WO2021208813A1 - 一种通信方法及通信装置 - Google Patents

一种通信方法及通信装置 Download PDF

Info

Publication number
WO2021208813A1
WO2021208813A1 PCT/CN2021/086145 CN2021086145W WO2021208813A1 WO 2021208813 A1 WO2021208813 A1 WO 2021208813A1 CN 2021086145 W CN2021086145 W CN 2021086145W WO 2021208813 A1 WO2021208813 A1 WO 2021208813A1
Authority
WO
WIPO (PCT)
Prior art keywords
information
data packet
network element
gtpu
interface
Prior art date
Application number
PCT/CN2021/086145
Other languages
English (en)
French (fr)
Inventor
王亚东
贺海滨
尤正刚
时书锋
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2021208813A1 publication Critical patent/WO2021208813A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/08Testing, supervising or monitoring using real traffic
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/16Central resource management; Negotiation of resources or communication parameters, e.g. negotiating bandwidth or QoS [Quality of Service]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/16Central resource management; Negotiation of resources or communication parameters, e.g. negotiating bandwidth or QoS [Quality of Service]
    • H04W28/24Negotiating SLA [Service Level Agreement]; Negotiating QoS [Quality of Service]

Definitions

  • the embodiments of the present application relate to the field of communication, and in particular, to a communication method and communication device.
  • Mobile edge computing (mobile edge computing, MEC) can deploy the processing and resource scheduling of applications, content, core network services, etc., to the network edge close to the access side, and provide high reliability and low latency through services close to end users. Business experience.
  • the terminal equipment communicates with the core network through the base station. Specifically, the terminal equipment and the base station conduct data transmission through the air interface, and the base station and the user plane function (UPF) transmit data through the N3 interface.
  • High-reliability and low-latency business scenarios have higher requirements on the quality of network transmission between terminal equipment and the core network, and the main factors affecting network transmission are delay, packet loss, and disorder.
  • QoS quality of service
  • the embodiments of the present application provide a communication method and a communication device, which can perform packet loss detection or out-of-sequence detection on the link between a terminal device and a core network, and adjust the QoS strategy in time for the packet loss or out-of-sequence conditions of the link. Improve business experience.
  • a communication method including: a policy control network element can determine whether to enable the serial number function of the N3 interface, for example, the policy control network element determines first information, and the first information indicates that the data packet of the terminal device passes the N3
  • the interface forwarding carries the user plane general packet radio service tunneling protocol GTPU serial number SN; the policy control network element can also send the first information to the session management network element, so as to deliver the first information to the access network device and the user plane network element , So that the access network device and the user plane network element can add the GTPU SN to the data packet of the terminal device according to the first information.
  • the embodiment of the application provides a communication method.
  • the policy control network element can enable the GTPU sequence number function on the N3 interface, and send first information to the session management network element, indicating that the data packet of the terminal device is forwarded through the N3 interface When carrying GTPU SN.
  • GTPU SN can be used to detect packet loss and disorder on the N3 interface, and it can also detect packet loss and disorder on the air interface through PDCP SN. In this way, the link between the terminal device and the core network can be lost. Packet detection or out-of-sequence detection, so that the PCF can adjust the QoS strategy in time for the packet loss or out-of-sequence conditions of the link to improve the service experience.
  • the method further includes: the policy control network element enables the GTPU serial number function of the N3 interface according to the user information of the terminal device.
  • the policy control network element can decide whether to enable the GTPU serial number function of the N3 interface according to the user information. For example, when the user's service is determined to be highly reliable and high-latency based on the user information, the N3 interface can be enabled
  • the GTPU serial number function improves transmission reliability. It can also achieve user-granular link quality detection and support single-user link quality analysis.
  • the method before the policy control network element determines the first information, the method further includes: The session management network element receives the first message, where the first message is used to instruct the policy control network element to modify the user policy of the terminal device.
  • the policy control network element may issue the first information when issuing the user policy. For example, when updating the PDU session, the policy control network element receives the first message from the session management network element, and in response to the first message, modifies the user policy. When replying the modified user policy to the session management network element, the first information is carried so that the first information can be delivered to the access network device and the user plane network element through the session management network element.
  • the method further includes: receiving at least one of the second information, the third information, the fourth information, and the fifth information from the session management network element One; adjust the quality of service QoS policy according to at least one of the second information, the third information, the fourth information, and the fifth information;
  • the second information is used to indicate the air interface packet loss information and/or air interface disorder information measured by the access network device;
  • the third information is used to indicate the N3 interface packet loss information and/or the N3 interface disorder information measured by the access network device Information;
  • the fourth information is used to indicate the air interface packet loss information and/or air interface disorder information measured by the terminal device;
  • the fifth information is used to indicate the N3 interface packet loss information and/or the N3 interface disorder information measured by the user plane network element.
  • the policy control network element can monitor the link quality from the terminal device to the user plane network element according to the air interface measurement results reported by the session management network element and the N3 interface measurement results, and adjust the QoS policy according to the link quality to Ensure link quality and improve transmission reliability.
  • a communication method which includes: an access network device receives first information from an access mobility management network element, the first information indicating that a data packet of the terminal device is forwarded through an N3 interface and carries a user plane general packet radio Service tunneling protocol GTPU serial number SN; the access network device processes the data packet of the terminal device according to the first information.
  • the embodiment of the present application provides a communication method.
  • the access network device receives the first information, and determines that the data packet of the terminal device carries the GTPU SN when forwarded through the N3 interface.
  • the data packet of the terminal device is processed according to the first information, for example, when the data packet of the terminal device is forwarded through the N3 interface, the GTPU SN is carried.
  • GTPU SN can be used to detect packet loss and disorder on the N3 interface, and it can also detect packet loss and disorder on the air interface through PDCP SN. In this way, the link between the terminal device and the core network can be lost. Packet detection or out-of-sequence detection, so that the PCF can adjust the QoS strategy in time for the packet loss or out-of-sequence conditions of the link to improve the service experience.
  • the access network device processes the data packet of the terminal device according to the first information, including: the access network device receives the first data packet from the terminal device; A data packet includes the first packet data convergence protocol PDCP SN determined by the terminal device for the first data packet; the access network device sends a second data packet to the user plane network element according to the first data packet; the second data packet includes the access network The first GTPU SN determined by the device for the second data packet.
  • the uplink data packet of the N3 interface carries the GTPU SN, so that according to the GTPU in the uplink data packet of the N3 interface SN detects the uplink packet loss and disorder of the N3 interface.
  • the method further includes: the access network device determines the second information according to the first PDCP SN; the second information is used for Instruct the air interface packet loss information and/or air interface disorder information measured by the access network device; send the second information to the user plane network element.
  • the access network device can also detect the uplink packet loss and disorder of the air interface according to the PDCP SN in the uplink data packet of the air interface, and report the uplink packet loss and disorder of the air interface to the user plane network element , In order to report the uplink packet loss and disorder of the air interface to the policy control network element, so as to monitor the quality of the air interface transmission link according to the uplink packet loss and disorder of the air interface.
  • the method further includes: the access network device receives from the user plane network element The third data packet, the third data packet includes the second GTPU SN determined by the user plane network element for the third data packet; the third information is determined according to the second GTPU SN; the third information is used to indicate the N3 interface measured by the access network device Packet loss information and/or N3 interface out-of-sequence information; third information is sent to the user plane network element.
  • the downlink data packet of the N3 interface carries the GTPU SN.
  • the access network equipment can also detect the downlink packet loss and disorder of the N3 interface according to the GTPU SN in the downlink data packet of the N3 interface, and report the downlink packet loss and disorder of the N3 interface to the user plane network element, so as to The downlink packet loss and disorder of the N3 interface are reported to the policy control network element, so as to monitor the quality of the N3 interface transmission link according to the downlink packet loss and disorder of the N3 interface.
  • the method further includes: sending a fourth data packet to the terminal device according to the third data packet; and the fourth data The packet includes the second PDCP SN determined by the access network device for the fourth data packet.
  • the PDCP SN when the access network device sends a data packet to the terminal device through the air interface, the PDCP SN is carried in the downlink data packet of the air interface.
  • the method further includes: receiving fourth information from the terminal device, where the fourth information is used to instruct the terminal device according to Air interface packet loss information and/or air interface disorder information measured by the second PDCP SN; sending the fourth information to the user plane network element.
  • the terminal device can also detect the downlink packet loss and disorder of the air interface according to the PDCP SN in the downlink data packet of the air interface, and report the downlink packet loss and disorder of the air interface to the user plane network element, so that The downlink packet loss and disorder of the air interface are reported to the policy control network element, so as to monitor the quality of the air interface transmission link according to the downlink packet loss and disorder of the air interface.
  • the access network device determines the second information according to the first PDCP SN, including: if the first PDCP SN is less than the first PDCP SN, The maximum PDCP SN of the data packet successfully received before a data packet, the first data packet is the data packet received out of order; if the first PDCP SN is greater than the maximum PDCP SN of the data packet successfully received before the first data packet, And the PDCP SN of the successfully received data packet including the first data packet is not continuous, and the data packet sent by the terminal device is packet lost.
  • the embodiment of the present application also provides a specific method for determining air interface packet loss information or air interface disorder information according to PDCP SN.
  • the access network device determines the third information according to the second GTPU SN, including: if the second GTPU SN is smaller than the first GTPU SN The largest GTPU SN of the data packet successfully received before the third data packet, and the Internet Protocol ID IP ID of the third data packet is less than the IP ID of the data packet successfully received before the third data packet, then the third data packet is a mess If the second GTPU SN is greater than the largest GTPU SN of the data packet successfully received before the third data packet, and the GTPU SN of the successfully received data packet including the third data packet is not continuous, the user The data packet sent by the surface network element is lost.
  • the embodiment of the present application also provides a specific method for determining N3 interface packet loss information or N3 interface out-of-sequence information according to GTPU SN.
  • a communication method including: a user plane network element receives first information from a session management network element, and the first information indicates that the data packet of the terminal device carries the user plane general packet radio service tunneling protocol GTPU when forwarded through the N3 interface.
  • Serial number SN The user plane network element processes the data packet of the terminal device according to the first information.
  • the embodiment of the application provides a communication method.
  • the policy control network element can enable the GTPU sequence number function on the N3 interface, and send first information to the session management network element, indicating that the data packet of the terminal device is forwarded through the N3 interface When carrying GTPU SN.
  • GTPU SN can be used to detect packet loss and disorder on the N3 interface, and it can also detect packet loss and disorder on the air interface through PDCP SN. In this way, the link between the terminal device and the core network can be lost. Packet detection or out-of-sequence detection, so that the PCF can adjust the QoS strategy in time for the packet loss or out-of-sequence conditions of the link to improve the service experience.
  • the method further includes: receiving a second data packet from the access network device, where the second data packet includes the first GTPU SN.
  • the method further includes: the user plane network element receives the second information from the access network device; the second information is used to indicate Air interface packet loss information and/or air interface disorder information measured by the access network device; sending the second information to the session management network element.
  • the user plane network element processes the data packet of the terminal device according to the first information, including: : Send a third data packet to the access network device, where the third data packet includes the second GTPU SN determined by the user plane network element for the third data packet.
  • the method further includes: receiving third information from an access network device, the third information being used to indicate the connection The N3 interface packet loss information and/or the N3 interface out-of-sequence information measured by the network access device; sending the third information to the session management network element.
  • the method further includes: receiving the fourth aspect from the access network Information, the fourth information is used to indicate the air interface packet loss information and/or air interface disorder information measured by the terminal device; the fourth information is sent to the session management network element.
  • the method further includes: determining fifth information according to the first GTPU SN, and the fifth information is used to indicate the user The N3 interface packet loss information and/or the N3 interface disorder information measured by the surface network element; the fifth information is sent to the session management network element.
  • a communication device including: a processing unit, configured to determine first information, the first information indicating that a data packet of a terminal device carries a user plane general packet radio service tunneling protocol GTPU serial number SN when forwarded through an N3 interface ;
  • the communication unit is used to send the first information to the session management network element.
  • the processing unit is further configured to enable the GTPU serial number function of the N3 interface according to the user information of the terminal device.
  • the communication unit is further configured to receive the first message from the session management network element, and the first message Used to instruct the policy control network element to modify the user policy of the terminal device.
  • the communication unit is further configured to receive second information from the session management network element, At least one of the third information, the fourth information, and the fifth information; the processing unit is further configured to adjust the quality of service QoS policy according to at least one of the second information, the third information, the fourth information, and the fifth information; wherein ,
  • the second information is used to indicate the air interface packet loss information and/or air interface disorder information measured by the access network device;
  • the third information is used to indicate the N3 interface packet loss information and/or the N3 interface disorder information measured by the access network device
  • the fourth information is used to indicate the air interface packet loss information and/or the air interface disorder information measured by the terminal device;
  • the fifth information is used to indicate the N3 interface packet loss information and/or the N3 interface disorder information measured by the user plane network element.
  • a communication device including: a communication unit, configured to receive first information from an access mobility management network element, the first information indicating that a data packet of a terminal device carries a user plane general packet radio when forwarded through an N3 interface Service tunneling protocol GTPU serial number SN; processing unit for processing data packets of the terminal device according to the first information.
  • the communication unit is specifically configured to receive the first data packet from the terminal device; the first data packet includes the first data packet determined by the terminal device for the first data packet. Packet Data Convergence Protocol PDCP SN; the processing unit is configured to send a second data packet to the user plane network element according to the first data packet; the second data packet includes the first GTPU SN determined by the access network device for the second data packet.
  • PDCP SN Packet Data Convergence Protocol
  • the processing unit is configured to send a second data packet to the user plane network element according to the first data packet; the second data packet includes the first GTPU SN determined by the access network device for the second data packet.
  • the processing unit is further configured to determine the second information according to the first PDCP SN; the second information is used to indicate the connection The air interface packet loss information and/or air interface disorder information measured by the network access device; the communication unit is also used to send the second information to the user plane network element.
  • the signaling unit is further configured to receive a third data packet from a user plane network element ,
  • the third data packet includes the second GTPU SN determined by the user plane network element for the third data packet;
  • the processing unit is also used to determine the third information according to the second GTPU SN;
  • the third information is used to indicate the measurement of the access network equipment N3 interface packet loss information and/or N3 interface out-of-sequence information;
  • the communication unit is also used to send third information to the user plane network element.
  • the processing unit is further configured to send a fourth data packet to the terminal device according to the third data packet; fourth data The packet includes the second PDCP SN determined by the access network device for the fourth data packet.
  • the communication unit is further configured to receive fourth information from the terminal device, and the fourth information is used to instruct the terminal device according to Air interface packet loss information and/or air interface disorder information measured by the second PDCP SN; sending the fourth information to the user plane network element.
  • the processing unit is specifically configured to: if the first PDCP SN is smaller than the data packet successfully received before the first data packet If the first PDCP SN is greater than the maximum PDCP SN of the data packet successfully received before the first data packet, and the first data packet is included If the PDCP SN of the successfully received data packet is not continuous, the data packet sent by the terminal device will be lost.
  • the processing unit is specifically configured to: if the second GTPU SN is smaller than the data packet successfully received before the third data packet The largest GTPU SN of the third data packet, and the Internet Protocol ID IP ID of the third data packet is less than the IP ID of the data packet that the third data packet has successfully received before, then the third data packet is a data packet received out of order; if the second GTPU If the SN is greater than the maximum GTPU SN of the data packet successfully received before the third data packet, and the GTPU SN of the successfully received data packet including the third data packet is not continuous, the data packet sent by the user plane network element is lost .
  • a communication device including: a communication unit, configured to receive first information from a session management network element, the first information indicating that a data packet of a terminal device carries a user plane general packet radio service tunnel protocol when forwarded through an N3 interface GTPU serial number SN; processing unit for processing data packets of the terminal device according to the first information.
  • the communication unit is further configured to receive a second data packet from the access network device, where the second data packet includes the first GTPU SN.
  • the communication unit is further configured to receive second information from the access network device; the second information is used to indicate the connection Air interface packet loss information and/or air interface disorder information measured by the network access device; sending the second information to the session management network element.
  • the communication unit is further configured to send a third data packet to the access network device ,
  • the third data packet includes the second GTPU SN determined by the user plane network element for the third data packet.
  • the communication unit is further configured to receive third information from the access network device, and the third information is used to indicate the connection The N3 interface packet loss information and/or the N3 interface out-of-sequence information measured by the network access device; sending the third information to the session management network element.
  • the communication unit is further configured to receive from the access network The fourth information, the fourth information is used to indicate the air interface packet loss information and/or the air interface disorder information measured by the terminal device; the fourth information is sent to the session management network element.
  • the communication unit is further configured to, and the processing unit is further configured to determine the fifth information according to the first GTPU SN, and the first The fifth information is used to indicate the N3 interface packet loss information and/or the N3 interface out-of-sequence information measured by the user plane network element; the communication unit is also used to send the fifth information to the session management network element.
  • a communication device including at least one processor and a memory, the at least one processor is coupled to the memory; the memory is used to store a computer program;
  • the at least one processor is configured to execute a computer program stored in the memory, so that the apparatus executes the method according to any one of the foregoing first aspect and the first aspect, or the foregoing second aspect And the method described in any implementation manner of the second aspect, or the method described in any one of the foregoing third aspect and the third aspect.
  • a computer-readable storage medium including: instructions stored in the computer-readable storage medium; When the device is running, the communication device is caused to execute the communication method described in the first aspect and any one of the implementation manners of the first aspect.
  • a computer-readable storage medium including: instructions stored in the computer-readable storage medium; When the device is running, the communication device is caused to execute the communication method described in the second aspect and any one of the implementation manners of the second aspect.
  • a computer-readable storage medium including: instructions stored in the computer-readable storage medium; When running on the device, the communication device is caused to execute the communication method described in the third aspect and any one of the implementation manners of the third aspect.
  • a wireless communication device includes a processor, for example, applied to a communication device to implement the method described in the first aspect and any one of the implementation manners of the first aspect.
  • the communication device may be a chip system, for example.
  • the chip system further includes a memory for storing program instructions and data necessary to realize the functions of the method described in the first aspect.
  • a wireless communication device in a twelfth aspect, includes a processor, for example, used in a communication device to implement the above-mentioned second aspect and the function or method involved in any one of the implementation manners of the second aspect
  • the communication device may be a chip system, for example.
  • the chip system further includes a memory for storing program instructions and data necessary to realize the functions of the method described in the second aspect.
  • a wireless communication device includes a processor, for example, applied to a communication device to implement the above-mentioned third aspect and the function or method involved in any one of the implementation manners of the third aspect
  • the communication device may be a chip system, for example.
  • the chip system further includes a memory for storing program instructions and data necessary to realize the functions of the method described in the third aspect.
  • the chip system in the above aspect may be a system on chip (SOC), or a baseband chip, etc., where the baseband chip may include a processor, a channel encoder, a digital signal processor, a modem, and an interface module.
  • SOC system on chip
  • baseband chip may include a processor, a channel encoder, a digital signal processor, a modem, and an interface module.
  • a communication system in a fourteenth aspect, includes the foregoing fourth aspect, any one of the possible implementation manners of the fourth aspect, and any one of the foregoing fifth aspect and the fifth aspect. And the communication device described in any one of the possible implementation manners of the sixth aspect and the sixth aspect.
  • FIG. 1 is an architecture diagram of a communication system provided by an embodiment of the application
  • FIG. 2 is another architecture diagram of a communication system provided by an embodiment of the application.
  • FIG. 3 is a schematic diagram of the protocol layer provided by an embodiment of the application.
  • Fig. 4a is a structural block diagram of a communication device provided by an embodiment of the application.
  • FIG. 4b is another structural block diagram of a communication device provided by an embodiment of this application.
  • FIG. 5 is a schematic flowchart of a communication method provided by an embodiment of this application.
  • FIG. 6 is a schematic diagram of a data plane processing flow provided by an embodiment of the application.
  • FIG. 7 is a schematic diagram of another flow of a communication method provided by an embodiment of this application.
  • FIG. 8 is a schematic diagram of another flow of a communication method provided by an embodiment of this application.
  • 9 to 10 are another structural block diagrams of a communication device provided by an embodiment of this application.
  • Figure 1 shows a schematic diagram of a communication system to which the technical solution provided by this application is applicable.
  • the communication system may include at least one access network device ( Figure 1 only shows the access network device 100) and at least one terminal device (Only the terminal device 200 is shown in the figure).
  • the terminal equipment can communicate with the core network through the access network equipment.
  • FIG. 1 is only a schematic diagram, and does not constitute a limitation on the applicable scenarios of the technical solutions provided in this application.
  • the access network device 100 may be any device with a wireless transceiving function. Including but not limited to: evolved base station (E-UTRAN NodeB or e-NodeB or eNB) in LTE, base station (gNodeB or gNB) or transmission point (transmission) in 5G or new radio (NR) access technology /reception point, TRP), 3GPP subsequent evolution of base stations, access nodes in the WiFi system, wireless relay nodes, wireless backhaul nodes, etc.
  • the base station can be: a macro base station, a micro base station, a pico base station, a small station, a relay station, or a balloon station, etc. Multiple base stations can support networks of the same technology mentioned above, or networks of different technologies mentioned above.
  • the base station can contain one or more co-site or non-co-site TRPs.
