WO2022041285A1 - 一种模型数据传输方法及通信装置 - Google Patents

一种模型数据传输方法及通信装置 Download PDF

Info

Publication number
WO2022041285A1
WO2022041285A1 PCT/CN2020/112737 CN2020112737W WO2022041285A1 WO 2022041285 A1 WO2022041285 A1 WO 2022041285A1 CN 2020112737 W CN2020112737 W CN 2020112737W WO 2022041285 A1 WO2022041285 A1 WO 2022041285A1
Authority
WO
WIPO (PCT)
Prior art keywords
model data
message
network device
information
access network
Prior art date
Application number
PCT/CN2020/112737
Other languages
English (en)
French (fr)
Inventor
胡国杰
周彧
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2020/112737 priority Critical patent/WO2022041285A1/zh
Publication of WO2022041285A1 publication Critical patent/WO2022041285A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/02Arrangements for optimising operational condition

Definitions

  • the embodiments of the present application relate to the field of communications, and in particular, to a model data transmission method and a communication device.
  • the 5th generation mobile networks has made a major leap in key performances such as network speed and network delay, and can adapt to a variety of scenarios and differentiated service requirements.
  • Artificial intelligence (AI) technology and machine learning (ML) technology are also gradually applied in 5G communication systems, for example, using models for fault prediction, network key performance indicator (key performance indicator, KPI) prediction, etc.
  • the AI/ML model file is configured as part of the software package in the software server of the terminal device.
  • the software server delivers AI/ML model files to terminal devices through user plane functional network elements and base stations.
  • the transmission path is circuitous and the transmission delay is relatively large.
  • Embodiments of the present application provide a model data transmission method and a communication device, which shorten the transmission path of model data and reduce transmission delay.
  • a model data transmission method including: a terminal device can add new protocol layer support to transmit model data between an access network device. Specifically, the terminal device uses a model data analysis protocol to process model data to be sent to obtain a first message, where the first message includes first information and model data to be sent, and the first information is used to indicate the message carrying the model including the first information. data; the terminal device sends the first message to the access network device.
  • a new protocol layer is added to the terminal device and the access network device, respectively, for directly transmitting model data between the terminal device, the access network device, and the core network device.
  • the terminal equipment can directly transmit model data with the access network equipment, without the need to send AI/ML model data to the terminal equipment through the software server, user plane function network element and base station of the terminal equipment. To a certain extent, the transmission delay of model data is reduced.
  • the method further includes: the terminal device may report capability information to the access network device, for example, send second information to the access network device, the first The second information indicates that the terminal device supports the transmission of model data over the air interface.
  • the terminal device can report capability information to the access network device, indicating that the terminal device has the ability to transmit model data through the air interface, and supports the direct transmission of model data with the access network device, so that it can communicate with the access network device through the Uu link when needed later. Transfer model data.
  • the method further includes: the terminal device may also receive a second The second message includes the first information and the model data to be sent by the access network device; the model data from the access network device is obtained by processing the second message by using the model data analysis protocol.
  • model data is also supported in downlink transmission, and the terminal device can receive model data sent by the access network device.
  • a model data transmission method including: an access network device receives a first message from a terminal device, the first message includes first information and model data, and the first information is used to indicate a message including the first information Carrying model data; the access network device uses the model data analysis protocol to process the first message to obtain model data.
  • a new protocol layer is added to the terminal device and the access network device, respectively, for directly transmitting model data between the terminal device, the access network device, and the core network device.
  • the terminal equipment can directly transmit model data with the access network equipment, without the need to send AI/ML model data to the terminal equipment through the software server, user plane function network element and base station of the terminal equipment. To a certain extent, the transmission delay of model data is reduced.
  • the method further includes: receiving second information from the terminal device, where the second information indicates that the terminal device supports transmission of model data through an air interface.
  • the access network device can receive the capability information reported by the terminal device, and determine that it can transmit model data with the terminal device through the air interface.
  • the method further includes: sending second information to the core network device; the second information indicates that the terminal device supports the Model data is transmitted over the air interface.
  • the capability information reported by the access network device to the core network so that the core network can determine that the model data can be transmitted with the terminal device through the NAS layer.
  • the method further includes: the access network device uses a model data analysis protocol to treat The sent model data is processed to obtain a second message, where the second message includes the model data to be sent and the first information; the access network device sends the second message to the terminal device.
  • model data is also supported in downlink transmission, and the terminal device can receive model data sent by the access network device.
  • the access network device includes a centralized unit control plane functional module
  • the access network device receiving the first message from the terminal device includes: the centralized unit control plane function module receives the first message from the terminal device.
  • This application is applicable to separate access network equipment, and a new protocol layer is added to the centralized unit control plane function module of the access network equipment, which is used to transmit model data with terminal equipment.
  • the access network device further includes a model data processing function module, and the access network device uses the model data analysis protocol to analyze the Processing a message to obtain model data includes: the centralized unit control plane functional module obtains the first information and model data from the first message by using a model data analysis protocol.
  • the method further includes: centralized unit control plane function module establishment and transmission between the model data processing function module channel; the centralized unit control plane function module sends model data to the model data processing function module through the transmission channel; the model data processing function module uses the model data to perform model-related services.
  • a channel for transmitting model data is established with UE as a granularity, resources are allocated for transmitting model data, and the transmission of model data is supported.
  • the method further includes: when the terminal device releases the radio resource control connection with the access network device, The centralized unit control plane functional module releases the transmission channel.
  • the transmission channel established for the UE can be released to avoid occupying limited transmission resources.
  • the method further includes: forwarding the first message to the core network device.
  • a model data transmission method which includes: a core network device receives a first message from a terminal device from an access network device, the first message includes first information and model data, and the first information is used for Indicates that the message containing the first information carries model data; the core network device uses the model data analysis protocol to process the first message to obtain model data.
  • the method further includes: sending second information to the core network device; the second information indicates that the terminal device supports transmission of model data through an air interface.
  • the method further includes: establishing a relationship between the core network device and the core network model data processing function module.
  • the core network equipment sends model data to the core network model data processing function module through the transmission channel, so that the core network model data processing function module can use the model data to perform model-related services.
  • a channel for transmitting model data is established with UE as the granularity, resources are allocated for transmitting model data, and the transmission of model data is supported.
  • the method further includes: when the terminal device releases the connection with the access network device.
  • the radio resource control connection between the core network equipment releases the transmission channel.
  • the transmission channel established for the UE can be released to avoid occupying limited transmission resources.
  • a communication device comprising: a processing unit configured to process model data to be sent by using a model data analysis protocol to obtain a first message, where the first message includes first information and the model to be sent data, the first information is used to indicate that the message containing the first information carries model data.
  • a communication unit configured to send the first message to the access network device.
  • the communication unit is further configured to send second information to the access network device, where the second information indicates that the terminal device supports Model data is transmitted over the air interface.
  • the communication unit is further configured to receive from the access network device a second message, where the second message includes the first information and model data to be sent by the access network device; the processing unit is further configured to process the second message by using a model data analysis protocol to obtain Model data from the access network device.
  • a communication apparatus comprising: a communication unit configured to receive a first message from a terminal device, where the first message includes first information and model data, and the first information is used to indicate that the first message is included in the first message.
  • a message of information carries model data; and a processing unit is configured to process the first message by using a model data analysis protocol to obtain the model data.
  • the communication unit is further configured to receive second information from the terminal device, where the second information indicates that the terminal device supports an air interface Transfer model data.
  • the communication unit is further configured to send the second information to the core network device; the second The information indicates that the terminal device supports the transmission of model data over the air interface.
  • the processing unit is further configured to perform an analysis of the model data to be sent by using a model data analysis protocol. Process to obtain a second message, where the second message includes the model data to be sent and the first information; the communication unit is further configured to send the second message to the terminal device.
  • the access network device includes a centralized unit control plane function module, and the The centralized unit control plane function module adds a new protocol layer to support the transmission of model data between access network equipment and terminal equipment.
  • the communication unit belongs to the centralized unit control plane function module, and the centralized unit control plane function module receives the first message from the terminal device through the communication unit.
  • the access network device further includes a model data processing function module, and the processing unit belongs to the model data processing function module, the centralized unit control plane function module obtains the first information and the model data from the first message by using the model data analysis protocol through the processing unit.
  • the centralized unit control plane functional module establishes a transmission channel with the model data processing functional module
  • the centralized unit control plane function module sends the model data to the model data processing function module through the transmission channel; the model data processing function module uses the model data to perform model-related services.
  • the processing unit is further configured to: when the terminal device releases the connection between the terminal device and the access network device the radio resource control connection, release the transmission channel.
  • the communication unit is further configured to forward the first message to the core network device .
  • a communication apparatus comprising: a communication unit configured to receive, from an access network device, a first message from a terminal device, the first message including first information and model data, the first information is used to indicate that the message containing the first information carries model data; the processing unit is configured to process the first message by using a model data analysis protocol to obtain the model data.
  • the communication unit is further configured to send the second information to the core network device; the second information indicates that the terminal device supports the transmission model over the air interface data.
  • the processing unit is further configured to establish a transmission with the core network model data processing functional module channel; the communication unit is further configured to send the model data to the core network model data processing function module through the transmission channel, so that the core network model data processing function module uses the model data to perform model-related services .
  • the terminal device when the terminal device releases the radio resource control connection with the access network device, the The core network device releases the transmission channel.
  • a communication device comprising at least one processor and a memory, the at least one processor is coupled with the memory; the memory is used to store a computer program;
  • the at least one processor is configured to execute a computer program stored in the memory, so that the apparatus executes the method according to the first aspect and any one of the implementation manners of the first aspect.
  • a computer-readable storage medium comprising: instructions are stored in the computer-readable storage medium; when the computer-readable storage medium communicates in the fourth aspect and any one of the implementation manners of the fourth aspect When running on the device, the communication device is caused to execute the method described in the first aspect and any one of the implementation manners of the first aspect.
  • a computer-readable storage medium comprising: instructions stored in the computer-readable storage medium; when the computer-readable storage medium communicates in the fifth aspect and any one of the implementation manners of the fifth aspect When running on the device, the communication device is caused to perform the method described in the second aspect and any one of the implementation manners of the second aspect.
  • a computer-readable storage medium comprising: instructions stored in the computer-readable storage medium; when the computer-readable storage medium communicates in the sixth aspect and any one of the implementation manners of the sixth aspect When running on the device, the communication device is caused to execute the method described in the third aspect and any one of the implementation manners of the third aspect.
  • An eleventh aspect provides a wireless communication device
  • the communication device includes a processor, for example, applied to the communication device, for implementing the method described in any one of the implementation manners of the first aspect to the third aspect
  • the The communication device may be, for example, a system-on-a-chip.
  • the chip system further includes a memory, and the memory is used for storing necessary program instructions and data to implement the functions of the method in the first aspect.
  • the chip system in the above aspects may be a system on chip (system on chip, SOC), or a baseband chip, etc.
  • the baseband chip may include a processor, a channel encoder, a digital signal processor, a modem, an interface module, and the like.
  • a twelfth aspect provides a communication system, where the communication system includes the access network device described in any of the foregoing implementations, the terminal device described in any of the foregoing implementations, and any of the foregoing implementations.
  • FIG. 1 is a network architecture diagram provided by an embodiment of the present application
  • FIG. 2 is a schematic diagram of a protocol stack provided by an embodiment of the present application.
  • FIG. 3 is a schematic structural diagram of a separate access network device provided by an embodiment of the present application.
  • 5a is a structural block diagram of a communication device provided by an embodiment of the present application.
  • FIG. 5b is another structural block diagram of the communication device provided by the embodiment of the application.
  • FIG. 6 is a schematic flowchart of a model data transmission method provided by an embodiment of the present application.
  • 7 to 12 are another schematic flowchart of a model data transmission method provided by an embodiment of the present application.
  • FIGS. 13 to 14 are schematic diagrams of another framework of a communication apparatus provided by an embodiment of the present application.
  • the network architecture includes an access network device 10, a terminal device (only the terminal device 21 and the terminal device 22 are shown in the figure), an access network device 10, and a terminal device 22.
  • the terminal equipment can send service data to the data network and receive service data from the data network through the access network equipment and user plane network elements.
  • the terminal device is a device with wireless transceiver function, which can be deployed on land, including indoor or outdoor, handheld, wearable or vehicle-mounted; it can also be deployed on water (such as ships, etc.); it can also be deployed in the air (such as Aircraft, balloons and satellites, etc.
  • the terminal equipment can communicate with the core network via a radio access network (RAN), and exchange voice and/or data with the RAN.
  • RAN radio access network
  • the terminal equipment can be a mobile phone (mobile phone) ), tablet computer (Pad), computer with wireless transceiver function, mobile internet device (MID), wearable device, virtual reality (VR) terminal equipment, augmented reality (AR) terminal equipment, wireless terminals in industrial control, wireless terminals in self driving, wireless terminals in remote medical, wireless terminals in smart grid, transportation security ( Wireless terminals in transportation safety), wireless terminals in smart cities, wireless terminals in smart homes, etc.
  • Terminal devices may also be called For user equipment (user equipment, UE), mobile station, remote station, etc., the embodiments of this application do not limit the specific technology, device form, and name used by the terminal device.
  • An access network device is a device in the network that is used to connect a terminal device to a wireless network.
  • the access network device may be a node in a radio access network, and may also be referred to as a base station, and may also be referred to as a radio access network (radio access network, RAN) node (or device).
  • RAN radio access network
  • the network equipment may include an evolved base station (NodeB or eNB or e-NodeB, evolutional Node B) in a long term evolution (long term evolution, LTE) system or an evolved LTE system (LTE-Advanced, LTE-A), such as traditional Macro base station eNB and micro base station eNB in heterogeneous network scenarios, or may also include the next generation Node B (next generation) in the fifth generation mobile communication technology (5th generation mobile networks, 5G) new radio (new radio, NR) system node B, gNB), or may also include radio network controller (radio network controller, RNC), node B (Node B, NB), base station controller (base station controller, BSC), base transceiver station (base transceiver station, BTS), transmission reception point (TRP), home base station (for example, home evolved NodeB, HeNB or home Node B, HNB), base band unit (BBU), baseband pool BBU pool, or WiFi access point access point (AP), etc., or may also
  • CU supports radio resource control (RRC), packet data convergence protocol (PDCP), service data adaptation protocol (service data adaptation) protocol, SDAP) and other protocols;
  • DU mainly supports radio link control layer (radio link control, RLC), media access control layer (media access control, MAC) and physical layer protocols.
  • the access management network element (the embodiment of this application may also be referred to as the access mobility management network element) is mainly used for the attachment, mobility management, and tracking area update procedures of the terminal in the mobile network.
  • Access stratum non access stratum, NAS
  • NAS non access stratum
  • the access management network element may be the access and mobility management function (AMF).
  • AMF access and mobility management function
  • the mobility management network element may still be It is an AMF network element, or may have other names, which is not limited in this application.
  • the session management network element is mainly used for session management in the mobile network, such as session establishment, modification and release. Specific functions include allocating Internet Protocol (IP) addresses to terminals, and selecting user plane network elements that provide packet forwarding functions.
  • IP Internet Protocol
  • the session management network element may be a session management function (SMF).
  • SMF session management function
  • the session management network element may still be an SMF network element, or it may be With other names, this application is not limited.
  • User plane NEs are mainly used to process user packets, such as forwarding, accounting, and lawful interception.
  • the user plane network element may also be referred to as a protocol data unit (protocol data unit, PDU) session anchor (PDU session anchor, PSA).
  • PDU protocol data unit
  • PSA protocol data unit
  • the user plane network element may be a user plane function (UPF).
  • UPF user plane function
  • the user plane network element may still be a UPF network element, or it may be With other names, this application is not limited.
  • Policy control network element including user subscription data management function, policy control function, charging policy control function, quality of service (quality of service, QoS) control, etc.
  • the policy control network element may be a policy control function (PCF).
  • PCF policy control function
  • the policy control network element may still be a PCF network element, or it may be With other names, this application is not limited.
  • the network slice selection function network element is mainly used to select the appropriate network slice for the service of the terminal device.
  • the network slice selection network element may be the network slice selection function (NSSF) network element.
  • the network slice selection network element may still be the NSSF network element.
  • the network element may also have other names, which is not limited in this application.
  • the network storage function network element is mainly used to provide the registration and discovery functions of the network element or the services provided by the network element.
  • the network storage function network element may be a network repository function (NRF).
  • NRF network repository function
  • the network storage function network element may still be an NRF network element, or It can also have other names, which is not limited in this application.
  • Network data analysis network elements can be analyzed from various network functions (network functions, NF), such as policy control network elements, session management network elements, user plane network elements, access management network elements, and application function network elements (through the network capability opening function). network elements) to collect data and make analysis and predictions.
  • network functions such as policy control network elements, session management network elements, user plane network elements, access management network elements, and application function network elements (through the network capability opening function). network elements) to collect data and make analysis and predictions.
  • the network data analysis network element may be the network data analysis function (NWDAF).
  • NWDAF network data analysis function
  • the network data analysis network element may still be the NWDAF network element. , or may have other names, which are not limited in this application.
  • the unified data management network element is mainly used to manage the subscription information of terminal equipment.
  • the unified data management network element may be a unified data management (UDM), and in a future communication system (such as a 6G communication system), the unified data management network element may still be a UDM network element, or It can also have other names, which is not limited in this application.
  • UDM unified data management
  • the unified data storage network element is mainly used to store structured data information, including subscription information, policy information, and network data or service data defined in a standard format.
  • the unified data storage network element may be a unified data repository (UDR).
  • the unified data storage network element may still be a UDR network element, or It can also have other names, which is not limited in this application.
  • the authentication service function network element is mainly used to perform security authentication on terminal equipment.
  • the authentication service function network element may be an authentication server function (AUSF).
  • AUSF authentication server function
  • the authentication service function network element may still be an AUSF network element, or It can also have other names, which is not limited in this application.
