WO2015165254A1 - 协同通信的方法、云端服务器和核心网服务器 - Google Patents

协同通信的方法、云端服务器和核心网服务器 Download PDF

Info

Publication number
WO2015165254A1
WO2015165254A1 PCT/CN2014/091754 CN2014091754W WO2015165254A1 WO 2015165254 A1 WO2015165254 A1 WO 2015165254A1 CN 2014091754 W CN2014091754 W CN 2014091754W WO 2015165254 A1 WO2015165254 A1 WO 2015165254A1
Authority
WO
WIPO (PCT)
Prior art keywords
wireless network
bandwidth
data packet
data
network
Prior art date
Application number
PCT/CN2014/091754
Other languages
English (en)
French (fr)
Inventor
薛黎
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to KR1020157025834A priority Critical patent/KR101693282B1/ko
Priority to US14/830,986 priority patent/US9854472B2/en
Publication of WO2015165254A1 publication Critical patent/WO2015165254A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L65/00Network arrangements, protocols or services for supporting real-time applications in data packet communication
    • H04L65/1066Session management
    • H04L65/1083In-session procedures
    • H04L65/1095Inter-network session transfer or sharing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L45/00Routing or path finding of packets in data switching networks
    • H04L45/24Multipath
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L47/00Traffic control in data switching networks
    • H04L47/10Flow control; Congestion control
    • H04L47/24Traffic characterised by specific attributes, e.g. priority or QoS
    • H04L47/2416Real-time traffic
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L65/00Network arrangements, protocols or services for supporting real-time applications in data packet communication
    • H04L65/60Network streaming of media packets
    • H04L65/61Network streaming of media packets for supporting one-way streaming services, e.g. Internet radio
    • H04L65/612Network streaming of media packets for supporting one-way streaming services, e.g. Internet radio for unicast
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L65/00Network arrangements, protocols or services for supporting real-time applications in data packet communication
    • H04L65/60Network streaming of media packets
    • H04L65/75Media network packet handling
    • H04L65/762Media network packet handling at the source 
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L65/00Network arrangements, protocols or services for supporting real-time applications in data packet communication
    • H04L65/80Responding to QoS
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N21/00Selective content distribution, e.g. interactive television or video on demand [VOD]
    • H04N21/20Servers specifically adapted for the distribution of content, e.g. VOD servers; Operations thereof
    • H04N21/23Processing of content or additional data; Elementary server operations; Server middleware
    • H04N21/238Interfacing the downstream path of the transmission network, e.g. adapting the transmission rate of a video stream to network bandwidth; Processing of multiplex streams
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N21/00Selective content distribution, e.g. interactive television or video on demand [VOD]
    • H04N21/20Servers specifically adapted for the distribution of content, e.g. VOD servers; Operations thereof
    • H04N21/23Processing of content or additional data; Elementary server operations; Server middleware
    • H04N21/24Monitoring of processes or resources, e.g. monitoring of server load, available bandwidth, upstream requests
    • H04N21/2402Monitoring of the downstream path of the transmission network, e.g. bandwidth available
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N21/00Selective content distribution, e.g. interactive television or video on demand [VOD]
    • H04N21/40Client devices specifically adapted for the reception of or interaction with content, e.g. set-top-box [STB]; Operations thereof
    • H04N21/45Management operations performed by the client for facilitating the reception of or the interaction with the content or administrating data related to the end-user or to the client device itself, e.g. learning user preferences for recommending movies, resolving scheduling conflicts
    • H04N21/462Content or additional data management, e.g. creating a master electronic program guide from data received from the Internet and a Head-end, controlling the complexity of a video stream by scaling the resolution or bit-rate based on the client capabilities
    • H04N21/4622Retrieving content or additional data from different sources, e.g. from a broadcast channel and the Internet
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N21/00Selective content distribution, e.g. interactive television or video on demand [VOD]
    • H04N21/60Network structure or processes for video distribution between server and client or between remote clients; Control signalling between clients, server and network components; Transmission of management data between server and client, e.g. sending from server to client commands for recording incoming content stream; Communication details between server and client 
    • H04N21/63Control signaling related to video distribution between client, server and network components; Network processes for video distribution between server and clients or between remote clients, e.g. transmitting basic layer and enhancement layers over different transmission paths, setting up a peer-to-peer communication via Internet between remote STB's; Communication protocols; Addressing
    • H04N21/631Multimode Transmission, e.g. transmitting basic layers and enhancement layers of the content over different transmission paths or transmitting with different error corrections, different keys or with different transmission protocols
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/08Load balancing or load distribution
    • H04W28/0846Load balancing or load distribution between network providers, e.g. operators
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L47/00Traffic control in data switching networks
    • H04L47/10Flow control; Congestion control
    • H04L47/38Flow control; Congestion control by adapting coding or compression rate
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/0226Traffic management, e.g. flow control or congestion control based on location or mobility

