WO2015170813A1 - 액상 전구체 공급장치 - Google Patents

액상 전구체 공급장치 Download PDF

Info

Publication number
WO2015170813A1
WO2015170813A1 PCT/KR2014/013035 KR2014013035W WO2015170813A1 WO 2015170813 A1 WO2015170813 A1 WO 2015170813A1 KR 2014013035 W KR2014013035 W KR 2014013035W WO 2015170813 A1 WO2015170813 A1 WO 2015170813A1
Authority
WO
WIPO (PCT)
Prior art keywords
precursor
liquid precursor
vaporizer
liquid
state
Prior art date
Application number
PCT/KR2014/013035
Other languages
English (en)
French (fr)
Inventor
최범호
이종호
Original Assignee
한국생산기술연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국생산기술연구원 filed Critical 한국생산기술연구원
Priority to US14/760,227 priority Critical patent/US20170056912A1/en
Priority to JP2016518288A priority patent/JP6014292B2/ja
Publication of WO2015170813A1 publication Critical patent/WO2015170813A1/ko

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B17/00Apparatus for spraying or atomising liquids or other fluent materials, not covered by the preceding groups
    • B05B17/04Apparatus for spraying or atomising liquids or other fluent materials, not covered by the preceding groups operating with special methods
    • B05B17/06Apparatus for spraying or atomising liquids or other fluent materials, not covered by the preceding groups operating with special methods using ultrasonic or other kinds of vibrations
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/448Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for generating reactive gas streams, e.g. by evaporation or sublimation of precursor materials
    • C23C16/4486Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for generating reactive gas streams, e.g. by evaporation or sublimation of precursor materials by producing an aerosol and subsequent evaporation of the droplets or particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B9/00Spraying apparatus for discharge of liquids or other fluent material, without essentially mixing with gas or vapour
    • B05B9/002Spraying apparatus for discharge of liquids or other fluent material, without essentially mixing with gas or vapour incorporating means for heating or cooling, e.g. the material to be sprayed
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45561Gas plumbing upstream of the reaction chamber