  • the network capability exposure network element can expose some functions of the network to applications in a controlled manner.
  • the network capability exposure network element may be the network capability exposure function (NEF).
  • the network capability exposure network element may still be the NEF network element. Alternatively, it may have other names, which are not limited in this application.
  • the application function network element can provide service data of various applications to the control plane network element of the operator's communication network, or obtain network data information and control information from the control plane network element of the communication network.
  • the application function network element may be an application function (AF), and in the future communication system (such as a 6G communication system), the application function network element may still be the AF network element, or may also have other The name is not limited in this application.
  • the data network is mainly used to provide data transmission services for terminal equipment.
  • the data network can be a private network, such as a local area network, or a public data network (PDN) network, such as the Internet (Internet), or a private network jointly deployed by operators, such as a configured IP multimedia network sub-network.
  • PDN public data network
  • IMS IP multimedia core network subsystem
  • network elements or functions may be network elements in hardware devices, software functions running on dedicated hardware, or virtualized functions instantiated on a platform (eg, a cloud platform).
  • a platform eg, a cloud platform
  • the foregoing network element or function may be implemented by one device, or may be implemented jointly by multiple devices, or may be a functional module in one device, which is not specifically limited in this embodiment of the present application.
  • the ML model is a machine learning model, which is a type of artificial intelligence (AI) model.
  • the ML/AI model can be considered as an algorithm that realizes automatic "learning" of computers.
  • the UE may implement specific service functions by using the ML/AI model.
  • models can be used to make reliable predictions, such as fault prediction, service type/mode prediction, user trajectory/location prediction, service perception prediction, interference prediction, and network KPI prediction. Based on these predictions, proactive network management and control can be achieved, effectively improving network operation and maintenance efficiency and network resource utilization efficiency, and providing personalized and differentiated network service capabilities.
  • the UE uses the ML/AI model to perform face recognition, predict vehicle driving information, and the like.
  • the second is to provide advanced optimization decision-making methods through models.
  • Machine learning algorithms are data-driven and can effectively solve problems in communication networks (eg, 5G communication networks) that are difficult to model, solve, and efficiently implement using traditional methods.
  • the model data may be a model file or model-related data.
  • the model file is used to record information of the ML/AI model, for example, structural information of the ML/AI model or parameters of the ML/AI model.
  • the structure information of the ML/AI model may indicate the input or output of the ML/AI model, and may also indicate the network structure adopted by the ML/AI model, such as: convolutional neural network, fully connected network, etc.
  • the parameters of the ML/AI model can be the weights, biases, gradient values, etc. of the network.
  • the model-related data may be any data related to the ML/AI model, such as training data, verification data, test data, and model inference intermediate data.
  • the embodiment of the present invention provides a model data transmission method, which adds new protocol layers to terminal equipment, access network equipment, and core network equipment respectively, for directly transmitting model data among the terminal equipment, access network equipment, and core network equipment.
  • the terminal equipment can directly transmit model data with the access network equipment, or the terminal equipment can transmit the model data to the core network equipment (for example, AMF) through the access network equipment, without going through the software server, user plane function network element and base station of the terminal equipment.
  • AMF core network equipment
  • the terminal equipment adds a data analysis protocol (DAP) layer and a high data analysis protocol (HDAP) layer
  • DAP data analysis protocol
  • HDAP high data analysis protocol
  • the access network equipment adds a DAP layer
  • the core network equipment such as , AMF
  • DAP supports the transmission of model data between terminal equipment and access network equipment, including uplink transmission and downlink transmission.
  • AI/ML data collection and model distribution between UE and RAN are implemented.
  • This protocol supports functions such as data transmission (segmentation, sequencing), security (integrity protection, encryption and decryption) between UE-RAN;
  • the HDAP layer supports model data transmission between terminal equipment and core network equipment, including uplink transmission and downlink transmission.
  • High-level data analysis protocol (HDAP): realizes the collection of AI/ML data between UE-CN and model distribution. This protocol supports functions such as data transmission (segmentation, sorting) and security (integrity protection, encryption and decryption) between UE and CN.
  • HDAP High-level data analysis protocol
  • This protocol supports functions such as data transmission (segmentation, sorting) and security (integrity protection, encryption and decryption) between UE and CN.
  • the newly added protocol layer is used to support the transmission of model data, and its names include but are not limited to The foregoing examples may have other names, which are not limited in this embodiment of the present application.
  • a data processing function module may be added to the terminal device, the access network device and the core network device to process the data of the newly added protocol layer.
  • a UE-DAM is added to the terminal device, which is responsible for functions such as model data collection, model training, and model generation on the terminal device side.
  • RAN-DAM is added to the access network equipment, which is responsible for the functions of model data collection, model training, and model generation on the access network equipment side.
  • Added CN-DAM on the core network side which is responsible for model data collection, model training, model generation, and other functions on the core network side.
  • FIG. 3 is an architecture diagram of a split access network device.
  • the access network equipment is divided into a centralized unit (central unit, CU) and one or more distributed units (distributed unit, DU) according to functions, wherein the CU and the DU are adjacent to each other through an F1 interface.
  • a CU may include a central unit-control plane (central unit-control plane, CU-CP) and one or more central unit-user planes (central unit-user plane, CU-UP).
  • CU-CP and CU-UP can be connected through E1 interface
  • CU-CP and DU can be connected through F1 control plane interface (F1-C)
  • CU-UP and DU can be connected through F1 interface connected to the user interface (F1-U).
  • the CU-CP can be connected to the RAN-DAM through the Intf1 interface
  • the DU can be connected to the RAN-DAM through the Intf2 interface.
  • one RAN-DAM can support one or more CU-CPs, and one RAN-DAM can support one or more DUs.
  • the DAM may be an internal function of the CU, DU, or CU-CP.
  • the Intf1 and Intf2 interfaces do not exist, or the Intf1 and Intf2 interfaces are considered to be internal interfaces and are invisible to the outside world.
  • Figure 4 shows the protocol stack between CU-CP and RAN-DAM.
  • a stream control transmission protocol (SCTP) layer is added to the IP layers of CU-CP and RAN-DAM, respectively, to support establishing a dedicated connection between CU-CP and RAN-DAM to transmit model data, Link modification and link release are also supported.
  • SCTP stream control transmission protocol
  • new protocols can be added between DU and RAN-DAM and between AMF and CN-DAM to support the transmission of model data.
  • the protocol stack between DU and RAN-DAM and the protocol stack between AMF and CN-DAM can be Consistent with the protocol stack between CU-CP and RAN-DAM.
  • FIG. 5a shows a schematic diagram of a hardware structure of a communication apparatus 510 according to an embodiment of the present application.
  • the communication apparatus 510 includes a processor 5101 and at least one communication interface (in FIG. 5a, it is only an example of including the communication interface 5103 for illustration), and optionally, also includes a memory 5102.
  • the processor 5101, the memory 5102 and the communication interface 5103 are connected to each other.
  • the processor 5101 can be a general-purpose central processing unit (CPU), a microprocessor, an application-specific integrated circuit (ASIC), or one or more processors for controlling the execution of the programs of the present application. integrated circuit.
  • CPU central processing unit
  • ASIC application-specific integrated circuit
  • Communication interface 5103 using any transceiver-like device for communicating with other devices or communication networks, such as Ethernet, radio access network (RAN), wireless local area networks (WLAN) Wait.
  • RAN radio access network
  • WLAN wireless local area networks
  • the memory 5102 may be read-only memory (ROM) or other type of static storage device that can store static information and instructions, random access memory (RAM) or other type of static storage device that can store information and instructions It can also be an electrically erasable programmable read-only memory (EEPROM), a compact disc read-only memory (CD-ROM) or other optical disk storage, CD-ROM storage (including compact discs, laser discs, optical discs, digital versatile discs, Blu-ray discs, etc.), magnetic disk storage media or other magnetic storage devices, or capable of carrying or storing desired program code in the form of instructions or data structures and capable of being executed by a computer Access any other medium without limitation.
  • the memory can exist independently or be connected to the processor.
  • the memory can also be integrated with the processor.
  • the memory 5102 is used for storing computer-executed instructions for executing the solution of the present application, and the execution is controlled by the processor 5101 .
  • the processor 5101 is configured to execute the computer-executed instructions stored in the memory 5102, thereby implementing the intent processing method provided by the following embodiments of the present application.
  • the computer-executed instructions in the embodiment of the present application may also be referred to as application code, which is not specifically limited in the embodiment of the present application.
  • the processor 5101 may include one or more CPUs, such as CPU0 and CPU1 in FIG. 5a.
  • the communication apparatus 510 may include multiple processors, such as the processor 5101 and the processor 5106 in FIG. 5a. Each of these processors can be a single-core (single-CPU) processor or a multi-core (multi-CPU) processor.
  • a processor herein may refer to one or more devices, circuits, and/or processing cores for processing data (eg, computer program instructions).
  • the communication apparatus 510 may further include an output device 5104 and an input device 5105 .
  • the output device 5104 is in communication with the processor 5101 and can display information in a variety of ways.
  • the output device 5104 may be a liquid crystal display (LCD), a light emitting diode (LED) display device, a cathode ray tube (CRT) display device, or a projector (projector) Wait.
  • the input device 5105 is in communication with the processor 5101 and can receive user input in a variety of ways.
  • the input device 5105 may be a mouse, a keyboard, a touch screen device, a sensor device, or the like.
  • the above-mentioned communication apparatus 510 may be a general-purpose device or a dedicated device.
  • the communication device 510 may be a desktop computer, a portable computer, a network server, a personal digital assistant (PDA), a mobile phone, a tablet computer, a wireless terminal device, an embedded device, or a similar structure in FIG. 5a. equipment.
  • PDA personal digital assistant
  • This embodiment of the present application does not limit the type of the communication device 510 .
  • the communication device 510 may be a complete terminal, may also be a functional component or component that implements the terminal, or may be a communication chip, such as a baseband chip.
  • the communication interface may be a radio frequency module.
  • the communication interface 5103 may be an input/output interface circuit of the chip, and the input/output interface circuit is used to read in and output baseband signals.
  • FIG. 5b is a schematic structural diagram of a communication device.
  • the communication apparatus 520 may be the access network device described in this embodiment of the present application.
  • the communication device includes at least one processor 5201 , at least one transceiver 5203 , at least one network interface 5204 and one or more antennas 5205 .
  • at least one memory 5202 is also included.
  • the processor 5201, the memory 5202, the transceiver 5203 and the network interface 5204 are connected, eg, through a bus.
  • the antenna 5205 is connected to the transceiver 5203.
  • the network interface 5204 is used for the communication device to connect with other communication devices through a communication link, for example, the communication device is connected to the core network element through the S1 interface.
  • the connection may include various types of interfaces, transmission lines, or buses, which are not limited in this embodiment.
  • the processor in this embodiment of the present application may include at least one of the following types: a general-purpose central processing unit (CPU), a digital signal processor (DSP), a microprocessor, An application-specific integrated circuit (ASIC), a microcontroller (MCU), a field programmable gate array (FPGA), or an integrated circuit for implementing logic operations .
  • the processor 5201 may be a single-core (single-CPU) processor or a multi-core (multi-CPU) processor. At least one processor 5201 may be integrated in one chip or located on multiple different chips.
  • the memory in this embodiment of the present application may include at least one of the following types: read-only memory (ROM) or other types of static storage devices that can store static information and instructions, random access memory (random access memory, RAM) or other types of dynamic storage devices that can store information and instructions, or EEPROM.
  • ROM read-only memory
  • RAM random access memory
  • EEPROM electrically erasable programmable read-only memory
  • the memory may also be compact disc read-only memory (CD-ROM) or other optical disc storage, optical disc storage (including compact disc, laser disc, optical disc, digital versatile disc, Blu-ray disc, etc.) , a magnetic disk storage medium or other magnetic storage device, or any other medium that can be used to carry or store desired program code in the form of instructions or data structures and that can be accessed by a computer, without limitation.
  • the memory 5202 may exist independently and be connected to the processor 5201 .
  • the memory 5202 can also be integrated with the processor 5201, for example, in one chip.
  • the memory 5202 can store program codes for implementing the technical solutions of the embodiments of the present application, and is controlled and executed by the processor 5201 .
  • the processor 5201 is configured to execute computer program codes stored in the memory 5202, thereby implementing the technical solutions in the embodiments of the present application.
  • the transceiver 5203 may be used to support the reception or transmission of radio frequency signals between the communication apparatus and the terminal equipment, and the transceiver 5203 may be connected to the antenna 5205 .
  • one or more antennas 5205 can receive radio frequency signals
  • the transceiver 5203 can be used to receive the radio frequency signals from the antennas, convert the radio frequency signals into digital baseband signals or digital intermediate frequency signals, and convert the digital baseband signals or digital intermediate frequency signals.
  • the digital intermediate frequency signal is provided to the processor 5201, so that the processor 5201 performs further processing on the digital baseband signal or the digital intermediate frequency signal, such as demodulation processing and decoding processing.
  • the transceiver 5203 can be used to receive a modulated digital baseband signal or a digital intermediate frequency signal from the processor 5201, and convert the modulated digital baseband signal or digital intermediate frequency signal into a radio frequency signal, and transmit the modulated digital baseband signal or digital intermediate frequency signal to a radio frequency signal, and transmit the modulated digital baseband signal or digital intermediate frequency signal to a radio frequency signal through one or more antennas 5205
  • the radio frequency signal is transmitted.
  • the transceiver 5203 can selectively perform one or more stages of down-mixing processing and analog-to-digital conversion processing on the radio frequency signal to obtain a digital baseband signal or a digital intermediate frequency signal. The order of precedence is adjustable.
  • the transceiver 5203 can selectively perform one or more stages of up-mixing processing and digital-to-analog conversion processing on the modulated digital baseband signal or digital intermediate frequency signal to obtain a radio frequency signal.
  • the up-mixing processing and digital-to-analog conversion processing The sequence of s is adjustable.
  • Digital baseband signals and digital intermediate frequency signals can be collectively referred to as digital signals.
  • a transceiver may be referred to as a transceiver circuit, a transceiver unit, a transceiver device, a transmission circuit, a transmission unit, or a transmission device, and the like.
  • the communication device 520 may be a whole communication device, a component or a component that realizes the function of the communication device, or a communication chip.
  • the transceiver 5203 may be an interface circuit of the chip, and the interface circuit is used to read in and output baseband signals.
  • An embodiment of the present application provides a model data transmission method, as shown in FIG. 6 , the method includes the following steps:
  • the terminal device uses the model data analysis protocol to process the model data to be sent to obtain a first message, where the first message includes first information and the model data to be sent, and the first information is used to indicate that the model data contains the The message of the first information carries model data.
  • the terminal device adds a new protocol layer to support the terminal device and the access network device to transmit model data before, including the terminal device sending model data to the access network device.
  • the newly added protocol layer of the terminal device supports the model data analysis protocol described in the embodiment of the present application, and is used for sending, receiving, and processing model data.
  • the newly added protocol layer of the terminal device may be the DAP layer described above.
  • the terminal device encapsulates the model data at the DAP layer to generate a first message.
  • a message header of the first message includes first information indicating that the first message contains model data.
  • the data portion (eg, payload) of the first message includes model data to be sent by the terminal device.
  • the first message may be an uplink information transfer message (uplink information transfer), and the first information may be dedicated inner data over NAS, indicating that the data in the first message can be transmitted at the NAS layer, that is, supporting terminal equipment Model data is transmitted between it and the access network equipment through the air interface.
  • uplink information transfer uplink information transfer
  • the first information may be dedicated inner data over NAS, indicating that the data in the first message can be transmitted at the NAS layer, that is, supporting terminal equipment Model data is transmitted between it and the access network equipment through the air interface.
  • the terminal device sends the first message to the access network device.
  • the access network device receives the first message, and acquires model data from the terminal device according to the first message.
  • the access network device adds a new protocol layer to support the terminal device and the access network device to transmit model data before, including the access network device receiving the model data sent by the terminal device.
  • the access network device may process the first message from the terminal device by using the model data analysis protocol to obtain the model data.
  • the newly added protocol layer of the access network device supports the model data analysis protocol described in the embodiment of the present application, and is used for receiving and processing model data.
  • the newly added protocol layer of the access network device may be the DAP layer described above.
  • the access network device parses the first message at the DAP layer, obtains the first information from the header of the first message, and obtains model data from the payload of the first message.
  • the method shown in FIG. 6 further includes: the terminal device reports its own capability information to the access network device, indicating that the terminal device supports transmission of model data through an air interface.
  • the terminal device sends second information to the access network device, where the second information indicates that the terminal device supports transmission of model data through an air interface.
  • the access network device may also send the capability information of the terminal device to the core network device (eg, AMF).
  • the core network device eg, AMF
  • the access network device sends the second information to the core network device; the second information indicates that the terminal device supports transmission of model data through an air interface.
  • the access network device includes a centralized unit control plane functional module (for example, the CU-CP described above), and the centralized unit control plane functional module can transmit model data with the terminal device, for example, through a newly added
  • the protocol layer comes from the model data of the end device.
  • the access network device may further include a model data processing function module (for example, the RAN-DAM described above), the model data processing function module is used to use the model data to perform related services, for example, use the model data to perform UE performance prediction.
  • the receiving, by the access network device, the first message from the terminal device includes: the centralized unit control plane function module receiving the first message from the terminal device.
  • a new protocol layer is added to the control plane function module of the centralized unit, and model data from the terminal device can be received through the newly added protocol layer.
  • the centralized unit control plane function module may obtain the first information and the model data from the first message by using a model data analysis protocol.
  • the centralized unit control plane function module parses the first message at the DAP layer, obtains the first information from the message header of the first message, determines that the first message contains model data, and obtains the model data from the payload of the first message.
  • the centralized unit control plane functional module of the access network device and the model data processing functional module of the access network device may be separately installed on different devices, or may be jointly installed on the same device.
  • the centralized unit control plane functional module of the access network device and the model data processing functional module of the access network device are wired to connect, and the centralized unit control plane functional module can send the received model data to the model data processing module. function module for processing.
  • the centralized unit control plane function module establishes a transmission channel with the model data processing function module.
  • the centralized unit control plane functional module may reserve resources, such as port numbers, for the transmission channel between the two.
  • the centralized unit control plane function module After the transmission channel between the two is established, the centralized unit control plane function module sends the model data obtained from the first message to the model data processing function module through the transmission channel.
  • the model data processing function module uses the model data to perform model related services. For example, determine the AI/ML model according to the model data, and use the AI/ML model to predict the performance of terminal equipment, cell traffic, etc.
  • the transmission channel between the control plane functional module and the model data processing functional module of the centralized unit is established with the UE as the granularity, that is, once the UE sends model data to the access network device, the centralized unit is established.
  • the transmission channel between the control plane function module and the model data processing function module is established.
  • there is a wired connection between the centralized unit control plane functional module of the access network device and the model data processing functional module of the access network device and the available transmission resources (for example, port numbers) are limited, so the model data of the terminal device is transmitted to the model After the data processing function module, the transmission channel established for the terminal device can be released.
  • the centralized unit control plane function module releases the connection between the centralized unit control plane function module and the model data processing function module transmission channel.
  • this embodiment of the present application also supports the transmission of model data in the downlink direction, that is, supports the access network device to send model data to the terminal device through the air interface.
  • the access network device uses a model data analysis protocol to process model data to be sent to obtain a second message, where the second message includes the model data to be sent and the first information.
  • the access network device sends the second message to the terminal device.
  • the terminal device encapsulates the model data at the DAP layer to generate the second message.
  • the message header of the second message includes first information indicating that the second message contains model data.
