WO2021134601A1 - 一种会话建立的方法及装置 - Google Patents

一种会话建立的方法及装置 Download PDF

Info

Publication number
WO2021134601A1
WO2021134601A1 PCT/CN2019/130787 CN2019130787W WO2021134601A1 WO 2021134601 A1 WO2021134601 A1 WO 2021134601A1 CN 2019130787 W CN2019130787 W CN 2019130787W WO 2021134601 A1 WO2021134601 A1 WO 2021134601A1
Authority
WO
WIPO (PCT)
Prior art keywords
network element
smf
information
session
access
Prior art date
Application number
PCT/CN2019/130787
Other languages
English (en)
French (fr)
Inventor
李永翠
倪慧
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to CN201980102494.5A priority Critical patent/CN114731714A/zh
Priority to PCT/CN2019/130787 priority patent/WO2021134601A1/zh
Publication of WO2021134601A1 publication Critical patent/WO2021134601A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L65/00Network arrangements, protocols or services for supporting real-time applications in data packet communication
    • H04L65/40Support for services or applications

Definitions

  • the present invention relates to the field of communication technology, and in particular to a method and device for establishing a session.
  • ATSSS access traffic Steering, Switching, and Splitting
  • the selection of access flow is used to select an access network (3GPP access network or non-3GPP access network) for a new data flow to transmit the service of the data flow;
  • Access Traffic Switching is used to switch an online service flow from one access network to another access network and to ensure the continuity of the data flow;
  • Access Traffic Splitting is used to split a data flow Services are distributed to different access networks, and part of the service packets of the data stream are transmitted through one access technology, and part of the service packets are transmitted through another access technology.
  • the fifth-generation (the 5th-Generation, 5G) communication architecture supporting ATSSS technology is shown in Figure 1.
  • the UE establishes a multi-access Packet Data Unit session (MA PDU session) through the 3GPP access network and the non-3GPP access network, and simultaneously uses the two access networks for data transmission.
  • Data transmission between user equipment (UE) and data network (data network, DN) is realized.
  • the UE has established a MA PDU session.
  • the control plane of the session is provided by the session management function (SMF) network element to provide session management services.
  • the user plane of the session is provided by the PDU session anchor ( PDU session anchor (PSA) provides forwarding services.
  • SMF SA SMF service area
  • the SMF SA can be understood as the sum of the service ranges of all user plane function network elements (User Plane Function, UPF) managed by the SMF.
  • UPF User Plane Function
  • an intermediate SMF (I-SMF) needs to be inserted on the control plane to connect to the SMF
  • an intermediate UPF (I-UPF) needs to be inserted on the user plane to connect to the PSA.
  • I-SMF intermediate SMF
  • I-UPF intermediate UPF
  • the embodiment of the present invention provides a method and device for establishing a session.
  • an embodiment of the present application provides a method for establishing a session.
  • the method includes: a first SMF (for example, I-SMF) receives a multi-access session request, where the multi-access session request is used to indicate the first
  • the session uses the 3GPP access network and the Non-3GPP access network to transmit data.
  • the first SMF receives the access type from AMF, and the access type is non-3GPP.
  • the first SMF sends first information to the first UPF (for example, PSA) through the second SMF (for example, SMF), where the first information is used to establish a non-3GPP first access device (non-3GPP access network).
  • the device is connected to the downlink data plane of the first UPF, and the first UPF is the UPF managed by the second SMF.
  • the first SMF network element when the UE requests the establishment of an MA PDU session, the first SMF network element sends the first information to the first UPF network element according to the access type being non-3GPP, so that the first access network device and the first UPF network The connection of the downlink data plane of the yuan can be established, so that the establishment of the MA PDU session can be realized.
  • the first SMF sends second information to the first access device through AMF, and the second information is used to establish the uplink between the first access device and the first UPF User plane connection.
  • the first SMF determines that the access type is 3GPP, the first SMF sends third and fourth information to the second UPF, and the third information is used to establish the second access device and the second 3GPP
  • the downlink data plane connection of the UPF, the fourth information is used to establish an uplink data plane connection between the first UPF and the second UPF, and the second UPF is a UPF managed by the first SMF.
  • the first SMF sends fifth information to the second access device of 3GPP through AMF, and the fifth information is used to establish the uplink between the second access device and the second UPF
  • the user plane is connected, and the second UPF is the UPF managed by the first SMF.
  • the first SMF determines that the PLMN corresponding to the first SMF is the same as the PLMN corresponding to the second SMF. Therefore, the first SMF can determine that the UE is in a non-roaming scenario, and it can also be determined that the first SMF is an I-SMF instead of a V-SMF in a roaming scenario.
  • the first SMF receives indication information from the AMF, and the indication information is used to indicate that the PLMN corresponding to the first SMF is the same as the PLMN corresponding to the second SMF. Therefore, the first SMF can determine that the UE is in a non-roaming scenario, and it can also be determined that the first SMF is an I-SMF instead of a V-SMF in a roaming scenario.
  • the first SMF allocates fifth information and sixth information, the fifth information is used to establish the uplink user plane connection between the second access device of 3GPP and the second UPF, and the sixth information is used to establish the first A downlink user plane connection between a UPF and a second UPF, where the second UPF is a UPF managed by the first SMF.
  • the first SMF can obtain the fifth information and the sixth information, so as to realize the establishment of the data plane on the 3GPP access network side of the MA PDU session.
  • the first SMF receives fifth information and sixth information from the second UPF.
  • the fifth information is used to establish an uplink user plane connection between the 3GPP second access device and the second UPF.
  • the sixth information Used to establish a downlink user plane connection between the first UPF and the second UPF, where the second UPF is a UPF managed by the first SMF.
  • the first SMF can obtain the fifth information and the sixth information, so as to realize the establishment of the data plane on the 3GPP access network side of the MA PDU session.
  • the first SMF receives the session establishment request from the terminal device through the first access device, and the session establishment request is used to instruct the terminal device to request the establishment of the session; the first SMF sends the session establishment request to the second SMF. Therefore, the first SMF does not parse the session establishment request, thereby realizing the isolation of 3GPP and non-3GPP in session management.
