WO2015170648A1 - 摺動部材及びピストンリング - Google Patents

摺動部材及びピストンリング Download PDF

Info

Publication number
WO2015170648A1
WO2015170648A1 PCT/JP2015/062857 JP2015062857W WO2015170648A1 WO 2015170648 A1 WO2015170648 A1 WO 2015170648A1 JP 2015062857 W JP2015062857 W JP 2015062857W WO 2015170648 A1 WO2015170648 A1 WO 2015170648A1
Authority
WO
WIPO (PCT)
Prior art keywords
phase
thermal spray
spray coating
sliding surface
molybdenum
Prior art date
Application number
PCT/JP2015/062857
Other languages
English (en)
French (fr)
Inventor
和彦 廣田
修一 加村
Original Assignee
株式会社リケン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社リケン filed Critical 株式会社リケン
Priority to KR1020167031843A priority Critical patent/KR101839718B1/ko
Priority to CN201580023774.9A priority patent/CN106255774B/zh
Priority to DK15789908.9T priority patent/DK3141628T3/en
Priority to EP15789908.9A priority patent/EP3141628B1/en
Publication of WO2015170648A1 publication Critical patent/WO2015170648A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/04Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
    • C23C4/06Metallic material
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16JPISTONS; CYLINDERS; SEALINGS
    • F16J9/00Piston-rings, e.g. non-metallic piston-rings, seats therefor; Ring sealings of similar construction
    • F16J9/26Piston-rings, e.g. non-metallic piston-rings, seats therefor; Ring sealings of similar construction characterised by the use of particular materials
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C30/00Coating with metallic material characterised only by the composition of the metallic material, i.e. not characterised by the coating process
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/04Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
    • C23C4/06Metallic material
    • C23C4/08Metallic material containing only metal elements
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/04Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
    • C23C4/10Oxides, borides, carbides, nitrides or silicides; Mixtures thereof
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/12Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the method of spraying
    • C23C4/129Flame spraying
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/12Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the method of spraying
    • C23C4/134Plasma spraying