Definitions

  • the present invention relates to the field of communications, and more particularly to a method of cooperative communication, a cloud server, and a core network server.
  • the existing wireless local area network the second generation mobile communication (The Second Generation, 2G) network
  • the Third Generation, referred to as 3G) network or the commercial layout of LTE (Long Term Evolution , Long Term Evolution (LTE) networks are expanding the bandwidth of our wireless networks.
  • LTE Long Term Evolution
  • LTE Long Term Evolution
  • wireless transmission performance is unstable due to instability of the wireless network itself, isolation of various wireless networks, and the like, and wireless bandwidth cannot be Meet the needs of smooth data transmission in real time.
  • the embodiment of the invention provides a method for cooperative communication, a cloud server and a core network server, which can integrate the bandwidth resources of the wireless network of different communication protocols, thereby realizing the smooth transmission of real-time data.
  • a method for cooperative communication is provided, where the method is performed by a cloud server, and the cloud server is connected to multiple core networks, the method includes: determining a bandwidth of a first wireless network currently accessed by the user equipment UE; determining Bandwidth required for data to be sent to the UE; when the first wireless network When the bandwidth of the network cannot meet the bandwidth required for the data to be transmitted, the first part of the data packet is sent to the first wireless network, and the second part of the data packet is sent to the at least one core network, so that the at least one core network passes through the at least one wireless network.
  • the UE sends a second partial data packet, where the first partial data packet and the second partial data packet belong to the data to be sent, and the first wireless network is different from the communication protocol of the at least one wireless network.
  • the method further includes Sending a request message to at least one core network server of the at least one core network, where the request message is used to request at least one core network to provide bandwidth support, where the request message carries the identifier of the UE and the cell location information of the UE; and receives at least one core network server to send
  • the feedback information includes the bandwidth provided by the at least one wireless network; determining the first partial data packet and the second partial data packet according to the bandwidth provided by the at least one wireless network and the bandwidth of the first wireless network.
  • the data to be sent includes at least: a data packet of a first compression ratio and a data packet of a second compression ratio, where the first compression ratio is smaller than the second compression.
  • Rate the bandwidth required for the data to be transmitted includes: the bandwidth required for the data packet of the first compression rate of the data to be transmitted, when the bandwidth provided by the at least one wireless network and the bandwidth of the first wireless network satisfy the data to be transmitted
  • the bandwidth of the first compression rate packet is required
  • the first partial data packet and the second partial data packet belong to the data packet of the first compression ratio, when the bandwidth provided by the at least one wireless network and the bandwidth of the first wireless network
  • some or all of the data packets of the first partial data packet and the second partial data packet belong to the data packet of the second compression ratio.
  • the method further includes: receiving, by the UE, a performance parameter of the first wireless network, where The bandwidth of the incoming first wireless network includes determining the bandwidth of the first wireless network according to the performance parameter of the first wireless network.
  • a second aspect provides a method for coordinating communication, the method comprising: receiving a request message sent by a cloud server, where the request message is used to request bandwidth support, where the request message includes an identifier of the user equipment UE and cell location information of the UE; The request message determines the wireless bandwidth that the wireless network can provide for the UE; sends a feedback message to the cloud server, and the feedback message carries the wireless bandwidth.
  • determining, according to the request message, that the wireless network that the wireless network can provide for the UE includes: according to the location information of the cell where the UE is located, Determining the wireless network where the UE is located; establishing a connection with the base station in the wireless network; and obtaining, from the base station, the wireless bandwidth that the wireless network can provide for the UE.
  • the method further includes: receiving data sent by the cloud server; sending the data to the wireless network to UE.
  • a cloud server is provided, where the cloud server is connected to a plurality of core networks, and the cloud server includes: a determining module, configured to determine a bandwidth of the first wireless network currently accessed by the user equipment UE, and is further used for determining The bandwidth required for the data to be sent to the UE; the sending module, configured to send the first part of the data packet to the first wireless network when the bandwidth determined by the determining module that the bandwidth of the first wireless network cannot meet the data to be sent, And sending, to the at least one core network, the second part of the data packet, so that the at least one core network sends the second part of the data packet to the UE by using the at least one wireless network, where the first part of the data packet and the second part of the data packet belong to the data to be sent, first The wireless network is different from the communication protocol of at least one wireless network.
  • the sending module is further configured to: when the bandwidth of the first wireless network cannot meet the bandwidth required for the data to be sent, to the first wireless network Before sending the first part of the data packet, sending a request message to the at least one core network server of the at least one core network, where the request message is used to request at least one core network to provide bandwidth support, where the request message carries the identifier of the UE and the cell location information of the UE, where
  • the cloud server further includes: a receiving module, configured to receive feedback information sent by the at least one core network server, where the feedback information includes bandwidth provided by the at least one wireless network, where the determining module is further configured to use the bandwidth and the first provided according to the at least one wireless network The bandwidth of the wireless network determines the first part of the data packet and the second part of the data packet.
  • the data to be sent includes at least: a data packet of a first compression ratio and a data packet of a second compression ratio,
  • the first compression ratio is smaller than the second compression ratio
  • the bandwidth required for the data to be transmitted includes: a bandwidth required by the data packet of the first compression rate of the data to be transmitted, the bandwidth provided by the at least one wireless network, and the first wireless network.
  • the first partial data packet and the second partial data packet belong to the first compression rate data packet, when at least one wireless network provides the bandwidth and the bandwidth of a wireless network cannot meet the bandwidth required by the data packet of the first compression rate of the data to be transmitted, some or all of the data packets of the first partial data packet and the second partial data packet belong to the second compression ratio. Packet.
  • the receiving module is further configured to receive performance parameters of the first wireless network reported by the UE
  • the determining module is specifically configured to determine a bandwidth of the first wireless network according to a performance parameter of the first wireless network.
  • the fourth aspect provides a core network server, where the core network server includes: a receiving module, configured to receive a request message sent by the cloud server, where the request message is used to request bandwidth support, where the request message includes an identifier of the user equipment UE and the UE a cell location information, a determining module, configured to determine, according to the request message, a wireless bandwidth that the wireless network can provide for the UE, and a sending module, configured to send a feedback message to the cloud server, where the feedback message carries the wireless bandwidth.
  • a receiving module configured to receive a request message sent by the cloud server, where the request message is used to request bandwidth support, where the request message includes an identifier of the user equipment UE and the UE a cell location information
  • a determining module configured to determine, according to the request message, a wireless bandwidth that the wireless network can provide for the UE
  • a sending module configured to send a feedback message to the cloud server, where the feedback message carries the wireless bandwidth.
  • the determining module includes: a determining unit, configured to determine, according to cell location information of the UE, a wireless network where the UE is located; and a connecting unit, configured to communicate with the wireless network
  • the base station in the connection establishes a connection
  • the acquiring unit is configured to acquire, from the base station, a wireless bandwidth that the wireless network can provide for the UE.
  • the receiving module is further configured to receive data sent by the cloud server, and the sending module is further configured to: Send to the UE over the wireless network.
  • FIG. 1 is a schematic flow chart of a method of cooperative communication in accordance with one embodiment of the present invention.
  • FIG. 2 is a schematic flow chart of a method of cooperative communication according to another embodiment of the present invention.
  • FIG. 3 is a schematic flowchart of a method of cooperative communication according to another embodiment of the present invention.
  • FIG. 4 is a schematic flow chart of a method of cooperative communication according to another embodiment of the present invention.
  • FIG. 5 is a schematic block diagram of a cloud server according to an embodiment of the present invention.
  • FIG. 6 is a schematic block diagram of a core network server in accordance with one embodiment of the present invention.
  • FIG. 7 is a schematic block diagram of a determining module of a core network server according to an embodiment of the present invention.
  • FIG. 8 is a schematic block diagram of a cloud server according to another embodiment of the present invention.
  • FIG. 9 is a schematic block diagram of a core network server in accordance with another embodiment of the present invention.
  • GSM Global System of Mobile communication
  • CDMA Code Division Multiple Access
  • WCDMA Wideband Code Division Multiple Access
  • GPRS General Packet Radio Service
  • LTE Long Term Evolution
  • FDD Frequency Division Duplex
  • TDD Time Division Duplex
  • UMTS Universal Mobile Telecommunication System
  • WiMAX Worldwide Interoperability for Microwave Access
  • Embodiments of the invention may be used in wireless networks of different communication protocols.
  • a wireless access network may include different network elements in different systems.
  • the network elements of the radio access network in LTE and LTE-A include an eNB (eNodeB, an evolved base station), and the network elements of the radio access network in WCDMA include an RNC (Radio Network Controller) and a NodeB, and wireless
  • the network element in the local area network includes an access point (AP).
  • AP access point
  • WiMax Worldwide Interoperability for Microwave Access
  • the related modules in the base station system may be different, and the embodiment of the present application is not limited.
  • the user equipment may be, but not limited to, a mobile station (MS, Mobile Station), a mobile terminal (Mobile Terminal), a mobile phone (Mobile Telephone), a mobile phone (handset). And portable devices, etc., the user equipment can be connected to the radio access network (RAN, Radio Access Network)
  • the plurality of core networks communicate, for example, a computer, etc., and the user equipment can also be a portable, pocket, handheld, computer built-in or vehicle-mounted mobile device.
  • the user equipment may be a mobile telephone (or "cellular" telephone), a computer with wireless communication capabilities, etc., and the user equipment may also be a portable, pocket, handheld, computer built-in or in-vehicle mobile device.
  • FIG. 1 shows a schematic flowchart of a method 100 for cooperative communication according to an embodiment of the present invention.
  • the method 100 may be performed by a cloud server connected to multiple core networks.
  • method 100 includes the following.
  • the wireless network may be a wireless local area network, or may be a 2G, 3G, or LTE network.
  • the cloud server can determine the bandwidth of the wireless network according to the monitoring parameters of the wireless network and the related computing model.
  • the data can be real-time data such as high definition, standard definition multimedia, and the like.
  • the data to be transmitted may be data to be transmitted in the next time frame.
  • the bandwidth required for data transmitted to the UE in the next time frame may be determined according to the playback progress of the multimedia real-time data.
  • the bandwidth of the first wireless network cannot meet the bandwidth required by the data to be sent, send the first part of the data packet to the first wireless network, and send the second part of the data packet to the at least one core network, so that the at least one The core network sends the second partial data packet to the UE by using at least one wireless network, where the first partial data packet and the second partial data packet belong to the data to be sent, and the communication protocol between the first wireless network and the at least one wireless network different.
  • the at least one wireless network is coupled to the at least one core network.
  • the at least one wireless network can be a 2G network, a 3G network, or an LTE network.
  • the method for cooperative communication when the bandwidth of the currently accessed wireless network cannot satisfy the bandwidth required for data transmission, by requesting bandwidth support from the core network, part of the data is transmitted by the core network through the wireless network connected thereto.
  • the network sends to the user equipment, which can integrate the bandwidth resources of the wireless network of different communication protocols, thereby enabling smooth data transmission.
  • the method 100 when the bandwidth of the first wireless network cannot meet the bandwidth required by the data to be transmitted, before sending the first partial data packet to the first wireless network, the method 100 also includes the following.
  • each core network has a core network server.
  • each core network server may determine the bandwidth that the wireless network connected to the core network can provide according to the identifier of the UE carried in the request message and the location information of the cell where the UE is located.
  • the cloud server determines, according to the bandwidth fed back by the core network server, data sent by the core network to the UE through the wireless network connected thereto.
  • the data to be sent in 120 includes at least a data packet of a first compression ratio and a data packet of a second compression ratio, where the first compression ratio is smaller than the second compression ratio.
  • the bandwidth required for the data to be transmitted in 130 includes the bandwidth required for the data packet of the first compression rate of the data to be transmitted.
  • the first partial data packet and the second partial data packet belong to the first a compression rate data packet; the first partial data packet and the bandwidth required when the bandwidth provided by the at least one wireless network and the bandwidth of the first wireless network cannot satisfy the data packet of the first compression rate of the data to be transmitted Some or all of the data packets of the second partial data packet belong to the data packet of the second compression ratio.
  • the same content data in the cloud server is stored in HD or SD or other versions.
  • the cloud server can be packaged according to different compression ratios to meet different network quality requirements.
  • Real-time data is stored in a sub-package when stored in the cloud and tagged.
  • the information of the tag includes: the content of the data packet, the compression rate classification, the relative order, the size and the like.
  • the cloud server may send the UE to the UE by using the first wireless network and the at least one wireless network.
  • a packet with a low compression ratio When the sum of the bandwidth of the first wireless network and the bandwidth provided by the at least one wireless network cannot satisfy the bandwidth required for the data packet of the low compression rate, if the cloud server still sends the low compression to the UE through the first wireless network and the at least one wireless network Rate packets, it will be difficult to ensure the smoothness of the data.
  • the cloud server can The UE sends a partial low compression rate data packet and a partial high compression rate data packet; or the cloud server can send a high compression rate data packet to the UE, and no longer send a low compression rate data packet.
  • data packets of different compression ratios are transmitted according to the bandwidth that each wireless network can provide, and data fluency can be ensured.
  • the cloud server can divide the data A into n parts, and each piece of data is compressed at a compression rate a, and is sub-packaged as Aa1 to Aan; and compressed at a compression rate b, and sub-packaged as Ab1 to Abn.
  • compression storage may be performed at other compression rates c, d, .
  • Data B is stored in packets in the same manner. Regardless of which compression ratio is compressed, the data source of each compressed packet is the same, that is, the content of the different frame rate or image quality (1080p/1080i/720p, etc.) is consistent at the time of packetization. In this way, when the quality of the wireless network changes, the cloud server can select different compression rate data packets according to the change of the wireless network without affecting the data consistency after demodulation.
  • a number of data packets can be accommodated in one time frame.
  • the data in each frame may be a data packet of the same compression rate or a data packet of different compression ratios.
  • the cloud server sends packets with lower compression ratio (such as better image quality) or wider bandwidth requirements (such as high-definition media).
  • the bandwidth of the wireless network cannot meet the bandwidth required for packets with low compression ratio (such as better image quality) or bandwidth requirements (such as high-definition media)
  • the UE After receiving the data packet, the UE combines and decodes each data packet according to the label information of the data packet to obtain the required real-time data.
  • the bandwidth a is the bandwidth required for high-definition compressed data streams or low-compression rate packets in the next time frame, that is, the maximum data bandwidth that the wireless network needs to satisfy.
  • the wireless bandwidth is affected, and the bandwidth of the core network is introduced to meet the needs of the wireless network data bandwidth ⁇ .
  • the cloud server recalculates and selects to transmit part or all of the standard compressed data stream or the smaller traffic data stream or the high compression rate data packet.
  • the length of the time frame in the embodiment of the present invention should be consistent with the buffer time that the user equipment can provide, so that the user can smoothly meet the requirements of smooth playback.
  • the method of cooperative communication in the embodiment of the present invention can change the quality of the wireless network. Timely, real-time data can be transmitted smoothly to meet the best experience of customers.
  • the method 100 further includes: receiving, by the UE, a performance parameter of the first wireless network that is reported by the UE, and correspondingly determining, in the 110, the first, according to the performance parameter of the first wireless network.
  • the bandwidth of the wireless network is not limited to: receiving, by the UE, a performance parameter of the first wireless network that is reported by the UE, and correspondingly determining, in the 110, the first, according to the performance parameter of the first wireless network. The bandwidth of the wireless network.
  • the performance parameter may include a Received Signal Strength Indication (RSSI) and a packet length of the wireless network.
  • RSSI Received Signal Strength Indication
  • the WLAN automatically adjusts the data bandwidth (ie, the transmission rate) according to the RSSI that can be received by the Access Point (AP) side.
  • RSSI determines the maximum rate that the physical layer can now get.
  • the cloud server also performs statistics and monitoring on the packet length.
  • the highest physical rate of 54Mbps transmission is taken as an example. Generally, in an ideal environment, the highest throughput is shown in Table 1.
  • Theoretical maximum transmission rate (1500 Byte message) 22Mbps assumes that the proportion of packets is a% Theoretical maximum transmission rate (512 Byte packets) 14Mbps assumes that the proportion of packets is b% Theoretical maximum transmission rate (88Byte message) 3.2Mbps assumes that the proportion of packets is c%
  • the total throughput that an AP can provide is A*a%+B*b%+C*c% (multiple APs still have co-channel interference, and bandwidth will continue to drop), where A, B, and C are different.
  • the cloud counts the number of packets of different lengths and calculates the proportion of packets.
  • long message bandwidth utilization is high.
  • the algorithm rules are the same as above.
  • the cloud server can confirm the network quality of the channel of the UE in the next time frame in combination with the relevant model.
  • the method for cooperative communication in the embodiment of the present invention the bandwidth of the currently accessed wireless network
  • the bandwidth required for data transmission cannot be satisfied, by requesting bandwidth support from the core network, part of the data is sent from the core network to the user equipment through the wireless network connected thereto, and the bandwidth resources of the wireless network of different communication protocols can be integrated, thereby realizing Smooth transfer of data.
  • FIG. 3 shows a schematic flow diagram of a method 300 of cooperative communication in accordance with another embodiment of the present invention.
  • Method 300 can be performed by a core network server, as shown in FIG. 3, and method 300 includes the following.
  • the method for system communication can integrate the bandwidth support request of the wireless network of different communication protocols by receiving and responding to the bandwidth support request of the cloud server, thereby enabling smooth data transmission.