  • the access network device may also be a wireless controller, a centralized unit (CU), and/or a distributed unit (DU) in a cloud radio access network (cloud radio access network, CRAN) scenario.
  • the access network device can also be a server, a wearable device, or a vehicle-mounted device.
  • the following description takes the access network device as a base station as an example.
  • the multiple access network devices may be base stations of the same type, or base stations of different types.
  • the base station can communicate with the terminal equipment, and it can also communicate with the terminal equipment through the relay station.
  • the terminal device can communicate with multiple base stations of different technologies.
  • the terminal device can communicate with a base station that supports an LTE network, can also communicate with a base station that supports a 5G network, and can also support communication with a base station of an LTE network and a base station of a 5G network. Double connection.
  • a terminal device (such as terminal device 200) is a device with a wireless transceiver function, which can be deployed on land, including indoor or outdoor, handheld, wearable, or vehicle-mounted; it can also be deployed on the water (such as a ship, etc.); it can also be deployed In the air (for example, on airplanes, balloons, satellites, etc.).
  • the terminal equipment may be a mobile phone (mobile phone), a tablet computer (Pad), a computer with wireless transceiver function, virtual reality (VR) terminal equipment, augmented reality (AR) terminal equipment, industrial control ( Wireless terminals in industrial control), vehicle-mounted terminal equipment, wireless terminals in self-driving, wireless terminals in remote medical, wireless terminals in smart grid, transportation safety ( Wireless terminals in transportation safety, wireless terminals in smart cities, wireless terminals in smart homes, wearable terminal devices, and so on.
  • the embodiments of this application do not limit the application scenarios.
  • Terminals can sometimes be referred to as terminal equipment, user equipment (UE), access terminal equipment, vehicle-mounted terminal, industrial control terminal, UE unit, UE station, mobile station, mobile station, remote station, remote terminal equipment, mobile Equipment, UE terminal equipment, terminal equipment, wireless communication equipment, UE agent or UE device, etc.
  • the terminal can also be fixed or mobile.
  • the terminal device of the present application may also be a vehicle-mounted module, vehicle-mounted module, vehicle-mounted component, vehicle-mounted chip, or vehicle-mounted unit built into a vehicle as one or more components or units. The vehicle passes through the built-in vehicle-mounted module, vehicle-mounted module, An on-board component, on-board chip, or on-board unit can implement the method of the present application.
  • the access network device 100 communicates with the terminal device 200 through an air interface, and the access network device communicates with the core network through an N2 interface or an N3 interface.
  • the service processing can be deployed at the edge of the network close to the terminal equipment.
  • the network can be divided into a control plane and a user plane.
  • user plane network elements include (radio) access network ((radio) access network, (R)AN) equipment and user plane network elements.
  • the control plane network elements include: authentication server function (AUSF) network elements, access and mobility management function (mobility management function, AMF) network elements, unified data management (unified data management, UDM) network elements, An application function (AF) network element, a session management function (SMF) network element, and a policy control function (PCF) network element.
  • the communication system shown in FIG. 2 may also include a data network (DN).
  • DN data network
  • the access network equipment is mainly used to implement functions such as physical layer functions, resource scheduling and management, access control of terminal equipment, and mobility management.
  • Mobility management network element which is mainly responsible for terminal access authentication, mobility management, and signaling interaction between various network elements, such as: user registration status, user connection status, user registration and network access, tracking area update , Cell handover, user authentication and key security are managed.
  • the session management network element is mainly used to implement user plane transmission logic channels, such as: session management functions such as the establishment, release, and modification of a packet data unit (PDU) session.
  • session management functions such as the establishment, release, and modification of a packet data unit (PDU) session.
  • PDU packet data unit
  • the user plane network element can be used as an anchor point on the user plane transmission logic channel to complete functions such as routing and forwarding of user plane data, such as establishing a channel with the terminal (that is, the user plane transmission logic channel), on the channel It forwards data packets between the terminal and the DN, and is responsible for the terminal's data message filtering, data forwarding, rate control, and charging information generation.
  • the user plane network element may be a UPF (user plane function) network element.
  • Network open network elements can be used to open events and capabilities of the core network, to translate between external and internal parameters of the core network, to receive information provided by external network elements of the core network and to store and select core network elements.
  • the external network elements of the core network may include application servers and the like.
  • the policy control network element can be used to provide strategies to the mobility management network element and the session management network element, such as: quanlity of service strategy, slice selection strategy, and so on.
  • Network storage network elements can be used to store user data, such as user subscription information, authentication or authorization data, etc.
  • the network storage network element may be a unified data management (unified data management, UDM) or a network storage function (network repository function, NRF) or a unified data warehouse (unified data repository, UDR), etc.
  • UDM unified data management
  • NRF network repository function
  • UDR unified data warehouse
  • DN is an operator network that can provide users with data transmission services, such as an operator network that can provide users with IP multi-media services (IP multi-media service, IMS).
  • IP multi-media service IP multi-media service, IMS.
  • An application server may be deployed in the DN, and the application server may provide data transmission services to users.
  • the terminal device can interact with the network element of the control plane, and request the network element of the control plane to allocate network resources and UPF for the session. After that, the terminal device can communicate with the UPF through the access network device.
  • the terminal equipment and the access network equipment communicate through the air interface, and the access network equipment and the UPF communicate through the N3 interface.
  • the access network device communicates with the AMF through the N1 interface
  • the access network device communicates with the AMF through the N2 interface
  • the UPF communicates with the SMF through the N4 interface
  • the UPF communicates with the DN through the N6 interface.
  • a policy control network element may receive a first message by the session management network element, and the first message is used to instruct the policy control network element to modify a user policy of a terminal device.
  • the policy control network element can enable the user plane general packet radio service tunneling protocol (GPRS (general packet radio service) tunnelling protocol user, GTPU) sequence number function on the N3 interface according to the user information of the terminal device, and report to the session management
  • the network element sends first information, and the first information indicates that the data packet of the terminal device carries a GTPU sequence number (sequence number, SN) when forwarded through the N3 interface.
  • GTPU SN can be used to detect packet loss and disorder on the N3 interface.
  • it can also detect packet loss and disorder on the air interface through the Packet Data Convergence Protocol (PDCP) SN. In this way, it can communicate with terminal equipment.
  • the link between the core networks performs packet loss detection or out-of-sequence detection so that the PCF can adjust the QoS strategy in time for the packet loss or out-of-sequence conditions of the link to improve service experience.
  • PDCP Packet Data Convergence Protocol
  • the PDCP layer belongs to the second layer of the wireless interface protocol stack, and mainly processes radio resource control (redio resource control, RRC) messages from the control plane and internet protocol (IP) packets from the data plane. Including: header compression and decompression of data, encryption/decryption, integrity protection, transmission of user data and control plane data, reordering and retransmission processing, etc.
  • RRC radio resource control
  • IP internet protocol
  • both received and sent data packets are regarded as PDCP data packets.
  • the data packet received by the PDCP layer may be referred to as a PDCP service data unit (SDU)
  • the data packet sent by the PDCP layer may be referred to as a PDCP protocol data unit (PDU).
  • SDU PDCP service data unit
  • PDU PDCP protocol data unit
  • PDCP SN is the number of PDCP data packets, and different PDCP SNs are used to identify different PDCP data packets.
  • the PDCP SN of the PDCP data received by the PDCP layer may be continuous; in the case of poor network conditions, packet loss may occur, and the PDCP SN of the PDCP data packets received by the PDCP layer is Discontinuous. If the network delay is large, the PDCP SN of the PDCP data packet received by the PDCP layer may be out of order.
  • GTPU is a point-to-point tunneling protocol adopted by the user plane, which carries GPRS services through the tunnel.
  • a tunnel can be established between RAN and UPF to transmit GTPU data packets.
  • Access network equipment and user plane network elements can compress and decompress, encrypt, and decrypt data.
  • the data received or sent by the access network equipment and user plane network elements can be considered as GTPU data packets.
  • GTPU SN is the number of GTPU data packets, and different GTPU SNs are used to identify different GTPU data packets.
  • the numbers of received and sent GTPU data packets are independent.
  • the GTPU SN of the received GTPU data packets may be continuous; in the case of poor network conditions, packet loss may occur, and the GTPU SN of the received GTPU data packets is not continuous . If the network delay is large, the GTPU SN of the received PDCP data packet may be out of order.
  • the GTPU sequence number function means that the data packet needs to carry the GTPU SN when forwarding the data packet through the N3 interface; or, when the data packet is transmitted through the GTPU tunnel, it needs to carry the GTPU SN; or the RAN needs to carry the GTPU SN when sending the data packet to the UPF through the N3 interface; or , UPF needs to carry GTPU SN when sending data packets to RAN through the N3 interface.
  • the GTPU sequence number function can also be enabled for a single user.
  • the user’s data packet needs to be forwarded through the N3 interface with the GTPU SN; or, through the GTPU tunnel
  • the user’s data packet needs to carry GTPU SN; or, when the RAN sends the user’s data packet to the UPF through the N3 interface, it needs to carry the GTPU SN; or the UPF needs to carry the GTPU when sending the user’s data packet to the RAN through the N3 interface.
  • the GTPU serial number function can be disabled for a single user.
  • the user's GTPU serial number function is disabled, the user's data packet does not need to be carried through the N3 interface when the user's data packet is forwarded; or, the user's data packet is transmitted through the GTPU tunnel
  • the GTPU SN is not required; or, when the RAN sends the user's data packet to the UPF through the N3 interface, it does not need to carry the GTPU SN; or, when the UPF sends the user's data packet to the RAN through the N3 interface, it does not need to carry the GTPU SN.
  • the QoS strategy can be used to adjust the network QoS and provide better services for network communication. For example, the network delay and congestion can be solved by adjusting the QoS strategy to ensure the efficient operation of the network.
  • FIG. 4a shows a schematic diagram of the hardware structure of a communication device 410 provided by an embodiment of the application.
  • the communication device 410 includes a processor 4101 and at least one communication interface (in FIG. 4a, the communication interface 4103 is taken as an example for illustration), and optionally, a memory 4102 is also included.
  • the processor 4101, the memory 4102, and the communication interface 4103 are connected to each other.
  • the processor 4101 can be a general-purpose central processing unit (central processing unit, CPU), a microprocessor, an application-specific integrated circuit (ASIC), or one or more programs used to control the execution of the program of this application. integrated circuit.
  • CPU central processing unit
  • ASIC application-specific integrated circuit
  • Communication interface 4103 using any device such as a transceiver to communicate with other devices or communication networks, such as Ethernet, radio access network (RAN), wireless local area networks (WLAN) Wait.
  • RAN radio access network
  • WLAN wireless local area networks
  • the memory 4102 may be a read-only memory (ROM) or other types of static storage devices that can store static information and instructions, random access memory (RAM), or other types that can store information and instructions
  • the dynamic storage device can also be electrically erasable programmable read-only memory (EEPROM), compact disc read-only memory (CD-ROM) or other optical disk storage, optical disc storage (Including compact discs, laser discs, optical discs, digital versatile discs, Blu-ray discs, etc.), magnetic disk storage media or other magnetic storage devices, or can be used to carry or store desired program codes in the form of instructions or data structures and can be used by a computer Any other media accessed, but not limited to this.
  • the memory can exist independently, or it can be connected to the processor. The memory can also be integrated with the processor.
  • the memory 4102 is used to store computer-executable instructions for executing the solution of the present application, and the processor 4101 controls the execution.
  • the processor 4101 is configured to execute computer-executable instructions stored in the memory 4102, so as to implement the intention processing method provided in the following embodiments of the present application.
  • the computer-executable instructions in the embodiments of the present application may also be referred to as application program codes, which are not specifically limited in the embodiments of the present application.
  • the processor 4101 may include one or more CPUs, such as CPU0 and CPU1 in FIG. 4a.
  • the communication device 410 may include multiple processors, such as the processor 4101 and the processor 4106 in FIG. 4a. Each of these processors can be a single-CPU processor or a multi-CPU processor.
  • the processor here may refer to one or more devices, circuits, and/or processing cores for processing data (for example, computer program instructions).
  • the communication apparatus 410 may further include an output device 4104 and an input device 4105.
  • the output device 4104 communicates with the processor 4101 and can display information in a variety of ways.
  • the output device 4104 may be a liquid crystal display (LCD), a light emitting diode (LED) display device, a cathode ray tube (CRT) display device, or a projector (projector) Wait.
  • the input device 4105 communicates with the processor 4101, and can receive user input in a variety of ways.
  • the input device 4105 may be a mouse, a keyboard, a touch screen device, or a sensor device.
  • the aforementioned communication device 410 may be a general-purpose device or a special-purpose device.
  • the communication device 410 may be a desktop computer, a portable computer, a network server, a personal digital assistant (PDA), a mobile phone, a tablet computer, a wireless terminal device, an embedded device, or a similar structure in Figure 4a. equipment.
  • PDA personal digital assistant
  • the embodiment of the present application does not limit the type of the communication device 410.
  • the communication device 410 may be a complete terminal, or may be a functional component or component that implements the terminal, or may be a communication chip, such as a baseband chip.
  • the communication interface may be a radio frequency module.
  • the communication interface 4103 may be an input/output interface circuit of the chip, and the input/output interface circuit is used to read in and output baseband signals.
  • Fig. 4b is a schematic structural diagram of a communication device.
  • the communication device 420 may be the access network device described in the embodiment of the present application.
  • the communication device includes at least one processor 4201, at least one transceiver 4203, at least one network interface 4204, and one or more antennas 4205.
  • at least one memory 4202 is also included.
  • the processor 4201, the memory 4202, the transceiver 4203 and the network interface 4204 are connected, for example, by a bus.
  • the antenna 4205 is connected to the transceiver 4203.
  • the network interface 4204 is used for the communication device to connect to other communication equipment through a communication link, for example, the communication device is connected to a core network element through an S1 interface.
  • the connection may include various interfaces, transmission lines, or buses, etc., which is not limited in this embodiment.
  • the processor in the embodiment of the present application may include at least one of the following types: a general-purpose central processing unit (Central Processing Unit, CPU), a digital signal processor (Digital Signal Processor, DSP), a microprocessor, Application-Specific Integrated Circuit (ASIC), Microcontroller Unit (MCU), Field Programmable Gate Array (FPGA), or integrated circuit used to implement logic operations .
  • the processor 4201 may be a single-CPU processor or a multi-CPU processor.
  • the at least one processor 4201 may be integrated in one chip or located on multiple different chips.
  • the memory in the embodiment of the present application may include at least one of the following types: read-only memory (ROM) or other types of static storage devices that can store static information and instructions, random access memory Random access memory (RAM) or other types of dynamic storage devices that can store information and instructions, or electrically erasable programmable read-only memory (EEPROM).
  • ROM read-only memory
  • RAM random access memory Random access memory
  • EEPROM electrically erasable programmable read-only memory
  • the memory can also be a compact disc read-only memory (CD-ROM) or other optical disc storage, optical disc storage (including compact discs, laser discs, optical discs, digital universal discs, Blu-ray discs, etc.) , A magnetic disk storage medium or other magnetic storage device, or any other medium that can be used to carry or store desired program codes in the form of instructions or data structures and that can be accessed by a computer, but is not limited thereto.
  • CD-ROM compact disc read-only memory
  • optical disc storage including compact discs, laser discs, optical discs, digital universal discs, Blu-ray discs, etc.
  • a magnetic disk storage medium or other magnetic storage device or any other medium that can be used to carry or store desired program codes in the form of instructions or data structures and that can be accessed by a computer, but is not limited thereto.
  • the memory 4202 may exist independently and is connected to the processor 4201.
  • the memory 4202 may also be integrated with the processor 4201, for example, integrated in one chip.
  • the memory 4202 can store program codes for executing the technical solutions of the embodiments of the present application, and the processor 4201 controls execution, and various types of computer program codes executed can also be regarded as driver programs of the processor 4201.
  • the processor 4201 is configured to execute computer program codes stored in the memory 4202, so as to implement the technical solutions in the embodiments of the present application.
  • the transceiver 4203 may be used to support the reception or transmission of radio frequency signals between the communication device and terminal equipment, and the transceiver 4203 may be connected to the antenna 4205.
  • one or more antennas 4205 can receive radio frequency signals
  • the transceiver 4203 can be used to receive the radio frequency signals from the antennas, convert the radio frequency signals into digital baseband signals or digital intermediate frequency signals, and convert the digital baseband signals or
  • the digital intermediate frequency signal is provided to the processor 4201, so that the processor 4201 performs further processing on the digital baseband signal or digital intermediate frequency signal, such as demodulation processing and decoding processing.
  • the transceiver 4203 can be used to receive a modulated digital baseband signal or digital intermediate frequency signal from the processor 4201, and convert the modulated digital baseband signal or digital intermediate frequency signal into a radio frequency signal, and pass it through one or more antennas 4205 Sending the radio frequency signal.
  • the transceiver 4203 may selectively perform one or more stages of down-mixing processing and analog-to-digital conversion processing on the radio frequency signal to obtain a digital baseband signal or a digital intermediate frequency signal.
  • the order of precedence is adjustable.
  • the transceiver 4203 can selectively perform one or more stages of up-mixing processing and digital-to-analog conversion processing on the modulated digital baseband signal or digital intermediate frequency signal to obtain a radio frequency signal, the up-mixing processing and digital-to-analog conversion processing The order of precedence is adjustable. Digital baseband signals and digital intermediate frequency signals can be collectively referred to as digital signals.
  • the transceiver may be called a transceiver circuit, a transceiver unit, a transceiver device, a transmission circuit, a transmission unit, or a transmission device, and so on.
  • the communication device 420 may be a complete communication device, a component or component that realizes the function of the communication device, or a communication chip.
  • the transceiver 4203 may be an interface circuit of the chip, and the interface circuit is used to read in and output baseband signals.
  • An embodiment of the present application provides a communication method. As shown in FIG. 5, the method includes the following steps:
  • a policy control network element receives a first message from a session management network element, where the first message is used to instruct the policy control network element to modify a user policy of a terminal device.
  • the user policy of the terminal device when the terminal device initiates the update process, the user policy of the terminal device also needs to be modified accordingly, that is, when the terminal device initiates the update process, the network elements perform signaling transfer in response to the update process.
  • the session management network element may send a first message to the policy control network element to instruct the policy control network element to modify the user policy of the terminal device.
  • the update process initiated by the terminal device is used to update or activate a Protocol Data Unit (PDU) session.
  • the terminal device will initiate a PDU session update process, and the user policy of the terminal device can be modified in the update process.
  • the session management network element is triggered to send a first message to the policy control network element, instructing the policy control network element to modify the terminal device User strategy.
  • the first message may be initiated SM policy association modification.
  • the policy control network element sends first information to the session management network element, where the first information indicates that the data packet of the terminal device carries the GTPU SN when forwarded through the N3 interface.
  • the policy control network element can also determine whether to enable the GTPU serial number function of the N3 interface according to the user information of the terminal device, that is, whether the data packet of the terminal device needs to carry the GTPU when forwarded through the N3 interface SN. If the GTPU sequence number function of the N3 interface is enabled, the first information can be sent to the session management network element, so that the session management network element can deliver the first information to the access network device or the user plane network element to indicate the data packet of the terminal device GTPU SN needs to be carried when forwarding through the N3 interface.
  • user information is used to describe user permissions, user characteristics, user characteristics, user business characteristics, and so on.
  • the GTPU serial number function of the N3 interface can be enabled, and whether GTPU SN needs to be carried when forwarding through the N3 interface.
  • the access network device sends the user plane network element through the N3 interface.
  • the GTPU SN is carried when sending data packets, and the GTPU SN is carried when the user plane network element sends data packets to the access network device through the N3 interface.
  • the first information may be a GTPU sequence flag (GTPU Sequence Flag).
  • GTPU Sequence Flag The first information may be added to the policy information related to the PDU session (PDU Session related policy information).
  • PDU Session related policy information the policy information related to the PDU session.
  • the session management network element sends the first information to the access mobility management network element and the user plane network element.
  • the session management network element sends the first information to the access mobility management network element through the N11 interface, and the access mobility management network element can send the first information to the access network device through the N2 interface.
  • the session management network element may also send the first information to the user plane network element through the N4 interface.
  • the policy control network element may carry the first information when issuing the modified user policy in the update process initiated by the terminal device, that is, perform step 501 to step 503 to complete the issuance of the first information.
  • Step 501 may be an optional step.
  • the policy control network element may also determine to enable the GTPU serial number function of the N3 interface according to the local policy, without performing step 501, and directly performing steps 502 and 503.
  • the policy control network element may actively enable the GTPU serial number function of the N3 interface, without performing step 501, and directly performing steps 502 and 503.
  • the method shown in FIG. 5 further includes: the access mobility management network element receives the first information from the session management network element, and sends the first information to the access network device.
  • the access network device may process the data packet of the terminal device according to the first information.
  • the access network device processes the data packet of the terminal device according to the first information, which specifically includes: when the access network device forwards the data packet from the terminal device to the user plane network element through the N3 interface, in the data packet Add GTPU SN. Or, when the access network device sends a data packet to the user plane network element according to the data packet from the terminal device, GTPU SN is added to the data packet.
  • the method shown in FIG. 5 further includes: the user plane network element receives first information from the session management network element, and the user plane network element may process the data packet of the terminal device according to the first information.
  • the user plane network element processing the data packet of the terminal device according to the first information includes: sending a data packet to the access network device through the N3 interface, and the data packet carries the GTPU SN.
  • Fig. 5 shows the flow of the control plane issuing the first information. The following describes how the user plane processes the data packet of the terminal device according to the first information in conjunction with Fig. 6.
  • User plane data interaction involves terminal equipment, access network equipment, and user plane network elements.
  • the terminal device sends a first data packet to the access network device through the air interface, and the first data packet includes the PDCP SN determined by the terminal device for the first data packet, that is, the first PDCP SN.
  • the access network device receives the first data packet through an air interface, and obtains a second data packet according to the first data packet, where the second data packet includes the GTPU SN determined by the access network device for the second data packet, That is, the first GTPU SN.
  • the access network device may also send the second data packet to the user plane network element through the N3 interface.
  • the user plane network element sends a third data packet to the access network device through the N3 interface, where the third data packet includes the GTPU SN determined by the user plane network element for the third data packet, that is, the second GTPU SN.
  • the access network device receives the third data packet through the N3 interface, and obtains a fourth data packet according to the third data packet, where the fourth data packet includes the information determined by the access network device for the fourth data packet PDCP SN, that is, the second PDCP SN.
  • the access network device may also send the fourth data packet to the terminal device through the air interface.
  • the method shown in Figure 5 further includes: terminal equipment, access network equipment, and user plane network elements can also measure network packet loss or disorder according to the SN in the data packet, and report the measurement result to the user
  • the plane network elements are summarized by the user plane network elements and reported to the policy control network elements in a unified manner.
  • the measurement results include the following possibilities:
  • the air interface packet loss information and air interface disorder information measured by the access network equipment are the air interface packet loss information and air interface disorder information measured by the access network equipment.
