WO2020083263A1 - WiFi网络中的数据传输方法、装置及设备 - Google Patents

WiFi网络中的数据传输方法、装置及设备 Download PDF

Info

Publication number
WO2020083263A1
WO2020083263A1 PCT/CN2019/112391 CN2019112391W WO2020083263A1 WO 2020083263 A1 WO2020083263 A1 WO 2020083263A1 CN 2019112391 W CN2019112391 W CN 2019112391W WO 2020083263 A1 WO2020083263 A1 WO 2020083263A1
Authority
WO
WIPO (PCT)
Prior art keywords
downlink
uplink
message
service type
address
Prior art date
Application number
PCT/CN2019/112391
Other languages
English (en)
French (fr)
Inventor
方平
李正兵
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to US17/287,383 priority Critical patent/US11778692B2/en
Priority to EP19875377.4A priority patent/EP3863355A4/en
Publication of WO2020083263A1 publication Critical patent/WO2020083263A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L47/00Traffic control in data switching networks
    • H04L47/10Flow control; Congestion control
    • H04L47/24Traffic characterised by specific attributes, e.g. priority or QoS
    • H04L47/2483Traffic characterised by specific attributes, e.g. priority or QoS involving identification of individual flows
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W80/00Wireless network protocols or protocol adaptations to wireless operation
    • H04W80/04Network layer protocols, e.g. mobile IP [Internet Protocol]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L47/00Traffic control in data switching networks
    • H04L47/10Flow control; Congestion control
    • H04L47/22Traffic shaping
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L47/00Traffic control in data switching networks
    • H04L47/10Flow control; Congestion control
    • H04L47/24Traffic characterised by specific attributes, e.g. priority or QoS
    • H04L47/2408Traffic characterised by specific attributes, e.g. priority or QoS for supporting different services, e.g. a differentiated services [DiffServ] type of service
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L47/00Traffic control in data switching networks
    • H04L47/10Flow control; Congestion control
    • H04L47/24Traffic characterised by specific attributes, e.g. priority or QoS
    • H04L47/2416Real-time traffic
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L47/00Traffic control in data switching networks
    • H04L47/10Flow control; Congestion control
    • H04L47/24Traffic characterised by specific attributes, e.g. priority or QoS
    • H04L47/2441Traffic characterised by specific attributes, e.g. priority or QoS relying on flow classification, e.g. using integrated services [IntServ]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1221Wireless traffic scheduling based on age of data to be sent
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/56Allocation or scheduling criteria for wireless resources based on priority criteria
    • H04W72/566Allocation or scheduling criteria for wireless resources based on priority criteria of the information or information source or recipient
    • H04W72/569Allocation or scheduling criteria for wireless resources based on priority criteria of the information or information source or recipient of the traffic information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/10Small scale networks; Flat hierarchical networks
    • H04W84/12WLAN [Wireless Local Area Networks]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/08Access point devices