  • the first SMF determines that the access type is 3GPP, the first SMF sends a first session update response message to AMF, and the first SMF sets the access type to non-3GPP; or, the first SMF determines The access type is non-3GPP, the first SMF sends a second session update response message to AMF, and the first SMF sets the access type to 3GPP. In this way, the establishment of the data plane on the 3GPP access network side and the non-3GPP access network side of the MA PDU session can be realized.
  • the present application also discloses a method for establishing a session.
  • the method includes: AMF obtains from a terminal device (for example, a UE) through a first non-3GPP access device (for example, a Non-3GPP access network device) A first multiple access session request is received, where the first multiple access session request is used to instruct the first session to use the 3GPP access network and the Non-3GPP access network to transmit data.
  • AMF selects a second SMF (for example, SMF) to provide services for the first session.
  • AMF receives a second multiple access session request from a terminal device through a 3GPP second access device (for example, 3GPP access network device).
  • the second multiple access session request is used to instruct the first session to use the 3GPP access network and Non-3GPP access network transmits data.
  • the AMF determines the first SMF (for example, I-SMF) according to the location of the terminal device and the service range of the second SMF, and the first SMF and the second SMF are used to provide services for the first session.
  • I-SMF the first SMF
  • the UE After the UE has established a MA PDU session through the Non-3GPP access network device and registered in the network through the 3GPP access network device, it then requests the establishment of the MA PDU session through the 3GPP access network device, When an intermediate SMF needs to be inserted, the user plane connection of MA PDU session can be established.
  • an embodiment of the present application provides a device for establishing a session, and the device has a function of implementing the first SMF behavior in the foregoing method.
  • the function can be realized by hardware, or by hardware executing corresponding software.
  • the hardware or software includes one or more modules corresponding to the above-mentioned functions.
  • the structure of the foregoing device includes a processor and a transceiver, and the processor is configured to process the device to perform corresponding functions in the foregoing method.
  • the transceiver is used to implement communication between the above-mentioned device and AMF/second SMF/second UPF.
  • the device may also include a memory, which is used for coupling with the processor and stores the program instructions and data necessary for the device.
  • an embodiment of the present application provides a device for establishing a session, and the device has the function of realizing the AMF behavior in the foregoing method.
  • the function can be realized by hardware, or by hardware executing corresponding software.
  • the hardware or software includes one or more modules corresponding to the above-mentioned functions.
  • the structure of the foregoing device includes a processor and a transceiver, and the processor is configured to process the device to perform corresponding functions in the foregoing method.
  • the transceiver is used to implement communication between the above-mentioned apparatus and the first access network device/second access network device/first SMF.
  • the device may also include a memory, which is used for coupling with the processor and stores the program instructions and data necessary for the device.
  • an embodiment of the present application provides a computer-readable storage medium having instructions stored in the computer-readable storage medium, which when run on a computer, cause the computer to execute the methods described in the foregoing aspects.
  • the embodiments of the present application provide a computer program product containing instructions, which when run on a computer, cause the computer to execute the methods described in the foregoing aspects.
  • the present application provides a chip system that includes a processor for supporting the above-mentioned device or terminal device to implement the functions involved in the above-mentioned aspects, for example, generating or processing the information involved in the above-mentioned method.
  • the chip system further includes a memory, and the memory is used to store program instructions and data necessary for the data sending device.
  • the chip system can be composed of chips, or include chips and other discrete devices.
  • Figure 1 is a schematic diagram of the first communication architecture
  • Figure 2 is a schematic diagram of the second communication architecture
  • Fig. 3 is a method for establishing a session according to an embodiment of the present application.
  • FIG. 4 is another method for establishing a session according to an embodiment of the present application.
  • Fig. 5 is a flowchart of a session establishment according to an embodiment of the present application.
  • Fig. 6 is a flowchart of yet another session establishment according to an embodiment of the present application.
  • FIG. 7 is a flowchart of yet another session establishment according to an embodiment of the present application.
  • Fig. 8 is a flowchart of yet another session establishment according to an embodiment of the present application.
  • Fig. 9 is a flowchart of yet another session establishment according to an embodiment of the present application.
  • FIG. 10 is another method for establishing a session according to an embodiment of the present application.
  • FIG. 11 is another method for establishing a session according to an embodiment of the present application.
  • 12A and 12B are schematic structural diagrams of an apparatus for establishing a session according to an embodiment of the present application.
  • Fig. 13 is a schematic structural diagram of a system for establishing a session according to an embodiment of the present application.
  • words such as “first” and “second” are used to distinguish the same items or similar items that have basically the same function and effect. Those skilled in the art can understand that words such as “first” and “second” do not limit the quantity and order of execution, and words such as “first” and “second” do not limit the difference.
  • the “first” and second descriptions have no order or size order among the technical features.
  • words such as “exemplary” or “for example” are used as examples, illustrations, or illustrations. Any embodiment or design solution described as “exemplary” or “for example” in the embodiments of the present application should not be construed as being more preferable or advantageous than other embodiments or design solutions. To be precise, words such as “exemplary” or “for example” are used to present related concepts in a specific manner to facilitate understanding.
  • 3GPP access technology refers to the access network technology proposed by the 3GPP organization, such as Time Division-Synchronous Code Division Multiple Access (TD-SCDMA) technology, Wideband Code Division Multiple Access (Wideband Code) Division Multiple Access, WCDMA) technology, etc.
  • the access equipment corresponding to the 3GPP access technology includes an evolved NodeB (evolved NodeB, eNB or eNodeB).
  • the access equipment corresponding to the 3GPP access technology includes Node B (Node B) and so on.
  • the access equipment corresponding to the 3GPP access technology includes gNB (gNodeB).
  • Non-3GPP access technology refers to the access technology made by other non-3GPP organizations, such as Code Division Multiple Access (CDMA) technology.
  • CDMA Code Division Multiple Access
  • the access equipment corresponding to Non-3GPP access technology includes but not limited to Wireless Fidelity Access Point (WiFi AP), Worldwide Interoperability for Microwave Access Base Station (WiMAX BS), etc. .
  • Fig. 2 shows a schematic diagram of a communication architecture provided by an embodiment of the present application.