  • the method may include: determining, according to cell location information of the UE, a wireless network where the UE is located; establishing a connection with a base station in the wireless network; and acquiring, by the base station, the wireless network, The wireless bandwidth provided by the UE.
  • the method 300 further includes: receiving data sent by the cloud server, and sending the data to the UE by using the wireless network.
  • the core network server feeds back to the cloud server whether bandwidth support can be provided according to the setting of the core network. If bandwidth support is available, the core network server further confirms the available bandwidth and feeds back to the cloud server, and the cloud server determines the data packet sent to the core network server.
  • the method for system communication can integrate the bandwidth support request of the wireless network of different communication protocols by receiving and responding to the bandwidth support request of the cloud server, thereby enabling smooth data transmission.
  • FIG. 4 shows a schematic flow diagram of a method 400 of cooperative communication in accordance with an embodiment of the present invention.
  • the first wireless network is the wireless local area network A
  • the cloud side server is connected to the core networks B, C, and D.
  • Core networks B, C, and D are each connected to a wireless network, for example, the wireless network can be a 2G, 3G, or LTE network.
  • the cloud server separately packages the data streams to be sent to the UE according to different compression rates to meet different network quality requirements. That is, the same content data is stored in HD or SD or other versions. Real-time data is stored in a sub-package when stored in the cloud and tagged.
  • the information of the tag includes: information about the content, classification, relative order, size, and the like of the data packet.
  • the UE establishes a wireless connection in the wireless local area network A.
  • the UE collects the performance parameters of the WLAN A, and reports the data to the cloud server in real time through the AP.
  • the cloud server estimates the network quality of the wireless local area network A of the next time frame according to the data reported in real time and the related computing model.
  • the cloud server calculates a required bandwidth of the next time frame according to the real-time data stream sent to the UE.
  • the UE performs data transmission with the cloud server through the wireless local area network A, and the cloud server continues to monitor the network performance of the wireless local area network A according to the performance parameter of the wireless local area network A reported by the UE in real time.
  • the cloud server requests support from the core network B, C, and D, and provides related data of the UE (such as an identifier of the UE and location information of the cell where the UE is located).
  • the core network server sends the data packet to the UE by using the serving base station of the UE in the wireless network connected thereto.
  • the UE After receiving the data packets from different wireless networks, the UE combines and decodes each data packet according to the packet header information to obtain the required real-time data.
  • the method for cooperative communication when the bandwidth of the currently accessed wireless network cannot satisfy the bandwidth required for data transmission, by requesting bandwidth support from the core network, part of the data is transmitted by the core network through the wireless network connected thereto.
  • the network sends to the user equipment, which can integrate the bandwidth resources of the wireless network of different communication protocols, thereby enabling smooth data transmission.
  • FIG. 4 is intended to help those skilled in the art to better understand the embodiments of the present invention and not to limit the scope of the embodiments of the present invention. Those skilled in the art according to the given FIG. 4 For example, it is obvious that various modifications or changes can be made without departing from the scope of the embodiments of the invention.
  • FIG. 5 shows a schematic block diagram of a cloud server 500 according to an embodiment of the present invention.
  • the cloud server 500 includes a determining module 510 and a sending module 520.
  • the determining module 510 is configured to determine a bandwidth of the first wireless network that the user equipment UE is currently accessing, and is also used to determine a bandwidth required for data to be sent to the UE;
  • the sending module 520 is configured to: when the determining, by the module 510, that the bandwidth of the first wireless network cannot meet the bandwidth required by the data to be sent, send the first part of the data packet to the first wireless network, and send the data packet to the at least one core network. a second part of the data packet, so that the at least one core network sends the second partial data packet to the UE by using at least one wireless network, where the first partial data packet and the second partial data packet belong to the data to be sent, the first wireless The network is different from the communication protocol of the at least one wireless network.
  • the cloud server in the embodiment of the present invention sends part of the data from the core network to the user through the other wireless network by requesting bandwidth support from the core network.
  • the device can integrate the bandwidth resources of other wireless networks, so that the data can be transmitted smoothly.
  • the cloud server 500 further includes: a receiving module 530.
  • the sending module 520 is further configured to: when the bandwidth of the first wireless network cannot meet the bandwidth required for the data to be sent, to the at least one core network server of the at least one core network before sending the first part of the data packet to the first wireless network And sending a request message, where the request message is used to request the at least one core network to provide bandwidth support, where the request message carries an identifier of the UE and location information of the cell where the UE is located.
  • the receiving module 530 is configured to receive feedback information sent by the at least one core network server, where the feedback information includes bandwidth provided by the at least one wireless network.
  • the determining module 510 is further configured to determine the first partial data packet and the second partial data packet according to the bandwidth provided by the at least one wireless network and the bandwidth of the first wireless network.
  • the data to be sent includes at least: a data packet of a first compression ratio and a data packet of a second compression ratio, where the first compression ratio is smaller than the second compression ratio, where the data to be sent is
  • the required bandwidth includes the bandwidth required for the data packet of the first compression rate of the data to be transmitted.
  • the bandwidth provided by the at least one wireless network and the bandwidth of the first wireless network meet the bandwidth required by the data packet of the first compression rate of the data to be transmitted, the first partial data packet and the second partial data packet are both A packet belonging to the first compression ratio.
  • the receiving module 530 is further configured to receive a performance parameter of the first wireless network that is reported by the UE, where the determining module 510 is specifically configured to determine, according to the performance parameter of the first wireless network, the first wireless network. bandwidth.
  • the cloud server 500 may correspond to a cloud server in the method 100 of cooperative communication according to an embodiment of the present invention, and the above and other operations and/or functions of the respective modules in the cloud server 500 may be referred to.
  • the corresponding process of the method 100 of FIG. 1 is not described herein for the sake of brevity.
  • the cloud server in the embodiment of the present invention sends part of the data to the core network through the wireless network connected thereto by requesting bandwidth support from the core network when the bandwidth of the currently accessed wireless network cannot meet the bandwidth required for data transmission.
  • the cloud server in the embodiment of the present invention sends part of the data to the core network through the wireless network connected thereto by requesting bandwidth support from the core network when the bandwidth of the currently accessed wireless network cannot meet the bandwidth required for data transmission.
  • FIG. 6 shows a schematic block diagram of a core network server 600 according to an embodiment of the present invention.
  • the cloud server 600 includes a receiving module 610, and a determining module 620 and a sending module 630.
  • the receiving module 610 is configured to receive a request message sent by the cloud server, where the request message is used to request bandwidth support, where the request message includes an identifier of the user equipment UE and location information of the cell where the UE is located.
  • the determining module 620 is configured to determine, according to the request message, a wireless bandwidth that the wireless network can provide for the UE.
  • the sending module 630 is configured to send a feedback message to the cloud server, where the feedback message carries the wireless bandwidth.
  • the core network server of the embodiment of the present invention receives and responds to the cloud server.
  • the wide support request can integrate the bandwidth resources of the wireless network of different communication protocols, thereby enabling smooth data transmission.
  • the determining module 620 includes: a determining unit 621, configured to determine, according to the cell location information of the UE, a wireless network where the UE is located; and a connecting unit 622, configured to The base station in the wireless network establishes a connection; the obtaining unit 623 is configured to acquire, from the base station, a wireless bandwidth that the wireless network can provide for the UE.
  • the receiving module 610 is further configured to receive data sent by the cloud server.
  • the sending module 630 is further configured to send the data to the UE through a wireless network.
  • the core network server 600 in accordance with an embodiment of the present invention may correspond to the core network server in the method 300 of cooperative communication in accordance with an embodiment of the present invention, and the above and other operations of the various modules in the core network server 600 and/or For the function, reference may be made to the corresponding process of the method 300 of FIG. 3, and details are not described herein for brevity.
  • the core network server of the embodiment of the present invention can integrate the bandwidth support request of the wireless network of different communication protocols by receiving and responding to the bandwidth support request of the cloud server, thereby enabling smooth data transmission.
  • FIG. 8 shows a schematic block diagram of a cloud server 800 according to another embodiment of the present invention.
  • the cloud server 800 includes a processor 810, a memory 820, a bus system 830, and a transceiver 840.
  • the processor 810, the memory 820 and the transceiver 840 are connected by a bus system 830 for storing instructions for executing instructions stored by the memory 820.
  • the processor 810 is configured to determine a bandwidth of the first wireless network that the user equipment UE is currently accessing, and is also used to determine a bandwidth required for data to be sent to the UE.
  • the transceiver 840 is configured to: when the bandwidth determined by the determining module that the bandwidth of the first wireless network cannot meet the bandwidth required by the data to be sent, send the first partial data packet to the first wireless network, and send the first data packet to the at least one core network. a two-part data packet, so that the at least one core network sends the second partial data packet to the UE by using at least one wireless network, where the first partial data packet and the second partial data packet belong to the to-be-transmitted data, the first wireless network
  • the communication protocol is different from the at least one wireless network.
  • the cloud server in the embodiment of the present invention sends part of the data to the core network through the wireless network connected thereto by requesting bandwidth support from the core network when the bandwidth of the currently accessed wireless network cannot meet the bandwidth required for data transmission.
  • the cloud server in the embodiment of the present invention sends part of the data to the core network through the wireless network connected thereto by requesting bandwidth support from the core network when the bandwidth of the currently accessed wireless network cannot meet the bandwidth required for data transmission.
  • the processor 810 may be a central processing unit (CPU), and the processor 810 may also be other general-purpose processors, digital signal processors (DSPs), and application specific integrated circuits. (ASIC), off-the-shelf programmable gate array (FPGA) or other programmable logic devices, discrete gate or transistor logic devices, discrete hardware components, and more.
  • the general purpose processor may be a microprocessor or the processor or any conventional processor or the like.
  • the memory 820 can include read only memory and random access memory and provides instructions and data to the processor 810. A portion of the memory 820 may also include a non-volatile random access memory. For example, the memory 820 can also store information of the device type.
  • the bus system 830 may include a power bus, a control bus, a status signal bus, and the like in addition to the data bus. However, for clarity of description, various buses are labeled as bus system 830 in the figure.
  • each step of the foregoing method may be completed by an integrated logic circuit of hardware in the processor 810 or an instruction in a form of software.
  • the steps of the method disclosed in the embodiments of the present invention may be directly implemented as a hardware processor, or may be performed by a combination of hardware and software modules in the processor.
  • the software module can be located in a conventional storage medium such as random access memory, flash memory, read only memory, programmable read only memory or electrically erasable programmable memory, registers, and the like.
  • the storage medium is located in the memory 820, and the processor 810 reads the information in the memory 820 and completes the steps of the above method in combination with its hardware. To avoid repetition, it will not be described in detail here.
  • the transceiver 840 is further configured to: when the bandwidth of the first wireless network cannot meet the bandwidth required for the data to be sent, before sending the first part of the data packet to the first wireless network, At least one core network server of the at least one core network sends a request message, where the request message is used to request the at least one core network to provide bandwidth support, where the request message carries an identifier of the UE and cell location information of the UE; and receives the at least one The feedback information sent by the core network server, the feedback information including the bandwidth provided by the at least one wireless network.
  • the processor 810 is further configured to determine the first partial data packet and the second partial data packet according to the bandwidth provided by the at least one wireless network and the bandwidth of the first wireless network.
  • the data to be sent includes at least: a data packet of a first compression ratio and a data packet of a second compression ratio, where the first compression ratio is smaller than the second compression ratio, and data to be sent is required.
  • the bandwidth includes: a bandwidth required for the data packet of the first compression rate of the data to be transmitted.
  • the first partial data packet and the second portion when a bandwidth provided by the at least one wireless network and a bandwidth of the first wireless network satisfy a bandwidth required by a data packet of a first compression rate of the data to be transmitted The data packets belong to the data packet of the first compression ratio.
  • the transceiver 840 is further configured to receive performance parameters of the first wireless network reported by the UE, where the processor 810 is specifically configured to determine, according to the performance parameter of the first wireless network, the first wireless network. bandwidth.
  • the cloud server 800 may correspond to a cloud server in the method 100 of cooperative communication according to an embodiment of the present invention, and the above and other operations and/or functions of the respective modules in the cloud server 800 may be referred to.
  • the corresponding process of the method 100 of FIG. 1 is not described herein for the sake of brevity.
  • the cloud server in the embodiment of the present invention sends part of the data to the core network through the wireless network connected thereto by requesting bandwidth support from the core network when the bandwidth of the currently accessed wireless network cannot meet the bandwidth required for data transmission.
  • the cloud server in the embodiment of the present invention sends part of the data to the core network through the wireless network connected thereto by requesting bandwidth support from the core network when the bandwidth of the currently accessed wireless network cannot meet the bandwidth required for data transmission.
  • FIG. 9 shows a schematic block diagram of a core network server 900 according to another embodiment of the present invention.
  • the core network server 900 includes a processor 910, a memory 920, a bus system 930, and a transceiver 940.
  • the processor 910, the memory 920 and the transceiver 940 are connected by a bus system 930 for storing instructions for executing instructions stored by the memory 920.
  • the transceiver 940 is configured to receive a request message sent by the cloud server, where the request message is used to request bandwidth support, where the request message includes an identifier of the user equipment UE and location information of the cell where the UE is located.
  • the processor 910 is configured to determine, according to the request message, a wireless bandwidth that the wireless network can provide for the UE.
  • the transceiver 940 is further configured to send a feedback message to the cloud server, where the feedback message carries the wireless bandwidth.
  • the core network server of the embodiment of the present invention can integrate the bandwidth support request of the wireless network of different communication protocols by receiving and responding to the bandwidth support request of the cloud server, thereby enabling smooth data transmission.
  • the processor 910 may be a central processing unit (CPU), and the processor 910 may also be other general-purpose processors, digital signal processors (DSPs), and application specific integrated circuits. (ASIC), off-the-shelf programmable gate array (FPGA) or Other programmable logic devices, discrete gates or transistor logic devices, discrete hardware components, etc.
  • the general purpose processor may be a microprocessor or the processor or any conventional processor or the like.
  • the memory 920 can include read only memory and random access memory and provides instructions and data to the processor 910. A portion of the memory 920 may also include a non-volatile random access memory. For example, the memory 920 can also store information of the device type.
  • the bus system 930 may include a power bus, a control bus, a status signal bus, and the like in addition to the data bus. However, for clarity of description, various buses are labeled as bus system 930 in the figure.
  • each step of the foregoing method may be completed by an integrated logic circuit of hardware in the processor 910 or an instruction in a form of software.
  • the steps of the method disclosed in the embodiments of the present invention may be directly implemented as a hardware processor, or may be performed by a combination of hardware and software modules in the processor.
  • the software module can be located in a conventional storage medium such as random access memory, flash memory, read only memory, programmable read only memory or electrically erasable programmable memory, registers, and the like.
  • the storage medium is located in the memory 920, and the processor 910 reads the information in the memory 920 and completes the steps of the above method in combination with its hardware. To avoid repetition, it will not be described in detail here.
  • the processor 910 is further configured to determine, according to the cell location information of the UE, the wireless network where the UE is located.
  • the transceiver 940 is further configured to establish a connection with a base station in the wireless network, and obtain, from the base station, a wireless bandwidth that the wireless network can provide for the UE.
  • the transceiver 940 is further configured to receive data sent by the cloud server, and send the data to the UE by using the wireless network.
  • the core network server 900 in accordance with an embodiment of the present invention may correspond to the core network server in the method 300 of cooperative communication in accordance with an embodiment of the present invention, and the above and other operations of the various modules in the core network server 900 and/or For the function, reference may be made to the corresponding process of the method 300 of FIG. 3, and details are not described herein for brevity.
  • the core network server of the embodiment of the present invention can integrate the bandwidth support request of the wireless network of different communication protocols by receiving and responding to the bandwidth support request of the cloud server, thereby enabling smooth data transmission.
  • the disclosed systems, devices, and methods may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, or an electrical, mechanical or other form of connection.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the embodiments of the present invention.
  • each functional unit in each embodiment of the present invention may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the above integrated unit can be implemented in the form of hardware or in the form of a software functional unit.
  • Computer readable media includes both computer storage media and communication media including any medium that facilitates transfer of a computer program from one location to another.
  • a storage medium may be any available media that can be accessed by a computer.
  • computer readable media may comprise RAM, ROM, EEPROM, CD-ROM or other optical disk storage, disk storage media or other magnetic storage device, or can be used for carrying or storing in the form of an instruction or data structure.
  • connection may suitably be a computer readable medium.
  • software Coaxial cable, fiber optic cable, coaxial cable, fiber optic cable, coaxial cable, fiber optic cable, twisted pair cable, digital subscriber line (DSL), or wireless technology such as infrared, radio, and microwave transmission from a website, server, or other remote source. Twisted pair, DSL, or wireless technologies such as infrared, wireless, and microwave are included in the fixing of the associated medium.
  • a disk and a disc include a compact disc (CD), a laser disc, a compact disc, a digital versatile disc (DVD), a floppy disk, and a Blu-ray disc, wherein the disc is usually magnetically copied, and the disc is The laser is used to optically replicate the data. Combinations of the above should also be included within the scope of the computer readable media.