Definitions

  • the present invention relates to a liquid precursor supply apparatus, and more particularly, to a liquid precursor supply apparatus capable of a thin film deposition process even at low temperatures when manufacturing a semiconductor device and a display device.
  • a thin film deposition process using a liquid precursor is generally performed.
  • the liquid precursor is synthesized in a form in which an organic metal ligand (Metal-Organic Ligand) surrounds the material to be deposited, and a process of decomposing the organic metal ligand using heat or plasma is applied for pure thin film deposition.
  • an organic metal ligand Metal-Organic Ligand
  • TMA Trimethyl-Aluminum
  • alumina deposition is a structure in which three CH3 are surrounded by an Al component to decompose CH3 using heat, plasma, and ozone.
  • the conventional liquid precursor supply device for supplying a liquid precursor generates a bubble in a container (storage tank or canister) in which the liquid precursor is contained, and then uses a carrier gas to process the chamber. Supply a liquid precursor to the.
  • the thin film deposition process generally proceeds at a high temperature of 550 ° C. or higher, a high temperature heater is necessary to increase the temperature in order to perform the thin film deposition process at a high temperature, and deformation or thermal stress even at high temperatures of 550 ° C. or higher Since the substrate must be used without a substrate, a problem arises in that the production cost increases in the manufacture of semiconductor devices and displays.
  • an object of the present invention is to provide a liquid precursor supplying apparatus capable of a thin film deposition process at a low temperature of less than 350 °C to solve the above problems.
  • an object of the present invention is to provide a liquid precursor supply apparatus that can reduce the production cost when manufacturing a semiconductor device or a display device.
  • the liquid precursor supply apparatus comprises an aerosol generator for converting the liquid precursor stored therein into an aerosol state by using ultrasonic vibration;
  • a vaporizer provided with a heater block in which a plurality of heaters having an oblique plate-like structure intersect in a zigzag manner are arranged so that precursors in an aerosol state delivered from the aerosol generator collide with each other to obtain thermal energy and change into a gas state;
  • precursor storage means for storing the precursor converted into the gas state by the vaporizer at a constant pressure and temperature, and supplying the gaseous precursor to the chamber during the thin film deposition process.
  • the aerosol generator in the present invention the storage tank in which the liquid precursor is contained;
  • An ultrasonic vibrator installed under the storage tank to generate ultrasonic vibration so that the liquid precursor contained in the storage tank is converted into an aerosol;
  • a level sensor installed to protrude into the storage tank to detect the remaining amount of the liquid precursor in the storage tank.
  • the heater is characterized in that the nickel body is composed of a material containing tungsten.
  • the vaporizer further comprises a temperature controller capable of maintaining the temperature of the heater block uniformly to increase the instantaneous vaporization rate.
  • the temperature controller is characterized in that the temperature of the heater block is adjusted to suit the liquid precursor having a vaporization range of 350 °C at room temperature.
  • the vaporizer in the present invention is characterized in that the vaporization capacity can be adjusted according to the type of the liquid precursor.
  • the precursor storage means is provided with an automatic purifying function for cleaning the interior in a gas purge method in a vacuum state in order to prevent the liquid precursor residues therein in the idle state in which the thin film deposition process is not performed. do.
  • the present invention is characterized in that it further comprises an insulated valve installed between the vaporizer and the precursor storage means to block the continuous supply of the precursor from the vaporizer to the precursor storage means.
  • the insulating valve is characterized in that the precursor is opened after being completely converted to the gas state in the vaporizer.
  • the present invention canister stored liquid precursor; A liquid flow controller installed between the canister and an aerosol generator to adjust a flow rate of a liquid precursor supplied from the canister to an aerosol generator; A regulator installed between the canister and a liquid flow controller to regulate the pressure of a liquid precursor; A first control valve installed between the canister and the regulator; A second regulating valve disposed between the canister and the liquid flow controller; And a third control valve installed between the first control valve and the second control valve.
  • the aerosol precursor is converted into the aerosol state and supplied to the vaporizer, the aerosol precursor is uniformly distributed in the vaporizer, thereby preventing local cooling phenomenon due to the heat of vaporization, and the aerosol precursor is inclined. Since it is made of a plate-shaped structure and collides with heaters arranged in a zigzag cross, it changes to a gaseous state, thereby ensuring maximum heat capacity inside the vaporizer, and thus it is possible to supply a liquid precursor capable of thin film deposition process even at low temperatures. Since no substrate is required, production costs can be reduced when manufacturing semiconductor devices and displays.
  • FIG. 1 is a view showing a vaporization method of a liquid precursor using a conventional bubble method.
  • FIG. 2 is a view showing a liquid precursor supply apparatus according to an embodiment of the present invention.
  • FIG. 3 is a view showing the aerosol generator shown in FIG.
  • FIG. 4A is a front view of a heater block installed in the vaporizer shown in FIG. 2.
  • FIG. 4B is a side view of the heater block installed in the vaporizer illustrated in FIG. 2.
  • FIG. 5 is a view showing the precursor storage means shown in FIG.
  • FIG. 2 is a view showing a liquid precursor supply apparatus according to an embodiment of the present invention
  • Figure 3 is a view showing the aerosol generator shown in Figure 2
  • Figure 4a of the heater block installed in the vaporizer shown in Figure 2 Front view
  • Figure 4b is a side view of the heater block installed in the vaporizer shown in Figure 2
  • Figure 5 is a view showing the precursor storage means shown in FIG.
  • the liquid precursor supply apparatus includes an aerosol generator 10, a vaporizer 20, and a precursor storage unit 30. It is composed.
  • the aerosol generator 10 is a device for converting a liquid precursor stored therein into an aerosol state using a piezo type ultrasonic vibrator 14, a storage tank 12 in which the liquid precursor is contained, Ultrasonic vibrator 14 and the storage tank 12 is installed below the storage tank 12 to generate the ultrasonic vibration to be transmitted to the storage tank 12 so that the liquid precursor contained in the storage tank 12 is converted into an aerosol. It is provided to protrude into the inside of the) is composed of a level sensor (or weight sensor) 16 for detecting the residual amount of the liquid precursor.
  • the ultrasonic vibrator 14 is operated when power is supplied from the outside to the ultrasonic oscillation and rectification circuit 15, as shown in Figure 3 to generate ultrasonic vibration
  • the level sensor 16 is a level sensor power supply And when power is supplied to the rectifier circuit 17 to detect the remaining amount of the liquid precursor in the storage tank 12.
  • the reason why the aerosol generator 10 converts the liquid precursor to the aerosol state is to ensure maximum heat capacity of the vaporizer 20 installed after the aerosol generator 10.
  • the aerosol type can be uniformly distributed inside the vaporizer when fed to the vaporizer in a semi-gas state, thereby preventing local cooling due to vaporization heat generated by the conventional bubble method, thereby ensuring maximum heat capacity. Can be.
  • the vaporizer 20 is a device for making the aerosol precursor delivered from the aerosol generator 10 into a gaseous state.
  • the vaporizer 20 is a heater in which a plurality of heaters 24 having an oblique plate-like structure inside are arranged in a zigzag cross-section as shown in FIGS. 4A and 4B in order to secure the maximum heat capacity of the vaporizer 20.
  • a heater block 22 is provided, and precursors fed in an aerosol state collide with the heater block 22 to obtain thermal energy and convert it into a gaseous state.
  • the heaters 24 of the heater block 22 can be used as long as any metal material capable of rising 350 °C or more, preferably nickel (Ni) made of a material containing tungsten (W) in the body desirable.