  • the control plane function of the mobile gateway is decoupled from the forwarding plane function, and its separated control plane function is merged with the traditional 3GPP control network element mobility management entity (mobility management entity, MME), etc., into a unified Control plane.
  • the UPF network element can implement the user plane functions (SGW-U and PGW-U) of a serving gateway (serving gateway, SGW) and a packet data network gateway (packet data network gateway, PGW).
  • the unified control plane network elements can be decomposed into access and mobility management function (AMF) network elements and SMF network elements.
  • AMF access and mobility management function
  • the communication system shown in Figure 2 at least includes UE 201, 3GPP access network equipment 202, Non-3GPP access network equipment 203, I-UPF network element 204, PSA network element 205, AMF network element 207, and I-SMF network Element 208, SMF network element 209, and DN 206.
  • the UE 201 involved in this system is not limited to 5G networks, including: mobile phones, Internet of Things devices, smart home devices, industrial control devices, vehicle equipment, and so on.
  • the UE may also be called a mobile station (Mobile Station), mobile station (Mobile), remote station (Remote Station), remote terminal (Remote Terminal), access terminal (Access Terminal), terminal equipment (User Terminal), user Agent (User Agent) is not limited here.
  • the above-mentioned terminal device may also be a car in vehicle-to-vehicle (V2V) communication, a machine in machine-type communication, and so on.
  • V2V vehicle-to-vehicle
  • the 3GPP access network device 202 involved in this system is a device used to provide 3GPP access functions for the UE 201, and may include various forms of base stations, such as macro base stations and micro base stations (also called small stations). ), relay station, access point, etc.
  • base stations such as macro base stations and micro base stations (also called small stations). ), relay station, access point, etc.
  • the names of devices with base station functions may be different, such as eNB, Node B, and gNB.
  • the Non-3GPP access network device 203 involved in this system is a device used to provide non-3GPP access functions for the UE 201, which may include, but is not limited to, wireless fidelity access points (Wireless Fidelity Access Point, WiFi). AP), Worldwide Interoperability for Microwave Access Base Station (WiMAX BS), etc.
  • wireless fidelity access points Wireless Fidelity Access Point, WiFi
  • AP Wireless Fidelity Access Point
  • WiMAX BS Worldwide Interoperability for Microwave Access Base Station
  • the I-UPF 204 and PSA 205 involved in this system can implement functions such as forwarding, statistics, and detection of user messages.
  • PSA is a UPF with anchor point function.
  • UPF may also be called UPF equipment or UPF network element or UPF entity.
  • PSA can also be called PSA equipment or PSA network element or PSA entity.
  • the DN 206 involved in this system can be a service provided by an operator, an Internet access service, or a service provided by a third party.
  • the AMF 207 involved in this system can be responsible for terminal device registration, mobility management, tracking area update procedures, etc.
  • AMF may also be called AMF equipment or AMF network element or AMF entity.
  • the I-SMF network element 208 and SMF network element 209 involved in the system may be responsible for session management of the terminal device.
  • session management includes user plane device selection, user plane device reselection, internet protocol (IP) address allocation, quality of service (QoS) control, and session establishment, modification, or release.
  • IP internet protocol
  • QoS quality of service
  • the SMF network element may also be referred to as an SMF device or an SMF entity.
  • the aforementioned network elements can be network elements implemented on dedicated hardware, software instances running on dedicated hardware, or instances of virtualized functions on a virtualization platform.
  • the aforementioned virtualization platform can be a cloud platform.
  • the embodiments of the present application may also be applicable to other future-oriented communication technologies.
  • the network architecture and business scenarios described in this application are intended to explain the technical solutions of this application more clearly, and do not constitute a limitation on the technical solutions provided by this application. Those of ordinary skill in the art will know that with the evolution of the network architecture and new business scenarios The technical solutions provided in this application are equally applicable to similar technical problems.
  • the connection of the control plane of the session is: AMF 207, I-SMF 208, SMF 209.
  • the user plane connections of the session are: UE 201, 3GPP access network device 202, I-UPF 204, PSA 205, DN 206.
  • the user plane connections of the session are: UE 201, Non-3GPP access network equipment 203, PSA 205, DN 206.
  • FIG. 3 is a method for establishing a session provided by an embodiment of the application, and the method may be applicable to the communication system shown in FIG. 2. Through this method, the establishment of the MA PDU session can be realized in the architecture with I-SMF shown in FIG. 2. As shown in Figure 3, the method may include:
  • the first SMF network element receives a multi-access session request.
  • the multiple access session request is used to instruct the first session to use the 3GPP access network and the Non-3GPP access network to transmit data.
  • the first SMF is the I-SMF in FIG. 2.
  • the multiple access session request is a MA PDU session request, which is used to instruct the first session to use the 3GPP access network device 202 and the Non-3GPP access network device 203 in FIG. 2 to transmit data.
  • the first SMF network element receives the access type from the AMF network element, where the access type is non-3GPP.
  • AMF is AMF 207 in FIG. 2.
  • the first SMF network element sends the first information to the first UPF network element through the second SMF network element.
  • the first information is used to establish a downlink data plane connection between the non-3GPP first access device and the first UPF network element, and the first UPF network element is a UPF network element managed by the second SMF network element.
  • the second SMF is SMF 209 in FIG. 2.
  • the first UPF network element is PSA 205 in FIG. 2.
  • the first access device of Non-3GPP is the Non-3GPP access network device 203 in FIG. 2.
  • the first information is used to establish a downlink data plane connection between the Non-3GPP access network device in FIG. 2 and the PSA 205.
  • the first SMF network element determines the public land mobile network (Public Land Mobile Network) corresponding to the first SMF network element.
  • PLMN public land mobile network
  • the first SMF network element determines that the first SMF network element is an I-SMF network element, rather than a visited-session management function (V-SMF) in a roaming scenario.
  • V-SMF visited-session management function
  • the first SMF network element when the UE requests to establish an MA PDU session, the first SMF network element sends the first information to the first UPF network element according to the access type being non-3GPP , So that the connection between the first access network device and the downlink data plane of the first UPF network element can be established, so that the establishment of the MA PDU session can be realized.