  • the data portion (eg, payload) of the second message includes model data to be sent by the access network device.
  • the terminal device may receive the model data sent by the access network device through the air interface.
  • the terminal device receives a second message from the access network device, where the second message includes the first information and model data to be sent by the access network device.
  • the terminal device may further process the second message by using a model data analysis protocol to obtain model data from the access network device.
  • the terminal device parses the second message at the DAP layer, obtains the first information from the message header of the second message, and obtains model data from the payload of the second message.
  • this embodiment of the present application also supports the terminal device and the core network device to transmit model data through the NAS layer.
  • the model data can be transmitted between the terminal device and the core network device by forwarding the message bearing the model data through the access network device.
  • the access network device may further forward the first message to the core network device (for example, AMF).
  • the core network device receives the first message from the terminal device from the access network device, and uses the model data analysis protocol to process the first message to obtain the model data.
  • the newly added protocol layer of the access network device supports the model data analysis protocol described in the embodiment of the present application, and is used for receiving and processing model data.
  • the newly added protocol layer of the access network device may be the aforementioned HDAP layer.
  • a new HDAP layer is added to the terminal equipment, which supports the transmission of model data between the terminal equipment and the core network equipment.
  • the terminal device encapsulates the model data at the HDAP layer to generate a first message.
  • the message header of the first message includes first information indicating that the first message contains model data.
  • the data portion (eg, payload) of the first message includes model data to be sent by the terminal device.
  • the terminal device sends the first message to the access network device, and the access network device forwards the first message to the core network device after receiving the first message.
  • the core network device After receiving the first message, the core network device parses the first message at the HDAP layer, obtains the first information from the message header of the first message, and obtains model data from the payload of the first message.
  • the core network may include a core network model processing function module, such as the CN-DAM described above, which is used for core network-side model-related services, such as model data collection, model training, model generation, Action generation and other functions.
  • a core network model processing function module such as the CN-DAM described above, which is used for core network-side model-related services, such as model data collection, model training, model generation, Action generation and other functions.
  • the core network model processing function module and a certain core network device can be separately located on different devices, or can be co-located on the same device.
  • the core network device and the core network model data processing function module are wired to connect, and the core network device can send the received model data to the core network model data processing function module for processing.
  • the core network device establishes a transmission channel with the core network model data processing function module.
  • the core network device may reserve resources, such as port numbers, for the transmission channel between the two.
  • the core network device After the transmission channel between the two is established, the core network device sends the model data obtained from the first message to the core network model data processing function module through the transmission channel.
  • the core network model data processing function module uses the model data to perform model-related services. For example, determine the AI/ML model according to the model data, and use the AI/ML model to predict the performance of terminal equipment, cell traffic, etc.
  • the core network device establishes a transmission channel between the centralized and core network model data processing function modules with UE as the granularity, that is, once the UE sends model data to the core network device, the core network device and the core network model data are established. Handle transmission channels between functional modules.
  • the core network device there is a wired connection between the core network device and the core network model data processing function module, and the available transmission resources (for example, port numbers) are limited. Therefore, after the model data of the terminal device is transmitted to the core network model data processing function module, it can be released as The transmission channel established by the terminal device.
  • the core network device releases the transmission channel with the core network model data processing function module.
  • the embodiment of the present application also provides a method, which supports the terminal device to report its own capability information when registering with the network, and notifies the network side terminal device to support the transmission of model data over the air interface.
  • the method includes the following steps:
  • the UE establishes an RRC connection with the CU-CP.
  • the UE sends an RRC setup request (RRC setup request) to the CU-CP, requesting to establish an RRC connection with the CU-CP.
  • RRC setup request RRC setup request
  • the CU-CP sends radio resource configuration information to the UE in response to the RRC setup request.
  • the UE completes the radio resource configuration, and sends an RRC setup complete message (RRC setup complete) to the CU-CP, including a registration request (registration request).
  • RRC setup complete an RRC setup complete message
  • the CU-CP selects the AMF, and sends an initial UE message (Initial Context Setup Request) to the AMF, including the registration request.
  • the authentication of the UE is completed between the UE and the AMF.
  • the AMF sends an initial context setup response (initial context setup response) message to the CU-CP, including registration accept (registration accept) information.
  • the CU-CP sends a UE capability enquiry (UE capability enquiry) message to the UE to query the UE capability.
  • UE capability enquiry UE capability enquiry
  • the UE sends UE capability information (UE capability information) to the CU-CP to report the capability information of the UE.
  • UE capability information UE capability information
  • the UE capability information includes an "inner data over control plane" information element, that is, the first information described in the embodiment of the present application, indicating that the UE supports the transmission of model data through the control plane.
  • the CU-CP stores the UE capability information.
  • the CU-CP sends a UE radio capability information indication (UE radio capability info indication) message to the AMF, including the UE capability information.
  • UE radio capability info indication UE radio capability info indication
  • the AMF stores the UE capability information.
  • the CU-CP completes the security activation.
  • the CU-CP completes the security activation with the UE through the SecurityModeCommand message and the SecurityModeComplete message according to the security information supported by the UE in the Initial Context Setup Request message.
  • the CU-CP sends an RRC reconfiguration (RRCReconfiguration) message to the UE.
  • RRC reconfiguration RRCReconfiguration
  • the UE sends an RRC reconfiguration complete (Reconfiguration Complete) message to the CU-CP.
  • RRC reconfiguration complete Reconfiguration Complete
  • the CU-CP sends an Initial Context Setup Response (Initial Context Setup Response) message to the AMF, indicating that the UE context establishment is completed.
  • Initial Context Setup Response Initial Context Setup Response
  • the UE sends a Registration complete message to the AMF through the CU-CP.
  • the registration process of the UE is completed.
  • the UE reports the capability information, and the RAN and AMF save the UE capability information, including the "Inner Data Over Control Plane" information element, which can then be used to determine the UE's ability to transmit model data over the air interface, and the transmission model of the terminal equipment. data.
  • the embodiment of the present application also provides a method to support the UE to send model data to the RAN in an idle (idle) state.
  • the method includes the following steps:
  • the UE sends an RRCSetupRequest message to the CU-CP.
  • the triggering reasons for the request include but are not limited to the following types: the UE has model data to be sent to the RAN, and the UE has model data to be sent to the AMF.
  • the CU-CP sends an RRCSetup message to the UE, including establishing a signaling radio bearer (signaling radio bearer, SRB) 1 and radio resource configuration information;
  • SRB signaling radio bearer
  • the UE completes the SRB1 and radio resource configuration, and sends an RRCSetupComplete message to the CU-CP;
  • the CU-CP sends a NAS layer Service Request to the AMF.
  • the Service Request can be carried through the Initial UE Message/Initial Context Setup Request.
  • the AMF can also send an Initial Context Setup Response message to the CU-CP, carrying the ServiceAccept information.
  • Steps 805-810 are the same as steps 706-711 described above, and are not repeated here.
  • the CU-CP sends an RRCReconfiguration message to the UE, indicating the establishment of SRB2 and a data radio bearer (data radio bearer, DRB).
  • the UE replies an RRCReconfigurationComplete message to the CU-CP.
  • the UE After the UE successfully establishes the SRB2 and the DRB, it returns an RRCReconfigurationComplete message to the CU-CP.
  • the CU-CP sends an Initial Context Setup Response response message to the AMF.
  • the capability information may be reported through steps 804 to 813, and the network side may perform security authentication on the UE. For example, when the UE has model data to be sent, or user plane data to be sent, or control plane data to be sent, steps 804 to 813 are performed.
  • the CU-CP sends a channel establishment indication message to the RAN-DAM, instructing to establish a transmission channel between the CU-CP and the RAN-DAM.
  • the situations that trigger the CU-CP to establish a transmission channel may include the following:
  • the UE only has model data to send
  • the UE has model data and user plane data to be sent;
  • the UE has model data and control plane data to be sent.
  • the indication message sent by the CU-CP to the RAN-DAM in step 814 includes the identification of the terminal device (ie, the UE in the flowchart shown in FIG. 8 ), and the CU-CP and the RAN-DAM can establish transmission. Correspondence between channel and UE identity. Wherein, the identity of the terminal equipment is used to identify the UE, which may be a UE ID.
  • the UE ID may be a bit string (bit string, or referred to as a bit string) or a character string (octet string), which is not limited in this embodiment of the present application.
  • the UE sends the model data through an uplink information transfer message (UL information transfer).
  • UL information transfer uplink information transfer
  • the UL information transfer message contains the "Dedicated Inner Data Over NAS" information element, indicating that the message contains model data.
  • the UE encapsulates the model data to be sent at the newly added protocol layer (for example, the DAP described above), and generates the UL information transfer message.
  • the newly added protocol layer for example, the DAP described above
  • the CU-CP sends the model data to the RAN-DAM.
  • the CU-CP parses the received message at the newly added protocol layer (for example, the DAP described above) to obtain model data.
  • the model data is sent to the RAN-DAM through the transmission channel with the RAN-DAM.
  • the embodiment of the present application also provides a method to support the UE to send model data to the AMF in an idle (idle) state.
  • the method includes the following steps:
  • Steps 901 to 913 and steps 801 to 813 shown in FIG. 8 will not be repeated here.
  • the AMF sends a transmission channel establishment instruction message to the CN-DAM, indicating the establishment of a transmission channel between the AMF and the CN-DAM.
  • the situation that triggers the establishment of the transmission channel by the AMF may be when the AMF detects that the RRC establishment cause value (RRC establishment cause) in the Initial UE Message carries the following trigger cause: the UE has model data to be sent to the AMF.
  • RRC establishment cause RRC establishment cause
  • the transmission channel establishment instruction message includes the identity of the terminal device (ie, the UE in the flowchart shown in FIG. 9 ), and the AMF and CN-DAM can establish the correspondence between the UE identity and the transmission channel.
  • the identity of the terminal equipment is used to identify the UE, which may be a UE ID.
  • the UE ID may be a bit string (bit string, or referred to as a bit string) or a character string (octet string), which is not limited in this embodiment of the present application.
  • the UE sends model data to the CU-CP through UL information transfer.
  • the UL information transfer message contains the "Dedicated Inner Data Over NAS" information element, indicating that the message contains model data.
  • the UE encapsulates the model data to be sent at a newly added protocol layer (for example, the HDAP described above), and generates the UL information transfer message.
  • a newly added protocol layer for example, the HDAP described above
  • the RAN sends the model data to the AMF through the Uplink NAS transport message.
  • the RAN identifies that the received UL information transfer message is a NAS message, that is, the message is terminated in the core network, and then re-encapsulates the message to obtain an Uplink NAS transport message.
  • the RAN sends an Uplink NAS transport message to the AMF.
  • the Uplink NAS transport message includes a "Dedicated Inner Data Over NAS" cell, indicating that the message contains model data.
  • the AMF sends the model data to the CN-DAM through the transmission channel between the AMF and the CN-DAM.
  • the embodiment of the present application further provides a method for realizing the release of a dedicated transmission channel on the RAN side (a transmission channel for transmitting model data).
  • a dedicated transmission channel on the RAN side a transmission channel for transmitting model data.
  • the CU-CP sends an RRC Release message to the UE.
  • the CU-CP sends a transmission channel deletion message to the RAN-DAM, instructing the RAN-DAM to delete the channel used for transmitting the model data of the UE.
  • the transmission channel deletion message includes the identification of the terminal device, and the transmission channel established for the UE can be determined according to the correspondence between the transmission channel maintained when the transmission channel is established and the UE identification, and the physical transmission resources occupied by the transmission channel can be released, for example ,The port number.
  • the above steps 1001 and 1002 are applicable to the scenario in which the UE transitions from the Connected state to the Idle state, for example, the scenario in which the UE switches from the current cell to another cell, thereby causing the current RRC link to be released.
  • the RRC Release message sent by the CU-CP to the UE carries the suspendConfig information element, which is used to indicate that the UE is currently transitioning from the Connected state to the Inactive state.
  • the dedicated transmission channel may be released through steps 1001 and 1002 .
  • the CU-CP instructs the RAN-DAM to release the channel established for the UE to transmit model data.
  • the embodiment of the present application further provides a method for realizing the release of a dedicated transmission channel on the core network side (a transmission channel for transmitting model data).
  • a dedicated transmission channel on the core network side a transmission channel for transmitting model data.
  • the UE sends a RAN signaling connection released Request message to the AMF to trigger a deregistration process.
  • the AMF sends a transmission channel deletion message to the CN-DAM, instructing the RAN-DAM to delete the channel used for transmitting the model data of the UE.
  • the transmission channel deletion message includes the identification of the terminal device, and the transmission channel established for the UE can be determined according to the correspondence between the transmission channel maintained when the transmission channel is established and the UE identification, and the physical transmission resources occupied by the transmission channel can be released, for example ,The port number.
  • the AMF sends an AN signaling connection released Accept message to the UE.
  • the UE enters an idle state.
  • This embodiment also provides a method for realizing that the UE actively triggers the transmission of model data.
  • the method includes the following steps:
  • a terminal device receives a configuration message sent by an access network device, where the configuration message includes model-related scheduling information.
  • Model-related scheduling information includes but is not limited to the following information:
  • the life management strategies required for each model including but not limited to the strategy of downloading the model, the strategy of updating the model, and the strategy of terminating the model.
  • the information of the data required for model training is used to describe the data used to train the model, and different models require different training data.
  • the model training data may be the current location of the UE and the corresponding signal strength value.
  • the signal strength value may be reference signal receiving power (RSRP), signal to interference plus noise ratio (SINR); for federated learning, the access network equipment requires the UE to perform local training The resulting data model is sent to the RAN-DAM.
  • RSRP reference signal receiving power
  • SINR signal to interference plus noise ratio
  • the reporting method of model data for example, periodic reporting or event reporting.
  • the configuration message needs to include a reporting period, for example, 10 seconds, or 1 minute, or 1 hour.
  • the configuration message needs to include the information of the reported event.
  • the UE needs to send the locally trained data model to the RAN-DAM; or, when a radio link failure (RLF) occurs ) to report model data.
  • RLF radio link failure
  • the terminal device sends a model data request to the access network device, and requests the access network device to send corresponding model data.
  • the terminal device determines whether the scheduling condition of the model data is satisfied according to the scheduling information related to the model preconfigured by the access network device.
  • the scheduling conditions of the model data are met, a model data request can be sent to the access network device.
  • the access network device sends model data to the terminal device.
  • FIG. 13 shows a possible schematic structural diagram of the communication apparatus involved in the above embodiment.
  • the communication apparatus shown in FIG. 13 may be the terminal device described in the embodiments of the present application, may also be a component in the terminal device that implements the above method, or may be a chip applied in the terminal device.
  • the communication apparatus shown in FIG. 13 may be the access network device described in the embodiment of the present application, or may be a component in the access network device implementing the above method, or may be a chip applied in the access network device.
  • the communication apparatus shown in FIG. 13 may be the core network device described in the embodiments of the present application, or may be a component in the core network device that implements the above method, or may be a chip applied in the core network device.
  • the chip may be a System-On-a-Chip (SOC) or a baseband chip with a communication function, or the like.
  • the communication apparatus includes a processing unit 1301 and a communication unit 1302 .
  • the processing unit may be one or more processors, and the communication unit may be a transceiver or a communication interface.
  • the processing unit 1301 is used to implement the processing steps of the device, for example, to support the terminal device to perform step 604, to support the access network device to perform step 603, to support the core network device to perform step 710, and/or for the technology described herein other processes.
  • the communication unit 1302 is used to support the communication between the device and other communication apparatuses, for example, supporting the terminal device to perform step 602, supporting the access network device to perform 916, supporting the core network device to perform step 917, and/or for performing steps described herein. Other procedures of the described techniques.
  • the communication device may further include a storage unit 1303, and the storage unit 1303 is configured to store program codes and/or data of the communication device.
  • the processing unit 1301 may include at least one processor, the communication unit 1302 may be a transceiver or a communication interface, and the storage unit 1303 may include a memory.
  • An embodiment of the present application provides a computer-readable storage medium, where instructions are stored in the computer-readable storage medium; the instructions are used to execute the methods shown in FIG. 6 to FIG. 12 .
  • Embodiments of the present application provide a computer program product including instructions, which, when executed on a communication device, cause the communication device to execute the methods shown in FIGS. 6 to 12 .
  • a wireless communication device includes: an instruction is stored in the wireless communication device; when the wireless communication device runs on the communication device shown in FIGS. 5a, 5b, and 13 to 14, the communication device is made to execute the following The method shown in FIGS. 6 to 12 .
  • the wireless communication device may be a chip.
  • the processors in the embodiments of the present application may include, but are not limited to, at least one of the following: a central processing unit (CPU), a microprocessor, a digital signal processor (DSP), a microcontroller (MCU) ), or artificial intelligence processors and other types of computing devices that run software, each computing device may include one or more cores for executing software instructions to perform operations or processing.
  • the processor can be a separate semiconductor chip, or can be integrated with other circuits into a semiconductor chip. For example, it can form a SoC (on-chip) with other circuits (such as codec circuits, hardware acceleration circuits, or various bus and interface circuits).
  • the processor may further include necessary hardware accelerators, such as field programmable gate arrays (FPGA), PLDs (Programmable Logic Devices) , or a logic circuit that implements dedicated logic operations.
  • FPGA field programmable gate arrays
  • PLD Programmable Logic Devices
  • the memory in this embodiment of the present application may include at least one of the following types: read-only memory (ROM) or other types of static storage devices that can store static information and instructions, random access memory (random access memory) , RAM) or other types of dynamic storage devices that can store information and instructions, and can also be an EEPROM.
  • the memory may also be compact disc read-only memory (CD-ROM) or other optical disc storage, optical disc storage (including compact disc, laser disc, optical disc, digital versatile disc, Blu-ray disc, etc.) , a magnetic disk storage medium or other magnetic storage device, or any other medium that can be used to carry or store desired program code in the form of instructions or data structures and that can be accessed by a computer, without limitation.
  • At least one means one or more.
  • “Plural” means two or more.
  • the character “/” generally indicates that the associated objects are an “or” relationship.
  • At least one item(s) below” or similar expressions thereof refer to any combination of these items, including any combination of single item(s) or plural items(s).
  • At least one item (a) of a, b, or c may represent: a, b, c, ab, ac, bc, or abc, where a, b, and c may be single or multiple .
  • words such as “first” and “second” are used to distinguish the same or similar items with basically the same function and effect. Those skilled in the art can understand that words such as “first” and “second” do not limit the quantity and execution order, and the words “first” and “second” are not necessarily different.
  • the disclosed apparatus and method for accessing a database may be implemented in other manners.
  • the embodiments of the database access apparatus described above are only illustrative.
  • the division of the modules or units is only a logical function division.
  • the shown or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection of database access devices or units through some interfaces, which may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and components shown as units may be one physical unit or multiple physical units, that is, they may be located in one place, or they may be distributed to multiple different places . Some or all of the units may be selected according to actual needs to achieve the purpose of the solution in this embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist physically alone, or two or more units may be integrated into one unit.
  • the above-mentioned integrated units may be implemented in the form of hardware, or may be implemented in the form of software functional units.
  • the integrated unit is implemented in the form of a software functional unit and sold or used as an independent product, it may be stored in a readable storage medium.
  • the technical solutions of the embodiments of the present application can be embodied in the form of software products in essence, or the parts that contribute to the prior art, or all or part of the technical solutions, which are stored in a storage medium , including several instructions to make a device (which may be a single chip microcomputer, a chip, etc.) or a processor to execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned storage medium includes: a U disk, a removable hard disk, a ROM, a RAM, a magnetic disk, or an optical disk and other mediums that can store program codes.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例公开了一种模型数据传输方法及通信装置,涉及通信领域,能够缩短模型数据的传输路径,降低传输时延。终端设备可以新增协议层支持与接入网设备之间传输模型数据。具体地,终端设备利用模型数据分析协议对待发送的模型数据进行处理获得第一消息,第一消息包括第一信息和待发送的模型数据,第一信息用于指示包含第一信息的消息携带模型数据;终端设备向接入网设备发送第一消息。

