has adaptive and flexible characteristics, which can be adaptively matched according to the ONU receiving optical power.
  • the PAM order dynamically adjusts the modulation format to achieve different levels of transmission rates for each ONU link.
  • PAM-4 modulation When the downlink is 20G, PAM-4 modulation is required. If no processing is done, the downlink is required. Continuous switching between PAM-4 and PAM-8 results in a downlink burst.
  • the invention is coded by innovation Expansion, expand the 11, 10, 01, 00 of PAM-4 to 111, 101, 010,000, respectively. From The pseudo-PAM-4 modulated signal that is essentially PAM-8 is formed. As shown in Figure 5.
  • the above coding extension can be transmitted through the downlink continuous PAM-8 format, and the generation is not realized.
  • the same PAM order namely PAM-8, PAM-4, PAM-2.
  • PAM-8 corresponds to 30G
  • PAM-4 corresponds to 20G
  • PAM-2 corresponds to 10G
  • TDMA transmission The ONU receiving side performs adaptive decoding according to the PAM order.
  • the above specific coding extension can The maximum extinction ratio state under different PAM modulation orders is achieved to maximize system performance.
  • the OLT-side extension coding can be performed through an FPGA (Field Programmable Gate).
  • Array, field programmable gate array) module implementation can also use dedicated integrated chip (Application Specific Integrated Circuit, ASIC), can also use the system chip (System on Chip, SoC), you can also use a central processor (Central Processor Unit, CPU), you can also use Network Processor (NP), you can also use the number Word Signal Processing (DSP), can also use a microcontroller (Micro Controller Unit, MCU), can also use programmable controller (Programmable Logic Device, PLD) or other integrated chip.
  • ASIC Application Specific Integrated Circuit
  • SoC System on Chip
  • CPU Central Processor Unit
  • NP Network Processor
  • DSP Digital Signal Processing
  • MCU Micro Controller Unit
  • PLD Programmable Logic Device
  • First Downstream serial data stream Data is serial-to-parallel converted according to OLT MAC (Media Access Control, media access control) feedback data stream belongs to the PAM order value, for the parallel after conversion
  • OLT MAC Media Access Control, media access control
  • the data stream is adaptively coded and extended.
  • the code extension is from PAM-8 to PAM-8, and the coded extended parallel data stream constant;
  • the code extension is from PAM-4 to PAM-8, and the parallel data stream is encoded and extended.
  • the 2bit extension is 3 bits, and the 3rd bit is the same as the 1st bit data;
  • the code extension is from PAM-2 to PAM-8, and the parallel data stream is encoded and extended.
  • the 1 bit extension is 3 bits, and the 2nd bit and the 3rd bit are the same as the 1st bit data.
  • the parallel data stream is then parallel-converted into DeSerdes to form new downlink data.
  • Stream Data and then form a 3Bit DAC (Digital Analog Convert)
  • the PAM-8 signal is sent out through the laser.
  • the OLT MAC internally performs transmission coding extension of the adaptive PAM order.
  • the ONU receiving end demodulation is implemented by two implementation methods, the first one is the third embodiment.
  • the described implementation is implemented by an FPGA.
  • the second implementation is through a high speed ADC (Analog) Digital Convert, Analog to Digital Converter) implements multi-stage PAM encoding, fed back by the ONU MAC Dynamic modulation order control adaptively decodes the ADC sampling frequency.
  • the feedback modulation order is PAM-8
  • the ADC sampling frequency is adaptively set to 30 GHz
  • the feedback modulation order is PAM-4
  • the ADC sampling frequency is adaptively set to 20 GHz
  • the feedback modulation order is PAM-2
  • the ADC The sampling frequency is adaptively set to 10 GHz. Different ADC sampling frequency can be achieved PAM order adaptive decoding.
  • the embodiment of the invention further discloses a communication device, as shown in FIG. 11, comprising:
  • the processing unit 110 is configured to determine that the pulse amplitude modulation PAM order is F, and F is 2 times. Square, 1 ⁇ p ⁇ m; also used to expand the determined PAM order F to PAM N-th order modulation;
  • the sending unit 120 is configured to feed back the PAM order F to the optical network unit ONU; Communicates with the ONU in an extended PAM N-th order modulation format.
  • the processing unit 110 is further configured to expand to a PAM N-order by using a PAM2-order code. Encoding enables registration of ONUs.
  • the processing unit 110 is further configured to encode with PAM 2nd order. Expanded to PAM N-order encoding to achieve ONU registration, including expanding each bit of data in the data stream The spread is m bits, and the expanded second bit to the mth bit are the same as the first bit.
  • the processing unit 110 is further configured to expand the pulse amplitude modulation PAM order F to PAM-N order, specifically including extending each P bit in the data stream to m bits, and expanding The p+1th to mth bits are the same as the first bit, and 1 ⁇ p ⁇ m.