Definitions

  • the present application relates to the field of communication technology, and in particular to a data transmission method, device and equipment in a wireless fidelity (WiFi) network.
  • WiFi wireless fidelity
  • WiFi wireless fidelity
  • AP access point
  • STA stations
  • competitive methods seize network resources to complete data transmission for various services such as voice, video, web browsing, downloading, games, etc. Therefore, when the communication environment is poor, such as strong interference, weak signals, insufficient resources, and heavy load, the data transmission of some terminals may adversely affect the data transmission of another terminal.
  • the video playback service of terminal A occupies a large bandwidth, which may squeeze the available bandwidth of the game service of terminal B, thereby causing the downstream transmission delay of the game service of terminal B to increase, which may cause the game to freeze.
  • existing wireless quality of service (QoS) protocols such as WiFi multimedia (WiFi multimedia, WMM) protocol
  • QoS quality of service
  • WMM WiFi multimedia
  • access categories AC
  • voice voice, VO
  • video video
  • VI best-effort
  • BE back-ground
  • BK back-ground
  • the AP can preferentially forward data of services with high-priority access types to provide differentiated data transmission services for different service types.
  • the above-mentioned priority is often not effectively implemented, such as ignoring (such as not supporting or not parsed or not executed) the set priority, tampering (such as arbitrary reduction , Increase) the set priority, abuse of priority setting authority (such as all types of services are set to the highest priority), etc., resulting in poor reliability of the existing WiFi network to provide differentiated data transmission services.
  • the embodiments of the present application provide a data transmission method, device and equipment in a WiFi network, which can identify and preferentially forward downlink messages of a preset service type, which can solve the problem that although a high forwarding priority is set in the downlink message, in fact The problem of preferential forwarding is not achieved, thereby improving the reliability of network access equipment to provide differentiated data transmission services.
  • a data transmission method in a WiFi network is provided. This method is applied to network access equipment (such as routers). The method includes: receiving an uplink message, recording the real-time transmission indication and uplink quintuple information carried in the uplink message. Then, receive the downlink message. Among them, the downlink message carries downlink quintuple information. Afterwards, if the service type of the downlink packet is the preset service type, and the downlink quintuple information matches the uplink quintuple information, the downlink packet is preferentially forwarded according to the real-time transmission instruction.
  • the network access device records the real-time transmission indication and uplink quintuple information carried in the uplink message.
  • the service type of the downlink message is the preset service type
  • the network access device According to the real-time transmission instruction of the uplink message, the downlink message matching the downlink quintuple information with the uplink quintuple information can be preferentially forwarded.
  • the forwarding priority When the forwarding priority is ignored or tampered with or abused, it is still possible to preferentially forward the downlink messages matching the uplink quintuple according to the real-time transmission instructions of the uplink messages, thereby achieving priority forwarding of the downlink of the preset service type
  • the purpose of the message can improve the reliability of the network access equipment to provide differentiated data transmission services.
  • the above real-time transmission indication may include one or more of the following: the differentiated service code point DSCP value corresponding to the highest forwarding priority, the user priority UP value corresponding to the highest forwarding priority, and the highest forwarding priority Corresponding access type AC.
  • the foregoing downlink quintuple information may include: a downlink source internet protocol IP address, a downlink destination IP address, a downlink source port, a downlink destination port, and a downlink transmission protocol type.
  • the service type of the foregoing downlink message is a preset service type, which may include: the downlink message satisfies at least one of the following conditions: the downlink source IP address is a source IP address providing real-time transmission service; and the downlink source port is providing real-time transmission The source port of the service; the type of downlink transmission protocol is the type of transmission protocol used by the real-time transmission service; the bandwidth occupied by the downlink packet is less than the threshold of the downlink bandwidth; the packet length of the downlink packet is less than the threshold of the downlink packet length; any two adjacent downlink reports The deviation between the arrival time of the text is smaller than the threshold of the downward time deviation.
  • the above uplink quintuple information may include: an uplink source internet protocol IP address, an uplink destination IP address, an uplink source port, an uplink destination port, and an uplink transmission protocol type.
  • the above-mentioned downlink quintuple information matches the uplink quintuple information, which may include: the downlink source IP address is the same as the uplink destination IP address; the downlink destination IP address is the same as the uplink source IP address; the downlink source port is the same as the uplink destination port ; The downstream destination port is the same as the upstream source port; the downstream transmission protocol type is the same as the upstream transmission protocol type.
  • the data transmission method in the WiFi network described in the first aspect may further include one or more of the following: determining the downlink The data volume is greater than the downlink data volume threshold; it is determined that the downlink bandwidth is greater than the downlink bandwidth threshold.
  • the data transmission method in the WiFi network may further include: no longer preferentially forwarding downlink reports corresponding to uplink quintuple information and / or downlink quintuple information that do not appear within a specified time period Text.
  • the foregoing data transmission method in the WiFi network may further include: limiting the bandwidth of downlink packets of the STA at the first designated site.
  • the above limitation of the downlink message bandwidth of the STA of the first designated site may include at least one of the following items: the limitation is the uplink quintet information and / or the downlink quintuple corresponding to the downlink packets that the STA of the first designated site preferentially forwards The number of group information; limited to the number of downlink messages that the first designated station STA preferentially forwards; limited to the continuous transmission time occupied by the downlink messages preferentially forwarded by the first designated station STA.
  • the foregoing limitation of the downlink message bandwidth of the STA of the first designated site may include: while preferentially forwarding the downlink message for the STA of the second designated site, limiting the bandwidth of the downlink message of the STA of the first designated site.
  • another data transmission method in a WiFi network is provided.
  • This method is applied to network access equipment.
  • the method includes: receiving an upstream message.
  • the uplink message carries real-time transmission instructions and uplink quintuple information.
  • receive the downlink message If the service type of the uplink message is the preset service type, and the downlink quintuple information matches the uplink quintuple information, the downlink message is preferentially forwarded according to the real-time transmission instruction.
  • the downlink message carries downlink quintuple information.
  • the network access device receives and records the real-time transmission indication and uplink quintuple information carried in the uplink message. If the service type of the uplink message is the preset service type, the network The access device can, according to the real-time transmission instruction of the uplink message, preferentially forward the downlink message whose downlink quintuple information matches the uplink quintuple information, and can set the high When the priority is ignored or tampered with or abused, the downlink message matching the uplink quintuple can still be preferentially forwarded according to the real-time transmission indication of the uplink message, thereby realizing the preferential forwarding of the downlink report of the preset service type
  • the purpose of this article is to improve the reliability of network access equipment to provide differentiated data transmission services.
  • the above real-time transmission indication may include one or more of the following: the differentiated service code point DSCP value corresponding to the highest forwarding priority, the user priority UP value corresponding to the highest forwarding priority, and the highest forwarding priority Corresponding access type AC.
  • the above uplink quintuple information may include: an uplink source internet protocol IP address, an uplink destination IP address, an uplink source port, an uplink destination port, and an uplink transmission protocol type.
  • the service type of the uplink message is a preset service type, which may include: if the uplink message meets at least one of the following conditions, the service type of the uplink message is the preset service type: the uplink destination IP address is to provide real-time The destination IP address of the transmission service; the upstream destination port is the destination port that provides real-time transmission service; the upstream transmission protocol type is the transmission protocol type used by the real-time transmission service; the bandwidth occupied by the upstream packet is less than the upstream bandwidth threshold; the packet length of the upstream packet Less than the upstream packet length threshold.
  • the foregoing downlink quintuple information may include: a downlink source internet protocol IP address, a downlink destination IP address, a downlink source port, a downlink destination port, and a downlink transmission protocol type.
  • the above-mentioned downlink quintuple information matches the uplink quintuple information, which may include: the downlink source IP address is the same as the uplink destination IP address; the downlink destination IP address is the same as the uplink source IP address; the downlink source port is the same as the uplink destination port ; The downstream destination port is the same as the upstream source port; the downstream transmission protocol type is the same as the upstream transmission protocol type.
  • the data transmission method in the WiFi network described in the second aspect may further include one or more of the following: determining the downlink The data volume is greater than the downlink data volume threshold; it is determined that the downlink bandwidth is greater than the downlink bandwidth threshold.
  • the data transmission method in the WiFi network according to the second aspect may further include: no longer preferentially forwarding uplink quintuple information and / or downlink quintuple that does not appear within a specified time period The downstream packet corresponding to the information.
  • the data transmission method in the WiFi network described in the second aspect may further include: limiting a downlink packet bandwidth of the STA of the first designated station.
  • the above limitation of the downlink message bandwidth of the STA of the first designated site may include at least one of the following items: the limitation is the uplink quintet information and / or the downlink quintuple corresponding to the downlink packets that the STA of the first designated site preferentially forwards The number of group information; limited to the number of downlink messages preferentially forwarded by the STA at the first designated site; limited to the continuous transmission time occupied by the downlink messages preferentially forwarded by the STA at the first designated site; At the same time as the message, the bandwidth of the downstream message of the STA at the first designated station is limited.
  • the data transmission method in the WiFi network provided in the first aspect and the data transmission method in the WiFi network provided in the second aspect may be used alone or in combination.
  • the service type of the upstream message and the service type of the downstream message are both preset service types, and the upstream quintuple matches the downstream quintuple, the real-time transmission indication of the upstream message will be used. Prioritize the forwarding of downlink messages to further improve the accuracy and efficiency of identifying and forwarding high-priority downlink messages.
  • another data transmission method in a WiFi network is provided. This method is applied to network access equipment.
  • the method includes: receiving a downlink message.
  • the downlink message carries downlink quintuple information, and the downlink quintuple information includes a downlink source Internet protocol IP address, a downlink destination IP address, a downlink source port, a downlink destination port, and a downlink transmission protocol type. Then, if it is determined that the service type of the downlink message is the preset service type, the downlink message is preferentially forwarded.
  • the service type of the downlink message is a preset service type, which may include: if the downlink message meets at least one of the following conditions, the service type of the downlink message is the preset service type: the downlink source IP address is to provide real-time The source IP address of the transmission service; the downlink source port is the source port that provides the real-time transmission service; the type of the downlink transmission protocol is the type of transmission protocol used by the real-time transmission service; the bandwidth occupied by the downlink packet is less than the threshold of the downlink bandwidth; The packet length is less than the downlink packet length threshold; the deviation between the arrival times of any two adjacent downlink packets is less than the downlink time deviation threshold.
  • the network access device can identify and preferentially forward the downlink messages of the preset service type, which can solve the problem that the high priority set for downlink packets in external network devices such as servers Ignoring or being tampered with or misused, the problem that the network access device cannot preferentially forward downlink messages of a preset service type can improve the reliability of the network access device to provide differentiated data transmission services.
  • a communication device in a WiFi network includes a processing module, a first transceiver module and a second transceiver module.
  • the first transceiver module is used to receive uplink messages.
  • the uplink message carries real-time transmission instructions and uplink quintuple information.
  • the second transceiver module is used to receive downlink messages.
  • the downlink message carries downlink quintuple information.
  • the processing module is used to control the first transceiver module to preferentially forward the downlink message according to the real-time transmission instruction if the service type of the downlink message is the preset service type and the information of the downlink quintuple matches the information of the uplink quintuple.
  • the above real-time transmission indication may include one or more of the following: the differentiated service code point DSCP value corresponding to the highest forwarding priority, the user priority UP value corresponding to the highest forwarding priority, and the highest forwarding priority Corresponding access type AC.
  • the above-mentioned downlink quintuple information includes: downlink source internet protocol IP address, downlink destination IP address, downlink source port, downlink destination port, and downlink transmission protocol type.
  • the service type of the downlink packet is a preset service type, including: the downlink packet meets at least one of the following conditions: the downlink source IP address is a source IP address that provides real-time transmission services; and the downlink source port is a Source port; the type of downlink transmission protocol is the type of transmission protocol used for real-time transmission services; the bandwidth occupied by downlink packets is less than the threshold of downlink bandwidth; the packet length of downlink packets is less than the threshold of downlink packet length; the bandwidth of any two adjacent downlink packets The deviation between the arrival times is less than the downlink time deviation threshold.
  • the above uplink quintuple information includes: an uplink source internet protocol IP address, an uplink destination IP address, an uplink source port, an uplink destination port, and an uplink transmission protocol type.
  • the above downlink quintuple information matches the uplink quintuple information, including: the downlink source IP address is the same as the uplink destination IP address; the downlink destination IP address is the same as the uplink source IP address; the downlink source port is the same as the uplink destination port; the downstream destination port is the same as the upstream source port; the downstream transmission protocol type is the same as the upstream transmission protocol type.
  • the processing module is further configured to determine that the downlink data volume is greater than the downlink data volume threshold before the processing module controls the first transceiver module to preferentially forward the downlink packet according to the real-time transmission instruction, or, determine The downlink bandwidth is greater than the downlink bandwidth threshold.
  • the processing module is further used to determine that priority is not given to forwarding the downlink messages corresponding to the uplink quintuple information and / or downlink quintuple information that does not appear within the specified time period.
  • the processing module is also used to limit the downlink packet bandwidth of the STA of the first designated station.
  • the foregoing limitation on the downlink packet bandwidth of the STA of the first designated site may include one or more of the following: the uplink quintet information and / or downlink corresponding to the downlink packets that the STA of the first designated site preferentially forwards are limited The number of quintuple information; limited to the number of downlink messages that the STA of the first designated site preferentially forwards; limited to the continuous transmission time occupied by the downlink messages that the STA of the first designated site preferentially forwards; While forwarding the downlink message, the bandwidth of the downlink message of the STA at the first designated site is limited.
  • the communication device includes a processing module, a first transceiver module and a second transceiver module.
  • the first transceiver module is used to receive uplink messages.
  • the uplink message carries real-time transmission instructions and uplink quintuple information.
  • the second transceiver module is used to receive downlink messages.
  • the downlink message carries downlink quintuple information.
  • the processing module is configured to, if the service type of the uplink message is the preset service type and the downlink quintuple information matches the uplink quintuple information, control the first transceiver module to preferentially forward the downlink message according to the real-time transmission instruction.
  • the above real-time transmission indication may include one or more of the following: the differentiated service code point DSCP value corresponding to the highest forwarding priority, the user priority UP value corresponding to the highest forwarding priority, and the highest forwarding priority Corresponding access type AC.
  • the service type of the uplink message is a preset service type, which may include:
  • the business type of the upstream message is the preset business type: the upstream destination IP address is the destination IP address that provides real-time transmission services; the upstream destination port is the destination port that provides real-time transmission services; The type of upstream transmission protocol is the type of transmission protocol used for real-time transmission services; the bandwidth occupied by upstream packets is less than the upstream bandwidth threshold; the packet length of upstream packets is smaller than the upstream packet length threshold.
  • the above-mentioned downlink quintuple information includes: downlink source internet protocol IP address, downlink destination IP address, downlink source port, downlink destination port, and downlink transmission protocol type.
  • the above downlink quintuple information matches the uplink quintuple information, including: the downlink source IP address is the same as the uplink destination IP address; the downlink destination IP address is the same as the uplink source IP address; the downlink source port is the same as the uplink destination port; The downstream destination port is the same as the upstream source port; the downstream transmission protocol type is the same as the upstream transmission protocol type.
  • the processing module is further configured to determine that the downlink data volume is greater than the downlink data volume threshold before controlling the first transceiver module to preferentially forward the downlink message according to the real-time transmission instruction, or that the downlink bandwidth is greater than the downlink Bandwidth threshold.
  • the processing module is further used to determine that priority is not given to forwarding the downlink messages corresponding to the uplink quintuple information and / or downlink quintuple information that does not appear within the specified time period.
  • the processing module is also used to limit the downlink packet bandwidth of the STA of the first designated station.
  • the foregoing limitation on the downlink packet bandwidth of the STA of the first designated site may include at least one of the following items: the limitation is the uplink quintet information and / or the downlink quintuple corresponding to the downlink packets that the STA of the first designated site preferentially forwards.
  • the number of group information limited to the number of downlink messages that the first designated station STA preferentially forwards; limited to the continuous transmission time occupied by the downlink messages preferentially forwarded by the first designated station STA.
  • the processing module is further used to control the transceiver module to preferentially forward the downlink message of the STA of the second designated site, and limit the bandwidth of the downlink message of the STA of the first designated site.
  • the communication device includes a processing module, a first transceiver module and a second transceiver module.
  • the second transceiver module is used to receive downlink messages.
  • the processing module is configured to control the first transceiver module to preferentially forward the downlink message when the service type of the downlink message is a preset service type.
  • the foregoing downlink message carries a downlink source internet protocol IP address, a downlink destination IP address, a downlink source port, a downlink destination port, and a downlink transmission protocol type.
  • the processing module is also used to determine the service type of the downlink message as the preset service type if the downlink message meets at least one of the following conditions: the downlink source IP address is the source IP address that provides real-time transmission service; the downlink source The port is the source port that provides real-time transmission services; the type of downlink transmission protocol is the type of transmission protocol used for real-time transmission services; the bandwidth occupied by downlink packets is less than the downlink bandwidth threshold; the packet length of downlink packets is less than the downlink packet length threshold; any two The deviation between the arrival times of adjacent downlink packets is less than the downlink time deviation threshold.
  • a communication device in a seventh aspect, includes: a processing module (which may be a processing system), a first transceiver module (which may be one or more interfaces that interact with devices in an internal network (such as a mobile terminal in a home network)), and a second transceiver A module (may be one or more interfaces that interact with devices in an external network (such as network-side devices)).
  • the processing module is configured to execute the data transmission method in the WiFi network as described in any possible implementation manner of the first aspect to the third aspect.
  • the communication device further includes a storage module.
  • the storage module is used to store instructions; the processing module is used to execute instructions stored by the storage module, so that the communication device executes the WiFi network described in any possible implementation manner of the first aspect to the third aspect Data transmission method.
  • the communication device according to the seventh aspect may be a chip or a chip system.
  • the communication device according to the seventh aspect may be the communication device (such as a router) according to the fourth aspect or the fifth aspect or the sixth aspect, or may be a chip or chip provided in the above communication device System, this application does not limit this.
  • a network access device (such as a router) is provided.
  • the network access device includes: a processor and a memory.
  • the memory is used to store instructions; the processor is used to execute instructions stored in the memory, so that the network access device executes the WiFi network described in any possible implementation manner of the first aspect to the third aspect Data transmission method.
  • another network access device (such as a router) is provided.
  • the network access device includes: a processor, a memory, a first transceiver, and a second transceiver.
  • the first transceiver is used to receive upstream messages;
  • the second transceiver is used to receive downstream messages;
  • the first transceiver is also used to forward downstream messages;
  • the memory is used to store instructions;
  • the processor is used to Executing instructions in the memory, so that the network access device executes the data transmission method in the WiFi network as described in any one of the possible implementation manners of the first aspect to the third aspect.
  • a communication system in a tenth aspect, includes one or more terminals, and the above network access device.
  • a computer program product includes a computer program.
  • the computer program When the computer program is executed on the computer, the computer is caused to perform the data transmission method in the WiFi network as described in any one of the possible implementation manners of the first aspect to the third aspect.
  • a computer-readable storage medium stores a computer program, and when the computer program is executed on the computer, the computer is caused to execute the data transmission method in the WiFi network as described in any possible implementation manner of the first aspect to the third aspect.
  • FIG. 1 is a schematic structural diagram of a communication system provided by an embodiment of this application.
  • FIG. 2 is a schematic flowchart of a data transmission method in a WiFi network provided by an embodiment of this application;
  • FIG. 3 is a schematic flowchart of another data transmission method in a WiFi network provided by an embodiment of this application.
  • FIG. 4 is a schematic flowchart of another data transmission method in a WiFi network provided by an embodiment of the present application.
  • FIG. 5 is a schematic structural diagram of a communication device according to an embodiment of the present application.
  • FIG. 6 is a schematic structural diagram of a network access device according to an embodiment of this application.
  • next-generation WiFi systems fifth-generation (5th generation, 5G) mobile communication systems
  • future communication systems such as sixth-generation (6th generation, 6G) System etc.
  • the subscript such as W 1 may be typo mistaken as a non-subscript form such as W 1.
  • the meaning to be expressed is consistent.
  • the network architecture and business scenarios described in the embodiments of the present application are to more clearly explain the technical solutions of the embodiments of the present application, and do not constitute a limitation on the technical solutions provided by the embodiments of the present application. With the evolution of the architecture and the emergence of new business scenarios, the technical solutions provided by the embodiments of the present application are also applicable to similar technical problems.
  • the “transceiver” or “transceiver module” referred to in this application may specifically be a communication interface capable of receiving and sending signals or data.
  • the communication system shown in FIG. 1 is taken as an example to describe in detail the communication system applicable to the embodiments of the present application.
  • the communication system includes one or more terminals, network access devices, and servers.
  • the terminal can access an external network through a network access device, such as accessing a server in the external network shown in FIG. 1, in order to receive services provided by the external network, such as voice, video playback, web browsing, downloading, and games.
  • the network access device usually includes a transceiver module, such as a WiFi module, which can provide a data forwarding service for the terminal, such as forwarding an upstream packet with the terminal as the source device to an external network, and / or forwarding the terminal as the destination device to the terminal Downstream packets.
  • the network access device may also include a scheduling module, which is used to determine whether to accelerate the transmission of downlink packets and / or which downlink packets by judging the uplink packets and / or downlink packets Transmission, that is, the scheduling module can provide differentiated data transmission services for different types of downlink packets.
  • a scheduling module which is used to determine whether to accelerate the transmission of downlink packets and / or which downlink packets by judging the uplink packets and / or downlink packets Transmission, that is, the scheduling module can provide differentiated data transmission services for different types of downlink packets.
  • the network access device is a device that is located on the network side of the communication system and has a wireless transceiver function or a chip that can be installed in the device.
  • the network access equipment includes but is not limited to: an access point (access point (AP)), an evolved Node B (evolved Node B, eNB), a wireless network controller (radio network controller, RNC), and a node B in a WiFi system (Node B, NB), base station controller (BSC), base transceiver station (BTS), home base station (for example, home evolved NodeB, or home Node B, HNB), baseband unit (baseband unit, BBU), wireless relay node, wireless backhaul node, transmission point (transmission and reception point, TRP or transmission point, TP), etc., can also be 5G, for example, in the new radio (NR) system gNB, or, transmission point (TRP or TP), one or a group of antenna panels (including multiple antenna panels) of a base station in a 5G
  • gNB may include a centralized unit (CU) and DU.
  • the gNB may also include a radio unit (RU).
  • CU implements some functions of gNB
  • DU implements some functions of gNB, for example, CU implements radio resource control (RRC), packet data convergence layer protocol (packet data convergence protocol, PDCP) layer functions, DU implements wireless chain Road control (radio link control, RLC), media access control (media access control, MAC) and physical (physical, PHY) layer functions.
  • RRC radio resource control
  • PDCP packet data convergence layer protocol
  • DU implements wireless chain Road control (radio link control, RLC), media access control (media access control, MAC) and physical (physical, PHY) layer functions.
  • the network device may be a CU node, or a DU node, or a device including a CU node and a DU node.
  • the CU can be divided into network devices in the access network RAN, and can also be divided into network devices in the core network CN, which is not limited herein.
  • the terminal is a terminal device that has access to the communication system and has a wireless transceiver function or a chip that can be installed in the terminal device.
  • the terminal equipment may also be called user equipment (user equipment (UE), user equipment, access terminal, user unit, user station, mobile station, mobile station, remote station, remote terminal, mobile device, user terminal, terminal, wireless Communication equipment, user agent or user device.
  • UE user equipment
  • the terminal devices in the embodiments of the present application may be mobile phones, tablet computers, computers with wireless transceiver functions, virtual reality (VR) terminal devices, and augmented reality (AR) terminals Wireless terminals in equipment, industrial control (industrial control), wireless terminals in self-driving (self-driving), wireless terminals in remote medical (remote medical), wireless terminals in smart grid (smart grid), transportation safety ( wireless terminals in transportation, wireless terminals in smart cities, and wireless terminals in smart homes, etc.
  • VR virtual reality
  • AR augmented reality
  • FIG. 1 is only a simplified schematic diagram for ease of understanding and examples.
  • the communication system may also include other network devices or other terminal devices, which are not shown in FIG. 1.
  • FIG. 2 shows a schematic flowchart of a data transmission method in a WiFi network provided by an embodiment of the present application, which is suitable for communication between a terminal and a network access device in the communication system shown in FIG. 1.
  • the data transmission method in the WiFi network includes the following steps:
  • the network access device receives an uplink message.
  • the network access device may receive the uplink message sent by the terminal through a wireless connection with the terminal, such as a wireless connection in a WiFi system or an uplink link in a cellular network.
  • the uplink message may carry uplink quintuple information.
  • the uplink quintuple information may include: an uplink source internet protocol (Internet) (IP) address, an uplink destination IP address, an uplink source port, an uplink destination port, and an uplink transmission protocol type.
  • IP internet protocol
  • the upstream source IP address and upstream source port can be the terminal's IP address and port number
  • the upstream destination IP address and upstream destination port can be the server's IP address and port number
  • the upstream transmission protocol type can be the transmission used by the upstream packet Protocol types, such as user datagram protocol (user datagram protocol, UDP), transmission control protocol (transmission control protocol, TCP), etc.
  • the uplink message may also carry the real-time transmission instruction set by the user.
  • the real-time transmission instruction is used to instruct the network access device to preferentially forward downlink messages of one or more service types set by the user.
  • Table 1 shows an example of a mapping relationship of forwarding priorities specified in the existing WMM protocol.
  • columns 2 to 4 are: differentiated services codepoint (DSCP), user priority (UP) defined in 802.11e, and access type AC.
  • DSCP differentiated services codepoint
  • UP user priority
  • access type AC access type
  • video streams and audio streams are service types that need to be preferentially forwarded, where the forwarding priority of the audio stream is higher than that of the video stream.
  • the video stream and audio stream correspond to user priority values of 4-5 and 6-7, respectively, and correspond to DSCP values of 32-47 and 48-63, respectively.