Definitions

  • the present invention relates to a sliding member and a piston ring.
  • JP 2007-314839 A JP-A-2005-155711 JP 2012-046821 A Japanese Patent Application Laid-Open No. 3-172681
  • the ceramic component in the thermal spray coating increases, the amount of wear on the inner surface of the engine liner that slides on the outer peripheral surface of the piston ring increases.
  • a member that slides with the outer peripheral surface of the piston ring, such as the inner surface of the liner of the engine, is referred to as a “partner material”.
  • the sprayed coating Since the sprayed coating is formed by hitting the semi-molten particles against the base material, it has a structure in which a plurality of particles having different compositions are crushed and overlapped. For this reason, when the thermal spray coating is slid, both the soft metal component and the hard ceramic component appear on the sliding surface of the thermal spray coating. When the hard component and the soft component are slid, since the soft component is more easily worn, the sliding surface of the sprayed coating tends to be rougher than that of the homogeneous material. In addition, when the thermal spraying conditions are not appropriate, a part of the structure easily falls off the sliding surface, and the sliding surface becomes rough, or abrasive wear occurs due to the dropped particles.
  • An object of the present invention is to provide a sliding member and a piston ring that have excellent wear resistance and can suppress wear of a mating member.
  • a sliding member includes a base material and a thermal spray coating formed on the sliding surface of the base material, and the thermal spray coating includes a molybdenum phase, a chromium carbide phase, and a nickel chromium alloy phase.
  • Molybdenum phase, chromium carbide phase and nickel chromium alloy phase are deposited on the sliding surface of the base material, and the average value of the thickness of the chromium carbide phase in the direction perpendicular to the sliding surface of the base material is T CrC Yes , when the average value of the molybdenum phase thickness in the direction perpendicular to the sliding surface of the substrate is T Mo , T CrC / T Mo is 0.46 to 1.00.
  • T Mo may be 1.4 ⁇ 4.2 ⁇ m
  • T CrC can be a 1.1 ⁇ 2.2 .mu.m.
  • the pores are formed in the sprayed coating, and the molybdenum phase, the chromium carbide phase, the nickel chromium alloy phase and the pores overlap on the sliding surface.
  • the sum of the number of molybdenum phases, chromium carbide phases, nickel chromium alloy phases and pores superimposed on each other is 48 / (100 ⁇ m) to 71 / (100 ⁇ m) per unit thickness of the sprayed coating in the direction perpendicular to the sliding surface. ).
  • the content of molybdenum atoms in the thermal spray coating may be 37 to 51% by mass, and the content of chromium atoms in the thermal spray coating is 19 to 32% by mass.
  • the content of nickel atoms in the thermal spray coating may be 6 to 13% by mass, and the content of carbon atoms in the thermal spray coating may be 10 to 14% by mass.
  • the average hardness of the sprayed coating may be 400 to 900 HV0.1.
  • a piston ring according to one aspect of the present invention includes the sliding member.
  • FIG. 1 (that is, FIG. 1a) is a perspective view of a sliding member (piston ring) according to an embodiment of the present invention
  • FIG. 1b (that is, FIG. 1b) in FIG. 2 is a cross-sectional view of the sliding member 1a in the bb direction.
  • FIG. FIG. 2 is a diagram showing the internal structure of the thermal spray coating in the sliding member according to one embodiment of the present invention, and is a schematic view of the cross section of the thermal spray coating in the direction perpendicular to the sliding surface of the sliding member.
  • FIG. 3 is a side view of the wear amount measuring apparatus.
  • FIG. 4 is a reflected electron image of a part of the cross section (cross section perpendicular to the sliding surface of the base material) of the thermal spray coating of the sliding member of Example 1 of the present invention.
  • FIG. 5 is another partial reflected electron image of a cross section (cross section perpendicular to the sliding surface of the base material) of the thermal spray coating of the sliding member of Example 1.
  • FIG. 6 is a reflected electron image of a part of the cross section (cross section perpendicular to the sliding surface of the substrate) of the thermal spray coating of the sliding member of Example 2 of the present invention.
  • FIG. 7 is another reflected electron image of a cross section (cross section perpendicular to the sliding surface of the substrate) of the thermal spray coating of the sliding member of Example 2 of the present invention.
  • FIG. 8 is a reflected electron image of a part of the cross section (cross section perpendicular to the sliding surface of the base material) of the thermal spray coating of the sliding member of Example 3 of the present invention.
  • FIG. 9 is another reflected electron image of a cross section (cross section perpendicular to the sliding surface of the base material) of the thermal spray coating of the sliding member of Example 3 of the present invention.
  • FIG. 10 is a reflected electron image of a part of a cross section (cross section perpendicular to the sliding surface of the base material) of the thermal spray coating of the sliding member of Comparative Example 1.
  • FIG. 11 is another reflected electron image of a cross section (cross section perpendicular to the sliding surface of the base material) of the thermal spray coating of the sliding member of Comparative Example 1.
  • FIG. 12 is a partial reflected electron image of a cross section (cross section perpendicular to the sliding surface of the base material) of the thermal spray coating of the sliding member of Comparative Example 2.
  • 13 is another reflected electron image of a cross section (cross section perpendicular to the sliding surface of the base material) of the thermal spray coating of the sliding member of Comparative Example 2.
  • FIG. FIG. 14 is a reflected electron image of a part of a cross section (cross section perpendicular to the sliding surface of the base material) of the thermal spray coating of the sliding member of Comparative Example 3.
  • FIG. 15 is another partial reflected electron image of the cross section of the thermal spray coating of the sliding member of Comparative Example 3 (cross section perpendicular to the sliding surface of the base material).
  • FIG. 16 is a reflected electron image of a part of a cross section (cross section perpendicular to the sliding surface of the base material) of the thermal spray coating of the sliding member of Comparative Example 4.
  • FIG. 17 is another partial reflected electron image of the cross section of the thermal spray coating of the sliding member of Comparative Example 4 (cross section perpendicular to the sliding surface of the base material).
  • the sliding member according to the present embodiment may constitute part or all of a piston ring, a cylinder, a vane, a lifter, and the like, for example.
  • the sliding member 1 is a piston ring is demonstrated.
  • the piston ring 1 of the present embodiment includes, for example, an annular base material 2 and a thermal spray coating 10 formed on a sliding surface 2 a located on the outer periphery of the base material 2.
  • the base material 2 is made of, for example, cast iron material or steel material.
  • the shape of the base material 2 is appropriately selected according to the use of the sliding member, and is not particularly limited.
  • the outer diameter of the base material 2 may be, for example, 200 mm to 980 mm.
  • the inner diameter of the substrate 2 may be 190 mm to 920 mm, for example.
  • the thickness of the substrate 2 may be about 5 mm to 25 mm, for example.
  • the outer peripheral surface of the base material 2 is a surface that slides with a liner that is a counterpart material when the piston ring 1 is inserted into a cylinder of an engine.
  • irregularities with a roughness of about 1 to 20 ⁇ m may be formed on the outer peripheral surface of the base material 2 in advance by sandblasting or the like.
  • stress acts on the particles as the melted particles solidify / shrink, and the spraying effect is caused by the anchoring effect resulting from the stress.
  • the film 10 is easily bonded firmly to the substrate 2.
  • the thermal spray coating 10 includes a molybdenum phase 11, a chromium carbide phase 12, and a nickel chromium alloy phase 13.
  • the thermal spray coating 10 may include a plurality of molybdenum phases 11, a plurality of chromium carbide phases 12, and a plurality of nickel chromium alloy phases 13.
  • the thermal spray coating 10 may be composed of a molybdenum phase 11, a chromium carbide phase 12 and a nickel chromium alloy phase 13.
  • the molybdenum phase 11 contributes to the seizure resistance of the sprayed coating 10.
  • the chromium carbide phase 12 contributes to the wear resistance of the thermal spray coating 10.
  • At least a part of the nickel-chromium alloy phase 13 is interposed between the molybdenum phase 11 and the chromium carbide phase 12 and has a function of joining both phases.
  • the molybdenum phase 11, the chromium carbide phase 12 and the nickel chromium alloy phase 13 are deposited on the sliding surface 2 a of the substrate 2.
  • the molybdenum phase 11, the chromium carbide phase 12, and the nickel chromium alloy phase 13 may be layers extending in a direction parallel to the sliding surface 2a.
  • the molybdenum phase 11, the chromium carbide phase 12, and the nickel chromium alloy phase 13 may be a molybdenum layer, a chromium carbide layer, and a nickel chromium alloy layer, respectively.
  • a t CrC thickness of the chromium carbide phase 12 in the vertical direction Y relative to the sliding surface 2a of the substrate 2 the average value of t CrC is the T CrC, the thickness of the molybdenum phase 11 in the direction Y
  • T CrC / T Mo is from 0.46 to 1.00.
  • T CrC / TMo is 0.46 to 1.00 means that the difference between the average thickness T CrC of the chromium carbide phase 12 and the average thickness T Mo of the molybdenum phase 11 is small.
  • the chromium carbide phase 12 is harder than the molybdenum phase 11 and is hard to wear out. In other words, the molybdenum phase 11 is softer than the chromium carbide phase 12 and easily worn out.
  • T CrC / T when Mo is outside the range of 0.46 to 1.00 easily molybdenum phase 11 of soft is worn in the sliding surface of the thermally sprayed film 10, chromium carbide phase 12 of rigid thermal sprayed coating 10 It is easy to remain exposed on the sliding surface. That is, if the difference between the T CrC and T Mo is large, easily sliding surface of the sprayed film 10 is worn, the sliding surface is roughened easily.
  • the counterpart material is easily worn by sliding with the chromium carbide phase 12. Further, when the chromium carbide phase 12 is exposed on the sliding surface of the thermal spray coating 10, the chromium carbide phase 12 is easily removed from the sliding surface of the thermal spray coating 10, and the dropped chromium carbide phase 12 causes abrasive wear. On the other hand, in the present embodiment, the above phenomenon that occurs when the difference between T CrC and T Mo is large is suppressed.
  • T CrC / TMo is 0.46 to 1.00, and the difference between T CrC and T Mo is small, so that the sliding surface of the sprayed coating 10 is uniform and accompanies sliding. Wear and roughening of the sliding surface of the thermal spray coating 10 are suppressed, and wear of the counterpart material is also suppressed.
  • T CrC / T Mo is 0.50 to 1.00, 0.51 to 1.00, 0.60 to 1.00, 0.65 to 1.00, 0.50 to 0.00. 80, 0.51 to 0.80, 0.60 to 0.80, 0.65 to 0.80, 0.50 to 0.76, 0.51 to 0.76, 0.60 to 0.76, Alternatively, it may be 0.65 to 0.76.
  • the average thickness T Mo of the molybdenum phase 11 may be 1.4 to 4.2 ⁇ m, or 2.0 to 4.0 ⁇ m. If the average thickness T Mo molybdenum phase 11 is less than 4.2 .mu.m, there is a tendency that the sliding surface is likely to be smooth. For the same reason, T Mo may be 2.4 to 3.0 ⁇ m.
  • the average thickness T CrC of the chromium carbide phase 12 may be 1.1 to 2.2 ⁇ m, or 1.0 to 2.0 ⁇ m.
  • T CrC When T CrC is 1.0 ⁇ m or more, the wear resistance of the chromium carbide phase is sufficiently exhibited, and the amount of wear of the sprayed coating tends to be reduced.
  • T CrC of the chromium carbide phase 12 When the average thickness T CrC of the chromium carbide phase 12 is 2.2 ⁇ m or less, the chromium carbide phase is difficult to protrude from the sliding surface during sliding, and the sliding surface after sliding becomes smooth. In addition, the wear amount of the mating material tends to decrease. For the same reason, T CrC may be 1.4 to 1.9 ⁇ m.
  • the average thickness T NiCr of the nickel chromium alloy phase 13 may be 0.5 to 1.0 ⁇ m.
  • the average thickness T NiCr of the nickel chromium alloy phase 13 may be 0.8 to 0.9 ⁇ m.
  • a plurality of pores 14 may be formed in the sprayed coating 10.
  • the pores 14 may be formed in the molybdenum phase 11 of the thermal spray coating 10.
  • the pores 14 may be formed in the chromium carbide phase 12 of the thermal spray coating 10.
  • the pores 14 may be formed in the nickel chromium alloy phase 13 of the thermal spray coating 10.
  • the pores 14 may be formed between two or three phases of the molybdenum phase 11, the chromium carbide phase 12 and the nickel chromium alloy phase 13.
  • the width D of the pores 14 may be 0.4 to 0.8 ⁇ m.
  • the width D of the pores 14 is an average value of the widths (inner diameters) of the pores 14 in the direction Y perpendicular to the sliding surface 2a of the substrate 2.
  • the width D of the pores 14 may be 0.5 to 0.6 ⁇ m.
  • the molybdenum phase 11, the chromium carbide phase 12, the nickel chromium alloy phase 13 and the pores 14 may overlap on the sliding surface 2a. That is, the molybdenum phase 11, the chromium carbide phase 12, the nickel chromium alloy phase 13 and the pores 14 may overlap along the direction Y perpendicular to the sliding surface 2a.