  • the communication device is on a physical entity and may be an FPGA (Field Programmable Gate) Array field programmable gate array) module implementation can of course also use dedicated integrated chip (Application Specific Integrated Circuit, ASIC), can also use the system chip (System on Chip, SoC), you can also use a central processor (Central Processor Unit, CPU), you can also use Network Processor (NP), you can also use the number Word Signal Processing (DSP), can also use a microcontroller (Micro Controller Unit, MCU), can also use programmable controller (Programmable Logic Device, PLD) or other integrated chip.
  • ASIC Application Specific Integrated Circuit
  • SoC System on Chip
  • CPU Central Processor Unit
  • NP Network Processor
  • DSP Digital Signal Processing
  • MCU Micro Controller Unit
  • PLD Programmable Logic Device
  • the embodiment of the invention further discloses a communication device, as shown in FIG. 12, comprising:
  • the receiving unit 122 is configured to receive a pulse amplitude modulation PAM sent by the optical line terminal OLT
  • the order is F, where F is the Pth power of 2, where p is greater than or equal to 1, and less than or equal to m
  • Processing unit 124 configured to demodulate the pulse amplitude modulation PAM order by F Data modulated by PAM-N order sent by the OLT, where p is an integer greater than or equal to 1.
  • the processing unit 124 is further configured to expand to a PAM N order by using a PAM 2nd order encoding.
  • Encoding registration where N is the power of 2 m, where m is an integer greater than or equal to 2.
  • Specific package The processing unit 124 expands each bit in the data stream to m bits, and the expanded second The bits to the mth bits are all the same as the first bit.
  • the processing unit 124 is further configured to divide the entire data stream into units of m. Sub-data stream, discarding the p+1th to mth bits in each sub-stream, reconstituting the new The data stream is used for demodulation of the ONU with a PAM order of F.
  • the communication device is on a physical entity and may be an FPGA (Field Programmable Gate) Array, field programmable gate array) module implementation, of course, can also use dedicated integrated chip (Application Specific Integrated Circuit, ASIC), can also use the system chip (System on Chip, SoC), you can also use a central processor (Central Processor Unit, CPU), you can also use Network Processor (NP), you can also use the number Word Signal Processing (DSP), can also use a microcontroller (Micro Controller Unit, MCU), can also use programmable controller (Programmable Logic Device, PLD) or other integrated chip.
  • FPGA Field Programmable Gate
  • SoC System on Chip
  • CPU Central Processor Unit
  • NP Network Processor
  • DSP Digital Signal Processing
  • MCU Micro Controller Unit
  • PLD Programmable Logic Device
  • the embodiment of the invention further discloses an optical line terminal OLT, as shown in FIG. 13, the OLT
  • the processor includes the communication device as described in the second embodiment.
  • An embodiment of the present invention further discloses an optical network unit ONU, as shown in FIG.
  • the ONU includes a processor 140, an optical module 142, a digital to analog converter 144, and an analog to digital converter 146.
  • the processor includes the communication device as described in the third embodiment.
  • the embodiment of the invention also discloses a passive optical network PON, as shown in FIG. 1 , including light a road terminal OLT and an optical network unit ONU, the OLT being connected to the optical distribution network ODN to One less ONU, wherein the optical line terminal and the optical network unit are used to perform the method as described in Embodiment 1. Methods.
  • the invention can be implemented in hardware, or in firmware, or in a combination thereof.
  • the above functions may be stored on a computer readable medium or readable by a computer
  • One or more instructions or code on the media are transferred.
  • Computer readable medium including computer storage Storage medium and communication medium, wherein the communication medium includes a convenient transfer from one place to another Any medium of a computer program.
  • a storage medium may be any available media that can be accessed by a computer.
  • the computer readable medium may include RAM (Random Access) Memory, random access memory, ROM (Read Only Memory), EEPROM (Electrically Erasable Programmable Read Only Memory, electrically erasable programmable only Read memory), CD-ROM (Compact Disc Read Only Memory) Or other optical disc storage, disk storage media or other magnetic storage device, or can be used to carry Or storing desired program code in the form of an instruction or data structure and capable of being accessed by a computer Any other media. Also. Any connection may suitably be a computer readable medium.
  • the disc and the disc include a CD (Compact Disc), a laser disc, CD, DVD (Digital Versatile Disc), floppy disk and Blu-ray disc, The disc is usually magnetically replicated, while the disc uses a laser to optically replicate the data. Group above It should also be included within the scope of the computer readable medium.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Optical Communication System (AREA)