  • the vaporizer 20 is preferably provided with a temperature controller (not shown) that can maintain a uniform temperature of the heaters 24 of the heater block 22 to increase the instantaneous vaporization rate.
  • the temperature controller may adjust the temperature range inside the vaporizer 20 according to the temperature of the heater block 22 so that the vaporizer 20 can be utilized in various liquid precursors, preferably the vaporization range of 350 °C at room temperature
  • the temperature of the heater block 22 can be adjusted to suit the liquid precursor having.
  • the vaporizer 20 is formed to have a vaporization capacity of 0.3g / cm 3 maximum, it is possible to adjust the vaporization capacity according to the type of liquid precursor available.
  • the precursor storage means 30 is a device for storing the precursor vaporized by the vaporizer 20 at a constant pressure and temperature, it is formed in a sphere capable of securing a heat capacity to maintain a constant pressure (that is, a constant saturated vapor pressure) do.
  • the precursor storage means 30 is preferably provided with a pressure measuring means for measuring the pressure inside the precursor storage means 30 and a pressure adjusting means for adjusting the internal pressure of the precursor storage means 30, the precursor Temperature measuring means for measuring the temperature inside the storage means 30 and a temperature control means (for example, a heater) for adjusting the internal temperature of the precursor storage means 30 may be further provided.
  • the precursor storage means 30 has an auto purge function to clean the inside of the precursor storage means 30 in a gas purge manner in a vacuum state in order to prevent the liquid precursor residues therein.
  • the precursor storage means 30, the carrier / purge gas supply pipe is supplied to the carrier / purge gas (Carrier / Purge Gas) as shown in Figure 5 and the bypass to discharge the carrier / purge gas used for cleaning
  • a line is installed and a valve is installed in the carrier / purge gas supply pipe, the bypass line and the discharge line discharged to the chamber, respectively.
  • the automatic purging function does not occur when the thin film deposition process is in progress, and is controlled to proceed in an idle state where the thin film deposition process is not in progress, and the automatic purifying time is within 20 seconds so as not to affect the thin film deposition process. Controlled.
  • This automatic purifying function is controlled by a control means (not shown), and the control means is preferably configured to control functions such as the temperature controller, the pressure regulating means, the temperature regulating means and the like in addition to the automatic purifying function described above. .
  • Such a liquid precursor supplying device of the present invention is a liquid phase is stored between the canister 40, the canister 40 and the aerosol generator 10, the liquid precursor is stored is supplied to the aerosol generator 10 from the canister 40 Liquid Mass Flow Controller (LMFC or LFC) 50 to adjust the flow rate of the precursor, regulator is installed between the canister 40 and the liquid flow controller 50 to regulate the pressure of the liquid precursor (Regulator) 60, a plurality of regulating valves 62 respectively installed between the canister 40 and the regulator 60 and between the canister 40 and the liquid flow controller 50.
  • LMFC or LFC Liquid Mass Flow Controller
  • the liquid precursor supply apparatus according to the embodiment of the present invention having such a configuration is driven by the following method.
  • the control means determines whether the thin film deposition process is in progress, and when the idle state in which the thin film process is not in progress, the liquid precursor stored in the canister 40 is transferred to the aerosol generator 10 and the regulator 40.
  • the control valve 62 is preferably controlled by the control means may be manually operated by a person.
  • control valve 62 controls the operation of the regulator 60 to adjust the pressure of the liquid precursor delivered from the canister 40 to the aerosol generator 10,
  • the liquid flow controller 50 is controlled to adjust the flow rate of the liquid precursor delivered from the canister 40 to the aerosol generator 10.
  • the control means When the liquid precursor is supplied to the aerosol generator 10, the control means operates the ultrasonic vibrator 14 to convert the liquid precursor contained in the aerosol generator 10 into an aerosol by ultrasonic vibration.
  • the level sensor 16 detects the residual amount of the liquid precursor and transmits the residual amount of the liquid precursor to the control means, and the control means receives the aerosol generator 10 in accordance with the liquid precursor remaining amount detection signal transmitted from the level sensor 16.
  • the control valve 62, the regulator 60 and the liquid flow controller 50 are controlled such that the residual amount of liquid precursor is maintained at an appropriate level (eg, the amount needed for the thin film deposition process).
  • the control means may calculate the amount of aerosol generated per unit time through the liquid precursor remaining amount detection information transmitted from the level sensor 16 and provide the calculated amount to the user.
  • a precursor converted into an aerosol state in the aerosol generator 10 is transferred to the vaporizer 20, and precursors in the aerosol state transferred to the vaporizer 20 are installed in an oblique plate-shaped structure in the vaporizer 20. Impinge on block 22 to obtain thermal energy and convert it to a gaseous state. At this time, the heater block 22 is adjusted to maintain a uniform temperature by the temperature controller.
  • the control means is an insulating valve installed between the vaporizer 20 and the precursor storage means 30 so that the precursor converted to the gas state is stored in the precursor storage means 30 Open the isolation valve or shut-off valve (not shown).
  • the insulating valve is to prevent the precursor from being continuously supplied from the vaporizer 20 to the precursor storage means 30, and is locked until the precursor is completely converted into the gas state in the vaporizer 20. It is opened after the precursor has been completely converted to the gaseous state.
  • the present invention can prevent the gaseous precursor from being phase-converted into the liquid state.
  • the conventional bubble type liquid precursor supply apparatus when the liquid precursor moves to the vaporizer through heating after the injection, local cooling occurs by heat of vaporization, so that the gaseous precursor is phase-converted to the liquid state. Since only the precursor completely vaporized by the sufficient heat of vaporization in the silver vaporizer 20 is supplied to the precursor storage means 30, it is possible to prevent the gaseous precursor from phase-converting back to the liquid state.
  • control means performs an automatic purging function to prevent the liquid precursor from being present in the precursor storage means 30 before the precursor in the gaseous state is supplied into the precursor storage means 30. Clean the inside.
  • the automatic purifying function is performed for a time within 20 seconds during the idle period in which the thin film deposition process is not performed so as not to affect the thin film deposition process.
  • the pressure measuring means measures the pressure inside the precursor storage means 30, the measured pressure information is transmitted to the control means, by the pressure adjusting means
  • the control means controls the pressure regulating means such that the pressure in the precursor storage means 30 is maintained in an appropriate state.
  • the control means controls the temperature control means so that the inside of the precursor storage means 30 is maintained at an appropriate temperature by the temperature adjusting means. To control.
  • the supply valve 64 between the precursor storage means 30 and the chamber is opened to control the supply valve 64 so that the gaseous precursor stored in the precursor storage means 30 is supplied to the chamber. To control. At this time, the supply valve 64 remains locked by the control of the control means during the idle period during which the thin film deposition process does not proceed.
  • the precursor of the aerosol state is uniformly distributed in the vaporizer 20, and thus, local cooling by vaporization heat is performed.
  • the phenomenon can be prevented, and since the precursor of the aerosol state is made into a diagonal plate-shaped structure and collides with the heaters 24 arranged in a zigzag crossing, the gas is changed into a gas state, thereby ensuring maximum heat capacity inside the vaporizer 20. Therefore, it is possible to supply a liquid precursor capable of a thin film deposition process even at low temperature, and it is possible to reduce the production cost when manufacturing a semiconductor device and a display because it is not necessary to use a substrate used at a high temperature.