  • the average number of phases of the molybdenum phase 11 that overlaps on the sliding surface 2a is N Mo (unit: 1/100 ⁇ m) per unit thickness of the thermal spray coating 10, and the chromium carbide phase 12 that overlaps on the sliding surface 2a
  • the average number of phases is N CrC (unit: 1/100 ⁇ m) per unit thickness of the thermal spray coating 10, and the average phase number of the nickel chromium alloy phase 13 overlapped on the sliding surface 2 a is the unit thickness of the thermal spray coating 10.
  • N Mo + N CrC + N NiCr + N P may be 48 / (100 ⁇ m) to 71 / (100 ⁇ m).
  • N Mo + N CrC + N NiCr + N P may be 51.6 / (100 ⁇ m) to 64.6 / (100 ⁇ m).
  • the average phase number N Mo of the molybdenum phase 11 may be, for example, 16.1 / (100 ⁇ m) to 19.9 / (100 ⁇ m), or 17.2 / (100 ⁇ m) to 18.7 / (100 ⁇ m).
  • the average phase number CrCr of the chromium carbide phase 12 may be, for example, 15.1 / (100 ⁇ m) to 21.6 / (100 ⁇ m), or 16.0 / (100 ⁇ m) to 21.2 / (100 ⁇ m). .
  • the average phase number N NiCr of the nickel chromium alloy phase 13 is, for example, 11.6 / (100 ⁇ m) to 29.9 / (100 ⁇ m), or 15.4 / (100 ⁇ m) to 24.4 / (100 ⁇ m). Good.
  • Mean value N P of the number of pores 14 may be, for example, 0.3 / (100 ⁇ m) ⁇ 7.9 / (100 ⁇ m), or 0.6 / (100 ⁇ m) ⁇ 3.6 / (100 ⁇ m).
  • the content of molybdenum atoms in the sprayed coating 10 may be 37 to 51 mass%, or 40.64 to 48.68 mass%.
  • the content of chromium atoms in the sprayed coating 10 may be 19 to 32% by mass, or 21.90 to 29.16% by mass.
  • the content of nickel atoms in the sprayed coating 10 may be 6 to 13% by mass, or 7.98 to 11.89% by mass.
  • the content of carbon atoms in the sprayed coating 10 may be 10 to 14% by mass, or 11 to 14% by mass.
  • the thickness of the sprayed coating 10 may be 50 to 600 ⁇ m, or 200 to 450 ⁇ m.
  • the thickness of the thermal spray coating 10 is 50 ⁇ m or more, a sufficient thickness can be left even after the surface is processed to control the roughness of the thermal spray coating 10, and the durability of the thermal spray coating 10 is maintained. It tends to be easy.
  • the thickness of the sprayed coating 10 is 600 ⁇ m or less, peeling of the sprayed coating 10 from the substrate 2 tends to be suppressed.
  • the Vickers hardness of the sprayed coating 10 may be 400 to 900 HV0.1, 450 to 850 HV0.1, or 500 to 800 HV0.1.
  • the Vickers hardness of the thermal spray coating 10 is 400HV0.1 or more, the wear amount of the thermal spray coating tends to be reduced.
  • the Vickers hardness of the thermal spray coating 10 is 900 HV 0.1 or less, the wear amount of the counterpart material tends to be reduced.
  • the sliding member 1 is manufactured by spraying the powder composition (particles) on the sliding surface 2 a of the base material 2 to form the sprayed coating 10 on the sliding surface 2 a of the base material 2.
  • the powder composition includes, for example, molybdenum particles, chromium carbide particles, and nickel chromium alloy particles.
  • the powder composition may consist only of molybdenum particles, chromium carbide particles, and nickel chromium alloy particles.
  • the content of molybdenum particles in the powder composition may be 40 to 60% by mass, or 45 to 55% by mass with respect to the total mass of the powder composition.
  • the powder composition contains molybdenum particles, it is easy to obtain the thermal spray coating 10 having excellent wear resistance and seizure resistance and excellent adhesion to the substrate 2.
  • the content of molybdenum particles in the powder composition is 40% by mass or more, the seizure resistance and the adhesion tend to be improved.
  • the content of molybdenum particles in the powder composition is 60% by mass or less, the content ratio of chromium carbide particles and nickel chromium alloy particles is adjusted to ensure the mixing ratio of chromium carbide particles and nickel chromium alloy particles. Easy to do.
  • the median diameter of the molybdenum particles may be 15 to 40 ⁇ m, or 25 to 35 ⁇ m.
  • the median diameter of the molybdenum particles is 15 ⁇ m or more, molybdenum tends to be entangled with other metal components in the sprayed coating 10.
  • production of an excessive fume at the time of thermal spraying can be suppressed, and there exists a tendency for the adhesive force of the thermal spray coating 10 and the base material 2 to improve easily. Further, the fluidity of the powder composition is improved, and the thermal spray coating 10 tends to be easily formed.
  • the median diameter of the molybdenum particles is 40 ⁇ m or less, a finer structure is formed in the sprayed coating 10, and wear of the counterpart material tends to be reduced. Further, the molybdenum particles tend to melt, and the porosity in the sprayed coating 10 tends to decrease.
  • the median diameter of particles means that when a particle group having a distribution in particle size is divided into two groups with a certain particle size as a boundary, the number of particles in the large particle size group and the small particle size group becomes equal. Indicates the diameter.
  • the molybdenum particles may be granulated sintered particles. Molybdenum granulated and sintered particles are obtained by granulating small-diameter molybdenum powder and then heating.
  • the particle size of the molybdenum powder used for granulation may be, for example, 1 to 3 ⁇ m.
  • the content of the chromium carbide particles in the powder composition may be 20 to 40% by mass, or 30 to 40% by mass with respect to the total mass of the powder composition.
  • the wear resistance of the thermal spray coating 10 in the engine or the like can be improved.
  • the content rate of the chromium carbide particles in the powder composition is 20% by mass or more, the wear resistance of the thermal spray coating 10 tends to be easily improved.
  • the chromium carbide particles in the powder composition are 40% by mass or less, the particles are likely to be bonded to each other in the sprayed coating 10, and the falling of the chromium carbide phase from the surface of the sprayed coating 10 tends to be suppressed. .
  • the median diameter of the chromium carbide particles may be 5 to 25 ⁇ m, 9 to 24 ⁇ m, or 10 to 20 ⁇ m.
  • the median diameter of the chromium carbide particles is 5 ⁇ m or more, compared to the case where the chromium carbide particles are too small, the chromium carbide is easily entangled with other metal components in the sprayed coating 10 and falls off the sliding surface of the sprayed coating 10. It becomes difficult to do.
  • the median diameter of the chromium carbide particles is 25 ⁇ m or less, the chromium carbide phase hardly protrudes from the sliding surface of the sprayed coating 10 and the molten sliding surface becomes smooth, so that the chromium carbide phase itself falls off the sliding surface.
  • the phenomenon that the sliding surface of the counterpart material is worn by the chromium carbide phase protruding on the sliding surface of the thermal spray coating 10 hardly occurs. Furthermore, when the median diameter of the chromium carbide particles is 25 ⁇ m or less, the hardness difference in the structure of the thermal spray coating 10 is reduced as compared with the case where the chromium carbide particles are too large. As a result, a locally hard portion (a portion where chromium carbide is unevenly distributed) is reduced on the sliding surface of the thermal spray coating 10, and a phenomenon in which fine unevenness is formed on the sliding surface of the counterpart material by chromium carbide is less likely to occur. . Therefore, when the median diameter of the chromium carbide particles is in the above range, the wear resistance of the thermal spray coating 10 tends to be improved, and the wear of the sliding surface of the counterpart material tends to be suppressed.
  • the MCrC / MM Mo is 0.33 to 1.00. It may be. If M CrC / M Mo is from 0.33 to 1.00, easily T CrC / T Mo is controlled in the range of 0.46 to 1.00. For the same reason, M CrC / M Mo may be from 0.54 to 0.89.
  • the content of the nickel chromium alloy particles in the powder composition may be 10 to 25% by mass, or 10 to 20% by mass with respect to the total mass of the powder composition.
  • the powder composition contains nickel-chromium alloy particles, it is possible to prevent chromium carbide from falling off the sprayed coating 10 due to sliding or the like.
  • the content rate of the nickel chromium alloy particles in the powder composition is 10% by mass or more, the component (particularly chromium carbide) constituting the thermal spray coating 10 tends to be easily prevented from falling off the sliding surface.
  • seizure resistance tends to be improved.
  • the median diameter of the nickel chromium alloy particles may be 10 to 35 ⁇ m, or 15 to 30 ⁇ m.
  • the component (particularly chromium carbide) constituting the thermal spray coating 10 tends to be prevented from falling off from the sliding surface.
  • the median diameter of the nickel chrome alloy particles is 35 ⁇ m or less, the structure in the thermal spray coating 10 becomes dense, the falling off of components constituting the thermal spray coating 10 tends to be suppressed, and the wear of the counterpart material tends to be suppressed. is there.
  • the nickel chromium alloy in the thermal spray coating 10 is finely dispersed on the sliding surface, and the wear of the counterpart material tends to be reduced.
  • the powder composition may contain other components other than those described above.
  • Other components may be, for example, nickel alloys other than nickel chromium alloys, cobalt alloys, and copper and copper alloys.
  • the nickel alloy may be, for example, a nickel-based self-fluxing alloy.
  • the content of the other components in the powder composition may be about 1 to 10% by mass based on the total amount of the powder composition.
  • the median diameter of other components is not particularly limited.
  • a powder composition may contain components other than the above as an unavoidable impurity.
  • the impurity content may be as low as it does not hinder the effects of the present invention.
  • the powder composition is heated in a thermal spraying apparatus and sprayed at a high speed toward the sliding surface 2a of the substrate 2.
  • a method of spraying the powder composition on the sliding surface 2a of the substrate 2 may be a gas flame spraying method, a plasma spraying method, a high-speed flame spraying method (HVOF), or the like. Of these methods, the plasma spraying method is preferable.
  • a gas between the anode and the cathode is turned into plasma by applying a high voltage between the anode and the cathode of the spraying apparatus. Since the gas converted into plasma is heated and further expanded, it is ejected from the thermal spraying apparatus at a high temperature and at a high speed to form a plasma jet stream (plasma plume).
  • the powder composition supplied to the thermal spraying apparatus is heated and accelerated in the plasma jet stream, and sprayed toward the substrate 2. Since the heated and accelerated particles are partially melted, they are flattened and deposited in layers on the sliding surface 2 a of the substrate 2 when colliding with the substrate 2. Then, the particles deposited in a layer form are rapidly cooled on the substrate 2 to form the sprayed coating 10.
  • the particles in the powder composition can be heated to a higher temperature than other spraying methods, and the melting of each particle in the powder composition tends to be promoted. Therefore, in the cross section XY (cross section parallel to the thickness direction of the coating) perpendicular to the sliding surface 2a of the base material 2 of the thermal spray coating 10 produced by the plasma spraying method, the layered molybdenum phase 11 and the layered chromium carbide are formed. There is a tendency that the phase 12 and the layered nickel chromium alloy phase 13 are deposited, and each phase bends and overlaps and entangles with each other.
  • the thermal spray coating 10 obtained by the plasma spraying is excellent in wear resistance and suppresses wear of the counterpart material.
  • the average velocity of particles colliding with the base material 2 may be, for example, 210 m / second or more, or 215 m / second or more.
  • the average velocity of the spray particles may be, for example, 230 m / sec or less, or 226 m / sec or less.
  • the average temperature of the spray particles may be, for example, 3000 ° C. or higher, or 3025 ° C. or higher.
  • the average temperature of the spray particles may be, for example, 3250 ° C. or lower, or 3228 ° C. or lower.
  • the average velocity of the particles colliding with the substrate 2 is 210 m / sec or more and the average temperature of the particles is 3000 ° C. or more, the molybdenum particles are easily deformed and a thin molybdenum phase is easily formed, and T CrC / T Mo is easily controlled within the range of 0.46 to 1.00.
  • the plasma spraying conditions are set so that the average velocity and the average temperature of the spray particles are in the above range.
  • the current value of the plasma spray (plasma gas current), for example, be 450 ⁇ 550A, power value May be, for example, 45-75 kW.
  • the gas supplied between the anode and the cathode in the plasma spraying apparatus may be, for example, nitrogen, argon, hydrogen, helium, or the like.
  • the said gas (plasma working gas) may be used individually by 1 type, and may be used in combination of 2 type.
  • the plasma working gas may be a mixed gas of nitrogen and argon.
  • the supply amount of the plasma working gas may be 80 to 160 NL / min, or 100 to 130 NL / min.
  • the supply amount of nitrogen in the mixed gas may be 1 to 20 NL / min.
  • the supply rate of argon in the mixed gas may be 79 to 140 NL / min.
  • the velocity of the particles at the time of thermal spraying does not become too high, and it tends to be suppressed that the thermal spray coating 10 becomes too dense. For this reason, the internal stress in the thermal spray coating 10 is reduced, and cracks in the thermal spray coating 10 tend to hardly occur. Further, the particles in the powder composition can be sufficiently melted, and the particle coating (spitting) that is not sufficiently melted is suppressed from being included in the sprayed coating 10, and the surface of the sprayed coating 10 becomes rough. Tends to be suppressed.