  • the network access device can parse one or more of the DSCP value, UP value, and AC value carried in the packet to provide differentiated data transmission services for different users or service types.
  • the game service is regarded as a video stream, and its forwarding priority is lower than that of the audio stream. Therefore, for game users, when the number of downstream packets of the voice stream is large, or other video streams other than games, such as the downstream bandwidth occupancy rate of video playback are high, given the low forwarding priority of game services Due to voice streams and the same as other video streams, the network access device may not preferentially forward game packets, resulting in a larger transmission delay of the game packets, resulting in problems such as stalled games and poor experience.
  • the preset service type can be manually set, such as the real-time transmission indication of the game service that the user is most interested in, that is, setting a higher forwarding priority for the preset service type.
  • the user may set the above-mentioned real-time transmission indication in the uplink message of the preset service type.
  • one or more of the following real-time transmission indications can be set in the DSCP field or ToS field in the header of the above uplink message: the DSCP value of the differentiated service code point corresponding to the highest forwarding priority, and the highest forwarding priority
  • the aforementioned game user may set the forwarding priority of the downlink packets of the game to the highest priority through the game interface of the terminal, such as higher than or equal to the forwarding priority of the voice stream.
  • the game user may input the real-time transmission instruction through the input interface provided by the terminal, such as the graphical user interface of the game software or the command line input window.
  • the real-time transmission indication may be a maximum forwarding delay with a small value, such as 10 milliseconds (millisecond, ms), 20 ms, etc., or may be a value corresponding to the priority corresponding to the highest forwarding priority. Not limited.
  • the uplink message may also carry information such as the packet length and transmission time of the uplink message.
  • the network access device records the real-time transmission indication and uplink quintuple information carried in the uplink message.
  • the network access device may record the above-mentioned real-time transmission indication and uplink quintuple information in a local storage space of the access network, for example, in a packet forwarding table of the network access device, or may be accessed by the access network
  • the configuration file called by the control program is not limited in the embodiment of the present application.
  • the network access device can also obtain the statistical information of the uplink message from the specified terminal.
  • the network access device may parse the transmission time carried in the uplink message, and calculate the transmission delay of the uplink message from the terminal to the network access device in conjunction with the reception time of the network access device to receive the uplink message . It is easy to understand that the network access device can also count the packet length and number of upstream packets from the specified terminal within a specified time period to calculate the transmission bandwidth occupied by the specified terminal.
  • the network access device receives the downlink message.
  • the downlink message carries downlink quintuple information.
  • the network access device may receive the data sent by the external network through a communication connection with an external network, such as a server in the external network, such as a communication cable including an optical fiber, a network cable, and / or an intermediate node.
  • an external network such as a server in the external network, such as a communication cable including an optical fiber, a network cable, and / or an intermediate node.
  • the above-mentioned downlink quintuple information may include: downlink source internet protocol IP address, downlink destination IP address, downlink source port, downlink destination port and downlink transmission protocol type.
  • the downlink source IP address and downlink source port can be a device in an external network, such as the server's IP address and port number
  • the downlink destination IP address and downlink destination port can be the terminal's IP address and port number
  • the downlink transmission protocol The type may be the type of network transmission protocol used by the downlink message, such as UDP protocol, TCP protocol, etc.
  • uplink message and the downlink message may use the same transmission protocol type or different transmission protocol types, which is not limited in this embodiment of the present application.
  • the network access device can also obtain statistical information of downlink packets from an external network, such as a designated server.
  • the network access device may parse the transmission time carried in the downlink message, and calculate the transmission delay of the information message from the external network to the network access device based on the reception time of the information message received by the network access device Time. It is easy to understand that the network access device can also count the packet length and number of downlink packets from the specified server within a specified time period to calculate the transmission bandwidth occupied by the downlink packets.
  • the network access device determines that the service type of the downlink packet is the preset service type, and the downlink quintuple information matches the uplink quintuple information.
  • the preset service type may be manually set by the user.
  • a game user sets the online game as a preset service type through a setting button in the user graphical interface of the online game installed in the terminal.
  • a user of a web novel can set the web novel as a preset service type through a setting button in a user graphical interface of a web novel application installed in a terminal.
  • the preset service type can be set according to at least one of the following parameters: such as the IP address, port number, type of transmission protocol used, uplink / downlink bandwidth occupied, and packet of the network device that provides the service of the preset service type Length, arrival time deviation, etc.
  • the network access device can receive the above-mentioned parameters of the preset service type set by the terminal, and determine the received Whether the service type of the downlink message is the preset service type.
  • the above-mentioned determining the service type of the downlink message is a preset service type, and may include the following steps:
  • the service type of the downlink message is determined as the preset service type:
  • the downlink source IP address is the source IP address that provides real-time transmission services, such as the IP address of the game server;
  • the downlink source port is a source port that provides real-time transmission services, such as the sending port number of the game server;
  • the type of downlink transmission protocol is the type of transmission protocol used by the real-time transmission service.
  • the type of transmission protocol used by the game message can be UDP or TCP;
  • the bandwidth occupied by downstream packets is less than the downstream bandwidth threshold, where the downstream bandwidth threshold is a small value, such as less than 0.5 megabits per second (Mbps), 1Mbps, etc .;
  • the packet length of the downlink packet is less than the threshold of the downlink packet length, such as 100 bytes (bytes, B), etc .;
  • the deviation between the arrival time of any two adjacent downlink packets is less than the downlink time deviation threshold, such as 50ms, or 100ms, that is, the arrival time interval of downlink packets is relatively stable.
  • the downlink time deviation threshold such as 50ms, or 100ms
  • the bandwidth occupied by the foregoing downlink packet is less than the downlink bandwidth threshold may be replaced by: the bandwidth occupied by the downlink packet is greater than or equal to another downlink bandwidth threshold, where the other downlink bandwidth threshold is usually a larger value, such as 1 Mbps.
  • the packet length of the downlink packet is greater than or equal to the downlink packet length threshold, where the downlink packet length threshold may be 200 bytes, 500 bytes, and so on.
  • the source IP address, source port, and The destination IP address and destination port correspond to the destination IP address, destination port, source IP address, and source port of the upstream message recorded in S202, respectively. Therefore, optionally, the above-mentioned downlink quintuple information matches the uplink quintuple information, which may include:
  • the downstream source IP address is the same as the upstream destination IP address
  • the downstream destination IP address is the same as the upstream source IP address
  • the downstream source port is the same as the upstream destination port
  • the downstream destination port is the same as the upstream source port
  • the type of the downlink transmission protocol is the same as the type of the uplink transmission protocol.
  • the network access device preferentially forwards the downlink message according to the real-time transmission instruction.
  • the downlink message may be determined It is a downlink message of a preset service type that needs to be preferentially forwarded, and according to the real-time transmission instruction recorded in S202, preferentially forwards the downlink message to the terminal.
  • the network access device may download the uplink quintuple carried in the uplink message according to the real-time transmission instruction carried in the uplink message recorded in S202, or the downlink quintuple that matches the uplink quintuple information
  • the information is added to the local routing and forwarding table of the network access device.
  • the network access device determines that the received downlink packet is the preset service type, and / or, the received downlink quintuple information carried in the downlink packet and the uplink quintuple information or the downlink quintuple in the routing and forwarding table above are received When the information matches, the downstream packet is forwarded immediately.
  • the network access device may not modify the routing and forwarding table, but instead embed the above-mentioned priority forwarding-related operations into the control program of the access device, or may write the control program that can be accessed by the network access device
  • the configuration file that can be called is not limited in this embodiment of the present application.
  • the data transmission method in the network may also include one or more of the following:
  • the data transmission method in the WiFi network shown in FIG. 2 may further include the following steps:
  • the specified time period may be set by the terminal, or may be set by the network access device by default, such as 30 minutes, 1 hour, and so on.
  • the data transmission method in the WiFi network shown in FIG. 2 may further include the following steps:
  • the foregoing limitation on the downlink packet bandwidth of the STA of the first designated station may include at least one of the following:
  • the bandwidth of the downlink message of the STA of the first designated site is limited.
  • the network access device records the real-time transmission indication and uplink quintuple information carried in the uplink message.
  • the service type of the downlink message is the preset service type
  • the network access device According to the real-time transmission instruction of the uplink message, the downlink message matching the downlink quintuple information with the uplink quintuple information can be preferentially forwarded.
  • the forwarding priority When the forwarding priority is ignored or tampered with or abused, it is still possible to preferentially forward the downlink messages matching the uplink quintuple according to the real-time transmission instructions of the uplink messages, thereby achieving priority forwarding of the downlink of the preset service type
  • the purpose of the message can improve the reliability of the network access equipment to provide differentiated data transmission services.
  • FIG. 3 shows a schematic flowchart of another data transmission method in a WiFi network provided by an embodiment of the present application, which is suitable for communication between a terminal and a network access device in the communication system shown in FIG. 1.
  • the data transmission method in the WiFi network includes the following steps:
  • the network access device receives an uplink message.
  • the uplink message carries real-time transmission instructions and uplink quintuple information.
  • the network access device records the real-time transmission indication and uplink quintuple information carried in the uplink message.
  • the network access device receives the downlink message.
  • the downlink message carries downlink quintuple information.
  • the network access device determines that the service type of the uplink message is the preset service type, and the downlink quintuple information matches the uplink quintuple information.
  • the setting method of the preset service type can refer to S204, which will not be repeated here.
  • the above-mentioned determining the service type of the uplink message is a preset service type, and may include the following steps:
  • the service type of the upstream message is determined to be the preset service type:
  • the upstream destination IP address is the destination IP address that provides real-time transmission services, such as the IP address of the game server;
  • the upstream destination port is the destination port that provides real-time transmission services, such as the sending port number of the game server;
  • the type of uplink transmission protocol is the type of transmission protocol used by the real-time transmission service.
  • the type of transmission protocol used by the game message can be UDP or TCP;
  • the bandwidth occupied by upstream packets is less than the upstream bandwidth threshold, where the upstream bandwidth threshold is a small value, such as less than 0.5Mbps, 1Mbps, etc .;
  • the packet length of the upstream packet is less than the upstream packet length threshold, such as 100 bytes.
  • the above judgment conditions may be different, which can be specifically set according to the service characteristics of the uplink messages of the different preset service types, which will not be repeated here.
  • step A determines the service type of the uplink message as the preset service type
  • step B determines that the downlink quintuple information matches the uplink quintuple information.
  • step A in S304 determining the service type of the upstream packet as the preset service type” may occur at any time point after S301 and before S305, and the execution order between the step A and other steps may be Multiple.
  • the step A may be executed immediately after receiving the upstream message in S301, that is, it may be executed before S302, or during the process of executing S302; in this case, "record" in S302
  • the amount of real-time transmission instructions and uplink quintuple information carried in the recorded uplink messages is usually small, which can save the storage space of the network access device.
  • the network access device preferentially forwards the downlink message according to the real-time transmission instruction.
  • the data transmission method in the WiFi network shown in FIG. 3 is performed before performing the above-mentioned priority for forwarding downlink packets according to the real-time transmission instruction, It can also include one or more of the following:
  • the data transmission method in the WiFi network shown in FIG. 3 may further include the following steps:
  • the specified time period may be set by the terminal, or may be set by the network access device by default, such as 30 minutes, 1 hour, and so on.
  • the data transmission method in the WiFi network shown in FIG. 3 may further include:
  • the foregoing limitation on the downlink message bandwidth of the STA of the first designated station may include at least one of the following:
  • the bandwidth of the downlink message of the STA of the first designated site is limited.
  • the network access device determines that the service type of the uplink message is the preset service type, and records the real-time transmission indication and uplink quintuple information carried in the uplink message, and then the network connects
  • the incoming device can prioritize the downlink messages whose downlink quintuple information matches the uplink quintuple information according to the real-time transmission instruction of the uplink packet, and can set the high priority for the downlink packet in an external network device such as a server
  • the purpose is to improve the reliability of network access equipment to provide differentiated data transmission services.
  • the data transmission method in the WiFi network shown in FIG. 2 and the data transmission method in the WiFi network shown in FIG. 3 can also be used in combination.
  • the service type of the upstream message and the service type of the downstream message are both preset service types, and the upstream quintuple matches the downstream quintuple, the real-time transmission indication of the upstream message will be used. Prioritize the forwarding of downlink messages to further improve the accuracy and efficiency of identifying and forwarding high-priority downlink messages.
  • the data transmission methods in the WiFi network shown in FIG. 2 and FIG. 3 are all implemented in the following manner to preferentially forward downlink messages of a preset service type, that is, according to the real-time transmission instruction carried in the uplink message, the carried downlink is preferentially forwarded
  • the downlink message whose quintuple information matches the uplink quintuple information carried in the uplink message.
  • FIG. 4 shows a schematic flowchart of another data transmission method in a WiFi network provided by an embodiment of the present application, which is suitable for communication between a terminal and a network access device in the communication system shown in FIG. 1.
  • the data transmission method in the WiFi network includes the following steps:
  • the network access device receives a downlink message.
  • the network access device determines that the service type of the downlink message is the preset service type.
  • the network access device preferentially forwards the downlink message.
  • the downlink message can be preferentially forwarded to the terminal.
  • the above-mentioned judgment of the preset service type and priority forwarding related operations may be embedded into the control program of the access device or into a configuration file that can be called by the control program of the network access device This is not limited in the embodiments of the present application.
  • the network access device can identify and preferentially forward the downlink messages of the preset service type, which can solve the problem that the high priority set for downlink packets in external network devices such as servers Ignoring or being tampered with or misused, the problem that the network access device cannot preferentially forward downlink messages of a preset service type can improve the reliability of the network access device to provide differentiated data transmission services.
  • the data transmission method in the WiFi network provided by the embodiments of the present application has been described in detail above with reference to FIGS. 2 to 4.
  • the communication device in the WiFi network provided by the embodiments of the present application will be described in detail below with reference to FIGS. 5-6.
  • FIG. 5 is a schematic structural diagram of a communication device in a WiFi network provided by an embodiment of the present application.
  • the communication device can be applied to the communication system shown in FIG. 1 and used to perform the function of a network access device in the data transmission method in the WiFi network shown in FIG. 2 or FIG. 3.
  • FIG. 5 shows only the main components of the communication device.
  • the communication device 500 in the WiFi network includes: a processing module 501, a first transceiver module 502 and a second transceiver module 503.
  • the first transceiver module 502 is used to receive uplink messages.
  • the uplink message carries real-time transmission instructions and uplink quintuple information.
  • the second transceiver module 503 is used to receive downlink messages. Among them, the downlink message carries downlink quintuple information.
  • the processing module 501 is further used to control the first transceiver module 502 according to the real-time transmission instruction if the service type of the uplink message or the downlink message is the preset service type and the information of the downlink quintuple matches the information of the uplink quintuple Priority forwarding of downstream packets.
  • the above real-time transmission indication may include one or more of the following: the differentiated service code point DSCP value corresponding to the highest forwarding priority, the user priority UP value corresponding to the highest forwarding priority, and the highest forwarding priority Corresponding access type AC.
  • the processing module 501 is also used to determine whether the service type of the uplink message is the preset service type after the first transceiver module 502 receives the uplink message.
  • the processing module 501 is also used to control the first transceiver module 502 to preferentially forward the downlink report according to the real-time transmission instruction if the service type of the uplink message is the preset service type and the downlink quintuple information matches the uplink quintuple information. Text.
  • the processing module 501 is also used to determine whether the service type of the downlink message is the preset service type after the second transceiver module 503 receives the downlink message.
  • the processing module 501 is also used to control the first transceiver module 502 to preferentially forward the downlink report according to the real-time transmission instruction if the service type of the downlink message is the preset service type and the downlink quintuple information matches the uplink quintuple information. Text.
  • the above-mentioned downlink quintuple information includes: downlink source internet protocol IP address, downlink destination IP address, downlink source port, downlink destination port, and downlink transmission protocol type.
  • the service type of the downlink message is a preset service type, which may include: the downlink message satisfies at least one of the following conditions:
  • the downlink source IP address is the source IP address that provides real-time transmission services
  • the downlink source port is a source port that provides real-time transmission services
  • the type of downlink transmission protocol is the type of transmission protocol used for real-time transmission services
  • the bandwidth occupied by downlink packets is less than the downlink bandwidth threshold
  • the packet length of the downlink packet is smaller than the downlink packet length threshold; the deviation between the arrival times of any two adjacent downlink packets is smaller than the downlink time deviation threshold.
  • the above uplink quintuple information includes: an uplink source internet protocol IP address, an uplink destination IP address, an uplink source port, an uplink destination port, and an uplink transmission protocol type.
  • the above downlink quintuple information matches the uplink quintuple information, including: the downlink source IP address is the same as the uplink destination IP address; the downlink destination IP address is the same as the uplink source IP address; the downlink source port is the same as the uplink destination port; the downstream destination port is the same as the upstream source port; the downstream transmission protocol type is the same as the upstream transmission protocol type.
  • the processing module 501 is further configured to determine that the amount of downlink data is greater than the downlink data amount threshold before the processing module 501 controls the first transceiver module 502 to preferentially forward downlink messages according to the real-time transmission instruction, or The downlink bandwidth is greater than the downlink bandwidth threshold.
  • the processing module 501 is further configured to determine that priority is not given to forwarding downlink messages corresponding to the uplink quintuple information and / or downlink quintuple information that does not appear within a specified time period.
  • the processing module 501 is also used to limit the downlink packet bandwidth of the STA of the first designated station.
  • the foregoing limitation on the downlink message bandwidth of the first designated station STA may include one or more of the following:
  • the bandwidth of the downlink message of the STA of the first designated site is limited.
  • the communication device 500 in the WiFi network shown in FIG. 5 can also be applied to the communication system shown in FIG. 1 to perform the function of the network access device in the data transmission method in the WiFi network shown in FIG. 4.
  • the second transceiver module 503 is used to receive downlink messages.
  • the processing module 501 is configured to control the first transceiver module 502 to preferentially forward the downlink message if the service type of the downlink message is the preset service type.
  • the foregoing downlink message carries a downlink source internet protocol IP address, a downlink destination IP address, a downlink source port, a downlink destination port, and a downlink transmission protocol type.
  • the processing module 501 is also used to determine that the service type of the downlink message is the preset service type if the downlink message meets at least one of the following conditions:
  • the downlink source IP address is the source IP address that provides real-time transmission services
  • the downlink source port is a source port that provides real-time transmission services
  • the type of downlink transmission protocol is the type of transmission protocol used for real-time transmission services
  • the bandwidth occupied by downlink packets is less than the downlink bandwidth threshold
  • the packet length of the downlink packet is smaller than the downlink packet length threshold; the deviation between the arrival times of any two adjacent downlink packets is smaller than the downlink time deviation threshold.
  • the communication device 500 in the WiFi network shown in FIG. 5 may further include a storage module (not shown in FIG. 5).
  • the storage module is used to store instructions; the processing module 501 is also used to execute instructions stored by the storage module, so that the communication device 500 in the WiFi network executes in the WiFi network as shown in any one of FIGS. 2-4 Data transmission method.
  • the communication device 500 in the WiFi network may be a network access device, or may be a chip or chip system provided in the network access device, which is not limited in this application.
  • both the first transceiver module 502 and the second transceiver module 503 may be wireless local area network (LAN) interfaces or wide area network (WAN) interfaces, and the interface of the first transceiver module 502
  • the type and the interface type of the second transceiver module 503 may be the same or different.
  • the first transceiver module 502 is a LAN interface
  • the second transceiver module 503 is a WAN interface.
  • the first transceiver module 502 and the second transceiver module 503 can also support multiple interface types at the same time, for example, both the first transceiver module 502 and the second transceiver module 503 support both a LAN interface and a WAN interface.
  • the WAN interface is usually used to connect with devices in external networks (such as network-side devices) through wired or wireless methods;
  • the LAN interface is usually used to connect with devices in internal networks (such as home networks) through wired or wireless methods.
  • Mobile terminal and when it is wireless, the LAN interface may be a WLAN interface (also called a WiFi interface).
  • FIG. 6 is a schematic structural diagram of a network access device according to an embodiment of the present application.
  • the network access device can be applied to the communication system shown in FIG. 1, and executes the data transmission method in the WiFi network shown in any one of FIGS. 2 to 4.
  • FIG. 6 shows only the main components of the network access device.
  • the network access device 600 includes: a processor 601, a first transceiver 602, a second transceiver 603, and a memory 604.
  • the first transceiver 602 is used to receive uplink messages
  • the second transceiver 603 is used to receive downlink messages
  • the first transceiver 602 is also used to forward the downlink messages
  • the memory 604 is used to store Instructions
  • the processor 601 is used to execute the instructions stored in the memory 604, so that the network access device 600 executes the network access device in the data transmission method in the WiFi network as shown in any one of FIGS. 2-4 Features.
  • the network access device 600 may be the network access device in the foregoing method embodiment, such as an access point in a WiFi network, a base station in a cellular network system, etc., which is not limited in this application.
  • An embodiment of the present application provides a communication system.
  • the communication system includes one or more terminals, and the above network access device.
  • An embodiment of the present application provides a computer-readable storage medium that stores a program or instruction, and when the program or instruction runs on a computer, the computer is allowed to execute data in a WiFi network as shown in any one of FIGS. 2 to 4 Transmission method.
  • An embodiment of the present application provides a computer program product, including: computer program code; when the computer program code runs on a computer, the computer is caused to perform data transmission in a WiFi network as shown in any one of FIGS. 2 to 4 method.
  • the processor in the embodiments of the present application may be a central processing unit (CPU), and the processor may also be other general-purpose processors, digital signal processors (DSPs), and dedicated integration Circuit (application specific integrated circuit, ASIC), ready-made programmable gate array (field programmable gate array, FPGA) or other programmable logic devices, discrete gate or transistor logic devices, discrete hardware components, etc.
  • the general-purpose processor may be a microprocessor or the processor may be any conventional processor or the like.
  • the memory in the embodiments of the present application may be volatile memory or non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory can be read-only memory (read-only memory, ROM), programmable read-only memory (programmable ROM, PROM), erasable programmable read-only memory (erasable PROM, EPROM), electronically Erase programmable EPROM (EEPROM) or flash memory.
  • the volatile memory may be a random access memory (random access memory, RAM), which is used as an external cache.
  • RAM random access memory
  • static random access memory static random access memory
  • DRAM dynamic random access memory
  • DRAM synchronous dynamic random access Access memory
  • SDRAM synchronous dynamic random access Access memory
  • double data rate synchronous dynamic random access memory double data rate SDRAM, DDR SDRAM
  • enhanced SDRAM enhanced synchronous dynamic random access memory
  • synchronous connection dynamic random access memory Take memory (synchlink DRAM, SLDRAM) and direct memory bus random access memory (direct rambus RAM, DR RAM).
  • the above embodiments can be implemented in whole or in part by software, hardware (such as circuits), firmware, or any other combination.
  • the above-described embodiments may be fully or partially implemented in the form of computer program products.
  • the computer program product includes one or more computer instructions or computer programs. When the computer instructions or computer programs are loaded or executed on a computer, the processes or functions according to the embodiments of the present application are generated in whole or in part.
  • the computer may be a general-purpose computer, a dedicated computer, a computer network, or other programmable devices.
  • the computer instructions may be stored in a computer-readable storage medium or transmitted from one computer-readable storage medium to another computer-readable storage medium, for example, the computer instructions may be from a website site, computer, server or data center Transmit to another website, computer, server or data center by wire (such as infrared, wireless, microwave, etc.).
  • the computer-readable storage medium may be any available medium that can be accessed by a computer or a data storage device such as a server or a data center that contains one or more collections of available media.
  • the usable medium may be a magnetic medium (for example, a floppy disk, a hard disk, a magnetic tape), an optical medium (for example, a DVD), or a semiconductor medium.
  • the semiconductor medium may be a solid state drive.
  • At least one refers to one or more, and “multiple” refers to two or more.
  • At least one of the following or a similar expression refers to any combination of these items, including any combination of single items or plural items.
  • at least one item (a) in a, b, or c or “at least one item (a) in a, b, and c” can mean: a, b, c, ab ( That is, a and b), ac, bc, or abc, where a, b, and c can be single or multiple, respectively.
  • the size of the sequence numbers of the above processes does not mean that the execution order is sequential, some or all of the steps can be executed in parallel or sequentially, and the execution order of each process should be based on its function and The internal logic is determined, and should not constitute any limitation on the implementation process of the embodiments of the present application.
  • the disclosed system, device, and method may be implemented in other ways.
  • the device embodiments described above are only schematic.
  • the division of the units is only a division of logical functions.
  • there may be other divisions for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored, or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, and may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in one place, or may be distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist alone physically, or two or more units are integrated into one unit.
  • the function is implemented in the form of a software functional unit and sold or used as an independent product, it may be stored in a computer-readable storage medium.
  • the technical solution of the present application essentially or part of the contribution to the existing technology or part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium, including Several instructions are used to enable a computer device (which may be a personal computer, server, network device, or terminal device, etc.) to perform all or part of the steps of the methods described in the embodiments of the present application.
  • the foregoing storage media include various media that can store program codes, such as a U disk, a mobile hard disk, a ROM, a RAM disk, or an optical disk.
  • the device structure diagrams given in the device embodiments of this application only show the simplified design of the corresponding device.
  • the device may include any number of transmitters, receivers, processors, memories, etc., to implement the functions or operations performed by the device in each device embodiment of the present application, and all devices that can implement the present application Are within the scope of protection of this application.
  • the names of the messages / frames / instruction information, modules or units, etc. provided in the embodiments of the present application are only examples, and other names may be used as long as the functions of the messages / frames / instructions, modules, units, etc. are the same.
  • the words “if” or “if” as used herein may be interpreted as “when” or “when” or “in response to determination” or “in response to detection”.
  • the phrases “if determined” or “if detected (statement or event stated)” can be interpreted as “when determined” or “in response to determination” or “when detected (statement or event stated) ) “Or” in response to detection (statement or event stated) ".