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Databases & Information Systems (AREA)
  • Business, Economics & Management (AREA)
  • General Business, Economics & Management (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Quality & Reliability (AREA)

Abstract

本发明公开了一种协同通信的方法,云端服务器和核心网服务器。方法包括:确定用户设备UE当前接入的第一无线网络的带宽;确定向UE待发送的数据所需的带宽;当第一无线网络的带宽不能满足待发送的数据所需的带宽时,向第一无线网络发送第一部分数据包,并向至少一个核心网发送第二部分数据包,以便至少一个核心网通过至少一个无线网络向UE发送第二部分数据包,第一部分数据包和第二部分数据包属于待发送的数据,第一无线网络与至少一个无线网络的通信协议不同。本发明实施例中将部分数据由核心网通过与其连接的无线网络发送至用户设备,能够整合不同通信协议的无线网络的带宽资源,从而能够实现数据的流畅传输。

Description

协同通信的方法、云端服务器和核心网服务器
本申请要求于2014年04月29日提交中国专利局、申请号为201410177627.4,发明名称为“协同通信的方法、云端服务器和核心网服务器”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及通信领域,更具体地,涉及协同通信的方法、云端服务器和核心网服务器。
背景技术
随着网络技术的发展和分享平台的完善,用户对标清,高清等多媒体数据的需求也越来越多,对媒体数据质量的要求也越来越高。多媒体等实时数据要求网络具备较高数据流量的宽带和相对稳定高的网络质量。而对于无线网络来说,在大带宽和高稳定性上一直存在问题。
一方面,现有的无线局域网,第二代移动通信(The Second Generation,简称2G)网络,第三代移动通讯技术(The Third Generation,简称3G)网络,或者正在商用布局的LTE(Long Term Evolution,长期演进技术)网络都正在拓宽我们的无线网络的带宽。另一方面,它们各自为战,虽单系统能部分解决传输问题,但却不能完全满足实际存在的大带宽,高稳定性的需求。
随着对网络带宽更高的需求,以及对于无线网络稳定传输多媒体等实时数据的要求,由于无线网络本身的不稳定性,各个无线网络隔离等原因,造成无线传输性能的不稳定,无线带宽不能满足实时数据流畅传输的需求。
发明内容
本发明实施例提供了一种协同通信的方法、云端服务器和核心网服务器,能够整合不同通信协议的无线网络的带宽资源,从而能够实现实时数据的流畅传输。
第一方面,提供了一种协同通信的方法,该方法由云端服务器执行,云端服务器与多个核心网相连接,该方法包括:确定用户设备UE当前接入的第一无线网络的带宽;确定向UE待发送的数据所需的带宽;当第一无线网 络的带宽不能满足待发送的数据所需的带宽时,向第一无线网络发送第一部分数据包,并向至少一个核心网发送第二部分数据包,以便至少一个核心网通过至少一个无线网络向UE发送第二部分数据包,第一部分数据包和第二部分数据包属于待发送的数据,第一无线网络与至少一个无线网络的通信协议不同。
结合第一方面,在第一种可能的实现方式中,当第一无线网络的带宽不能满足待发送的数据所需的带宽时,在向第一无线网络发送第一部分数据包之前,方法还包括:向至少一个核心网的至少一个核心网服务器发送请求消息,请求消息用于请求至少一个核心网提供带宽支援,请求消息携带UE的标识符和UE所在小区位置信息;接收至少一个核心网服务器发送的反馈信息,反馈信息包括至少一个无线网络提供的带宽;根据至少一个无线网络提供的带宽和第一无线网络的带宽,确定第一部分数据包和第二部分数据包。
结合第一种可能的实现方式,在第二种可能的实现方式中,待发送的数据至少包括:第一压缩率的数据包和第二压缩率的数据包,第一压缩率小于第二压缩率,待发送的数据所需的带宽包括:待发送的数据的第一压缩率的数据包所需的带宽,当至少一个无线网络提供的带宽和第一无线网络的带宽满足待发送的数据的第一压缩率的数据包所需的带宽时,第一部分数据包和第二部分数据包均属于所述第一压缩率的数据包,当至少一个无线网络提供的带宽和第一无线网络的带宽无法满足待发送的数据的第一压缩率的数据包所需的带宽时,第一部分数据包和第二部分数据包二者中的部分或者全部的数据包属于所述第二压缩率的数据包。
结合第一方面或第一种或第二种可能的实现方式,在第三种可能的实现方式中,该方法还包括:接收UE上报的第一无线网络的性能参数,其中,确定UE当前接入的第一无线网络的带宽包括:根据第一无线网络的性能参数,确定第一无线网络的带宽。
第二方面,提供了一种协调通信的方法,该方法包括:接收云端服务器发送的请求消息,请求消息用于请求带宽支援,请求消息包括用户设备UE的标识符和UE所在小区位置信息;根据请求消息,确定无线网络能够为UE提供的无线带宽;向云端服务器发送反馈消息,反馈消息携带无线带宽。
结合第二方面,在第二方面的第一种可能的实现方式中,根据请求消息,确定无线网络能够为UE提供的无线带宽包括:根据UE所在小区位置信息, 确定UE所在的无线网络;与无线网络中的基站建立连接;从基站获取无线网络能够为UE提供的无线带宽。
结合第二方面或第二方面的第一种可能的实现方式,在第二方面的第二种可能的实现方式中,该方法还包括:接收云端服务器发送的数据;将数据通过无线网络发送至UE。
第三方面,提供了一种云端服务器,该云端服务器与多个核心网相连接,云端服务器包括:确定模块,用于确定用户设备UE当前接入的第一无线网络的带宽,还用于确定向UE待发送的数据所需的带宽;发送模块,用于当确定模块确定的第一无线网络的带宽不能满足待发送的数据所需的带宽时,向第一无线网络发送第一部分数据包,并向至少一个核心网发送第二部分数据包,以便至少一个核心网通过至少一个无线网络向UE发送第二部分数据包,第一部分数据包和第二部分数据包属于待发送的数据,第一无线网络与至少一个无线网络的通信协议不同。
结合第三方面,在第三方面的第一种可能的实现方式中,发送模块还用于,当第一无线网络的带宽不能满足待发送的数据所需的带宽时,在向第一无线网络发送第一部分数据包之前,向至少一个核心网的至少一个核心网服务器发送请求消息,请求消息用于请求至少一个核心网提供带宽支援,请求消息携带UE的标识符和UE所在小区位置信息,该云端服务器还包括:接收模块,用于接收至少一个核心网服务器发送的反馈信息,反馈信息包括至少一个无线网络提供的带宽,其中,确定模块还用于根据至少一个无线网络提供的带宽和第一无线网络的带宽,确定第一部分数据包和第二部分数据包。
结合第三方面的第一种可能的实现方式,在第三方面的第二种可能的实现方式中,待发送的数据至少包括:第一压缩率的数据包和第二压缩率的数据包,第一压缩率小于第二压缩率,待发送的数据所需的带宽包括:待发送的数据的第一压缩率的数据包所需的带宽,当至少一个无线网络提供的带宽和第一无线网络的带宽满足待发送的数据的第一压缩率的数据包所需的带宽时,第一部分数据包和第二部分数据包属于第一压缩率的数据包,当至少一个无线网络提供的带宽和第一无线网络的带宽无法满足待发送的数据的第一压缩率的数据包所需的带宽时,第一部分数据包和第二部分数据包二者中的部分或者全部的数据包属于第二压缩率的数据包。
结合第三方面或第三方面的第一种或第二种可能的实现方式,在第三方面的第三种可能实现方式中,接收模块还用于接收UE上报的第一无线网络的性能参数,其中,确定模块具体用于根据第一无线网络的性能参数,确定第一无线网络的带宽。
第四方面,提供了一种核心网服务器,该核心网服务器包括:接收模块,用于接收云端服务器发送的请求消息,请求消息用于请求带宽支援,请求消息包括用户设备UE的标识符和UE所在小区位置信息;确定模块,用于根据请求消息,确定无线网络能够为UE提供的无线带宽;发送模块,用于向云端服务器发送反馈消息,反馈消息携带无线带宽。
结合第四方面,在第四方面的第一种可能的实现方式中,确定模块包括:确定单元,用于根据UE所在小区位置信息,确定UE所在的无线网络;连接单元,用于与无线网络中的基站建立连接;获取单元,用于从基站获取无线网络能够为UE提供的无线带宽。
结合第四方面或第四方面的第一种可能的实现方式,在第四方面的第二种可能的实现方式中,接收模块还用于接收云端服务器发送的数据;发送模块还用于将数据通过无线网络发送至UE。
基于上述技术方案,在当前接入的无线网络的带宽不能满足数据传输所需的带宽时,将部分数据由核心网通过与其连接的无线网络发送至用户设备,能够整合不同通信协议的无线网络的带宽资源,从而能够实现数据的流畅传输。
附图说明
为了更清楚地说明本发明实施例的技术方案,下面将对本发明实施例中所需要使用的附图作简单地介绍,显而易见地,下面所描述的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是根据本发明一个实施例的协同通信的方法的示意性流程图。
图2是根据本发明另一实施例的协同通信的方法的示意性流程图。
图3是根据本发明另一实施例的协同通信的方法的示意性流程图。
图4是根据本发明另一实施例的协同通信的方法的示意性流程图。
图5是根据本发明一个实施例的云端服务器的示意性框图。
图6是根据本发明一个实施例的核心网服务器的示意性框图。
图7是根据本发明实施例的核心网服务器的确定模块的示意性框图。
图8是根据本发明另一实施例的云端服务器的示意性框图。
图9是根据本发明另一实施例的核心网服务器的示意性框图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明的一部分实施例,而不是全部实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动的前提下所获得的所有其他实施例,都应属于本发明保护的范围。
应理解,本发明实施例的技术方案可以应用于各种通信系统,例如:全球移动通讯(Global System of Mobile communication,GSM)系统、码分多址(Code Division Multiple Access,CDMA)系统、宽带码分多址(Wideband Code Division Multiple Access,WCDMA)系统、通用分组无线业务(General Packet Radio Service,GPRS)、长期演进(Long Term Evolution,LTE)系统、LTE频分双工(Frequency Division Duplex,FDD)系统、LTE时分双工(Time Division Duplex,TDD)、通用移动通信系统(Universal Mobile Telecommunication System,UMTS)或全球互联微波接入(Worldwide Interoperability for Microwave Access,WiMAX)通信系统等。
本发明实施例可以用于不同通信协议的无线网络。无线接入网络在不同的系统中可包括不同的网元。例如,LTE和LTE-A中无线接入网络的网元包括eNB(eNodeB,演进型基站),WCDMA中无线接入网络的网元包括RNC(Radio Network Controller,无线网络控制器)和NodeB,无线局域网中的网元包括访问接入点(Access Point,AP),类似地,WiMax(Worldwide Interoperability for Microwave Access,全球微波互联接入)等其它无线网络也可以使用与本申请实施例类似的方案,只是基站系统中的相关模块可能有所不同,本申请实施例并不限定。
还应理解,在本申请实施例中,用户设备(UE,User Equipment)可以是但不限于移动台(MS,Mobile Station)、移动终端(Mobile Terminal)、移动电话(Mobile Telephone)、手机(handset)及便携设备(portable equipment)等,该用户设备可以经无线接入网(RAN,Radio Access Network)与一个或 多个核心网进行通信,例如,计算机等,用户设备还可以是便携式、袖珍式、手持式、计算机内置的或者车载的移动装置。用户设备可以是移动电话(或称为“蜂窝”电话)、具有无线通信功能的计算机等,用户设备还可以是便携式、袖珍式、手持式、计算机内置的或者车载的移动装置。
图1示出了根据本发明实施例的协同通信的方法100的示意性流程图,该方法100可以由云端服务器执行,该云端服务器与多个核心网相连接。如图1所示,方法100包括如下内容。
110,确定用户设备UE当前接入的第一无线网络的带宽。
具体而言,该无线网络可以是无线局域网,也可以是2G、3G或LTE网等。云端服务器根据该无线网络的监测参数和相关计算模型可以确定该无线网络的带宽。
120,确定向用户设备UE待发送的数据所需的带宽。
例如,该数据可以是高清、标清多媒体等实时数据。该待发送的数据可以是下一时间帧内要发送的数据。可以根据该多媒体实时数据的播放进度确定在下一时间帧向UE发送的数据所需的带宽。