  • FIG. 4 is another method for establishing a session provided by an embodiment of this application, and is used to describe the implementation of the method described in FIG. 3 in different scenarios. Fig. 4 will be described in conjunction with Fig. 2 and Fig. 3.
  • the first network device in FIG. 4 is the Non-3GPP access network device in FIG. 2 and is also the first network device in step S303 in FIG. 3.
  • the second network device in FIG. 4 is the 3GPP access network device in FIG. 2.
  • the first SMF in FIG. 4 is the I-SMF in FIG. 2 and is also the first SMF in steps S301-S303 in FIG. 3.
  • the second UPF controlled by the first SMF is the I-UPF in FIG. 2.
  • the second SMF in FIG. 4 is the SMF in FIG. 2 and is also the second SMF in step S303 in FIG. 3.
  • the first UPF controlled by the second SMF is the PSA in FIG. 2 and is also the first UPF in step S303 in FIG. 3.
  • the first uplink user plane indicates that the second access network device is connected to the uplink data plane of the second UPF.
  • the first uplink user plane can be the uplink N3 tunnel information (UL N3 tunnel info);
  • the row user plane indicates that the second access network device is connected to the downlink data plane of the second UPF.
  • the first downlink user plane may be downlink N3 tunnel information (DL N3 tunnel info).
  • the second uplink user plane indicates that the second UPF is connected to the uplink data plane of the first UPF.
  • the second uplink user plane can be the uplink N9 tunnel information (UL N9 tunnel info); the second downlink user plane indicates that the second UPF is connected to the first UPF.
  • the downlink data plane connection of the UPF may be downlink N9 tunnel information (DL N9 tunnel info).
  • the third uplink user plane indicates that the first UPF is connected to the uplink data plane of the first access network device.
  • the third uplink user plane can be UL N3 tunnel info;
  • the second downlink user plane indicates that the first UPF is connected to the first access network.
  • the downlink data plane connection of the device for example, the third downlink user plane can be DL N3 tunnel info.
  • the embodiment of FIG. 3 is applicable to the following three scenarios:
  • Scenario 1 The UE registers in the network through 3GPP access network equipment, and registers in the network through Non-3GPP access network equipment. Then, the UE requests the establishment of a MA PDU session through the 3GPP access network equipment.
  • Scenario 2 The UE registers in the network through 3GPP access network equipment, and registers in the network through Non-3GPP access network equipment. Then, the UE requests the establishment of an MA PDU session through the Non-3GPP access network device.
  • Scenario 3 The UE registers in the network through the 3GPP access network equipment, and the UE establishes a MA PDU session through the 3GPP access network equipment. After that, the UE registers in the network through the Non-3GPP access network equipment, and then the UE requests the establishment of a MA PDU session through the Non-3GPP access network equipment.
  • the UE registers with dual access technology (3GPP access technology and Non-3GPP access technology), and then requests the establishment of a MA PDU session through the 3GPP access network equipment.
  • the access type sent by the AMF to the first SMF is 3GPP.
  • the first SMF acquires the information of the first uplink user plane and the information of the second downlink user plane.
  • the first SMF sends the second downlink user plane information to the first UPF through the second SMF.
  • the second SMF acquires the information of the second uplink user plane and the information of the third uplink user plane, and sends them to the first SMF. Since the access type is 3GPP, the first SMF sends fifth information to the second access device through AMF.
  • the fifth information is used to establish an uplink user plane connection between the second access device and the second UPF network element.
  • the element is a UPF network element managed by the first SMF network element.
  • the fifth information is the information of the first uplink user plane.
  • the first SMF receives the first downlink user plane information from the second access network device through the AMF.
  • the first SMF determines that the access type is 3GPP.
  • the first SMF sends third information and fourth information to the second UPF.
  • the third information is used to establish a downlink data plane connection between the 3GPP second access device and the second UPF.
  • the fourth information is used to establish an uplink data plane connection between the first UPF and the second UPF, and the second UPF is a UPF network element managed by the first SMF.
  • the third information is information of the first downlink user plane
  • the fourth information is information of the second uplink user plane. So far, the user plane connection of the 3GPP access side of the MA PDU session has been established.
  • the first SMF network element sets the access type to Non-3GPP, and then establishes a user plane connection on the Non-3GPP access side. At this time, the access type is non-3GPP, and the first SMF network element sends second information to the first access device through AMF, and the second information is used to establish an uplink user plane connection between the first access device and the first UPF network element .
  • the second information is information of the third uplink user plane.
  • the first SMF network element receives the third downlink user plane information from the first access device through AMF.
  • the first SMF sends first information to the first UPF through the second SMF.
  • the first information is used to establish a downlink data plane connection between the first access device and the first UPF, and the first UPF is a UPF network element managed by the second SMF.
  • the first information is information of the third downlink user plane. So far, the user plane connection of the Non-3GPP access side of the MA PDU session has been established. According to the above method, the establishment of the MA PDU session user plane connection in scenario one can be realized.
  • the UE registers with dual access technology (3GPP access technology and Non-3GPP access technology), and then requests the establishment of a MA PDU session through the Non-3GPP access network device.
  • the access type sent by the AMF to the first SMF is Non-3GPP.
  • the first SMF acquires the information of the first uplink user plane and the information of the second downlink user plane.
  • the first SMF sends the second downlink user plane information to the first UPF through the second SMF.
  • the second SMF acquires the information of the second uplink user plane and the information of the third uplink user plane, and sends them to the first SMF.
  • the first SMF network element sends the second information to the first access device through AMF, and the second information is used to establish an uplink user plane connection between the first access device and the first UPF network element.
  • the second information is information of the third uplink user plane.
  • the first SMF network element receives the third downlink user plane information from the first access device through AMF.
  • the first SMF sends first information to the first UPF through the second SMF.
  • the first information is used to establish a downlink data plane connection between the first access device and the first UPF, and the first UPF is a UPF network element managed by the second SMF.
  • the first information is information of the third downlink user plane.
  • the first SMF network element sets the access type to 3GPP, and then establishes a user plane connection on the 3GPP access side.