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请的实施例公开一种WiFi网络中的数据传输方法、装置及设备,能够提高网络接入设备提供差异化数据传输服务的可靠性。该方法包括:接收上行报文,记录上行报文携带的实时传输指示和上行五元组信息。然后,接收下行报文。其中,下行报文携带有下行五元组信息。之后,若确定下行报文的业务类型为预设业务类型,且下行五元组信息与上行五元组信息匹配,则按照实时传输指示,优先转发下行报文。

Description

WiFi网络中的数据传输方法、装置及设备
本申请要求于2018年10月22日提交中国国家知识产权局、申请号为201811232110.5、申请名称为“一种WiFi网络中数据传输的方法”的中国专利申请的优先权,以及于2019年6月24日提交中国国家知识产权局、申请号为201910547973.X、申请名称为“WiFi网络中的数据传输方法、装置及设备”的中国专利申请的优先权,它们的全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,尤其涉及一种无线保真(wireless fidelity,WiFi)网络中数据传输方法、装置及设备。
背景技术
在现有的无线保真(wireless fidelity,WiFi)系统中,同一接入点(access point,AP,又称为家庭路由器或家庭网关)下的不同终端,如站点(station,STA),通常采用竞争方式抢占网络资源,以完成各种业务,如语音、视频、网页浏览、下载、游戏等的数据传输。因此,当通信环境较差,如干扰较强、信号较弱、资源不足、负载较大时,一部分终端的数据传输可能对另一部分终端的数据传输产生不良影响。例如,终端A的视频播放业务占用带宽较大,可能会挤占终端B的游戏业务的可用带宽,从而导致终端B的游戏业务的下行传输时延增大,进而造成游戏卡顿。
为此,现有无线服务质量(quality of service,QoS)协议,如WiFi多媒体(WiFi multimedia,WMM)协议,按照优先级从高到低顺序依次定义了4种接入类型(access category,AC)的优先级队列:语音(voice,VO)流、视频(video,VI)流、尽力而为(best-effort,BE)流、背景(back-ground,BK)流。AP可以据此优先转发具有高优先级接入类型的业务的数据,以针对不同业务类型,分别提供差异化数据传输服务。
然而,在实际的数据传输过程中,尤其在下行数据传输过程中,上述优先级往往不能有效执行,如忽略(如不支持或不解析或不执行)已设置的优先级、篡改(如随意降低、抬高)已设置的优先级、滥用优先级设置权限(如所有类型业务均设置为最高优先级)等,从而导致现有WiFi网络提供差异化数据传输服务的可靠性较差。
发明内容
本申请的实施例提供一种WiFi网络中数据传输方法、装置及设备,能够识别并优先转发预设业务类型的下行报文,可以解决虽然下行报文中设置有高转发优先级,但事实上没有实现优先转发的问题,从而提高网络接入设备提供差异化数据传输服务的可靠性。
为达到上述目的,本申请的实施例提供如下技术方案:
第一方面,提供一种WiFi网络中的数据传输方法。该方法应用于网络接入设备(如:路由器)。该方法包括:接收上行报文,记录上行报文携带的实时传输指示和上行五元组信息。然后,接收下行报文。其中,下行报文携带有下行五元组信息。之后,若 下行报文的业务类型为预设业务类型,且下行五元组信息与上行五元组信息匹配,则按照实时传输指示,优先转发下行报文。
本申请提供的WiFi网络中的数据传输方法,网络接入设备记录上行报文携带的实时传输指示和上行五元组信息,当下行报文的业务类型为预设业务类型时,网络接入设备可以按照上行报文的实时传输指示,优先转发下行五元组信息与上行五元组信息匹配的下行报文,能够在外部网络设备,如服务器,为预设业务类型的下行报文设置的高转发优先级被忽略或被篡改或被滥用的情况下,仍然能够根据上行报文的实时传输指示,优先转发与上行五元组匹配的下行报文,从而实现了优先转发预设业务类型的下行报文的目的,能够提高网络接入设备提供差异化数据传输服务的可靠性。
示例性地,上述实时传输指示可以包括如下一项或多项:与最高转发优先级对应的差异化服务代码点DSCP值、与最高转发优先级对应的用户优先级UP值、与最高转发优先级对应的接入类型AC。
示例性地,上述下行五元组信息可以包括:下行源互联网协议IP地址、下行目的IP地址、下行源端口、下行目的端口和下行传输协议类型。相应地,上述下行报文的业务类型为预设业务类型,可以包括:下行报文满足如下至少一项条件:下行源IP地址为提供实时传输业务的源IP地址;下行源端口为提供实时传输业务的源端口;下行传输协议类型为实时传输业务采用的传输协议类型;下行报文占用的带宽小于下行带宽阈值;下行报文的包长小于下行包长阈值;任意两个相邻的下行报文的到达时间之间的偏差小于下行时间偏差阈值。
示例性地,上述上行五元组信息可以包括:上行源互联网协议IP地址、上行目的IP地址、上行源端口、上行目的端口和上行传输协议类型。相应地,上述下行五元组信息与上行五元组信息匹配,可以包括:下行源IP地址与上行目的IP地址相同;下行目的IP地址与上行源IP地址相同;下行源端口与上行目的端口相同;下行目的端口与上行源端口相同;下行传输协议类型与上行传输协议类型相同。
在一种可能的设计方法中,在执行上述按照实时传输指示,优先转发下行报文之前,第一方面所述的WiFi网络中的数据传输方法,还可以包括如下一项或多项:确定下行数据量大于下行数据量阈值;确定下行带宽大于下行带宽阈值。
在一种可能的设计方法中,上述WiFi网络中的数据传输方法,还可以包括:不再优先转发指定时间段内未出现的上行五元组信息和/或下行五元组信息对应的下行报文。
在另一种可能的设计方法中,上述WiFi网络中的数据传输方法,还可以包括:限制第一指定站点STA的下行报文带宽。
可选地,上述限制第一指定站点STA的下行报文带宽,可以包括如下至少一项:限制为第一指定站点STA优先转发的下行报文对应的上行五元组信息和/或下行五元组信息的数量;限制为第一指定站点STA优先转发的下行报文的数量;限制为第一指定站点STA优先转发的下行报文占用的连续传输时间。
可选地,上述限制第一指定站点STA的下行报文带宽,可以包括:在为第二指定站点STA优先转发下行报文的同时,限制第一指定站点STA的下行报文带宽。
第二方面,提供另一种WiFi网络中的数据传输方法。该方法应用于网络接入设备。 该方法包括:接收上行报文。其中,上行报文携带有实时传输指示和上行五元组信息。然后,接收下行报文。若上行报文的业务类型为预设业务类型,且下行五元组信息与上行五元组信息匹配,则按照实时传输指示,优先转发下行报文。其中,下行报文携带有下行五元组信息。
本申请提供的WiFi网络中的数据传输方法,网络接入设备接收并记录该上行报文携带的实时传输指示和上行五元组信息,若上行报文的业务类型为预设业务类型,则网络接入设备即可按照该上行报文的实时传输指示,优先转发下行五元组信息与上行五元组信息匹配的下行报文,能够在外部网络设备,如服务器,为下行报文设置的高优先级被忽略或被篡改或被滥用的情况下,仍然能够根据上行报文的实时传输指示,优先转发与上行五元组匹配的下行报文,从而实现了优先转发预设业务类型的下行报文的目的,能够提高网络接入设备提供差异化数据传输服务的可靠性。
示例性地,上述实时传输指示可以包括如下一项或多项:与最高转发优先级对应的差异化服务代码点DSCP值、与最高转发优先级对应的用户优先级UP值、与最高转发优先级对应的接入类型AC。
示例性地,上述上行五元组信息可以包括:上行源互联网协议IP地址、上行目的IP地址、上行源端口、上行目的端口和上行传输协议类型。相应地,上述上行报文的业务类型为预设业务类型,可以包括:若上行报文满足如下至少一项条件,则上行报文的业务类型为预设业务类型:上行目的IP地址为提供实时传输业务的目的IP地址;上行目的端口为提供实时传输业务的目的端口;上行传输协议类型为实时传输业务采用的传输协议类型;上行报文占用的带宽小于上行带宽阈值;上行报文的包长小于上行包长阈值。
示例性地,上述下行五元组信息可以包括:下行源互联网协议IP地址、下行目的IP地址、下行源端口、下行目的端口和下行传输协议类型。相应地,上述下行五元组信息与上行五元组信息匹配,可以包括:下行源IP地址与上行目的IP地址相同;下行目的IP地址与上行源IP地址相同;下行源端口与上行目的端口相同;下行目的端口与上行源端口相同;下行传输协议类型与上行传输协议类型相同。
在一种可能的设计方法中,在执行上述按照实时传输指示,优先转发下行报文之前,第二方面所述的WiFi网络中的数据传输方法,还可以包括如下一项或多项:确定下行数据量大于下行数据量阈值;确定下行带宽大于下行带宽阈值。
在一种可能的设计方法中,第二方面所述的WiFi网络中的数据传输方法,还可以包括:不再优先转发指定时间段内未出现的上行五元组信息和/或下行五元组信息对应的下行报文。
在另一种可能的设计方法中,第二方面所述的WiFi网络中的数据传输方法,还可以包括:限制第一指定站点STA的下行报文带宽。
可选地,上述限制第一指定站点STA的下行报文带宽,可以包括如下至少一项:限制为第一指定站点STA优先转发的下行报文对应的上行五元组信息和/或下行五元组信息的数量;限制为第一指定站点STA优先转发的下行报文的数量;限制为第一指定站点STA优先转发的下行报文占用的连续传输时间;在为第二指定站点STA优先转发下行报文的同时,限制第一指定站点STA的下行报文带宽。
需要说明的是,第一方面提供的WiFi网络中的数据传输方法和第二方面提供的WiFi网络中的数据传输方法可以单独使用,也可以结合使用。例如,可以在上行报文的业务类型和下行报文的业务类型均为预设业务类型,且上行五元组与下行五元组匹配的情况下,才会根据上行报文的实时传输指示,优先转发下行报文,以进一步提高识别和转发高优先级下行报文的准确性和效率。
第三方面,提供又一种WiFi网络中的数据传输方法。该方法应用于网络接入设备。该方法包括:接收下行报文。其中,下行报文携带有下行五元组信息,下行五元组信息包括下行源互联网协议IP地址、下行目的IP地址、下行源端口、下行目的端口和下行传输协议类型。然后,若确定下行报文的业务类型为预设业务类型,则优先转发下行报文。其中,所述下行报文的业务类型为预设业务类型,可以包括:若下行报文满足如下至少一项条件,则下行报文的业务类型为预设业务类型:下行源IP地址为提供实时传输业务的源IP地址;下行源端口为提供所述实时传输业务的源端口;下行传输协议类型为实时传输业务采用的传输协议类型;下行报文占用的带宽小于下行带宽阈值;下行报文的包长小于下行包长阈值;任意两个相邻的下行报文的到达时间之间的偏差小于下行时间偏差阈值。
本申请提供的WiFi网络中的数据传输方法,网络接入设备可以识别并优先转发预设业务类型的下行报文,可以解决在外部网络设备,如服务器,为下行报文设置的高优先级被忽略或被篡改或被滥用的情况下,网络接入设备不能优先转发预设业务类型的下行报文的问题,能够提高网络接入设备提供差异化数据传输服务的可靠性。
第四方面,提供一种WiFi网络中的通信装置。该通信装置包括:处理模块、第一收发模块和第二收发模块。其中,第一收发模块,用于接收上行报文。其中,上行报文携带有实时传输指示和上行五元组信息。第二收发模块,用于接收下行报文。其中,下行报文携带有下行五元组信息。处理模块,用于若下行报文的业务类型为预设业务类型,且下行五元组信息与上行五元组信息匹配,则按照实时传输指示,控制第一收发模块优先转发下行报文。
示例性地,上述实时传输指示可以包括如下一项或多项:与最高转发优先级对应的差异化服务代码点DSCP值、与最高转发优先级对应的用户优先级UP值、与最高转发优先级对应的接入类型AC。
示例性地,上述下行五元组信息包括:下行源互联网协议IP地址、下行目的IP地址、下行源端口、下行目的端口和下行传输协议类型。相应地,下行报文的业务类型为预设业务类型,包括:下行报文满足如下至少一项条件:下行源IP地址为提供实时传输业务的源IP地址;下行源端口为提供实时传输业务的源端口;下行传输协议类型为实时传输业务采用的传输协议类型;下行报文占用的带宽小于下行带宽阈值;下行报文的包长小于下行包长阈值;任意两个相邻的下行报文的到达时间之间的偏差小于下行时间偏差阈值。
示例性地,上述上行五元组信息包括:上行源互联网协议IP地址、上行目的IP地址、上行源端口、上行目的端口和上行传输协议类型。相应地,上述下行五元组信息与上行五元组信息匹配,包括:下行源IP地址与上行目的IP地址相同;下行目的IP地址与上行源IP地址相同;下行源端口与上行目的端口相同;下行目的端口与上行 源端口相同;下行传输协议类型与上行传输协议类型相同。
在一种可能的设计方法中,处理模块,还用于在处理模块按照实时传输指示,控制第一收发模块优先转发所述下行报文之前,确定下行数据量大于下行数据量阈值,或者,确定下行带宽大于下行带宽阈值。
在一种可能的设计方法中,处理模块,还用于确定不再优先转发指定时间段内未出现的上行五元组信息和/或下行五元组信息对应的下行报文。
在另一种可能的设计方法中,处理模块,还用于限制第一指定站点STA的下行报文带宽。
示例性地,上述限制第一指定站点STA的下行报文带宽,可以包括如下一项或多项:限制为第一指定站点STA优先转发的下行报文对应的上行五元组信息和/或下行五元组信息的数量;限制为第一指定站点STA优先转发的下行报文的数量;限制为第一指定站点STA优先转发的下行报文占用的连续传输时间;在为第二指定站点STA优先转发下行报文的同时,限制第一指定站点STA的下行报文带宽。
第五方面,提供另一种WiFi网络中的通信装置。该通信装置包括:处理模块、第一收发模块和第二收发模块。其中,第一收发模块,用于接收上行报文。其中,上行报文携带有实时传输指示和上行五元组信息。第二收发模块,用于接收下行报文。其中,下行报文携带有下行五元组信息。处理模块,用于若上行报文的业务类型为预设业务类型,且下行五元组信息与上行五元组信息匹配,则按照实时传输指示,控制第一收发模块优先转发下行报文。
示例性地,上述实时传输指示可以包括如下一项或多项:与最高转发优先级对应的差异化服务代码点DSCP值、与最高转发优先级对应的用户优先级UP值、与最高转发优先级对应的接入类型AC。
示例性地,上述上行源互联网协议IP地址、上行目的IP地址、上行源端口、上行目的端口和上行传输协议类型。相应地,上行报文的业务类型为预设业务类型,可以包括:
若上行报文满足如下至少一项条件,则上行报文的业务类型为预设业务类型:上行目的IP地址为提供实时传输业务的目的IP地址;上行目的端口为提供实时传输业务的目的端口;上行传输协议类型为实时传输业务采用的传输协议类型;上行报文占用的带宽小于上行带宽阈值;上行报文的包长小于上行包长阈值。
示例性地,上述下行五元组信息包括:下行源互联网协议IP地址、下行目的IP地址、下行源端口、下行目的端口和下行传输协议类型。相应地,上述下行五元组信息与上行五元组信息匹配,包括:下行源IP地址与上行目的IP地址相同;下行目的IP地址与上行源IP地址相同;下行源端口与上行目的端口相同;下行目的端口与上行源端口相同;下行传输协议类型与上行传输协议类型相同。
在一种可能的设计方法中,处理模块,还用于在按照实时传输指示,控制第一收发模块优先转发下行报文之前,确定下行数据量大于下行数据量阈值,或者,确定下行带宽大于下行带宽阈值。
在一种可能的设计方法中,处理模块,还用于确定不再优先转发指定时间段内未出现的上行五元组信息和/或下行五元组信息对应的下行报文。
在另一种可能的设计方法中,处理模块,还用于限制第一指定站点STA的下行报文带宽。
示例性地,上述限制第一指定站点STA的下行报文带宽,可以包括如下至少一项:限制为第一指定站点STA优先转发的下行报文对应的上行五元组信息和/或下行五元组信息的数量;限制为第一指定站点STA优先转发的下行报文的数量;限制为第一指定站点STA优先转发的下行报文占用的连续传输时间。
可选地,处理模块,还用于在控制收发模块优先转发第二指定站点STA的下行报文的同时,限制第一指定站点STA的下行报文带宽。
第六方面,提供又一种WiFi网络中的通信装置。该通信装置包括:处理模块、第一收发模块和第二收发模块。其中,第二收发模块,用于接收下行报文。处理模块,用于在所述下行报文的业务类型为预设业务类型的情况下,控制第一收发模块优先转发所述下行报文。
示例性地,上述下行报文携带有下行源互联网协议IP地址、下行目的IP地址、下行源端口、下行目的端口和下行传输协议类型。相应地,处理模块,还用于若下行报文满足如下至少一项条件,则确定下行报文的业务类型为预设业务类型:下行源IP地址为提供实时传输业务的源IP地址;下行源端口为提供实时传输业务的源端口;下行传输协议类型为实时传输业务采用的传输协议类型;下行报文占用的带宽小于下行带宽阈值;下行报文的包长小于下行包长阈值;任意两个相邻的下行报文的到达时间之间的偏差小于下行时间偏差阈值。
第七方面,提供一种通信装置。该通信装置包括:处理模块(可以是一个处理系统)、第一收发模块(可以是一个或多个与内部网络中的设备(如家庭网络中的移动终端)进行交互的接口)和第二收发模块(可以是一个或多个与外部网络中的设备(如网络侧设备)进行交互的接口)。其中,处理模块,用于执行如第一方面至第三方面中任一种可能的实现方式所述的WiFi网络中的数据传输方法。
可选地,第七方面所述的通信装置还包括存储模块。其中,存储模块,用于存储指令;处理模块,用于执行存储模块存储的指令,以使得通信装置执行如第一方面至第三方面中任一种可能的实现方式所述的WiFi网络中的数据传输方法。
示例性地,第七方面所述的通信装置可以为芯片或芯片系统。
需要说明的是,第七方面所述的通信装置可以是第四方面或第五方面或第六方面所述的通信装置(如:路由器),也可以是设置于上述通信装置中的芯片或芯片系统,本申请对此不做限定。
第八方面,提供一种网络接入设备(如:路由器)。该网络接入设备包括:处理器和存储器。其中,存储器,用于存储指令;处理器,用于执行存储器中存储的指令,以使得网络接入设备执行如第一方面至第三方面中任一种可能的实现方式所述的WiFi网络中的数据传输方法。
第九方面,提供另一种网络接入设备(如:路由器),该网络接入设备包括:处理器,存储器、第一收发器和第二收发器。其中,第一收发器,用于接收上行报文;第二收发器,用于接收下行报文;第一收发器,还用于转发下行报文;存储器,用于 存储指令;处理器,用于执行存储器中的指令,以使得网络接入设备执行如第一方面至第三方面中任一种可能的实现方式所述的WiFi网络中的数据传输方法。
第十方面,提供一种通信系统。该通信系统包括一个或多个终端,以及上述网络接入设备。
第十一方面,提供一种计算机程序产品。该计算机程序产品包括计算机程序,当计算机程序在计算机上执行时,使得计算机执行如第一方面至第三方面中任一种可能的实现方式所述的WiFi网络中的数据传输方法。
第十二方面,提供一种计算机可读存储介质。该计算机可读存储介质存储有计算机程序,当计算机程序在计算机上执行时,使得计算机执行如第一方面至第三方面中任一种可能的实现方式所述的WiFi网络中的数据传输方法。