Abstract

本发明公开了一种通信的方法、装置及系统,所述通信方法包括确定脉冲幅度调制PAM阶数为2的P次方,1≤P≤m;将所述脉冲幅度调制PAM阶数反馈至所述ONU;将所述脉冲幅度调制PAM阶数扩展为 PAM-N阶数,采用所述扩展后的PAM-N阶数与所述ONU通信,其中,所述N为2的m次方,m≥2。通过本发明公开的通信方法、装置及系统,可实现下行PAM不同阶数连续调制,实现不同ONU自适应链路速率等级。

Description

一种通信方法、装置及系统 技术领域
本发明涉及通信领域,尤其涉及一种通信方法、装置及系统。
背景技术
随着FTTx(Fiber To The x,光纤接入x,比如FTTH代表光纤入户, FTTB,光纤入大楼)的大规模部署,光接入的带宽需求越来越大,目前 光接入主流采用PON(Passive Optical Network,无源光网络)技术,PON 技术是一种点到多点的无源光网络系统。一个PON网络包括一个安装于 中心控制站的OLT(Optical Line Terminal,光线路终端),以及一批配套 的安装于用户场所的ONU(Optical Network Unit,光网络单元)或ONT (Optical Network Terminal,光网络终端)。在OLT与ONU之间的ODN (Optical Distribution Network,光分配网络)包含了光纤以及无源分光器 或者耦合器。
PON由于消除了局端与用户端之间的有源设备,从而使得维护简 单、可靠性高、成本低,而且能节约光纤资源,是未来FTTH(Fiber To The  Home,光纤入户)的主要解决方案。
现阶段各种PON技术都共存着,EPON(Ethernet Passive Optical  Network,以太网无源光网络),10G-EPON(10Gigabit EPON,10吉比特 以太网无源光网络),GPON(Gigabit Passive Optical Network,吉比特无 源光网络),10G-GPON(10Gigabit PON,10吉比特无源光网络), 40G-TWDM PON(40Gigabit Time Wavelength Division Multiplex PON, 吉比特时分波分复用无源光网络)。链路总带宽从1G到10G,甚至40G。 根据对用户带宽需求分析,目前的带宽已经可以满足用户较长时间的需 求。在总的下行带宽为10G或40G情况下,每个用户没有必要达到10G 以上。
脉冲幅度调制(Pulse Amplitude Modulation,PAM)是脉冲载波的幅 度随基带信号变化的一种调制方式,可以根据不同比特组合形成多阶 PAM调制。如果下行欲实现不同PAM阶数调制,会存在下行突发,无法 实现。
发明内容
本发明的实施例提供一种实现通信方法、装置及系统,用于解决如果 在下行实现不同PAM阶数调制的问题。
为达到上述目的,本发明的实施例采用如下技术方案:
第一方面,一种通信方法,包括确定脉冲幅度调制PAM阶数F,F为 2的P次方,1≤P≤m;将所述脉冲幅度调制PAM阶数反馈至所述ONU; 将所述脉冲幅度调制PAM阶数扩展为PAM N阶数,采用所述扩展后的 PAM N阶数与所述ONU通信,其中,所述N为2的m次方,m≥2。
结合第一方面,在第一方面的第一种可能的实现方式中,所述方法还 包括以PAM2阶编码扩展为PAM N阶编码实现ONU的注册。
结合第一方面的第一种可能的实现方式,在第二种可能的实现方式 中,所述PAM2阶编码扩展为PAM N阶编码,具体包括将数据流中每1 比特扩展为m比特,且扩展后的第2比特至第m比特均与第1比特位相同。
结合第一方面,在第三种可能的实现方式中,所述将所述脉冲幅度调 制PAM阶数扩展为PAM-N阶数,具体包括将数据流中每P比特扩展为m 比特,且扩展后的第p+1比特至第m比特均与第1比特位相同,1≤p≤m。
第二方面,一种通信的方法,包括接收所述OLT发送的以PAM-N阶 调制的数据,其中,N为为2的m次方,其中m≥2;以所述脉冲幅度调 制PAM阶数为2的P次方解调由所述OLT发送的以PAM-N阶调制的数 据,其中1≤p≤m。
结合第二方面,在第二方面的第一种可能的实现方式中,所述ONU 以PAM2阶编码扩展为PAM N阶编码注册,其中,N为2的m次方,其 中m≥2。
结合第二方面的第一种可能的实现方式,在第二种可能的实现方式 中,将数据流中每1比特扩展为m比特,且扩展后的第2比特至第m比特 均与第1比特位相同。
结合第二方面,在第三种可能的实现方式中,所述方法还包括将整个 数据流以m为单位,分为多个子数据流,丢弃每个子数据流中的第p+1比 特至第m比特,重新组成新的数据流,以用于所述ONU以PAM阶数为2 的p次方进行解调。
第三方面,一种通信装置,包括处理单元,用于确定脉冲幅度调制PAM 阶数为2的P次方,1≤P≤m1的整数;发送单元,用于将所述脉冲幅度调 制PAM阶数反馈至所述ONU;所述处理单元,还用于将所述脉冲幅度调 制PAM阶数扩展为PAM-N阶数,采用所述扩展后的PAM-N阶数与所述 ONU通信,其中,所述N为2的m次方,m≥2。
结合第三方面,在第三方面的第一种可能的实现方式中,所述处理单 元还用于以PAM2阶编码扩展为PAM N阶编码实现ONU的注册。
结合第三方面的第一种可能的实现方式,在第二种可能的实现方式 中,将数据流中每1比特扩展为m比特,且扩展后的第2比特至第m比特 均与第1比特位相同。
结合第三方面,在第三种可能的实现方式中,将数据流中每P比特扩 展为m比特,且扩展后的第p+1比特至第m比特均与第1比特位相同,1 ≤p≤m。
第四方面,一种通信装置,包括接收单元,用于接收所述OLT发送的 以PAM-N阶调制的数据,其中,N为2的m次方,其中m≥2;处理单元, 用于以所述脉冲幅度调制PAM阶数为2的P次方解调由所述OLT发送的 以PAM-N阶调制的数据,其中1≤p≤m。
结合第四方面,在第四方面的第一种可能的实现方式中,所述处理单 元还用于以PAM2阶编码扩展为PAM N阶编码注册,其中,N为2的m 次方,其中m为大于等于2的整数。
结合第四方面的第一种可能的实现方式,在第二种可能的实现方式 中,所述处理单元具体用于将数据流中每1比特扩展为m比特,且扩展后 的第2比特至第m比特均与第1比特位相同。