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

본 발명은 반도체 소자 및 디스플레이 소자 제작 시 저온에서도 박막 증착 공정이 가능한 액상 전구체 공급장치에 관한 것이다. 이를 위해, 본 발명은 초음파 진동을 이용하여 내부에 저장된 액상 전구체를 에어로졸 상태로 변환시키는 에어로졸 생성기; 상기 에어로졸 생성기로부터 전달된 에어로졸 상태의 전구체가 충돌하여 열에너지를 얻어 기체 상태로 변화되도록 내부에 사선 판형 구조를 갖는 복수 개의 히터들이 지그재그로 교차되게 배치된 히터 블록이 설치된 기화기; 및 상기 기화기에 의해 기체 상태로 변환된 전구체를 일정한 압력 및 온도로 저장하고, 박막 증착 공정 시 상기 기체 상태의 전구체를 챔버로 공급하는 전구체 저장수단을 포함한다.

Description

액상 전구체 공급장치
본 발명은 액상 전구체 공급장치에 관한 것으로, 특히 반도체 소자 및 디스플레이 소자 제작 시 저온에서도 박막 증착 공정이 가능한 액상 전구체 공급장치에 관한 것이다.
반도체 소자 및 디스플레이 제조 공정에서는 일반적으로 액상 전구체를 이용한 박막 증착 공정이 수행된다. 액상 전구체는 유기 금속 리간드(Metal-Organic Ligand)가 증착 대상 물질을 감싸고 있는 형태로 합성되며 순수한 박막 증착을 위해서는 열이나 플라즈마를 이용하여 유기 금속 리간드를 분해하는 공정이 적용된다.
예를 들어, 알루미나 증착에 가장 일반적으로 사용되는 트리메틸알루미늄(Trimethyl-Aluminum; TMA)는 Al 성분을 CH3 3개가 감싸고 있는 구조로 열, 플라즈마, 오존 등을 이용하여 CH3를 분해한다.
이러한, 액상 전구체를 공급하는 종래의 액상 전구체 공급장치는 액상 전구체가 담겨겨 있는 용기(저장탱크 또는 Canister)에 버블(Bubble)을 생성한 후 캐리어 가스(Carrier Gas)를 이용하여 공정 챔버(Chamber)에 액상 전구체를 공급한다.
그러나, 이와 같은 종래의 액상 전구체 공급장치는 액상 전구체를 기화시키기 위해 지속적으로 열을 가해주기 때문에 온도 상승에 의한 액상 전구체의 열화가 발생되고, 중금속(Heavy Metal) 증착 시 리간드가 완전히 분해되지 않아 증착된 박막에 폴리머(Polymer)가 잔유하는 문제가 발생하게 된다.
또한, 도 1과 같이 종래의 버블 방식을 이용하여 액상 전구체를 기화시킬 때에는 액상 전구체의 기화 시 발생되는 기화열에 의해 액상 전구체가 기화되는 기화기(Vaporizer) 내부에서 국부적인 냉각이 발생하게 되어 일부 기화된 액상 전구체가 다시 액상으로 변환되는 문제가 발생되며, 기화기 내부의 열용량을 최대한 사용하지 못하는 단점이 있다.
한편, 박막 증착 공정은 일반적으로 550℃ 이상의 고온에서 진행되기 때문에 고온에서 박막 증착 공정을 수행하기 위해서는 온도 상승을 위한 고온용 히터가 반드시 필요하고, 550℃ 이상의 고온에서도 변형이나 열 스트레스(Thermal Stress)가 없는 기판을 사용해야 되므로 반도체 소자 및 디스플레이 제조 시 생산 단가가 증가하는 문제가 발생하게 된다.
따라서, 본 발명은 상기와 같은 문제점을 해결하기 위한 것으로 350℃ 이하의 저온에서도 박막 증착 공정이 가능한 액상 전구체 공급장치를 제공하는 것을 목적으로 한다.
또한, 본 발명은 반도체 소자나 디스플레이 소자 제조 시 생산 단가를 줄이를 수 있는 액상 전구체 공급장치를 제공하는 것을 목적으로 한다.
상술한 목적을 이루기 위해, 본 발명의 실시 예에 따른 액상 전구체 공급장치는 초음파 진동을 이용하여 내부에 저장된 액상 전구체를 에어로졸 상태로 변환시키는 에어로졸 생성기; 상기 에어로졸 생성기로부터 전달된 에어로졸 상태의 전구체가 충돌하여 열에너지를 얻어 기체 상태로 변화되도록 내부에 사선 판형 구조를 갖는 복수 개의 히터들이 지그재그로 교차되게 배치된 히터 블록이 설치된 기화기; 및 상기 기화기에 의해 기체 상태로 변환된 전구체를 일정한 압력 및 온도로 저장하고, 박막 증착 공정 시 상기 기체 상태의 전구체를 챔버로 공급하는 전구체 저장수단을 포함한다.
본 발명에서 상기 에어로졸 생성기는, 내부에 액상 전구체가 담겨지는 저장탱크; 상기 저장탱크 하부에 설치되어 상기 저장탱크 내부에 담겨져 있는 액상 전구체가 에어로졸로 변환되도록 초음파 진동을 발생시키는 초음파 진동기; 및 상기 저장탱크의 내부로 돌출되게 설치되어 상기 저장탱크 내부의 액상 전구체 잔량을 검출하는 레벨 센서를 포함하는 것을 특징으로 한다.
본 발명에서 상기 히터는 니켈 몸체에 텅스텐이 함유된 재질로 구성되는 것을 특징으로 한다.
본 발명에서 상기 기화기는 순간 기화율을 높이기 위해 히터 블록의 온도를 균일하게 유지할 수 있는 온도 컨트롤러를 더 포함하는 것을 특징으로 한다.
본 발명에서 상기 온도 컨트롤러는 상온에서 350℃의 기화 범위를 갖는 액상 전구체에 적합하도록 히터 블록의 온도를 조절하는 것을 특징으로 한다.
본 발명에서 상기 기화기는 액상 전구체의 종류에 따라 기화 용량의 조절이 가능한 것을 특징으로 한다.
본 발명에서 상기 전구체 저장수단은 박막 증착 공정이 진행되지 않은 휴지 상태에서 내부에 액상 전구체 잔유물이 존재하는 것을 방지하기 위해 진공 상태에서 가스 퍼지 방식으로 내부를 세정하는 자동 정화 기능이 구비된 것을 특징으로 한다.
본 발명은 상기 기화기에서 전구체 저장수단으로 전구체가 지속적으로 공급되는 것을 차단하기 위해 상기 기화기와 전구체 저장수단 사이에 설치된 절연 밸브를 더 포함하는 것을 특징으로 한다.
본 발명에서 상기 절연 밸브는 전구체가 기화기 내에서 완전히 기체 상태로 변환된 후 개방되는 것을 특징으로 한다.
본 발명은 액상 전구체가 저장된 캐니스터; 상기 캐니스터와 에어로졸 생성기 사이에 설치되어 상기 캐니스터에서 에어로졸 생성기로 공급되는 액상 전구체의 유량을 조절하는 액체 유량 제어기; 액상 전구체의 압력을 조절하기 위해 상기 캐니스터와 액체 유량 제어기 사이에 설치된 레귤레이터; 상기 캐니스터와 레귤레이터 사이에 설치된 제1 조절 밸브; 상기 캐니스터와 액체 유량 제어기 사이에 설치된 제2 조절 밸브; 및 상기 제1 조절 밸브와 제2 조절 밸브 사이에 설치된 제3 조절 밸브를 더 포함하는 것을 특징으로 한다.
상술한 바와 같이 본 발명은 액상 전구체가 에어로졸 상태로 변환되어 기화기로 공급되기 때문에 에어로졸 상태의 전구체가 기화기 내부에 균일하게 분포되므로 기화열에 의한 국부 냉각 현상을 방지할 수 있고, 에어로졸 상태의 전구체가 사선 판형 구조로 이루어져 지그재그로 교차되게 배치된 히터들에 충돌되어 기체 상태로 변화되기 때문에 기화기 내부의 열 용량을 최대한 확보할 수 있어 저온에서도 박막 증착 공정이 가능한 액상 전구체를 공급할 수 있으며, 고온에서 사용되던 기판을 사용하지 않아도 되므로 반도체 소자 및 디스플레이 제조 시 생산 단가를 줄일 수 있다.
도 1은 종래의 버블 방식을 이용한 액상 전구체의 기화 방법을 나타내는 도면이다.
도 2는 본 발명의 실시 예에 따른 액상 전구체 공급장치를 나타내는 도면이다.
