WO2015166551A1 - 視覚機能計測装置 - Google Patents

視覚機能計測装置 Download PDF

Info

Publication number
WO2015166551A1
WO2015166551A1 PCT/JP2014/061942 JP2014061942W WO2015166551A1 WO 2015166551 A1 WO2015166551 A1 WO 2015166551A1 JP 2014061942 W JP2014061942 W JP 2014061942W WO 2015166551 A1 WO2015166551 A1 WO 2015166551A1
Authority
WO
WIPO (PCT)
Prior art keywords
subject
eyeball
display device
target
eye
Prior art date
Application number
PCT/JP2014/061942
Other languages
English (en)
French (fr)
Inventor
史敬 須藤
健三 山中
伸司 木村
毅 大仲
Original Assignee
株式会社クリュートメディカルシステムズ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社クリュートメディカルシステムズ filed Critical 株式会社クリュートメディカルシステムズ
Priority to PCT/JP2014/061942 priority Critical patent/WO2015166551A1/ja
Publication of WO2015166551A1 publication Critical patent/WO2015166551A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B3/00Apparatus for testing the eyes; Instruments for examining the eyes
    • A61B3/02Subjective types, i.e. testing apparatus requiring the active assistance of the patient
    • A61B3/024Subjective types, i.e. testing apparatus requiring the active assistance of the patient for determining the visual field, e.g. perimeter types
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B3/00Apparatus for testing the eyes; Instruments for examining the eyes
    • A61B3/10Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions
    • A61B3/14Arrangements specially adapted for eye photography