  • the access type is 3GPP
  • the first SMF sends fifth information to the second access device through AMF.
  • the fifth information is used to establish an uplink user plane connection between the second access device and the second UPF network element.
  • the network element is a UPF network element managed by the first SMF network element.
  • the fifth information is the information of the first uplink user plane.
  • the first SMF receives the first downlink user plane information from the second access network device through the AMF.
  • the first SMF determines that the access type is 3GPP.
  • the first SMF sends third information and fourth information to the second UPF.
  • the third information is used to establish a downlink data plane connection between the 3GPP second access device and the second UPF.
  • the fourth information is used to establish an uplink data plane connection between the first UPF and the second UPF, and the second UPF is a UPF network element managed by the first SMF.
  • the third information is the information of the first downlink user plane
  • the fourth information is the information of the second uplink user plane. So far, the user plane connection of the 3GPP access side of the MA PDU session has been established. According to the above method, the establishment of the MA PDU session user plane connection in the second scenario can be realized.
  • the UE has already established a MA PDU session through the 3GPP access network device, and has registered in the network through the Non-3GPP access network device, and then requests the establishment of the MA PDU session through the Non-3GPP access network device.
  • the access type sent by the AMF to the first SMF is Non-3GPP.
  • the first SMF receives the third uplink user plane information from the second SMF. Since the access type is Non-3GPP, the first SMF network element sends the second information to the first access device through AMF, and the second information is used to establish an uplink user plane connection between the first access device and the first UPF network element. In other words, the second information is information of the third uplink user plane.
  • the first SMF network element receives the third downlink user plane information from the first access device through AMF.
  • the first SMF sends first information to the first UPF through the second SMF.
  • the first information is used to establish a downlink data plane connection between the first access device and the first UPF, and the first UPF is a UPF network element managed by the second SMF.
  • the first information is information of the third downlink user plane. So far, the user plane connection of the Non-3GPP access side of the MA PDU session has been established. Since the user plane connection of the 3GPP access side of the MA PDU session has been established, the user plane connection of the MA PDU session has been established. According to the above method, the establishment of the MA PDU session user plane connection in the third scenario can be realized.
  • the user plane connection is in the following state: (1) For the 3GPP side, the air interface connection between the UE and the second access network device, the second access network device and the second The user plane connections between UPFs are all disconnected; (2) For the Non-3GPP side, the air interface connection between the UE and the first access network device, and the user plane connection between the first access network device and the first UPF Both are disconnected.
  • the transmission of the downlink data includes the following two methods: (1) The downlink data is transmitted through the user plane of the 3GPP access network, that is, the downlink data to be transmitted is sent to the UE through the second access network device; (2) The downlink data is transmitted through the user plane of the Non-3GPP access network, that is, the downlink data to be transmitted is sent to the UE through the first access network device.
  • the above-mentioned use mode (1) method for transmitting downlink data includes: after the first UPF receives the downlink data, the downlink data is forwarded through the user plane connection between the first UPF and the second UPF To the second UPF.
  • the second UPF sends a data notification message to the first SMF; the first SMF sends an information transmission message to the AMF, which carries the session identifier corresponding to the downlink data.
  • AMF triggers paging to the UE.
  • the above-mentioned use mode (2) method for transmitting downlink data can be any of the following two methods:
  • Method A After the first UPF receives the downlink data, the first UPF sends a data notification message to the second SMF; the second SMF sends a notification message to the first SMF, which carries the session identifier corresponding to the downlink data; the first SMF sends to the AMF
  • the information transmission message carries the session identifier.
  • AMF triggers paging to the UE.
  • Method B The second SMF sends a forwarding rule to the first UPF.
  • the forwarding rule is used to instruct the first UPF to send the received downlink data to the second UPF.
  • the second SMF initiates an N4 session modification process to the first UPF, and in this process, the second SMF sends a forwarding rule to the first UPF. Therefore, when the first UPF receives the downlink data, it forwards the downlink data to the second UPF according to the forwarding rule.
  • the second UPF sends a data notification message to the first SMF.
  • the first SMF sends an information transmission message to the AMF, which carries the session identifier corresponding to the downlink data.
  • AMF triggers paging to the UE.
  • FIG. 5 is a flowchart of another method for establishing a session provided by an embodiment of the application.
  • This method can be used in scenario 1 in Figure 4: UE registers with dual access technology (3GPP access technology and Non-3GPP access technology), and then requests the establishment of MA PDU session through 3GPP access network equipment.
  • Figure 5 will be described in conjunction with Figures 3 and 4. As shown in Figure 5, the method may include:
  • the UE sends a non-access stratum (NAS) message to the AMF through a second access network device.
  • the AMF receives the NAS message from the UE through the second access network device.
  • NAS non-access stratum
  • the NAS message includes a multiple access session request.
  • the multi-access session request reference may be made to the description of the multi-access session request in step S301 in FIG. 3, which will not be repeated here.
  • the NAS message also includes a session establishment request.
  • the session establishment request includes one or more of the following: data network name (DNN), single network slice selection assistance information (S-NSSAI) or session identifier (identifier, ID) ).
  • DNN data network name
  • S-NSSAI single network slice selection assistance information
  • ID session identifier
  • the AMF selects the first SMF and the second SMF.
  • the AMF selects the first SMF according to the location information of the UE.
  • the AMF selects the second SMF according to the S-NSSAI and/or DNN in the session establishment request.
  • the AMF sends a context creation request to the first SMF.
  • the first SMF receives the context creation request from the AMF.
  • the creation context request includes a multi-access session request
  • the UE is registered in dual access technology (UE is registered over both accesses or not), and the access technology (access type).
  • the UE is registered in the dual access technology means that the UE is registered in both the 3GPP access technology and the Non-3GPP access technology.
  • the access technology is 3GPP.
  • the context creation request also includes the ID of the second SMF.
  • the AMF triggers the first SMF to create a session management context for the UE by invoking a session management context request (for example, Nsmf_PDUSession_CreateSMContext Request) service.
  • a session management context request for example, Nsmf_PDUSession_CreateSMContext Request
  • the first SMF selects the second UPF.
  • the first SMF determines that the PLMN corresponding to the first SMF is the same as the PLMN corresponding to the second SMF.