Description

一种模型数据传输方法及通信装置 技术领域
本申请实施例涉通信领域,尤其涉及一种模型数据传输方法及通信装置。
背景技术
第五代移动通信技术(5th generation mobile networks,5G)在网络速度、网络延迟等关键性能有了重大飞跃,能够适应多种多样的场景和差异化服务需求。人工智能(artificial intelligence,AI)技术、机器学习(machine learning,ML)技术也逐渐应用在5G通信系统中,例如,利用模型进行故障预测、网络关键绩效指标(key performance indicator,KPI)预测等。
当前网络侧完成AI/ML模型训练后,将AI/ML模型文件作为软件包的一部分,配置到终端设备的软件服务器中。由软件服务器通过用户面功能网元、基站向终端设备下发AI/ML模型文件,传输路径迂回,传输时延较大。
发明内容
本申请实施例提供一种模型数据传输方法及通信装置,缩短模型数据的传输路径,降低传输时延。
第一方面,提供一种模型数据传输方法,包括:终端设备可以新增协议层支持与接入网设备之间传输模型数据。具体地,终端设备利用模型数据分析协议对待发送的模型数据进行处理获得第一消息,第一消息包括第一信息和待发送的模型数据,第一信息用于指示包含第一信息的消息携带模型数据;终端设备向接入网设备发送第一消息。
本申请中,分别在终端设备、接入网设备新增协议层,用于终端设备、接入网设备、核心网设备之间直接传输模型数据。终端设备可以直接与接入网设备传输模型数据,无需通过终端设备的软件服务器、用户面功能网元以及基站实现向终端设备下发AI/ML模型数据,缩短了模型数据的传输路径,在一定程度上减少了模型数据的传输时延。
结合第一方面,在第一方的第一种可能的实现方式中,所述方法还包括:终端设备可以向接入网设备上报能力信息,例如,向接入网设备发送第二信息,第二信息指示终端设备支持通过空口传输模型数据。
本申请中,终端设备可以向接入网设备上报能力信息,指示终端设备具备通过空口传输模型数据,支持和接入网设备直接传输模型数据,以便后续需要时通过Uu链路与接入网设备传输模型数据。
结合第一方面或第一方面的第一种可能的实现方式中,在第一方面的第二种可能的实现方式中,所述方法还包括:终端设备还可以从接入网设备接收第二消息,第二消息包括第一信息以及接入网设备待发送的模型数据;利用模型数据分析协议对第二消息进行处理获得来自接入网设备的模型数据。
本申请中,还支持在下行传输模型数据,终端设备可以接收接入网设备发送的模型数据。
第二方面,提供了一种模型数据传输方法,包括:接入网设备从终端设备接收第一消息,第一消息包括第一信息和模型数据,第一信息用于指示包含第一信息的消息携带模型数据;接入网设备利用模型数据分析协议对第一消息进行处理,获得模型数据。
本申请中,分别在终端设备、接入网设备新增协议层,用于终端设备、接入网设备、核心网设备之间直接传输模型数据。终端设备可以直接与接入网设备传输模型数据,无需通过终端设备的软件服务器、用户面功能网元以及基站实现向终端设备下发AI/ML模型数据,缩短了模型数据的传输路径,在一定程度上减少了模型数据的传输时延。
结合第二方面,在第二方面的第一种可能的实现方式中,所述方法还包括:从终端设备接收第二信息,第二信息指示终端设备支持通过空口传输模型数据。
本申请中,接入网设备可以接收终端设备上报的能力信息,确定可以和终端设备之间通过空口传输模型数据。
结合第二方面的第一种可能的实现方式,在第二方面的第二种可能的实现方式中,所述方法还包括:向核心网设备发送第二信息;第二信息指示终端设备支持通过空口传输模型数据。
本申请中,接入网设备向核心网上报的能力信息,以便核心网确定可以和终端设备之间通过NAS层传输模型数据。
结合第二方面或第二方面的第一或第二种可能的实现方式,在第二方面的第三种可能的实现方式中,所述方法还包括:接入网设备利用模型数据分析协议对待发送的模型数据进行处理获得第二消息,第二消息包括待发送的模型数据以及第一信息;接入网设备向终端设备发送第二消息。
本申请中,还支持在下行传输模型数据,终端设备可以接收接入网设备发送的模型数据。
结合第二方面或第二方面的第一至第三种可能的实现方式中的任意一种,在第二方面的第四种可能的实现方式中,接入网设备包括集中单元控制面功能模块,接入网设备从终端设备接收第一消息,包括:集中单元控制面功能模块从终端设备接收第一消息。
本申请适用于分离式接入网设备,接入网设备的集中单元控制面功能模块新增协议层,用于和终端设备之间传输模型数据。
结合第二方面的第四种可能的实现方式,在第二方面的第五种可能的实现方式中,接入网设备还包括模型数据处理功能模块,接入网设备利用模型数据分析协议对第一消息进行处理,获得模型数据,包括:集中单元控制面功能模块利用模型数据分析协议从第一消息中获取第一信息和模型数据。
结合第二方面的第五种可能的实现方式,在第二方面的第六种可能的实现方式中,所述方法还包括:集中单元控制面功能模块建立与模型数据处理功能模块之间的传输通道;集中单元控制面功能模块通过传输通道向模型数据处理功能模块发送模型数据;模型数据处理功能模块利用模型数据进行模型相关业务。
本申请中,以UE为粒度建立传输模型数据的通道,为传输模型数据分配资源, 支持模型数据的传输。
结合第二方面的第六种可能的实现方式,在第二方面的第七种可能的实现方式中,所述方法还包括:当终端设备释放与接入网设备之间的无线资源控制连接,集中单元控制面功能模块释放传输通道。
本申请中,当UE与接入网设备断开连接,可以释放为UE建立的传输通道,避免占用有限的传输资源。
结合第二方面的第六种可能的实现方式,在第二方面的第七种可能的实现方式中,方法还包括:向核心网设备转发第一消息。
第三方面,公开了一种模型数据传输方法,所述包括:核心网设备从接入网设备接收来自终端设备的第一消息,第一消息包括第一信息和模型数据,第一信息用于指示包含第一信息的消息携带模型数据;核心网设备利用模型数据分析协议对第一消息进行处理,获得模型数据。
结合第三方面,在第三方面的第一种可能的实现方式中,所述方法还包括:向核心网设备发送第二信息;第二信息指示终端设备支持通过空口传输模型数据。
结合第三方面或第三方面的第一种可能的实现方式,在第三方面的第二种可能的实现方式中,所述方法还包括:核心网设备建立与核心网模型数据处理功能模块之间的传输通道;核心网设备通过传输通道向核心网模型数据处理功能模块发送模型数据,以便核心网模型数据处理功能模块利用模型数据进行模型相关业务。
本申请中,以UE为粒度建立传输模型数据的通道,为传输模型数据分配资源,支持模型数据的传输。
结合第三方面或第三方面的第一或第二种可能的实现方式,在第三方面的第三种可能的实现方式中,所述方法还包括:当终端设备释放与接入网设备之间的无线资源控制连接,核心网设备释放传输通道。
本申请中,当UE与接入网设备断开连接,可以释放为UE建立的传输通道,避免占用有限的传输资源。
第四方面,提供一种通信装置,包括:处理单元,用于利用模型数据分析协议对待发送的模型数据进行处理获得第一消息,所述第一消息包括第一信息和所述待发送的模型数据,所述第一信息用于指示包含所述第一信息的消息携带模型数据。通信单元,用于向所述接入网设备发送所述第一消息。
结合第四方面,在第四方面的第一种可能的实现方式中,所述通信单元还用于,向所述接入网设备发送第二信息,所述第二信息指示所述终端设备支持通过空口传输模型数据。
结合第四方面或第四方面的第一或第二种可能的实现方式,在第四方面的第三种可能的实现方式中,所述通信单元还用于,从所述接入网设备接收第二消息,所述第二消息包括所述第一信息以及所述接入网设备待发送的模型数据;所述处理单元还用于,利用模型数据分析协议对所述第二消息进行处理获得来自所述接入网设备的模型数据。
第五方面,提供一种通信装置,包括:通信单元,用于从终端设备接收第一消息,所述第一消息包括第一信息和模型数据,所述第一信息用于指示包含所述第一信息的 消息携带模型数据;处理单元,用于利用模型数据分析协议对所述第一消息进行处理,获得所述模型数据。
结合第五方面,在第五方面的第一种可能的实现方式中,所述通信单元还用于,从所述终端设备接收第二信息,所述第二信息指示所述终端设备支持通过空口传输模型数据。
结合第五方面的第一种可能的实现方式,在第五方面的第二种可能的实现方式中,所述通信单元还用于,向核心网设备发送所述第二信息;所述第二信息指示所述终端设备支持通过空口传输模型数据。
结合第五方面或第五方面的第一种可能的实现方式,在第五方面的第二种可能的实现方式中,所述处理单元还用于,利用模型数据分析协议对待发送的模型数据进行处理获得第二消息,所述第二消息包括所述待发送的模型数据以及所述第一信息;所述通信单元还用于,向所述终端设备发送所述第二消息。
结合第五方面或第五方面的第一或第二种可能的实现方式,在第五方面的第三种可能的实现方式中,所述接入网设备包括集中单元控制面功能模块,所述集中单元控制面功能模块新增协议层,支持接入网设备与终端设备之间传输模型数据。所述通信单元属于集中单元控制面功能模块,集中单元控制面功能模块通过所述通信单元从所述终端设备接收所述第一消息。
结合第五方面的第三种可能的实现方式,在第五方面的第四种可能的实现方式中,所述接入网设备还包括模型数据处理功能模块,所述处理单元属于模型数据处理功能模块,所述集中单元控制面功能模块通过所述处理单元,利用模型数据分析协议从所述第一消息中获取所述第一信息和所述模型数据。
结合第五方面的第四种可能的实现方式,在第五方面的第五种可能的实现方式中,所述集中单元控制面功能模块建立与所述模型数据处理功能模块之间的传输通道;
所述集中单元控制面功能模块通过所述传输通道向所述模型数据处理功能模块发送所述模型数据;所述模型数据处理功能模块利用所述模型数据进行模型相关业务。
结合第五方面的第五种可能的实现方式,在第五方面的第六种可能的实现方式中,所述处理单元还用于,当所述终端设备释放与所述接入网设备之间的无线资源控制连接,释放所述传输通道。
结合第五方面或第五方面的第一至第五种可能的实现方式,在第五方面的第六种可能的实现方式中,通信单元还用于,向核心网设备转发所述第一消息。
第六方面,提供了一种通信装置,包括:通信单元,用于从接入网设备接收来自终端设备的第一消息,所述第一消息包括第一信息和模型数据,所述第一信息用于指示包含所述第一信息的消息携带模型数据;处理单元,用于利用模型数据分析协议对所述第一消息进行处理,获得所述模型数据。
结合第六方面,在第六方面的第一种可能实现方式中,通信单元还用于,向核心网设备发送所述第二信息;所述第二信息指示所述终端设备支持通过空口传输模型数据。
结合第六方面或第六方面的第一种可能的实现方式,在第六方面的第二种可能的实现方式中,处理单元还用于,建立与核心网模型数据处理功能模块之间的传输通道; 所述通信单元还用于,通过所述传输通道向所述核心网模型数据处理功能模块发送所述模型数据,以便所述核心网模型数据处理功能模块利用所述模型数据进行模型相关业务。
结合第六方面的第二种可能的实现方式,在第六方面的第三种可能的实现方式中,当所述终端设备释放与所述接入网设备之间的无线资源控制连接,所述核心网设备释放所述传输通道。
第七方面,提供了一种通信装置,包括至少一个处理器和存储器,所述至少一个处理器与所述存储器耦合;所述存储器,用于存储计算机程序;
所述至少一个处理器,用于执行所述存储器中存储的计算机程序,以使得所述装置执行如上述第一方面以及第一方面任意一种实现方式所述的方法。
第八方面,提供了一种计算机可读存储介质,包括:计算机可读存储介质中存储有指令;当计算机可读存储介质在上述第四方面以及第四方面任意一种实现方式所述的通信装置上运行时,使得通信装置执行如上述第一方面以及第一方面任意一种实现方式所述的方法。
第九方面,提供了一种计算机可读存储介质,包括:计算机可读存储介质中存储有指令;当计算机可读存储介质在上述第五方面以及第五方面任意一种实现方式所述的通信装置上运行时,使得通信装置执行如上述第二方面以及第二方面任意一种实现方式所述的方法。
第十方面,提供了一种计算机可读存储介质,包括:计算机可读存储介质中存储有指令;当计算机可读存储介质在上述第六方面以及第六方面任意一种实现方式所述的通信装置上运行时,使得通信装置执行如上述第三方面以及第三方面任意一种实现方式所述的方法。
第十一方面,提供了一种无线通信装置,该通信装置包括处理器,例如,应用于通信装置中,用于实现上述第一方面至第三方面任意一种实现方式所述的方法,该通信装置例如可以是芯片系统。在一种可行的实现方式中,所述芯片系统还包括存储器,所述存储器,用于保存实现上述第一方面所述方法的功能必要的程序指令和数据。
上述方面中的芯片系统可以是片上系统(system on chip,SOC),也可以是基带芯片等,其中基带芯片可以包括处理器、信道编码器、数字信号处理器、调制解调器和接口模块等。
第十二方面,提供了一种通信系统,所述通信系统包括上述任意一种实现方式所述的接入网设备、上述任意一种实现方式所述的终端设备以及上述任意一种实现方式所述的核心网设备。
附图说明
图1为本申请实施例提供的网络架构图;
图2为本申请实施例提供的协议栈示意图;
图3为本申请实施例提供的分离式接入网设备的结构示意图;
图4为本申请实施例提供的另一协议栈示意图;
图5a为本申请实施例提供的通信装置的结构框图;
图5b为本申请实施例提供的通信装置的另一结构框图;
图6为本申请实施例提供的模型数据传输方法的流程示意图;
图7~图12为本申请实施例提供的模型数据传输方法的另一流程示意图;
图13~图14为本申请实施例提供的通信装置的另一框架示意图。
具体实施方式
参考图1,为本申请实施例适用的一种通信系统的网络架构示意图,该网络架构中包括接入网设备10、终端设备(图中仅示出了终端设备21、终端设备22)、接入管理网元30、会话管理网元40、用户面网元50、策略控制网元60、网络切片选择网元70、网络存储功能网元80、统一数据管理网元90、统一数据存储网元100、认证服务功能网元110、应用功能网元120,网络数据分析网元130、网络能力开放网元140以及连接运营商网络的数据网络(data network,DN)150。终端设备可通过接入网设备、用户面网元向数据网络发送业务数据,以及从数据网络接收业务数据。
其中,终端设备是一种具有无线收发功能的设备,可以部署在陆地上,包括室内或室外、手持、穿戴或车载;也可以部署在水面上(如轮船等);还可以部署在空中(例如飞机、气球和卫星上等。所述终端设备可以经无线接入网(radio access network,RAN)与核心网进行通信,与RAN交换语音和/或数据。所述终端设备可以是手机(mobile phone)、平板电脑(Pad)、带无线收发功能的电脑、移动互联网设备(mobile internet device,MID)、可穿戴设备、虚拟现实(virtual reality,VR)终端设备、增强现实(augmented reality,AR)终端设备、工业控制(industrial control)中的无线终端、无人驾驶(self driving)中的无线终端、远程医疗(remote medical)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端等等。本申请的实施例对应用场景不做限定。终端设备有时也可以称为用户设备(user equipment,UE)、移动台和远方站等,本申请的实施例对终端设备所采用的具体技术、设备形态以及名称不做限定。
接入网设备,是网络中用于将终端设备接入到无线网络的设备。所述接入网设备可以为无线接入网中的节点,又可以称为基站,还可以称为无线接入网(radio access network,RAN)节点(或设备)。网络设备可以包括长期演进(long term evolution,LTE)系统或演进的LTE系统(LTE-Advanced,LTE-A)中的演进型基站(NodeB或eNB或e-NodeB,evolutional Node B),如传统的宏基站eNB和异构网络场景下的微基站eNB,或者也可以包括第五代移动通信技术(5th generation mobile networks,5G)新无线(new radio,NR)系统中的下一代节点B(next generation node B,gNB),或者还可以包括无线网络控制器(radio network controller,RNC)、节点B(Node B,NB)、基站控制器(base station controller,BSC)、基站收发台(base transceiver station,BTS)、传输接收点(transmission reception point,TRP)、家庭基站(例如,home evolved NodeB,HeNB或home Node B,HNB)、基带单元(base band unit,BBU)、基带池BBU pool,或WiFi接入点(access point,AP)等,再或者还可以包括云接入网(cloud radio access network,CloudRAN)系统中的集中式单元(centralized unit,CU)和分布式单元(distributed unit,DU),本申请实施例并不限定。在接入网设备包括CU和DU的分离部署场景中,CU支持无线资源控制(radio resource control,RRC)、分组 数据汇聚协议(packet data convergence protocol,PDCP)、业务数据适配协议(service data adaptation protocol,SDAP)等协议;DU主要支持无线链路控制层(radio link control,RLC)、媒体接入控制层(media access control,MAC)和物理层协议。
接入管理网元(本申请实施例还可以称为接入移动管理网元),主要用于移动网络中的终端的附着、移动性管理、跟踪区更新流程,接入管理网元终结了非接入层(non access stratum,NAS)消息、完成注册管理、连接管理以及可达性管理、分配跟踪区域列表(track area list,TA list)以及移动性管理等,并且透明路由会话管理(session management,SM)消息到会话管理网元。在5G通信系统中,接入管理网元可以是接入与移动性管理功能(access and mobility management function,AMF),在未来的通信系统(如6G通信系统)中,移动性管理网元可以仍是AMF网元,或者也可以具有其它名称,本申请并不限定。
会话管理网元,主要用于移动网络中的会话管理,如会话建立、修改、释放。具体功能如为终端分配互联网协议(internet protocol,IP)地址、选择提供报文转发功能的用户面网元等。在5G通信系统中,会话管理网元可以是会话管理功能(session management function,SMF),在未来的通信系统(如6G通信系统)中,会话管理网元可以仍是SMF网元,或者也可以具有其它名称,本申请并不限定。
用户面网元,主要用于对用户报文进行处理,如转发、计费、合法监听等。用户面网元也可以称为协议数据单元(protocol data unit,PDU)会话锚点(PDU session anchor,PSA)。在5G通信系统中,用户面网元可以是用户面功能(user plane function,UPF),在未来的通信系统(如6G通信系统)中,用户面网元可以仍是UPF网元,或者也可以具有其它名称,本申请并不限定。
策略控制网元,包含用户签约数据管理功能、策略控制功能、计费策略控制功能、服务质量(quality of service,QoS)控制等。在5G通信系统中,策略控制网元可以是策略控制功能(policy control function,PCF),在未来的通信系统(如6G通信系统)中,策略控制网元可以仍是PCF网元,或者也可以具有其它名称,本申请并不限定。
网络切片选择功能网元,主要用于为终端设备的业务选择合适的网络切片。在5G通信系统中,网络切片选择网元可以是网络切片选择功能(network slice selection function,NSSF)网元,在未来的通信系统(如6G通信系统)中,网络切片选择网元可以仍是NSSF网元,或者也可以具有其它名称,本申请并不限定。
网络存储功能网元,主要用于提供网元或网元所提供服务的注册和发现功能。在5G通信系统中,网络存储功能网元可以是网络仓库功能(network repository function,NRF),在未来的通信系统(如6G通信系统)中,网络存储功能网元可以仍是NRF网元,或者也可以具有其它名称,本申请并不限定。
网络数据分析网元,可以从各个网络功能(network function,NF),例如策略控制网元、会话管理网元、用户面网元、接入管理网元、应用功能网元(通过网络能力开放功能网元)收集数据,并进行分析和预测。在5G通信系统中,网络数据分析网元可以是网络数据分析功能(network data analytics function,NWDAF),在未来的通信系统(如6G通信系统)中,网络数据分析网元可以仍是NWDAF网元,或者也可以具有其它名称,本申请并不限定。
统一数据管理网元,主要用于管理终端设备的签约信息。在5G通信系统中,统一数据管理网元可以是统一数据管理(unified data management,UDM),在未来的通信系统(如6G通信系统)中,统一数据管理网元可以仍是UDM网元,或者也可以具有其它名称,本申请并不限定。
统一数据存储网元,主要用于存储结构化的数据信息,其中包括签约信息、策略信息,以及有标准格式定义的网络数据或业务数据。在5G通信系统中,统一数据存储网元可以是统一数据存储(unified data repository,UDR),在未来的通信系统(如6G通信系统)中,统一数据存储网元可以仍是UDR网元,或者也可以具有其它名称,本申请并不限定。
认证服务功能网元,主要用于对终端设备进行安全认证。在5G通信系统中,认证服务功能网元可以是认证服务器功能(authentication server function,AUSF),在未来的通信系统(如6G通信系统)中,认证服务功能网元可以仍是AUSF网元,或者也可以具有其它名称,本申请并不限定。