  • the data packets received by the access network device through the air interface include PDCP SN, and the access network device can measure the air interface packet loss information or out-of-sequence information according to the PDCP SN in the data packet, and report the measurement result to the user plane network element.
  • the access network device receives the first data packet from the terminal device, and parses the first data packet to obtain the first PDCP SN.
  • the access network device may also determine second information according to the first PDCP SN, and send the second information to the user plane network element.
  • the second information is used to indicate air interface packet loss information and/or air interface disorder information measured by the access network device.
  • the air interface packet loss information can be the air interface packet loss rate or the PDCP SN of the packet loss; the air interface disorder information can be the air interface disorder rate or the air interface disorder PDCP SN.
  • the terminal device adds the first PDCP SN to the PDCP header of the first data packet, and the access network device can obtain the first PDCP SN from the PDCP header of the first data packet.
  • the N3 interface packet loss information and the N3 interface disorder information measured by the access network equipment Second, the N3 interface packet loss information and the N3 interface disorder information measured by the access network equipment.
  • the data packet received by the access network device through the N3 interface includes GTPU SN, and the access network device can measure the packet loss information or out-of-sequence information of the N3 interface according to the GTPU SN in the data packet, and report the measurement to the user plane network element result.
  • the access network device receives the third data packet from the user plane network element, and parses the third data packet to obtain the second GTPU SN.
  • the access network device may also determine third information according to the second GTPU SN, and send the third information to the user plane network element.
  • the third information is used to indicate N3 interface packet loss information and/or N3 interface out-of-sequence information measured by the access network device.
  • the packet loss information of the N3 interface may be the packet loss rate of the N3 interface or the GTPU SN of the packet loss
  • the N3 interface out-of-order information may be the out-of-order rate of the N3 interface or the out-of-order GTPU SN.
  • the user plane network element adds a second GTPU SN to the GTPU header of the third data packet, and the access network device can obtain the second GTPU SN from the GTPU header of the third data packet.
  • the data packet received by the terminal device through the air interface includes PDCP SN, and the terminal device can measure the air interface packet loss information or out-of-sequence information according to the PDCP SN in the data packet, and report the measurement result to the user plane network element through the access network device.
  • the terminal device receives the fourth data packet from the access network device, and parses the fourth data packet to obtain the second PDCP SN.
  • the terminal device may also determine the fourth information according to the second PDCP SN, and send the fourth information to the access network device, so that the access network device can report the fourth information to the user plane network element.
  • the fourth information is used to indicate air interface packet loss information and/or air interface disorder information measured by the terminal device according to the second PDCP SN.
  • the access network device adds the second PDCP SN to the PDCP header of the fourth data packet, and the terminal device can obtain the second PDCP SN from the PDCP header of the fourth data packet.
  • the N3 interface packet loss information and the N3 interface disorder information measured by the user plane network element are fourth, the N3 interface packet loss information and the N3 interface disorder information measured by the user plane network element.
  • the data packet received by the user plane network element through the N3 interface includes GTPU SN, and the user plane network element can measure the packet loss information or out-of-sequence information of the N3 interface according to the GTPU SN in the data packet.
  • the user plane network element receives the second data packet sent by the access network device, parses the second data packet to obtain the first GTPU SN, and determines the fifth information according to the first GTPU SN.
  • the fifth information is used to indicate N3 interface packet loss information and/or N3 interface out-of-sequence information measured by the user plane network element.
  • the access network device adds the first GTPU SN to the GTPU header of the second data packet, and the user plane network element can obtain the first GTPU SN from the GTPU header of the second data packet.
  • the user plane network element reports the measurement results reported by the access network device and its own measurement results to the session management network element, so that the session management network element sends the measurement results reported by the user plane network element to the policy Control network elements.
  • the user plane network element receives the aforementioned second information, third information, fourth information, and fifth information, and sends at least one of the second information, third information, fourth information, and fifth information to the policy control network element.
  • the user plane network element may construct the second, third, fourth, and fifth information in the same message and report to the policy control network element, or report to the policy control network element separately.
  • the embodiment of the application does not limit this.
  • the terminal device and the access network device can determine whether there is packet loss or disorder according to the PDCP SN of the currently received data packet and the maximum PDCP SN of the successfully received data packet.
  • the access network device After the access network device receives the first data packet, if the first PDCP SN in the first data packet is less than or equal to the maximum data packet that has been successfully received before the first data packet PDCP SN, the first data packet is a data packet received out of order. If the first PDCP SN is greater than the maximum PDCP SN of the data packet successfully received before the first data packet, and the PDCP SN of the successfully received data packet including the first data packet is not continuous, the terminal Packets sent by the device are lost.
  • the PDCP SN of the first data packet is 8.
  • the access network device successfully received the PDCP SN of 1, 2, 3, 4, 5, and 6, because 8 is greater than 6, and
  • the PDCP SN of the successfully received data packet received by the access network device is not continuous, and the PDCP SN 7 is missing, and it can be determined that the data packet sent by the terminal device is lost.
  • the fourth data packet if the second PDCP SN in the fourth data packet is less than or equal to the maximum PDCP SN of the data packet successfully received before the fourth data packet, the fourth data packet The packet is a data packet received out of order. If the second PDCP SN is greater than the maximum PDCP SN of the data packet that has been successfully received before the fourth data packet, the data packet sent by the air interface of the access network device has packet loss.
  • the user plane network element and the access network device can judge whether there is packet loss or disorder based on the GTPU SN of the currently received data packet, and the largest GTPU SN and IP ID of the successfully received data packet. sequence.
  • the second data packet is a data packet received out of order on the N3 interface;
  • the access The data packets sent by the network equipment through the N3 interface are lost.
  • the GTPU SN of the second data packet is 7.
  • the user plane network element successfully received the data packets with GTPU SN of 1, 2, 3, 4, and 5. Since 7 is greater than 5, and access
  • the GTPU SN of the successfully received data packet received by the network device is not continuous, and the GTPU SN 6 is missing. It can be determined that the data packet sent by the access network device through the N3 interface is lost.
  • the access network device receives the third data packet from the user plane network element, and if the second GTPU SN in the third data packet is less than the maximum GTPU SN of the data packet successfully received before the third data packet, and the third data packet 3. If the IP ID of the third data packet is less than the IP ID of the data packet that was successfully received before the third data packet, the third data packet is a data packet received out of order;
  • the user plane If the second GTPU SN is greater than the maximum GTPU SN of the data packet successfully received before the third data packet, and the IP ID of the successfully received data packet including the third data packet is not continuous, the user plane The data packets sent by the network element through the N3 interface are lost.
  • the policy control network element can be PCF
  • the access network device can be RAN or base station
  • the user plane network element can be UPF
  • the access mobility management network element can be AMF.
  • the management network element may be an SMF.
  • the following takes the PDU session update process as an example, combined with specific signaling (message) to introduce how to deliver the first information in the PDU session update process so that the data packet of the terminal device is transmitted through the N3 interface to carry GTPU SN, which can be based on GTPU SN Judge network packet loss or network disorder and improve transmission reliability.
  • the method includes the following steps:
  • the UE initiates a PDU session update procedure.
  • the UE sends a PDU session modification request (PDU session modification request) to the RAN, and the RAN forwards the PDU session modification request to the AMF.
  • the RAN may also send the PDU session modification request to the AMF.
  • the AMF sends an update context message to the SMF.
  • the AMF responds to the PDU session modification request and calls Nsmf_PDUSession_UpdateSMContext to send an update context message to the SMF.
  • the message update context message may include parameters such as PDU session ID and Requested QoS (requested quality of service).
  • Requested QoS represents the quality of service requested by the terminal device.
  • the PCF can modify the user policy of the terminal device according to the Requested QoS, or decide whether to enable the GTPU serial number function of the N3 interface according to the Requested QoS.
  • the SMF instructs the PCF to execute the process of modifying the user policy.
  • the SMF sends an update message to the PCF, instructing the PCF to modify the user policy.
  • the PCF sends PDU session-related policy information (PDU Session related policy information) to the SMF to indicate the user policy of the terminal device.
  • PDU Session related policy information PDU Session related policy information
  • the PCF may also decide whether to enable the GTPU serial number function of the N3 interface according to user information or local policies.
  • user policy information for example, PDU Session related policy information
  • a GTPU Sequence Flag information element that is, the first information described in the embodiment of this application
  • the GTPU Sequence Flag information element can indicate the user's Whether the data message needs to carry GTPU SN when forwarded through the N3 interface.
  • the GTPU Sequence Flag cell is the first value, indicating that the GTPU sequence number function of the N3 interface is enabled, and the user's data message needs to carry the GTPU sequence number when forwarded through the N3 interface. That is, the data packet sent by the user plane network element to the access network device carries the GTPU SN, or the data packet sent by the access network device to the user plane network element carries the GTPU SN.
  • the GTPU Sequence Flag cell is the second value, which means that the GTPU sequence number function of the N3 interface is disabled.
  • the user's data message does not need to carry the GTPU sequence number when it is forwarded through the N3 interface. That is, the data packet sent by the user plane network element to the access network device does not carry the GTPU SN, or the data packet sent by the access network device to the user plane network element does not carry the GTPU SN.
  • the first value is “1” and the second value is "0".
  • the RAN sends an N2 message to the AMF.
  • the RAN may perform step 704 after receiving the PDU Session related policy information.
  • the N2 message includes PDU Session ID and N2SM information.
  • the N2SM information may include user location information and QoS Flow release instructions.
  • the AMF sends a PDU Session Context Update (Nsmf_PDU Session_Update SM Context) message to the SMF.
  • Nsmf_PDU Session_Update SM Context PDU Session Context Update
  • the Nsmf_PDU Session_Update SM Context message may include the SM context identifier and N2SM information.
  • the SMF replies a response message to the AMF, including the GTPU Sequence Flag.
  • the GTPU Sequence Flag may be the first information described in the embodiment of the present application, and is used to indicate that the GTPU sequence number function of the N3 interface is enabled.
  • the SMF can call the Nsmf_PDU Session_Update SM Context to reply to the AMF with a response message.
  • the response message may include N2SM information and GTPU Sequence Flag.
  • the SMF may call Namf_Communication_N1N2Message Transfer to reply to the AMF with a response message.
  • the response message may include: N2SM information and GTPU Sequence Flag.
  • the AMF sends an N2 response message to the RAN, where the N2 response message includes GTPU Sequence Flag.
  • the RAN obtains the GTPU Sequence Flag after receiving the N2 response message, can store the GTPU Sequence Flag in the user information table, and subsequently forwards the user's data packet with reference to the GTPU Sequence Flag to add the GTPU SN to the data packet.
  • the SMF sends a GTPU Sequence Flag to the UPF.
  • the SMF can update the N4 session of the UPF through the N4 Session Modification Request (N4 Session Modification Request) message.
  • the N4Session Modification Request message may include GTPU Sequence Flag.
  • the UPF stores the GTPU Sequence Flag in the user information table corresponding to the UE, and the subsequent data packet forwarding process will refer to the GTPU Sequence Flag to process the data packet of the UE.
  • the first information (for example, GTPU Sequence Flag) can be delivered to the RAN and UPF, so that when the RAN and UPF process the data packets of the UE, the GTPU SN is carried according to the GTPU Sequence Flag, and the GTPU SN is carried according to the GTPU SN. Detect packet loss and disorder on the N3 interface, and improve the transmission reliability of the N3 interface.
  • the method includes the following steps:
  • the RAN When the RAN sends an uplink data packet through the N3 interface, it carries the GTPU SN.
  • the RAN obtains the first information (for example, GTPU Sequence flag) from the AMF.
  • the first information for example, GTPU Sequence flag
  • the RAN can determine whether the GTPU SN needs to be carried in the GTPU header of the uplink message according to the GTPU Sequence flag.
  • the UPF sends a downlink data packet through the N3 interface, it carries GTPU SN.
  • the UPF obtains the first information (for example, GTPU Sequence flag) from the SMF.
  • the first information for example, GTPU Sequence flag
  • the UPF can determine whether it is necessary to carry the GTPU SN in the GTPU header of the downlink message according to the GTPU Sequence flag.
  • UPF does not support GTPU SN, and it does not affect RAN to support GTPU SN.
  • RAN does not support GTPU SN, and it does not affect UPF to support GTPU SN. If the network element that does not support GTPU SN receives the data packet, just ignore the GTPU SN field in the data packet.
  • the RAN receives the downlink data packet through the N3 interface, and calculates the downlink packet loss information and/or the downlink out-of-sequence information of the N3 interface according to the GTPU SN of the data packet.
  • the RAN obtains the GTPU SN from the GPTU header of the data packet.
  • UPF receives the uplink data packet through the N3 interface, and calculates the uplink packet loss information and uplink out-of-sequence information of the N3 interface according to the GTPU SN of the data packet.
  • the UPF obtains the GTPU SN in the GPTU header of the data packet.
  • the RAN reports packet loss information and/or disorder information to the UPF.
  • the RAN summarizes the received packet loss information, out of order information, and calculated packet loss information and out of order information, and sends the summarized packet loss information and/or out of order information to the UPF through a dummy message.
  • the RAN receives the RRC measurement report from the UE, including the air interface downlink packet loss information and/or air interface downlink disorder information measured by the UE.
  • the RAN can also receive uplink data packets sent by the UE through the air interface, and calculate air interface uplink packet loss information and/or air interface uplink out-of-sequence information according to the PDCP SN in the data packet.
  • the RAN fills the N3 interface downlink packet loss information and/or downlink disorder information, air interface downlink packet loss information and/or air interface downlink disorder information, air interface uplink packet loss information and/or air interface uplink disorder information, etc. into the dummy message
  • the GTP extension header for sending a dummy message to the UPF.
  • the RAN may report packet loss information and/or out-of-sequence information periodically, or when the out-of-order indicator or packet loss indicator exceeds a threshold, or when the user is deactivated.
  • UPF receives the packet loss information and/or disorder information reported by the RAN, and reports the end-to-end packet loss information and/or disorder information to the SMF.
  • UPF after UPF receives the dummy message from the RAN, it parses the message to obtain the uplink packet loss information and/or uplink disorder information of the N3 interface, the air interface downlink packet loss information and/or the air interface downlink disorder information, and the air interface uplink packet loss Information and/or air interface uplink out-of-sequence information. Then send an N4 session report message to the SMF, which includes end-to-end packet loss information and/or out-of-sequence information.
  • the end-to-end packet loss information and/or disorder information refers to the packet loss information and/or disorder information between the UE and the UPF, for example, the downlink packet loss information and/or downlink disorder information of the N3 interface, Air interface downlink packet loss information and/or air interface downlink disorder information, air interface uplink packet loss information and/or air interface uplink disorder information, and uplink packet loss information and/or uplink disorder information of the N3 interface.
  • UPF can periodically report conditional end-to-end packet loss information and/or out-of-sequence information. It can also report when the out-of-sequence indicator or packet loss indicator exceeds the threshold, or it can be delayed when reporting Monitoring for URLLC.
  • the SMF replies an N4 session report response message to the UPF, confirming receipt of the packet loss information and/or out-of-sequence information reported by the UPF.
  • the SMF reports end-to-end packet loss information and/or out-of-sequence information to the PCF through the N7 interface.
  • the PCF adjusts the QoS policy according to the end-to-end packet loss information and/or out-of-sequence information.
  • the QoS strategy can be adjusted to expand the bandwidth of the wireless network
  • the QoS strategy can be adjusted to increase the bandwidth of the transmission network between the RAN and the core network.
  • the uplink packet loss rate of the user is high, that is, the packet loss rate of the data packets sent by the UE through the air interface is high, then adjustments are made to increase the user's uplink bandwidth.
  • the uplink bandwidth is the network bandwidth for the UE to send data to the RAN.
  • the downlink bandwidth is the network bandwidth for the RAN to send data to the UE.
  • the user plane network element establishes a tunnel (for example, GTP Tunnel) with the new access network device.
  • the UPF may receive data packets sent by the source access network device and the destination access network device.
  • the GTPU SN of the data packets from the source access network device and the destination access network device are independent of each other.
  • UPF must determine the uplink packet loss information and out-of-sequence information of the N3 interface based on different tunnels.
  • the source access network device is the access network device that the terminal device accesses before handover, for example, Source gNB
  • the destination access network device is the access network device that the terminal device accesses after the handover, for example, Target gNB.
  • the terminal device switches the access network device, and the data packet sent to the UPF uses the GTPU SN before the switch.
  • the terminal device first accesses the base station 1, and sends data to the UPF through the base station 1, and the GTPU SN of the 100 data packets sent by the base station 1 are 0 to 99 respectively.
  • the GTPU SN of the data packet sent by base station 2 to UPF starts to accumulate from 100.
  • the GTPU SN of the data packet is 100, 101, 102, and so on.
  • the router device in the transmission path from the terminal device to the UPF can also determine the packet loss information and out-of-sequence information for the sequence number of the data packet, so as to better delimit the fault based on the determined packet loss information and out-of-sequence information. point.
  • FIG. 9 shows a possible schematic diagram of the structure of the communication device involved in the foregoing embodiment.
  • the communication device shown in FIG. 9 may be the terminal device described in the embodiment of the present application, may also be a component in the terminal device that implements the foregoing method, or may also be a chip applied to the terminal device.
  • It may also be the access network device described in the embodiment of the present application, it may also be a component in the access network device that implements the foregoing method, or it may also be a chip applied to the access network device.
  • it is a component in a user plane network element or a policy control network element that implements the above method, or it can also be a chip applied to a user plane network element or a policy control network element.
  • the chip may be a System-On-a-Chip (SOC) or a baseband chip with communication function.
  • the communication device includes a processing unit 901 and a communication unit 902.
  • the processing unit may be one or more processors, and the communication unit may be a transceiver or a communication interface.
  • the processing unit 901 can be used to support terminal equipment, access network equipment, user plane network elements, or policy control network elements to perform internal processing, for example, support terminal equipment to calculate the air interface downlink packet loss rate or Out-of-sequence rate; support the policy control network element to enable the GTPU serial number function of the N3 interface according to the user information, and support the user plane network element or the policy control network element to process the data packet of the terminal device according to the first information.
  • Other processes for the techniques described herein can also be supported.
  • the communication unit 902 is used to support the communication between the terminal device, the access network device, the user plane network element or the policy control network element and other communication devices, for example, support the terminal device to perform step 701; support the policy control network element to perform step 501. Step 502; support user plane network element to perform step 804; support access network device to perform step 801a. Other processes for the techniques described herein can also be supported.
  • FIG. 10 a schematic structural diagram of a communication device provided in an embodiment of the present application is shown in FIG. 10.
  • the communication device includes: a processing module 1001 and a communication module 1002.
  • the processing module 1001 is used to control and manage the actions of the communication device, for example, to execute the steps performed by the above-mentioned processing unit 1001, and/or to perform other processes of the technology described herein.
  • the communication module 1002 is used to perform the steps performed by the above-mentioned communication unit 1002, and supports interaction between the communication device and other devices, such as interaction with other devices.
  • the communication device may further include a storage module 1003, and the storage module 1003 is used to store the program code and data of the communication device.
  • the embodiment of the present application provides a computer-readable storage medium, and the computer-readable storage medium stores instructions; the instructions are used to execute the method shown in FIG. 5 or FIG. 7 or FIG. 8.
  • the embodiment of the present application provides a computer program product including instructions, which when running on a communication device, causes the communication device to execute the method shown in FIG. 5 or FIG. 7 or FIG. 8.
  • the processor in the embodiment of the present application may include but is not limited to at least one of the following: central processing unit (CPU), microprocessor, digital signal processor (DSP), microcontroller (microcontroller unit, MCU) ), or various computing devices running software such as artificial intelligence processors.
  • Each computing device may include one or more cores for executing software instructions for calculation or processing.
  • the processor can be a single semiconductor chip, or it can be integrated with other circuits to form a semiconductor chip. For example, it can form an SoC (on-chip) with other circuits (such as codec circuits, hardware acceleration circuits, or various bus and interface circuits).
  • the processor may further include necessary hardware accelerators, such as field programmable gate array (FPGA) and PLD (programmable logic device) , Or a logic circuit that implements dedicated logic operations.
  • FPGA field programmable gate array
  • PLD programmable logic device
  • the memory in the embodiments of the present application may include at least one of the following types: read-only memory (ROM) or other types of static storage devices that can store static information and instructions, random access memory , RAM) or other types of dynamic storage devices that can store information and instructions, or electrically erasable programmable read-only memory (EEPROM).
  • ROM read-only memory
  • RAM random access memory
  • EEPROM electrically erasable programmable read-only memory
  • the memory can also be a compact disc read-only memory (CD-ROM) or other optical disc storage, optical disc storage (including compact discs, laser discs, optical discs, digital universal discs, Blu-ray discs, etc.) , Disk storage media or other magnetic storage devices, or any other media that can be used to carry or store desired program codes in the form of instructions or data structures and that can be accessed by a computer, but are not limited thereto.
  • CD-ROM compact disc read-only memory
  • optical disc storage including compact discs, laser discs, optical discs, digital universal discs, Blu-ray discs, etc.
  • Disk storage media or other magnetic storage devices or any other media that can be used to carry or store desired program codes in the form of instructions or data structures and that can be accessed by a computer, but are not limited thereto.
  • At least one refers to one or more.
  • Multiple means two or more.
  • And/or describes the association relationship of the associated objects, indicating that there can be three relationships, for example, A and/or B, which can mean: A alone exists, A and B exist at the same time, and B exists alone, where A, B can be singular or plural.
  • the character “/” generally indicates that the associated objects before and after are in an “or” relationship.
  • the following at least one item (a)” or similar expressions refers to any combination of these items, including any combination of a single item (a) or a plurality of items (a).
  • a, b, or c can mean: a, b, c, ab, ac, bc, or abc, where a, b, and c can be single or multiple .
  • words such as “first” and “second” are used to distinguish the same or similar items with substantially the same function and effect. Those skilled in the art can understand that words such as “first” and “second” do not limit the quantity and order of execution, and words such as “first” and “second” do not limit the difference.
  • the disclosed database access device and method can be implemented in other ways.
  • the embodiments of the database access device described above are only illustrative.
  • the division of the modules or units is only a logical function division, and there may be other division methods in actual implementation, such as multiple units or
  • the components can be combined or integrated into another device, or some features can be omitted or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be through some interfaces, indirect coupling or communication connection of the database access device or unit, and may be in electrical, mechanical or other forms.
  • the units described as separate parts may or may not be physically separate.
  • the parts displayed as units may be one physical unit or multiple physical units, that is, they may be located in one place, or they may be distributed to multiple different places. . Some or all of the units may be selected according to actual needs to achieve the objectives of the solutions of the embodiments.
  • the functional units in the various embodiments of the present application may be integrated into one processing unit, or each unit may exist alone physically, or two or more units may be integrated into one unit.
  • the above-mentioned integrated unit can be implemented in the form of hardware or software functional unit.
  • the integrated unit is implemented in the form of a software functional unit and sold or used as an independent product, it can be stored in a readable storage medium.
  • the technical solutions of the embodiments of the present application are essentially or the part that contributes to the prior art, or all or part of the technical solutions can be embodied in the form of a software product, and the software product is stored in a storage medium. It includes several instructions to make a device (may be a single-chip microcomputer, a chip, etc.) or a processor execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned storage media include: U disk, mobile hard disk, ROM, RAM, magnetic disk or optical disk and other media that can store program codes.