  • Example 1 [Production of sliding member 1] A test base material was obtained by cutting a sheet of general structural rolled steel (SS400) into a prismatic shape having a length of 5 mm, a width of 3.5 mm, and a thickness of 8 mm. The sprayed coating was formed on the sliding surface of the base material (surface of 5 mm length ⁇ 3.5 mm width) by the following procedure.
  • SS400 general structural rolled steel
  • a powder composition A was obtained by mixing 50 parts by mass of molybdenum particles, 15 parts by mass of nickel chromium alloy particles, and 35 parts by mass of chromium carbide particles.
  • molybdenum particles particles manufactured by Paulex Co., Ltd. (trade name: SG-12S) obtained by granulating and sintering molybdenum powder were used.
  • the particle diameter of molybdenum powder (primary particles) before granulation was 1 to 3 ⁇ m, and the median diameter of molybdenum particles (secondary particles) after granulation was 31 ⁇ m.
  • the nickel chromium alloy particles particles made by Sulzer Metco (trade name: Metco 43VF-NS) were used.
  • the median diameter of the nickel chromium alloy particles was 22 ⁇ m.
  • the chromium carbide particles particles made by Sulzer Metco (trade name: Metco 70F) were used.
  • the median diameter of the chromium carbide particles was 13 ⁇ m.
  • the sliding member of Example 1 was produced by spraying the powder composition A onto the sliding surface of the test substrate by plasma spraying.
  • the plasma spraying method was performed using a plasma spraying apparatus “TriplexPro” manufactured by Sulzer Metco. Plasma spraying was performed under the following conditions. The average velocity of the spray particles was adjusted to 218 m / sec. The average temperature of the spray particles was adjusted to 3228 ° C. The average velocity and average temperature of the spray particles were measured using a spray state analyzer “SprayWatch” (registered trademark) manufactured by Ozere. The average velocity and average temperature of the spray particles were measured at the center of the sliding surface of the base material 2 on which the spray particles collide. Current: 450A. Electric power: 54 kW. Carrier gas (plasma working gas): mixed gas of Ar and N 2. Ar gas flow rate (supply amount): 100 NL / min. N 2 gas flow rate (feed amount): 2.2 NL / min.
  • the thermal spray coating of the sliding member of Example 1 was cut in a direction perpendicular to the sliding surface of the substrate.
  • the sprayed coating in section 1 of the sprayed coating was analyzed by an energy dispersive X-ray spectrometer (SEM-EDX) attached to the SEM.
  • SEM-EDX energy dispersive X-ray spectrometer
  • FIG. 4 shows a reflected electron image of the cross section 1 of the sprayed coating.
  • the magnification of the reflected electron image of the cross section 1 was 500 times, and the resolution (number of pixels) of the reflected electron image was 1280 ⁇ 960 pixels.
  • a backscattered electron image of a cross section of the thermal spray coating in a direction perpendicular to the sliding surface of the base material and different from the cross section 1 (cross section 2) was taken.
  • the reflected electron image of the cross section 2 is shown in FIG.
  • the white portion is the molybdenum phase
  • the dark gray portion is the chromium carbide phase
  • the light gray portion is the nickel chromium alloy phase
  • the black portion is the pores. 4 and 5, it was confirmed that the layered molybdenum phase, the layered chromium carbide phase, the layered nickel chromium alloy phase, and the pores were bent, and the respective phases and pores were deposited on the sliding surface.
  • the thermal spray coating of the sliding member of Example 1 was cut in a direction perpendicular to the sliding surface of the substrate.
  • the respective contents of carbon, oxygen, molybdenum, chromium and nickel at the measurement sites a, b, c, d and e belonging to the cross section of the sprayed coating were measured by SEM-EDX. Table 3 shows the measurement results.
  • Step 1 Based on the contrast difference in the reflected electron image, the molybdenum phase, the chromium carbide phase, the nickel chromium alloy phase, and the pores were distinguished from each other.
  • Step 2> Noise was removed from the reflected electron image by a majority filter (Majority Filtering) having a mask size of 3 ⁇ 3 pixels.
  • ⁇ Step 3> In the backscattered electron image, the thickness of each phase and the width of the pores existing in one pixel column composed of a plurality of pixels arranged vertically (in a direction perpendicular to the sliding surface) were individually integrated.
  • Step 4> The number of each phase and the number of pores existing in one pixel row were counted individually.
  • Step 5> Steps 3 and 4 described above were performed on all pixel rows arranged vertically (in the direction perpendicular to the sliding surface) in the reflected electron image.
  • the measurement results on these cross sections 1 are shown in the cross section No. Shown in line 1.
  • Table 2 shows the average values T AVE and T CrC / T Mo of T Mo , T CrC , and T NiCr calculated based on the above measurement results regarding the cross section 1.
  • Steps 1 to 5 using the reflected electron image of the cross section 2 were performed in the same manner as in the case of the reflected electron image of the cross section 1.
  • N Mo , N CrC , N NiCr , N P , T Mo , T CrC , T NiCr , and D were measured in steps 1 to 5 using the reflected electron image of the cross section 2.
  • the measurement results for these cross sections 2 are shown in the cross section No. Shown in line 2.
  • the N Mo + N CrC + N NiCr + N P that calculated based on the measurement results shown in Table 2.
  • Calculated T AVE based on the above results of measurement section 2, and T CrC / T Mo shown in Table 2.
  • the Vickers hardness of the thermal spray coating of Example 1 was measured by the following method. Vickers hardness was measured according to the method specified by JIS Z 2244. For the measurement, a Vickers hardness meter (trade name: MVK-G2 manufactured by Akashi Co., Ltd.) was used. In measuring the Vickers hardness, the test force was HV0.1, and the load holding time was 10 seconds. The Vickers hardness at 20 locations located in the center of the cross section of the sprayed coating in the direction perpendicular to the sliding surface of the base material of the sliding member was measured, and the average value thereof was determined. Table 1 shows the average value of Vickers hardness.
  • FIG. 3 is a side view of the wear amount measuring apparatus used in the wear resistance test.
  • a holder 6 of a sliding member and a disk 7 which is a mating member are arranged to face each other.
  • the two sliding members 1 of Example 1 were inserted and fixed at predetermined positions of the holder 6 as wear pins.
  • the thermal spray coating 10 of the sliding member 1 installed in the holder 6 was made to face the disk 7.
  • the thermal spray coating 10 of the sliding member 1 and the disk 7 were brought into contact with each other with a load W applied to the holder 6. With the spray coating 10 and the disk 7 in contact, the disk 7 was rotated in the direction of arrow R in FIG. 3 under the following conditions while supplying lubricating oil to the contact surface.
  • wear pin sliding member
  • length 5.0 mm ⁇ width 3.5 mm ⁇ thickness 8.0 mm.
  • as-coat coating (sprayed coating not subjected to post-treatment such as polishing after spraying) (5.0 mm ⁇ 3.5 mm).
  • Opposite material A disk (disk) having a diameter of 60 mm.
  • Arithmetic mean roughness Ra adjusted by cross-hatch finishing 0.2 to 0.4 ⁇ m.
  • Contact area between one piston ring and the disk 3.5 mm ⁇ 5 mm.
  • Contact surface pressure 94 MPa.
  • Lubricating oil JOMO Delstar F20 equivalent.
  • Lubricating oil supply Oil supply (150 mL / min).
  • Lubricating oil temperature 80 ° C. (oil bath setting), about 65 ° C. (when supplied to the sliding surface).
  • Test method 1) Run-in for 5 minutes at a load of 500 N and a counter member rotational speed of 500 rpm. 2) Main test for 60 minutes at a load of 3300 N and a rotational speed of the counterpart material of 790 rpm. 3) Measure the amount of wear of the thermal spray coating and the mating material. 4) Repeat steps 1) to 3) again.
  • the total thickness of the sliding member 1 (total thickness of the base material 2 and the thermal spray coating 10) before and after the abrasion resistance test was measured.
  • the amount of wear of the thermal spray coating 10 was calculated by subtracting the thickness of the sliding member 1 after the abrasion resistance test from the thickness of the sliding member 1 before the abrasion resistance test.
  • the abrasion resistance test was performed three times for each thermal spray coating, and the arithmetic average value of the wear amount of the obtained thermal spray coating was defined as the average wear amount of the thermal spray coating 10.
  • Table 1 shows the average wear amount of the thermal spray coating of Example 1.
  • the distance (step) between the bottom surface of the sliding portion (sliding mark) and the non-sliding portion surface on the disk surface after the abrasion resistance test was measured using a stylus type step gauge. This distance (step) is the wear amount of the counterpart material.
  • the abrasion resistance test was performed three times for each thermal spray coating, and the arithmetic average value of the wear amount of the obtained counterpart material was defined as the average wear amount of the counterpart material. Table 1 shows the average wear amount of the mating material.
  • Example 2 to 3 and Comparative Examples 1 to 4 In the production of the sliding members of Examples 2 to 3 and Comparative Examples 1 to 4, the average velocity and average temperature of the spray particles were adjusted to the values shown in Table 1 below.
  • powder composition B was used instead of powder composition A.
  • Powder composition B contained 60 parts by mass of molybdenum particles, 30 parts by mass of nickel chromium alloy particles, and 10 parts by mass of chromium carbide particles.
  • FIG. 6 shows a backscattered electron image of cross section 1 of the thermal spray coating of Example 2 taken by the same method as in Example 1.
  • FIG. 7 shows a reflected electron image of the cross section 2 of the thermal spray coating of Example 2 taken by the same method as in Example 1.
  • FIG. 8 shows a reflected electron image of the cross section 1 of the thermal spray coating of Example 3 taken by the same method as in Example 1.
  • FIG. 9 shows a reflected electron image of the cross section 2 of the thermal spray coating of Example 3 taken by the same method as in Example 1.
  • FIG. 10 shows a backscattered electron image of cross section 1 of the thermal spray coating of Comparative Example 1 taken by the same method as in Example 1.
  • FIG. 11 shows a reflected electron image of the cross section 2 of the thermal spray coating of Comparative Example 1 taken by the same method as in Example 1.
  • FIG. 12 shows a backscattered electron image of cross section 1 of the thermal spray coating of Comparative Example 2 taken by the same method as in Example 1.
  • FIG. 13 shows a reflected electron image of the cross section 2 of the thermal spray coating of Comparative Example 2 taken by the same method as in Example 1.
  • FIG. 14 shows a backscattered electron image of cross section 1 of the thermal spray coating of Comparative Example 3 taken by the same method as in Example 1.
  • FIG. 15 shows a reflected electron image of the cross section 2 of the thermal spray coating of Comparative Example 3 taken by the same method as in Example 1.
  • FIG. 16 shows a reflected electron image of the cross section 1 of the thermal spray coating of Comparative Example 4 taken by the same method as in Example 1.
  • FIG. 17 shows a reflected electron image of the cross section 2 of the thermal spray coating of Comparative Example 4 taken by the same method as in Example 1.
  • each of the sliding members of Examples 2 to 3 and Comparative Examples 1 to 4 includes a base material and a sprayed coating formed on the sliding surface of the base material. It was confirmed that the sprayed coating contained a molybdenum phase, a chromium carbide phase, and a nickel chromium alloy phase, and a molybdenum phase, a chromium carbide phase, a nickel chromium alloy phase, and pores were deposited on the sliding surface of the substrate.
  • Example 1 In the same manner as in Example 1, the Vickers hardness of the sprayed coatings of the other Examples and Comparative Examples was measured. The measurement results are shown in Table 1.
  • Example 1 In the same manner as in Example 1, a wear resistance test using the sliding members of other Examples and Comparative Examples was performed, and the average wear amount of each sprayed coating and the average wear amount of the counterpart material were measured. The measurement results are shown in Table 1.
  • Comparative Example 3 compared with Examples 1 to 3 and Comparative Examples 1 and 2, the average wear amount of the sprayed coating and the counterpart material was large. This is considered to be due to the occurrence of abrasive wear because the structure of the thermal spray coating of Comparative Example 3 was not fine.
  • the sliding member according to the present invention is applied to a piston ring for an engine such as an automobile or a ship.
  • SYMBOLS 1 Sliding member (piston ring), 2 ... Base material, 2a ... Sliding surface, 5 ... Wear amount measuring apparatus, 6 ... Holder, 7 ... Disc, 10 ... Thermal spray coating, 11 ... Molybdenum phase, 12 ... Chromium carbide Phase 13 ... Nickel chromium alloy phase 14 ... Pore.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • General Engineering & Computer Science (AREA)
  • Coating By Spraying Or Casting (AREA)
  • Pistons, Piston Rings, And Cylinders (AREA)