Definitions

  • the present invention relates to a visual function measuring device used for inspection of visual functions such as the visual field of eyes.
  • a visual function measuring device used for examination of visual functions such as the visual field of the eye measures the sensitivity characteristics of the visual function by measuring the response of the subject's eye to the brightness and size of the stimulus target displayed on the display device. Is.
  • the subject needs to keep fixing the fixation target presented at the center of the field of view at all times during the measurement.
  • the perimeter monitors the movement of the subject's eyes, and if the subject senses that he / she has shifted his / her line of sight, the data for the period in which the line of sight has been shifted is not adopted, However, there is a problem that it takes time for the inspection.
  • a perimeter As an apparatus for solving such a problem, a perimeter has been proposed that presents a visual target at a new position in accordance with a gaze shift, as well as determining whether data is adopted or not based on a fixation state. .
  • a visual function measuring device for example, perimeters described in Patent Document 1 (Japanese Patent Laid-Open No. 8-140933), Patent Document 2 (Japanese Patent No. 4113005), and the like are known.
  • Patent Document 1 uses a flat display for the presentation of the target, and adapts the stimulus target on the display device to a new position in accordance with the eye movement, and captures the eye movement.
  • the displacement of the anterior segment image is used.
  • patent document 2 is another example which adapts the stimulus target on a display apparatus to a new position according to eye movement, using a flat display for presentation of a target, and catches eye movement. The displacement of the fundus image is used.
  • JP-A-8-140933 Japanese Patent No. 4113005
  • the above-described conventional apparatus has the following problems. That is, in the conventional device, the stimulus target on the display device is moved according to the eye movement and adapted to the new position, so that the stimulus target is displayed over a relatively wide range on the display device. become. For this reason, there is a problem that an optical system for forming a clear optical image in a wide range is required, leading to an increase in the cost of the optical system.
  • Means for solving the above-described problems are as follows.
  • An optotype display device An optical system for transmitting an image displayed on the target display device to the retina of the eye of the subject;
  • a reflective optical member disposed on the optical axis of the optical system and having the rotation center positioned at a position optically conjugate with the eyeball center of the subject, and configured to be rotatable around the rotation center
  • An eyeball observation device that detects movement of the eye of the subject by detecting a change in the retinal image of the subject and / or a change in the pupil of the subject;
  • the reflection optical member is rotationally controlled in synchronization with the eye movement detected by the eye observation device, thereby correcting the optical axis of the optical system, so that the subject can perform a predetermined operation regardless of the movement of the eyeball.
  • a reflective optical member control device that performs control such that a portion on which the target is presented on the retina is determined when gazing at the target;
  • a visual function measuring device comprising: (2) The visual function measuring device according to (1), wherein the eyeball observation device is a pupil observation camera. (3) The visual function measuring device according to (1), wherein the eyeball observation device is a fundus observation camera.
  • the optical axis is corrected by rotating the reflecting optical member whose rotation center is positioned optically conjugate with the eyeball center of the subject in synchronization with the eyeball movement of the eye. Regardless of the movement of the eyeball, the positional relationship with the visual target on the partial display device on which the visual target is presented on the retina is determined, and the positional relationship between the two can always be made constant. That is, the optical axis can be corrected by hardware without changing the visual target display position on the display device with respect to the line-of-sight shift caused by the rotational movement of the eyeball in the visual inspection. Thereby, since it is not necessary to repeat the measurement, the inspection efficiency is increased as compared with the inspection by a general perimeter. In addition, since it does not depend on the response speed of the display device, the quality of the inspection is not lowered.
  • FIG. 1 is a diagram showing an overall configuration of a visual function measuring device according to an embodiment of the present invention.
  • a visual function measuring device according to an embodiment of the present invention will be described with reference to FIG.
  • the visual function measuring device transmits a target display device 10 and an image displayed on the target display device 10 to the retina 21 of the eyeball 20 of the subject.
  • a reflection optical member 40 provided so that the rotation center 20a of the eye of the subject and the rotation center 40a are in an optically conjugate position.
  • the target display device 10 displays a desired target, for example, an arbitrary figure or symbol including a fixation target such as a cross or a stimulus target for visual field inspection, and is configured by a liquid crystal display device or the like. Is done.
  • the visual target display device 10 is connected to a control unit 11, and the control unit 11 is connected to a computer 72 and a monitor 73 via an interface 71. Therefore, the target display device 10 displays necessary targets, arbitrary types of symbols, and the like in accordance with instructions from the computer 72, and can freely control the position, color, brightness, movement, and the like of these display images. It has become.