附图说明
图1为本申请实施例提供的通信系统的结构示意图;
图2为本申请实施例提供的一种WiFi网络中的数据传输方法的流程示意图;
图3为本申请实施例提供的另一种WiFi网络中的数据传输方法的流程示意图;
图4为本申请实施例提供的又一种WiFi网络中的数据传输方法的流程示意图;
图5为本申请实施例提供的一种通信装置的结构示意图;
图6为本申请实施例提供的一种网络接入设备的结构示意图。
具体实施方式
下面将结合附图,对本申请中的技术方案进行描述。
本申请实施例的技术方案可以应用于各种通信系统,例如下一代WiFi系统、第五代(5th generation,5G)移动通信系统,及未来的通信系统,如第六代(6th generation,6G)系统等。
本申请将围绕可包括多个设备、组件、模块等的系统来呈现各个方面、实施例或特征。应当理解和明白的是,各个系统可以包括另外的设备、组件、模块等,并且/或者可以并不包括结合附图讨论的所有设备、组件、模块等。此外,还可以使用这些方案的组合。
另外,在本申请实施例中,“示例地”、“例如”等词用于表示作例子、例证或说明。本申请中被描述为“示例”的任何实施例或设计方案不应被解释为比其它实施例或设计方案更优选或更具优势。确切而言,使用示例的一词旨在以具体方式呈现概念。
本申请实施例中,“信息(information)”,“信号(signal)”,“消息(message)”,“信道(channel)”、“信令(singalling)”有时可以混用,应当指出的是,在不强调其区别时,其所要表达的含义是一致的。“的(of)”,“相应的(corresponding,relevant)”和“对应的(corresponding)”有时可以混用,应当指出的是,在不强调其区别时,其所要表达的含义是一致的。
本申请实施例中,有时候下标如W 1可能会笔误为非下标的形式如W1,在不强调其区别时,其所要表达的含义是一致的。
本申请实施例描述的网络架构以及业务场景是为了更加清楚的说明本申请实施例的技术方案,并不构成对于本申请实施例提供的技术方案的限定,本领域普通技术人员可知,随着网络架构的演变和新业务场景的出现,本申请实施例提供的技术方案对 于类似的技术问题,同样适用。
本申请实施例中部分场景以WiFi系统中的场景为例进行说明。应当指出的是,本申请实施例中的方案还可以应用于其他移动通信系统中,相应的名称也可以用其他移动通信系统中的对应功能的名称进行替代。
本申请中所涉及到的“收发器”或“收发模块”具体可以是能够接收和发送信号或数据的通信接口。
为便于理解本申请实施例,首先以图1中示出的通信系统为例详细说明适用于本申请实施例的通信系统。
如图1所示,该通信系统包括一个或多个终端、网络接入设备和服务器。其中,终端可以通过网络接入设备接入外部网络,如接入图1所示的外部网络中的服务器,以便接收外部网络提供的服务,如语音、视频播放、网页浏览、下载、游戏等。网络接入设备通常包括收发模块,如WiFi模块,可以为终端提供数据转发服务,如向外部网络转发以该终端为源设备的上行报文,和/或,向终端转发以该终端为目的设备的下行报文。此外,该网络接入设备还可以包括调度模块,该调度模块用于通过对上行报文和/或下行的报文进行判断,以确定是否对下行报文加速传输,以及对哪些下行报文加速传输,即该调度模块可以为不同类型的下行报文提供差别化的数据传输服务。
上述网络接入设备为位于上述通信系统网络侧,且具有无线收发功能的设备或可设置于该设备的芯片。该网络接入设备包括但不限于:WiFi系统中的接入点(access point,AP)、演进型节点B(evolved Node B,eNB)、无线网络控制器(radio network controller,RNC)、节点B(Node B,NB)、基站控制器(base station controller,BSC)、基站收发台(base transceiver station,BTS)、家庭基站(例如,home evolved NodeB,或home Node B,HNB)、基带单元(baseband unit,BBU),无线中继节点、无线回传节点、传输点(transmission and reception point,TRP或者transmission point,TP)等,还可以为5G,如,新空口(new radio,NR)系统中的gNB,或,传输点(TRP或TP),5G系统中的基站的一个或一组(包括多个天线面板)天线面板,或者,还可以为构成gNB或传输点的网络节点,如基带单元(BBU),或,分布式单元(distributed unit,DU)等。
在一些部署中,gNB可以包括集中式单元(centralized unit,CU)和DU。gNB还可以包括射频单元(radio unit,RU)。CU实现gNB的部分功能,DU实现gNB的部分功能,比如,CU实现无线资源控制(radio resource control,RRC),分组数据汇聚层协议(packet data convergence protocol,PDCP)层的功能,DU实现无线链路控制(radio link control,RLC)、媒体接入控制(media access control,MAC)和物理(physical,PHY)层的功能。由于RRC层的信息最终会变成PHY层的信息,或者,由PHY层的信息转变而来,因而,在这种架构下,高层信令,如RRC层信令或PHCP层信令,也可以认为是由DU发送的,或者,由DU+RU发送的。可以理解的是,网络设备可以为CU节点、或DU节点、或包括CU节点和DU节点的设备。此外,CU可以划分为接入网RAN中的网络设备,也可以将CU划分为核心网CN中的网络设备,在此不做限制。
上述终端为接入上述通信系统,且具有无线收发功能的终端设备或可设置于该终 端设备的芯片。该终端设备也可以称为用户设备(user equipment,UE)、用户装置、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置。本申请的实施例中的终端设备可以是手机(mobile phone)、平板电脑(Pad)、带无线收发功能的电脑、虚拟现实(virtual reality,VR)终端设备、增强现实(augmented reality,AR)终端设备、工业控制(industrial control)中的无线终端、无人驾驶(self driving)中的无线终端、远程医疗(remote medical)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端等。
应理解,图1仅为便于理解而示例的简化示意图,该通信系统中还可以包括其他网络设备或者还可以包括其他终端设备,图1中未予以画出。
下面结合附图,详细描述本申请实施例提供的WiFi网络中的数据传输方法、装置及设备。
图2示出了本申请实施例提供的一种WiFi网络中的数据传输方法的流程示意图,以适用于图1所示的通信系统中终端与网络接入设备之间的通信。如图2所示,该WiFi网络中的数据传输方法包括如下步骤:
S201,网络接入设备接收上行报文。
示例性地,网络接入设备可以通过与终端之间的无线连接,如WiFi系统中的无线连接或蜂窝网中的上行(uplink)链路接收终端发送的上行报文。其中,上行报文可以携带上行五元组信息。示例性地,该上行五元组信息可以包括:上行源互联网协议(internet protocol,IP)地址、上行目的IP地址、上行源端口、上行目的端口和上行传输协议类型。其中,上行源IP地址和上行源端口可以是终端的IP地址和端口号,上行目的IP地址和上行目的端口可以是服务器的IP地址和端口号,上行传输协议类型可以是上行报文采用的传输协议类型,如用户数据报协议(user data gram protocol,UDP)、传输控制协议(transmission control protocol,TCP)等。
可选地,上行报文还可以携带用户设置的实时传输指示。该实时传输指示用于指示网络接入设备优先转发该用户设置的一种或多种业务类型的下行报文。
表1示出了现有WMM协议规定的一种转发优先级的映射关系示例。如表1所示,第2列至第4列依次为:差异化服务代码点(differentiated services codepoint,DSCP)、802.11e中定义的用户优先级(user priority,UP)、接入类型AC。例如,参考接入类型AC,视频流和音频流为需要优先转发的业务类型,其中,音频流的转发优先级要高于视频流。相对应的,视频流和音频流分别对应用户优先级取值为4-5和6-7,且分别对应DSCP取值为32-47和48-63。容易理解,网络接入设备可以解析报文中携带的DSCP值、UP值和AC值中的一种或多种,为不同用户或业务类型提供差异化的数据传输服务。
示例性地,在现有的WMM协议中,游戏业务被视为视频流,其转发优先级低于音频流。因此,对于游戏用户而言,当语音流的下行报文的数量较多,或者除游戏之外的其他视频流,如视频播放的下行带宽占用率较高时,鉴于游戏业务的转发优先级低于语音流,且与其他视频流相同,网络接入设备可能不会优先转发游戏报文,导致 游戏报文的传输时延较大,从而导致游戏卡顿等问题,体验较差。
在本申请实施例中,可以手动设置预设业务类型,如上述用户最为感兴趣的游戏业务的实时传输指示,也就是为预设业务类型设置较高的转发优先级。示例性地,用户可以在预设业务类型的上行报文中设置上述实时传输指示。具体地,可以在上述上行报文中头部的DSCP字段或者ToS字段中设置如下一项或多项实时传输指示:与最高转发优先级对应的差异化服务代码点DSCP值、与最高转发优先级对应的用户优先级UP值、与最高转发优先级对应的接入类型AC或最低传输延时等。
例如,上述游戏用户可以通过终端的游戏界面,为该游戏的下行报文的转发优先级设置为最高优先级,如高于或等于语音流的转发优先级。具体地,游戏用户可以通过终端提供的输入接口,如该游戏软件的图形用户界面或命令行输入窗口,输入的实时传输指示。其中,实时传输指示可以为一个数值较小的最大转发时延,如10毫秒(millisecond,ms)、20ms等,也可以为最高转发优先级所对应的优先级取值,本申请实施例对此不作限定。
表1
Figure PCTCN2019112391-appb-000001
此外,上行报文还可以携带上行报文的包长、发送时间等信息。
S202,网络接入设备记录上行报文携带的实时传输指示和上行五元组信息。
示例性地,网络接入设备可以将上述实时传输指示和上行五元组信息记录在接入网本地的存储空间中,如记录在网络接入设备的报文转发表中,或者可由接入网的控制程序调用的配置文件中,本申请实施例对此不作限定。
此外,网络接入设备还可以获取来自指定终端的上行报文的统计信息。示例性地,网络接入设备可以解析上行报文携带的发送时间,并结合该网络接入设备接收该上行报文的接收时间,计算该上行报文从终端到网络接入设备的传输延时。容易理解,网络接入设备还可以统计指定时间段内来自指定终端的上行报文的包长和数量,计算该 指定终端占用的传输带宽。
S203,网络接入设备接收下行报文。其中,下行报文携带有下行五元组信息。
示例性地,网络接入设备可以通过与外部网络,如外部网络中的服务器之间的通信连接,如包括光纤、网线等通信线缆,和/或中间节点的网络路由,接收外部网络发送的下行报文。其中,上述下行五元组信息可以包括:下行源互联网协议IP地址、下行目的IP地址、下行源端口、下行目的端口和下行传输协议类型。其中,下行源IP地址和下行源端口可以是外部网络中的某台设备,如服务器的IP地址和端口号,下行目的IP地址和下行目的端口可以是终端的IP地址和端口号,下行传输协议类型可以是下行报文采用的网络传输协议类型,如UDP协议、TCP协议等。
需要说明的是,上行报文和下行报文可以采用相同的传输协议类型,也可以采用不同的传输协议类型,本申请实施例对此不做限定。
此外,网络接入设备还可以获取来自外部网络,如指定服务器的下行报文的统计信息。示例性地,网络接入设备可以解析下行报文携带的发送时间,并结合该网络接入设备接收该信息报文的接收时间,计算该信息报文从外部网络到网络接入设备的传输延时。容易理解,网络接入设备还可以统计指定时间段内来自指定服务器的下行报文的包长和数量,计算该下行报文占用的传输带宽。
S204,网络接入设备确定下行报文的业务类型为预设业务类型,且下行五元组信息与上行五元组信息匹配。
本申请实施例中,预设业务类型可以由用户手动设置。例如,游戏用户通过终端中安装的网络游戏的用户图形界面中的设置按钮,将该网络游戏设置为预设业务类型。再例如,网络小说用户可以通过终端中安装的网络小说应用程序的用户图形界面中的设置按钮,将该网络小说设置为预设业务类型。
具体地,可以根据如下至少一项参数,设置预设业务类型:如提供该预设业务类型的服务的网络设备的IP地址、端口号、采用的传输协议类型、占用的上/下行带宽、包长、到达时间偏差等。相应地,网络接入设备可以接收终端设置的预设业务类型的上述参数,并依据上述参数和网络接入设备的统计信息,下行报文占用带宽、传输时延、QoS信息等,确定接收的下行报文的业务类型是否为预设业务类型。
示例性地,以游戏为例,上述确定下行报文的业务类型为预设业务类型,可以包括如下步骤:
若下行报文满足如下至少一项条件,则确定下行报文的业务类型为预设业务类型:
下行源IP地址为提供实时传输业务的源IP地址,如游戏服务器的IP地址;
下行源端口为提供实时传输业务的源端口,如游戏服务器的发送端口号;
下行传输协议类型为实时传输业务采用的传输协议类型,如该游戏报文采用的传输协议类型,可以为UDP协议或TCP协议;
下行报文占用的带宽小于下行带宽阈值,其中,下行带宽阈值为一个较小值,如小于0.5兆比特每秒(mega bits per second,Mbps)、1Mbps等;
下行报文的包长小于下行包长阈值,如100字节(bytes,B)等;
任意两个相邻的下行报文的到达时间之间的偏差小于下行时间偏差阈值,如50ms,或100ms等,也就是下行报文的到达时间间隔比较平稳。
容易理解,对于不同预设业务类型的下行报文,如视频播放,上述判断条件可能不同。例如,上述下行报文占用的带宽小于下行带宽阈值可能替换为:下行报文占用的带宽大于或等于另一个下行带宽阈值,其中,该另一个下行带宽阈值通常为一个较大值,如1Mbps。再例如,下行报文的包长大于或等于下行包长阈值,其中,下行包长阈值可以为200字节、500字节等。
鉴于下行报文的传输方向与上行报文的传输方向相反,对于同一终端与外部网络中的同一网络设备,如游戏服务器之间预设业务类型,其下行报文的源IP地址、源端口、目的IP地址、目的端口是分别与S202中记录的上行报文的目的IP地址、目的端口、源IP地址、源端口相对应的。因此,可选地,上述下行五元组信息与上行五元组信息匹配,可以包括:
下行源IP地址与上行目的IP地址相同;
下行目的IP地址与上行源IP地址相同;
下行源端口与上行目的端口相同;
下行目的端口与上行源端口相同;
下行传输协议类型与上行传输协议类型相同。
S205,网络接入设备按照实时传输指示,优先转发下行报文。
示例性地,若在S204中确定下行报文为预设业务类型的报文,且在S204中确定下行五元组信息与S202中记录的上行五元组信息匹配,则可确定该下行报文为需要优先转发的预设业务类型的下行报文,并根据S202中记录的实时传输指示,优先向终端转发该下行报文。
可选地,网络接入设备可以根据S202中记录的上行报文携带的实时传输指示,将该上行报文携带的上行五元组下行,或者与该上行五元组信息匹配的下行五元组信息添加到网络接入设备本地的路由转发表中。当网络接入设备确定接收到下行报文为预设业务类型,和/或,接收到下行报文携带的下行五元组信息与上述路由转发表中的上行五元组信息或下行五元组信息匹配时,立即转发该下行报文。
可选地,网络接入设备也可以不修改路由转发表,而是将上述优先转发相关操作嵌入式地写入该接入设备的控制程序中,或者写入可由该网络接入设备的控制程序能够调用的配置文件中,本申请实施例对此不做限定。
容易理解,当网络接入设备需要转发的下行报文的数据量较小时,或者下行报文占用的带宽较小时,并不会对预设业务类型的下行报文的转发造成不良影响,如传输延时仍然可以在可接受范围内,不会影响用户体验。因此,为了降低网络接入设备的控制复杂度,在一种可能的设计方法中,在执行上述S204网络接入设备确定下行报文的业务类型为预设业务类型之前,图2所示的WiFi网络中的数据传输方法,还可以包括如下一项或多项:
确定下行数据量大于下行数据量阈值;
确定下行带宽大于下行带宽阈值。
此外,为了进一步降低接入设备的控制复杂度,也可以为图2所示的WiFi网络中的数据传输方法设置退出机制。因此,在一种可能的设计方法中,图2所示WiFi网络中的数据传输方法,还可以包括如下步骤:
不再优先转发指定时间段内未出现的上行五元组信息和/或下行五元组信息对应的下行报文。其中,所述指定时间段可以由终端设置,也可以由网络接入设备默认设置,如可以设置为30分钟、1小时等。
容易理解,当网络接入设备的现有资源不能保证所有下行报文的转发需求时,还可以通过限制一部分下行报文的转发,以保证另一部分下行报文的转发需求。因此,在另一种可能的设计方法中,图2所示的WiFi网络中的数据传输方法,还可以包括如下步骤:
限制第一指定站点STA的下行报文带宽。
示例性地,上述限制第一指定站点STA的下行报文带宽,可以包括如下至少一项:
限制为第一指定站点STA优先转发的下行报文对应的上行五元组信息和/或下行五元组信息的数量;
限制为第一指定站点STA优先转发的下行报文的数量;
限制为第一指定站点STA优先转发的下行报文占用的连续传输时间;
在为第二指定站点STA优先转发下行报文的同时,限制第一指定站点STA的下行报文带宽。
本申请提供的WiFi网络中的数据传输方法,网络接入设备记录上行报文携带的实时传输指示和上行五元组信息,当下行报文的业务类型为预设业务类型时,网络接入设备可以按照上行报文的实时传输指示,优先转发下行五元组信息与上行五元组信息匹配的下行报文,能够在外部网络设备,如服务器,为预设业务类型的下行报文设置的高转发优先级被忽略或被篡改或被滥用的情况下,仍然能够根据上行报文的实时传输指示,优先转发与上行五元组匹配的下行报文,从而实现了优先转发预设业务类型的下行报文的目的,能够提高网络接入设备提供差异化数据传输服务的可靠性。
图3示出了本申请实施例提供的另一种WiFi网络中的数据传输方法的流程示意图,以适用于图1所示的通信系统中终端与网络接入设备之间的通信。如图3所示,该WiFi网络中的数据传输方法包括如下步骤:
S301,网络接入设备接收上行报文。其中,上行报文携带有实时传输指示和上行五元组信息。
S302,网络接入设备记录上行报文携带的实时传输指示和上行五元组信息。
S303,网络接入设备接收下行报文。其中,下行报文携带有下行五元组信息。
S301-S303的具体实现方式可以分别参考S201-S203,此处不再赘述。
S304,网络接入设备确定上行报文的业务类型为预设业务类型,且下行五元组信息与上行五元组信息匹配。
其中,预设业务类型的设置方式可以参考S204,此处不再赘述。