结合第四方面,在第三种可能的实现方式中,所述处理单元还用于将 整个数据流以m为单位,分为多个子数据流,丢弃每个子数据流中的第p+1 比特至第m比特,重新组成新的数据流,以用于所述ONU以PAM阶数为 2的p次方进行解调。
第五方面,一种光线路终端OLT,包括处理器,所述处理器用于执行 如第一方面及第一方面任意一项所述的方法。
第六方面,一种光网络单元ONU,包括处理器,所述处理器用于执行 如第二方面及第二方面任意一项所述的方法。
第七方面,一种无源光网络系统PON,包括OLT和ONU,其中,OLT 包括如第五方面所述的OLT,或者ONU包括如第六方面所述的ONU。
通过本发明的通信方法、装置及系统,可实现下行PAM不同阶数连 续调制,实现不同ONU自适应链路速率等级。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对 实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中 的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不 付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为PON网络系统组网结构示意图;
图2为本发明实施例提供的一种OLT与ONU交互流程图;
图3为本发明实施例提供的多阶PAM灵活PON网络系统结构示意 图;
图4为本发明实施例提供的一种采用PAM-8编码的信号结构图;
图5为本发明实施例提供的一种通过扩展编码形成伪PAM-4编码的 信号结构图;
图6为本发明实施例提供的一种通过扩展编码形成伪PAM-2编码的 信号结构图;
图7为本发明实施例提供的一种下行数据流编码扩展流程示意图;
图8a为本发明实施例提供的一种采用可编程阵列FPGA实现PAM-8 编码扩展的示意图;
图8b为本发明实施例提供的一种采用可编程阵列FPGA实现PAM-4 编码扩展为PAM-8编码的示意图;
图8c为本发明实施例提供的一种采用可编程阵列FPGA实现PAM-2 编码扩展为PAM-8编码的示意图;
图9为本发明实施例提供的一种光线路终端OLT媒体接入控制MAC 模块内部做自适应PAM阶数的发送编码扩展的示意图;
图10为本发明实施例提供的一种光网络单元ONU根据反馈的PAM 阶数进行自适应解调的示意图;
图11为本发明实施例提供的一种装置的结构示意图;
图12为本发明实施例提供的另一种装置的结构示意图;
图13为本发明实施例提供的一种OLT的结构示意图;
图14为本发明实施例提供的一种ONU的结构示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进 行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例, 而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没 有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的 范围。
实施例一、
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局 限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可 轻易想到变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明 的保护范围应所述以权利要求的保护范围为准。
如图1所示,无源光网络(Passive Optical Network,PON)由局侧的 光线路终端(Optical Line Terminal,OLT)、用户侧的光网络单元(Optical  Network Unit,ONU)或者光网络终端(Optical Network Terminal,ONT) 以及光分配网络(Optical Distribute Network,ODN)组成。目前,具有 代表性的PON技术是GPON(Gigabit-Capable Passive Optical Network,千 兆无源光网络)、EPON(Ethernet Passive Optical Network,以太网无源光 网络)、10G-GPON(也可以称为XG-PON)、10G-EPON。
OLT为PON系统提供网络侧接口,连接一个或多个ODN。ONU为 PON系统提供用户侧接口,与ODN相连。如果ONU直接提供用户端口 功能,如个人电脑(Personal Computer,PC)上网用的以太网用户端口, 则称为ONT。无特殊说明,下文提到的ONU统指ONU和ONT。ODN 是由光纤和无源分光器件组成的网络,用于连接OLT设备和ONU设备, 用于分发或复用OLT和ONU之间的数据信号。在PON系统中,从OLT 到ONU称为下行;反之,从ONU到OLT为上行。
实施例一
本发明实施例公开一种通信的方法,如图2所示,包括:
S200:OLT确定脉冲幅度调制PAM阶数为F阶,将所述PAM阶数 发送至ONU,F为2的P次方,p为大于等于1的整数,并且小于等于m;
S202:OLT将该PAM阶数为F阶扩展为PAM阶数为N阶,采用PAM N阶数调制与该ONU通信,其中,N为2的m次方,m为大于等于2的 整数;
S204:该ONU接收所述OLT发送的以PAM N阶调制的数据,以所 述脉冲幅度调制PAM阶数为F阶解调由所述OLT发送的以PAM N阶调 制的数据。
可选地,所述OLT确定脉冲幅度调制PAM阶数,可以通过以下步骤 实现:
ONU探测接收光功率,向光线路终端OLT反馈接收光功率;
OLT根据ONU接收光功率,确定PAM阶数为F,其中,F为2的p 次方,p为大于等于1的整数,并小于等于m;
其中,根据ONU接收光功率,确定PAM阶数,可以通过OLT预存 储光功率与PAM阶数映射关系表,通过查询表格获取到与ONU接收光 功率对应的PAM阶数;还可以通过手动输入命令行、网管系统来人工进 行配置;还可以采用现有技术公开的其他方案,这里不再赘述。
OLT将确定好的PAM阶数反馈给ONU。
可选地,所述OLT确定脉冲幅度调制PAM阶数,还可以通过以下步 骤实现:
ONU探测通道的SNR(Signal Noise Ratio,信噪比),向光线路终端 OLT反馈该SNR;
OLT根据该SNR,确定PAM阶数为F,F为2的p次方,p为大于 等于1的整数,并小于等于m;