Abstract

 本発明の一側面に係る摺動部材1は、基材2と、基材2の摺動面上に形成された溶射被膜10と、を備え、溶射被膜10が、モリブデン相11、炭化クロム相12及びニッケルクロム合金相13を含み、モリブデン相11、炭化クロム相12及びニッケルクロム合金相が基材2の摺動面上に堆積し、基材2の表面に対して垂直な方向Yにおける炭化クロム相12の厚さtCrCの平均値がTCrCであり、同方向におけるモリブデン相11の厚さtMoの平均値がTMoであるとき、TCrC/TMoが、0.46~1.00である。

Description

摺動部材及びピストンリング
 本発明は、摺動部材及びピストンリングに関する。
 近年、エンジンの高出力化等の高性能化に伴い、エンジン用のピストンリングの使用環境はますます厳しくなり、より優れた耐摩耗性及び耐焼付性を有するピストンリングが要求されている(下記特許文献1~4参照。)。特にシリンダライナと摺動するピストンリングの外周面には、高い耐摩耗性及び耐焼付性などが要求される。このような要求に応えるべく、ピストンリングの外周摺動面上に溶射法により被膜を形成し、ピストンリングに高い耐摩耗性及び耐焼付性を付与してきた。なお、「焼付」とは、ピストンリングの外周面(摺動面)が、シリンダライナとの摺動に伴う発熱によってシリンダライナと接合する現象である。「耐焼付性」とは、焼付を起こし難い性質のことである。
 例えば、溶射被膜の耐摩耗性を高める手法として、溶射被膜に含まれる硬質粒子としてのセラミック成分を増加させる手法がある。
特開2007-314839号公報 特開2005-155711号公報 特開2012-046821号公報 特開平3-172681号公報
 しかしながら、溶射被膜中のセラミック成分が増加すると、ピストンリング外周面と摺動するエンジンのライナー内面の摩耗量が増大してしまう。以下では、エンジンのライナー内面のように、ピストンリングの外周面と摺動する部材を、「相手材」と記す。
 溶射被膜は、半溶融状態の粒子が母材に叩きつけられて形成されるため、組成が異なる複数の粒子がつぶれて重なり合った組織を有する。このため、溶射被膜を摺動させると、軟質な金属成分と硬質なセラミック成分の両方が溶射被膜の摺動面に現れる。硬質成分と軟質成分とを摺動させた場合、軟質成分の方が摩耗しやすいため、溶射被膜の摺動面は均質材料のそれに比べて粗くなり易い。また、溶射条件が適切でない場合、組織の一部が容易に摺動面から脱落して、摺動面が粗くなったり、脱落した粒子によりアブレシブ摩耗(Abrasive wear)が発生したりする。
 本発明は、優れた耐摩耗性を有し、かつ相手材の摩耗を抑制することが可能な摺動部材及びピストンリングを提供することを目的とする。
 本発明の一側面に係る摺動部材は、基材と上記基材の摺動面上に形成された溶射被膜とを備え、溶射被膜が、モリブデン相、炭化クロム相及びニッケルクロム合金相を含み、モリブデン相、炭化クロム相及びニッケルクロム合金相が基材の摺動面上に堆積し、基材の摺動面に対して垂直な方向における炭化クロム相の厚さの平均値がTCrCであり、基材の摺動面に対して垂直な方向におけるモリブデン相の厚さの平均値がTMoであるとき、TCrC/TMoが、0.46~1.00である。
 本発明の一側面に係る摺動部材においては、TMoは、1.4~4.2μmであってよく、TCrCは、1.1~2.2μmであってよい。
 本発明の一側面に係る摺動部材においては、気孔が溶射被膜内に形成されており、モリブデン相、炭化クロム相、ニッケルクロム合金相及び気孔が摺動面上で重なっており、摺動面上で重なった、モリブデン相、炭化クロム相、ニッケルクロム合金相及び気孔の数の合計が、摺動面に垂直な方向における溶射被膜の単位厚さ当たり、48/(100μm)~71/(100μm)であってよい。
 本発明の一側面に係る摺動部材においては、溶射被膜中のモリブデン原子の含有率が、37~51質量%であってよく、溶射被膜中のクロム原子の含有率が、19~32質量%であってよく、溶射被膜中のニッケル原子の含有率が、6~13質量%であってよく、溶射被膜中の炭素原子の含有率が、10~14質量%であってよい。
 本発明の一側面に係る摺動部材においては、溶射被膜の平均硬さが、400~900HV0.1であってよい。
 本発明の一側面に係るピストンリングは、上記摺動部材を備える。
 本発明によれば、優れた耐摩耗性を有し、かつ相手材の摩耗を抑制することが可能な摺動部材及びピストンリングを提供することができる。
図1における(a)(すなわち、図1a)は、本発明の一実施形態に係る摺動部材(ピストンリング)の斜視図であり、図1における(b)(すなわち、図1b)は、図1aの摺動部材のb-b方向の断面図である。 図2は、本発明の一実施形態に係る摺動部材における溶射被膜の内部構造を示す図であり、摺動部材の摺動面に垂直な方向における溶射被膜の断面の模式図である。 図3は、摩耗量測定装置の側面図である。 図4は、本発明の実施例1の摺動部材の溶射被膜の断面(基材の摺動面に垂直な断面)の一部の反射電子像である。 図5は、実施例1の摺動部材の溶射被膜の断面(基材の摺動面に垂直な断面)の別の一部の反射電子像である。 図6は、本発明の実施例2の摺動部材の溶射被膜の断面(基材の摺動面に垂直な断面)の一部の反射電子像である。 図7は、本発明の実施例2の摺動部材の溶射被膜の断面(基材の摺動面に垂直な断面)の別の一部の反射電子像である。 図8は、本発明の実施例3の摺動部材の溶射被膜の断面(基材の摺動面に垂直な断面)の一部の反射電子像である。 図9は、本発明の実施例3の摺動部材の溶射被膜の断面(基材の摺動面に垂直な断面)の別の一部の反射電子像である。 図10は、比較例1の摺動部材の溶射被膜の断面(基材の摺動面に垂直な断面)の一部の反射電子像である。 図11は、比較例1の摺動部材の溶射被膜の断面(基材の摺動面に垂直な断面)の別の一部の反射電子像である。 図12は、比較例2の摺動部材の溶射被膜の断面(基材の摺動面に垂直な断面)の一部の反射電子像である。 図13は、比較例2の摺動部材の溶射被膜の断面(基材の摺動面に垂直な断面)の別の一部の反射電子像である。 図14は、比較例3の摺動部材の溶射被膜の断面(基材の摺動面に垂直な断面)の一部の反射電子像である。 図15は、比較例3の摺動部材の溶射被膜の断面(基材の摺動面に垂直な断面)の別の一部の反射電子像である。 図16は、比較例4の摺動部材の溶射被膜の断面(基材の摺動面に垂直な断面)の一部の反射電子像である。 図17は、比較例4の摺動部材の溶射被膜の断面(基材の摺動面に垂直な断面)の別の一部の反射電子像である。
 以下、図面を参照しながら、本発明の好適な実施形態について詳細に説明する。ただし、本発明は以下の実施形態に限定されるものではない。
 [摺動部材]
 本実施形態に係る摺動部材は、例えば、ピストンリング、シリンダ、ベーン及びリフター等の一部又は全部を構成してよい。以下では、摺動部材1がピストンリングである場合について説明する。図1及び2に示すように、本実施形態のピストンリング1は、例えば、環状の基材2と、基材2の外周に位置する摺動面2a上に形成された溶射被膜10と、を備える。
 基材2は、例えば、鋳鉄材及び鋼材等からなる。基材2の形状は、摺動部材の用途に応じて適宜選択され、特に限定されない。摺動部材1がピストンリングである場合、基材2の外径は、例えば200mm~980mmであってよい。基材2の内径は、例えば190mm~920mmであってよい。基材2の厚さは、例えば5mm~25mm程度であってよい。基材2の外周面は、ピストンリング1がエンジンのシリンダ内に挿入される場合、相手材であるライナーと摺動する面である。
 基材2の外周面に溶射被膜10を形成する前に、あらかじめサンドブラスト等により、1~20μm程度の粗さの凹凸を基材2の外周面に形成してよい。これにより、溶射法において溶融した粒子が基材2の凸部又は凹部に衝突する際に、溶融した粒子の凝固・収縮に伴って応力が粒子に作用し、この応力に起因するanchoring効果によって溶射被膜10が基材2に強固に接着し易い。
 図2に示すように、溶射被膜10は、モリブデン相11、炭化クロム相12及びニッケルクロム合金相13を含む。溶射被膜10は、複数のモリブデン相11、及び複数の炭化クロム相12、及び複数のニッケルクロム合金相13を含んでよい。溶射被膜10は、モリブデン相11、炭化クロム相12及びニッケルクロム合金相13からなっていてよい。モリブデン相11は、溶射被膜10の耐焼付性に寄与する。炭化クロム相12は、溶射被膜10の耐摩耗性に寄与する。ニッケルクロム合金相13の少なくとも一部は、モリブデン相11と炭化クロム相12との間に介在し、両相を接合する機能を有する。モリブデン相11、炭化クロム相12及びニッケルクロム合金相13は、基材2の摺動面2a上に堆積している。モリブデン相11、炭化クロム相12及びニッケルクロム合金相13は、摺動面2aに平行な方向に延びる層であってもよい。すなわち、モリブデン相11、炭化クロム相12及びニッケルクロム合金相13は、それぞれモリブデン層、炭化クロム層及びニッケルクロム合金層であってもよい。
 上記基材2の摺動面2aに対して垂直な方向Yにおける炭化クロム相12の厚さがtCrCであり、tCrCの平均値がTCrCであり、方向Yにおけるモリブデン相11の厚さがtMoであり、tMoの平均値がTMoであるとき、TCrC/TMoは、0.46~1.00である。
 TCrC/TMoが0.46~1.00であることは、炭化クロム相12の平均厚さTCrCとモリブデン相11の平均厚さTMoとの差が小さいことを意味する。
 炭化クロム相12はモリブデン相11よりも硬く、磨滅し難い。換言すれば、モリブデン相11は、炭化クロム相12よりも柔らかく、磨滅し易い。したがって、TCrC/TMoが0.46~1.00の範囲外である場合、軟質のモリブデン相11が溶射被膜10の摺動面において磨滅し易く、硬質の炭化クロム相12が溶射被膜10の摺動面に露出して残存し易い。つまり、TCrC及びTMoの差が大きい場合、溶射被膜10の摺動面が摩耗し易く、摺動面が粗くなり易い。硬質の炭化クロム相12が溶射被膜10の摺動面に露出している場合、相手材が炭化クロム相12との摺動によって摩耗し易い。また、炭化クロム相12が溶射被膜10の摺動面に露出している場合、炭化クロム相12が溶射被膜10の摺動面から脱落し易く、脱落した炭化クロム相12がアブレシブ摩耗を引き起こす。一方、本実施形態では、TCrC及びTMoの差が大きい場合に起こる上記の現象が抑制される。つまり、本実施形態では、TCrC/TMoが0.46~1.00であり、TCrC及びTMoの差が小さいため、溶射被膜10の摺動面が均質であり、摺動に伴う溶射被膜10の摺動面の磨耗及び粗化が抑制され、相手材の摩耗も抑制される。同様の理由から、TCrC/TMoは、0.50~1.00、0.51~1.00、0.60~1.00、0.65~1.00、0.50~0.80、0.51~0.80、0.60~0.80、0.65~0.80、0.50~0.76、0.51~0.76、0.60~0.76、又は0.65~0.76であってよい。
 モリブデン相11の平均厚さTMoは、1.4~4.2μm、又は2.0~4.0μmであってよい。モリブデン相11の平均厚さTMoが4.2μm以下である場合、摺動面が滑らかになりやすい傾向がある。同様の理由から、TMoは2.4~3.0μmであってもよい。
 炭化クロム相12の平均厚さTCrCは、1.1~2.2μm、又は1.0~2.0μmであってよい。TCrCが1.0μm以上である場合、炭化クロム相が有する耐摩耗性が十分発揮され、溶射被膜の摩耗量が低減される傾向がある。炭化クロム相12の平均厚さTCrCが2.2μm以下である場合、摺動時に炭化クロム相が摺動面から突出しにくくなり、摺動後の摺動面が滑らかとなることから、溶射被膜及び相手材の摩耗量が共に減少する傾向がある。同様の理由から、TCrCは、1.4~1.9μmであってもよい。
 ニッケルクロム合金相13の平均厚さTNiCrは、0.5~1.0μmであってよい。ニッケルクロム合金相13の平均厚さTNiCrは、0.8~0.9μmであってもよい。
 複数の気孔14が、溶射被膜10内に形成されていてよい。気孔14が、溶射被膜10のモリブデン相11内に形成されていてよい。気孔14が、溶射被膜10の炭化クロム相12内に形成されていてよい。気孔14が、溶射被膜10のニッケルクロム合金相13内に形成されていてよい。気孔14が、モリブデン相11、炭化クロム相12及びニッケルクロム合金相13のうちの2つの相又は3つの相の間に形成されていてもよい。気孔14の幅Dは、0.4~0.8μmであってよい。気孔14の幅Dとは、基材2の摺動面2aに垂直な方向Yにおける気孔14の幅(内径)の平均値である。気孔14の幅Dは、0.5~0.6μmであってよい。