  • the optical system 30 is an optical system that forms an image of the target display device 10 on the retina 21 of the eyeball 20 of the subject, and includes a lens 31, a beam splitter 32, a reflective optical member 40, a lens group 33, and a hole. A mirror 35 and a lens 34 are provided.
  • the lens 31 is a condenser lens that guides the divergent light from the target display device 10 to the reflective optical member 40
  • the lens group 33 is used to conjugate the rotational center of the reflective optical member 40 and the eyeball.
  • the lens 33b is a conjugate position adjusting lens, and the lens 34 adjusts the diopter of the action of condensing the light from the light source 50 toward the pupil 22 and the target display light emitted from the relay lens. It is a lens that has the effect of emitting toward the eye to be examined.
  • the beam splitter 32 allows the light from the lens 31 to pass, reflects the light coming from the opposite side, travels in the direction of approximately 90 °, and enters the beam splitter 60a. Part of the light incident on the beam splitter 60a passes through the lens 60b and enters the video camera 61 for retinal observation. The other part of the light incident on the beam splitter 60a is reflected and travels in the direction of approximately 90 °, and enters the video camera 62 for pupil observation.
  • a video camera 61 for retinal observation takes an image of the retina 21, and a video camera 62 for observing the pupil takes an image of the pupil 23, and sends each image signal to the computer 72 via the interface 71.
  • the computer 72 captures the image signal of the video camera 61 for retinal observation, detects the movement of the fundus of the subject from the retinal image, that is, translates and rotates in the image plane online, and performs arithmetic processing, The rotation angle of the eyeball 20 is measured, and the reflective optical member 40 is controlled according to the angle.
  • the computer 72 takes in the image signal of the video camera 62 for observing the pupil, analyzes the iris image, the pupil image, the pupil diameter, the miosis / mydriasis and other pupil movements, etc., and performs arithmetic processing. It is also possible to measure the rotation angle and control the reflective optical member 40 according to the angle. These controls are executed by a control program inputted in advance to the computer 72 together with various automatic optometry processing programs. Usually, the movement of the eyeball 20 is detected by the video camera 61 for retinal observation, and the reflection optics. The member 40 is controlled.
  • a method for measuring eye movement for example, there is a method of applying a pattern matching method to a fundus image. This is because, for example, the following evaluation amount R (x, y, x *, y *) or / and C (x, y, x) is applied to the fundus image captured by the video camera 61 for retinal observation by the arithmetic processing means. *, Y *) is calculated.
  • F (x, y) is the luminance value at the coordinates (x, y) of the retina image before the eye movement
  • G (x *, y *) is the coordinates (x *, y *) of the retina image after the eye movement.
  • the luminance values at F, F bar and G bar are average luminance values in the matching area of the pre-exercise and post-exercise images.
  • a portion of the retina image before exercise is used as a template to perform raster scan in the post-exercise image, find a position that minimizes R or / and maximizes C, and converts it to a movement amount.
  • the pupil center coordinates of the pupil image uses a video camera 62 for observing the pupil that captures an image of the pupil 23 of the eyeball 20 as the eye movement measuring means.
  • the eye movement is measured by calculating the eye rotation angle from the pupil center of gravity position with respect to the reference position in the pupil observation image by the calculation unit.
  • the measurement of the center of gravity of the pupil is performed by calculating the center of gravity of the contour detected by the calculation unit after the pupil image acquired by the imaging unit is detected by the image processing means.
  • the subject look at a specific position, measure the center of gravity of the pupil at that time, correct the personal parameters, and measure / store the reference position.
  • the position shown to the subject is the front of the eye to be measured and any other single or plural positions
  • the reference position is the center of gravity of the pupil on the observation image when the subject stares at the front
  • the other positions are The personal parameters are corrected based on the position of the center of gravity of the pupil when staring and the reference position.
  • the reflective optical member 40 reflects both the light coming from the visual target display device 10 and the light coming from the retina 21 and travels in a predetermined direction.
  • the reflective optical member 40 is controlled by the control unit 41 and centered on the rotation center 40a.
  • the rotation can be freely controlled in any direction. By this rotation control, a portion where the visual target is presented on the retina when the subject gazes at the predetermined visual target is determined.
  • FIG. 2 is a diagram showing the configuration of the reflective optical member 40.
  • the reflecting optical member 40 is configured to be rotatable around two axes O1 and O2 that pass through the rotation center 40a and are orthogonal to each other, and the reflection mirror 40b is formed on the rotation axis 40c.
  • the rotating shaft 40c is fixedly supported, is rotatably supported by the arcuate frame 40d, and the arcuate frame 40d is fixed to the rotating shaft 40e.
  • the rotating shaft 40c is supported by the arcuate frame 40d so as to be rotatable about the axis O2, and is rotationally driven by a stepping motor 40f fixed to the arcuate frame 40d, and the reflecting mirror 40b. Is rotated around the axis O2.
  • the rotating shaft 40e is fixed to the rotating shaft of the stepping motor 40g and is driven to rotate, and rotates the arcuate frame 40d around the axis O1.