其中,根据通道的SNR,确定PAM阶数,可以通过OLT预存储SNR 与PAM阶数映射关系表,通过查询表格获取对应的PAM阶数;还可以通 过手动输入命令行、网管系统来人工进行配置;还可以采用现有技术公开 的其他方案,这里不再赘述。
OLT将确定好的PAM阶数反馈给ONU。
可选地,所述方法还包括:
OLT与ONU通过扩展编码实现ONU注册上线。其中,所述扩展编 码可以是将PAM-2阶调制通过扩展编码为PAM-N阶调制,N为2的m 次方,m为大于等于2的整数。
具体地,将PAM-2扩展为PAM-N编码,包括:
将数据流中每1比特扩展为m比特,且扩展后的第2比特至第m比 特均与第1比特位相同。
可选地,所述将所述脉冲幅度调制PAM阶数扩展为PAM-N阶数,具 体包括:
将数据流中每P比特扩展为m比特,且扩展后的第p+1比特至第m 比特均与第1比特位相同,1≤p≤m。
可选地,以所述脉冲幅度调制PAM阶数为2的P次方解调由所述OLT 发送的以PAM-N阶调制的数据,具体包括:
将整个数据流以m为单位,分为多个子数据流,丢弃每个子数据流中 的第p+1比特至第m比特,重新组成新的数据流,以用于所述ONU以PAM 阶数为F进行解调。
下面结合具体的应用场景对本发明实施例进一步说明,以N=8为例 进行说明。
本发明PON网络系统下行采用单波多阶PAM调制,比如PAM-2阶、 PAM-4阶、PAM-8阶等,通过TDMA(Time Division Multiplexing Access, 时分复用接入)形式,满足ONU链路自适应不同等级速率要求。
如图3所示,以10G光电器件为例,通过PAM-2阶、PAM-4阶、PAM-8 阶等不同调制阶数可实现下行10G、20G、30G相对应的链路等级速率 (PAM-2阶对应10G,PAM-4阶对应20G,PAM-8阶对应30G)。本发明 PON网络具有自适应灵活特性,可根据ONU接收光功率自适应匹配的 PAM阶数,动态调整调制格式,实现各ONU链路不同等级传输速率。
由于在下行直接采用不同PAM阶数调制,会导致下行无法实现连续 模式,而突发模式在下行较难实施。如何在保证下行连续模式基础上,采 用不同PAM调制阶数实现弹性功率预算是解决问题的关键。我们通过在 OLT发送侧进行编码扩展,可实现下行不同PAM阶数连续发送。
当下行30G时,可直接采用PAM-8调制。编码不需做编码扩展,每 3比特形成一个电平即可。如图4所示。
当下行20G时,需采用PAM-4调制,如果不做任何处理,则下行需 在PAM-4,PAM-8之间不断切换,导致下行突发。本发明通过创新编码 扩展,将PAM-4的11,10,01,00分别扩展成111,101,010,000。从 而形成本质是PAM-8的伪PAM-4调制信号。如图5所示。
同理,当下行10G时,需采用PAM-2调制,如果不做任何处理, 则下行需在PAM-2,PAM-8之间不断切换,导致下行突发。通过创新编 码扩展,将PAM-2的1,0分别扩展成111,000。从而形成本质是PAM-8 的伪PAM-2调制信号。如图6所示。
通过以上编码扩展,可通过下行连续PAM-8形式发送,实现产生不 同的PAM阶数,即PAM-8,PAM-4,PAM-2。从而现实下行不同速率 (PAM-8对应30G,PAM-4对应20G,PAM-2对应10G)TDMA发送, ONU接收侧根据PAM阶数进行自适应解码。同时,以上特定编码扩展可 实现不同PAM调制阶数下最大消光比状态,最大限度提升系统性能。
进一步地,OLT端扩展编码可通过FPGA(Field Programmable Gate  Array,现场可编程门阵列)模块实现,当然也可以采用专用集成芯片 (Application Specific Integrated Circuit,ASIC),还可以采用系统芯片 (System on Chip,SoC),还可以采用中央处理器(Central Processor Unit, CPU),还可以采用网络处理器(Network Processor,NP),还可以采用数 字信号处理电路(Digital Signal Processor,DSP),还可以采用微控制器 (Micro Controller Unit,MCU),还可以采用可编程控制器(Programmable  Logic Device,PLD)或其他集成芯片。如图7所示为下行数据流编码扩 展流程示意图。
针对不同PAM-N调制阶数内部实现示意图如图8a~图8c所示。先对 下行串行数据流Data进行串并转换,根据OLT MAC(Media Access  Control,媒体接入控制)反馈数据流所属PAM阶数值,对转换后的并行 数据流进行自适应编码扩展。
如图8a所示,编码扩展从PAM-8到PAM-8,编码扩展后并行数据流 保持不变;
如图8b所示,编码扩展从PAM-4到PAM-8,并行数据流编码扩展每 2bit扩展为3bit,且第3bit与第1bit数据相同;
如图8c所示,编码扩展从PAM-2到PAM-8,并行数据流编码扩展每 1bit扩展为3bit,且第2bit,第3bit均与第1bit数据相同。
由编码扩展后并行数据流再经并串转换DeSerdes形成新的下行数据 流Data,之后再经3Bit DAC(Digital Analog Convert,数模转换器)形成 PAM-8信号,经激光器发送出去。
如图9所示,OLT MAC内部做自适应PAM阶数的发送编码扩展。
如图10所示,ONU接收端解调由两种实现方法,第一种即实施例三 种所述的通过FPGA实现。第二种实现方法是通过高速ADC(Analog  Digital Convert,模数转换器)实现多阶PAM编码,由ONU MAC反馈的 动态调制阶数控制自适应解码ADC采样频率。当反馈调制阶数为PAM-8 时,ADC采样频率自适应设置为30GHz;当反馈调制阶数为PAM-4时, ADC采样频率自适应设置为20GHz;当反馈调制阶数为PAM-2时,ADC 采样频率自适应设置为10GHz。通过ADC自适应采样频率即可实现不同 PAM阶数自适应解码。
实施例二
本发明实施例还公开了一种通信装置,如图11所示,包括:
处理单元110,用于确定脉冲幅度调制PAM阶数为F,F为2的p次 方,1≤p≤m;还用于将该确定好的PAM阶数F扩展为PAM N阶调制;
发送单元120,用于将所述PAM阶数为F反馈至光网络单元ONU; 以扩展后的PAM N阶调制格式与ONU通信。