Landscapes

  • Engineering & Computer Science (AREA)
  • Quality & Reliability (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例提供了一种通信方法及通信装置,涉及通信领域,可以对终端设备与核心网之间链路进行丢包检测或乱序检测,针对链路的丢包情况或乱序情况及时调整QoS策略,提升业务体验。包括:策略控制网元确定第一信息,所述第一信息指示终端设备的数据包通过N3接口转发时携带用户面通用分组无线业务隧道协议GTPU序列号SN;所述策略控制网元向会话管理网元发送第一信息。

Description

一种通信方法及通信装置
本申请要求于2020年4月17日提交国家知识产权局、申请号为202010307308.6、申请名称为“一种通信方法及通信装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请实施例涉及通信领域,尤其涉及一种通信方法及通信装置。
背景技术
移动边缘计算(mobile edge computing,MEC)可以将应用、内容、核心网部分业务等的处理和资源调度部署到靠近接入侧的网络边缘,通过业务靠近终端用户,来提供高可靠、低时延的业务体验。
终端设备通过基站与核心网进行通信,具体地,终端设备与基站之间通过空口进行数据传输,基站与用户面功能(user plane function,UPF)之间通过N3接口传输。高可靠、低时延的业务场景对终端设备与核心网之间的网络传输质量有更高的要求,影响网络传输的主要因素时延、丢包、乱序等。目前还没有完整的方案可以对终端设备与核心网之间链路进行丢包检测或乱序检测,无法针对链路的丢包情况或乱序情况及时调整服务质量(quality of service,QoS)策略,影响业务体验。
发明内容
本申请实施例提供了一种通信方法及通信装置,可以对终端设备与核心网之间链路进行丢包检测或乱序检测,针对链路的丢包情况或乱序情况及时调整QoS策略,提升业务体验。
第一方面,提供了一种通信方法,包括:策略控制网元可以确定是否使能N3接口的序号功能,例如,策略控制网元确定第一信息,第一信息指示终端设备的数据包通过N3接口转发时携带用户面通用分组无线业务隧道协议GTPU序列号SN;策略控制网元还可以向会话管理网元发送第一信息,以便将第一信息下发给接入网设备和用户面网元,使得接入网设备和用户面网元可以根据第一信息在终端设备的数据包中添加GTPU SN。
本申请实施例提供一种通信方法,策略控制网元可以使能N3接口上的GTPU序号功能,并向所述会话管理网元发送第一信息,指示所述终端设备的数据包通过N3接口转发时携带GTPU SN。具体地,GTPU SN可以用于检测N3接口上的丢包和乱序,同时还可以通过PDCP SN检测空口上的丢包和乱序,如此,可以对终端设备与核心网之间链路进行丢包检测或乱序检测,以便PCF可以针对链路的丢包情况或乱序情况及时调整QoS策略,提升业务体验。
结合第一方面,在第一方面的第一种可能的实现方式中,所述方法还包括:策略控制网元根据终端设备的用户信息使能N3接口的GTPU序号功能。
本申请实施例中,策略控制网元可以根据用户信息决策是否使能N3接口的GTPU序号功能,例如,当根据用户信息确定用户的业务为高可靠性、高时延,则可以使能 N3接口的GTPU序号功能,提高传输可靠性。还可以实现用户粒度的链路质量检测,支持单用户的链路质量分析。
结合第一方面或第一方面的第一种可能的实现方式,在第一方面的第二种可能的实现方式中,策略控制网元确定第一信息之前,方法还包括:策略控制网元从会话管理网元接收第一消息,第一消息用于指示策略控制网元修改终端设备的用户策略。
本申请实施例中,策略控制网元可以在下发用户策略时下发第一信息。例如,在更新PDU会话时,策略控制网元从会话管理网元接收第一消息,响应于第一消息,修改用户策略。在向会话管理网元回复修改后的用户策略时,携带第一信息,以便通过会话管理网元将第一信息下发给接入网设备和用户面网元。
结合第一方面或第一方面的第一或第二种可能的实现方式,所述方法还包括:从会话管理网元接收第二信息、第三信息、第四信息以及第五信息中的至少一个;根据第二信息、第三信息、第四信息以及第五信息中的至少一个进行服务质量QoS策略调整;
其中,第二信息用于指示接入网设备测量的空口丢包信息和/或空口乱序信息;第三信息用于指示接入网设备测量的N3接口丢包信息和/或N3接口乱序信息;第四信息用于指示终端设备测量的空口丢包信息和/或空口乱序信息;第五信息用于指示用户面网元测量的N3接口丢包信息和/或N3接口乱序信息。
本申请实施例中,策略控制网元可以根据会话管理网元上报的空口测量结果以及N3接口测量结果监测终端设备到用户面网元的链路质量,根据链路质量对QoS策略进行调整,以保证链路质量,提高传输可靠性。
第二方面,提供一种通信方法,所述包括:接入网设备从接入移动管理网元接收第一信息,第一信息指示终端设备的数据包通过N3接口转发时携带用户面通用分组无线业务隧道协议GTPU序列号SN;接入网设备根据第一信息处理终端设备的数据包。
本申请实施例提供一种通信方法,接入网设备接收第一信息,确定所述终端设备的数据包通过N3接口转发时携带GTPU SN。根据第一信息处理终端设备的数据包,例如,通过N3接口转发时终端设备的数据包时携带GTPU SN。具体地,GTPU SN可以用于检测N3接口上的丢包和乱序,同时还可以通过PDCP SN检测空口上的丢包和乱序,如此,可以对终端设备与核心网之间链路进行丢包检测或乱序检测,以便PCF可以针对链路的丢包情况或乱序情况及时调整QoS策略,提升业务体验。
结合第二方面,在第二方面的第一种可能的实现方式中,接入网设备根据第一信息处理终端设备的数据包,包括:接入网设备从终端设备接收第一数据包;第一数据包包括终端设备为第一数据包确定的第一分组数据汇聚协议PDCP SN;接入网设备根据第一数据包向用户面网元发送第二数据包;第二数据包包括接入网设备为第二数据包确定的第一GTPU SN。
本申请实施例中,接入网设备通过N3接口向用户面网元转发来自终端设备的数据包时,在N3接口的上行数据包中携带GTPU SN,以便根据N3接口的上行数据包中的GTPU SN检测N3接口的上行丢包情况和乱序情况。
结合第二方面的第一种可能的实现方式,在第一方面的第二种可能的实现方式中,方法还包括:接入网设备根据第一PDCP SN确定第二信息;第二信息用于指示接入网 设备测量的空口丢包信息和/或空口乱序信息;向用户面网元发送第二信息。
本申请实施例中,接入网设备还可以根据空口上行数据包中的PDCP SN检测空口的上行丢包情况和乱序情况,并向用户面网元上报空口的上行丢包情况和乱序情况,以便将空口的上行丢包情况和乱序情况上报给策略控制网元,以便根据空口的上行丢包情况和乱序情况监测空口传输链路的质量。
结合第二方面或第二方面的第一或第二种可能的实现方式,在第二方面的第三种可能的实现方式中,所述方法还包括:接入网设备从用户面网元接收第三数据包,第三数据包包括用户面网元为第三数据包确定的第二GTPU SN;根据第二GTPU SN确定第三信息;第三信息用于指示接入网设备测量的N3接口丢包信息和/或N3接口乱序信息;向用户面网元发送第三信息。
本申请实施例中,用户面通过N3接口向接入网设备发送与终端设备相关的数据包时,在N3接口的下行数据包中携带GTPU SN。接入网设备还可以根据N3接口下行数据包中的GTPU SN检测N3接口的下行丢包情况和乱序情况,并向用户面网元上报N3接口的下行丢包情况和乱序情况,以便将N3接口的下行丢包情况和乱序情况上报给策略控制网元,以便根据N3接口的下行丢包情况和乱序情况监测N3接口传输链路的质量。
结合第二方面的第三种可能的实现方式,在第二方面的第四种可能的实现方式中,所述方法还包括:根据第三数据包向终端设备发送第四数据包;第四数据包包括接入网设备为第四数据包确定的第二PDCP SN。
本申请实施例中,接入网设备通过空口向终端设备发送数据包时,在空口的下行数据包中携带PDCP SN。
结合第二方面的第四种可能的实现方式,在第二方面的第五种可能的实现方式中,所述方法还包括:从终端设备接收第四信息,第四信息用于指示终端设备根据第二PDCP SN测量的空口丢包信息和/或空口乱序信息;向用户面网元发送第四信息。
本申请实施例中,终端设备还可以根据空口下行数据包中的PDCP SN检测空口的下行丢包情况和乱序情况,并向用户面网元上报空口的下行丢包情况和乱序情况,以便将空口的下行丢包情况和乱序情况上报给策略控制网元,以便根据空口的下行丢包情况和乱序情况监测空口传输链路的质量。
结合第二方面的第二种可能的实现方式,在第二方面的第六种可能的实现方式中,接入网设备根据第一PDCP SN确定第二信息,包括:若第一PDCP SN小于第一数据包之前已成功接收的数据包的最大PDCP SN,则第一数据包为乱序接收的数据包;若第一PDCP SN大于第一数据包之前已成功接收的数据包的最大PDCP SN,且包括所述第一数据包在内已成功接收的数据包的PDCP SN不连续,则终端设备发送的数据包出现丢包。
本申请实施例还提供了根据PDCP SN确定空口丢包信息或空口乱序信息的具体方法。
结合第二方面的第三种可能的实现方式,在第二方面的第七种可能的实现方式中,接入网设备根据第二GTPU SN确定第三信息,包括:若第二GTPU SN小于第三数据包之前已成功接收的数据包的最大GTPU SN,且第三数据包的互联网协议标识IP ID 小于第三数据包之前包已成功接收的数据包的IP ID,则第三数据包为乱序接收的数据包;若第二GTPU SN大于第三数据包之前已成功接收的数据包的最大GTPU SN,且包括第三数据包在内已成功接收的数据包的GTPU SN不连续,则用户面网元发送的数据包出现丢包。
本申请实施例还提供了根据GTPU SN确定N3接口丢包信息或N3接口乱序信息的具体方法。
第三方面,提供了一种通信方法,包括:用户面网元从会话管理网元第一信息,第一信息指示终端设备的数据包通过N3接口转发时携带用户面通用分组无线业务隧道协议GTPU序列号SN;用户面网元根据第一信息处理终端设备的数据包。
本申请实施例提供一种通信方法,策略控制网元可以使能N3接口上的GTPU序号功能,并向所述会话管理网元发送第一信息,指示所述终端设备的数据包通过N3接口转发时携带GTPU SN。具体地,GTPU SN可以用于检测N3接口上的丢包和乱序,同时还可以通过PDCP SN检测空口上的丢包和乱序,如此,可以对终端设备与核心网之间链路进行丢包检测或乱序检测,以便PCF可以针对链路的丢包情况或乱序情况及时调整QoS策略,提升业务体验。
结合第三方面,在第三方面的第一种可能的实现方式,所述方法还包括:从接入网设备接收第二数据包,第二数据包包括第一GTPU SN。
结合第三方面的第一种可能的实现方式,在第三方面的第二种可能的实现方式,方法还包括:用户面网元从接入网设备接收第二信息;第二信息用于指示接入网设备测量的空口丢包信息和/或空口乱序信息;向会话管理网元发送第二信息。
结合第三方面或第三方面的第一或第二种可能的实现方式,在第三方面的第三种可能的实现方式中,用户面网元根据第一信息处理终端设备的数据包,包括:向接入网设备发送第三数据包,第三数据包包括用户面网元为第三数据包确定的第二GTPU SN。
结合第三方面的第三种可能的实现方式,在第三方面的第四种可能的实现方式中,所述方法还包括:从接入网设备接收第三信息,第三信息用于指示接入网设备测量的N3接口丢包信息和/或N3接口乱序信息;向会话管理网元发送第三信息。
结合第三方面或第三方面的第一至第四种可能的实现方式中的任意一种,在第三方面的第五种可能的实现方式中,方法还包括:从接入网接收第四信息,第四信息用于指示终端设备测量的空口丢包信息和/或空口乱序信息;向会话管理网元发送第四信息。
结合第三方面的第一种可能的实现方式,在第三方面的第六种可能的实现方式中,所述方法还包括:根据第一GTPU SN确定第五信息,第五信息用于指示用户面网元测量的N3接口丢包信息和/或N3接口乱序信息;向会话管理网元发送第五信息。
第四方面,提供了一种通信装置,包括:处理单元,用于确定第一信息,第一信息指示终端设备的数据包通过N3接口转发时携带用户面通用分组无线业务隧道协议GTPU序列号SN;通信单元,用于向会话管理网元发送第一信息。
结合第四方面,在第四方面的第一种可能的实现方式中,在处理单元还用于,根据终端设备的用户信息使能N3接口的GTPU序号功能。
结合第四方面或第四方面的第一种可能的实现方式,在第四方面的第二种可能的实现方式中,通信单元还用于,从会话管理网元接收第一消息,第一消息用于指示策略控制网元修改终端设备的用户策略。
结合第四方面或第四方面的第一或第二种可能的实现方式,在第四方面的第三种可能的实现方式中,通信单元还用于,从会话管理网元接收第二信息、第三信息、第四信息以及第五信息中的至少一个;处理单元还用于,根据第二信息、第三信息、第四信息以及第五信息中的至少一个进行服务质量QoS策略调整;其中,第二信息用于指示接入网设备测量的空口丢包信息和/或空口乱序信息;第三信息用于指示接入网设备测量的N3接口丢包信息和/或N3接口乱序信息;第四信息用于指示终端设备测量的空口丢包信息和/或空口乱序信息;第五信息用于指示用户面网元测量的N3接口丢包信息和/或N3接口乱序信息。
第五方面,提供了一种通信装置,包括:通信单元,用于从接入移动管理网元接收第一信息,第一信息指示终端设备的数据包通过N3接口转发时携带用户面通用分组无线业务隧道协议GTPU序列号SN;处理单元,用于根据第一信息处理终端设备的数据包。
结合第五方面,在第五方面的第一种可能的实现方式中,通信单元具体用于,从终端设备接收第一数据包;第一数据包包括终端设备为第一数据包确定的第一分组数据汇聚协议PDCP SN;处理单元用于,根据第一数据包向用户面网元发送第二数据包;第二数据包包括接入网设备为第二数据包确定的第一GTPU SN。
结合第五方面的第一种可能的实现方式,在第五方面的第二种可能的实现方式中,处理单元还用于,根据第一PDCP SN确定第二信息;第二信息用于指示接入网设备测量的空口丢包信息和/或空口乱序信息;通信单元还用于,向用户面网元发送第二信息。
结合第五方面或第五方面的第一或第二种可能的实现方式,在第五方面的第三种可能的实现方式中,信单元还用于,从用户面网元接收第三数据包,第三数据包包括用户面网元为第三数据包确定的第二GTPU SN;处理单元还用于,根据第二GTPU SN确定第三信息;第三信息用于指示接入网设备测量的N3接口丢包信息和/或N3接口乱序信息;通信单元还用于,向用户面网元发送第三信息。
结合第五方面的第三种可能的实现方式,在第五方面的第四种可能的实现方式中,处理单元还用于,根据第三数据包向终端设备发送第四数据包;第四数据包包括接入网设备为第四数据包确定的第二PDCP SN。
结合第五方面的第四种可能的实现方式,在第五方面的第五种可能的实现方式中,通信单元还用于,从终端设备接收第四信息,第四信息用于指示终端设备根据第二PDCP SN测量的空口丢包信息和/或空口乱序信息;向用户面网元发送第四信息。
结合第五方面的第二种可能的实现方式,在第五方面的第六种可能的实现方式中,处理单元具体用于,若第一PDCP SN小于第一数据包之前已成功接收的数据包的最大PDCP SN,则第一数据包为乱序接收的数据包;若第一PDCP SN大于第一数据包之前已成功接收的数据包的最大PDCP SN,且包括所述第一数据包在内已成功接收的数据包的PDCP SN不连续,则终端设备发送的数据包出现丢包。
结合第五方面的第三种可能的实现方式,在第五方面的第七种可能的实现方式中, 处理单元具体用于,若第二GTPU SN小于第三数据包之前已成功接收的数据包的最大GTPU SN,且第三数据包的互联网协议标识IP ID小于第三数据包之前包已成功接收的数据包的IP ID,则第三数据包为乱序接收的数据包;若第二GTPU SN大于第三数据包之前已成功接收的数据包的最大GTPU SN,且包括第三数据包在内已成功接收的数据包的GTPU SN不连续,则用户面网元发送的数据包出现丢包。
第六方面,提供了一种通信装置,包括:通信单元,用于从会话管理网元第一信息,第一信息指示终端设备的数据包通过N3接口转发时携带用户面通用分组无线业务隧道协议GTPU序列号SN;处理单元,用于根据第一信息处理终端设备的数据包。
结合第六方面,在第六方面的第一种可能的实现方式中,通信单元还用于,从接入网设备接收第二数据包,第二数据包包括第一GTPU SN。
结合第六方面的第一种可能的实现方式,在第六方面的第二种可能的实现方式中,通信单元还用于,从接入网设备接收第二信息;第二信息用于指示接入网设备测量的空口丢包信息和/或空口乱序信息;向会话管理网元发送第二信息。
结合第六方面或第六方面的第一或第二种可能的实现方式,在第六方面的第三种可能的实现方式中,通信单元还用于,向接入网设备发送第三数据包,第三数据包包括用户面网元为第三数据包确定的第二GTPU SN。
结合第六方面的第三种可能的实现方式,在第六方面的第四种可能的实现方式中,通信单元还用于,从接入网设备接收第三信息,第三信息用于指示接入网设备测量的N3接口丢包信息和/或N3接口乱序信息;向会话管理网元发送第三信息。
结合第六方面或第六方面的第一至第四种可能的实现方式中的任意一种,在第六方面的第五种可能的实现方式中,通信单元还用于,从接入网接收第四信息,第四信息用于指示终端设备测量的空口丢包信息和/或空口乱序信息;向会话管理网元发送第四信息。
结合第六方面的第二种可能的实现方式,在第六方面的第六种可能的实现方式中,通信单元还用于,处理单元还用于,根据第一GTPU SN确定第五信息,第五信息用于指示用户面网元测量的N3接口丢包信息和/或N3接口乱序信息;通信单元还用于,向会话管理网元发送第五信息。
第七方面,提供了一种通信装置,包括至少一个处理器和存储器,所述至少一个处理器与所述存储器耦合;所述存储器,用于存储计算机程序;
所述至少一个处理器,用于执行所述存储器中存储的计算机程序,以使得所述装置执行如上述第一方面以及第一方面任意一种实现方式所述的方法,或,上述第二方面以及第二方面任意一种实现方式所述的方法,或,上述第三方面以及第三方面任意一种实现方式所述的方法。
第八方面,提供了一种计算机可读存储介质,包括:计算机可读存储介质中存储有指令;当计算机可读存储介质在上述第四方面以及第四方面任意一种实现方式所述的通信装置上运行时,使得通信装置执行如上述第一方面以及第一方面任意一种实现方式所述的通信方法。
第九方面,提供了一种计算机可读存储介质,包括:计算机可读存储介质中存储有指令;当计算机可读存储介质在上述第五方面以及第五方面任意一种实现方式所述 的通信装置上运行时,使得通信装置执行如上述第二方面以及第二方面任意一种实现方式所述的通信方法。
第十方面,提供了一种计算机可读存储介质,包括:计算机可读存储介质中存储有指令;当计算机可读存储介质在上述第六方面以及第六方面任意一种实现方式所述的通信装置上运行时,使得通信装置执行如上述第三方面以及第三方面任意一种实现方式所述的通信方法。
第十一方面,提供了一种无线通信装置,该通信装置包括处理器,例如,应用于通信装置中,用于实现上述第一方面以及第一方面任意一种实现方式所述的方法,该通信装置例如可以是芯片系统。在一种可行的实现方式中,所述芯片系统还包括存储器,所述存储器,用于保存实现上述第一方面所述方法的功能必要的程序指令和数据。
第十二方面,提供了一种无线通信装置,该通信装置包括处理器,例如,应用于通信装置中,用于实现上述第二方面以及第二方面任意一种实现方式所涉及的功能或方法,该通信装置例如可以是芯片系统。在一种可行的实现方式中,所述芯片系统还包括存储器,所述存储器,用于保存实现上述第二方面所述方法的功能必要的程序指令和数据。
第十三方面,提供了一种无线通信装置,该通信装置包括处理器,例如,应用于通信装置中,用于实现上述第三方面以及第三方面任意一种实现方式所涉及的功能或方法,该通信装置例如可以是芯片系统。在一种可行的实现方式中,所述芯片系统还包括存储器,所述存储器,用于保存实现上述第三方面所述方法的功能必要的程序指令和数据。
上述方面中的芯片系统可以是片上系统(system on chip,SOC),也可以是基带芯片等,其中基带芯片可以包括处理器、信道编码器、数字信号处理器、调制解调器和接口模块等。
第十四方面,提供了一种通信系统,所述通信系统包括上述第四方面、第四方面任意一种可能的实现方式、上述第五方面和第五方面任意一种可能的实现方式所述的通信装置以及上述第六方面和第六方面任意一种可能的实现方式所述的通信装置。
附图说明
图1为本申请实施例提供的通信系统的架构图;
图2为本申请实施例提供的通信系统的另一架构图;
图3为本申请实施例提供的协议层示意图;
图4a为本申请实施例提供的通信装置的结构框图;
图4b为本申请实施例提供的通信装置的另一结构框图;
图5为本申请实施例提供的通信方法的流程示意图;
图6为本申请实施例提供的数据面处理流程示意图;
图7为本申请实施例提供的通信方法的另一流程示意图;
图8为本申请实施例提供的通信方法的另一流程示意图;
图9~图10为本申请实施例提供的通信装置的另一结构框图。
具体实施方式
图1给出了本申请提供的技术方案所适用的一种通信系统的示意图,该通信系统 可以包括至少一个接入网设备(图1仅示出了接入网设备100)以及至少一个终端设备(图中仅示出了终端设备200)。终端设备可以通过接入网设备与核心网进行通信。图1仅为示意图,并不构成对本申请提供的技术方案的适用场景的限定。
接入网设备100可以是任意一种具有无线收发功能的设备。包括但不限于:LTE中的演进型基站(E-UTRAN NodeB或e-NodeB或eNB),5G或新无线(new radio,NR)接入技术中的基站(gNodeB或gNB)或收发点(transmission/reception point,TRP),3GPP后续演进的基站,WiFi系统中的接入节点,无线中继节点,无线回传节点等。基站可以是:宏基站,微基站,微微基站,小站,中继站,或,气球站等。多个基站可以支持上述提及的同一种技术的网络,也可以支持上述提及的不同技术的网络。基站可以包含一个或多个共站或非共站的TRP。接入网设备还可以是云无线接入网络(cloud radio access network,CRAN)场景下的无线控制器、集中式单元(centralized unit,CU),和/或分布式单元(distributed unit,DU)。接入网设备还可以是服务器,可穿戴设备,或车载设备等。以下以接入网设备为基站为例进行说明。所述多个接入网设备可以为同一类型的基站,也可以为不同类型的基站。基站可以与终端设备进行通信,也可以通过中继站与终端设备进行通信。终端设备可以与不同技术的多个基站进行通信,例如,终端设备可以与支持LTE网络的基站通信,也可以与支持5G网络的基站通信,还可以支持与LTE网络的基站以及5G网络的基站的双连接。