130,当第一无线网络的带宽不能满足该待发送的数据所需的带宽时,向第一无线网络发送第一部分数据包,并向至少一个核心网发送第二部分数据包,以便该至少一个核心网通过至少一个无线网络向该UE发送该第二部分数据包,该第一部分数据包和第二部分数据包属于该待发送的数据,该第一无线网络与该至少一个无线网络的通信协议不同。
该至少一个无线网络与上述至少一个核心网相连接。例如,当该第一无线网络可以为无线局域网时,该至少一个无线网络可以为2G网络、3G网络或者LTE网络等。
因此,本发明实施例的协同通信的方法,在当前接入的无线网络的带宽不能满足数据传输所需的带宽时,通过向核心网请求带宽支援,将部分数据由核心网通过与其连接的无线网络发送至用户设备,能够整合不同通信协议的无线网络的带宽资源,从而能够实现数据的流畅传输。
具体地,作为另一实施例,如图2所示,当第一无线网络的带宽不能满足所述待发送的数据所需的带宽时,在向第一无线网络发送第一部分数据包之前,方法100还包括如下内容。
140、向该至少一个核心网的至少一个核心网服务器发送请求消息,该 请求消息用于请求该至少一个核心网提供带宽支援,该请求消息携带该UE的标识符和该UE所在小区位置信息。
例如,每个核心网具有一个核心网服务器。
150、接收该至少一个核心网服务器发送的反馈信息,该反馈信息包括该至少一个无线网络提供的带宽。
例如,每个核心网服务器可以根据请求消息中携带的UE的标识符和UE所在小区位置信息,确定该核心网连接的无线网络所能提供的带宽。
160、根据该至少一个无线网络提供的带宽和该第一无线网络的带宽,确定该第一部分数据包和该第二部分数据包。
在本发明实施例中,云端服务器会根据核心网服务器反馈的带宽确定由核心网通过与其连接的无线网络向UE发送的数据。
具体地,作为另一实施例,在120中待发送的数据至少包括:第一压缩率的数据包和第二压缩率的数据包,该第一压缩率小于该第二压缩率。相应地,在130中该待发送的数据所需的带宽包括:该待发送的数据的该第一压缩率的数据包所需的带宽。当至少一个无线网络提供的带宽和第一无线网络的带宽满足该待发送的数据的第一压缩率的数据包所需的带宽时,该第一部分数据包和该第二部分数据包属于该第一压缩率的数据包;当至少一个无线网络提供的带宽和第一无线网络的带宽无法满足该待发送的数据的第一压缩率的数据包所需的带宽时,该第一部分数据包和该第二部分数据包二者中的部分或者全部的数据包属于该第二压缩率的数据包。
具体而言,云端服务器中的同一内容数据存有高清或者标清或者其他版本。同一数据流,云端服务器可以按照不同的压缩率分别打包,可以满足不同网络质量的要求。实时数据在云端储存时以分包形式存好,并打好标签。标签的信息包括:该数据包的内容,压缩率分类,相对顺序,大小等相关信息。
具体地,当第一无线网络的带宽和至少一个无线网络提供的带宽之和能够满足低压缩率的数据包所需的带宽时,云端服务器可以通过第一无线网络和至少一个无线网络向UE发送低压缩率的数据包。当第一无线网络的带宽和至少一个无线网络提供的带宽之和无法满足低压缩率的数据包所需的带宽时,如果云端服务器仍然通过第一无线网络和至少一个无线网络向UE发送低压缩率的数据包,将难以保证数据的流畅性。这时,云端服务器可以向 UE发送部分低压缩率的数据包和部分高压缩率的数据包;或者云端服务器可以向UE发送高压缩率的数据包,而不再发送低压缩率的数据包。这样,根据各个无线网络所能提供的带宽发送不同压缩率的数据包,能够保证数据的流畅性。
例如,云端服务器可以将数据A分成n份,每份数据以压缩率a压缩,分包为Aa1~Aan;同时以压缩率b压缩,分包为Ab1~Abn。或者还可以以其他的压缩率c,d……,进行压缩存储。数据B以同样的方式,分包存储。不管以哪一种压缩率压缩,每个压缩包的数据源是一样的,即不同帧率或者图像质量(1080p/1080i/720p等)在分包时内容保持一致。这样便于在无线网络质量变化时,云端服务器能根据无线网络的变化选择不同压缩率数据包而不影响解调后的数据连贯性。
在一个时间帧可以容纳若干个数据包。每一帧内的数据可以是相同压缩率的数据包,也可以是不同压缩率的数据包。初始在无线网络质量良好的状态下,云端服务器发送压缩率较低(如图象质量更好)或者带宽要求较宽(如高清媒体)的数据包。在无线网络的带宽无法满足压缩率较低(如图象质量更好)或者带宽要求较宽(如高清媒体)的数据包所需的带宽时,重新计算选择部分或者全部数据包为压缩率较高(如图像质量较差)或者带宽要求较低(如标清媒体)的数据包。UE在接收到数据包之后,根据数据包的标签信息,将各个数据包合并解码就可以得到所需实时数据。
应理解,实时数据对于用户来说,首先是流畅性,其次是图像质量。因此本发明实施例要在满足流畅性的基础上,提高图像质量。
例如,假设带宽α为在下一时间帧中高清压缩数据流或者低压缩率数据包所需要的带宽,即无线网络所需要满足的最大数据带宽。当无线网络质量下降时,无线带宽受到影响,为满足无线网络数据带宽α而引入核心网的带宽来满足需要。当引入核心网的通信带宽也无法达到α时,设此时能提供的无线带宽为β,云端服务器重新计算选择发送部分或者全部标清压缩数据流或者更小流量数据流或者高压缩率的数据包,以减轻带宽的压力,也就是通过适当牺牲数据或者图像的质量来尽量维持实时数据流畅性。
另外,本发明实施例中的时间帧的长度应该与用户设备所能提供的缓存时间一致,这样就能满足用户流畅播放的要求。
因此,本发明实施例的协同通信的方法可以在无线网络质量发生变化 时,能够实现实时数据的流畅传输,以满足客户最佳体验。
可选地,作为另一实施例,方法100还包括:接收该UE上报的该第一无线网络的性能参数,相应地,在110中,根据该第一无线网络的性能参数,确定该第一无线网络的带宽。
具体地,该性能参数可以包括该无线网络的接收信号强度指示(Received Signal Strength Indication,RSSI)和报文长度。
无线局域网络会根据访问接入点(Access Point,AP)侧所能接收到的RSSI自动调整数据带宽(即传输速率)。RSSI决定了现在物理层能获得的最大速率。在预测信号衰减上,已经有相当一部分经验模型,比如室内传播模型,多径效应,时延扩展,衰落特性以及多普勒效应等。在此发明中我们利用此研究方向的已成熟的成果,不再赘述。
因为网络环境复杂,实际的传输带宽更多的依赖于报文长度。所以在本发明实施例中,云端服务器还会对报文长度进行统计和监控。以802.11g,
最高物理速率54Mbps传输为例,一般在理想环境中,最高吞吐量如下表1。
表1
物理层最大速率 54Mbps
理论最大传输速率(1500Byte报文) 22Mbps假设报文所占比例为a%
理论最大传输速率(512Byte报文) 14Mbps假设报文所占比例为b%
理论最大传输速率(88Byte报文) 3.2Mbps假设报文所占比例为c%
一台AP能提供的总吞吐量为A*a%+B*b%+C*c%(多台AP还存在同频干扰,带宽还会继续下降),其中A,B,C分别为不同长度报文的理论最大传输速率。云端统计不同长度报文数量,计算所占比例。
一般来说,长报文带宽利用率高。设实时媒体数据流以长报文形式发送,若长报文比例低于n时,认为吞吐量下降到不可接受的程度,n变化趋势对吞吐量的影响能通过概率统计得到。据此云端服务器会根据计算采取相应措施,比如,暂停部分优先级不高的客户端,或者引入其他通信带宽等。若媒体数据流以短报文发送,也可得到一个报文比例临界值m。算法规则同上。
通过获取无线网络参数并传输给云端服务器,云端服务器结合相关的模型便可确认下一时间帧UE的信道的网络质量。
因此,本发明实施例的协同通信的方法,在当前接入的无线网络的带宽 不能满足数据传输所需的带宽时,通过向核心网请求带宽支援,将部分数据由核心网通过与其连接的无线网络发送至用户设备,能够整合不同通信协议的无线网络的带宽资源,从而能够实现数据的流畅传输。
图3示出了根据本发明另一实施例的协同通信的方法300的示意性流程图。方法300可以由核心网服务器执行,如图3所示,方法300包括如下内容。
310,接收云端服务器发送的请求消息,该请求消息用于请求带宽支援,该请求消息包括用户设备UE的标识符和该UE所在小区位置信息。
320,根据该请求消息,确定无线网络能够为该UE提供的无线带宽。
330,向该云端服务器发送反馈消息,该反馈消息携带该无线带宽。
因此,本发明实施例的系统通信的方法,通过接收并响应云端服务器的带宽支援请求,能够整合不同通信协议的无线网络的带宽资源,从而能够实现数据的流畅传输。
具体地,作为另一实施例,在320可以包括:根据该UE所在小区位置信息,确定该UE所在的无线网络;与该无线网络中的基站建立连接;从该基站获取该无线网络能够为该UE提供的无线带宽。
可选地,作为另一实施例,方法300还包括:接收该云端服务器发送的数据;将该数据通过该无线网络发送至该UE。
具体而言,核心网服务器向云端服务器发送与UE通信可提供的带宽之后,核心网服务器根据所在的核心网的设置,向云端服务器反馈是否可以提供带宽支援。如果可以提供带宽支援,该核心网服务器进一步确认可以提供的带宽,并向云端服务器反馈,由云端服务器确定向该核心网服务器发送的数据包。
因此,本发明实施例的系统通信的方法,通过接收并响应云端服务器的带宽支援请求,能够整合不同通信协议的无线网络的带宽资源,从而能够实现数据的流畅传输。
下面结合图4,详细描述根据本发明实施例的协同通信的方法。
图4示出了根据本发明实施例的协同通信的方法400的示意性流程图。
在图4中,假设第一无线网络为无线局域网A,云端服务器与核心网B、C和D相连接。核心网B、C和D分别与一个无线网络相连接,例如无线网络可以是2G、3G或LTE网络。
401,云端服务器将待发送给UE的数据流,按照不同的压缩率分别打包,以满足不同网络质量的要求。即同一内容数据存有高清或者标清或者其他版本。实时数据在云端储存时以分包形式存好,并打好标签。标签的信息包括:该数据包的内容、分类、相对顺序、大小等相关信息。
402,UE在无线局域网A中建立无线连接。
403,UE收集该无线局域网A的性能参数,并将这些数据通过AP实时上报至云端服务器。云端服务器根据实时上报的数据和相关计算模型对下一时间帧的无线局域网A的网络质量做出预计。
404,云端服务器根据向UE发送的实时数据流计算下一时间帧所需带宽。
405,比较下一时间帧实时数据所需带宽与无线局域网A所能保障的带宽。如果下一时间帧的无线网络带宽能满足实时数据带宽要求,则执行406。否则,执行407。
406,UE通过无线局域网A与云端服务器进行数据传输,云端服务器继续根据UE实时上报的无线局域网A的性能参数监控无线局域网A的网络性能。
407,云端服务器向核心网B、C、D请求支援,并提供UE的相关数据(如UE的标识符和UE所在小区位置信息)。
408,收到核心网B、C、D的同意反馈后,根据核心网反馈的带宽信息,确定向核心网B、C、D发送的数据包,然后将对应的数据包发送给核心网B、C、D各自的核心网服务器。
409,核心网服务器将数据包通过与其连接的无线网络中UE的服务基站将数据包分别发送给UE。
410,UE收到来自不同的无线网络的数据包后,根据包头标签信息,将各数据包合并解码得到所需实时数据。
因此,本发明实施例的协同通信的方法,在当前接入的无线网络的带宽不能满足数据传输所需的带宽时,通过向核心网请求带宽支援,将部分数据由核心网通过与其连接的无线网络发送至用户设备,能够整合不同通信协议的无线网络的带宽资源,从而能够实现数据的流畅传输。
应注意,图4的例子是为了帮助本领域技术人员更好地理解本发明实施例,而非要限制本发明实施例的范围。本领域技术人员根据所给出的图4的 例子,显然可以进行各种等价的修改或变化,这样的修改或变化也落入本发明实施例的范围内。
应理解,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本发明实施例的实施过程构成任何限定。
上文结合图1至图4详细描述了根据本发明实施例的协同通信的方法,下面结合图5至图9,详细描述根据本发明实施例的云端服务器和核心网服务器。
图5示出了根据本发明实施例的云端服务器500的示意性框图,如图5所示,云端服务器500包括:确定模块510和发送模块520。
确定模块510,用于确定用户设备UE当前接入的第一无线网络的带宽,还用于确定向该UE待发送的数据所需的带宽;
发送模块520,用于当确定模块510确定的该第一无线网络的带宽不能满足该待发送的数据所需的带宽时,向第一无线网络发送第一部分数据包,并向至少一个核心网发送第二部分数据包,以便该至少一个核心网通过至少一个无线网络向该UE发送该第二部分数据包,该第一部分数据包和第二部分数据包属于该待发送的数据,该第一无线网络与该至少一个无线网络的通信协议不同。
因此,本发明实施例的云端服务器,在当前接入的无线网络的带宽不能满足数据传输所需的带宽时,通过向核心网请求带宽支援,将部分数据由核心网通过其他无线网络发送至用户设备,能够整合其他无线网络的带宽资源,从而能够实现数据的流畅传输。