示例性地,以游戏为例,上述确定上行报文的业务类型为预设业务类型,可以包括如下步骤:
若上行报文满足如下至少一项条件,则确定上行报文的业务类型为预设业务类型:
上行目的IP地址为提供实时传输业务的目的IP地址,如游戏服务器的IP地址;
上行目的端口为提供实时传输业务的目的端口,如游戏服务器的发送端口号;
上行传输协议类型为实时传输业务采用的传输协议类型,如该游戏报文采用的传输协议类型,可以为UDP协议或TCP协议;
上行报文占用的带宽小于上行带宽阈值,其中,上行带宽阈值为一个较小值,如小于0.5Mbps、1Mbps等;
上行报文的包长小于上行包长阈值,如100字节等。
容易理解,对于不同预设业务类型的上行报文,上述判断条件可能不同,具体可以根据该不同预设业务类型的上行报文的业务特征进行设置,此处不再赘述。
需要说明的是,S304可以理解为包括了两个步骤:步骤A“确定上行报文的业务类型为预设业务类型”和步骤B“确定下行五元组信息与上行五元组信息匹配”。其中,S304中的步骤A“确定上行报文的业务类型为预设业务类型”可以在S301之后、S305之前的任一个时间点发生,所述步骤A与其他步骤之间的执行先后顺序可以有多种。在一种可能的实现中,所述步骤A可以在S301接收到上行报文之后立即执行,也就是可以在执行S302之前执行,或者在执行S302的过程中执行;这样的话,在S302中“记录的上行报文携带的实时传输指示和上行五元组信息”,就可以是已确定为预设业务类型的上行报文携带的实时传输指示和上行五元组信息,在此情况下,S302中记录的上行报文携带的实时传输指示和上行五元组信息的数量通常较小,从而可以节省网络接入设备的存储空间。
判断下行五元组信息与上行五元组信息匹配的实现方式,具体可以参考S204中的相关描述,此处不再赘述。
S305,网络接入设备按照实时传输指示,优先转发下行报文。
S305的具体实现方式可以参考S205,此处不再赘述。
容易理解,当网络接入设备需要转发的下行报文的数据量较小时,或者下行报文占用的带宽较小时,并不会对预设业务类型的下行报文的转发造成不良影响,如传输延时仍然可以在可接受范围内,不会影响用户体验。因此,为了降低网络接入设备的控制复杂度,在一种可能的设计方法中,在执行上述按照实时传输指示,优先转发下行报文之前,图3所示的WiFi网络中的数据传输方法,还可以包括如下一项或多项:
确定下行数据量大于下行数据量阈值;
确定下行带宽大于下行带宽阈值。
此外,为了进一步降低接入设备的控制复杂度,也可以为图3所示的WiFi网络中的数据传输方法设置退出机制。因此,在一种可能的设计方法中,图3所示的WiFi网络中的数据传输方法,还可以包括如下步骤:
不再优先转发指定时间段内未出现的上行五元组信息和/或下行五元组信息对应的下行报文。其中,所述指定时间段可以由终端设置,也可以由网络接入设备默认设置,如可以设置为30分钟、1小时等。
容易理解,当网络接入设备的现有资源不能保证所有下行报文的转发需求时,还可以通过限制一部分下行报文的转发,以保证另一部分下行报文的转发需求。因此,在另一种可能的设计方法中,图3所示的WiFi网络中的数据传输方法,还可以包括:
限制第一指定站点STA的下行报文带宽。
可选地,上述限制第一指定站点STA的下行报文带宽,可以包括如下至少一项:
限制为第一指定站点STA优先转发的下行报文对应的上行五元组信息和/或下行五元组信息的数量;
限制为第一指定站点STA优先转发的下行报文的数量;
限制为第一指定站点STA优先转发的下行报文占用的连续传输时间;
在为第二指定站点STA优先转发下行报文的同时,限制第一指定站点STA的下行报文带宽。
本申请提供的WiFi网络中的数据传输方法,网络接入设备确定上行报文的业务类型为预设业务类型,并记录该上行报文携带的实时传输指示和上行五元组信息,然后网络接入设备可以按照该上行报文的实时传输指示,优先转发下行五元组信息与上行五元组信息匹配的下行报文,能够在外部网络设备,如服务器,为下行报文设置的高优先级被忽略或被篡改或被滥用的情况下,仍然能够根据上行报文的实时传输指示,优先转发与上行五元组匹配的下行报文,从而实现了优先转发预设业务类型的下行报文的目的,能够提高网络接入设备提供差异化数据传输服务的可靠性。
需要说明的是,图2所示的WiFi网络中的数据传输方法和图3所示的WiFi网络中的数据传输方法也可以结合使用。例如,可以在上行报文的业务类型和下行报文的业务类型均为预设业务类型,且上行五元组与下行五元组匹配的情况下,才会根据上行报文的实时传输指示,优先转发下行报文,以进一步提高识别和转发高优先级下行报文的准确性和效率。
上述图2和图3所示的WiFi网络中的数据传输方法均为采用如下方式实现优先转发预设业务类型的下行报文的,即根据上行报文携带的实时传输指示,优先转发携带的下行五元组信息与该上行报文携带的上行五元组信息匹配的下行报文。为了进一步简化网络接入设备的设计复杂度,也可以只根据下行报文的流量特征,优先转发预设业务类型的下行报文。下面结合图4详细说明。
图4示出了本申请实施例提供的又一种WiFi网络中的数据传输方法的流程示意图,以适用于图1所示的通信系统中终端与网络接入设备之间的通信。如图4所示,该WiFi网络中的数据传输方法包括如下步骤:
S401,网络接入设备接收下行报文。
具体实现方式可以参考S203,此处不再赘述。
S402,网络接入设备确定下行报文的业务类型为预设业务类型。
具体实现方式可以参考S204,此处不再赘述。
S403,网络接入设备优先转发该下行报文。
具体地,若在S402中确定下行报文为预设业务类型的报文,即可优先向终端转发该下行报文。示例性地,可以将上述预设业务类型的判断和优先转发相关操作嵌入式地写入该接入设备的控制程序中,或者写入可由该网络接入设备的控制程序能够调用的配置文件中,本申请实施例对此不做限定。
本申请提供的WiFi网络中的数据传输方法,网络接入设备可以识别并优先转发预设业务类型的下行报文,可以解决在外部网络设备,如服务器,为下行报文设置的高优先级被忽略或被篡改或被滥用的情况下,网络接入设备不能优先转发预设业务类型 的下行报文的问题,能够提高网络接入设备提供差异化数据传输服务的可靠性。
以上结合图2-图4详细说明了本申请实施例提供的WiFi网络中的数据传输方法。以下结合图5-图6详细说明本申请实施例提供的WiFi网络中的通信装置。
图5是本申请实施例提供的一种WiFi网络中的通信装置的结构示意图。该通信装置可适用于图1所示出的通信系统中,用于执行图2或图3所示的WiFi网络中的数据传输方法中网络接入设备的功能。为了便于说明,图5仅示出了该通信装置的主要部件。
如图5所示,WiFi网络中的通信装置500包括:处理模块501、第一收发模块502和第二收发模块503。
其中,第一收发模块502,用于接收上行报文。其中,上行报文携带有实时传输指示和上行五元组信息。
第二收发模块503,用于接收下行报文。其中,下行报文携带有下行五元组信息。
处理模块501,还用于若上行报文或下行报文的业务类型为预设业务类型,且下行五元组信息与上行五元组信息匹配,则按照实时传输指示,控制第一收发模块502优先转发下行报文。
示例性地,上述实时传输指示可以包括如下一项或多项:与最高转发优先级对应的差异化服务代码点DSCP值、与最高转发优先级对应的用户优先级UP值、与最高转发优先级对应的接入类型AC。
在一种可能的设计中,处理模块501,还用于在第一收发模块502接收到上行报文之后,确定上行报文的业务类型是否为预设业务类型。处理模块501,还用于若上行报文的业务类型为预设业务类型,且下行五元组信息与上行五元组信息匹配,则按照实时传输指示,控制第一收发模块502优先转发下行报文。
在另一种可能的设计中,处理模块501,还用于在第二收发模块503接收到下行报文之后,确定下行报文的业务类型是否为预设业务类型。处理模块501,还用于若下行报文的业务类型为预设业务类型,且下行五元组信息与上行五元组信息匹配,则按照实时传输指示,控制第一收发模块502优先转发下行报文。
示例性地,上述下行五元组信息包括:下行源互联网协议IP地址、下行目的IP地址、下行源端口、下行目的端口和下行传输协议类型。相应地,下行报文的业务类型为预设业务类型,可以包括:下行报文满足如下至少一项条件:
下行源IP地址为提供实时传输业务的源IP地址;
下行源端口为提供实时传输业务的源端口;
下行传输协议类型为实时传输业务采用的传输协议类型;
下行报文占用的带宽小于下行带宽阈值;
下行报文的包长小于下行包长阈值;任意两个相邻的下行报文的到达时间之间的偏差小于下行时间偏差阈值。
示例性地,上述上行五元组信息包括:上行源互联网协议IP地址、上行目的IP地址、上行源端口、上行目的端口和上行传输协议类型。相应地,上述下行五元组信息与上行五元组信息匹配,包括:下行源IP地址与上行目的IP地址相同;下行目的 IP地址与上行源IP地址相同;下行源端口与上行目的端口相同;下行目的端口与上行源端口相同;下行传输协议类型与上行传输协议类型相同。
在一种可能的设计中,处理模块501,还用于在处理模块501按照实时传输指示,控制第一收发模块502优先转发下行报文之前,确定下行数据量大于下行数据量阈值,或者,确定下行带宽大于下行带宽阈值。
在一种可能的设计方法中,处理模块501,还用于确定不再优先转发指定时间段内未出现的上行五元组信息和/或下行五元组信息对应的下行报文。
在另一种可能的设计方法中,处理模块501,还用于限制第一指定站点STA的下行报文带宽。
示例性地,上述限制第一指定站点STA的下行报文带宽,可以包括如下一项或多项:
限制为第一指定站点STA优先转发的下行报文对应的上行五元组信息和/或下行五元组信息的数量;或,
限制为第一指定站点STA优先转发的下行报文的数量;或,
限制为第一指定站点STA优先转发的下行报文占用的连续传输时间;
在为第二指定站点STA优先转发下行报文的同时,限制第一指定站点STA的下行报文带宽。
图5所示的WiFi网络中的通信装置500也可适用于图1所示出的通信系统中,用于执行图4所示的WiFi网络中的数据传输方法中网络接入设备的功能。
如图5所示,第二收发模块503,用于接收下行报文。
处理模块501,用于若下行报文的业务类型为预设业务类型,则控制第一收发模块502优先转发下行报文。
示例性地,上述下行报文携带有下行源互联网协议IP地址、下行目的IP地址、下行源端口、下行目的端口和下行传输协议类型。相应地,处理模块501,还用于若下行报文满足如下至少一项条件,则确定下行报文的业务类型为预设业务类型:
下行源IP地址为提供实时传输业务的源IP地址;
下行源端口为提供实时传输业务的源端口;
下行传输协议类型为实时传输业务采用的传输协议类型;
下行报文占用的带宽小于下行带宽阈值;
下行报文的包长小于下行包长阈值;任意两个相邻的下行报文的到达时间之间的偏差小于下行时间偏差阈值。
可选地,图5所示的WiFi网络中的通信装置500还可以包括存储模块(图5中未示出)。其中,存储模块,用于存储指令;处理模块501,还用于执行存储模块存储的指令,以使得WiFi网络中的通信装置500执行如图2-图4中任一项所示的WiFi网络中的数据传输方法。
示例性地,上述WiFi网络中的通信装置500可以为网络接入设备,也可以为设置于上述网络接入设备中的芯片或芯片系统,本申请对此不做限定。
需要说明的是,上述第一收发模块502和第二收发模块503均可以为无线局域网 (local area network,LAN)接口或广域网(wide area network,WAN)接口,且上述第一收发模块502的接口类型和第二收发模块503的接口类型可以相同,也可以不同。在一种实现方式中,第一收发模块502为LAN接口,第二收发模块503为WAN接口。此外,上述第一收发模块502和第二收发模块503也可以同时支持多种接口类型,如第一收发模块502和第二收发模块503均同时支持LAN接口和WAN接口。一般而言,WAN接口通常用于通过有线或无线方式与外部网络中的设备(如网络侧设备)连接;LAN接口通常用于通过有线或无线方式与内部网络中的设备(如家庭网络中的移动终端)连接,且当其为无线方式时,LAN接口可以为WLAN接口(也称之为WiFi接口)。
图6是本申请实施例提供的一种网络接入设备的结构示意图。该网络接入设备可适用于图1所示出的通信系统中,执行如图2-图4中任一项所示的WiFi网络中的数据传输方法。为了便于说明,图6仅示出了该网络接入设备的主要部件。
如图6所示,网络接入设备600包括:处理器601、第一收发器602、第二收发器603和存储器604。其中,第一收发器602,用于接收上行报文;第二收发器603,用于接收下行报文;第一收发器602,还用于转发所述下行报文;存储器604,用于存储指令,处理器601用于执行存储器604中存储的指令,以使得该网络接入设备600执行如图2-图4中任一项所示的WiFi网络中的数据传输方法中网络接入设备的功能。
需要说明的是,网络接入设备600可以是上述方法实施例中的网络接入设备,如WiFi网络中的接入点,蜂窝网系统中的基站等,本申请对此不做限定。
本申请实施例提供一种通信系统。该通信系统包括一个或多个终端,以及上述网络接入设备。
本申请实施例提供一种计算机可读存储介质,存储有程序或指令,当程序或指令在计算机上运行时,使得计算机执行如图2-图4中任一项所示的WiFi网络中的数据传输方法。
本申请实施例提供一种计算机程序产品,包括:计算机程序代码;当该计算机程序代码在计算机上运行时,使得计算机执行如图2-图4中任一项所示的WiFi网络中的数据传输方法。
应理解,在本申请实施例中的处理器可以是中央处理单元(central processing unit,CPU),该处理器还可以是其他通用处理器、数字信号处理器(digital signal processor,DSP)、专用集成电路(application specific integrated circuit,ASIC)、现成可编程门阵列(field programmable gate array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
还应理解,本申请实施例中的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(read-only memory,ROM)、可编程只读存储器(programmable ROM,PROM)、可擦除可编程只读存储器(erasable PROM,EPROM)、电可擦除可编程只读存储器(electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(random access memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的随机存取存储器(random access memory,RAM)可用,例如静态 随机存取存储器(static RAM,SRAM)、动态随机存取存储器(DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(direct rambus RAM,DR RAM)。
上述实施例,可以全部或部分地通过软件、硬件(如电路)、固件或其他任意组合来实现。当使用软件实现时,上述实施例可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令或计算机程序。在计算机上加载或执行所述计算机指令或计算机程序时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以为通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集合的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质。半导体介质可以是固态硬盘。
本申请中,“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B的情况,其中A,B可以是单数或者复数。字符“/”一般表示前后关联对象是一种“或”的关系。
本申请中,“至少一个”是指一个或者多个,“多个”是指两个或两个以上。“以下至少一项(个)”或其类似表达,是指的这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,“a,b,或c中的至少一项(个)”,或,“a,b,和c中的至少一项(个)”,均可以表示:a,b,c,a-b(即a和b),a-c,b-c,或a-b-c,其中a,b,c分别可以是单个,也可以是多个。
应理解,在本申请的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,部分或全部步骤可以并行执行或先后执行,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执 行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,网络设备或者终端设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、ROM、RAM)磁碟或者光盘等各种可以存储程序代码的介质。
本申请各方法实施例之间相关部分可以相互参考;各装置实施例所提供的装置用于执行对应的方法实施例所提供的方法,故各装置实施例可以参考相关的方法实施例中的相关部分进行理解。
本申请各装置实施例中给出的装置结构图仅示出了对应的装置的简化设计。在实际应用中,该装置可以包含任意数量的发射器,接收器,处理器,存储器等,以实现本申请各装置实施例中该装置所执行的功能或操作,而所有可以实现本申请的装置都在本申请的保护范围之内。
本申请各实施例中提供的消息/帧/指示信息、模块或单元等的名称仅为示例,可以使用其他名称,只要消息/帧/指示信息、模块或单元等的作用相同即可。
在本申请实施例中使用的术语是仅仅出于描述特定实施例的目的,而非旨在限制本发明。在本申请实施例和所附权利要求书中所使用的单数形式的“一种”、“所述”和“该”也旨在包括多数形式,除非上下文清楚地表示其他含义。还应当理解,本文中使用的术语“和/或”是指并包含一个或多个相关联的列出项目的任何或所有可能组合。本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
取决于语境,如在此所使用的词语“如果”或“若”可以被解释成为“在……时”或“当……时”或“响应于确定”或“响应于检测”。类似地,取决于语境,短语“如果确定”或“如果检测(陈述的条件或事件)”可以被解释成为“当确定时”或“响应于确定”或“当检测(陈述的条件或事件)时”或“响应于检测(陈述的条件或事件)”。
本领域普通技术人员可以理解实现上述实施例方法中的全部或部分步骤是可以通过程序来指令相关硬件来完成,所述的程序可以存储于一个设备的可读存储介质中,该程序在执行时,包括上述全部或部分步骤,所述的存储介质,如:FLASH、EEPROM等。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (31)