 モリブデン相11、炭化クロム相12、ニッケルクロム合金相13及び気孔14が、摺動面2a上で重なっていてよい。つまり、モリブデン相11、炭化クロム相12、ニッケルクロム合金相13及び気孔14が、上記摺動面2aに垂直な方向Yに沿って、重なっていてよい。摺動面2a上で重なったモリブデン相11の平均相数が、溶射被膜10の単位厚さ当たりNMo(単位:1/100μm)であり、摺動面2a上で重なった炭化クロム相12の平均相数が、溶射被膜10の単位厚さ当たりNCrC(単位:1/100μm)であり、摺動面2a上で重なったニッケルクロム合金相13の平均相数が、溶射被膜10の単位厚さ当たりNNiCr(単位:1/100μm)であり、摺動面2a上で重なった気孔14の数の平均値が、溶射被膜10の単位厚さ当たりNであるとき、(NMo+NCrC+NNiCr+N)は、48/(100μm)~71/(100μm)であってよい。(NMo+NCrC+NNiCr+N)が上記範囲内である場合、溶射被膜10の組織を構成する各相が微細であり、溶射被膜10における各相の偏りが抑えられ、溶射被膜10が均一に摩耗する傾向がある。このため、摺動時における溶射被膜10の摺動面が平滑になり易く、溶射被膜10の摺動面の表面粗さが低減され易く、相手材の摩耗が抑制され易い傾向がある。同様の理由から、(NMo+NCrC+NNiCr+N)は、51.6/(100μm)~64.6/(100μm)であってもよい。
 モリブデン相11の平均相数NMoは、例えば、16.1/(100μm)~19.9/(100μm)、又は17.2/(100μm)~18.7/(100μm)であってよい。
 炭化クロム相12の平均相数NCrCは、例えば、15.1/(100μm)~21.6/(100μm)、又は16.0/(100μm)~21.2/(100μm)であってよい。
 ニッケルクロム合金相13の平均相数NNiCrは、例えば、11.6/(100μm)~29.9/(100μm)、又は15.4/(100μm)~24.4/(100μm)であってよい。
 気孔14の数の平均値Nは、例えば、0.3/(100μm)~7.9/(100μm)、又は0.6/(100μm)~3.6/(100μm)であってよい。
 溶射被膜10中のモリブデン原子の含有率は、37~51質量%、又は40.64~48.68質量%であってよい。
 溶射被膜10中のクロム原子の含有率は、19~32質量%、又は21.90~29.16質量%であってよい。
 溶射被膜10中のニッケル原子の含有率は、6~13質量%、又は7.98~11.89質量%であってよい。
 溶射被膜10中の炭素原子の含有率は、10~14質量%、又は11~14質量%であってよい。
 モリブデン原子、クロム原子、ニッケル原子及び炭素原子其々の含有率が上記範囲内である場合、本発明に係る効果が得られ易い傾向がある。
 溶射被膜10の厚さは、50~600μm、又は200~450μmであってよい。溶射被膜10の厚さが50μm以上である場合、溶射被膜10の粗さを制御するために表面を加工した後でも、十分な厚さを残すことができ、溶射被膜10の耐久性が維持され易い傾向がある。溶射被膜10の厚さが600μm以下である場合、基材2からの溶射被膜10の剥離が抑制され易い傾向がある。
 溶射被膜10のビッカース硬さは400~900HV0.1、450~850HV0.1、又は500~800HV0.1であってよい。溶射被膜10のビッカース硬さが400HV0.1以上である場合、溶射被膜の摩耗量が低減しやすい傾向がある。溶射被膜10のビッカース硬さが900HV0.1以下である場合、相手材の摩耗量が低減しやすい傾向がある。
 [摺動部材の製造方法]
 摺動部材1は、粉末組成物(粒子)を基材2の摺動面2a上に溶射して、基材2の摺動面2a上に溶射被膜10を形成することにより製造される。粉末組成物は、例えば、モリブデン粒子、炭化クロム粒子、及びニッケルクロム合金粒子を含む。粉末組成物は、モリブデン粒子、炭化クロム粒子、及びニッケルクロム合金粒子のみからなっていてよい。
 粉末組成物におけるモリブデン粒子の含有率は、粉末組成物の全質量に対して、40~60質量%、又は45~55質量%であってよい。粉末組成物がモリブデン粒子を含むことにより、耐摩耗性及び耐焼付性に優れ、基材2との密着性に優れた溶射被膜10を得易い。粉末組成物中のモリブデン粒子の含有率が40質量%以上である場合、上記耐焼付性及び密着性が向上し易い傾向がある。また、粉末組成物中のモリブデン粒子の含有率が60質量%以下である場合、炭化クロム粒子及びニッケルクロム合金粒子の含有率を調整して、炭化クロム粒子及びニッケルクロム合金粒子の混合割合を確保し易い。
 モリブデン粒子のメディアン径は、15~40μm、又は25~35μmであってよい。モリブデン粒子のメディアン径が15μm以上である場合、モリブデンが溶射被膜10中で他の金属成分と絡まり易くなる傾向がある。また、溶射時に過度なヒューム(fume)の発生を抑制することができ、溶射被膜10と基材2との接着力が向上し易い傾向がある。また、粉末組成物の流動性が向上し、溶射被膜10を形成し易い傾向がある。一方、モリブデン粒子のメディアン径が40μm以下である場合、溶射被膜10中により微細な組織が形成され、相手材の摩耗が低減され易い傾向がある。また、モリブデン粒子が溶融し易く、溶射被膜10中の気孔率が減少する傾向がある。なお、粒子のメディアン径とは、粒径に分布を有する粒子群をある粒径を境に2つの群に分けたとき、粒径の大きい群と粒径の小さい群の粒子の数が等しくなる径を示す。
 モリブデン粒子は造粒された焼結粒子であってよい。モリブデン造粒焼結粒子は、小径のモリブデン粉末を造粒したのち、加熱することにより得られる。造粒に用いられるモリブデン粉末の粒径は、例えば、1~3μmであってよい。
 粉末組成物における炭化クロム粒子の含有率は、粉末組成物の全質量に対して、20~40質量%、又は30~40質量%であってよい。粉末組成物が炭化クロム粒子を含むことにより、エンジン内等での溶射被膜10の耐摩耗性を向上させることができる。粉末組成物中の炭化クロム粒子の含有率が20質量%以上である場合、溶射被膜10の耐摩耗性が向上し易い傾向がある。また、粉末組成物中の炭化クロム粒子が40質量%以下である場合、溶射被膜10内で粒子同士が結合し易く、溶射被膜10の表面からの炭化クロム相の脱落が抑制され易い傾向がある。炭化クロムが溶射被膜10の表面から脱落すると、脱落した炭化クロムが溶射被膜10と相手材との界面に存在したまま、摺動部材1と相手材とが摺動するため、被膜の摩耗量及び相手材の摩耗量が共に増大する傾向がある。
 炭化クロム粒子のメディアン径は、5~25μm、9~24μm、又は10~20μmであってよい。炭化クロム粒子のメディアン径が5μm以上である場合、炭化クロム粒子が小さ過ぎる場合に比べて、炭化クロムが溶射被膜10中で他の金属成分と絡まり易くなり、溶射被膜10の摺動面から脱落し難くなる。また、炭化クロム粒子のメディアン径が25μm以下である場合、炭化クロム相が溶射被膜10の摺動面から突出し難く、溶摺動面が滑らかになるため、炭化クロム相自体が摺動面から脱落し難い傾向がある。また溶射被膜10の摺動面に突出した炭化クロム相によって相手材の摺動面が摩耗される現象も起き難い。さらに、炭化クロム粒子のメディアン径が25μm以下である場合、炭化クロム粒子が大き過ぎる場合に比べて、溶射被膜10の組織内の硬度差が減少する。その結果、溶射被膜10の摺動面において局所的に硬い部分(炭化クロムが偏在する部分)が小さくなり、炭化クロムによって相手材の摺動面に微細な凹凸が形成される現象が起き難くなる。したがって、炭化クロム粒子のメディアン径が上記範囲にある場合、溶射被膜10の耐摩耗性が向上し易く、相手材の摺動面の摩耗を抑制し易い傾向がある。
 粉末組成物におけるモリブデン粒子の含有率がMMo質量%であり、粉末組成物における炭化クロム粒子の含有率がMCrC質量%であるとき、MCrC/MMoは0.33~1.00であってよい。MCrC/MMoが0.33~1.00である場合、TCrC/TMoが0.46~1.00の範囲内に制御され易い。同様の理由から、MCrC/MMoは0.54~0.89であってもよい。
 粉末組成物におけるニッケルクロム合金粒子の含有率は、粉末組成物の全質量に対して、10~25質量%、又は10~20質量%であってよい。粉末組成物がニッケルクロム合金粒子を含むことにより、摺動等により炭化クロムが溶射被膜10から脱落することを抑制することができる。粉末組成物中のニッケルクロム合金粒子の含有率が10質量%以上である場合、溶射被膜10を構成する成分(特に炭化クロム)の摺動面からの脱落が抑制され易い傾向がある。また、粉末組成物中のニッケルクロム合金粒子の含有率が25質量%以下である場合、耐焼付性が向上し易い傾向がある。
 ニッケルクロム合金粒子のメディアン径は、10~35μm、又は15~30μmであってよい。ニッケルクロム合金粒子のメディアン径が10μm以上である場合、溶射被膜10を構成する成分(特に炭化クロム)の摺動面からの脱落が抑制され易い傾向がある。また、ニッケルクロム合金粒子のメディアン径が35μm以下である場合、溶射被膜10中の組織が緻密となり、溶射被膜10を構成する成分の脱落が抑制され易く、相手材の摩耗が抑制され易い傾向がある。また、溶射被膜10中のニッケルクロム合金が摺動面上に細かく分散し、相手材の摩耗が低減され易い傾向がある。
 粉末組成物は、上記以外の他の成分を含んでいてもよい。他の成分は、例えば、ニッケルクロム合金以外のニッケル合金、コバルト合金、並びに、銅及び銅合金等であってよい。ニッケル合金は、例えばニッケル基自溶性合金であってよい。粉末組成物中の上記他の成分の含有率は、該粉末組成物全量を基準として、1~10質量%程度であればよい。他の成分のメディアン径は特に限定されない。なお、粉末組成物は、不可避的な不純物として上記以外の成分を含むことがある。不純物の含有率は、本発明の効果を阻害しない程度に低ければよい。
 粉末組成物は、溶射装置内で加熱され、基材2の摺動面2aに向けて高速で噴射される。粉末組成物を基材2の摺動面2a上に溶射する方法は、ガスフレーム溶射法、プラズマ溶射法、又は高速フレーム溶射法(HVOF)等であってよい。これらの方法のうちプラズマ溶射法が好ましい。
 プラズマ溶射法では、溶射装置の陽極と陰極との間に高電圧を印加することにより、陽極と陰極の間の気体がプラズマ化される。プラズマ化された気体は加熱され、さらに膨張するため、高温かつ高速で溶射装置から噴出され、プラズマジェット流(プラズマプルーム)をつくる。溶射装置に供給された粉末組成物が上記プラズマジェット流中で加熱及び加速され、基材2に向けて噴射される。加熱及び加速された粒子は、粒子の一部が溶融しているため、基材2に衝突する際に、扁平化して、基材2の摺動面2a上に層状に堆積する。そして、層状に堆積した粒子は基材2上で急冷され、溶射被膜10を形成する。
 プラズマ溶射法によれば、粉末組成物中の粒子を、他の溶射方法よりも高温に加熱することができ、粉末組成物中の各粒子の溶融が促進する傾向がある。このため、プラズマ溶射法により作製された溶射被膜10の基材2の摺動面2aに垂直な断面XY(被膜の厚さ方向に平行な断面)では、層状のモリブデン相11と層状の炭化クロム相12と層状のニッケルクロム合金相13とが堆積し、各相が褶曲して互いに重なり合い、かつ絡み合う組織が形成される傾向がある。そして、溶射被膜10の断面において上記組織が形成されることにより、摺動後も炭化クロム相が溶射被膜10中に保持され易く、また、摺動後の溶射被膜10表面が平滑となり易い傾向がある。したがって、上記プラズマ溶射により得られた溶射被膜10は耐摩耗性に優れ、且つ相手材の摩耗を抑制する。
 プラズマ溶射法において、基材2に衝突させる粒子(プラズマプルーム中を飛行する溶射粒子)の平均速度は、例えば、210m/秒以上、又は215m/秒以上であってよい。溶射粒子の平均速度は、例えば、230m/秒以下、又は226m/秒以下であってよい。プラズマ溶射法において、溶射粒子の平均温度は、例えば、3000℃以上、又は3025℃以上であってよい。プラズマ溶射法において、溶射粒子の平均温度は、例えば、3250℃以下、又は3228℃以下であってよい。基材2に衝突させる粒子の平均速度が210m/秒以上であり、当該粒子の平均温度が3000℃以上である場合、モリブデン粒子が変形し易く、薄いモリブデン相が形成され易く、TCrC/TMoを0.46~1.00の範囲内に制御し易い。
 プラズマ溶射の条件は、上記溶射粒子の平均速度及び平均温度が上記範囲となるように設定される。TCrC/TMoを0.46~1.00の範囲内にある溶射被膜10を製造する場合、プラズマ溶射の電流値(プラズマガス電流)は、例えば、450~550Aであってよく、電力値は、例えば、45~75kWであってよい。
 プラズマ溶射装置中の陽極と陰極の間に供給される気体は、例えば、窒素、アルゴン、水素、又はヘリウム等であってよい。上記気体(プラズマ作動ガス)は1種単独で用いられてもよく、2種を組み合わせて用いられてもよい。プラズマ作動ガスは、窒素とアルゴンの混合ガスであってよい。
 上記プラズマ作動ガスの供給量は、80~160NL/分、又は100~130NL/分であってよい。また、プラズマ作動ガスが、窒素とアルゴンの混合ガスである場合、混合ガス中の窒素の供給量は1~20NL/分であってよい。混合ガス中のアルゴンの供給量は79~140NL/分であってよい。プラズマ作動ガスの供給量が、上記下限値以上である場合、溶射時の粒子に十分な速度を付与できるため、溶射被膜10が緻密になり、溶射被膜10からの各相の脱落が抑制され易い傾向がある。プラズマ作動ガスの供給量が上記上限値以下である場合、溶射時の粒子の速度が大きくなり過ぎず、溶射被膜10が過度に緻密になることが抑制され易い傾向がある。このため、溶射被膜10中の内部応力が小さくなり、溶射被膜10におけるクラックが発生し難い傾向がある。また、粉末組成物中の粒子を十分溶融させることが可能となり、溶融が十分でない粒子の塊(スピッティング)が溶射被膜10中に含まれることが抑制され、溶射被膜10の表面が粗くなることが抑制され易い傾向がある。