具体地,作为另一实施例,云端服务器500还包括:接收模块530。发送模块520还用于当第一无线网络的带宽不能满足待发送的数据所需的带宽时,在向第一无线网络发送第一部分数据包之前,向该至少一个核心网的至少一个核心网服务器发送请求消息,该请求消息用于请求该至少一个核心网提供带宽支援,该请求消息携带该UE的标识符和该UE所在小区位置信息。接收模块530用于接收该至少一个核心网服务器发送的反馈信息,该反馈信息包括该至少一个无线网络提供的带宽。确定模块510还用于根据该至少一个无线网络提供的带宽和该第一无线网络的带宽,确定该第一部分数据包和该第二部分数据包。
具体地,作为另一实施例,待发送的数据至少包括:第一压缩率的数据包和第二压缩率的数据包,该第一压缩率小于该第二压缩率,该待发送的数据所需的带宽包括:该待发送的数据的该第一压缩率的数据包所需的带宽。当该至少一个无线网络提供的带宽和该第一无线网络的带宽满足该待发送的数据的第一压缩率的数据包所需的带宽时,该第一部分数据包和该第二部分数据包均属于该第一压缩率的数据包。当该至少一个无线网络提供的带宽和该第一无线网络的带宽无法满足该待发送的数据的第一压缩率的数据包所需的带宽时,该第一部分数据包和该第二部分数据包二者中的部分或者全部的数据包属于该第二压缩率的数据包。
具体地,作为另一实施例,接收模块530还用于接收UE上报的第一无线网络的性能参数,确定模块510具体用于根据该第一无线网络的性能参数,确定该第一无线网络的带宽。
应理解,根据本发明实施例的云端服务器500可对应于根据本发明实施例的协同通信的方法100中的云端服务器,并且云端服务器500中的各个模块的上述和其它操作和/或功能可以参考图1的方法100的相应流程,为了简洁,在此不再赘述。
因此,本发明实施例的云端服务器,在当前接入的无线网络的带宽不能满足数据传输所需的带宽时,通过向核心网请求带宽支援,将部分数据由核心网通过与其连接的无线网络发送至用户设备,能够整合不同通信协议的无线网络的带宽资源,从而能够实现数据的流畅传输。
图6示出了根据本发明实施例的核心网服务器600的示意性框图,如图6所示,云端服务器600包括:接收模块610、和确定模块620和发送模块630。
接收模块610,用于接收云端服务器发送的请求消息,该请求消息用于请求带宽支援,该请求消息包括用户设备UE的标识符和该UE所在小区位置信息。
确定模块620,用于根据该请求消息,确定无线网络能够为该UE提供的无线带宽。
发送模块630,用于向该云端服务器发送反馈消息,该反馈消息携带该无线带宽。
因此,本发明实施例的核心网服务器,通过接收并响应云端服务器的带 宽支援请求,能够整合不同通信协议的无线网络的带宽资源,从而能够实现数据的流畅传输。
具体地,作为另一实施例,如图7所示,确定模块620包括:确定单元621,用于根据该UE所在小区位置信息,确定该UE所在的无线网络;连接单元622,用于与该无线网络中的基站建立连接;获取单元623,用于从该基站获取该无线网络能够为该UE提供的无线带宽。
具体地,作为另一实施例,接收模块610还用于接收云端服务器发送的数据。发送模块630还用于将该数据通过无线网络发送至UE。
应理解,根据本发明实施例的核心网服务器600可对应于根据本发明实施例的协同通信的方法300中的核心网服务器,并且核心网服务器600中的各个模块的上述和其它操作和/或功能可以参考图3的方法300的相应流程,为了简洁,在此不再赘述。
因此,本发明实施例的核心网服务器,通过接收并响应云端服务器的带宽支援请求,能够整合不同通信协议的无线网络的带宽资源,从而能够实现数据的流畅传输。
图8示出了根据本发明另一实施例的云端服务器800的示意性框图,如图8所示,云端服务器800包括:处理器810、存储器820、总线系统830和收发器840。其中,处理器810、存储器820和收发器840通过总线系统830相连,该存储器820用于存储指令,该处理器810用于执行该存储器820存储的指令。
处理器810用于确定用户设备UE当前接入的第一无线网络的带宽,还用于确定向该UE待发送的数据所需的带宽。收发器840用于当该确定模块确定的该第一无线网络的带宽不能满足该待发送的数据所需的带宽时,向第一无线网络发送第一部分数据包,并向至少一个核心网发送第二部分数据包,以便该至少一个核心网通过至少一个无线网络向该UE发送该第二部分数据包,该第一部分数据包和第二部分数据包属于该待发送的数据,该第一无线网络与该至少一个无线网络的通信协议不同。
因此,本发明实施例的云端服务器,在当前接入的无线网络的带宽不能满足数据传输所需的带宽时,通过向核心网请求带宽支援,将部分数据由核心网通过与其连接的无线网络发送至用户设备,能够整合不同通信协议的无线网络的带宽资源,从而能够实现数据的流畅传输。
应理解,在本发明实施例中,该处理器810可以是中央处理单元(Central Processing Unit,CPU),该处理器810还可以是其他通用处理器、数字信号处理器(DSP)、专用集成电路(ASIC)、现成可编程门阵列(FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
该存储器820可以包括只读存储器和随机存取存储器,并向处理器810提供指令和数据。存储器820的一部分还可以包括非易失性随机存取存储器。例如,存储器820还可以存储设备类型的信息。
该总线系统830除包括数据总线之外,还可以包括电源总线、控制总线和状态信号总线等。但是为了清楚说明起见,在图中将各种总线都标为总线系统830。
在实现过程中,上述方法的各步骤可以通过处理器810中的硬件的集成逻辑电路或者软件形式的指令完成。结合本发明实施例所公开的方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器820,处理器810读取存储器820中的信息,结合其硬件完成上述方法的步骤。为避免重复,这里不再详细描述。
具体地,作为另一实施例,收发器840还用于:当第一无线网络的带宽不能满足待发送的数据所需的带宽时,在向第一无线网络发送第一部分数据包之前,向该至少一个核心网的至少一个核心网服务器发送请求消息,该请求消息用于请求该至少一个核心网提供带宽支援,该请求消息携带该UE的标识符和该UE所在小区位置信息;接收该至少一个核心网服务器发送的反馈信息,该反馈信息包括该至少一个无线网络提供的带宽。处理器810还用于根据该至少一个无线网络提供的带宽和该第一无线网络的带宽,确定该第一部分数据包和该第二部分数据包。
具体地,作为另一实施例,待发送的数据至少包括:第一压缩率的数据包和第二压缩率的数据包,该第一压缩率小于该第二压缩率,待发送的数据所需的带宽包括:该待发送的数据的该第一压缩率的数据包所需的带宽。当该至少一个无线网络提供的带宽和该第一无线网络的带宽满足该待发送的数据的第一压缩率的数据包所需的带宽时,该第一部分数据包和该第二部分 数据包均属于该第一压缩率的数据包。当该至少一个无线网络提供的带宽和该第一无线网络的带宽无法满足该待发送的数据的第一压缩率的数据包所需的带宽时,该第一部分数据包和该第二部分数据包二者中的部分或者全部的数据包属于该第二压缩率的数据包。
具体地,作为另一实施例,收发器840还用于接收UE上报的第一无线网络的性能参数,处理器810具体用于根据该第一无线网络的性能参数,确定该第一无线网络的带宽。
应理解,根据本发明实施例的云端服务器800可对应于根据本发明实施例的协同通信的方法100中的云端服务器,并且云端服务器800中的各个模块的上述和其它操作和/或功能可以参考图1的方法100的相应流程,为了简洁,在此不再赘述。
因此,本发明实施例的云端服务器,在当前接入的无线网络的带宽不能满足数据传输所需的带宽时,通过向核心网请求带宽支援,将部分数据由核心网通过与其连接的无线网络发送至用户设备,能够整合不同通信协议的无线网络的带宽资源,从而能够实现数据的流畅传输。
图9示出了根据本发明另一实施例的核心网服务器900的示意性框图,如图9所示,核心网服务器900包括:处理器910、存储器920、总线系统930和收发器940。其中,处理器910、存储器920和收发器940通过总线系统930相连,该存储器920用于存储指令,该处理器910用于执行该存储器920存储的指令。
收发器940用于接收云端服务器发送的请求消息,该请求消息用于请求带宽支援,该请求消息包括用户设备UE的标识符和该UE所在小区位置信息。处理器910用于根据该请求消息,确定无线网络能够为该UE提供的无线带宽。收发器940还用于向该云端服务器发送反馈消息,该反馈消息携带该无线带宽。
因此,本发明实施例的核心网服务器,通过接收并响应云端服务器的带宽支援请求,能够整合不同通信协议的无线网络的带宽资源,从而能够实现数据的流畅传输。
应理解,在本发明实施例中,该处理器910可以是中央处理单元(Central Processing Unit,CPU),该处理器910还可以是其他通用处理器、数字信号处理器(DSP)、专用集成电路(ASIC)、现成可编程门阵列(FPGA)或者 其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
该存储器920可以包括只读存储器和随机存取存储器,并向处理器910提供指令和数据。存储器920的一部分还可以包括非易失性随机存取存储器。例如,存储器920还可以存储设备类型的信息。
该总线系统930除包括数据总线之外,还可以包括电源总线、控制总线和状态信号总线等。但是为了清楚说明起见,在图中将各种总线都标为总线系统930。
在实现过程中,上述方法的各步骤可以通过处理器910中的硬件的集成逻辑电路或者软件形式的指令完成。结合本发明实施例所公开的方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器920,处理器910读取存储器920中的信息,结合其硬件完成上述方法的步骤。为避免重复,这里不再详细描述。
具体地,作为另一实施例,处理器910还具体用于根据该UE所在小区位置信息,确定该UE所在的无线网络。收发器940还用于与无线网络中的基站建立连接,从该基站获取该无线网络能够为该UE提供的无线带宽。
具体地,作为另一实施例,收发器940还用于接收该云端服务器发送的数据,并将该数据通过该无线网络发送至该UE。
应理解,根据本发明实施例的核心网服务器900可对应于根据本发明实施例的协同通信的方法300中的核心网服务器,并且核心网服务器900中的各个模块的上述和其它操作和/或功能可以参考图3的方法300的相应流程,为了简洁,在此不再赘述。
因此,本发明实施例的核心网服务器,通过接收并响应云端服务器的带宽支援请求,能够整合不同通信协议的无线网络的带宽资源,从而能够实现数据的流畅传输。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、计算机软件或者二者的结合来实现,为了清楚地说明硬件和软件的可互换性,在上述说明中已经按照功能一般性地描述了各示例的组成及步骤。这些功能究竟以硬件还是软件方式来执 行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本发明的范围。
所属领域的技术人员可以清楚地了解到,为了描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另外,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口、装置或单元的间接耦合或通信连接,也可以是电的,机械的或其它的形式连接。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本发明实施例方案的目的。
另外,在本发明各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以是两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
通过以上的实施方式的描述,所属领域的技术人员可以清楚地了解到本发明可以用硬件实现,或固件实现,或它们的组合方式来实现。当使用软件实现时,可以将上述功能存储在计算机可读介质中或作为计算机可读介质上的一个或多个指令或代码进行传输。计算机可读介质包括计算机存储介质和通信介质,其中通信介质包括便于从一个地方向另一个地方传送计算机程序的任何介质。存储介质可以是计算机能够存取的任何可用介质。以此为例但不限于:计算机可读介质可以包括RAM、ROM、EEPROM、CD-ROM或其他光盘存储、磁盘存储介质或者其他磁存储设备、或者能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质。此外。任何连接可以适当的成为计算机可读介质。例如,如果软件 是使用同轴电缆、光纤光缆、双绞线、数字用户线(DSL)或者诸如红外线、无线电和微波之类的无线技术从网站、服务器或者其他远程源传输的,那么同轴电缆、光纤光缆、双绞线、DSL或者诸如红外线、无线和微波之类的无线技术包括在所属介质的定影中。如本发明所使用的,盘(Disk)和碟(disc)包括压缩光碟(CD)、激光碟、光碟、数字通用光碟(DVD)、软盘和蓝光光碟,其中盘通常磁性的复制数据,而碟则用激光来光学的复制数据。上面的组合也应当包括在计算机可读介质的保护范围之内。
总之,以上所述仅为本发明技术方案的较佳实施例而已,并非用于限定本发明的保护范围。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (14)