  • Step 505 is an optional step.
  • the first SMF determines that the PLMN corresponding to the first SMF is the same as the PLMN corresponding to the second SMF, which can also be described as the first SMF determining that the UE is in a non-roaming scenario.
  • the first SMF can determine that the first SMF is an I-SMF instead of a V-SMF in a roaming scenario.
  • the first SMF performs different operations from the V-SMF.
  • the first SMF may determine that the PLMN corresponding to the first SMF is the same as the PLMN corresponding to the second SMF in any of the following two ways:
  • the first SMF determines, according to the ID of the second SMF in step 503, that the PLMN corresponding to the second SMF is PLMN1, and the PLMN corresponding to the first SMF itself is PLMN2. If PLMN1 and PLMN2 are the same, the first SMF can determine that the UE is a non-roaming scenario, that is, the first SMF is an I-SMF; if PLMN1 and PLMN2 are different, the first SMF can determine that the UE is a roaming scenario, that is, the first SMF is V -SMF.
  • the first SMF receives first indication information from the AMF, where the first indication information is used to indicate that the PLMN corresponding to the first SMF is the same as the PLMN corresponding to the second SMF. For example, before step 503, the AMF determines that the UE is in a non-roaming scene, and in step 503, the context creation request sent by the AMF to the first SMF further includes the first indication information.
  • the first SMF acquires fifth information and sixth information.
  • the fifth information is used to establish an uplink user plane connection between the second access device and the second UPF
  • the sixth information is used to establish a downlink user plane connection between the first UPF and the second UPF.
  • the first SMF may obtain the fifth information and the sixth information in any of the following two ways: the first SMF allocates the fifth information and the sixth information, or the first SMF receives the fifth information from the second UPF And the sixth message.
  • the first SMF receives the fifth information and the sixth information from the second UPF, the first SMF sends second indication information to the second UPF, and the second indication information is used to instruct the second UPF to allocate the fifth information and the sixth information .
  • the first SMF may receive the fifth information and the sixth information from the second UPF through step 507.
  • the first SMF and the second UPF perform an N4 session establishment process.
  • the N4 session establishment process includes: the first SMF sends an N4 session establishment request to the second UPF, and the second UPF sends an N4 session establishment response to the first SMF.
  • the N4 session establishment response includes the fifth information and the sixth information in step 506.
  • the first SMF sends a session creation request to the second SMF.
  • the second SMF receives the session creation request from the first SMF.
  • the first SMF requests session creation from the second SMF by invoking the create session creation request (for example, Nsmf_PDUSession_Create Request) service.
  • create session creation request for example, Nsmf_PDUSession_Create Request
  • the session creation request includes the sixth information, the multiple access session request, and the access technology.
  • the access technology is 3GPP.
  • the session creation request further includes one or more of the following: session identifier, ID of the first SMF, location information of the UE, or session type.
  • the second SMF selects the first UPF.
  • the method further includes: the first SMF interacts with the UDM to obtain session management subscription data.
  • SMF obtains session management subscription information from UDM by invoking the service of obtaining session management subscription information (for example, Nudm_SDM_Get).
  • the method further includes: the first SMF interacts with the PCF to obtain the session policy.
  • the second SMF and the first UPF perform an N4 session establishment process.
  • the N4 session establishment process includes: the second SMF sends an N4 session establishment request to the first UPF, and the first UPF sends an N4 session establishment response to the second SMF.
  • the N4 session establishment response includes the information of the second uplink user plane and the information of the third uplink user plane in FIG. 4.
  • the information of the third uplink user plane is also called second information.
  • the second uplink user plane may be UL N9 tunnel info.
  • the third uplink user plane can be UL N3 tunnel info.
  • the N4 session establishment response does not need to include the information of the second uplink user plane and the information of the third uplink user plane. information.
  • the second SMF sends a session creation response to the first SMF.
  • the first SMF receives the session creation response from the second SMF.
  • the second SMF responds to the second SMF to create a session by invoking the create session creation response (for example, Nsmf_PDUSession_Create Response) service.
  • create session creation response for example, Nsmf_PDUSession_Create Response
  • the session creation response includes the information of the second uplink user plane and the access technology in step 510.
  • the access technology is 3GPP.
  • the session creation response also includes one or more of the following: session identifier, multiple access acceptance (MA PDU session accepted) information, selected session type, and so on.
  • session identifier identifier
  • MA PDU session accepted multiple access acceptance
  • the session creation response further includes the information of the third uplink user plane.
  • the first SMF determines the user plane connection of the 3GPP access side that establishes the multi-access session, including the following steps 512 to 519.
  • the first SMF sends fifth information to the AMF.
  • the AMF receives the fifth information from the first SMF.
  • the first SMF sends the fifth information to the AMF through an information transmission message.
  • the first SMF sends the fifth message to the AMF by invoking the information transfer (for example, Namf_Communication_N1N2MessageTransfer) service.
  • the information transfer for example, Namf_Communication_N1N2MessageTransfer
  • the information transmission message includes N2 session management information (N2 SM info), and N2 SM info includes the fifth information.
  • N2 SM info includes the fifth information.
  • the information transmission message also includes one or more of the following: session identifier, multi-session accepted (MA PDU session accepted) information, and N1 session management container (N1 SM container).
  • the N1 SM container contains a session establishment acceptance message, which is used by the SMF to send it to the UE through the AMF and RAN equipment.
  • the AMF sends an N2 session request to the second access network device.
  • the second access network device receives the N2 session request from the AMF.
  • the N2 session request includes the fifth information.
  • the N2 session request includes N2 SM info
  • N2 SM info includes the fifth information.
  • the N2 session request also includes one or more of the following: session identifier or N1 SM container.
  • the second access network device initiates a radio resource establishment procedure with the UE.
  • the second access network device establishes radio resources by sending a NAS message to the UE.
  • the NAS message includes the session identifier and N1 SM container.
  • the second access network device sends an N2 session response to the AMF.
  • the AMF receives the N2 session response from the second access network device.
  • the N2 session response includes the session identifier and N2 SM info.