网络能力开放网元,可以将网络的部分功能有控制地暴露给应用。在5G通信系统中,网络能力开放网元可以是网络能力开放功能(network exposure function,NEF),在未来的通信系统(如6G通信系统)中,网络能力开放网元可以仍是NEF网元,或者也可以具有其它名称,本申请并不限定。
应用功能网元,可以向运营商的通信网络的控制面网元提供各类应用的服务数据,或者从通信网络的控制面网元获得网络的数据信息和控制信息。在5G通信系统中,应用功能网元可以是应用功能(application function,AF),在未来的通信系统(如6G通信系统)中,应用功能网元可以仍是AF网元,或者也可以具有其它名称,本申请并不限定。
数据网络,主要用于为终端设备提供数据传输服务。数据网络可以是私有网络,如局域网,也可以是公用数据网(public data network,PDN)网络,如因特网(Internet),还可以是运营商共同部署的专有网络,如配置的IP多媒体网络子系统(IP multimedia core network subsystem,IMS)服务。
应理解,上述网元或者功能既可以是硬件设备中的网络元件,也可以是在专用硬件上运行的软件功能,或者是平台(例如,云平台)上实例化的虚拟化功能。可选的,上述网元或者功能可以由一个设备实现,也可以由多个设备共同实现,还可以是一个设备内的一个功能模块,本申请实施例对此不作具体限定。
首先,对本申请实施例涉及的术语进行解释说明:
(1)ML模型、AI模型
ML模型即机器学习模型,属于人工智能(AI)模型的一种,ML/AI模型可以认为是实现计算机自动“学习”的算法。本申请实施例中,UE可以利用ML/AI模型实现特定业务功能。一是可以利用模型进行可靠预测,例如,故障预测、业务类型/模式预测、用户轨迹/位置预测、业务感知预测、干扰预测、网络KPI预测等。基于这些预测,可实现主动式的网络管理和控制,有效提升网络运维效率和网络资源利用效率,并提供个性化、差异化的网络服务能力。
示例的,根据现网中UE上报的参考信号接收功率(reference signal receiving power, RSRP)、参考信号接收质量(reference signal receiving quality,RSRQ)或信号与干扰加噪声比(signal to interference plus noise ratio,SINR)等指标以及小区的资源利用率预测UE在该小区的性能,例如,UE的吞吐率,根据预测结果选择接入(或切换至)性能最优的小区。或者,UE利用ML/AI模型进行人脸识别、预测车辆行驶信息等。
二是通过模型提供先进的优化决策方法。机器学习算法以数据为驱动,可有效解决通信网络(例如,5G通信网络)中存在的利用传统方法难以建模、求解和高效实现等问题。
(2)模型数据
本申请实施例中,模型数据可以是模型文件,也可以是模型相关数据。其中,模型文件用于记录ML/AI模型的信息,例如,ML/AI模型的结构信息或ML/AI模型的参数。其中,ML/AI模型的结构信息可以指示ML/AI模型的输入或输出,还可以指示ML/AI模型采用的网络结构,例如:卷积神经网络、全连接网络等。ML/AI模型的参数可以是网络的权重、偏置、梯度值等。其中,模型相关数据可以是和ML/AI模型相关的任意数据,例如,训练数据、验证数据、测试数据、模型推理中间数据等。
本发明实施例提供一种模型数据传输方法,分别在终端设备、接入网设备、核心网设备新增协议层,用于终端设备、接入网设备、核心网设备之间直接传输模型数据。终端设备可以直接与接入网设备传输模型数据,或者,终端设备通过接入网设备向核心网设备(例如,AMF)传输模型数据,无需通过终端设备的软件服务器、用户面功能网元以及基站实现向终端设备下发AI/ML模型数据,缩短了模型数据的传输路径,在一定程度上减少了模型数据的传输时延。
具体地,参考图2,终端设备新增数据分析协议(data analysis protocol,DAP)层、高层数据分析协议(high data analysis protocol,HDAP)层,接入网设备增加DAP层,核心网设备(例如,AMF)增加HDAP层。其中,DAP支持终端设备与接入网设备之间传输模型数据,包括上行传输、下行传输。示例的,实现UE-RAN之间AI/ML数据的收集,模型分发。该协议支持UE-RAN之间数据传输(分割、排序)、安全(完整性保护、加解密)等功能;
HDAP层支持终端设备与核心网设备之间传输模型数据,包括上行传输、下行传输。高层数据分析协议(HDAP):实现UE-CN之间AI/ML数据的收集,模型分发。该协议支持UE-CN之间数据传输(分割、排序)、安全(完整性保护、加解密)等功能需要说明的是,新增协议层用于支持模型数据的传输,其名称包括但不限于上述几种示例,除此之外可以有其他命名,本申请实施例对此不做限制。
此外,还可以在终端设备、接入网设备以及核心网设备增加数据处理功能模块,用于处理新增协议层的数据。
示例的,在终端设备新增UE-DAM,负责终端设备侧的模型数据收集、模型训练、模型生成等功能。
在接入网设备新增RAN-DAM,负责接入网设备侧的模型数据收集、模型训练、模型生成等功能。
在核心网侧新增CN-DAM,负责核心网侧的模型数据收集、模型训练、模型生成、等功能。
本申请实施例提供的方法还支持分离式接入网设备的场景。图3是分离式接入网设备的架构图。参考图3,接入网设备按照功能划分为一个集中单元(central unit,CU)和一个或多个分布式单元(distributed unit,DU),其中CU和DU之间通过F1接口相邻。进一步的,一个CU可以包括一个集中单元-控制平面(central unit–control plane,CU-CP)和一个或者多个集中单元-控制平面(central unit–user plane,CU-UP)。
其中,CU-CP和CU-UP之间可以通过E1接口进行连接,CU-CP和DU之间可以通过F1的控制面接口(F1-C)进行连接,CU-UP和DU之间可以通过F1的用户面接口(F1-U)进行连接。进一步的,CU-CP可以通过Intf1接口和RAN-DAM进行连接;DU可以通过Intf2接口和RAN-DAM进行连接。
需要说明的是,一个RAN-DAM可以支持一个或者多个CU-CP,一个RAN-DAM可以支持一个或者多个DU。可选的,DAM可以是CU、DU或者CU-CP的内部功能,此时不存在Intf1、Intf2接口,或者,认为Intf1、Intf2接口为内部接口,对外不可见。
图4所示为CU-CP和RAN-DAM之间的协议栈。具体地,分别在CU-CP和RAN-DAM的IP层上添加了流控制传输协议(stream control transmission protocol,SCTP)层,支持CU-CP和RAN-DAM之间建立专用的连接传输模型数据,还支持链接修改和连接释放。此外,DU和RAN-DAM之间、AMF和CN-DAM之间也可以新增协议支持模型数据的传输,DU和RAN-DAM之间的协议栈、AMF和CN-DAM之间的协议栈可以与CU-CP和RAN-DAM之间的协议栈一致。
本申请实施例所述的终端设备,可以通过图5a中的通信装置510来实现。图5a所示为本申请实施例提供的通信装置510的硬件结构示意图。该通信装置510包括处理器5101以及至少一个通信接口(图5a中仅是示例性的以包括通信接口5103为例进行说明),可选的,还包括存储器5102。其中,处理器5101、存储器5102以及通信接口5103之间互相连接。
处理器5101可以是一个通用中央处理器(central processing unit,CPU),微处理器,特定应用集成电路(application-specific integrated circuit,ASIC),或一个或多个用于控制本申请方案程序执行的集成电路。
通信接口5103,使用任何收发器一类的装置,用于与其他设备或通信网络进行通信,如以太网,无线接入网(radio access network,RAN),无线局域网(wireless local area networks,WLAN)等。
存储器5102可以是只读存储器(read-only memory,ROM)或可存储静态信息和指令的其他类型的静态存储设备,随机存取存储器(random access memory,RAM)或者可存储信息和指令的其他类型的动态存储设备,也可以是电可擦可编程只读存储器(electrically erasable programmable read-only memory,EEPROM)、只读光盘(compact disc read-only memory,CD-ROM)或其他光盘存储、光碟存储(包括压缩光碟、激光碟、光碟、数字通用光碟、蓝光光碟等)、磁盘存储介质或者其他磁存储设备、或者能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质,但不限于此。存储器可以是独立存在,也可以与处理器相连接。存储器也可以和处理器集成在一起。
其中,存储器5102用于存储执行本申请方案的计算机执行指令,并由处理器5101 来控制执行。处理器5101用于执行存储器5102中存储的计算机执行指令,从而实现本申请下述实施例提供的意图处理方法。
可选的,本申请实施例中的计算机执行指令也可以称之为应用程序代码,本申请实施例对此不作具体限定。
在具体实现中,作为一种实施例,处理器5101可以包括一个或多个CPU,例如图5a中的CPU0和CPU1。
在具体实现中,作为一种实施例,通信装置510可以包括多个处理器,例如图5a中的处理器5101和处理器5106。这些处理器中的每一个可以是一个单核(single-CPU)处理器,也可以是一个多核(multi-CPU)处理器。这里的处理器可以指一个或多个设备、电路、和/或用于处理数据(例如计算机程序指令)的处理核。
在具体实现中,作为一种实施例,通信装置510还可以包括输出设备5104和输入设备5105。输出设备5104和处理器5101通信,可以以多种方式来显示信息。例如,输出设备5104可以是液晶显示器(liquid crystal display,LCD),发光二级管(light emitting diode,LED)显示设备,阴极射线管(cathode ray tube,CRT)显示设备,或投影仪(projector)等。输入设备5105和处理器5101通信,可以以多种方式接收用户的输入。例如,输入设备5105可以是鼠标、键盘、触摸屏设备或传感设备等。
上述的通信装置510可以是一个通用设备或者是一个专用设备。在具体实现中,通信装置510可以是台式机、便携式电脑、网络服务器、掌上电脑(personal digital assistant,PDA)、移动手机、平板电脑、无线终端装置、嵌入式设备或有图5a中类似结构的设备。本申请实施例不限定通信装置510的类型。
需要说明的是,通信装置510可以是终端整机,也可以是实现终端上的功能部件或组件,也可以是通信芯片,例如基带芯片等。通信装置510是终端整机时,通信接口可以是射频模块。当通信装置510为通信芯片,通信接口5103可以是该芯片的输入输出接口电路,输入输出接口电路用于读入和输出基带信号。
图5b是一种通信装置的结构示意图。通信装置520可以是本申请实施例所述接入网设备。
通信装置包括至少一个处理器5201、至少一个收发器5203、至少一个网络接口5204和一个或多个天线5205。可选的,还包括至少一个存储器5202。处理器5201、存储器5202、收发器5203和网络接口5204相连,例如通过总线相连。天线5205与收发器5203相连。网络接口5204用于通信装置通过通信链路与其它通信设备相连,例如通信装置通过S1接口与核心网网元相连。在本申请实施例中,所述连接可包括各类接口、传输线或总线等,本实施例对此不做限定。
本申请实施例中的处理器,例如处理器5201,可以包括如下至少一种类型:通用中央处理器(central processing unit,CPU)、数字信号处理器(digital signal processor,DSP)、微处理器、特定应用集成电路专用集成电路(application-specific integrated circuit,ASIC)、微控制器(microcontroller unit,MCU)、现场可编程门阵列(field programmable gate array,FPGA)、或者用于实现逻辑运算的集成电路。例如,处理器5201可以是一个单核(single-CPU)处理器或多核(multi-CPU)处理器。至少一个处理器5201可以是集成在一个芯片中或位于多个不同的芯片上。
本申请实施例中的存储器,例如存储器5202,可以包括如下至少一种类型:只读存储器(read-only memory,ROM)或可存储静态信息和指令的其他类型的静态存储设备,随机存取存储器(random access memory,RAM)或者可存储信息和指令的其他类型的动态存储设备,也可以是EEPROM。在某些场景下,存储器还可以是只读光盘(compact disc read-only memory,CD-ROM)或其他光盘存储、光碟存储(包括压缩光碟、激光碟、光碟、数字通用光碟、蓝光光碟等)、磁盘存储介质或者其他磁存储设备、或者能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质,但不限于此。
存储器5202可以是独立存在,与处理器5201相连。可选的,存储器5202也可以和处理器5201集成在一起,例如集成在一个芯片之内。其中,存储器5202能够存储执行本申请实施例的技术方案的程序代码,并由处理器5201来控制执行,被执行的各类计算机程序代码也可被视为是处理器5201的驱动程序。例如,处理器5201用于执行存储器5202中存储的计算机程序代码,从而实现本申请实施例中的技术方案。
收发器5203可以用于支持通信装置与终端设备之间射频信号的接收或者发送,收发器5203可以与天线5205相连。具体地,一个或多个天线5205可以接收射频信号,该收发器5203可以用于从天线接收所述射频信号,并将射频信号转换为数字基带信号或数字中频信号,并将该数字基带信号或数字中频信号提供给所述处理器5201,以便处理器5201对该数字基带信号或数字中频信号做进一步的处理,例如解调处理和译码处理。此外,收发器5203可以用于从处理器5201接收经过调制的数字基带信号或数字中频信号,并将该经过调制的数字基带信号或数字中频信号转换为射频信号,并通过一个或多个天线5205发送所述射频信号。具体地,收发器5203可以选择性地对射频信号进行一级或多级下混频处理和模数转换处理以得到数字基带信号或数字中频信号,所述下混频处理和模数转换处理的先后顺序是可调整的。收发器5203可以选择性地对经过调制的数字基带信号或数字中频信号时进行一级或多级上混频处理和数模转换处理以得到射频信号,所述上混频处理和数模转换处理的先后顺序是可调整的。数字基带信号和数字中频信号可以统称为数字信号。收发器可以称为收发电路、收发单元、收发器件、发送电路、发送单元或者发送器件等等。
需要说明的是,通信装置520可以是通信装置整机,也可以是实现通信装置功能的部件或组件,也可以是通信芯片。当通信装置520为通信芯片,收发器5203可以是该芯片的接口电路,该接口电路用于读入和输出基带信号。
本申请实施例提供一种模型数据传输方法,如图6所示,所述方法包括以下步骤:
601、终端设备利用模型数据分析协议对待发送的模型数据进行处理获得第一消息,所述第一消息包括第一信息和所述待发送的模型数据,所述第一信息用于指示包含所述第一信息的消息携带模型数据。
具体实现中,终端设备新增协议层支持终端设备和接入网设备之前传输模型数据,包括终端设备向接入网设备发送模型数据。
一种可能的实现方式中,终端设备新增的协议层支持本申请实施例所述的模型数据分析协议,用于发送、接收、处理模型数据。例如,终端设备新增的协议层可以是前文所述的DAP层。终端设备在DAP层对模型数据进行封装,生成第一消息。所述 第一消息的消息头包括第一信息,所述第一信息指示所述第一消息包含模型数据。
所述第一消息的数据部分(例如,载荷payload)包括终端设备待发送的模型数据。
示例的,所述第一消息可以是上行信息传输消息(uplink information transfer),所述第一信息可以是dedicated inner data over NAS,指示第一消息中的数据可以在NAS层传输,即支持终端设备与接入网设备之间通过空口传输模型数据。
602、所述终端设备向所述接入网设备发送所述第一消息。
603、接入网设备接收所述第一消息,根据所述第一消息获取来自终端设备的模型数据。
具体实现中,接入网设备新增协议层支持终端设备和接入网设备之前传输模型数据,包括接入网设备接收终端设备发送的模型数据。接入网设备可以利用模型数据分析协议对来自终端设备的第一消息进行处理,获得所述模型数据。
一种可能的实现方式中,接入网设备新增的协议层支持本申请实施例所述的模型数据分析协议,用于接收、处理模型数据。
例如,接入网设备新增的协议层可以是前文所述的DAP层。接入网设备在DAP层解析第一消息,从第一消息的消息头获取第一信息,从第一消息的payload获取模型数据。
可选的,图6所示的方法还包括:所述终端设备向接入网设备上报自身的能力信息,指示终端设备支持通过空口传输模型数据。例如,终端设备向所述接入网设备发送第二信息,所述第二信息指示所述终端设备支持通过空口传输模型数据。
接入网设备从终端设备接收终端设备的能力信息后,还可以向核心网设备(例如,AMF)发送终端设备的能力信息。例如,接入网设备向核心网设备发送所述第二信息;所述第二信息指示所述终端设备支持通过空口传输模型数据。
图6所示的方法还适用于图3所示的分离式接入网设备的场景。具体地,所述接入网设备包括集中单元控制面功能模块(例如,前文所述的CU-CP),集中单元控制面功能模块可以和终端设备进行模型数据的传输,例如,通过新增加的协议层来自终端设备的模型数据。接入网设备还可以包括模型数据处理功能模块(例如,前文所述的RAN-DAM),模型数据处理功能模块用于利用模型数据进行相关业务,例如,利用模型数据进行UE性能预测等。
示例的,所述接入网设备从终端设备接收第一消息,包括:所述集中单元控制面功能模块从所述终端设备接收所述第一消息。
所述集中单元控制面功能模块新增了协议层,可以通过新增的协议层接收来自终端设备的模型数据。具体地,所述集中单元控制面功能模块可以利用模型数据分析协议从所述第一消息中获取所述第一信息和所述模型数据。
例如,所述集中单元控制面功能模块在DAP层解析第一消息,从第一消息的消息头获取第一信息,确定第一消息包含模型数据,则从第一消息的payload获取模型数据。
可选的,接入网设备的集中单元控制面功能模块和接入网设备的模型数据处理功能模块可以分设在不同的设备上,也可以合设在同一个设备上。在分设场景下,接入网设备的集中单元控制面功能模块和接入网设备的模型数据处理功能模块之间有线连 接,集中单元控制面功能模块可以将接收到的模型数据发送给模型数据处理功能模块进行处理。
具体地,所述集中单元控制面功能模块建立与所述模型数据处理功能模块之间的传输通道。集中单元控制面功能模块可以为二者之间的传输通道预留资源,例如,端口号等。
建立好二者之间的传输通道之后,所述集中单元控制面功能模块通过传输通道向所述模型数据处理功能模块发送从第一消息中获取的模型数据。
所述模型数据处理功能模块利用所述模型数据进行模型相关业务。例如,根据模型数据确定AI/ML模型,利用AI/ML模型预测终端设备的性能、小区流量等。
需要说明的是,前文所述方案中以UE为粒度建立集中单元控制面功能模块和模型数据处理功能模块之间的传输通道,即一旦有UE向接入网设备发送模型数据,则建立集中单元控制面功能模块和模型数据处理功能模块之间的传输通道。但是接入网设备的集中单元控制面功能模块和接入网设备的模型数据处理功能模块之间有线连接,可用的传输资源(例如,端口号)有限,因此在终端设备的模型数据传输至模型数据处理功能模块之后,可以释放为该终端设备建立的传输通道。
例如,当所述终端设备释放与所述接入网设备之间的无线资源控制连接,所述集中单元控制面功能模块释放所述集中单元控制面功能模块与所述模型数据处理功能模块之间的传输通道。
可选的,本申请实施例还支持在下行方向传输模型数据,即支持接入网设备通过空口向终端设备发送模型数据。
示例的,所述接入网设备利用模型数据分析协议对待发送的模型数据进行处理获得第二消息,所述第二消息包括所述待发送的模型数据以及所述第一信息。所述接入网设备向所述终端设备发送所述第二消息。
以新增协议层为DAP协议层为例,终端设备在DAP层对模型数据进行封装,生成第二消息。所述第二消息的消息头包括第一信息,所述第一信息指示所述第二消息包含模型数据。
所述第二消息的数据部分(例如,载荷payload)包括接入网设备待发送的模型数据。
可选的,终端设备可以通过空口接收接入网设备发送的模型数据。例如,终端设备从所述接入网设备接收第二消息,所述第二消息包括所述第一信息以及所述接入网设备待发送的模型数据。
终端设备还可以利用模型数据分析协议对所述第二消息进行处理获得来自所述接入网设备的模型数据。
示例的,终端设备在DAP层解析第二消息,从第二消息的消息头获取第一信息,从第二消息的payload获取模型数据。
可选的,本申请实施例还支持终端设备与核心网设备通过NAS层传输模型数据。具体地,可以通过接入网设备转发承载模型数据的消息,实现终端设备与核心网设备之间传输模型数据。
示例的,接入网设备接收终端设备发送的第一消息之后,还可以向核心网设备(例 如,AMF)转发所述第一消息。核心网设备从接入网设备接收来自终端设备的第一消息,利用模型数据分析协议对所述第一消息进行处理,获得所述模型数据。
一种可能的实现方式中,接入网设备新增的协议层支持本申请实施例所述的模型数据分析协议,用于接收、处理模型数据。例如,接入网设备新增的协议层可以是前文所述的HDAP层。终端设备设备新增HDAP层,支持终端设备与核心网设备之间传输模型数据。当终端设备需要向核心网设备发送模型数据,终端设备在HDAP层对模型数据进行封装,生成第一消息。所述第一消息的消息头包括第一信息,所述第一信息指示所述第一消息包含模型数据。所述第一消息的数据部分(例如,载荷payload)包括终端设备待发送的模型数据。