  1. 一种协同通信的方法,其特征在于,所述方法由云端服务器执行,所述云端服务器与多个核心网相连接,所述方法包括:
    确定用户设备UE当前接入的第一无线网络的带宽;
    确定向所述UE待发送的数据所需的带宽;
    当所述第一无线网络的带宽不能满足所述待发送的数据所需的带宽时,向第一无线网络发送第一部分数据包,并向至少一个核心网发送第二部分数据包,以便所述至少一个核心网通过至少一个无线网络向所述UE发送所述第二部分数据包,所述第一部分数据包和第二部分数据包属于所述待发送的数据,所述第一无线网络与所述至少一个无线网络的通信协议不同。
  2. 根据权利要求1所述的方法,其特征在于,当所述第一无线网络的带宽不能满足所述待发送的数据所需的带宽时,在所述向第一无线网络发送第一部分数据包之前,所述方法还包括:
    向所述至少一个核心网的至少一个核心网服务器发送请求消息,所述请求消息用于请求所述至少一个核心网提供带宽支援,所述请求消息携带所述UE的标识符和所述UE所在小区位置信息;
    接收所述至少一个核心网服务器发送的反馈信息,所述反馈信息包括所述至少一个无线网络提供的带宽;
    根据所述至少一个无线网络提供的带宽和所述第一无线网络的带宽,确定所述第一部分数据包和所述第二部分数据包。
  3. 根据权利要求2所述的方法,其特征在于,
    所述待发送的数据至少包括:第一压缩率的数据包和第二压缩率的数据包,所述第一压缩率小于所述第二压缩率,
    所述待发送的数据所需的带宽包括:所述待发送的数据的所述第一压缩率的数据包所需的带宽,
    当所述至少一个无线网络提供的带宽和所述第一无线网络的带宽满足所述待发送的数据的第一压缩率的数据包所需的带宽时,所述第一部分数据包和所述第二数据包均属于所述第一压缩率的数据包,
    当所述至少一个无线网络提供的带宽和所述第一无线网络的带宽无法满足所述待发送的数据的第一压缩率的数据包所需的带宽时,所述第一部分 数据包和所述第二部分数据包二者中的部分或者全部的数据包属于所述第二压缩率的数据包。
  4. 根据权利要求1至3中任一项所述的方法,其特征在于,还包括:
    接收所述UE上报的所述第一无线网络的性能参数,
    其中,所述确定UE当前接入的第一无线网络的带宽包括:
    根据所述第一无线网络的性能参数,确定所述第一无线网络的带宽。
  5. 一种协同通信的方法,其特征在于,包括:
    接收云端服务器发送的请求消息,所述请求消息用于请求带宽支援,所述请求消息包括用户设备UE的标识符和所述UE所在小区的位置信息;
    根据所述请求消息,确定无线网络能够为所述UE提供的无线带宽;
    向所述云端服务器发送反馈消息,所述反馈消息携带所述无线带宽。
  6. 根据权利要求5所述的方法,其特征在于,所述根据所述请求消息,确定无线网络能够为所述UE提供的无线带宽包括:
    根据所述UE所在小区位置信息,确定所述UE所在的无线网络;
    与所述无线网络中的基站建立连接;
    从所述基站获取所述无线网络能够为所述UE提供的无线带宽。
  7. 根据权利要求5或6所述的方法,其特征在于,还包括:
    接收所述云端服务器发送的数据;
    将所述数据通过所述无线网络发送至所述UE。
  8. 一种云端服务器,其特征在于,所述云端服务器与多个核心网相连接,所述云端服务器包括:
    确定模块,用于确定用户设备UE当前接入的第一无线网络的带宽,还用于确定向所述UE待发送的数据所需的带宽;
    发送模块,用于当所述确定模块确定的所述第一无线网络的带宽不能满足所述待发送的数据所需的带宽时,向第一无线网络发送第一部分数据包,并向至少一个核心网发送第二部分数据包,以便所述至少一个核心网通过至少一个无线网络向所述UE发送所述第二部分数据包,所述第一部分数据包和第二部分数据包属于所述待发送的数据,所述第一无线网络与所述至少一个无线网络的通信协议不同。
  9. 根据权利要求8所述的云端服务器,其特征在于,
    所述发送模块还用于,当所述第一无线网络的带宽不能满足所述待发送 的数据所需的带宽时,在所述向第一无线网络发送第一部分数据包之前,向所述至少一个核心网的至少一个核心网服务器发送请求消息,所述请求消息用于请求所述至少一个核心网提供带宽支援,所述请求消息携带所述UE的标识符和所述UE所在小区位置信息,
    所述云端服务器还包括:
    接收模块,用于接收所述至少一个核心网服务器发送的反馈信息,所述反馈信息包括所述至少一个无线网络提供的带宽,
    其中,所述确定模块还用于根据所述至少一个无线网络提供的带宽和所述第一无线网络的带宽,确定所述第一部分数据包和所述第二部分数据包。
  10. 根据权利要求9所述的云端服务器,其特征在于,
    所述待发送的数据至少包括:第一压缩率的数据包和第二压缩率的数据包,所述第一压缩率小于所述第二压缩率,
    所述待发送的数据所需的带宽包括:所述待发送的数据的所述第一压缩率的数据包所需的带宽,
    当所述至少一个无线网络提供的带宽和所述第一无线网络的带宽满足所述待发送的数据的第一压缩率的数据包所需的带宽时,所述第一部分数据包和所述第二部分数据包均属于所述第一压缩率的数据包,
    当所述至少一个无线网络提供的带宽和所述第一无线网络的带宽无法满足所述待发送的数据的第一压缩率的数据包所需的带宽时,所述第一部分数据包和所述第二部分数据包二者中的部分或者全部的数据包属于所述第二压缩率的数据包。
  11. 根据权利要求8至10中任一项所述的云端服务器,其特征在于,
    所述接收模块还用于接收所述UE上报的所述第一无线网络的性能参数,
    其中,所述确定模块具体用于根据所述第一无线网络的性能参数,确定所述第一无线网络的带宽。
  12. 一种核心网服务器,其特征在于,包括:
    接收模块,用于接收云端服务器发送的请求消息,所述请求消息用于请求带宽支援,所述请求消息包括用户设备UE的标识符和所述UE所在小区位置信息;
    确定模块,用于根据所述请求消息,确定无线网络能够为所述UE提供 的无线带宽;
    发送模块,用于向所述云端服务器发送反馈消息,所述反馈消息携带所述无线带宽。
  13. 根据权利要求12所述的核心网服务器,其特征在于,所述确定模块包括:
    确定单元,用于根据所述UE所在小区位置信息,确定所述UE所在的无线网络;
    连接单元,用于与所述无线网络中的基站建立连接;
    获取单元,用于从所述基站获取所述无线网络能够为所述UE提供的无线带宽。
  14. 根据权利要求12或13所述的核心网服务器,其特征在于,
    所述接收模块还用于接收所述云端服务器发送的数据;
    所述发送模块还用于将所述数据通过所述无线网络发送至所述UE。
PCT/CN2014/091754 2014-04-29 2014-11-20 协同通信的方法、云端服务器和核心网服务器 WO2015165254A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020157025834A KR101693282B1 (ko) 2014-04-29 2014-11-20 협력 통신 방법, 클라우드 서버, 및 코어 네트워크 서버
US14/830,986 US9854472B2 (en) 2014-04-29 2015-08-20 Cooperative communication method, cloud server, and core network server