终端设备(例如终端设备200)是一种具有无线收发功能的设备,可以部署在陆地上,包括室内或室外、手持、穿戴或车载;也可以部署在水面上(如轮船等);还可以部署在空中(例如飞机、气球和卫星上等)。所述终端设备可以是手机(mobile phone)、平板电脑(Pad)、带无线收发功能的电脑、虚拟现实(virtual reality,VR)终端设备、增强现实(augmented reality,AR)终端设备、工业控制(industrial control)中的无线终端、车载终端设备、无人驾驶(self-driving)中的无线终端、远程医疗(remote medical)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端、可穿戴终端设备等等。本申请的实施例对应用场景不做限定。终端有时也可以称为终端设备、用户设备(user equipment,UE)、接入终端设备、车载终端、工业控制终端、UE单元、UE站、移动站、移动台、远方站、远程终端设备、移动设备、UE终端设备、终端设备、无线通信设备、UE代理或UE装置等。终端也可以是固定的或者移动的。本申请的终端设备还可以是作为一个或多个部件或者单元而内置于车辆的车载模块、车载模组、车载部件、车载芯片或者车载单元,车辆通过内置的所述车载模块、车载模组、车载部件、车载芯片或者车载单元可以实施本申请的方法。
接入网设备100与终端设备200之间通过空口进行通信,接入网设备与核心网之间通过N2接口或N3接口进行通信。
为提高业务体验,可以将业务处理部署在靠近终端设备的网络边缘。示例的,参考图2,可以将网络分为控制面和用户面。其中,用户面的网元包括(无线)接入网((radio)access network,(R)AN)设备、用户面网元。控制面的网元包括:鉴权服务器功能(authentication server function,AUSF)网元、接入和移动管理功能(mobility  management function,AMF)网元、统一数据管理(unified data management,UDM)网元、应用功能(application function,AF)网元、会话管理功能(session management function,SMF)网元、策略控制功能(policy control function,PCF)网元。图2所示的通信系统还可以包括数据网络(data network,DN)。
需要说明的是,接入网设备,主要用于实现物理层功能、资源调度和管理、终端设备的接入控制以及移动性管理等功能。
移动性管理网元,主要负责终端的接入认证、移动性管理、各个网元之间的信令交互等工作,如:对用户的注册状态、用户的连接状态、用户注册入网、跟踪区更新、小区切换用户认证和密钥安全等进行管理。
会话管理网元,主要用于实现用户面传输逻辑通道,如:分组数据单元(packet data unit,PDU)会话的建立、释放和更改等会话管理功能。
用户面网元,可以作为用户面传输逻辑通道上的锚点,用于完成用户面数据的路由转发等功能,如:与终端之间建立通道(即用户面传输逻辑通道),在该通道上转发终端和DN之间的数据包以及负责对终端的数据报文过滤、数据转发、速率控制、生成计费信息。用户面网元可以是UPF(user plane function)网元。
网络开放网元,可以用于开放核心网的事件和能力、核心网外部参数和内部参数的互译、接收核心网外部网元提供的信息并存储、选择核心网网元等功能。其中,核心网外部网元可以包括应用服务器等。
策略控制网元,可以用于向移动性管理网元、会话管理网元提供策略,如:服务质量(quanlity of service)策略,切片选择策略等等。
网络存储网元,可以用于存储用户数据,如:用户的签约信息、鉴权或授权数据等。具体的,网络存储网元可以为统一数据管理(unified data management,UDM)或者网络存储功能(network repository function,NRF)或者统一数据仓库(unified data repository,UDR)等。
DN,可以为用户提供数据传输服务的运营商网络,如:可以为向用户提供IP多媒体业务(IP multi-media service,IMS)的运营商网络等。DN中可以部署有应用服务器,该应用服务器可以向用户提供数据传输服务。
具体实现中,终端设备可以和控制面的网元进行交互,请求控制面的网元分配进行会话的网络资源以及UPF。之后,终端设备可以通过接入网设备与UPF进行通信。其中,终端设备与接入网设备之间通过空口进行通信,接入网设备与UPF之间通过N3接口进行通信。
此外,参考图2,接入网设备通过N1接口与AMF进行通信,接入网设备通过N2接口与AMF进行通信,UPF通过N4接口与SMF进行通信,UPF与DN之间通过N6接口进行通信。
目前,还没有完整的方案可以对终端设备与核心网之间的链路进行丢包检测或乱序检测,PCF也就无法针对链路的丢包情况或乱序情况及时调整QoS策略,极大地影响业务体验。本申请实施例提供一种通信方法,策略控制网元可以会话管理网元接收第一消息,所述第一消息用于指示所述策略控制网元修改终端设备的用户策略。之后,策略控制网元可以根据终端设备的用户信息使能N3接口上的用户面通用分组无线业 务隧道协议(GPRS(general packet radio service)tunnelling protocol user,GTPU)序号功能,并向所述会话管理网元发送第一信息,所述第一信息指示所述终端设备的数据包通过N3接口转发时携带GTPU序列号(sequence number,SN)。GTPU SN可以用于检测N3接口上的丢包和乱序,同时还可以通过分组数据汇聚协议(packet data convergence protocol,PDCP)SN检测空口上的丢包和乱序,如此,可以对终端设备与核心网之间链路进行丢包检测或乱序检测,以便PCF可以针对链路的丢包情况或乱序情况及时调整QoS策略,提升业务体验。
首先对本申请实施例涉及的术语进行说明:
(1)PDCP SN
参考图3,PDCP层属于无线接口协议栈的第二层,主要对来自控制面的无线资源控制(redio resource control,RRC)消息和来自数据面的互联网协议(internet protocol,IP)包进行处理,包括:对数据进行头部压缩和解压缩、加密/解密、完整性保护、传输用户数据和控制面数据、重排序和重传处理等。
对于PDCP层,接收到的数据包、发送的数据包均认为是PDCP数据包。其中,PDCP层接收的数据包可以称为PDCP服务数据单元(service data unit,SDU),PDCP层发送的数据包可以称为PDCP协议数据单元(protocol data unit,PDU)。
PDCP SN是PDCP数据包的编号,不同的PDCP SN用于标识不同的PDCP数据包。在网络状况良好的情况下,PDCP层收到的PDCP数据的PDCP SN可能是连续的;在网络状况不佳的情况下,可能会出现丢包,PDCP层收到的PDCP数据包的PDCP SN是不连续的。如果网络延迟较大,PDCP层收到的PDCP数据包的PDCP SN有可能是乱序的。
(2)GTPU SN
GTPU是用户面采用的点对点隧道协议,通过隧道承载GPRS业务。RAN和UPF之间可以建立隧道传输GTPU数据包。接入网设备、用户面网元可以对数据进行压缩和解压缩、加密、解密等。接入网设备、用户面网元接收或发送的数据都可以认为是GTPU数据包。
GTPU SN是GTPU数据包的编号,不同的GTPU SN用于标识不同的GTPU数据包。对于接入网设备、用户面网元,接收到的、发送的GTPU数据包的编号是独立的。在网络状况良好的情况下,接收到的GTPU数据包的GTPU SN可能是连续的;在网络状况不佳的情况下,可能会出现丢包,收到的GTPU数据包的GTPU SN是不连续的。如果网络延迟较大,收到的PDCP数据包的GTPU SN有可能是乱序的。
(3)GTPU序号功能
GTPU序号功能表示数据包通过N3接口转发数据包时需要携带GTPU SN;或者,通过GTPU隧道传输数据包时需要携带GTPU SN;或者,RAN通过N3接口向UPF发送数据包时需要携带GTPU SN;或者,UPF通过N3接口向RAN发送数据包时需要携带GTPU SN。
本申请实施例中,还可以针对单个用户使能(enable)GTPU序号功能,当使能该用户的GTPU序号功能,通过N3接口转发该用户的数据包时需要携带GTPU SN;或者,通过GTPU隧道传输该用户的数据包时需要携带GTPU SN;或者,RAN通过N3 接口向UPF发送该用户的数据包时需要携带GTPU SN;或者,UPF通过N3接口向RAN发送该用户的数据包时需要携带GTPU SN。
反之,可以针对单个用户关闭(disable)GTPU序号功能,当关闭该用户的GTPU序号功能,通过N3接口转发该用户的数据包时不需要携带GTPU SN;或者,通过GTPU隧道传输该用户的数据包时不需要携带GTPU SN;或者,RAN通过N3接口向UPF发送该用户的数据包时不需要携带GTPU SN;或者,UPF通过N3接口向RAN发送该用户的数据包时不需要携带GTPU SN。
(4)QoS策略
QoS策略可以用来调整网络QoS,为网络通信提供更好的服务,例如,可以通过调整QoS策略解决网络延迟和阻塞等问题,保证网络的高效运行。
本申请实施例所述的终端设备,可以通过图4a中的通信装置410来实现。图4a所示为本申请实施例提供的通信装置410的硬件结构示意图。该通信装置410包括处理器4101以及至少一个通信接口(图4a中仅是示例性的以包括通信接口4103为例进行说明),可选的,还包括存储器4102。其中,处理器4101、存储器4102以及通信接口4103之间互相连接。
处理器4101可以是一个通用中央处理器(central processing unit,CPU),微处理器,特定应用集成电路(application-specific integrated circuit,ASIC),或一个或多个用于控制本申请方案程序执行的集成电路。
通信接口4103,使用任何收发器一类的装置,用于与其他设备或通信网络进行通信,如以太网,无线接入网(radio access network,RAN),无线局域网(wireless local area networks,WLAN)等。
存储器4102可以是只读存储器(read-only memory,ROM)或可存储静态信息和指令的其他类型的静态存储设备,随机存取存储器(random access memory,RAM)或者可存储信息和指令的其他类型的动态存储设备,也可以是电可擦可编程只读存储器(electrically erasable programmable read-only memory,EEPROM)、只读光盘(compact disc read-only memory,CD-ROM)或其他光盘存储、光碟存储(包括压缩光碟、激光碟、光碟、数字通用光碟、蓝光光碟等)、磁盘存储介质或者其他磁存储设备、或者能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质,但不限于此。存储器可以是独立存在,也可以与处理器相连接。存储器也可以和处理器集成在一起。
其中,存储器4102用于存储执行本申请方案的计算机执行指令,并由处理器4101来控制执行。处理器4101用于执行存储器4102中存储的计算机执行指令,从而实现本申请下述实施例提供的意图处理方法。
可选的,本申请实施例中的计算机执行指令也可以称之为应用程序代码,本申请实施例对此不作具体限定。
在具体实现中,作为一种实施例,处理器4101可以包括一个或多个CPU,例如图4a中的CPU0和CPU1。
在具体实现中,作为一种实施例,通信装置410可以包括多个处理器,例如图4a中的处理器4101和处理器4106。这些处理器中的每一个可以是一个单核(single-CPU) 处理器,也可以是一个多核(multi-CPU)处理器。这里的处理器可以指一个或多个设备、电路、和/或用于处理数据(例如计算机程序指令)的处理核。
在具体实现中,作为一种实施例,通信装置410还可以包括输出设备4104和输入设备4105。输出设备4104和处理器4101通信,可以以多种方式来显示信息。例如,输出设备4104可以是液晶显示器(liquid crystal display,LCD),发光二级管(light emitting diode,LED)显示设备,阴极射线管(cathode ray tube,CRT)显示设备,或投影仪(projector)等。输入设备4105和处理器4101通信,可以以多种方式接收用户的输入。例如,输入设备4105可以是鼠标、键盘、触摸屏设备或传感设备等。
上述的通信装置410可以是一个通用设备或者是一个专用设备。在具体实现中,通信装置410可以是台式机、便携式电脑、网络服务器、掌上电脑(personal digital assistant,PDA)、移动手机、平板电脑、无线终端装置、嵌入式设备或有图4a中类似结构的设备。本申请实施例不限定通信装置410的类型。
需要说明的是,通信装置410可以是终端整机,也可以是实现终端上的功能部件或组件,也可以是通信芯片,例如基带芯片等。通信装置410是终端整机时,通信接口可以是射频模块。当通信装置410为通信芯片,通信接口4103可以是该芯片的输入输出接口电路,输入输出接口电路用于读入和输出基带信号。
图4b是一种通信装置的结构示意图。通信装置420可以是本申请实施例所述接入网设备。
通信装置包括至少一个处理器4201、至少一个收发器4203、至少一个网络接口4204和一个或多个天线4205。可选的,还包括至少一个存储器4202。处理器4201、存储器4202、收发器4203和网络接口4204相连,例如通过总线相连。天线4205与收发器4203相连。网络接口4204用于通信装置通过通信链路与其它通信设备相连,例如通信装置通过S1接口与核心网网元相连。在本申请实施例中,所述连接可包括各类接口、传输线或总线等,本实施例对此不做限定。
本申请实施例中的处理器,例如处理器4201,可以包括如下至少一种类型:通用中央处理器(Central Processing Unit,CPU)、数字信号处理器(Digital Signal Processor,DSP)、微处理器、特定应用集成电路专用集成电路(Application-Specific Integrated Circuit,ASIC)、微控制器(Microcontroller Unit,MCU)、现场可编程门阵列(Field Programmable Gate Array,FPGA)、或者用于实现逻辑运算的集成电路。例如,处理器4201可以是一个单核(single-CPU)处理器或多核(multi-CPU)处理器。至少一个处理器4201可以是集成在一个芯片中或位于多个不同的芯片上。
本申请实施例中的存储器,例如存储器4202,可以包括如下至少一种类型:只读存储器(read-only memory,ROM)或可存储静态信息和指令的其他类型的静态存储设备,随机存取存储器(random access memory,RAM)或者可存储信息和指令的其他类型的动态存储设备,也可以是电可擦可编程只读存储器(Electrically erasable programmabler-only memory,EEPROM)。在某些场景下,存储器还可以是只读光盘(compact disc read-only memory,CD-ROM)或其他光盘存储、光碟存储(包括压缩光碟、激光碟、光碟、数字通用光碟、蓝光光碟等)、磁盘存储介质或者其他磁存储设备、或者能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由 计算机存取的任何其他介质,但不限于此。
存储器4202可以是独立存在,与处理器4201相连。可选的,存储器4202也可以和处理器4201集成在一起,例如集成在一个芯片之内。其中,存储器4202能够存储执行本申请实施例的技术方案的程序代码,并由处理器4201来控制执行,被执行的各类计算机程序代码也可被视为是处理器4201的驱动程序。例如,处理器4201用于执行存储器4202中存储的计算机程序代码,从而实现本申请实施例中的技术方案。
收发器4203可以用于支持通信装置与终端设备之间射频信号的接收或者发送,收发器4203可以与天线4205相连。具体地,一个或多个天线4205可以接收射频信号,该收发器4203可以用于从天线接收所述射频信号,并将射频信号转换为数字基带信号或数字中频信号,并将该数字基带信号或数字中频信号提供给所述处理器4201,以便处理器4201对该数字基带信号或数字中频信号做进一步的处理,例如解调处理和译码处理。此外,收发器4203可以用于从处理器4201接收经过调制的数字基带信号或数字中频信号,并将该经过调制的数字基带信号或数字中频信号转换为射频信号,并通过一个或多个天线4205发送所述射频信号。具体地,收发器4203可以选择性地对射频信号进行一级或多级下混频处理和模数转换处理以得到数字基带信号或数字中频信号,所述下混频处理和模数转换处理的先后顺序是可调整的。收发器4203可以选择性地对经过调制的数字基带信号或数字中频信号时进行一级或多级上混频处理和数模转换处理以得到射频信号,所述上混频处理和数模转换处理的先后顺序是可调整的。数字基带信号和数字中频信号可以统称为数字信号。收发器可以称为收发电路、收发单元、收发器件、发送电路、发送单元或者发送器件等等。
需要说明的是,通信装置420可以是通信装置整机,也可以是实现通信装置功能的部件或组件,也可以是通信芯片。当通信装置420为通信芯片,收发器4203可以是该芯片的接口电路,该接口电路用于读入和输出基带信号。
本申请实施例提供一种通信方法,如图5所示,所述方法包括以下步骤:
501、策略控制网元从会话管理网元接收第一消息,所述第一消息用于指示所述策略控制网元修改终端设备的用户策略。
具体实现中,当终端设备发起更新流程时,终端设备的用户策略也需要进行相应地修改,即当终端设备发起更新流程时,网元之间响应于更新流程进行信令传递。例如,会话管理网元可以向策略控制网元发送第一消息,指示策略控制网元修改终端设备的用户策略。
一种可能的实现方式中,终端设备发起的更新流程用于更新或激活协议数据单元(Protocol Data Unit,PDU)会话。具体地,终端设备会发起PDU会话更新流程,可以在更新流程中修改终端设备的用户策略。示例的,通过接入网设备、接入移动管理网元、会话管理网元之间的信令交互,触发会话管理网元向策略控制网元发送第一消息,指示策略控制网元修改终端设备的用户策略。
一种可能的实现方式中,所述第一消息可以是initiated SM policy association modification。
502、所述策略控制网元向所述会话管理网元发送第一信息,所述第一信息指示所述终端设备的数据包通过N3接口转发时携带GTPU SN。
具体地,策略控制网元接收第一消息后,还可以根据所述终端设备的用户信息判断是否使能N3接口的GTPU序号功能,即该终端设备的数据包通过N3接口转发时是否需要携带GTPU SN。若使能N3接口的GTPU序号功能,则可以向会话管理网元发送第一信息,以便会话管理网元将第一信息下发至接入网设备或用户面网元,指示终端设备的数据包通过N3接口转发时需要携带GTPU SN。
其中,用户信息用于描述用户权限、用户特性、用户特征、用户的业务特征等。示例的,用户信息指示用户的业务为高可靠业务,则可以使能N3接口的GTPU序号功能,通过N3接口转发时是否需要携带GTPU SN,例如,接入网设备通过N3接口向用户面网元发送数据包时携带GTPU SN,用户面网元通过N3接口向接入网设备发送数据包时携带GTPU SN。
一种可能的实现方式中,第一信息可以是GTPU序列标识(GTPU Sequence Flag)。可以在PDU会话相关的策略信息(PDU Session related policy information)中增加第一信息。策略控制向会话管理网元下发相关的策略信息时,携带第一信息。
503、会话管理网元向接入移动管理网元、用户面网元发送第一信息。
具体实现中,会话管理网元通过N11接口向接入移动管理网元发送第一信息,接入移动管理网元可以通过N2接口向接入网设备发送第一信息。
会话管理网元还可以通过N4接口向用户面网元发送第一信息。
需要说明的是,策略控制网元可以在终端设备发起的更新流程中,在下发修改后的用户策略时携带第一信息,即执行步骤501~步骤503,完成第一信息的下发。步骤501可以为可选步骤,策略控制网元也可以根据本地策略确定使能N3接口的GTPU序号功能,不执行步骤501,直接执行步骤502、步骤503。或者,策略控制网元可以主动使能N3接口的GTPU序号功能,不执行步骤501,直接执行步骤502、步骤503。
可选的,图5所示的方法还包括:接入移动管理网元从会话管理网元接收第一信息,并向接入网设备发送第一信息。接入网设备可以根据所述第一信息处理所述终端设备的数据包。
具体实现中,接入网设备根据所述第一信息处理所述终端设备的数据包,具体包括:接入网设备通过N3接口向用户面网元转发来自终端设备的数据包时,在数据包增加GTPU SN。或者,接入网设备根据来自终端设备的数据包向用户面网元发送数据包时,在数据包中增加GTPU SN。
可选的,图5所示的方法还包括:用户面网元从会话管理网元接收第一信息,用户面网元可以根据所述第一信息处理所述终端设备的数据包。
具体实现中,用户面网元根据所述第一信息处理所述终端设备的数据包,包括:通过N3接口向接入网设备发送数据包,该数据包携带GTPU SN。
图5示出了控制面下发第一信息的流程,以下结合图6介绍用户面如何根据第一信息处理终端设备的数据包。用户面的数据交互涉及终端设备、接入网设备以及用户面网元。
具体地,参考图6,终端设备通过空口向接入网设备发送第一数据包,所述第一数据包包括终端设备为所述第一数据包确定的PDCP SN,即第一PDCP SN。
接入网设备通过空口接收所述第一数据包,根据所述第一数据包获得第二数据包, 所述第二数据包包括接入网设备为所述第二数据包确定的GTPU SN,即第一GTPU SN。接入网设备还可以通过N3接口向用户面网元发送第二数据包。
用户面网元通过N3接口向接入网设备发送第三数据包,所述第三数据包包括用户面网元为所述第三数据包确定的GTPU SN,即第二GTPU SN。
接入网设备通过N3接口接收所述第三数据包,根据所述第三数据包获得第四数据包,所述第四数据包包括所述接入网设备为所述第四数据包确定的PDCP SN,即第二PDCP SN。接入网设备还可以通过空口向终端设备发送所述第四数据包。
可选的,图5所示的方法还包括:终端设备、接入网设备以及用户面网元还可以根据数据包中的SN测量网络丢包情况或乱序情况,并将测量结果上报给用户面网元,由用户面网元汇总后统一上报给策略控制网元。测量结果包括以下几种可能:
第一、接入网设备测量的空口丢包信息、空口乱序信息。
具体地,接入网设备通过空口接收的数据包包括PDCP SN,接入网设备可以根据数据包中的PDCP SN测量空口丢包信息或乱序信息,并向用户面网元上报测量结果。
示例的,接入网设备从终端设备接收第一数据包,解析所述第一数据包获得第一PDCP SN。接入网设备还可以根据所述第一PDCP SN确定第二信息,并向所述用户面网元发送所述第二信息。
其中,所述第二信息用于指示所述接入网设备测量的空口丢包信息和/或空口乱序信息。空口丢包信息可以是空口丢包率或丢包的PDCP SN;空口乱序信息可以是空口乱序率或空口乱序的PDCP SN。
具体实现中,终端设备在第一数据包的PDCP头添加第一PDCP SN,接入网设备可以在所述第一数据包的PDCP头获取第一PDCP SN。
第二、接入网设备测量的N3接口丢包信息、N3接口乱序信息。
具体地,接入网设备通过N3接口接收的数据包包括GTPU SN,接入网设备可以根据数据包中的GTPU SN测量N3接口的丢包信息或乱序信息,并向用户面网元上报测量结果。
示例的,接入网设备从用户面网元接收第三数据包,解析所述第三数据包获得第二GTPU SN。接入网设备还可以根据所述第二GTPU SN确定第三信息,并向所述用户面网元发送所述第三信息。