可选地,所述处理单元110还用于以PAM2阶编码扩展为PAM N阶 编码实现ONU的注册。其中,所述处理单元110还用于以PAM2阶编码 扩展为PAM N阶编码实现ONU的注册,具体包括将数据流中每1比特扩 展为m比特,且扩展后的第2比特至第m比特均与第1比特位相同。
所述处理单元110还用于将所述脉冲幅度调制PAM阶数F扩展为 PAM-N阶数,具体包括将数据流中每P比特扩展为m比特,且扩展后的 第p+1比特至第m比特均与第1比特位相同,1≤p≤m。
所述通信装置在物理实体上,可以是FPGA(Field Programmable Gate  Array现场可编程门阵列)模块实现当然也可以采用专用集成芯片 (Application Specific Integrated Circuit,ASIC),还可以采用系统芯片 (System on Chip,SoC),还可以采用中央处理器(Central Processor Unit, CPU),还可以采用网络处理器(Network Processor,NP),还可以采用数 字信号处理电路(Digital Signal Processor,DSP),还可以采用微控制器 (Micro Controller Unit,MCU),还可以采用可编程控制器(Programmable  Logic Device,PLD)或其他集成芯片。
实施例三
本发明实施例还公开一种通信装置,如图12所示,包括:
接收单元122,用于接收光线路终端OLT发送的脉冲幅度调制PAM 阶数为F,其中F为2的P次方,其中p为大于等于1,并且小于等于m 的整数;接收所述OLT发送的以PAM-N阶调制的数据,其中,N为2的 m次方,其中m为大于等于2的整数;
处理单元124,用于以所述脉冲幅度调制PAM阶数为F解调由所述 OLT发送的以PAM-N阶调制的数据,其中p为大于等于1的整数。
可选地,所述处理单元124还用于以PAM2阶编码扩展为PAM N阶 编码注册,其中,N为2的m次方,其中m为大于等于2的整数。具体包 括所述处理单元124将数据流中每1比特扩展为m比特,且扩展后的第2 比特至第m比特均与第1比特位相同。
可选地,所述处理单元124还用于将整个数据流以m为单位,分为多 个子数据流,丢弃每个子数据流中的第p+1比特至第m比特,重新组成新 的数据流,以用于所述ONU以PAM阶数为F进行解调。
所述通信装置在物理实体上,可以是FPGA(Field Programmable Gate  Array,现场可编程门阵列)模块实现,当然也可以采用专用集成芯片 (Application Specific Integrated Circuit,ASIC),还可以采用系统芯片 (System on Chip,SoC),还可以采用中央处理器(Central Processor Unit, CPU),还可以采用网络处理器(Network Processor,NP),还可以采用数 字信号处理电路(Digital Signal Processor,DSP),还可以采用微控制器 (Micro Controller Unit,MCU),还可以采用可编程控制器(Programmable  Logic Device,PLD)或其他集成芯片。
实施例四
本发明实施例还公开一种光线路终端OLT,如图13所示,所述OLT 包括处理器130,光模块132,数模转换器134,模数转换器136,其中, 所述处理器包括如实施例二所述的通信装置。
本发明实施例还公开了一种光网络单元ONU,如图14所示,所述 ONU包括处理器140,光模块142,数模转换器144,模数转换器146, 其中,所述处理器包括如实施例三所述的通信装置。
本发明实施例还公开一种无源光网络PON,如图1所示,包括光线 路终端OLT和光网络单元ONU,所述OLT通过光分配网络ODN连接至 少一个ONU,其中,光线路终端和光网络单元用于执行如实施例一所述 的方法。
通过本发明公开的通信方法、装置及系统,可实现下行PAM不同阶 数连续调制,实现不同ONU自适应链路速率等级。
通过以上的实施方式的描述,所属领域的技术人员可以清楚地了解到 本发明可以用硬件实现,或固件实现,或它们的组合方式来实现。当使用 软件实现时,可以将上述功能存储在计算机可读介质中或作为计算机可读 介质上的一个或多个指令或代码进行传输。计算机可读介质包括计算机存 储介质和通信介质,其中通信介质包括便于从一个地方向另一个地方传送 计算机程序的任何介质。存储介质可以是计算机能够存取的任何可用介质。 以此为例但不限于:计算机可读介质可以包括RAM(Random Access  Memory,随机存储器)、ROM(Read Only Memory,只读内存)、EEPROM (Electrically Erasable Programmable Read Only Memory,电可擦可编程只 读存储器)、CD-ROM(Compact Disc Read Only Memory,即只读光盘) 或其他光盘存储、磁盘存储介质或者其他磁存储设备、或者能够用于携带 或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的 任何其他介质。此外。任何连接可以适当的成为计算机可读介质。例如, 如果软件是使用同轴电缆、光纤光缆、双绞线、DSL(Digital Subscriber Line, 数字用户专线)或者诸如红外线、无线电和微波之类的无线技术从网站、 服务器或者其他远程源传输的,那么同轴电缆、光纤光缆、双绞线、DSL 或者诸如红外线、无线和微波之类的无线技术包括在所属介质的定影中。 如本发明所使用的,盘和碟包括CD(Compact Disc,压缩光碟)、激光碟、 光碟、DVD碟(Digital Versatile Disc,数字通用光)、软盘和蓝光光碟, 其中盘通常磁性的复制数据,而碟则用激光来光学的复制数据。上面的组 合也应当包括在计算机可读介质的保护范围之内。
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局 限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可 轻易想到变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明 的保护范围应所述以权利要求的保护范围为准。