  • N2 SM info includes the third information in FIG. 4. The third information is used to establish a downlink data plane connection between the second access device and the second UPF.
  • the AMF sends a context update request to the first SMF.
  • the first SMF receives the context update request from the AMF.
  • the AMF invokes the update session management context request (for example, Nsmf_PDUSession_UpdateSMContext Request) service, and sends the update session management context request to the first SMF.
  • the update session management context request for example, Nsmf_PDUSession_UpdateSMContext Request
  • the update context request includes N2 SM info in step 515.
  • the first SMF determines that the access type is 3GPP, and sends third information and fourth information to the second UPF.
  • the first SMF may send the third information and the fourth information to the second UPF through step 518.
  • the first SMF and the first UPF perform an N4 session modification process.
  • the N4 session modification process includes: the first SMF sends an N4 session modification request to the second UPF, and the second UPF sends an N4 session modification response to the first SMF.
  • the N4 session modification request includes the third information and the fourth information in step 517.
  • the first SMF sends an update context response to the AMF.
  • the AMF receives the update context response from the first SMF.
  • the first SMF invokes an update session management context response (for example, Nsmf_PDUSession_UpdateSMContext Response) service to send an update context response to the AMF.
  • an update session management context response for example, Nsmf_PDUSession_UpdateSMContext Response
  • the user plane connection establishment process corresponding to the Non-3GPP access technology of the multi-access session includes the following steps 520 to 529.
  • this process may be initiated by the second SMF after step 510, or initiated by the first SMF after step 511, or initiated by the first SMF after step 519.
  • the session creation response in step 511 also includes the information of the third uplink user plane.
  • the second SMF first sends the third uplink user plane information to the first SMF, and sends third indication information to the first SMF.
  • the third indication information is used to indicate the establishment of The user plane of the Non-3GPP access side of the multi-access session is connected, and then steps 521 to 529 are performed.
  • the first SMF determines to establish a connection to the Non-3GPP user plane.
  • the first SMF may determine to establish the connection of the Non-3GPP user plane in any of the following ways:
  • the first way the first SMF determines the third indication information, and the third indication information is used to indicate the establishment of the connection of the Non-3GPP user plane.
  • the third indication information is the access type, and the access type is Non-3GPP. This way can be understood as the non-3GPP user plane establishment process initiated by the first SMF.
  • the second way the first SMF receives the third indication information from the second SMF, where the third indication information is used to indicate the establishment of a connection to the Non-3GPP user plane.
  • This way can be understood as the non-3GPP user plane establishment process initiated by the second SMF.
  • the first SMF sends second information to the AMF.
  • the AMF receives the second information from the first SMF.
  • the first SMF also sends the access technology or the third indication information in step 520 to the AMF.
  • the first SMF obtains the second information through step 510.
  • the second information is used to establish an uplink user plane connection between the first access device and the first UPF.
  • the second information is the information of the third uplink user plane in FIG. 4.
  • the first SMF sends the second information to the AMF through an information transmission message.
  • the first SMF sends the second information to the AMF by invoking the information transfer (for example, Namf_Communication_N1N2MessageTransfer) service.
  • the information transfer for example, Namf_Communication_N1N2MessageTransfer
  • the information transmission message includes N2 session management information (N2 SM info), and N2 SM info includes second information.
  • N2 SM info N2 session management information
  • N2 SM info includes second information.
  • the AMF sends an N2 session request to the first access network device.
  • the first access network device receives the N2 session request from the AMF.
  • the N2 session request includes the second information.
  • the N2 session request includes N2 SM info
  • the N2 SM info includes the second information
  • the first access network device initiates a radio resource establishment procedure with the UE.
  • the first access network device establishes radio resources by sending a NAS message to the UE.
  • the first access network device sends an N2 session response to the AMF.
  • the AMF receives the N2 session response from the first access network device.
  • the N2 session response includes the session identifier and N2 SM info.
  • N2 SM info includes the first information in FIG. 4. The first information is used to establish a downlink data plane connection between the first access device and the first UPF.
  • the N2 session response also includes the access type, and the access type is Non-3GPP.
  • the AMF sends a context update request to the first SMF.
  • the first SMF receives the context update request from the AMF.
  • the AMF invokes the update session management context request (for example, Nsmf_PDUSession_UpdateSMContext Request) service, and sends the update session management context request to the first SMF.
  • the update session management context request for example, Nsmf_PDUSession_UpdateSMContext Request
  • the request to update the session management context includes the N2 SM info in step 524.
  • the first SMF determines that the access type is Non-3GPP, and the first SMF sends the first information to the first UPF through the second SMF.
  • the first SMF may send the first information to the first UPF through steps 527 and 528.
  • the first SMF sends the first information to the second SMF.
  • the second SMF and the first UPF perform an N4 session modification process.
  • the N4 session modification process includes: the second SMF sends an N4 session modification request to the first UPF, and the first UPF sends an N4 session modification response to the second SMF.
  • the N4 session modification request includes the first information in step 526.
  • the first SMF sends an update context response to the AMF.
  • the AMF receives the update context response from the first SMF.
  • the first SMF invokes an update session management context response (for example, Nsmf_PDUSession_UpdateSMContext Response) service to send an update context response to the AMF.
  • an update session management context response for example, Nsmf_PDUSession_UpdateSMContext Response
  • the user plane connection of the MA PDU session can be established.
  • FIG. 6 is a flowchart of another method for establishing a session according to an embodiment of the application.
  • This method can be used in the second scenario in Figure 4: the UE registers with dual access technology (3GPP access technology and Non-3GPP access technology), and then requests the establishment of MA PDU session through the Non-3GPP access network device.
  • Figure 6 will be described in conjunction with Figures 3 to 5.
  • the method may include:
  • the UE sends a NAS message to the AMF through the first access network device.
  • the AMF receives the NAS message from the UE through the first access network device.
  • the NAS message includes a multiple access session request.
  • the NAS message refer to the description of the NAS message in step S501 in FIG. 5, which will not be repeated here.
  • step 602 to step 611 reference may be made to the description of step 502 to step 511 in FIG. 5, which will not be repeated here.
  • the first SMF determines to establish the user plane connection of the Non-3GPP access side of the multi-access session, including the following steps 612 to 620.