终端设备向接入网设备发送第一消息,接入网设备接收第一消息后向核心网设备转发所述第一消息。
核心网设备接收第一消息后,在HDAP层解析第一消息,从第一消息的消息头获取第一信息,从第一消息的payload获取模型数据。
可选的,核心网可以包括核心网模型处理功能模块,例如,前文所述的CN-DAM,用于核心网侧模型相关业务,例如,模型数据收集、模型训练、模型生成、Action生成等功能。
核心网模型处理功能模块可以和某个核心网设备分设在不同的设备上,也可以合设在同一个设备上。在分设场景下,核心网设备与核心网模型数据处理功能模块之间有线连接,核心网设备可以将接收到的模型数据发送给核心网模型数据处理功能模块进行处理。
具体地,核心网设备建立与所述核心网模型数据处理功能模块之间的传输通道。核心网设备可以为二者之间的传输通道预留资源,例如,端口号等。
建立好二者之间的传输通道之后,核心网设备通过传输通道向所述核心网模型数据处理功能模块发送从第一消息中获取的模型数据。
所述核心网模型数据处理功能模块利用所述模型数据进行模型相关业务。例如,根据模型数据确定AI/ML模型,利用AI/ML模型预测终端设备的性能、小区流量等。
需要说明的是,核心网设备以UE为粒度建立集中与核心网模型数据处理功能模块之间的传输通道,即一旦有UE向核心网设备发送模型数据,则建立核心网设备与核心网模型数据处理功能模块之间的传输通道。但是核心网设备与核心网模型数据处理功能模块之间有线连接,可用的传输资源(例如,端口号)有限,因此在终端设备的模型数据传输至核心网模型数据处理功能模块之后,可以释放为该终端设备建立的传输通道。
例如,当所述终端设备释放与所述接入网设备之间的无线资源控制连接,核心网设备释放与所述核心网模型数据处理功能模块之间的传输通道。
本申请实施例还提供一种方法,支持终端设备在注册到网络时上报自身的能力信息,通知网络侧终端设备支持在空口传输模型数据。参考图7,以分离式接入网设备架构为例,所述方法包括以下步骤:
701、UE建立与CU-CP之间的RRC连接。
具体地,UE向CU-CP发送RRC建立请求(RRC setup request),请求建立与CU-CP 之间的RRC连接。CU-CP响应于RRC建立请求向UE发送无线资源配置信息。
702、UE完成无线资源配置,向CU-CP发送RRC建立完成消息(RRC setup complete),包含注册请求(registration request)。
703、CU-CP选择AMF,向AMF发送初始UE消息(Initial Context Setup Request),包含注册请求。
704、UE和AMF之间完成UE的鉴权。
705、AMF向CU-CP发送初始上下为建立请求响应(initial context setup response)消息,包含注册接受(registration accept)信息。
706、可选的,如果CU-CP不包含UE能力信息,则CU-CP向UE发送UE能力查询(UE capability enquiry)消息,查询UE能力。
707、可选的,可选的,UE向CU-CP发送UE能力信息(UE capability information),报告UE的能力信息。
其中,UE能力信息包括“inner data over control plane”信元,即本申请实施例所述的第一信息,指示UE支持通过控制面传输模型数据。
708、CU-CP保存UE capability information信息。
709、CU-CP向AMF发送UE无线能力信息指示(UE radio capability info indication)消息,包含UE能力信息。
710、AMF保存UE capability information信息。
711、CU-CP完成安全激活。
具体地,CU-CP根据Initial Context Setup Request消息中UE支持的安全信息,与UE通过SecurityModeCommand消息、SecurityModeComplete消息,完成安全激活。
712、CU-CP向UE发送RRC重配置(RRCReconfiguration)消息。
713、UE向CU-CP发送RRC重配置完成(Reconfiguration Complete)消息。
714、CU-CP向AMF发送初始上下文建立响应(Initial Context Setup Response)消息,表明UE上下文建立完成。
715、UE通过CU-CP向AMF发送Registration complete消息。
至此完成了UE的注册流程。在注册过程中,UE上报能力信息,RAN、AMF保存UE能力信息,包括“Inner Data Over Control Plane”信元,后续可以根据该信息确定UE具备在空口传输模型数据的能力,和终端设备传输模型数据。
本申请实施例还提供一种方法,支持UE在空闲(idle)态向RAN发送模型数据。参考图8,以分离式接入网设备为例,所述方法包括以下步骤:
801、UE向CU-CP发送RRCSetupRequest消息。
其中,该请求触发原因包括但不限于以下类型:UE有模型数据待发送给RAN、UE有模型数据待发送给AMF。
802、CU-CP向UE发送RRCSetup消息,包含建立信令无线承载(signaling radio bearer,SRB)1和无线资源配置信息;
803、UE完成SRB1和无线资源配置,向CU-CP发送RRCSetupComplete消息;
804、CU-CP向AMF发送NAS层Service Request。
具体地,可以通过Initial UE Message/Initial Context Setup Request携带Service  Request。
AMF还可以向CU-CP发送Initial Context Setup Response消息,携带向ServiceAccept信息。
步骤805-810同前文所述的步骤706~711,在此不做赘述。
811、CU-CP向UE发送RRCReconfiguration消息,指示建立SRB2和数据无线承载(data radio bearer,DRB)。
812、UE向CU-CP回复RRCReconfigurationComplete消息。
UE成功建立SRB2、DRB后,向CU-CP回复RRCReconfigurationComplete消息。
813、CU-CP向AMF发送Initial Context Setup Response响应消息。
需要说明的是,当UE接入网络进行业务时,可以通过步骤804~步骤813上报能力信息,网络侧可以对UE进行安全认证。例如,当UE有模型数据待发送时,或有用户面数据待发送,或者有控制面数据待发送,步骤804~步骤813。
814、CU-CP向RAN-DAM发送通道建立指示消息,指示建立CU-CP与RAN-DAM之间的传输通道。
具体实现中,触发CU-CP建立传输通道的情况可以包括了以下几种:
(1)UE仅有模型数据待发送;
(2)UE有模型数据及用户面数据待发送;
(3)UE有模型数据及控制面数据待发送。
一种可能的实现方式中,步骤814中CU-CP向RAN-DAM发送的指示消息包括终端设备(即图8所示流程图中的UE)的标识,CU-CP、RAN-DAM可以建立传输通道与UE标识的对应关系。其中,终端设备的标识用于标识所述UE,可以是UE ID。UE ID可以是比特串(bit string,或者称为位串),也可以是字符串(octet string),本申请实施例对此不做限制。
815、UE通过上行信息传输消息(UL information transfer)发送模型数据。
其中,UL information transfer消息包含“Dedicated Inner Data Over NAS”信元,指示该消息包含模型数据。
具体地,UE在新增的协议层(例如,前文所述的DAP)对待发送的模型数据进行封装,生成所述UL information transfer消息。
816、CU-CP发送模型数据给RAN-DAM。
具体地,CU-CP在新增的协议层(例如,前文所述的DAP)对接收到的消息进行解析,获得模型数据。通过与RAN-DAM之间的传输通道,向RAN-DAM发送模型数据。
图8所示实施例中,当UE处于idle态时,触发RRC建立消息,在UE和RAN之间建立“控制面传输通道”,并通过“控制面传输通道”将模型数据发送给RAN-DAM。缩短了模型数据的传输路径,大大减少了传输时延。
需要说明的是,当UE处于连接态(connected)无需执行步骤801~步骤813建立RRC连接,跳过步骤801~步骤813,执行步骤814~步骤806,向RAN发送模型数据。
本申请实施例还提供一种方法,支持UE在空闲(idle)态向AMF发送模型数据。参考图9,以分离式接入网设备为例,所述方法包括以下步骤:
步骤901~步骤913与图8所示的步骤801~813,在此不做赘述。
914、AMF向CN-DAM发送传输通道建立指示消息,指示建立AMF与CN-DAM之间的传输通道。
具体实现中,触发AMF建立传输通道的情况可以是当AMF检测到Initial UE Message中RRC建立原因值(RRC establishment cause)携带以下触发原因:UE有模型数据待发送给AMF。
所述传输通道建立指示消息包括终端设备(即图9所示流程图中的UE)的标识,AMF、CN-DAM可以建立UE标识与传输通道的对应关系。其中,终端设备的标识用于标识所述UE,可以是UE ID。UE ID可以是比特串(bit string,或者称为位串),也可以是字符串(octet string),本申请实施例对此不做限制。
915、UE通过UL information transfer向CU-CP发送模型数据。
其中,UL information transfer消息包含“Dedicated Inner Data Over NAS”信元,指示该消息包含模型数据。
具体地,UE在新增的协议层(例如,前文所述的HDAP)对待发送的模型数据进行封装,生成所述UL information transfer消息。
916、RAN通过Uplink NAS transport消息向AMF发送模型数据。
其中,RAN识别接收到的UL information transfer消息为NAS消息,即该消息终结在核心网,则重新封装该消息获得Uplink NAS transport消息。
RAN向AMF发送Uplink NAS transport消息,Uplink NAS transport消息包括“Dedicated Inner Data Over NAS”信元,指示该消息包含模型数据。
917、AMF通过与CN-DAM之间的传输通道向CN-DAM发送模型数据。
需要说明的是,当UE处于连接态(connected)无需执行步骤901~步骤913建立RRC连接,跳过步骤901~步骤913,执行步骤914~步骤917,向核心网侧发送模型数据。
本申请实施例还提供一种方法,用于实现RAN侧专用传输通道(用于传输模型数据的传输通道)的释放。参考图10,以分离式接入网设备为例,所述方法包括以下步骤:
1001、CU-CP向UE发送RRC Release消息。
1002、CU-CP向RAN-DAM发送传输通道删除消息,指示RAN-DAM删除用于传输所述UE的模型数据的通道。
其中,传输通道删除消息包括终端设备的标识,可以根据建立传输通道时维护的传输通道与UE标识的对应关系,确定为所述UE建立的传输通道,释放该传输通道占用的物理传输资源,例如,端口号。
上述步骤1001、步骤1002适用于UE从Connected态迁移为Idle态的场景,例如,UE从当前小区切换到其他小区,从而引起当前RRC链接释放的场景。
需要说明的是,当UE从Connected态迁移为Inactive态,CU-CP向UE发送的RRC Release消息中携带suspendConfig信元,用于指示UE当前从Connected态迁移为Inactive态。本申请实施例提供的方法中,当UE从Connected态迁移为Inactive态,可以通过步骤1001以及步骤1002释放专用的传输通道。
图10所示的方法中,当UE与RAN之间的RRC连接释放后,CU-CP指示RAN-DAM释放为该UE建立的传输模型数据的通道。
本申请实施例还提供一种方法,用于实现核心网侧专用传输通道(用于传输模型数据的传输通道)的释放。参考图11,以分离式接入网设备为例,所述方法包括以下步骤:
1101、UE向AMF发送RAN信令连接释放请求(signaling connection released Request)消息,触发去注册过程。
1102、AMF向CN-DAM发送传输通道删除消息,指示RAN-DAM删除用于传输所述UE的模型数据的通道。
其中,传输通道删除消息包括终端设备的标识,可以根据建立传输通道时维护的传输通道与UE标识的对应关系,确定为所述UE建立的传输通道,释放该传输通道占用的物理传输资源,例如,端口号。
1103、AMF向UE发送AN signaling connection released Accept消息。
1104、UE进入空闲态。
本实施例还提供一种方法,实现UE主动触发模型数据的传输。参考图12,以分离式接入网设备为例,所述方法包括以下步骤:
1201、终端设备接收接入网设备发送的配置消息,该配置消息包括模型相关的调度信息。
可以理解的是,无线网络的不同的业务,采用的ML模型可能不同。为了支撑不同的ML模型的训练,需要配置不同模型的调度信息。模型相关的调度信息包括但不限于以下几项信息:
(1)每个模型所需的生命管理策略。模型的生命管理策略,包括但不限于下载模型的策略、更新模型的策略、终止模型的策略。
(2)模型训练所需数据的信息。模型训练所需数据的信息用于描述用于训练模型的数据,不同模型所需的训练数据不同。例如,模型训练数据可以是UE当前所处的位置以及对应的信号强度值。其中,信号强度值可以是参考信号接收功率(reference signal receiving power,RSRP)、信号与干扰加噪声比(signal to interference plus noise ratio,SINR);对于联邦学习,接入网设备需要UE将本地训练后的数据模型发送给RAN-DAM。
(3)模型数据的上报方式,例如,周期上报或者事件上报。
其中,对于周期上报方式而言,配置消息需要包含上报周期,例如,10秒,或1分钟,或者1小时。
对于事件上报方式而言,配置消息需要包含上报事件的信息,例如,联邦学习下UE需要将本地训练好的数据模型发送给RAN-DAM;或者,当发生无线链路失败(radio link failure,RLF),上报模型数据。
1202、终端设备向接入网设备发送模型数据请求,请求接入网设备发送对应的模型数据。
具体地,终端设备根据接入网设备预先配置的模型相关的调度信息,判断是否满足模型数据的调度条件。当满足模型数据的调度条件,可以向接入网设备发送模型数 据请求。
1203、接入网设备向终端设备发送模型数据。
需要说明的是,图12所示的方法同样适用于UE和CN-DAM之间进行模型数据传输的场景,此处不再赘述。
在采用对应各个功能划分各个功能模块的情况下,图13示出上述实施例中所涉及的通信装置的一种可能的结构示意图。图13所示的通信装置可以是本申请实施例所述的终端设备,也可以是终端设备中实现上述方法的部件,或者,也可以是应用于终端设备中的芯片。图13所示的通信装置可以是本申请实施例所述的接入网设备,也可以是接入网设备中实现上述方法的部件,或者,也可以是应用于接入网设备中的芯片。图13所示的通信装置可以是本申请实施例所述的核心网设备,也可以是核心网设备中实现上述方法的部件,或者,也可以是应用于核心网设备中的芯片。
所述芯片可以是片上系统(System-On-a-Chip,SOC)或者是具备通信功能的基带芯片等。如图13所示,通信装置包括处理单元1301以及通信单元1302。处理单元可以是一个或多个处理器,通信单元可以是收发器或者通信接口。
处理单元1301,用于实现设备的处理步骤,例如,用于支持终端设备执行步骤604,支持接入网设备执行步骤603,支持核心网设备执行步骤710,和/或用于本文所描述的技术的其它过程。
通信单元1302,用于支持该设备与其他通信装置之间的通信,例如,支持终端设备执行步骤602,支持接入网设备执行916,支持核心网设备执行步骤917,和/或用于本文所描述的技术的其它过程。
需要说明的是,上述方法实施例涉及的各步骤的所有相关内容均可以援引到对应功能模块的功能描述,在此不再赘述。
如图14所示,通信装置还可以包括存储单元1303,存储单元1303用于存储通信装置的程序代码和/或数据。
处理单元1301可以包括至少一个处理器,通信单元1302可以为收发器或者通信接口,存储单元1303可以包括存储器。
本申请实施例提供一种计算机可读存储介质,计算机可读存储介质中存储有指令;指令用于执行如图6~图12所示的方法。
本申请实施例提供一种包括指令的计算机程序产品,当其在通信装置上运行时,使得通信装置执行如图6~图12所示的方法。
本申请实施例一种无线通信装置,包括:无线通信装置中存储有指令;当无线通信装置在图5a、图5b、图13至图14所示的通信装置上运行时,使得通信装置执行如图6~图12所示的方法。该无线通信装置可以为芯片。
通过以上的实施方式的描述,所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,仅以上述各功能模块的划分进行举例说明,实际应用中,可以根据需要而将上述功能分配由不同的功能模块完成,即将通信装置的内部结构划分成不同的功能模块,以完成以上描述的全部或者部分功能。
本申请实施例中的处理器,可以包括但不限于以下至少一种:中央处理单元(central processing unit,CPU)、微处理器、数字信号处理器(DSP)、微控制器 (microcontroller unit,MCU)、或人工智能处理器等各类运行软件的计算设备,每种计算设备可包括一个或多个用于执行软件指令以进行运算或处理的核。该处理器可以是个单独的半导体芯片,也可以跟其他电路一起集成为一个半导体芯片,例如,可以跟其他电路(如编解码电路、硬件加速电路或各种总线和接口电路)构成一个SoC(片上系统),或者也可以作为一个ASIC的内置处理器集成在所述ASIC当中,该集成了处理器的ASIC可以单独封装或者也可以跟其他电路封装在一起。该处理器除了包括用于执行软件指令以进行运算或处理的核外,还可进一步包括必要的硬件加速器,如现场可编程门阵列(field programmable gate array,FPGA)、PLD(可编程逻辑器件)、或者实现专用逻辑运算的逻辑电路。
本申请实施例中的存储器,可以包括如下至少一种类型:只读存储器(read-only memory,ROM)或可存储静态信息和指令的其他类型的静态存储设备,随机存取存储器(random access memory,RAM)或者可存储信息和指令的其他类型的动态存储设备,也可以是EEPROM。在某些场景下,存储器还可以是只读光盘(compact disc read-only memory,CD-ROM)或其他光盘存储、光碟存储(包括压缩光碟、激光碟、光碟、数字通用光碟、蓝光光碟等)、磁盘存储介质或者其他磁存储设备、或者能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质,但不限于此。
本申请中,“至少一个”是指一个或者多个。“多个”是指两个或两个以上。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B的情况,其中A,B可以是单数或者复数。字符“/”一般表示前后关联对象是一种“或”的关系。“以下至少一项(个)”或其类似表达,是指的这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,a,b,或c中的至少一项(个),可以表示:a,b,c,a-b,a-c,b-c,或a-b-c,其中a,b,c可以是单个,也可以是多个。另外,为了便于清楚描述本申请实施例的技术方案,在本申请的实施例中,采用了“第一”、“第二”等字样对功能和作用基本相同的相同项或相似项进行区分。本领域技术人员可以理解“第一”、“第二”等字样并不对数量和执行次序进行限定,并且“第一”、“第二”等字样也并不限定一定不同。
在本申请所提供的几个实施例中,应该理解到,所揭露的数据库访问装置和方法,可以通过其它的方式实现。例如,以上所描述的数据库访问装置实施例仅仅是示意性的,例如,所述模块或单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个装置,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,数据库访问装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是一个物理单元或多个物理单元,即可以位于一个地方,或者也可以分布到多个不同地方。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以 是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个可读取存储介质中。基于这样的理解,本申请实施例的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该软件产品存储在一个存储介质中,包括若干指令用以使得一个设备(可以是单片机,芯片等)或处理器执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、ROM、RAM、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何在本申请揭露的技术范围内的变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (21)