  1. 一种WiFi网络中的数据传输方法,其特征在于,应用于网络接入设备,所述WiFi网络中的数据传输方法包括:
    接收上行报文;其中,所述上行报文携带有实时传输指示和上行五元组信息;
    接收下行报文;其中,所述下行报文携带有下行五元组信息;
    若所述上行报文或所述下行报文的业务类型为预设业务类型,且所述下行五元组信息与所述上行五元组信息匹配,则按照所述实时传输指示,优先转发所述下行报文。
  2. 根据权利要求1所述的WiFi网络中的数据传输方法,其特征在于,所述WiFi网络中的数据传输方法还包括:
    在接收到所述上行报文之后,确定所述上行报文的业务类型是否为预设业务类型;
    所述按照所述实时传输指示,优先转发所述下行报文,包括:
    若所述上行报文的业务类型为预设业务类型,且所述下行五元组信息与所述上行五元组信息匹配,则按照所述实时传输指示,优先转发所述下行报文。
  3. 根据权利要求1所述的WiFi网络中的数据传输方法,其特征在于,所述WiFi网络中的数据传输方法还包括:
    在接收到所述下行报文之后,确定所述下行报文的业务类型是否为预设业务类型;
    所述按照所述实时传输指示,优先转发所述下行报文,包括:
    若所述下行报文的业务类型为预设业务类型,且所述下行五元组信息与所述上行五元组信息匹配,则按照所述实时传输指示,优先转发所述下行报文。
  4. 根据权利要求1-3中任一项所述的WiFi网络中的数据传输方法,其特征在于,所述实时传输指示包括如下一项或多项:
    与最高转发优先级对应的差异化服务代码点DSCP值、与最高转发优先级对应的用户优先级UP值、与最高转发优先级对应的接入类型AC。
  5. 根据权利要求1-4中任一项所述的WiFi网络中的数据传输方法,其特征在于,所述下行五元组信息包括:下行源互联网协议IP地址、下行目的IP地址、下行源端口、下行目的端口和下行传输协议类型;所述上行五元组信息包括:上行源互联网协议IP地址、上行目的IP地址、上行源端口、上行目的端口和上行传输协议类型;
    所述上行报文或所述下行报文的业务类型为预设业务类型,包括如下之一:
    若所述下行报文满足如下至少一项条件,则所述下行报文的业务类型为预设业务类型:
    所述下行源IP地址为提供实时传输业务的源IP地址;
    所述下行源端口为提供所述实时传输业务的源端口;
    所述下行传输协议类型为所述实时传输业务采用的传输协议类型;
    所述下行报文占用的带宽小于下行带宽阈值;
    所述下行报文的包长小于下行包长阈值;
    任意两个相邻的所述下行报文的到达时间之间的偏差小于下行时间偏差阈值;
    若所述上行报文满足如下至少一项条件,则所述上行报文的业务类型为预设业务类型:
    所述上行目的IP地址为提供实时传输业务的目的IP地址;
    所述上行目的端口为提供所述实时传输业务的目的端口;
    所述上行传输协议类型为所述实时传输业务采用的传输协议类型;
    所述上行报文占用的带宽小于上行带宽阈值;
    所述上行报文的包长小于上行包长阈值。
  6. 根据权利要求5所述的WiFi网络中的数据传输方法,其特征在于,所述下行五元组信息与所述上行五元组信息匹配,包括:
    所述下行源IP地址与所述上行目的IP地址相同;
    所述下行目的IP地址与所述上行源IP地址相同;
    所述下行源端口与所述上行目的端口相同;
    所述下行目的端口与所述上行源端口相同;
    所述下行传输协议类型与所述上行传输协议类型相同。
  7. 根据权利要求1-6中任一项所述的WiFi网络中的数据传输方法,其特征在于,在所述按照所述实时传输指示,优先转发所述下行报文之前,所述WiFi网络中的数据传输方法,还包括如下一项或多项:
    确定下行数据量大于下行数据量阈值;
    确定下行带宽大于下行带宽阈值。
  8. 根据权利要求1-6中任一项所述的WiFi网络中的数据传输方法,其特征在于,所述WiFi网络中的数据传输方法,还包括:
    不再优先转发指定时间段内未再出现的所述上行五元组信息和/或所述下行五元组信息对应的下行报文。
  9. 根据权利要求1-6中任一项所述的WiFi网络中的数据传输方法,其特征在于,所述WiFi网络中的数据传输方法,还包括:
    限制第一指定站点STA的下行报文带宽。
  10. 根据权利要求9所述的WiFi网络中的数据传输方法,其特征在于,所述限制第一指定站点STA的下行报文带宽,包括如下一项或多项:
    限制为所述第一指定站点STA优先转发的下行报文对应的上行五元组信息和/或下行五元组信息的数量;或,
    限制为所述第一指定站点STA优先转发的下行报文的数量;或,
    限制为所述第一指定站点STA优先转发的下行报文占用的连续传输时间。
  11. 根据权利要求9或10所述的WiFi网络中的数据传输方法,其特征在于,所述限制第一指定站点STA的下行报文带宽,包括:
    在为第二指定站点STA优先转发下行报文的同时,限制第一指定站点STA的下行报文带宽。
  12. 一种WiFi网络中的数据传输方法,其特征在于,应用于网络接入设备,所述 WiFi网络中的数据传输方法包括:
    接收下行报文;其中,所述下行报文携带有下行五元组信息,所述下行五元组信息包括下行源互联网协议IP地址、下行目的IP地址、下行源端口、下行目的端口和下行传输协议类型;
    若所述下行报文的业务类型为预设业务类型,则优先转发所述下行报文;
    其中,所述下行报文的业务类型为预设业务类型,包括:
    若所述下行报文满足如下至少一项条件,则所述下行报文的业务类型为预设业务类型:
    所述下行源IP地址为提供实时传输业务的源IP地址;
    所述下行源端口为提供所述实时传输业务的源端口;
    所述下行传输协议类型为所述实时传输业务采用的传输协议类型;
    所述下行报文占用的带宽小于下行带宽阈值;
    所述下行报文的包长小于下行包长阈值;
    任意两个相邻的所述下行报文的到达时间之间的偏差小于下行时间偏差阈值。
  13. 一种WiFi网络中的通信装置,其特征在于,包括:处理模块、第一收发模块和第二收发模块;其中,
    所述第一收发模块,用于接收上行报文;其中,所述上行报文携带有实时传输指示和上行五元组信息;
    所述第二收发模块,用于接收下行报文;其中,所述下行报文携带有下行五元组信息;
    所述处理模块,用于若所述上行报文或所述下行报文的业务类型为预设业务类型,且所述下行五元组信息与所述上行五元组信息匹配,则按照所述实时传输指示,控制所述第一收发模块优先转发所述下行报文。
  14. 根据权利要求13所述的WiFi网络中的通信装置,其特征在于,
    所述处理模块,还用于在所述第一收发模块接收到所述上行报文之后,确定所述上行报文的业务类型是否为预设业务类型;
    所述处理模块,用于若所述上行报文或所述下行报文的业务类型为预设业务类型,且所述下行五元组信息与所述上行五元组信息匹配,则按照所述实时传输指示,控制所述第一收发模块优先转发所述下行报文,具体为:所述处理模块,用于若所述上行报文的业务类型为预设业务类型,且所述下行五元组信息与所述上行五元组信息匹配,则按照所述实时传输指示,控制所述第一收发模块优先转发所述下行报文。
  15. 根据权利要求13所述的WiFi网络中的通信装置,其特征在于,
    所述处理模块,还用于在所述第二收发模块接收到所述下行报文之后,确定所述下行报文的业务类型是否为预设业务类型;
    所述处理模块,用于若所述上行报文或所述下行报文的业务类型为预设业务类型,且所述下行五元组信息与所述上行五元组信息匹配,则按照所述实时传输指示,控制 所述第一收发模块优先转发所述下行报文,具体为:所述处理模块,用于若所述下行报文的业务类型为预设业务类型,且所述下行五元组信息与所述上行五元组信息匹配,则按照所述实时传输指示,控制所述第一收发模块优先转发所述下行报文。
  16. 根据权利要求13-15中任一项所述的WiFi网络中的通信装置,其特征在于,所述实时传输指示包括如下一项或多项:
    与最高转发优先级对应的差异化服务代码点DSCP值、与最高转发优先级对应的用户优先级UP值、与最高转发优先级对应的接入类型AC。
  17. 根据权利要求13-16中任一项所述的WiFi网络中的通信装置,其特征在于,所述下行五元组信息包括:下行源互联网协议IP地址、下行目的IP地址、下行源端口、下行目的端口和下行传输协议类型;所述上行五元组信息包括:上行源互联网协议IP地址、上行目的IP地址、上行源端口、上行目的端口和上行传输协议类型;
    所述上行报文或所述下行报文的业务类型为预设业务类型,包括如下之一:
    若所述下行报文满足如下至少一项条件,则所述下行报文的业务类型为预设业务类型:
    所述下行源IP地址为提供实时传输业务的源IP地址;
    所述下行源端口为提供所述实时传输业务的源端口;
    所述下行传输协议类型为所述实时传输业务采用的传输协议类型;
    所述下行报文占用的带宽小于下行带宽阈值;
    所述下行报文的包长小于下行包长阈值;
    任意两个相邻的所述下行报文的到达时间之间的偏差小于下行时间偏差阈值;
    若所述上行报文满足如下至少一项条件,则所述上行报文的业务类型为预设业务类型:
    所述上行目的IP地址为提供实时传输业务的目的IP地址;
    所述上行目的端口为提供所述实时传输业务的目的端口;
    所述上行传输协议类型为所述实时传输业务采用的传输协议类型;
    所述上行报文占用的带宽小于上行带宽阈值;
    所述上行报文的包长小于上行包长阈值。
  18. 根据权利要求17所述的WiFi网络中的通信装置,其特征在于,所述下行五元组信息与所述上行五元组信息匹配,包括:
    所述下行源IP地址与所述上行目的IP地址相同;
    所述下行目的IP地址与所述上行源IP地址相同;
    所述下行源端口与所述上行目的端口相同;
    所述下行目的端口与所述上行源端口相同;
    所述下行传输协议类型与所述上行传输协议类型相同。
  19. 根据权利要求13-18中任一项所述的WiFi网络中的通信装置,其特征在于,
    所述处理模块,还用于在按照所述实时传输指示,控制所述第一收发模块优先转发所述下行报文之前,确定下行数据量大于下行数据量阈值,或者确定下行带宽大于 下行带宽阈值。
  20. 根据权利要求13-18中任一项所述的WiFi网络中的通信装置,其特征在于,
    所述处理模块,还用于确定不再优先转发指定时间段内未再出现的所述上行五元组信息和/或所述下行五元组信息对应的下行报文。
  21. 根据权利要求13-18中任一项所述的WiFi网络中的通信装置,其特征在于,
    所述处理模块,还用于限制第一指定站点STA的下行报文带宽。
  22. 根据权利要求21所述的WiFi网络中的通信装置,其特征在于,所述处理模块,还用于限制第一指定站点STA的下行报文带宽,包括如下一项或多项:
    所述处理模块,还用于限制为所述第一指定站点STA优先转发的下行报文对应的上行五元组信息和/或下行五元组信息的数量;或,
    所述处理模块,还用于限制为所述第一指定站点STA优先转发的下行报文的数量;或,
    所述处理模块,还用于限制为所述第一指定站点STA优先转发的下行报文占用的连续传输时间。
  23. 根据权利要求21或22所述的WiFi网络中的通信装置,其特征在于,所述处理模块,还用于限制第一指定站点STA的下行报文带宽,包括:
    所述处理模块,还用于在为第二指定站点STA优先转发下行报文的同时,限制第一指定站点STA的下行报文带宽。
  24. 一种WiFi网络中的通信装置,其特征在于,包括:处理模块、第一收发模块和第二收发模块;其中,
    所述第二收发模块,用于接收下行报文;其中,所述下行报文携带有下行五元组信息,所述下行五元组信息包括下行源互联网协议IP地址、下行目的IP地址、下行源端口、下行目的端口和下行传输协议类型;
    所述处理模块,用于若所述下行报文的业务类型为预设业务类型,则控制所述第一收发模块优先转发所述下行报文;
    其中,所述下行报文的业务类型为预设业务类型,包括:
    若所述下行报文满足如下至少一项条件,则所述下行报文的业务类型为预设业务类型:
    所述下行源IP地址为提供实时传输业务的源IP地址;
    所述下行源端口为提供所述实时传输业务的源端口;
    所述下行传输协议类型为所述实时传输业务采用的传输协议类型;
    所述下行报文占用的带宽小于下行带宽阈值;
    所述下行报文的包长小于下行包长阈值;
    任意两个相邻的所述下行报文的到达时间之间的偏差小于下行时间偏差阈值。
  25. 一种通信装置,其特征在于,包括:处理模块、第一收发模块和第二收发模块,所述处理模块用于执行如权利要求1-12中任一项所述的WiFi网络中的数据传输方法。
  26. 根据权利要求25所述的通信装置,其特征在于,所述通信装置还包括存储模块;
    所述存储模块,用于存储指令;
    所述处理模块,用于执行所述存储模块存储的指令,以使得所述通信装置执行如权利要求1-12中任一项所述的WiFi网络中的数据传输方法。
  27. 根据权利要求25或26所述的通信装置,其特征在于,所述通信装置为芯片或芯片系统。
  28. 一种网络接入设备,其特征在于,所述网络接入设备包括:处理器和存储器;其中,
    所述存储器,用于存储指令;
    所述处理器,用于执行所述存储器中存储的指令,以使得所述网络接入设备执行如权利要求1-12中任一项所述的WiFi网络中的数据传输方法。
  29. 一种网络接入设备,其特征在于,所述网络接入设备包括:处理器、存储器、第一收发器和第二收发器;其中,
    所述第一收发器,用于接收上行报文;
    所述第二收发器,用于接收下行报文;
    所述第一收发器,还用于转发所述下行报文;
    所述存储器,用于存储指令;
    所述处理器,用于执行所述存储器中的所述指令,以使得所述网络接入设备执行如权利要求1-12中任一项所述的WiFi网络中的数据传输方法。
  30. 一种计算机程序产品,其特征在于,所述计算机程序产品包括计算机程序,当所述计算机程序在计算机上执行时,使得所述计算机执行如权利要求1-12中任一项所述的WiFi网络中的数据传输方法。
  31. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质存储有计算机程序,当所述计算机程序在计算机上执行时,使得所述计算机执行如权利要求1-12中任一项所述的WiFi网络中的数据传输方法。
PCT/CN2019/112391 2018-10-22 2019-10-22 WiFi网络中的数据传输方法、装置及设备 WO2020083263A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US17/287,383 US11778692B2 (en) 2018-10-22 2019-10-22 Data transmission method, apparatus, and device in Wi-Fi network
EP19875377.4A EP3863355A4 (en) 2018-10-22 2019-10-22 METHOD, DEVICE AND DEVICE FOR DATA TRANSFER IN A WLAN NETWORK