其中,所述第三信息用于指示所述接入网设备测量的N3接口丢包信息和/或N3接口乱序信息。N3接口丢包信息可以是N3接口的丢包率或丢包的GTPU SN,N3接口乱序信息可以是N3接口的乱序率或乱序的GTPU SN。
具体实现中,用户面网元在第三数据包的GTPU头添加第二GTPU SN,接入网设备可以在所述第三数据包的GTPU头获取第二GTPU SN。
第三、终端设备测量的空口丢包信息、空口乱序信息。
具体地,终端设备通过空口接收的数据包包括PDCP SN,终端设备可以根据数据包中的PDCP SN测量空口丢包信息或乱序信息,并通过接入网设备向用户面网元上报测量结果。
示例的,终端设备从接入网设备接收第四数据包,解析所述第四数据包获得第二PDCP SN。终端设备还可以根据第二PDCP SN确定第四信息,并向接入网设备发送第 四信息,以便接入网设备向用户面网元上报所述第四信息。
其中,所述第四信息用于指示所述终端设备根据所述第二PDCP SN测量的空口丢包信息和/或空口乱序信息。
具体实现中,接入网设备在第四数据包的PDCP头添加第二PDCP SN,终端设备可以在所述第四数据包的PDCP头获取第二PDCP SN。
第四、用户面网元测量的N3接口丢包信息、N3接口乱序信息。
具体地,用户面网元通过N3接口接收的数据包包括GTPU SN,用户面网元可以根据数据包中的GTPU SN测量N3接口的丢包信息或乱序信息。
示例的,用户面网元接收接入网设备发送的第二数据包,解析所述第二数据包获得第一GTPU SN,根据所述第一GTPU SN确定第五信息。其中,所述第五信息用于指示所述用户面网元测量的N3接口丢包信息和/或N3接口乱序信息。
具体实现中,接入网设备在第二数据包的GTPU头添加第一GTPU SN,用户面网元可以在所述第二数据包的GTPU头获取第一GTPU SN。
一种可能的实现方式中,用户面网元会将接入网设备上报的测量结果以及自己的测量结果上报会话管理网元,以便会话管理网元将用户面网元上报的测量结果发送给策略控制网元。例如,用户面网元接收上述第二信息、第三信息、第四信息以及第五信息,向策略控制网元发送第二信息、第三信息、第四信息以及第五信息中的至少一个。
需要说明的是,用户面网元可以将第二信息、第三信息、第四信息以及第五信息构造在同一个报文中上报给策略控制网元,也可以分别上报给策略控制网元,本申请实施例对此不作限定。
一种可能的实现方式中,终端设备、接入网设备可以根据当前接收的数据包的PDCP SN、已成功接收的数据包的最大PDCP SN来判断是否出现丢包或乱序。
以接入网设备为例,所述接入网设备接收第一数据包后,若第一数据包中的第一PDCP SN小于或等于所述第一数据包之前已成功接收的数据包的最大PDCP SN,则所述第一数据包为乱序接收的数据包。若第一PDCP SN大于所述第一数据包之前已成功接收的数据包的最大PDCP SN,且包括所述第一数据包在内已成功接收的数据包的PDCP SN不连续,则所述终端设备发送的数据包出现丢包。
示例的,第一数据包的PDCP SN为8,在第一数据包之前接入网设备成功接收了PDCP SN为1、2、3、4、5、6的数据包,由于8大于6,且接入网设备接收已成功接收的数据包的PDCP SN不连续,缺少PDCP SN 7,可以确定终端设备发送的数据包出现丢包。
同理,终端设备接收第四数据包后,若第四数据包中的第二PDCP SN小于或等于所述第四数据包之前已成功接收的数据包的最大PDCP SN,则所述第四数据包为乱序接收的数据包。若第二PDCP SN大于所述第四数据包之前已成功接收的数据包的最大PDCP SN,则所述接入网设备空口发送的数据包出现丢包。
一种可能的实现方式中,用户面网元、接入网设备可以根据当前接收的数据包的GTPU SN、已成功接收的数据包的最大GTPU SN、IP ID,来判断是否出现丢包或乱序。
以用户面网元为例,用户面网元接收第二数据包后,若第二数据包中的第一GTPU SN小于或等于所述第三数据包之前已成功接收的数据包的最大GTPU SN,且第二数据包的IP ID小于或等于所述第二数据包之前包已成功接收的数据包的IP ID,则所述第二数据包为N3接口乱序接收的数据包;
若第一GTPU SN大于所述第二数据包之前已成功接收的数据包的最大GTPU SN,且包括所述第二数据包在内成功接收的数据包的GTPU SN不连续,则所述接入网设备通过N3接口发送的数据包出现丢包。
示例的,第二数据包的GTPU SN为7,在第二数据包之前用户面网元成功接收了GTPU SN为1、2、3、4、5的数据包,由于7大于5,且接入网设备接收已成功接收的数据包的GTPU SN不连续,缺少GTPU SN 6,可以确定接入网设备通过N3接口发送的数据包出现丢包。
同理,接入网设备从用户面网元接收第三数据包,若第三数据包中的第二GTPU SN小于所述第三数据包之前已成功接收的数据包的最大GTPU SN,且第三数据包的IP ID小于所述第三数据包之前包已成功接收的数据包的IP ID,则所述第三数据包为乱序接收的数据包;
若第二GTPU SN大于所述第三数据包之前已成功接收的数据包的最大GTPU SN,且包括所述第三数据包在内成功接收的数据包的IP ID不连续,则所述用户面网元通过N3接口发送的数据包出现丢包。
需要说明的是,图5所示实施例中,策略控制网元可以是PCF,接入网设备可以是RAN或基站,用户面网元可以是UPF,接入移动管理网元可以是AMF,会话管理网元可以是SMF。
以下以PDU会话更新流程为例,结合具体信令(消息)介绍如何在PDU会话更新流程中下发第一信息,以便通过N3接口传输终端设备的数据包时携带GTPU SN,从而可以基于GTPU SN判断网络丢包或网络乱序,提高传输可靠性。如图7所示,所述方法包括以下步骤:
701、UE发起PDU会话更新流程。
具体实现中,UE向RAN发送PDU会话修改请求(PDU session modification request),RAN将PDU会话修改请求转发给AMF。RAN还可以向AMF发送所述PDU会话修改请求。
702、AMF向SMF发送更新上下文消息。
具体实现中,AMF响应于PDU会话修改请求,调用Nsmf_PDU Session_Update SM Context向SMF发送更新上下文消息。所述消息更新上下文消息可以包含PDU session ID、Requested QoS(请求的服务质量)等参数。其中,Requested QoS代表终端设备所请求的服务质量,PCF可以根据Requested QoS修改终端设备的用户策略,也可以根据Requested QoS决策是否使能N3接口的GTPU序号功能。
703、SMF指示PCF执行用户策略的修改流程。
具体地,SMF向PCF发送更新消息,指示PCF修改用户策略。
704、PCF向SMF发送PDU会话相关的策略信息(PDU Session related policy information),指示终端设备的用户策略。
本申请实施例中,PCF还可以根据用户信息或本地的策略决策是否使能N3接口的GTPU序号功能。进一步,在用户策略信息(例如,PDU Session related policy information)增加GTPU Sequence Flag信元(即本申请实施例所述的第一信息),GTPU序列标识(GTPU Sequence Flag)信元可以表示该用户的数据报文通过N3接口转发时是否需要携带GTPU SN。
例如,GTPU Sequence Flag信元为第一数值,表示使能N3接口的GTPU序号功能,该用户的数据报文通过N3接口转发时需要携带GTPU序号。即用户面网元向接入网设备发送的数据包携带GTPU SN,或者,接入网设备向用户面网元发送的数据包携带GTPU SN。
GTPU Sequence Flag信元为第二数值,表示关闭N3接口的GTPU序号功能,该用户的数据报文通过N3接口转发时不需要携带GTPU序号。即用户面网元向接入网设备发送的数据包不携带GTPU SN,或者,接入网设备向用户面网元发送的数据包不携带GTPU SN。
一种可能的实现方式中,第一数值为“1”,第二数值为“0”。
705、RAN向AMF发送N2消息。
具体地,RAN可以在接收PDU Session related policy information后,执行步骤704。一种可能的实现方式中,N2消息包括PDU Session ID、N2SM信息。其中,N2SM信息可以包括用户位置信息和QoS Flow释放指示。
706、AMF向SMF发送PDU会话上下文更新(Nsmf_PDU Session_Update SM Context)消息。
其中,Nsmf_PDU Session_Update SM Context消息可以包括SM上下文标识和N2SM信息。
707、SMF向AMF回复响应消息,包括GTPU Sequence Flag。
其中,GTPU Sequence Flag可以是本申请实施例所述的第一信息,用于指示使能N3接口的GTPU序号功能。
一种可能的实现方式中,如果是UE或RAN发起的更新流程,SMF可以调用Nsmf_PDU Session_Update SM Context向AMF回复响应消息。其中,响应消息可以包括N2SM信息、GTPU Sequence Flag。
另一种可能的实现方式中,SMF发起的更新流程,SMF可以调用Namf_Communication_N1N2Message Transfer向AMF回复响应消息,响应消息可以包括:N2SM信息、GTPU Sequence Flag。
708、AMF向RAN发送N2响应消息,所述N2响应消息包括GTPU Sequence Flag。
具体实现中,RAN接收N2响应消息后获取GTPU Sequence Flag,可以将GTPU Sequence Flag存储到用户信息表中,后续转发该用户的数据包时会参考该GTPU Sequence Flag在数据包中添加GTPU SN。
709、SMF向UPF发送GTPU Sequence Flag。
具体实现中,SMF可以通过N4会话修改请求(N4Session Modification Request)消息来更新UPF的N4会话。N4Session Modification Request消息可以包括GTPU Sequence Flag。
一种可能的实现方式中,UPF将GTPU Sequence Flag存储到该UE对应的用户信息表中,后续数据报文转发过程中会参考GTPU Sequence Flag处理该UE的数据包。
图7所示的方法中,可以将第一信息(例如,GTPU Sequence Flag)下发至RAN和UPF,以便RAN和UPF在处理UE的数据包时,根据GTPU Sequence Flag携带GTPU SN,根据GTPU SN检测N3接口的丢包和乱序情况,提高N3接口的传输可靠性。
以下结合具体信令(消息)介绍用户面的数据交互。如图8所示,所述方法包括以下步骤:
801a、RAN通过N3接口发送上行数据包时,携带GTPU SN。
具体实现中,在激活/更新流程中,RAN从AMF获得第一信息(例如,GTPU Sequence flag)。
RAN可以根据GTPU Sequence flag判断是否需要在上行报文的GTPU头中携带GTPU SN。
801b、UPF发送通过N3接口发送下行数据包时,携带GTPU SN。
具体实现中,在激活/更新流程中,UPF从SMF获得第一信息(例如,GTPU Sequence flag)。
UPF可以根据GTPU Sequence flag判断是否需要在下行报文的GTPU头中携带GTPU SN。
GTPU SN的字段可以参考3GPP 29.281的相关定义。UPF或RAN的判断是独立的,UPF不支持GTPU SN,不影响RAN支持GTPU SN。RAN不支持GTPU SN,不影响UPF支持GTPU SN。不支持GTPU SN的网元接收到数据包,忽略数据包中的GTPU SN字段即可。
802a、RAN通过N3接口接收下行数据包,根据数据包的GTPU SN计算N3接口的下行丢包信息和/或下行乱序信息。
具体地,RAN在数据包的GPTU头中获取GTPU SN。
802b、UPF通过N3接口接收上行数据包,根据数据包的GTPU SN计算N3接口的上行丢包信息和上行乱序信息。
具体地,UPF在数据包的GPTU头中获取GTPU SN。
803、RAN向UPF上报丢包信息和/或乱序信息。
具体地,RAN将接收到的丢包信息、乱序信息和自己计算出的丢包信息、乱序信息进行汇总,通过dummy报文将汇总的丢包信息和/或乱序信息发送给UPF。
示例的,RAN从UE接收RRC测量报告,包括UE测量的空口下行丢包信息和/或空口下行乱序信息。
RAN还可以通过空口接收UE发送的上行数据包,根据数据包中的PDCP SN计算空口上行丢包信息和/或空口上行乱序信息。
RAN将N3接口的下行丢包信息和/或下行乱序信息、空口下行丢包信息和/或空口下行乱序信息、空口上行丢包信息和/或空口上行乱序信息等填充到dummy报文的GTP扩展头,向UPF发送dummy报文。
一种可能的实现方式中,RAN可以周期性上报丢包信息和/或乱序信息,也可以在乱序指标或丢包指标超过阈值时上报,也可以在用户去活时上报。
804、UPF接收RAN上报的丢包信息和/或乱序信息,向SMF上报端到端的丢包信息和/或乱序信息。
具体实现中,UPF从RAN接收dummy报文后,解析报文获取N3接口的上行丢包信息和/或上行乱序信息、空口下行丢包信息和/或空口下行乱序信息、空口上行丢包信息和/或空口上行乱序信息。再向SMF发送N4 session report消息,该消息包括端到端的丢包信息和/或乱序信息。其中,端到端的丢包信息和/或乱序信息指的是UE到UPF之间的丢包信息和/或乱序信息,例如,N3接口的下行丢包信息和/或下行乱序信息、空口下行丢包信息和/或空口下行乱序信息、空口上行丢包信息和/或空口上行乱序信息以及N3接口的上行丢包信息和/或上行乱序信息。
UPF可以周期性上报条件端到端的丢包信息和/或乱序信息,也可以在乱序指标或丢包指标超过阈值时上报,也可以在上报Monitoring for URLLC时延时上报。
805、SMF向UPF回复N4 session report应答消息,确认收到UPF上报的丢包信息和/或乱序信息。
806、SMF通过N7接口将端到端的丢包信息和/或乱序信息上报给PCF。
807、PCF根据端到端的丢包信息和/或乱序信息调整QoS策略。
具体实现中,如果空口丢包率高,可以调整QoS策略,以扩容无线网络的带宽;
或者,如果N3口丢包率高,可以调整QoS策略,以增加RAN和核心网之间传输网络的带宽。
一种可能的实现方式中,还可以对单个用户QoS策略的优化调整。例如,如果用户(UE)的上行丢包率高,即UE通过空口发送的数据包的丢包率高,则调整提高用户的上行带宽。其中,上行带宽是UE向RAN发送数据的网络带宽。
再例如,如果用户的下行丢包率高,即UE通过空口接收的数据包的丢包率高,或者,RAN通过空口发送的数据包的丢包率高,则调整提高用户的下行带宽。其中,下行带宽是RAN向UE发送数据的网络带宽。
需要说明的是,当终端设备接入的接入网设备发生切换后,用户面网元与新的接入网设备建立隧道(例如,GTP Tunnel)。UPF可能接收到源接入网设备、目的接入网设备发送的数据包。来自源接入网设备、目的接入网设备数据包的GTPU SN相互独立无关联,UPF要基于不同的隧道分别确定N3接口的上行丢包信息、乱序信息。其中,源接入网设备是终端设备切换前接入的接入网设备,例如,Source gNB;目的接入网设备是终端设备切换后接入的接入网设备,例如,Target gNB。
此外,终端设备切换接入网设备,发给UPF的数据包沿用切换前的GTPU SN。示例的,终端设备先接入了基站1,通过基站1向UPF发送数据,基站1发送的100个数据包的GTPU SN分别为0~99。当终端设备切换至基站2,通过基站2向UPF发送数据,基站2向UPF发送的数据包的GTPU SN从100开始累积,例如,数据包的GTPU SN为100、101、102等。
需要说明的是,从终端设备到UPF的传输路径中的路由器设备也可以针对数据包携带序号确定丢包信息、乱序信息,以便根据确定的丢包信息、乱序信息更好的定界故障点。
在采用对应各个功能划分各个功能模块的情况下,图9示出上述实施例中所涉及 的通信装置的一种可能的结构示意图。图9所示的通信装置可以是本申请实施例所述的终端设备,也可以是终端设备中实现上述方法的部件,或者,也可以是应用于终端设备中的芯片。还可以是本申请实施例所述的接入网设备,也可以是接入网设备中实现上述方法的部件,或者,也可以是应用于接入网设备中的芯片。或者,是用户面网元或策略控制网元中实现上述方法的部件,或者,也可以是应用于用户面网元或策略控制网元中的芯片。
所述芯片可以是片上系统(System-On-a-Chip,SOC)或者是具备通信功能的基带芯片等。如图9所示,通信装置包括处理单元901以及通信单元902。处理单元可以是一个或多个处理器,通信单元可以是收发器或者通信接口。
处理单元901,例如可以用于支持终端设备、接入网设备、用户面网元或策略控制网元执行内部处理,例如,支持终端设备根据数据包中的PDCP SN计算空口下行的丢包率或乱序率;支持策略控制网元根据用户信息使能N3接口的GTPU序号功能,支持用户面网元或策略控制网元根据第一信息处理终端设备的数据包。还可以支持用于本文所描述的技术的其它过程。
通信单元902,用于支持该终端设备、接入网设备、用户面网元或策略控制网元与其他通信装置之间的通信,例如,支持终端设备执行步骤701;支持策略控制网元执行步骤501、步骤502;支持用户面网元执行步骤804;支持接入网设备执行步骤801a。还可以支持用于本文所描述的技术的其它过程。
需要说明的是,上述方法实施例涉及的各步骤的所有相关内容均可以援引到对应功能模块的功能描述,在此不再赘述。
需要说明的是,上述方法实施例涉及的各步骤的所有相关内容均可以援引到对应功能模块的功能描述,在此不再赘述。
在采用集成的单元的情况下,本申请实施例提供的通信装置的结构示意图如图10所示。在图10中,该通信装置包括:处理模块1001和通信模块1002。处理模块1001用于对通信装置的动作进行控制管理,例如,执行上述处理单元1001执行的步骤,和/或用于执行本文所描述的技术的其它过程。通信模块1002用于执行上述通信单元1002执行的步骤,支持通信装置与其他设备之间的交互,如与其他设备装置之间的交互。
可选的,如图10所示,通信装置还可以包括存储模块1003,存储模块1003用于存储通信装置的程序代码和数据。
本申请实施例提供一种计算机可读存储介质,计算机可读存储介质中存储有指令;指令用于执行如图5或图7或图8所示的方法。
本申请实施例提供一种包括指令的计算机程序产品,当其在通信装置上运行时,使得通信装置执行如图5或图7或图8所示的方法。
通过以上的实施方式的描述,所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,仅以上述各功能模块的划分进行举例说明,实际应用中,可以根据需要而将上述功能分配由不同的功能模块完成,即将通信装置的内部结构划分成不同的功能模块,以完成以上描述的全部或者部分功能。
本申请实施例中的处理器,可以包括但不限于以下至少一种:中央处理单元 (central processing unit,CPU)、微处理器、数字信号处理器(DSP)、微控制器(microcontroller unit,MCU)、或人工智能处理器等各类运行软件的计算设备,每种计算设备可包括一个或多个用于执行软件指令以进行运算或处理的核。该处理器可以是个单独的半导体芯片,也可以跟其他电路一起集成为一个半导体芯片,例如,可以跟其他电路(如编解码电路、硬件加速电路或各种总线和接口电路)构成一个SoC(片上系统),或者也可以作为一个ASIC的内置处理器集成在所述ASIC当中,该集成了处理器的ASIC可以单独封装或者也可以跟其他电路封装在一起。该处理器除了包括用于执行软件指令以进行运算或处理的核外,还可进一步包括必要的硬件加速器,如现场可编程门阵列(field programmable gate array,FPGA)、PLD(可编程逻辑器件)、或者实现专用逻辑运算的逻辑电路。
本申请实施例中的存储器,可以包括如下至少一种类型:只读存储器(read-only memory,ROM)或可存储静态信息和指令的其他类型的静态存储设备,随机存取存储器(random access memory,RAM)或者可存储信息和指令的其他类型的动态存储设备,也可以是电可擦可编程只读存储器(electrically erasable programmabler-only memory,EEPROM)。在某些场景下,存储器还可以是只读光盘(compact disc read-only memory,CD-ROM)或其他光盘存储、光碟存储(包括压缩光碟、激光碟、光碟、数字通用光碟、蓝光光碟等)、磁盘存储介质或者其他磁存储设备、或者能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质,但不限于此。
本申请中,“至少一个”是指一个或者多个。“多个”是指两个或两个以上。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B的情况,其中A,B可以是单数或者复数。字符“/”一般表示前后关联对象是一种“或”的关系。“以下至少一项(个)”或其类似表达,是指的这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,a,b,或c中的至少一项(个),可以表示:a,b,c,a-b,a-c,b-c,或a-b-c,其中a,b,c可以是单个,也可以是多个。另外,为了便于清楚描述本申请实施例的技术方案,在本申请的实施例中,采用了“第一”、“第二”等字样对功能和作用基本相同的相同项或相似项进行区分。本领域技术人员可以理解“第一”、“第二”等字样并不对数量和执行次序进行限定,并且“第一”、“第二”等字样也并不限定一定不同。
在本申请所提供的几个实施例中,应该理解到,所揭露的数据库访问装置和方法,可以通过其它的方式实现。例如,以上所描述的数据库访问装置实施例仅仅是示意性的,例如,所述模块或单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个装置,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,数据库访问装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是一个物理单元或多个物理单元,即可以位于一个地方,或者也可以分 布到多个不同地方。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个可读取存储介质中。基于这样的理解,本申请实施例的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该软件产品存储在一个存储介质中,包括若干指令用以使得一个设备(可以是单片机,芯片等)或处理器执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、ROM、RAM、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何在本申请揭露的技术范围内的变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (29)