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410177627.4 2014-04-29
CN201410177627.4A CN103974328B (zh) 2014-04-29 2014-04-29 协同通信的方法和云端服务器

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/830,986 Continuation US9854472B2 (en) 2014-04-29 2015-08-20 Cooperative communication method, cloud server, and core network server

Publications (1)

Publication Number Publication Date
WO2015165254A1 true WO2015165254A1 (zh) 2015-11-05

Family

ID=51243255

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/091754 WO2015165254A1 (zh) 2014-04-29 2014-11-20 协同通信的方法、云端服务器和核心网服务器

Country Status (5)

Country Link
US (1) US9854472B2 (zh)
KR (1) KR101693282B1 (zh)
CN (1) CN103974328B (zh)
TW (1) TWI555425B (zh)
WO (1) WO2015165254A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11583794B2 (en) 2017-02-24 2023-02-21 Cummins Filtration Ip, Inc. Filtration monitoring system data transmission

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10410222B2 (en) 2009-07-23 2019-09-10 DISH Technologies L.L.C. Messaging service for providing updates for multimedia content of a live event delivered over the internet
CN103974328B (zh) * 2014-04-29 2017-12-22 华为技术有限公司 协同通信的方法和云端服务器
US10044414B2 (en) * 2014-10-10 2018-08-07 Nokia Solutions And Networks Oy Methods and apparatus for coordinated multipoint communication
US10638353B2 (en) 2014-11-14 2020-04-28 Qualcomm Incorporated Evolved data compression scheme for unreliable transmission modes
US20160182286A1 (en) * 2014-12-19 2016-06-23 Nokia Technologies Oy Method for provisioning non-real-time data
CN105225126A (zh) * 2015-08-26 2016-01-06 成都秋雷科技有限责任公司 网页广告的投放方法
EP3398335A1 (en) * 2015-12-29 2018-11-07 Dish Technologies L.L.C. Methods and systems for adaptive content delivery
US10547679B1 (en) * 2018-01-02 2020-01-28 Architecture Technology Corporation Cloud data synchronization based upon network sensing
CN110033781B (zh) * 2018-01-10 2021-06-01 盛微先进科技股份有限公司 音频处理方法、装置及非暂时性电脑可读媒体
US11464069B2 (en) 2019-07-08 2022-10-04 Apple Inc. Communications network
CN113891310A (zh) * 2020-07-03 2022-01-04 华为技术有限公司 协作通信方法、用户设备及系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102595580A (zh) * 2012-04-07 2012-07-18 西安电子科技大学 多接入网络节能方法
CN103068048A (zh) * 2011-10-24 2013-04-24 北京三星通信技术研究有限公司 蜂窝通信的方法及设备
CN103202060A (zh) * 2012-09-29 2013-07-10 华为技术有限公司 传输数据的方法、用户设备和网络侧设备
US20130242783A1 (en) * 2012-03-16 2013-09-19 Qualcomm Incorporated System and Method of Offloading Traffic to a Wireless Local Area Network
CN103974328A (zh) * 2014-04-29 2014-08-06 华为技术有限公司 协同通信的方法、云端服务器和核心网服务器

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060235716A1 (en) * 2005-04-15 2006-10-19 General Electric Company Real-time interactive completely transparent collaboration within PACS for planning and consultation
WO2012168996A1 (ja) 2011-06-06 2012-12-13 富士通株式会社 基地局および通信方法
KR102362590B1 (ko) * 2011-07-12 2022-02-15 인터디지탈 패튼 홀딩스, 인크 다중 rat 액세스 모드 동작을 위한 방법 및 장치
KR102132758B1 (ko) * 2012-06-01 2020-07-13 삼성전자주식회사 클라우드 셀 통신 시스템에서 네트워크 진입 절차 수행 장치 및 방법
WO2014124666A1 (en) * 2013-02-13 2014-08-21 Nokia Solutions And Networks Oy Method and network element for managing backhaul resources

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103068048A (zh) * 2011-10-24 2013-04-24 北京三星通信技术研究有限公司 蜂窝通信的方法及设备
US20130242783A1 (en) * 2012-03-16 2013-09-19 Qualcomm Incorporated System and Method of Offloading Traffic to a Wireless Local Area Network
CN102595580A (zh) * 2012-04-07 2012-07-18 西安电子科技大学 多接入网络节能方法
CN103202060A (zh) * 2012-09-29 2013-07-10 华为技术有限公司 传输数据的方法、用户设备和网络侧设备
CN103974328A (zh) * 2014-04-29 2014-08-06 华为技术有限公司 协同通信的方法、云端服务器和核心网服务器

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11583794B2 (en) 2017-02-24 2023-02-21 Cummins Filtration Ip, Inc. Filtration monitoring system data transmission

Also Published As

Publication number Publication date
TWI555425B (zh) 2016-10-21
CN103974328B (zh) 2017-12-22
KR20160002723A (ko) 2016-01-08
US9854472B2 (en) 2017-12-26
US20150358858A1 (en) 2015-12-10
TW201542006A (zh) 2015-11-01
CN103974328A (zh) 2014-08-06
KR101693282B1 (ko) 2017-01-05

Similar Documents

Publication Publication Date Title
WO2015165254A1 (zh) 协同通信的方法、云端服务器和核心网服务器
WO2019158102A1 (zh) 一种确定QoS描述信息的方法和装置
WO2020108003A1 (zh) 一种用户接入控制方法、信息发送方法及装置
EP3493591A1 (en) Service transmission control method, related device, and communication system
WO2014015696A1 (zh) 策略控制方法及设备
JP2023025025A (ja) データ伝送方法及び装置
WO2020083263A1 (zh) WiFi网络中的数据传输方法、装置及设备
WO2021218888A1 (zh) 通信方法和装置
WO2020098747A1 (zh) 传输路径的配置方法及装置
US20210211224A1 (en) Mode Switching Method, Data Flow Splitting Method, And Apparatus
US20240163719A1 (en) Network optimization method and communication apparatus
CN116867102A (zh) 数据传输方法及装置
WO2020078248A1 (zh) 无线通信方法及设备
WO2022022471A1 (zh) 一种媒体流切换方法及装置
WO2021087996A1 (zh) 通信方法和通信装置
WO2020043011A1 (zh) 一种ui显示方法、终端设备及装置
CN109906646A (zh) 信息传输方法、基站和终端设备
WO2021208813A1 (zh) 一种通信方法及通信装置
JP7250128B2 (ja) 通信方法および装置
US10771596B2 (en) Service data transmission method and apparatus
WO2016114767A1 (en) Location based cooperative caching at the ran
WO2022143149A1 (zh) 传输业务的方法和通信装置
WO2022183375A1 (zh) 无线通信方法、终端设备和网络设备
WO2024140600A1 (zh) 通信方法、通信装置及通信系统
WO2023124751A1 (zh) 一种数据传输方法、装置、终端及网络设备

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 20157025834

Country of ref document: KR

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14890746

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14890746

Country of ref document: EP

Kind code of ref document: A1