 以下に、実施例を挙げて本発明を具体的に説明するが、本発明の範囲はこれらに限定されるものではない。
 (実施例1)
 [摺動部材1の作製]
 一般構造用圧延鋼材(SS400)の板材を、縦5mm、横3.5mm、厚さ8mmの角柱状に切り出すことにより、試験用基材を得た。以下の手順で、溶射被膜を基材の摺動面(縦5mm×横3.5mmの面)に形成した。
 50質量部のモリブデン粒子、15質量部のニッケルクロム合金粒子、及び35質量部の炭化クロム粒子を混合して、粉末組成物Aを得た。モリブデン粒子としては、モリブデン粉を造粒焼結して得られた、パウレックス株式会社製の粒子(商品名:SG-12S)を用いた。造粒前のモリブデン粉(1次粒子)の粒子径は1~3μmであり、造粒後のモリブデン粒子(2次粒子)のメディアン径は31μmであった。ニッケルクロム合金粒子としては、スルザーメテコ社製の粒子(商品名:Metco 43VF-NS)を用いた。ニッケルクロム合金粒子のメディアン径は22μmであった。炭化クロム粒子としては、スルザーメテコ社製の粒子(商品名:Metco 70F)を用いた。炭化クロム粒子のメディアン径は13μmであった。
 プラズマ溶射法により、粉末組成物Aを上記試験用基材の摺動面上に溶射することにより、実施例1の摺動部材を作製した。プラズマ溶射法は、スルザーメテコ社製のプラズマ溶射装置「TriplexPro」を用いて行った。プラズマ溶射は以下の条件下で行った。溶射粒子の平均速度は218m/秒に調整した。溶射粒子の平均温度は3228℃に調整した。溶射粒子の平均速度及び平均温度はオゼール社製の溶射状況解析装置「SprayWatch」(登録商標)を用いて測定した。溶射粒子を衝突させる基材2の摺動面の中央部において、溶射粒子の平均速度及び平均温度を測定した。
電流:450A。
電力:54kW。
キャリアガス(プラズマ作動ガス):ArとNとの混合ガス。
Arガスの流量(供給量):100NL/分。
ガスの流量(供給量):2.2NL/分。
 [摺動部材の構造及び組成の分析]
 走査型電子顕微鏡(SEM)を用いた測定の結果、溶射後の基材の摺動面上に、厚さが約438μmである溶射被膜が形成されていることが確認された。
 実施例1の摺動部材の溶射被膜を、基材の摺動面に対して垂直な方向に切断した。この溶射被膜の断面1における溶射被膜を、SEMに付属のエネルギー分散型X線分光装置(SEM-EDX)により分析した。分析の結果、溶射被膜は、複数のモリブデン相、複数の炭化クロム相、及び複数のニッケルクロム合金相を含むことが確認された。また、SEMによる観察の結果、複数の気孔が溶射被膜中に形成されていることが確認された。
 実施例1の溶射被膜の断面1の反射電子像をSEMで撮影した。溶射被膜の断面1の反射電子像を図4に示す。断面1の反射電子像の倍率は500倍であり、反射電子像の解像度(ピクセル数)は、1280×960ピクセルであった。同様の方法で、基材の摺動面に対して垂直な方向における溶射被膜の断面であって、断面1とは別の部分(断面2)の反射電子像を撮影した。断面2の反射電子像を図5に示す。図4及び5中の白い部分がモリブデン相であり、濃い灰色の部分が炭化クロム相であり、淡い灰色の部分がニッケルクロム合金相であり、黒い部分が気孔である。図4及び5から、層状のモリブデン相、層状の炭化クロム相、層状のニッケルクロム合金相及び気孔がそれぞれ褶曲し、各相及び気孔が摺動面上で堆積していることが確認された。
 実施例1の摺動部材の溶射被膜を、基材の摺動面に対して垂直な方向に切断した。この溶射被膜の断面に属する測定部位a,b,c,d及びeにおける炭素、酸素、モリブデン、クロム及びニッケルそれぞれの含有率を、SEM-EDXにより測定した。測定結果を表3に示す。
 溶射被膜の上記断面1の反射電子像を用いた以下のステップ1~5を実施した。
<ステップ1> 反射電子像におけるコントラスト差に基づき、モリブデン相、炭化クロム相、ニッケルクロム合金相、及び気孔を互いに識別した。
<ステップ2> マスクサイズが3×3ピクセルである大多数フィルタ(Majority Filtering)によって、ノイズを反射電子像から除去した。
<ステップ3> 反射電子像において縦(摺動面に垂直な方向)に並ぶ複数のピクセルからなる1つのピクセル列内に存在する各相の厚さ、及び気孔の幅をそれぞれ個別に積算した。
<ステップ4> 上記の1つのピクセル列内に存在する各相の数、及び気孔の数をそれぞれ個別に数えた。
<ステップ5> 反射電子像において縦(摺動面に垂直な方向)に並ぶ全てのピクセル列において、上記ステップ3及び4を実施した。
 上記断面1の反射電子像を用いたステップ1~5により、モリブデン相の相数NMo、炭化クロム相の相数NCrC、ニッケルクロム合金相の相数NNiCr、気孔の数(N)、モリブデン相の厚さTMo、炭化クロム相の厚さTCrC、ニッケルクロム合金相の厚さTNiCr、及び気孔の幅Dを測定した。これらの断面1に関する測定結果を、表2の断面No.1の行に示す。これらの測定結果に基づき算出したNMo+NCrC+NNiCr+Nを表2に示す。断面1に関する上記測定結果に基づき算出したTMo、TCrC、及びTNiCrの平均値TAVE、及びTCrC/TMoを表2に示す。
 上記断面1の反射電子像の場合と同様の方法で、上記断面2の反射電子像を用いたステップ1~5を実施した。断面2の反射電子像を用いたステップ1~5により、NMo、NCrC、NNiCr、N、TMo、TCrC、TNiCr、及びDを測定した。これらの断面2に関する測定結果を、表2の断面No.2の行に示す。これらの測定結果に基づき算出したNMo+NCrC+NNiCr+Nを表2に示す。断面2に関する上記測定結果に基づき算出したTAVE、及びTCrC/TMoを表2に示す。
 [ビッカース硬さ]
 以下の方法で、実施例1の溶射被膜のビッカース硬さを測定した。
 JIS Z 2244が規定する方法に準じて、ビッカース硬さを測定した。測定にはビッカース硬度計(株式会社アカシ製、商品名:MVK-G2)を用いた。ビッカース硬さの測定において、試験力はHV0.1であり、荷重の保持時間は10秒であった。摺動部材の基材の摺動面に対して垂直な方向における溶射被膜の断面の中央部に位置する20ヵ所のビッカース硬さを測定し、これらの平均値を求めた。ビッカース硬さの平均値を表1に示す。
 [平均摩耗量]
 実施例1の摺動部材の耐摩耗性試験を下記方法で行った。
 図3は、耐摩耗性試験に用いた摩耗量測定装置の側面図である。摩耗量測定装置5では、摺動部材のホルダ6と、相手材であるディスク7とが対向して配置されている。実施例1の2つ摺動部材1を、摩耗ピンとして、ホルダ6の所定の位置に挿入して固定した。ホルダ6に設置された摺動部材1の溶射被膜10を、ディスク7に対向させた。荷重Wをホルダ6にかけて、摺動部材1の溶射被膜10とディスク7とを接触させた。溶射被膜10とディスク7とが接触した状態で、接触面に潤滑油を供給しながら、ディスク7を下記条件にて図3の矢印Rの方向に回転させた。
 <試験条件>
  摩耗ピン(摺動部材)の寸法: 縦5.0mm×横3.5mm×厚さ8.0mm。
       as-coat被膜(溶射後に研磨等の後処理がされていない溶射被膜)(5.0mm×3.5mm)。
  相手材: φが60mmであるディスク(円盤)。
       クロスハッチ仕上げにより調整された算術平均粗さRa:0.2~0.4μm。
       ボロン鋳鉄製(「ターカロイ」(登録商標))。
  ピストンリング1つとディスクとの接触面積: 3.5mm×5mm。
  接触面圧: 94MPa。
  潤滑油: JOMO Delstar F20相当品。
  潤滑油供給: オイル供給(150mL/分)。
  潤滑油温度: 80℃(オイルバス設定)、約65℃(摺動面への供給時)。
  試験方法: 1)荷重500N、相手材回転速度500rpmで5分間慣らし運転。
        2)荷重3300N、相手材回転速度790rpmで60分間本試験。
        3)溶射被膜及び相手材の摩耗量を測定。
        4)1)~3)を再度行う。
 マイクロメータを用いて、耐摩耗性試験前後における、摺動部材1全体の厚さ(基材2と溶射被膜10の厚さの合計値)を測定した。耐摩耗性試験前の摺動部材1の厚さから、耐摩耗性試験後の摺動部材1の厚さを差し引くことにより、溶射被膜10の摩耗量を算出した。溶射被膜毎に耐摩耗性試験を3回行い、得られた溶射被膜の摩耗量の算術平均値を溶射被膜10の平均摩耗量とした。実施例1の溶射被膜の平均摩耗量を表1に示す。
 また、触針式段差計を用いて、耐摩耗性試験後のディスク表面の摺動部(摺動痕)の底面と非摺動部表面との距離(段差)を測定した。この距離(段差)が、相手材の摩耗量である。溶射被膜毎に耐摩耗性試験を3回行い、得られた相手材の摩耗量の算術平均値を相手材の平均摩耗量とした。相手材の平均摩耗量を表1に示す。
 (実施例2~3及び比較例1~4)
 実施例2~3及び比較例1~4其々の摺動部材の作製では、溶射粒子の平均速度及び平均温度を下記表1に記載の値に調整した。
 比較例4では、粉末組成物Aの代わりに粉末組成物Bを用いた。粉末組成物Bは、60質量部のモリブデン粒子と、30質量部のニッケルクロム合金粒子と、10質量部の炭化クロム粒子を含むものであった。
 以上の事項を除いて実施例1と同様の方法で、実施例2~3及び比較例1~4それぞれの摺動部材を作製した。
 実施例1と同様の方法で、各実施例及び比較例の摺動部材の構造及び組成を分析した。分析結果を表1~3に示す。
 実施例1と同様の方法で撮影した実施例2の溶射被膜の断面1の反射電子像を図6に示す。実施例1と同様の方法で撮影した実施例2の溶射被膜の断面2の反射電子像を図7に示す。
 実施例1と同様の方法で撮影した実施例3の溶射被膜の断面1の反射電子像を図8に示す。実施例1と同様の方法で撮影した実施例3の溶射被膜の断面2の反射電子像を図9に示す。
 実施例1と同様の方法で撮影した比較例1の溶射被膜の断面1の反射電子像を図10に示す。実施例1と同様の方法で撮影した比較例1の溶射被膜の断面2の反射電子像を図11に示す。
 実施例1と同様の方法で撮影した比較例2の溶射被膜の断面1の反射電子像を図12に示す。実施例1と同様の方法で撮影した比較例2の溶射被膜の断面2の反射電子像を図13に示す。
 実施例1と同様の方法で撮影した比較例3の溶射被膜の断面1の反射電子像を図14に示す。実施例1と同様の方法で撮影した比較例3の溶射被膜の断面2の反射電子像を図15に示す。
 実施例1と同様の方法で撮影した比較例4の溶射被膜の断面1の反射電子像を図16に示す。実施例1と同様の方法で撮影した比較例4の溶射被膜の断面2の反射電子像を図17に示す。
 図6~17に示すように、実施例2~3及び比較例1~4それぞれの摺動部材はいずれも、基材と、基材の摺動面上に形成された溶射被膜と、を備え、溶射被膜がモリブデン相、炭化クロム相及びニッケルクロム合金相を含み、モリブデン相、炭化クロム相、ニッケルクロム合金相及び気孔が基材の摺動面上に堆積していることが確認された。
 実施例1と同様の方法で、他の実施例及び比較例其々の溶射被膜のビッカース硬さを測定した。測定結果を表1に示す。
 実施例1と同様の方法で、他の実施例及び比較例其々の摺動部材を用いた耐摩耗性試験を行い、各溶射被膜の平均摩耗量及び相手材の平均摩耗量を測定した。測定結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
 TCrC/TMoが0.46~1.00である実施例1~3では、比較例1~4に比べて、耐摩耗性試験後の溶射被膜の摩耗量が小さく、且つ、相手材の摩耗量を小さいことが確認された。
 実施例1~3及び比較例1~3の溶射被膜はいずれも粉末組成物Aから形成されたにもかかわらず、比較例3では、実施例1~3及び比較例1~2の溶射被膜ほどの微細な組織が得られなかった(図4~15を参照。)。表2に示すように、比較例3の溶射被膜では、実施例1~3及び比較例1~2と比べて、各相の平均厚さが大きく、平均相数が少なかった。比較例3と実施例1~3及び比較例1~2との違いは、比較例3では溶射粒子の平均速度が小さかったことに起因する、と考えられる。比較例3では、実施例1~3及び比較例1~2に比べて、溶射被膜及び相手材の平均摩耗量が大きかった。これは、比較例3の溶射被膜の組織は微細でなかったため、アブレシブ摩耗が発生したことに起因する、と考えられる。
 本発明に係る摺動部材は、例えば、自動車又は船舶等のエンジン用のピストンリングに適用される。
 1…摺動部材(ピストンリング)、2…基材、2a…摺動面、5…摩耗量測定装置、6…ホルダ、7…ディスク、10…溶射被膜、11…モリブデン相、12…炭化クロム相、13…ニッケルクロム合金相、14…気孔。