도 3은 도 2에 도시된 에어로졸 생성기를 나타내는 도면이다.
도 4a는 도 2에 도시된 기화기 내부에 설치되는 히터 블록의 전면도이다.
도 4b는 도 2에 도시된 기화기 내부에 설치되는 히터 블록의 측면도이다.
도 5는 도 2에 도시된 전구체 저장수단을 나타내는 도면이다.
이하, 첨부된 도면을 참조하여 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 본 발명을 용이하게 실시할 수 있는 바람직한 실시 예를 상세히 설명한다. 다만, 본 발명의 바람직한 실시 예에 대한 동작 원리를 상세하게 설명함에 있어 관련된 공지 기능 또는 구성에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명을 생략한다.
또한, 도면 전체에 걸쳐 유사한 기능 및 작용을 하는 부분에 대해서는 동일한 도면 부호를 사용한다.
덧붙여, 명세서 전체에서 어떤 부분이 다른 부분과 '연결'되어 있다고 할 때 이는 직접적으로 연결되어 있는 경우 뿐만 아니라 그 중간에 다른 구성요소를 사이에 두고 간접적으로 연결되어 있는 경우도 포함한다. 또한, 어떤 구성요소를 '포함'한다는 것은 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성요소를 더 포함할 수 있는 것을 의미한다.
도 2는 본 발명의 실시 예에 따른 액상 전구체 공급장치를 나타내는 도면이고, 도 3은 도 2에 도시된 에어로졸 생성기를 나타내는 도면이며, 도 4a는 도 2에 도시된 기화기 내부에 설치되는 히터 블록의 전면도이다. 또한, 도 4b는 도 2에 도시된 기화기 내부에 설치되는 히터 블록의 측면도이고, 도 5는 도 2에 도시된 전구체 저장수단을 나타내는 도면이다.
도 2 내지 도 5를 참조하면, 본 발명의 실시 예에 따른 액상 전구체 공급장치는 에어로졸 생성기(Aerosol Generator)(10), 기화기(Vaporizer)(20) 및 전구체 저장수단(Vapor Stroage)(30)으로 구성된다.
상기 에어로졸 생성기(10)는 내부에 저장된 액상 전구체를 피에조 타입의 초음파 진동기(Ultrasonic Vibrator)(14)를 이용하여 에어로졸 상태로 변환시키는 장치로, 내부에 액상 전구체가 담겨지는 저장탱크(12), 상기 저장탱크(12) 하부에 설치되어 저장탱크(12) 내부에 담겨져 있는 액상 전구체가 에어로졸로 변환되도록 초음파 진동을 발생시켜 상기 저장탱크(12)에 전달하는 초음파 진동기(14) 및 상기 저장탱크(12)의 내부로 돌출되게 설치되어 액상 전구체의 잔량을 검출하는 레벨 센서(Level Sensor)(또는 무게 센서)(16)로 구성된다.
이때, 상기 초음파 진동기(14)는 도 3에 도시된 바와 같이 초음파 발진 및 정류회로(15)에 외부로부터 전원이 공급될 때 동작되어 초음파 진동을 발생시키고, 상기 레벨 센서(16)는 레벨 센서 전원 및 정류회로(17)에 전원이 공급될 때 동작되어 상기 저장탱크(12) 내부의 액상 전구체 잔량을 검출한다.
한편, 상기 에어로졸 생성기(10)가 액상 전구체를 에어로졸 상태로 변환하는 이유는 에어로졸 생성기(10) 이후에 설치된 기화기(20)의 열용량을 최대한 확보하기 위해서이다. 다시 말해, 에어로졸 타입은 반 기체 상태로서 기화기에 피딩(Feeding) 시 기화기 내부에 균일하게 분포되는 게 가능하므로 종래의 버블 방식에서 발생되는 기화열에 의한 국부 냉각 현상을 방지할 수 있어 열용량을 최대한 확보할 수 있다.
상기 기화기(20)는 상기 에어로졸 생성기(10)로부터 전달된 에어로졸 상태의 전구체를 기체 상태로 만드는 장치이다. 이러한, 기화기(20)는 기화기(20) 내부의 열용량을 최대한 확보하기 위해 도 4a 및 도 4b와 같이 내부에 사선 판형 구조를 갖는 복수 개의 히터(Heater)(24)들이 지그재그로 교차되게 배치된 히터 블록(Heater Block)(22)이 설치되고, 이 히터 블록(22)에 에어로졸 상태로 피딩된 전구체가 충돌함으로써 열에너지를 얻어 기체 상태로 변환된다. 이때, 상기의 히터 블록(22)의 히터(24)들은 350℃ 이상의 상승 가능한 금속 재료면 어느 것이나 사용 가능하나, 바람직하게는 니켈(Ni) 몸체에 텅스텐(W)이 함유된 재질로 구성되는 게 바람직하다.
한편, 상기 기화기(20)는 순간 기화율을 높이기 위해 히터 블록(22)의 히터(24)들 온도를 균일하게 유지할 수 있는 온도 컨트롤러(도시하지 않음)가 구비되는 게 바람직하다. 이때, 온도 컨트롤러는 기화기(20)가 다양한 액상 전구체에 활용 가능하도록 기화기(20) 내부의 온도 범위를 히터 블록(22)의 온도에 맞추어 조절할 수 있고, 바람직하게는 상온에서 350℃의 기화 범위를 갖는 액상 전구체에 적합하도록 히터 블록(22)의 온도를 조절할 수 있다.
이러한, 기화기(20)는 최대 0.3g/㎤의 기화 용량을 갖도록 형성되나, 사용 가능한 액상 전구체의 종류에 따라 기화 용량의 조절이 가능하다.
상기 전구체 저장수단(30)은 일정한 압력 및 온도로 상기 기화기(20)에 의해 기화된 전구체를 저장하기 위한 장치로, 일정 압력(즉, 일정 포화 증기압)을 유지하기 위해 열용량 확보가 가능한 구형으로 형성된다.
이를 위해, 상기 전구체 저장수단(30)은 전구체 저장수단(30) 내부의 압력을 측정하는 압력 측정수단 및 상기 전구체 저장수단(30)의 내부 압력을 조절하는 압력 조절수단를 구비하는 게 바람직하며, 전구체 저장수단(30) 내부의 온도를 측정하는 온도 측정수단 및 전구체 저장수단(30)의 내부 온도를 조절하는 온도 조절수단(예를 들면, 히터)을 더 구비할 수도 있다.
또한, 상기 전구체 저장수단(30)은 내부에 액상 전구체 잔유물이 존재하는 것을 방지하기 위해 진공 상태에서 가스 퍼지 방식으로 전구체 저장수단(30) 내부를 세정하는 자동 정화(Auto Purge) 기능을 구비한다.
이를 위해, 상기 전구체 저장수단(30)에는 도 5에 도시된 바와 같이 캐리어/퍼지 가스(Carrier/Purge Gas)가 공급되는 캐리어/퍼지 가스 공급관과 세정 시 사용된 캐리어/퍼지 가스가 배출되는 바이패스 라인이 설치되고, 캐리어/퍼지 가스 공급관과 바이패스 라인 및 챔버로 배출되는 배출라인에는 각각 밸브가 설치된다.
한편, 자동 정화 기능은 박막 증착 공정이 진행 중일 때에는 일어나지 않고, 박막 증착 공정이 진행되지 않은 휴지(Idle) 상태에서 진행될 수 있도록 제어되는데, 박막 증착 공정에 영향을 주지 않도록 20초 이내로 자동 정화 시간이 제어된다. 이러한, 자동 정화 기능은 제어수단(도시하지 않음)에 의해 제어되며, 제어수단은 상술한 자동 정화 기능 외에도 상술한 온도 컨트롤러, 압력 조절수단, 온도 조절수단 등의 기능을 제어하도록 구성되는 게 바람직하다.