  • Stepping motors 40g and 40f are controlled by a control unit 41, and the control unit 41 is connected to a computer 72 and a monitor 73 via an interface 71. Therefore, the reflection mirror 40b can be freely controlled to rotate at an arbitrary angle in an arbitrary direction around the rotation center 40a.
  • the mirror 35 reflects the light emitted from the light source 50 that emits infrared light or the like and passes through the lens 51, and is converged by the lens 34 to illuminate the retina 21 of the eyeball 20 of the subject.
  • a control line of the light source 50 is connected to the interface 71, and on / off, brightness, and the like are controlled based on a command from the computer 72.
  • the lens group 33 includes a plurality of lenses 33a, 33b, 33c, and the like.
  • the lens group 33 is configured so that the lens 33b can be moved in the optical axis direction, thereby rotating the eyeball 20 of the subject.
  • the center 20a and the rotation center 40a of the reflective optical member 40 can be set so as to have an optically conjugate positional relationship.
  • a light source device 52 for pupil illumination is provided in the vicinity of the lens 34.
  • the light source device 52 is in communication with a computer 72 through an interface 71, and is turned on / off or controlled by a command from the computer 72.
  • a response switch 80 is provided in the vicinity of the subject.
  • This response switch 80 can also send a signal to the computer 72 through the interface 71. That is, for example, when the subject operates the button 81 of the response switch 80 when he / she can visually recognize the stimulus target, the computer 72 receives the visual signal and performs predetermined processing, for example, a part of the sensitivity map of the retina. The creation process is performed.
  • the visual function measuring device described above it is possible to perform dynamic quantitative visual field inspection, static quantitative visual field inspection, fundus visual field inspection (microperimetry), electroretinography (ERG) and other inspections.
  • static quantitative visual field inspection there are a subjective inspection and an objective inspection, and any type of inspection can be performed.
  • Static quantitative visual field inspection is the following inspection. In other words, if you place a target at one point in the field of view and gradually increase its brightness, it will become visible when it reaches a certain brightness, so the value corresponding to the brightness when it becomes visible In this test, retinal sensitivity at a point is used, the same measurement is performed for each point in the field of view, the difference in retinal sensitivity in the field of view is quantitatively examined, and a map is created.
  • the subjective examination is performed as follows. That is, the visual target for visual field inspection is displayed on the visual target display device 10 in accordance with an instruction from the computer 72.
  • the subject looks at the target with the eyeball 20 facing the target.
  • the target display device 10 gradually increases the brightness of the target point corresponding to the point to be measured in the visual field.
  • the subject since it becomes visible to the subject at a certain brightness, the subject operates the button 81 of the response switch 80 when it becomes visible.
  • the computer 72 performs a predetermined process, and sets the value corresponding to the brightness of the target point at that time as the sensitivity of the retina at that point.
  • the same measurement is performed for each point in the visual field, the difference in retinal sensitivity in the visual field is quantitatively examined, and a sensitivity map of the retina is created.
  • the objective test is performed as follows. That is, the visual target for visual field inspection is displayed on the visual target display device 10 in accordance with an instruction from the computer 72.
  • the subject looks at the target with the eyeball 20 facing the target.
  • the target display device 10 gradually increases the brightness of the target point corresponding to the point to be measured in the visual field. If it does so, a target will become visible to a subject when it becomes a certain brightness.
  • the change in pupil diameter that changes according to the brightness is detected by the computer 72 through image analysis through the video camera 62, and a predetermined process is performed, and a value corresponding to the brightness of the target point at that time is obtained.
  • Sensitivity on the retina Then, the same measurement is automatically performed one after another for each point in the field of view, the difference in sensitivity on the retina in the field of view is quantitatively examined, and a sensitivity map on the retina is automatically created. .
  • the video camera 61 detects a change in the retinal image when the line of sight changes, and controls the rotation of the reflective optical member 40 so as to compensate for the movement. It is possible to compensate for the change and prevent the possibility of a measurement error due to a change in line of sight.
  • FIG. 3 to 5 are explanatory diagrams of the visual function measuring device according to the present embodiment.
  • the visual function measuring device according to the present embodiment uses an optical system 30 including lenses 31, 33, 33 and the like to display an image of a visual target displayed on the visual target display device 10.
  • the retinal image and the pupil image are observed by the video cameras (61, 62) for observing the eyeball.
  • the present invention is applied to static quantitative visual field inspection.
  • the present invention is not limited to this, and other visual function measurements that may cause measurement errors due to eyeball rotation. It can also be applied to devices.
  • the present invention can be applied to dynamic quantitative visual field inspection, fundus visual field inspection (microperimetry), electroretinography (ERG), and other inspections.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Medical Informatics (AREA)
  • Biophysics (AREA)
  • Ophthalmology & Optometry (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Physics & Mathematics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Eye Examination Apparatus (AREA)