Claims (6)

  1.  基材と、前記基材の摺動面上に形成された溶射被膜と、を備え、
     前記溶射被膜が、モリブデン相、炭化クロム相及びニッケルクロム合金相を含み、
     前記モリブデン相、前記炭化クロム相及び前記ニッケルクロム合金相が前記基材の摺動面上に堆積し、
     前記基材の摺動面に対して垂直な方向における前記炭化クロム相の厚さの平均値がTCrCであり、
     前記基材の摺動面に対して垂直な方向における前記モリブデン相厚さの平均値がTMoであるとき、
     TCrC/TMoが、0.46~1.00である、
     摺動部材。
  2.  前記TMoが、1.4~4.2μmであり、
     前記TCrCが、1.1~2.2μmである、
     請求項1に記載の摺動部材。
  3.  気孔が前記溶射被膜内に形成されており、
     前記モリブデン相、前記炭化クロム相、前記ニッケルクロム合金相及び前記気孔が前記摺動面上で重なっており、
     前記摺動面上で重なった、前記モリブデン相、前記炭化クロム相、前記ニッケルクロム合金相及び前記気孔の数の合計が、前記摺動面に垂直な方向における前記溶射被膜の単位厚さ当たり、48/(100μm)~71/(100μm)である、
     請求項1又は2に記載の摺動部材。
  4.  前記溶射被膜中のモリブデン原子の含有率が、37~51質量%であり、
     前記溶射被膜中のクロム原子の含有率が、19~32質量%であり、
     前記溶射被膜中のニッケル原子の含有率が、6~13質量%であり、
     前記溶射被膜中の炭素原子の含有率が、10~14質量%である、
     請求項1~3のいずれか一項に記載の摺動部材。
  5.  前記溶射被膜の平均硬さが、400~900HV0.1である、
     請求項1~4のいずれか一項に記載の摺動部材。
  6.  請求項1~5のいずれか一項に記載の摺動部材を備える、
     ピストンリング。
PCT/JP2015/062857 2014-05-08 2015-04-28 摺動部材及びピストンリング WO2015170648A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020167031843A KR101839718B1 (ko) 2014-05-08 2015-04-28 접동 부재 및 피스톤 링
CN201580023774.9A CN106255774B (zh) 2014-05-08 2015-04-28 滑动构件和活塞环
DK15789908.9T DK3141628T3 (en) 2014-05-08 2015-04-28 Sliding element and piston ring
EP15789908.9A EP3141628B1 (en) 2014-05-08 2015-04-28 Sliding member and piston ring

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-096857 2014-05-08
JP2014096857A JP6416498B2 (ja) 2014-05-08 2014-05-08 摺動部材及びピストンリング

Publications (1)

Publication Number Publication Date
WO2015170648A1 true WO2015170648A1 (ja) 2015-11-12

Family

ID=54392500

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/062857 WO2015170648A1 (ja) 2014-05-08 2015-04-28 摺動部材及びピストンリング

Country Status (6)

Country Link
EP (1) EP3141628B1 (ja)
JP (1) JP6416498B2 (ja)
KR (1) KR101839718B1 (ja)
CN (1) CN106255774B (ja)
DK (1) DK3141628T3 (ja)
WO (1) WO2015170648A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6985961B2 (ja) * 2017-03-28 2021-12-22 日本ピストンリング株式会社 ピストンリング及びその製造方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63190154A (ja) * 1987-01-30 1988-08-05 Riken Corp 耐摩耗表面層及びその形成方法
JPH04175577A (ja) * 1990-11-07 1992-06-23 Toyota Motor Corp 摺動部材

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2825884B2 (ja) * 1989-11-29 1998-11-18 株式会社リケン ピストンリング及びその製造方法
JPWO2004035852A1 (ja) * 2002-10-15 2006-02-16 株式会社リケン ピストンリング及びそれに用いる溶射皮膜、並びに製造方法
JP2005155711A (ja) 2003-11-21 2005-06-16 Riken Corp 溶射ピストンリング及びその製造方法
US20050260436A1 (en) * 2004-05-24 2005-11-24 Einberger Peter J Wear resistant coating for piston rings
JP2007314839A (ja) * 2006-05-26 2007-12-06 Riken Corp ピストンリング用溶射皮膜及びそのピストンリング
JP5689735B2 (ja) 2010-07-29 2015-03-25 日本ピストンリング株式会社 ピストンリング

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63190154A (ja) * 1987-01-30 1988-08-05 Riken Corp 耐摩耗表面層及びその形成方法
JPH04175577A (ja) * 1990-11-07 1992-06-23 Toyota Motor Corp 摺動部材

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3141628A4 *

Also Published As

Publication number Publication date
DK3141628T3 (en) 2019-02-11
JP2015214719A (ja) 2015-12-03
EP3141628A1 (en) 2017-03-15
KR101839718B1 (ko) 2018-03-16
EP3141628B1 (en) 2018-10-17
CN106255774B (zh) 2019-07-26
CN106255774A (zh) 2016-12-21
EP3141628A4 (en) 2017-11-01
KR20160145145A (ko) 2016-12-19
JP6416498B2 (ja) 2018-10-31

Similar Documents

Publication Publication Date Title
JP5793205B2 (ja) ピストンリング用溶射被膜、ピストンリング、及びピストンリング用溶射被膜の製造方法
EP2413006B1 (en) Piston ring
EP2402474B1 (en) Piston ring
WO2015170648A1 (ja) 摺動部材及びピストンリング
JP4174496B2 (ja) 耐摩耗性溶射皮膜の形成方法及び溶射機
JP2005305449A (ja) 熱間加工用工具
JP6411875B2 (ja) ピストンリング及びその製造方法
JP6985961B2 (ja) ピストンリング及びその製造方法
JP6447859B2 (ja) 溶射皮膜被覆部材および溶射皮膜の製造方法
CN108265260A (zh) 一种镍铬硼硅耐磨耐疲劳涂层的制备方法
JP7105909B2 (ja) 摺動部材用溶射被膜及び該摺動部材用溶射被膜を備える摺動装置
KR100379015B1 (ko) 마찰계수가 큰 싱크로나이저 링 코팅방법
KR20230162694A (ko) 용사 피막, 슬라이딩 부재 및 피스톤 링
JP2024043784A (ja) 摺動部品及び摺動部品の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15789908

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20167031843

Country of ref document: KR

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2015789908

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015789908

Country of ref document: EP