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201811232110.5 2018-10-22
CN201811232110 2018-10-22
CN201910547973.X 2019-06-24
CN201910547973.XA CN111083792B (zh) 2018-10-22 2019-06-24 WiFi网络中的数据传输方法、装置及设备

Publications (1)

Publication Number Publication Date
WO2020083263A1 true WO2020083263A1 (zh) 2020-04-30

Family

ID=70310421

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/112391 WO2020083263A1 (zh) 2018-10-22 2019-10-22 WiFi网络中的数据传输方法、装置及设备

Country Status (4)

Country Link
US (1) US11778692B2 (zh)
EP (1) EP3863355A4 (zh)
CN (1) CN111083792B (zh)
WO (1) WO2020083263A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112468469A (zh) * 2020-11-17 2021-03-09 武汉绿色网络信息服务有限责任公司 一种保障sctp协议多归属报文同源同宿的方法和装置

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113660174B (zh) * 2020-05-12 2024-01-09 华为技术有限公司 一种业务类型确定方法及相关设备
CN114079675B (zh) * 2020-08-17 2023-06-06 华为技术有限公司 报文处理方法、装置、终端设备及移动宽带上网设备
CN112367277B (zh) * 2020-10-30 2022-03-29 新华三大数据技术有限公司 一种报文处理方法及装置
CN112533158B (zh) * 2020-11-30 2021-12-10 广东万和新电气股份有限公司 一种WiFi模组通用化的方法及WiFi模组
CN113709891A (zh) * 2021-07-31 2021-11-26 新华三技术有限公司成都分公司 一种处理流量的方法和ap
CN114980219A (zh) * 2022-06-16 2022-08-30 Oppo广东移动通信有限公司 数据传输方法、装置、终端及存储介质

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050083412A1 (en) * 2003-10-21 2005-04-21 Murphy Scott D. Internet interactive realtime video image acquisition system based in low earth orbit
US20070177541A1 (en) * 2006-02-02 2007-08-02 Samsung Electronics Co., Ltd. Apparatus and method for transmitting/receiving signal in a communication system
CN101938415A (zh) * 2010-08-30 2011-01-05 北京傲天动联技术有限公司 网络转发设备的快速转发方法
CN104038442A (zh) * 2014-06-11 2014-09-10 普联技术有限公司 一种带宽分配的方法及路由器
CN107733742A (zh) * 2017-11-01 2018-02-23 北京天创凯睿科技有限公司 一种业务数据不间断传输方法及设备

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1319348C (zh) * 2003-02-26 2007-05-30 华为技术有限公司 Ip接入网业务服务质量保障方法
US8634399B2 (en) * 2006-04-12 2014-01-21 Qualcomm Incorporated Uplink and bi-directional traffic classification for wireless communication
EP1916801B1 (en) 2006-10-23 2012-12-12 Deutsche Telekom AG Access point for centralised scheduling in a IEEE 802.11e WLAN
US20090010259A1 (en) 2007-07-08 2009-01-08 Alexander Sirotkin Device, system, and method of classification of communication traffic
CN101541048A (zh) * 2009-04-03 2009-09-23 华为技术有限公司 服务质量控制方法和网络设备
US8274908B2 (en) 2009-07-24 2012-09-25 Intel Corporation Quality of service packet processing without explicit control negotiations
CN102201981A (zh) * 2011-03-31 2011-09-28 成都飞鱼星科技开发有限公司 基于视讯流量加速的网络视频会议系统及其加速方法
CN103873356B (zh) * 2012-12-11 2018-02-02 中国电信股份有限公司 基于家庭网关的应用识别方法、系统和家庭网关
US20140376555A1 (en) * 2013-06-24 2014-12-25 Electronics And Telecommunications Research Institute Network function virtualization method and apparatus using the same
US20150109909A1 (en) * 2013-10-21 2015-04-23 Time Warner Cable Enterprises Llc User-based profiling and network access
CN105393586B (zh) 2014-06-26 2019-06-28 华为技术有限公司 一种处理上行数据的方法和装置
CN105282102B (zh) * 2014-06-30 2019-03-15 中国电信股份有限公司 数据流处理方法和系统以及IPv6数据处理设备
US9923836B1 (en) * 2014-11-21 2018-03-20 Sprint Spectrum L.P. Systems and methods for configuring a delay based scheduler for an access node
US10243778B2 (en) * 2015-08-11 2019-03-26 Telefonaktiebolaget L M Ericsson (Publ) Method and system for debugging in a software-defined networking (SDN) system
CN105262703B (zh) * 2015-09-25 2018-06-29 中铁工程装备集团有限公司 一种基于双重优先级的路由带宽分配方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050083412A1 (en) * 2003-10-21 2005-04-21 Murphy Scott D. Internet interactive realtime video image acquisition system based in low earth orbit
US20070177541A1 (en) * 2006-02-02 2007-08-02 Samsung Electronics Co., Ltd. Apparatus and method for transmitting/receiving signal in a communication system
CN101938415A (zh) * 2010-08-30 2011-01-05 北京傲天动联技术有限公司 网络转发设备的快速转发方法
CN104038442A (zh) * 2014-06-11 2014-09-10 普联技术有限公司 一种带宽分配的方法及路由器
CN107733742A (zh) * 2017-11-01 2018-02-23 北京天创凯睿科技有限公司 一种业务数据不间断传输方法及设备

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112468469A (zh) * 2020-11-17 2021-03-09 武汉绿色网络信息服务有限责任公司 一种保障sctp协议多归属报文同源同宿的方法和装置

Also Published As

Publication number Publication date
US20210392720A1 (en) 2021-12-16
CN111083792A (zh) 2020-04-28
US11778692B2 (en) 2023-10-03
EP3863355A4 (en) 2021-12-15
EP3863355A1 (en) 2021-08-11
CN111083792B (zh) 2021-09-07

Similar Documents

Publication Publication Date Title
WO2020083263A1 (zh) WiFi网络中的数据传输方法、装置及设备
US8861454B2 (en) Method and device for enhancing Quality of Service in Wireless Local Area Network
WO2017201677A1 (zh) 数据传输的方法及装置
US20170295591A1 (en) Wireless Data Priority Services
WO2015165254A1 (zh) 协同通信的方法、云端服务器和核心网服务器
WO2020155076A1 (zh) 业务处理方法、设备、芯片及计算机程序
WO2023185552A1 (zh) 通信方法和装置
US20230379747A1 (en) Method and apparatus to synchronize radio bearers
EP1919154B1 (en) Wi-Fi quality of service signalling
US11647419B2 (en) Adjusting window size based on quality of experience
WO2022063187A1 (zh) 一种通信方法和装置
WO2019222999A1 (zh) 接入控制方法、装置和可读存储介质
KR102179212B1 (ko) 제어 정보에 대한 송신 방법 및 장치
Yuan et al. iVoIP: an intelligent bandwidth management scheme for VoIP in WLANs
KR101708977B1 (ko) 무선랜의 패킷 처리장치 및 그 방법
WO2024051544A1 (zh) 信息处理方法、设备及可读存储介质
WO2024032211A1 (zh) 一种拥塞控制方法以及装置
WO2023165199A1 (zh) 一种通信方法、装置及设备
WO2023125310A1 (zh) 一种通信方法及通信装置
WO2023221755A1 (zh) Bsr触发和上报方法、资源分配方法及装置
WO2023130374A1 (zh) 通信方法和通信装置
WO2023185769A1 (zh) 通信方法、通信装置和通信系统
US20230013093A1 (en) Traffic Control Method and Apparatus
WO2023185608A1 (zh) 一种数据传输的方法及通信装置
WO2023273514A1 (zh) 数据流的传输方法和传输装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19875377

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019875377

Country of ref document: EP

Effective date: 20210506