Abstract

 光学系のコストアップの虞がなく、かつ、表示装置に液晶表示装置など応答速度が遅い装置を採用した場合でもそれによる測定誤差を生じさせる虞のない視覚機能検査装置を提供する。視標表示装置と、前記視標表示装置に表示される像を被検者の眼の網膜へ伝達するための光学系と、前記光学系の光軸上に配置され、前記被検者の眼球中心と光学的に共役な位置にその回転中心を位置させた反射光学部材であって、前記回転中心を中心に回転可能に構成された反射光学部材と、前記被検者の網膜像の変化及び/又は被検者の瞳孔の変化を検知することで、前記被検者の眼の動きを検知する眼球観察装置と、前記眼球観察装置によって検知された眼球運動に同期させて前記反射光学部材を回転制御することにより、前記光学系の光軸を補正し、前記眼球の運動如何にかかわらず被検者が所定の視標を注視する際に網膜上において視標が呈示される部分が定まるような制御を行う反射光学部材制御装置と、を備えることを特徴とする視覚機能計測装置を提供する。

Description

視覚機能計測装置
 本発明は、眼の視野等の視覚機能の検査に用いられる視覚機能計測装置に関する。
 眼の視野等の視覚機能の検査に用いられる視覚機能計測装置は、表示装置に表示する刺激視標などの輝度と大きさに対する被験眼の応答を測定して視覚機能の感度特性などを測定するものである。ここで、一般的な視野計による視覚機能検査においては、被験者は測定中常に視界の中央に呈示される固視標を固視し続ける必要がある。
 このような一般的な視野系の場合、視野計は被験者の眼の動きをモニタリングしていて、被験者が視線をずらしたと感知した場合、視線をずらしていた期間のデータを採用せず、固視が改善してからその期間に行った測定を後からやり直すというものであり、検査に時間を要するという問題があった。
 そのような問題を解決する装置として、単に固視状態によってデータの採用/不採用を判断するのみならず、視線のずれに合わせて視標を新たな位置に呈示する視野計が提案されている。そのような視覚機能計測装置としては、例えば、特許文献1(特開平8-140933号公報)、特許文献2(特許第4113005号公報)等に記載の視野計が知られている。
 このうち、特許文献1に記載のものは、視標の呈示に平面ディスプレイを用い、眼球運動に合わせて表示装置上の刺激視標を新しい位置に適応させるようにしたもので、眼球運動を捉えるのに前眼部画像の変位を用いているものである。また、特許文献2に記載のものは、視標の呈示に平面ディスプレイを用い、眼球運動に合わせて表示装置上の刺激視標を新しい位置に適応させる別の例であり、眼球運動を捉えるのに眼底画像の変位を用いているものである。
特開平8-140933号公報 特許第4113005号公報
 ところで、本発明者らの研究によれば、上述の従来の装置においても、以下の問題のあることが判明した。すなわち、従来の装置では、眼球運動に合わせて表示装置上の刺激視標を移動させて新しい位置に適応させるようにしているので、表示装置上の比較的広い範囲にわたって刺激視標を表示することになる。このため、その広い範囲の鮮明な光学像を形成するための光学系が必要となり、光学系のコストアップにつながるという問題がある。
 また、例えば、表示装置として液晶表示装置を採用したような場合には、表示デバイスの応答速度の限界により視線の素早い動きに追従しきれないおそれがあったり、残像が発生して測定誤差を引き起こす虞があるなどの問題がある。
 本発明の目的は、光学系のコストアップの虞がなく、かつ、表示装置に液晶表示装置など応答速度が遅い装置を採用した場合でもそれによる測定誤差を生じさせる虞のない視覚機能検査装置を提供することにある。
 上述の課題を解決するための手段は以下の通りである。
(1)
 視標表示装置と、
 前記視標表示装置に表示される像を被検者の眼の網膜へ伝達するための光学系と、
 前記光学系の光軸上に配置され、前記被検者の眼球中心と光学的に共役な位置にその回転中心を位置させた反射光学部材であって、前記回転中心を中心に回転可能に構成された反射光学部材と、
 前記被検者の網膜像の変化及び/又は被検者の瞳孔の変化を検知することで、前記被検者の眼の動きを検知する眼球観察装置と、
 前記眼球観察装置によって検知された眼球運動に同期させて前記反射光学部材を回転制御することにより、前記光学系の光軸を補正し、前記眼球の運動如何にかかわらず前記被検者が所定の視標を注視する際に網膜上において視標が呈示される部分が定まるような制御を行う反射光学部材制御装置と、
を備えることを特徴とする視覚機能計測装置。
(2)
 前記眼球観察装置は、瞳孔観察カメラであることを特徴とする(1)に記載の視覚機能計測装置。
(3)
 前記眼球観察装置は、眼底観察カメラであることを特徴とする(1)に記載の視覚機能計測装置。
 上述の手段によれば、被検者の眼球中心と光学的に共役な位置にその回転中心を位置させた反射光学部材を、被検眼の眼球運動に同期させて回転させて光軸を補正し、眼球の運動にかかわらず網膜上において視標が呈示される部分表示装置上の視標との位置関係が定まり、両者の位置関係を常に一定にできる。すなわち、視覚検査における眼球の回転運動に伴う視線のズレを、表示デバイス上の視標表示位置を変えないまま、光軸をハードウェア的に補正できる。これにより、測定をやり直す必要がないため一般の視野計による検査に比べ検査の効率が高まる。また、表示デバイスの応答速度に左右されることがないので検査の質を下げることがない。
本発明の実施の形態にかかる視覚機能計測装置の全体構成を示す図である。 本発明の実施の形態にかかる視覚機能計測装置の説明図である。 本発明の実施の形態にかかる視覚機能計測装置の説明図である。 本発明の実施の形態にかかる視覚機能計測装置の説明図である。 本発明の実施の形態にかかる視覚機能計測装置の説明図である。
 図1は本発明の実施の形態にかかる視覚機能計測装置の全体構成を示す図である。以下、図1を参照にしながら本発明の実施の形態にかかる視覚機能計測装置を説明する。