  1. 一种模型数据传输方法,其特征在于,包括:
    终端设备利用模型数据分析协议对待发送的模型数据进行处理获得第一消息,所述第一消息包括第一信息和所述待发送的模型数据,所述第一信息用于指示包含所述第一信息的消息携带模型数据;
    所述终端设备向接入网设备发送所述第一消息。
  2. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    向所述接入网设备发送第二信息,所述第二信息指示所述终端设备支持通过空口传输模型数据。
  3. 根据权利要求1或2所述的方法,其特征在于,所述方法还包括:
    从所述接入网设备接收第二消息,所述第二消息包括所述第一信息以及所述接入网设备待发送的模型数据;
    利用模型数据分析协议对所述第二消息进行处理获得来自所述接入网设备的模型数据。
  4. 一种模型数据传输方法,其特征在于,包括:
    接入网设备从终端设备接收第一消息,所述第一消息包括第一信息和模型数据,所述第一信息用于指示包含所述第一信息的消息携带模型数据;
    所述接入网设备利用模型数据分析协议对所述第一消息进行处理,获得所述模型数据。
  5. 根据权利要求4所述的方法,其特征在于,所述方法还包括:
    从所述终端设备接收第二信息,所述第二信息指示所述终端设备支持通过空口传输模型数据。
  6. 根据权利要求5所述的方法,其特征在于,所述方法还包括:
    向核心网设备发送所述第二信息;所述第二信息指示所述终端设备支持通过空口传输模型数据。
  7. 根据权利要求4-6任一项所述的方法,其特征在于,所述方法还包括:
    所述接入网设备利用模型数据分析协议对待发送的模型数据进行处理获得第二消息,所述第二消息包括所述待发送的模型数据以及所述第一信息;
    所述接入网设备向所述终端设备发送所述第二消息。
  8. 根据权利要求4-7任一项所述的方法,其特征在于,所述接入网设备包括集中单元控制面功能模块,
    所述接入网设备从终端设备接收第一消息,包括:
    所述集中单元控制面功能模块从所述终端设备接收所述第一消息。
  9. 根据权利要求8所述的方法,其特征在于,所述接入网设备还包括模型数据处理功能模块,
    所述接入网设备利用模型数据分析协议对所述第一消息进行处理,获得所述模型数据,包括:
    所述集中单元控制面功能模块利用模型数据分析协议从所述第一消息中获取所述第一信息和所述模型数据。
  10. 根据权利要求9所述的方法,其特征在于,所述方法还包括:
    所述集中单元控制面功能模块建立与所述模型数据处理功能模块之间的传输通道;
    所述集中单元控制面功能模块通过所述传输通道向所述模型数据处理功能模块发送所述模型数据;
    所述模型数据处理功能模块利用所述模型数据进行模型相关业务。
  11. 根据权利要求10所述的方法,其特征在于,所述方法还包括:
    当所述终端设备释放与所述接入网设备之间的无线资源控制连接,所述集中单元控制面功能模块释放所述传输通道。
  12. 根据权利要求4-11任一项所述的方法,其特征在于,所述方法还包括:
    向核心网设备转发所述第一消息。
  13. 一种模型数据传输方法,其特征在于,包括:
    核心网设备从接入网设备接收来自终端设备的第一消息,所述第一消息包括第一信息和模型数据,所述第一信息用于指示包含所述第一信息的消息携带模型数据;
    所述核心网设备利用模型数据分析协议对所述第一消息进行处理,获得所述模型数据。
  14. 根据权利要求13所述的方法,其特征在于,所述方法还包括:
    向核心网设备发送第二信息;所述第二信息指示所述终端设备支持通过空口传输模型数据。
  15. 根据权利要求13或14所述的方法,其特征在于,所述方法还包括:
    所述核心网设备建立与核心网模型数据处理功能模块之间的传输通道;
    所述核心网设备通过所述传输通道向所述核心网模型数据处理功能模块发送所述模型数据,以便所述核心网模型数据处理功能模块利用所述模型数据进行模型相关业务。
  16. 根据权利要求15所述的方法,其特征在于,所述方法还包括:
    当所述终端设备释放与所述接入网设备之间的无线资源控制连接,所述核心网设备释放所述传输通道。
  17. 一种通信装置,其特征在于,用于执行如权利要求1-16任一项所述的方法。
  18. 一种通信装置,其特征在于,包括处理器,所述处理器与存储器耦合;
    存储器,用于存储计算机程序;
    处理器,用于执行所述存储器中存储的计算机程序,以使得所述装置执行如权利要求1至16中任一项所述的方法。
  19. 一种计算机可读存储介质,其特征在于,包括指令,当其在计算机上运行时,使得计算机执行如权利要求1-16中任一项所述的方法。
  20. 一种计算机程序产品,其特征在于,所述计算机程序产品包括指令,当所述指令被运行时,使得如权利要求1至16任一项所述的方法被执行。
  21. 一种芯片,其特征在于,所述芯片包括处理器和接口电路,所述接口电路和所述处理器耦合,所述处理器用于运行计算机程序或指令,使得如权利要求1至16任一项所述的方法被执行。
PCT/CN2020/112737 2020-08-31 2020-08-31 一种模型数据传输方法及通信装置 WO2022041285A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/112737 WO2022041285A1 (zh) 2020-08-31 2020-08-31 一种模型数据传输方法及通信装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/112737 WO2022041285A1 (zh) 2020-08-31 2020-08-31 一种模型数据传输方法及通信装置