이와 같은 본 발명의 액상 전구체 공급장치는 액상 전구체가 저장된 캐니스터(40), 상기 캐니스터(40)와 에어로졸 생성기(10) 사이에 설치되어 상기 캐니스터(40)에서 상기 에어로졸 생성기(10)로 공급되는 액상 전구체의 유량을 조절하는 액체 유량 제어기(Liquid Mass Flow Controller; LMFC or LFC)(50), 상기 캐니스터(40)와 액체 유량 제어기(50) 사이에 설치되어 액상 전구체의 압력을 조절하는 레귤레이터(Regulator)(60), 상기 캐니스터(40)와 레귤레이터(60) 사이 및 상기 캐니스터(40)와 액체 유량 제어기(50) 사이에 각각 설치된 다수 개의 조절 밸브(62)를 더 포함하도록 구성된다.
이러한 구성으로 이루어진 본 발명의 실시 예에 따른 액상 전구체 공급장치는 다음과 같은 방법에 의해 구동된다.
먼저, 제어수단은 박막 증착 공정의 진행 여부를 판단한 후 박막 공정이 진행되지 않은 휴지 상태 시에는 상기 캐니스터(40) 내에 저장된 액상 전구체가 상기 에어로졸 생성기(10)로 전달되도록 상기 캐니스터(40)와 레귤레이터(60) 사이에 설치된 제1 조절 밸브, 상기 상기 캐니스터(40)와 액체 유량 제어기(50) 사이에 설치된 제2 조절 밸브, 및 제1 조절 밸브와 제2 조절 밸브 사이에 설치된 제3 조절 밸브가 개방되도록 제어한다. 이때, 상기 조절 밸브(62)들은 상기 제어수단에 의해 동작이 제어되는 게 바람직하나 사람에 의해 수동으로 작동될 수도 있다.
한편, 상기 조절 밸브(62)가 개방된 상태에서 상기 제어수단은 상기 레귤레이터(60)의 동작을 제어하여 상기 캐니스터(40)에서 상기 에어로졸 생성기(10)로 전달되는 액상 전구체의 압력을 조절시키고, 상기 액체 유량 제어기(50)를 제어하여 상기 캐니스터(40)에서 상기 에어로졸 생성기(10)로 전달되는 액상 전구체의 유량을 조절시킨다.
상기 에어로졸 생성기(10)에 액상 전구체가 공급되면 상기 제어수단은 상기 에어로졸 생성기(10) 내부에 담겨져 있는 액상 전구체가 초음파 진동에 의해 에어로졸로 변환되도록 상기 초음파 진동기(14)를 동작시킨다. 이때, 상기 레벨 센서(16)는 상기 액상 전구체의 잔량을 검출하여 상기 제어수단으로 전달하고, 상기 제어수단은 상기 레벨 센서(16)에서 전달된 액상 전구체 잔량 검출 신호에 따라 상기 에어로졸 생성기(10) 내에서 액상 전구체의 잔량이 적절한 수준(예를 들면, 박막 증착 공정에 필요한 양)으로 유지되도록 상기 조절 밸브(62), 레귤레이터(60) 및 액체 유량 제어기(50)를 제어한다.
그리고, 상기 제어수단은 상기 레벨 센서(16)로부터 전송되는 액상 전구체 잔량 검출 정보를 통해 단위 시간당 에어로졸 생성량을 계산하여 사용자에게 제공할 수도 있다.
한편, 상기 에어로졸 생성기(10)에서 에어로졸 상태로 변환된 전구체는 상기 기화기(20)로 전달되고, 상기 기화기(20)로 전달된 에어로졸 상태의 전구체들은 상기 기화기(20) 내에 사선 판형 구조로 설치된 히터 블록(22)에 충돌하여 열에너지를 얻어 기체 상태로 변환된다. 이때, 히터 블록(22)은 온도 컨트롤러에 의해 균일한 온도가 유지되도록 조절된다.
상기 기화기(20)에서 전구체가 기체 상태로 변환되면, 상기 제어수단은 기체 상태로 변환된 전구체가 전구체 저장수단(30)에 저장되도록 기화기(20)와 전구체 저장수단(30) 사이에 설치된 절연 밸브(isolation valve or shut-off valve, 도시하지 않음)를 개방시킨다. 이때, 절연 밸브는 상기 기화기(20)에서 전구체 저장수단(30)으로 전구체가 지속적으로 공급되는 것을 차단하기 위한 것으로, 전구체가 기화기(20) 내에서 완전히 기체 상태로 변환되기 전까지는 잠겨져 있다가 상기 전구체가 완전히 기체 상태로 변환된 이후 개방된다.
이로 인해, 본 발명은 기체 상태의 전구체가 액체 상태로 상변환되는 것을 방지할 수 있게 된다. 다시 말해, 종래의 버블 방식 액상 전구체 공급장치에서는 가열 후 직진 분사 방식을 통해 액상 전구체가 기화기로 이동할 때 기화열에 의해 국부적인 냉각이 발생하여 기체 상태의 전구체가 다시 액체 상태로 상변환되었으나, 본 발명은 기화기(20) 내에서 충분한 기화열에 의해 완전히 기화된 전구체만 전구체 저장수단(30)으로 공급되므로 기체 상태의 전구체가 다시 액체 상태로 상변환되는 것을 방지할 수 있다.
한편, 상기 제어수단은 상기 전구체 저장수단(30) 내에 기체 상태의 전구체가 공급되기 전에 상기 전구체 저장수단(30) 내에 액상 전구체가 존재하지 않도록 하기 위해 자동 정화 기능을 수행하여 전구체 저장수단(30) 내부를 세정시킨다. 이때, 자동 정화 기능은 박막 증착 공정에 영향을 주지 않도록 박막 증착 공정이 진행되지 않는 휴지 기간 중 20초 이내의 시간 동안 이루어진다.
상기 전구체 저장수단(30) 내에 기체 상태의 전구체가 저장되면, 압력 측정수단이 상기 전구체 저장수단(30) 내부의 압력을 측정하고, 측정된 압력 정보는 제어수단으로 전달되며, 압력 조절수단에 의해 상기 전구체 저장수단(30) 내의 압력이 적절한 상태가 유지되도록 제어수단이 압력 조절수단을 제어한다. 그리고, 온도 측정수단에 의해 전구체 저장수단(30) 내부의 온도 정보가 제어수단에 전달되면, 온도 조절수단에 의해 전구체 저장수단(30) 내부가 적절한 온도로 유지되도록 상기 제어수단이 온도 조절수단을 제어한다.
그리고, 박막 증착 공정 시에는 전구체 저장수단(30)과 챔버 사이의 공급 밸브(64)가 개방되어 전구체 저장수단(30) 내에 저장된 기체 상태의 전구체가 챔버로 공급되도록 제어수단이 공급 밸브(64)를 제어한다. 이때, 공급 밸브(64)는 박막 증착 공정이 진행되지 않는 휴기 기간 동안 제어수단의 제어에 의해 잠겨진 상태를 유지한다.
이와 같이 본 발명의 실시 예에 따른 액상 전구체 공급장치는 액상 전구체가 에어로졸 상태로 변환되어 기화기(20)로 공급되기 때문에 에어로졸 상태의 전구체가 기화기(20) 내부에 균일하게 분포되므로 기화열에 의한 국부 냉각 현상을 방지할 수 있고, 에어로졸 상태의 전구체가 사선 판형 구조로 이루어져 지그재그로 교차되게 배치된 히터(24)들에 충돌되어 기체 상태로 변화되기 때문에 기화기(20) 내부의 열 용량을 최대한 확보할 수 있어 저온에서도 박막 증착 공정이 가능한 액상 전구체를 공급할 수 있으며, 고온에서 사용되던 기판을 사용하지 않아도 되므로 반도체 소자 및 디스플레이 제조 시 생산 단가를 줄일 수 있게 된다.
이상에서 설명한 바와 같이, 본 발명의 상세한 설명에서는 본 발명의 바람직한 실시 예에 관해서 설명하였으나, 이는 본 발명의 가장 양호한 실시 예를 예시적으로 설명한 것이지 본 발명을 한정하는 것은 아니다. 또한, 본 발명이 속하는 기술분야의 통상의 지식을 가진 자라면 누구나 본 발명의 기술사상의 범주를 벗어나지 않는 범위 내에서 다양한 변형 및 모방이 가능함은 물론이다. 따라서, 본 발명의 권리범위는 설명된 실시 예에 국한되어 정해져서는 안되며, 후술하는 청구범위 뿐만 아니라 이와 균등한 것들에 의해 정해져야 한다.
[부호의 설명]
10 : 에어로졸 생성기 12 : 저장탱크
14 : 초음파 진동기 16 : 레벨 센서
20 : 기화기 22 : 히터 블록
24 : 히터 30 : 전구체 저장수단
40 : 캐니스터 50 : 액체 유량 제어기
60 : 레귤레이터 62 : 조절 밸브
64 : 공급 밸브