 図1に示されるように、本実施の形態にかかる視覚機能計測装置は、視標表示装置10と、視標表示装置10に表示される像を被検者の眼球20の網膜21に伝達するための光学系30と、前記被検者の眼の回旋中心20aとその回転中心40aとが光学的に共役な位置になるように設けられた反射光学部材40とを有する。
 視標表示装置10は、所望の視標、例えば、十字形などの固視標や視野検査のための刺激視標を含む任意の図形や記号などを表示するもので、液晶表示装置などで構成される。視標表示装置10は、制御部11に接続され、制御部11はインターフェース71を介してコンピュータ72及びモニター73に接続されている。したがって、視標表示装置10は、コンピュータ72の指令に従って、必要な視標や任意の種類の記号などを表示し、また、それら表示像の位置や色、輝度、動きなどを自在に制御できるようになっている。
 光学系30は、視標表示装置10の像を、被検者の眼球20の網膜21に結像させる光学系であり、レンズ31、ビームスプリッタ32、反射光学部材40、レンズ群33、孔あきミラー35及びレンズ34を備える。各レンズの一例を挙げると、レンズ31は、視標表示装置10からの発散光を反射光学部材40に導くコンデンサーレンズ、レンズ群33は、反射光学部材40と眼球の回転中心を共役にするためのリレーレンズ群であり、レンズ33bは共役位置調整用レンズ、レンズ34は、光源50からの光を瞳22に向け集光する作用とリレーレンズ出射後の視標表示光を視度調節して披検眼に向け射出する作用を併せ持つレンズである。
 ビームスプリッタ32は、レンズ31からの光を通過させるとともに、反対側からくる光を反射してほぼ90°方向に進行させてビームスプリッタ60aに入射させる。ビームスプリッタ60aに入射した光の一部は、透過してレンズ60bを通過し、網膜観察用のビデオカメラ61に入射する。ビームスプリッタ60aに入射した光の他の一部は、反射されてほぼ90°方向に進行し、瞳孔観察用のビデオカメラ62に入射する。
 網膜観察用のビデオカメラ61は、網膜21の像を撮影し、また、瞳孔観察用のビデオカメラ62は、瞳孔23の像を撮影して、それぞれの画像信号をインターフェース71を
介してコンピュータ72に送信する。コンピュータ72は、網膜観察用のビデオカメラ61の画像信号を取り込み、網膜像から被検者の眼底の動き、すなわち、画像平面内での平行移動や回転などをオンラインで検出して演算処理し、眼球20の回転角度を計測してその角度に応じて反射光学部材40を制御する。
 また、コンピュータ72は、瞳孔観察用のビデオカメラ62の画像信号を取り込み、虹彩像、瞳孔像、瞳孔径、縮瞳/散瞳その他の瞳孔の動きなどを解析して演算処理し、眼球20の回転角度を計測してその角度に応じて反射光学部材40を制御することもできるようになっている。なお、これらの制御は、各種自動検眼処理プラグラムなどとともに、コンピュータ72にあらかじめインプットされている制御プログラムによって実行され、通常は、網膜観察用のビデオカメラ61によって眼球20の動きが検知されて反射光学部材40が制御されるようになっている。
 眼球運動の測定の方法としては、例えば、眼底画像に対してパターンマッチング法を適用する方法などがある。これは、網膜観察用のビデオカメラ61によって撮影される眼底画像に対し、演算処理手段によって例えば次の評価量R(x,y,x*,y*)または/およびC(x,y,x*,y*)を算出する。
Figure JPOXMLDOC01-appb-M000001
 ここでF(x,y)は眼球運動前の網膜画像の座標(x,y)における輝度値、G(x*,y*)は眼球運動後の網膜画像の座標(x*,y*)における輝度値、FバーおよびGバーは運動前および運動後画像のマッチング領域内の輝度平均値である。運動前の網膜画像の一部をテンプレートとして運動後画像内をラスタスキャンさせ、Rを最小にする、または/およびCを最大にする位置を探し出し、移動量に換算する。
 また、他の眼球運動の測定の方法としては、例えば、瞳孔画像の瞳孔中心座標を用いる方法がある。これは、眼球運動測定手段として、眼球20の瞳孔23の像を撮影する瞳孔観察用のビデオカメラ62を用いるものである。キャリブレーション実施後、瞳孔観察画像における基準位置に対する瞳孔重心位置から眼球回旋角度を演算部によって算出することで眼球運動の測定を行う。瞳孔重心位置の測定は、撮影部によって取得した瞳孔画像を画像処理手段によって瞳孔の輪郭を検出した後、演算部によって検出した輪郭の重心位置を算出することで行う。
 キャリブレーションでは、被検者に特定位置を見てもらい、そのときの瞳孔重心位置を測定して個人パラメータの補正及び基準位置の測定・保存を行う。例えば被検者に見せる位置は被測定眼の正面とそれ以外の任意の単数または複数位置であり、基準位置は被験者が正面を凝視したときの観察画像上の瞳孔重心位置とし、その他の位置を凝視したときの瞳孔重心位置と基準位置とによって個人パラメータを補正する。
 反射光学部材40は、視標表示装置10から来る光及び網膜21から来る光の双方を反射して所定の方向に進行させるものであり、制御部41に制御されて回転中心40aを中心にして任意の方向に自在に回転制御ができるようになっている。この回転制御により、被検者が所定の視標を注視する際に網膜上において視標が呈示される部分が定まる。
 図2は反射光学部材40の構成を示す図である。図2に示されるように、反射光学部材40は、いずれも回転中心40aを通るとともに互いに直交する2つの軸O1,O2を中心に回転可能に構成されもので、反射ミラー40bが回転軸40cに固定支持され、この回転軸40cが円弧状枠体40dに回転自在に支持され、この円弧状枠体40dが回転軸40eに固定されたものである。
 回転軸40cは軸O2を中心に回転可能に円弧状枠体40dに支持されているものであって円弧状枠体40dに固定されたステッピングモーター40fによって回転駆動されるものであり、反射ミラー40bを軸O2を中心にして回転させるものである。また、回転軸40eはステッピングモーター40gの回転軸に固定されて回転駆動されるものであり、円弧状枠体40dを軸O1を中心にして回転させるものである。