Claims (21)

  1. 一种通信方法,其特征在于,包括:
    确定脉冲幅度调制PAM阶数为F,其中,F为2的P次方,1≤P≤m; 将所述脉冲幅度调制PAM阶数F反馈至光网络单元ONU;
    将所述脉冲幅度调制PAM阶数F扩展为PAM阶数为N阶,采用所 述扩PAM N阶数与所述ONU通信,其中,所述N为2的m次方,m≥2。
  2. 根据权利要求1所述的方法,其特征在于,所述方法还包括以PAM 2阶编码扩展为PAM N阶编码实现ONU的注册。
  3. 根据权利要求2所述的方法,其特征在于,所述PAM2阶编码扩 展为PAM N阶编码,具体包括:
    将数据流中每1比特扩展为m比特,且扩展后的第2比特至第m比 特均与第1比特位相同。
  4. 根据权利要求1所述的方法,其特征在于,所述将所述脉冲幅度 调制PAM阶数F扩展为PAM阶数为N阶,具体包括:
    将数据流中每P比特扩展为m比特,且扩展后的第p+1比特至第m 比特均与第1比特位相同,1≤p≤m。
  5. 一种通信的方法,其特征在于,包括:
    接收光线路终端OLT发送的以PAM N阶调制的数据,其中,N为2 的m次方,其中m≥2;
    以脉冲幅度调制PAM阶数为F解调由所述OLT发送的以PAM N阶 调制的数据,其中,F为2的p次方,1≤p≤m。
  6. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    光线路终端ONU以PAM2阶编码扩展为PAM N阶编码注册,其中, N为2的m次方,其中m≥2。
  7. 根据权利要求6所述的方法,其特征在于,所述PAM2阶编码扩 展为PAM N阶编码,具体包括:
    将数据流中每1比特扩展为m比特,且扩展后的第2比特至第m比 特均与第1比特位相同。
  8. 根据权利要求5所述的方法,其特征在于,所述方法还包括:
    将整个数据流以m为单位,分为多个子数据流,丢弃每个子数据流中 的第p+1比特至第m比特,形成新的数据流,以用于所述ONU以PAM阶 数为F阶进行解调。
  9. 一种通信装置,其特征在于,所述装置包括:
    处理单元,用于确定脉冲幅度调制PAM阶数为F阶,F为2的P次 方,1≤P≤m的整数;
    发送单元,用于将所述脉冲幅度调制PAM阶数为F阶反馈至光网络 单元ONU;
    所述处理单元,还用于将所述脉冲幅度调制PAM阶数F扩展为PAM N阶数,采用所述扩展后的PAM N阶数与所述ONU通信,其中,所述N 为2的m次方,m≥2。
  10. 根据权利要求9所述的装置,其特征在于,所述处理单元还用于 以PAM2阶编码扩展为PAM N阶编码实现ONU的注册。
  11. 根据权利要求10所述的装置,其特征在于,所述处理单元还用 于以PAM2阶编码扩展为PAM N阶编码实现ONU的注册,具体包括:
    将数据流中每1比特扩展为m比特,且扩展后的第2比特至第m比 特均与第1比特位相同。
  12. 根据权利要求9所述的装置,其特征在于,所述处理单元还用于 将所述脉冲幅度调制PAM阶数F扩展为PAM N阶数,具体包括:
    将数据流中每P比特扩展为m比特,且扩展后的第p+1比特至第m 比特均与第1比特位相同,1≤p≤m。
  13. 一种通信装置,其特征在于,所述装置包括:
    接收单元,用于接收光线路终端OLT发送的以PAM N阶调制的数据, 其中,N为2的m次方,其中m≥2;
    处理单元,用于以所述脉冲幅度调制PAM阶数为F解调由所述OLT 发送的以PAM N阶调制的数据,其中,F为2的p次方,1≤p≤m。
  14. 根据权利要求13所述的装置,其特征在于,所述处理单元还用 于以PAM2阶编码扩展为PAM N阶编码注册,其中,N为2的m次方, 其中m≥2。
  15. 根据权利要求14所述的装置,其特征在于,所述处理单元具体 用于将数据流中每1比特扩展为m比特,且扩展后的第2比特至第m比特 均与第1比特位相同。
  16. 根据权利要求13所述的装置,其特征在于,所述处理单元还用 于将整个数据流以m为单位,分为多个子数据流,丢弃每个子数据流中的 第p+1比特至第m比特,形成新的数据流,以用于所述ONU以PAM阶数 为F进行解调。
  17. 一种通信装置,包括处理器,其特征在于,所述处理器用于执行 如权利要求1~4任意一项所述的方法。
  18. 一种通信装置,包括处理器,其特征在于,所述处理器用于执行 如权利要求5~8任意一项所述的方法。
  19. 一种光线路终端OLT,包括处理器和光模块,其特征在于,所述 处理器包括如权利要求9~12任意一项所述的装置。
  20. 一种光网络单元ONU,包括处理器和光模块,其特征在于,所述 处理器包括如权利要求13~16任意一项所述的装置。
  21. 一种无源光网络PON,包括光线路终端OLT和光网络单元ONU, 其特征在于,所述OLT包括如权利要求19所述的光线路终端或者所述 ONU包括如权利要求20所述的光网络单元。
PCT/CN2014/077647 2014-05-16 2014-05-16 一种通信方法、装置及系统 WO2015172375A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2014/077647 WO2015172375A1 (zh) 2014-05-16 2014-05-16 一种通信方法、装置及系统
CN201480001088.7A CN105359433B (zh) 2014-05-16 2014-05-16 一种通信方法、装置及系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2014/077647 WO2015172375A1 (zh) 2014-05-16 2014-05-16 一种通信方法、装置及系统