  1. 一种通信方法,其特征在于,包括:
    策略控制网元确定第一信息,所述第一信息指示终端设备的数据包通过N3接口转发时携带用户面通用分组无线业务隧道协议GTPU序列号SN;
    所述策略控制网元向会话管理网元发送所述第一信息。
  2. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    所述策略控制网元根据所述终端设备的用户信息使能所述N3接口的GTPU序号功能。
  3. 根据权利要求1或2所述的方法,其特征在于,所述策略控制网元确定第一信息之前,所述方法还包括:
    所述策略控制网元从所述会话管理网元接收第一消息,所述第一消息用于指示所述策略控制网元修改所述终端设备的用户策略。
  4. 根据权利要求1-3任一项所述的方法,其特征在于,所述方法还包括:
    所述策略控制网元从所述会话管理网元接收第二信息、第三信息、第四信息以及第五信息中的至少一个;
    所述策略控制网元根据所述第二信息、第三信息、第四信息以及第五信息中的至少一个进行服务质量QoS策略调整;
    其中,所述第二信息用于指示接入网设备测量的空口丢包信息和/或空口乱序信息;所述第三信息用于指示所述接入网设备测量的N3接口丢包信息和/或N3接口乱序信息;所述第四信息用于指示所述终端设备测量的空口丢包信息和/或空口乱序信息;所述第五信息用于指示所述用户面网元测量的N3接口丢包信息和/或N3接口乱序信息。
  5. 一种通信方法,其特征在于,包括:
    接入网设备从接入移动管理网元接收第一信息,所述第一信息指示终端设备的数据包通过N3接口转发时携带用户面通用分组无线业务隧道协议GTPU序列号SN;
    所述接入网设备根据所述第一信息处理所述终端设备的数据包。
  6. 根据权利要求5所述的方法,其特征在于,所述接入网设备根据所述第一信息处理所述终端设备的数据包,包括:
    所述接入网设备从所述终端设备接收第一数据包;所述第一数据包包括所述终端设备为所述第一数据包确定的第一分组数据汇聚协议PDCP SN;
    所述接入网设备根据所述第一数据包向用户面网元发送第二数据包;所述第二数据包包括所述接入网设备为所述第二数据包确定的第一GTPU SN。
  7. 根据权利要求6所述的方法,其特征在于,所述方法还包括:
    所述接入网设备根据所述第一PDCP SN确定第二信息;所述第二信息用于指示所述接入网设备测量的空口丢包信息和/或空口乱序信息;
    所述接入网设备向所述用户面网元发送所述第二信息。
  8. 根据权利要求5-7任一项所述的方法,其特征在于,所述方法还包括:
    所述接入网设备从用户面网元接收第三数据包,所述第三数据包包括所述用户面网元为所述第三数据包确定的第二GTPU SN;
    所述接入网设备根据所述第二GTPU SN确定第三信息;所述第三信息用于指示所 述接入网设备测量的N3接口丢包信息和/或N3接口乱序信息;
    所述接入网设备向所述用户面网元发送所述第三信息。
  9. 根据权利要求8所述的方法,其特征在于,所述方法还包括:
    所述接入网设备根据所述第三数据包向所述终端设备发送第四数据包;所述第四数据包包括所述接入网设备为所述第四数据包确定的第二PDCP SN。
  10. 根据权利要求9所述的方法,其特征在于,所述方法还包括:
    所述接入网设备从所述终端设备接收第四信息,所述第四信息用于指示所述终端设备根据所述第二PDCP SN测量的空口丢包信息和/或空口乱序信息;
    所述接入网设备向所述用户面网元发送所述第四信息。
  11. 根据权利要求7所述的方法,其特征在于,所述接入网设备根据所述第一PDCP SN确定第二信息,包括:
    若所述第一PDCP SN小于所述第一数据包之前已成功接收的数据包的最大PDCP SN,则所述第一数据包为乱序接收的数据包;
    若所述第一PDCP SN大于所述第一数据包之前已成功接收的数据包的最大PDCP SN,且包括所述第一数据包在内已成功接收的数据包的PDCP SN不连续,则所述终端设备发送的数据包出现丢包。
  12. 根据权利要求8所述的方法,其特征在于,所述根据所述第二GTPU SN确定第三信息,包括:
    若所述第二GTPU SN小于所述第三数据包之前已成功接收的数据包的最大GTPU SN,且第三数据包的互联网协议标识IP ID小于所述第三数据包之前包已成功接收的数据包的IP ID,则所述第三数据包为乱序接收的数据包;
    若第二GTPU SN大于所述第三数据包之前已成功接收的数据包的最大GTPU SN,且包括所述第三数据包在内已成功接收的数据包的GTPU SN不连续,则所述用户面网元发送的数据包出现丢包。
  13. 一种通信方法,其特征在于,包括:
    用户面网元从会话管理网元第一信息,所述第一信息指示终端设备的数据包通过N3接口转发时携带用户面通用分组无线业务隧道协议GTPU序列号SN;
    所述用户面网元根据所述第一信息处理所述终端设备的数据包。
  14. 根据权利要求13所述的方法,其特征在于,所述方法还包括:
    所述用户面网元从接入网设备接收第二数据包,所述第二数据包包括第一GTPU SN。
  15. 根据权利要求14所述的方法,其特征在于,所述方法还包括:
    所述用户面网元从接入网设备接收第二信息;所述第二信息用于指示所述接入网设备测量的空口丢包信息和/或空口乱序信息;
    所述用户面网元向会话管理网元发送所述第二信息。
  16. 根据权利要求13-15任一项所述的方法,其特征在于,所述用户面网元根据所述第一信息处理所述终端设备的数据包,包括:
    所述用户面网元向接入网设备发送第三数据包,所述第三数据包包括所述用户面网元为所述第三数据包确定的第二GTPU SN。
  17. 根据权利要求16所述的方法,其特征在于,所述方法还包括:
    所述用户面网元从所述接入网设备接收第三信息,所述第三信息用于指示所述接入网设备测量的N3接口丢包信息和/或N3接口乱序信息;
    所述用户面网元向会话管理网元发送所述第三信息。
  18. 根据权利要求13-17任一项所述的方法,其特征在于,所述方法还包括:
    所述用户面网元从接入网接收第四信息,所述第四信息用于指示所述终端设备测量的空口丢包信息和/或空口乱序信息;
    所述用户面网元向会话管理网元发送所述第四信息。
  19. 根据权利要求14所述的方法,其特征在于,所述方法还包括:
    所述用户面网元根据所述第一GTPU SN确定第五信息,所述第五信息用于指示所述用户面网元测量的N3接口丢包信息和/或N3接口乱序信息;
    所述用户面网元向会话管理网元发送所述第五信息。
  20. 一种通信装置,其特征在于,包括:
    处理单元,用于确定第一信息,所述第一信息指示终端设备的数据包通过N3接口转发时携带用户面通用分组无线业务隧道协议GTPU序列号SN;
    通信单元,用于向会话管理网元发送所述第一信息。
  21. 根据权利要求20所述的通信装置,其特征在于,所述通信单元还用于,从所述会话管理网元接收第一消息,所述第一消息用于指示策略控制网元修改所述终端设备的用户策略。
  22. 根据权利要求20或21所述的通信装置,其特征在于,所述通信单元还用于,从所述会话管理网元接收第二信息、第三信息、第四信息以及第五信息中的至少一个;
    所述处理单元还用于,根据所述第二信息、第三信息、第四信息以及第五信息中的至少一个进行服务质量QoS策略调整;
    其中,所述第二信息用于指示接入网设备测量的空口丢包信息和/或空口乱序信息;所述第三信息用于指示所述接入网设备测量的N3接口丢包信息和/或N3接口乱序信息;所述第四信息用于指示所述终端设备测量的空口丢包信息和/或空口乱序信息;所述第五信息用于指示所述用户面网元测量的N3接口丢包信息和/或N3接口乱序信息。
  23. 一种通信装置,其特征在于,包括:
    通信单元,用于从接入移动管理网元接收第一信息,所述第一信息指示终端设备的数据包通过N3接口转发时携带用户面通用分组无线业务隧道协议GTPU序列号SN;
    处理单元,用于根据所述第一信息处理所述终端设备的数据包。
  24. 根据权利要求23所述的通信装置,其特征在于,
    所述通信单元具体用于,从所述终端设备接收第一数据包;所述第一数据包包括所述终端设备为所述第一数据包确定的第一分组数据汇聚协议PDCP SN;
    所述处理单元用于,根据所述第一数据包向用户面网元发送第二数据包;所述第二数据包包括接入网设备为所述第二数据包确定的第一GTPU SN。
  25. 一种通信装置,其特征在于,包括:
    通信单元,用于从会话管理网元第一信息,所述第一信息指示终端设备的数据包通过N3接口转发时携带用户面通用分组无线业务隧道协议GTPU序列号SN;
    处理单元,用于根据所述第一信息处理所述终端设备的数据包。
  26. 根据权利要求25所述的通信装置,其特征在于,所述通信单元还用于,从接入网设备接收第二数据包,所述第二数据包包括第一GTPU SN。
  27. 一种通信装置,其特征在于,包括处理器,所述处理器与存储器耦合;
    存储器,用于存储计算机程序;
    处理器,用于执行所述存储器中存储的计算机程序,以使得所述装置执行如权利要求1至19中任一项所述的通信方法。
  28. 一种计算机可读存储介质,包括程序或指令,当所述程序或指令被处理器运行时,如权利要求1至19中任意一项所述的通信方法被执行。
  29. 一种通信系统,其特征在于,包括:
    如权利要求20-22任一项所述的通信装置、如权利要求23-24任一项所述的通信装置以及如权利要求25-26任一项所述的通信装置。
PCT/CN2021/086145 2020-04-17 2021-04-09 一种通信方法及通信装置 WO2021208813A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010307308.6A CN113543191A (zh) 2020-04-17 2020-04-17 一种通信方法及通信装置
CN202010307308.6 2020-04-17