 ステッピングモーター40g、40fは、制御部41によって制御され、制御部41は、インターフェース71を介してコンピュータ72及びモニター73に接続されている。したがって、反射ミラー40bは回転中心40aを中心に任意の向きに任意の角度だけ自在に回転制御できるようになっている。
 ミラー35は、赤外光などを出射する光源50から出射してレンズ51を通過した光を反射し、レンズ34によって収束させて被検者の眼球20の網膜21を照明するものである。光源50は、その制御ラインがインターフェース71に接続され、コンピュータ72の指令に基づいてオン・オフや輝度などが制御されるようになっている。
 レンズ群33は、複数のレンズ33a、33b、33cなどで構成され、一部のレンズ、例えば、レンズ33bを光軸方向に移動できるように構成することなどによって、被検者の眼球20の回旋中心20aと反射光学部材40の回転中心40aとを光学的に共役な位置関係になるように設定できるようになっている。なお、レンズ34の近傍には、瞳孔照明用の光源装置52が設けられている。この光源装置52は、その制御部がインターフェース71を通じてコンピュータ72に連絡され、コンピュータ72の指令によってオン・オフ制御や光量制御などがなされるようになっている。
 また、被検者の近傍には、応答スイッチ80が設けられている。この応答スイッチ80も、インターフェース71を通じてコンピュータ72に信号を送ることができるようになっている。すなわち、被検者が、例えば、刺激視標を視認できたときに応答スイッチ80のボタン81を操作すると、コンピュータ72が視認信号を受けて所定の処理、例えば、網膜の感度マップの一部の作成処理などを行うものである。
 上述の視覚機能計測装置によれば、動的量的視野検査、静的量的視野検査、眼底視野検査(マイクロペリメトリー)、網膜電図検査(ERG)その他の検査を行うことが可能であるが、以下では、静的量的視野検査を行う場合について説明する。静的量的視野検査については、自覚式検査と他覚式検査があり、いずれの方式の検査も行うことができる。
 静的量的視野検査は、次のような検査である。すなわち、視野内の一点に視標をおいて、その明るさを徐々に増していくと、ある明るさになると見えるようになるので、見えるようになったときの明るさに対応する値をその点における網膜感度とし、視野内の各点について同じ測定を行って、視野内の網膜感度の相違を量的に調べ、マップを作成することなどを行う検査である。
 まず、自覚式検査は、次のようにして行われる。すなわち、コンピュータ72の指令により、視標表示装置10に視野検査用の視標が表示される。被検者は、眼球20をこの視標に向けてその視標を見る。視標表示装置10は、視野の測定すべき点に対応する視標の点の明るさを徐々に増していく。そうすると、ある明るさになると被検者に見えるようになるので、見えるようになったときに被検者が応答スイッチ80のボタン81を操作するようにする。これによって、コンピュータ72は、所定の処理をして、その時の視標の点の明るさに対応する値をその点の網膜の感度とする。そして、視野内の各点について同じ測定を行って、視野内の網膜感度の相違を量的に調べ、網膜の感度マップを作成していくものである。
 他覚式検査は、次のようにして行われる。すなわち、コンピュータ72の指令により、視標表示装置10に視野検査用の視標が表示される。被検者は、眼球20をこの視標に向けてその視標を見る。視標表示装置10は、視野の測定すべき点に対応する視標の点の明るさを徐々に増していく。そうすると、ある明るさになると視標が被検者に見えるようになる。明るさに応じて変化する瞳孔径の変化を、ビデオカメラ62を通じてコンピュータ72が画像解析によって検知し、所定の処理をして、その時の視標の点の明るさに対応する値をその点の網膜上の感度とする。そして、視野内の各点について同じ測定を自動的に次々と行って、視野内の網膜上の感度の相違を量的に調べ、網膜上の感度マップを自動的に作成していくものである。
 上述の検査において、検査中に、眼球20がその回旋中心20aを中心にして回転することで、視界の中央に提示される固視標を固視している視線が変化した場合、本実施の形態にかかる視覚機能計測装置は、その視線の変化の際の網膜像の変化をビデオカメラ61が検知して、その動きを補償するように、反射光学部材40を回転制御することによって、視線の変化を補償し、視線の変化による測定誤差の虞を防止できるようになっている。
 図3~図5は本実施の形態にかかる視覚機能計測装置の説明図である。図3に示されるように、本実施の形態にかかる視覚機能計測装置は、視標表示装置10に表示された視標の像を、レンズ31、33,33などからなる光学系30によって、眼球20の網膜に結像させ、その一方で、眼球観察用のビデオカメラ(61,62)によって、網膜像や瞳孔像を観察するものである。
 図4に示されるように、眼球20が図の矢印で示したように回転(回旋)すると、網膜21に結像している視標の結像位置が移動することになる。そうすると、図5に示されるように、網膜観察用ビデオカメラ61がその結像位置が移動したことを検知し、その動きを補償して結像位置が変化しないように、反射光学部材40を回転制御する。これにより、視標表示装置上の視標の位置を移動させるなどのことをすることなく、視線の動きを自動的に補償することを可能にしているものである。
 これによって、光学系のコストアップの虞を防止し、表示装置に液晶表示装置など応答速度が遅い装置を採用した場合にも、それによる測定誤差を生じさせる虞も除去可能としているものである。
 以上の説明は、本発明を静的量的視野検査に適用する場合の例について述べたが、本発明はこれに限られるものではなく、眼球の回旋によって測定誤差が生じうる他の視機能計測装置にも適用できる。例えば、動的量的視野検査、眼底視野検査(マイクロペリメトリー)、網膜電図検査(ERG)その他の検査にも適用できることは勿論である。
10 視標表示装置
20 眼球
21 網膜
22 虹彩
23 瞳孔
30 光学系
31、34 レンズ
33 レンズ群
40 反射光学部材
61 網膜観察用ビデオカメラ
62 瞳孔観察用ビデオカメラ
72 コンピュータ