Claims (10)

  1. 초음파 진동을 이용하여 내부에 저장된 액상 전구체를 에어로졸 상태로 변환시키는 에어로졸 생성기;
    상기 에어로졸 생성기로부터 전달된 에어로졸 상태의 전구체가 충돌하여 열에너지를 얻어 기체 상태로 변화되도록 내부에 사선 판형 구조를 갖는 복수 개의 히터들이 지그재그로 교차되게 배치된 히터 블록이 설치된 기화기; 및
    상기 기화기에 의해 기체 상태로 변환된 전구체를 일정한 압력 및 온도로 저장하고, 박막 증착 공정 시 상기 기체 상태의 전구체를 챔버로 공급하는 전구체 저장수단을 포함하는 것을 특징으로 하는 액상 전구체 공급장치.
  2. 청구항 1에 있어서,
    상기 에어로졸 생성기는,
    내부에 액상 전구체가 담겨지는 저장탱크;
    상기 저장탱크 하부에 설치되어 상기 저장탱크 내부에 담겨져 있는 액상 전구체가 에어로졸로 변환되도록 초음파 진동을 발생시키는 초음파 진동기; 및
    상기 저장탱크의 내부로 돌출되게 설치되어 상기 저장탱크 내부의 액상 전구체 잔량을 검출하는 레벨 센서를 포함하는 것을 특징으로 하는 액상 전구체 공급장치.
  3. 청구항 1에 있어서,
    상기 히터는 니켈 몸체에 텅스텐이 함유된 재질로 구성되는 것을 특징으로 하는 액상 전구체 공급장치.
  4. 청구항 1에 있어서,
    상기 기화기는 순간 기화율을 높이기 위해 히터 블록의 온도를 균일하게 유지할 수 있는 온도 컨트롤러를 더 포함하는 것을 특징으로 하는 액상 전구체 공급장치.
  5. 청구항 4에 있어서,
    상기 온도 컨트롤러는 상온에서 350℃의 기화 범위를 갖는 액상 전구체에 적합하도록 히터 블록의 온도를 조절하는 것을 특징으로 하는 액상 전구체 공급장치.
  6. 청구항 1에 있어서,
    상기 기화기는 액상 전구체의 종류에 따라 기화 용량의 조절이 가능한 것을 특징으로 하는 액상 전구체 공급장치.
  7. 청구항 1에 있어서,
    상기 전구체 저장수단은 박막 증착 공정이 진행되지 않은 휴지 상태에서 내부에 액상 전구체 잔유물이 존재하는 것을 방지하기 위해 진공 상태에서 가스 퍼지 방식으로 내부를 세정하는 자동 정화 기능이 구비된 것을 특징으로 하는 액상 전구체 공급장치.
  8. 청구항 1에 있어서,
    상기 기화기에서 전구체 저장수단으로 전구체가 지속적으로 공급되는 것을 차단하기 위해 상기 기화기와 전구체 저장수단 사이에 설치된 절연 밸브를 더 포함하는 것을 특징으로 하는 액상 전구체 공급장치.
  9. 청구항 8에 있어서,
    상기 절연 밸브는 전구체가 기화기 내에서 완전히 기체 상태로 변환된 후 개방되는 것을 특징으로 하는 액상 전구체 공급장치.
  10. 청구항 1에 있어서,
    액상 전구체가 저장된 캐니스터;
    상기 캐니스터와 에어로졸 생성기 사이에 설치되어 상기 캐니스터에서 에어로졸 생성기로 공급되는 액상 전구체의 유량을 조절하는 액체 유량 제어기;
    액상 전구체의 압력을 조절하기 위해 상기 캐니스터와 액체 유량 제어기 사이에 설치된 레귤레이터;
    상기 캐니스터와 레귤레이터 사이에 설치된 제1 조절 밸브;
    상기 캐니스터와 액체 유량 제어기 사이에 설치된 제2 조절 밸브; 및
    상기 제1 조절 밸브와 제2 조절 밸브 사이에 설치된 제3 조절 밸브를 더 포함하는 것을 특징으로 하는 액상 전구체 공급장치.
PCT/KR2014/013035 2014-05-09 2014-12-30 액상 전구체 공급장치 WO2015170813A1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US14/760,227 US20170056912A1 (en) 2014-05-09 2014-12-30 Liquid precursor delivery system
JP2016518288A JP6014292B2 (ja) 2014-05-09 2014-12-30 液状前駆体供給装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2014-0055770 2014-05-09
KR1020140055770A KR101585054B1 (ko) 2014-05-09 2014-05-09 액상 전구체 공급장치

Publications (1)

Publication Number Publication Date
WO2015170813A1 true WO2015170813A1 (ko) 2015-11-12

Family

ID=54392647

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2014/013035 WO2015170813A1 (ko) 2014-05-09 2014-12-30 액상 전구체 공급장치

Country Status (4)