Publications (1)

Publication Number Publication Date
WO2021208813A1 true WO2021208813A1 (zh) 2021-10-21

Family

ID=78084021

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/086145 WO2021208813A1 (zh) 2020-04-17 2021-04-09 一种通信方法及通信装置

Country Status (2)

Country Link
CN (1) CN113543191A (zh)
WO (1) WO2021208813A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116847406A (zh) * 2022-03-24 2023-10-03 维沃移动通信有限公司 数据处理方法、装置、通信设备及可读存储介质

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110519864A (zh) * 2018-05-21 2019-11-29 华为技术有限公司 报文传输方法和装置
WO2020020461A1 (en) * 2018-07-26 2020-01-30 Lenovo (Singapore) Pte. Ltd. Monitoring qos parameters of a data connection
CN110798408A (zh) * 2018-08-02 2020-02-14 华为技术有限公司 一种报文传输方法及装置

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103179618B (zh) * 2013-03-19 2015-09-23 福建三元达通讯股份有限公司 一种基于LTE Femto系统中提高回程网络的QoS的方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110519864A (zh) * 2018-05-21 2019-11-29 华为技术有限公司 报文传输方法和装置
WO2020020461A1 (en) * 2018-07-26 2020-01-30 Lenovo (Singapore) Pte. Ltd. Monitoring qos parameters of a data connection
CN110798408A (zh) * 2018-08-02 2020-02-14 华为技术有限公司 一种报文传输方法及装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
INTEL CORPORATION: "For SA5 LS (S5-196840) on QoS Monitoring for URLLC", 3GPP TSG-RAN WG3 MEETING #106 R3-197476, 9 November 2019 (2019-11-09), XP051824145 *

Also Published As

Publication number Publication date
CN113543191A (zh) 2021-10-22

Similar Documents

Publication Publication Date Title
US10785824B2 (en) Information processing method and related apparatus
US11553546B2 (en) Methods and systems for radio access network aggregation and uniform control of multi-RAT networks
WO2020001562A1 (zh) 一种通信方法及装置
EP4106482A1 (en) Communication method and apparatus
EP4106480A1 (en) Communication method and apparatus
WO2022041285A1 (zh) 一种模型数据传输方法及通信装置
WO2022033543A1 (zh) 一种中继通信方法及通信装置
WO2022033558A1 (zh) 一种中继管理方法及通信装置
WO2021097858A1 (zh) 一种通信方法及装置
US11973589B2 (en) Mode switching method, data flow splitting method, and apparatus
WO2021238882A1 (zh) 一种实现业务连续性的方法及装置
JP2022521088A (ja) ポリシー管理方法及び装置
WO2020001256A1 (zh) 一种数据传输方法及装置
WO2019238050A1 (zh) 一种通信方法及装置
WO2022001738A1 (zh) 一种移动边缘计算处理方法以及相关设备
WO2021208813A1 (zh) 一种通信方法及通信装置
CN115915196A (zh) 一种链路状态检测方法、通信装置及通信系统
WO2021087996A1 (zh) 通信方法和通信装置
JP2020061732A (ja) ハンドオーバーでのアップリンクベアラーバインディング
US20220182910A1 (en) Data Processing Method, Apparatus, And System
US20240187963A1 (en) Dynamic user plane management
WO2022155853A1 (zh) 无线通信方法、通信装置及通信系统
WO2021138784A1 (zh) 一种接入网络的方法、装置及系统
WO2021134601A1 (zh) 一种会话建立的方法及装置
WO2018228545A1 (zh) 信息处理方法以及相关装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21788032

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21788032

Country of ref document: EP

Kind code of ref document: A1