Claims (3)

  1.  視標表示装置と、
     前記視標表示装置に表示される像を被検者の眼の網膜へ伝達するための光学系と、
     前記光学系の光軸上に配置され、前記被検者の眼球中心と光学的に共役な位置にその回転中心を位置させた反射光学部材であって、前記回転中心を中心に回転可能に構成された反射光学部材と、
     前記被検者の網膜像の変化及び/又は被検者の瞳孔の変化を検知することで、前記被検者の眼の動きを検知する眼球観察装置と、
     前記眼球観察装置によって検知された眼球運動に同期させて前記反射光学部材を回転制御することにより、前記光学系の光軸を補正し、前記眼球の運動如何にかかわらず被検者が所定の視標を注視する際に網膜上において視標が呈示される部分が定まるような制御を行う反射光学部材制御装置と、
    を備えることを特徴とする視覚機能計測装置。
  2.  前記眼球観察装置は、瞳孔観察カメラであることを特徴とする請求項1に記載の視覚機能計測装置。
  3.  前記眼球観察装置は、眼底観察カメラであることを特徴とする請求項1に記載の視覚機能計測装置。
PCT/JP2014/061942 2014-04-30 2014-04-30 視覚機能計測装置 WO2015166551A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/061942 WO2015166551A1 (ja) 2014-04-30 2014-04-30 視覚機能計測装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/061942 WO2015166551A1 (ja) 2014-04-30 2014-04-30 視覚機能計測装置

Publications (1)

Publication Number Publication Date
WO2015166551A1 true WO2015166551A1 (ja) 2015-11-05

Family

ID=54358304

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/061942 WO2015166551A1 (ja) 2014-04-30 2014-04-30 視覚機能計測装置

Country Status (1)

Country Link
WO (1) WO2015166551A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2634682C1 (ru) * 2016-06-15 2017-11-02 Алексей Павлович Ермолаев Портативное устройство для исследования зрительных функций
JP2020521620A (ja) * 2018-04-03 2020-07-27 林 臣LIN, Chen 視野計

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005013474A (ja) * 2003-06-26 2005-01-20 Canon Inc 眼底測定装置及び眼底血流計
JP2011206519A (ja) * 2010-03-12 2011-10-20 Canon Inc 眼科装置及びその制御方法
JP2013180127A (ja) * 2012-03-02 2013-09-12 Nidek Co Ltd 眼科撮影装置
JP2013180126A (ja) * 2012-03-02 2013-09-12 Nidek Co Ltd 眼科撮影装置
JP2013248259A (ja) * 2012-06-01 2013-12-12 Canon Inc 測定装置、眼科撮影装置、制御方法及びプログラム

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005013474A (ja) * 2003-06-26 2005-01-20 Canon Inc 眼底測定装置及び眼底血流計
JP2011206519A (ja) * 2010-03-12 2011-10-20 Canon Inc 眼科装置及びその制御方法
JP2013180127A (ja) * 2012-03-02 2013-09-12 Nidek Co Ltd 眼科撮影装置
JP2013180126A (ja) * 2012-03-02 2013-09-12 Nidek Co Ltd 眼科撮影装置
JP2013248259A (ja) * 2012-06-01 2013-12-12 Canon Inc 測定装置、眼科撮影装置、制御方法及びプログラム

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2634682C1 (ru) * 2016-06-15 2017-11-02 Алексей Павлович Ермолаев Портативное устройство для исследования зрительных функций
JP2020521620A (ja) * 2018-04-03 2020-07-27 林 臣LIN, Chen 視野計

Similar Documents

Publication Publication Date Title
US8491122B2 (en) Arrangement for attaining high-precision measurements of an eye
US11330978B2 (en) Subjective optometry apparatus, subjective optometry method, and recording medium storing subjective optometry program
WO2006030658A1 (ja) 視野計
US11013400B2 (en) Ophthalmic apparatus
JP2020054784A (ja) 眼科装置
JP2018047049A (ja) 自覚式検眼装置、及び自覚式検眼プログラム
JP6062225B2 (ja) 視覚機能計測装置
JP2016193067A (ja) 視野計
JP6853496B2 (ja) 検眼装置及び検眼プログラム
JPH11225964A (ja) 眼科検査装置
JP7143577B2 (ja) 眼科装置
WO2015166551A1 (ja) 視覚機能計測装置
JP7283391B2 (ja) 眼屈折力測定装置
WO2015166549A1 (ja) 視覚機能計測装置
JP7024304B2 (ja) 眼科装置
JP2018038481A (ja) 自覚式検眼装置及び自覚式検眼プログラム
JP2023024700A (ja) 眼科装置
WO2016167091A1 (ja) 視覚検査装置、視覚検査装置の視標補正方法、および表示装置
JP7322357B2 (ja) 眼科装置及び眼科システム
JP2018038788A (ja) 自覚式検眼装置及び自覚式検眼プログラム
JP2020137915A (ja) 自覚式検眼装置及び自覚式検眼プログラム
JP7298134B2 (ja) 検眼システム
JP5986491B2 (ja) 視覚機能計測装置
US20230218167A1 (en) Ophthalmic apparatus
JP7227811B2 (ja) 眼科装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14890821

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC. EPO FORM 1205A DATED13.02.2017

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 14890821

Country of ref document: EP

Kind code of ref document: A1