Country Link
US (1) US20170056912A1 (ko)
JP (1) JP6014292B2 (ko)
KR (1) KR101585054B1 (ko)
WO (1) WO2015170813A1 (ko)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA208741S (en) 2019-08-01 2022-04-07 Nicoventures Trading Ltd Aerosol generating device
US11459654B2 (en) * 2020-11-19 2022-10-04 Eugenus, Inc. Liquid precursor injection for thin film deposition
USD985187S1 (en) 2021-01-08 2023-05-02 Nicoventures Trading Limited Aerosol generator
JP2024524401A (ja) * 2021-07-01 2024-07-05 アプライド マテリアルズ インコーポレイテッド 前駆体を処理チャンバに供給するためのシステムおよび方法
USD984730S1 (en) 2021-07-08 2023-04-25 Nicoventures Trading Limited Aerosol generator

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07310185A (ja) * 1994-05-12 1995-11-28 Hitachi Ltd Cvdガス供給装置
JPH10140356A (ja) * 1996-11-12 1998-05-26 Matsushita Electric Ind Co Ltd 気化装置及びcvd装置
JP2006299335A (ja) * 2005-04-19 2006-11-02 Fujimori Gijutsu Kenkyusho:Kk 成膜方法及びその方法に使用する成膜装置並びに気化装置
JP2009246173A (ja) * 2008-03-31 2009-10-22 Tokyo Electron Ltd 気化器およびそれを用いた成膜装置
JP2010067906A (ja) * 2008-09-12 2010-03-25 Tokyo Electron Ltd 気化器及びそれを用いた成膜装置

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5316579A (en) * 1988-12-27 1994-05-31 Symetrix Corporation Apparatus for forming a thin film with a mist forming means
JP2614338B2 (ja) * 1990-01-11 1997-05-28 株式会社東芝 液体ソース容器
DE4124018C1 (ko) * 1991-07-19 1992-11-19 Leybold Ag, 6450 Hanau, De
US5465766A (en) * 1993-04-28 1995-11-14 Advanced Delivery & Chemical Systems, Inc. Chemical refill system for high purity chemicals
US5809909A (en) * 1995-09-18 1998-09-22 Amko Incinerator Corp Method and apparatus for removing particulate material from a gas
US6143063A (en) * 1996-03-04 2000-11-07 Symetrix Corporation Misted precursor deposition apparatus and method with improved mist and mist flow
US6098964A (en) * 1997-09-12 2000-08-08 Applied Materials, Inc. Method and apparatus for monitoring the condition of a vaporizer for generating liquid chemical vapor
FR2800754B1 (fr) * 1999-11-08 2003-05-09 Joint Industrial Processors For Electronics Dispositif evaporateur d'une installation de depot chimique en phase vapeur
JP2001308082A (ja) * 2000-04-20 2001-11-02 Nec Corp 液体有機原料の気化方法及び絶縁膜の成長方法
TW200300701A (en) * 2001-11-30 2003-06-16 Asml Us Inc High flow rate bubbler system and method
JP2004111787A (ja) * 2002-09-20 2004-04-08 Hitachi Kokusai Electric Inc 基板処理装置
US7009215B2 (en) * 2003-10-24 2006-03-07 General Electric Company Group III-nitride based resonant cavity light emitting devices fabricated on single crystal gallium nitride substrates
WO2006098792A2 (en) * 2004-12-30 2006-09-21 Msp Corporation High accuracy vapor generation and delivery for thin film deposition
KR101480971B1 (ko) * 2006-10-10 2015-01-09 에이에스엠 아메리카, 인코포레이티드 전구체 전달 시스템
JP2011009379A (ja) * 2009-06-24 2011-01-13 Tokyo Electron Ltd 気化器
TWI480418B (zh) * 2012-01-16 2015-04-11 Air Prod & Chem 用於高流量真空氣泡器容器的防濺器

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07310185A (ja) * 1994-05-12 1995-11-28 Hitachi Ltd Cvdガス供給装置
JPH10140356A (ja) * 1996-11-12 1998-05-26 Matsushita Electric Ind Co Ltd 気化装置及びcvd装置
JP2006299335A (ja) * 2005-04-19 2006-11-02 Fujimori Gijutsu Kenkyusho:Kk 成膜方法及びその方法に使用する成膜装置並びに気化装置
JP2009246173A (ja) * 2008-03-31 2009-10-22 Tokyo Electron Ltd 気化器およびそれを用いた成膜装置
JP2010067906A (ja) * 2008-09-12 2010-03-25 Tokyo Electron Ltd 気化器及びそれを用いた成膜装置

Also Published As

Publication number Publication date
KR20150128417A (ko) 2015-11-18
US20170056912A1 (en) 2017-03-02
JP6014292B2 (ja) 2016-10-25
KR101585054B1 (ko) 2016-01-14
JP2016521318A (ja) 2016-07-21

Similar Documents

Publication Publication Date Title
WO2015170813A1 (ko) 액상 전구체 공급장치
KR101846763B1 (ko) 증기 전달 시스템
US20040079286A1 (en) Method and apparatus for the pulse-wise supply of a vaporized liquid reactant
US5160542A (en) Apparatus for vaporizing and supplying organometal compounds
CN109545708A (zh) 用于将气相反应物分配至反应腔室的设备和相关方法
US20120011943A1 (en) Liquid sample heating vaporizer
US20110197816A1 (en) Method for vaporizing liquid material capable of vaporizing liquid material at low temperature and vaporizer using the same
WO2004040630A1 (ja) 半導体デバイスの製造方法及び基板処理装置
KR20080098448A (ko) 베이퍼라이저 전달 앰플
KR20080106544A (ko) 직접 액체 분사 장치
KR101949546B1 (ko) 액체의 질량을 측정하고 유체를 수송하는 장치
US10047436B2 (en) Raw material supply method, raw material supply apparatus, and storage medium
JP2013115208A (ja) 気化原料供給装置、これを備える基板処理装置、及び気化原料供給方法
KR101244096B1 (ko) 기화기 및 성막 장치
WO2012176965A1 (en) Deposition apparatus and method of forming thin film
CN110965050A (zh) 半导体设备及其供气系统
JP2010056565A (ja) 薄膜製造装置
JPH09115836A (ja) 薄膜蒸着装置
CN101255551B (zh) 气化器和半导体处理装置
JP2767284B2 (ja) 液状半導体形成材料気化供給装置
KR20080078142A (ko) 연료전지용 가습장치
TW202338141A (zh) 前驅物遞送系統
KR100583542B1 (ko) 박막증착장치
JP4404674B2 (ja) 薄膜製造装置
JP2002214119A (ja) 塩水噴霧試験装置

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2016518288

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14760227

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14891234

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14891234

Country of ref document: EP

Kind code of ref document: A1