Publications (1)

Publication Number Publication Date
WO2015172375A1 true WO2015172375A1 (zh) 2015-11-19

Family

ID=54479194

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/077647 WO2015172375A1 (zh) 2014-05-16 2014-05-16 一种通信方法、装置及系统

Country Status (2)

Country Link
CN (1) CN105359433B (zh)
WO (1) WO2015172375A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019011308A1 (en) * 2017-07-13 2019-01-17 Zte Corporation IMPULSE AMPLITUDE MODULATION SCHEME WITH UNEQUAL SPACING
CN112564851A (zh) * 2019-09-10 2021-03-26 华为技术有限公司 以太网链路速率切换的方法、装置及计算机可读存储介质

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110870233B (zh) * 2017-07-27 2021-02-23 华为技术有限公司 数据处理方法、光线路终端、光网络单元及系统
CN112737695B (zh) * 2020-12-04 2021-10-08 东南大学 一种基于广义空间调制的自适应符号集设计方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102447981A (zh) * 2010-08-20 2012-05-09 美国博通公司 以太无源光网络中经济有效地提供上行速率的系统和方法
CN102474677A (zh) * 2009-09-09 2012-05-23 美国博通公司 基于同轴电缆的以太网无源光网络(epoc)
CN103493454A (zh) * 2011-04-14 2014-01-01 阿尔卡特朗讯 用于使用低阶调制器来实施高阶调制方案的方法和装置
CN103840882A (zh) * 2012-11-21 2014-06-04 中兴通讯股份有限公司 光纤网络的发送、接收、通信系统及信号的调制方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3177569B2 (ja) * 1994-11-01 2001-06-18 松下電器産業株式会社 無線装置
US7257329B2 (en) * 2002-09-23 2007-08-14 Agere Systems Inc. Duobinary pulse shaping for optical transmission systems employing pulse amplitude modulation techniques
CN1890913A (zh) * 2003-12-08 2007-01-03 硅谷数模半导体有限公司 用于长程10和100Mbps以太网传输的信令和编码方法和装置
JP4366401B2 (ja) * 2004-01-02 2009-11-18 インターナショナル・ビジネス・マシーンズ・コーポレーション 伝送信号を受信するための方法、受信機、およびシステム(pam−ppm信号用の堅固な非コヒーレント受信機)
US7668256B2 (en) * 2006-07-20 2010-02-23 Alcatel-Lucent Usa Inc. Method and apparatus for the generation and detection of optical differential varied-multilevel phase-shift keying with pulse amplitude modulation (ODVMPSK/PAM) signals
US8098708B2 (en) * 2008-07-18 2012-01-17 Harris Corporation System and method for communicating data using constant envelope orthogonal Walsh modulation with channelization
CN102244556B (zh) * 2010-05-11 2014-01-22 清华大学 多维星座图的构造方法、编码调制、解调解码方法及系统
CN101848061B (zh) * 2010-05-13 2013-01-30 清华大学 星座图受限的扩展编码调制方法、解调解码方法及其系统
CN102571681B (zh) * 2010-12-30 2017-01-18 国网宁夏电力公司信息通信公司 无线通信系统中系统广播信道发送信息的方法及装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102474677A (zh) * 2009-09-09 2012-05-23 美国博通公司 基于同轴电缆的以太网无源光网络(epoc)
CN102447981A (zh) * 2010-08-20 2012-05-09 美国博通公司 以太无源光网络中经济有效地提供上行速率的系统和方法
CN103493454A (zh) * 2011-04-14 2014-01-01 阿尔卡特朗讯 用于使用低阶调制器来实施高阶调制方案的方法和装置
CN103840882A (zh) * 2012-11-21 2014-06-04 中兴通讯股份有限公司 光纤网络的发送、接收、通信系统及信号的调制方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019011308A1 (en) * 2017-07-13 2019-01-17 Zte Corporation IMPULSE AMPLITUDE MODULATION SCHEME WITH UNEQUAL SPACING
US10212010B2 (en) 2017-07-13 2019-02-19 Zte Corporation Unequally spaced pulse amplitude modulation scheme
CN112564851A (zh) * 2019-09-10 2021-03-26 华为技术有限公司 以太网链路速率切换的方法、装置及计算机可读存储介质
CN112564851B (zh) * 2019-09-10 2022-03-08 华为技术有限公司 以太网链路速率切换的方法、装置及计算机可读存储介质

Also Published As

Publication number Publication date
CN105359433A (zh) 2016-02-24
CN105359433B (zh) 2017-11-17

Similar Documents

Publication Publication Date Title
TWI508471B (zh) 乙太無源光網路中經濟有效地提供上行速率的系統和方法
US8050556B2 (en) In-band optical frequency division reflectometry
WO2014079237A1 (zh) 光纤网络的发送、接收、通信系统及信号的调制方法
CN102075822B (zh) 波分复用无源光网络系统、通信方法及光线路终端设备
WO2015172375A1 (zh) 一种通信方法、装置及系统
EP2645608B1 (en) Optical line terminal, optical network unit and passive optical network system
RU2676406C1 (ru) Способ и устройство для исправления ошибок и пассивная оптическая сеть
US8340519B2 (en) Passive optical network comprising an optical burst mode receiver
WO2019160838A1 (en) Multi-rate optical network
US10505636B2 (en) Methods and apparatuses for sending and receiving signal, and system
CN101951311B (zh) 无源光网络中在接收端动态优化调节的突发时钟恢复方法
JP5761415B1 (ja) 加入者側装置登録方法
KR101063012B1 (ko) 시분할 다중접속 방식의 수동 광가입자망을 구성하는 광 회선 단말 및 광 회선 단말의 연속모드 수신기
KR101023813B1 (ko) 신규 광망 종단 장치 등록 방법
Lin et al. Software-defined FlexPON
Lin et al. An interleave division multiple access based scheme for passive optical network
Sugumaran et al. Performance analysis of 2.5 Gbps downlink GPON
Li et al. Experimental demonstration of a smooth evolution scheme from conventional TDM-PON to TDM-OFDM-PON
TWI638536B (zh) 100-Gbps多重輸入多重輸出可見光傳輸系統
Cincotti et al. Sourceless colorless OCDMA-PONs
Bolea et al. Software reconfigurable PONs utilizing digital filter multiple access
WO2018068205A1 (zh) 一种码分复用的解复用方法及装置
Wang et al. Experimental demonstration of a 8× 10Gb/s 10GHz-spaced UDWDM-PON system based on CAP and direct detection
Nadarajah et al. 10 Gb/s upgrade for high-split and long-reach PON using remote repeater
Deng et al. Experimental demonstration of bandwidth provisioning in a heterogeneous optical CDMA system transporting gigabit Ethernet traffic

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480001088.7

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14891736

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14891736

Country of ref document: EP

Kind code of ref document: A1