Publications (1)

Publication Number Publication Date
WO2022041285A1 true WO2022041285A1 (zh) 2022-03-03

Family

ID=80354442

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/112737 WO2022041285A1 (zh) 2020-08-31 2020-08-31 一种模型数据传输方法及通信装置

Country Status (1)

Country Link
WO (1) WO2022041285A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023179448A1 (zh) * 2022-03-22 2023-09-28 华为技术有限公司 一种信息传输方法及装置
WO2024061287A1 (zh) * 2022-09-23 2024-03-28 维沃移动通信有限公司 人工智能ai模型传输方法、装置、终端及介质
WO2024092850A1 (zh) * 2022-11-06 2024-05-10 北京小米移动软件有限公司 一种通信方法、装置及存储介质
WO2024092852A1 (zh) * 2022-11-06 2024-05-10 北京小米移动软件有限公司 一种通信方法、装置及存储介质
WO2024103544A1 (en) * 2023-02-10 2024-05-23 Zte Corporation Transfer of artificial intelligence network management models in wireless communication systems

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019243874A1 (en) * 2018-06-20 2019-12-26 Telefonaktiebolaget Lm Ericsson (Publ) Methods and systems for online services applications and application functions to provide ue-generated information to network data analytics to support network automation and optimization
CN111295863A (zh) * 2017-10-30 2020-06-16 苹果公司 用于广播多播内容选择和服务的增强型广播多播服务的扩展实施
WO2020122669A1 (en) * 2018-12-14 2020-06-18 Samsung Electronics Co., Ltd. Distributed training of machine learning models for personalization
US10721654B2 (en) * 2018-08-27 2020-07-21 Lg Electronics Inc. Method and apparatus for enhancing handover procedure for supporting conditional handover in wireless communication system
CN111586599A (zh) * 2020-04-24 2020-08-25 腾讯科技(深圳)有限公司 网络辅助信息提供方法及相关设备

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111295863A (zh) * 2017-10-30 2020-06-16 苹果公司 用于广播多播内容选择和服务的增强型广播多播服务的扩展实施
WO2019243874A1 (en) * 2018-06-20 2019-12-26 Telefonaktiebolaget Lm Ericsson (Publ) Methods and systems for online services applications and application functions to provide ue-generated information to network data analytics to support network automation and optimization
US10721654B2 (en) * 2018-08-27 2020-07-21 Lg Electronics Inc. Method and apparatus for enhancing handover procedure for supporting conditional handover in wireless communication system
WO2020122669A1 (en) * 2018-12-14 2020-06-18 Samsung Electronics Co., Ltd. Distributed training of machine learning models for personalization
CN111586599A (zh) * 2020-04-24 2020-08-25 腾讯科技(深圳)有限公司 网络辅助信息提供方法及相关设备

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
CMCC: "New SID: Study on data collection further enhancement", 3GPP TSG RAN MEETING #86 RP-193177, 12 December 2019 (2019-12-12), XP051840350 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023179448A1 (zh) * 2022-03-22 2023-09-28 华为技术有限公司 一种信息传输方法及装置
WO2024061287A1 (zh) * 2022-09-23 2024-03-28 维沃移动通信有限公司 人工智能ai模型传输方法、装置、终端及介质
WO2024092850A1 (zh) * 2022-11-06 2024-05-10 北京小米移动软件有限公司 一种通信方法、装置及存储介质
WO2024092852A1 (zh) * 2022-11-06 2024-05-10 北京小米移动软件有限公司 一种通信方法、装置及存储介质
WO2024103544A1 (en) * 2023-02-10 2024-05-23 Zte Corporation Transfer of artificial intelligence network management models in wireless communication systems

Similar Documents

Publication Publication Date Title
US11647422B2 (en) Adaptable radio access network
US11950314B2 (en) Configuration method and apparatus, and system
WO2022041285A1 (zh) 一种模型数据传输方法及通信装置
US11223976B2 (en) Multiple-slice application delivery based on network slice associations
KR102469191B1 (ko) 정보 전송방법 및 장치, 컴퓨터 판독가능 저장 매체
WO2021128110A1 (zh) 通信方法及装置
US20170215122A1 (en) Apparatus and method for routing data packet to user equipment in lte-wlan aggregation system
US20210105784A1 (en) Network slice selection based on requested service
US20220338106A1 (en) Slice control method and apparatus
WO2022033543A1 (zh) 一种中继通信方法及通信装置
WO2022033558A1 (zh) 一种中继管理方法及通信装置
US11974212B2 (en) Method and system for cellular device-satellite communications
US11558813B2 (en) Apparatus and method for network automation in wireless communication system
US20220052955A1 (en) Communications method, apparatus, and system
US20220150784A1 (en) Handover method and apparatus
WO2021208813A1 (zh) 一种通信方法及通信装置
WO2022155853A1 (zh) 无线通信方法、通信装置及通信系统
WO2021138784A1 (zh) 一种接入网络的方法、装置及系统
CN115244991A (zh) 通信方法、装置及系统
WO2023078183A1 (zh) 一种数据收集方法及通信装置
WO2024103315A1 (zh) 无线通信方法、网元和装置
WO2024140747A1 (zh) 通信方法及相关装置
US20230261792A1 (en) Apparatus, methods, and computer programs
WO2023061207A1 (zh) 一种通信方法、通信装置及通信系统
WO2022068336A1 (zh) 路由信息更新方法、通信装置及存储介质

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20950954

Country of ref document: EP

Kind code of ref document: A1