  • step 612 to step 620 reference may be made to the description of step 521 to step 529 in FIG. 5, which will not be repeated here.
  • step 612 to step 620 further include:
  • the information transmission message further includes one or more of the following: session identifier, multi-session accepted (MA PDU session accepted) information, and N1 session management container (N1 SM container).
  • the N1 SM container contains a session establishment acceptance message, which is used by the SMF to send it to the UE through the AMF and RAN equipment.
  • the N2 session request further includes one or more of the following: session identifier or N1 SM container.
  • the NAS message further includes a session identifier and N1 SM container.
  • step 612 to step 620 the user plane connection of the Non-3GPP access side of the multi-access session has been established.
  • the user plane connection establishment process corresponding to the 3GPP side access technology includes the following steps 622 to 629.
  • this process may be initiated by the second SMF after step 610, or initiated by the first SMF after step 611, or initiated by the first SMF after step 620.
  • the session creation response in step 611 also includes the information of the third uplink user plane.
  • the second SMF first sends the information of the third uplink user plane to the first SMF, and sends fourth indication information to the first SMF.
  • the fourth indication information is used to indicate the establishment of The user plane of the 3GPP access side of the multi-access session is connected, and then steps 622 to 629 are performed.
  • the first SMF determines to establish a 3GPP user plane connection.
  • the first SMF may determine to establish a 3GPP user plane connection in any of the following ways:
  • the first way the first SMF determines fourth indication information, and the fourth indication information is used to indicate the establishment of a 3GPP user plane connection.
  • the fourth indication information is the access type, and the access type is 3GPP. This way can be understood as the 3GPP user plane establishment process initiated by the first SMF.
  • the second way the first SMF receives fourth indication information from the second SMF, where the fourth indication information is used to indicate the establishment of a 3GPP user plane connection.
  • This way can be understood as the establishment of the 3GPP user plane initiated by the second SMF.
  • step 622 to step 629 reference may be made to the description of step 512 to step 519 in FIG. 5, which will not be repeated here.
  • step 622 to step 629 the user plane connection of the 3GPP access side of the multi-access session has been established.
  • step 625 the difference from step 524 is that the N2 session response in step 625 also includes an access type, and the access type is 3GPP.
  • the user plane connection of the MA PDU session can be established.
  • FIG. 7 is a flowchart of another method for establishing a session according to an embodiment of the application. This method can be used in the situation of scenario 3 in Figure 4:
  • the UE has established a MA PDU session through the 3GPP access network equipment, and has registered in the network through the Non-3GPP access network equipment, and then through the Non-3GPP access network equipment Request to establish MA PDU session.
  • FIG. 7 will be described in conjunction with FIG. 3 to FIG. 6. As shown in FIG. 7, the method may include:
  • the UE establishes a MA PDU session through the second access network device.
  • step 700 For the implementation process of step 700, reference may be made to the description of step 501 to step 519 in FIG. 5, which will not be repeated here.
  • step 501 to step 519 the user plane connection of the 3GPP access side of the multi-access session has been established.
  • the UE sends a non-access stratum NAS message to the AMF through the first access network device.
  • the AMF receives the NAS message from the UE through the first access network device.
  • the NAS message includes a multiple access session request.
  • the multi-access session request reference may be made to the description of the multi-access session request in step S301 in FIG. 3, which will not be repeated here.
  • the NAS message also includes a session establishment request.
  • the session establishment request includes the session identifier.
  • the session identifier is the same as the session identifier of the first session.
  • the AMF determines that the first session has been established on the 3GPP access network.
  • the AMF determines that the first session has been established on the 3GPP access network according to the same session identifier in step 701 as the session identifier of the first session.
  • the AMF sends a context update request to the first SMF.
  • the first SMF receives the update context request from the AMF.
  • the AMF invokes the update session management context request (for example, Nsmf_PDUSession_UpdateSMContext Request) service, and sends the update session management context request to the first SMF.
  • the update session management context request for example, Nsmf_PDUSession_UpdateSMContext Request
  • the update request includes the session identifier and the access type.
  • the access type is Non-3GPP.
  • the first SMF sends a session update request to the second SMF.
  • the second SMF receives the session update request from the first SMF.
  • the session update request includes the session identifier and access type in step 703.
  • the session update request also includes a session establishment request.
  • the first SMF determines that it is Non-3GPP according to the access type in step 703, the first SMF sends a session update request to the second SMF.
  • the second SMF and the first UPF perform an N4 session modification process.
  • Step 705 is an optional step.
  • the N4 session modification process includes: the second SMF sends an N4 session modification request to the first UPF, and the first UPF sends an N4 session modification response to the second SMF.
  • step 704 needs to be performed to obtain the information of the third uplink user plane.
  • the third uplink user plane can be UL N3 tunnel info. If the second SMF has already acquired the information of the third uplink user plane when the UE establishes the first session in the 3GPP access network, the second SMF does not perform step 704.
  • the second SMF sends a session update response to the first SMF.
  • the first SMF receives the session update response from the second SMF.
  • the session update response can be in either of the following two forms:
  • the session update response includes the session identifier, N1 SM container, and N2 SM info.
  • N1 SM container includes session establishment acceptance.
  • N2 SM info contains the information of the third uplink user plane.
  • the session update response is in the first form; when the session update request in step 704 does not include a session establishment request, the session update response is in the second form form.
  • step 707 to step 715 reference may be made to the description of step 521 to step 529 in FIG. 5, which will not be repeated here.
  • the user plane connection of the MA PDU session can be established.
  • FIG. 8 is a flowchart of another method for establishing a session according to an embodiment of the application. This method can be used in the following scenarios: After the UE has established a MA PDU session through the Non-3GPP access network device, and has registered in the network through the 3GPP access network device, it then requests the establishment of the MA PDU session through the 3GPP access network device.
  • FIG. 8 will be described in conjunction with FIG. 3 to FIG. 7. As shown in FIG. 8, the method may include:
  • the UE sends a NAS message to the AMF through the first access network device.
  • the AMF receives the NAS message from the UE through the first access network device.
  • the AMF selects the second SMF.
  • the AMF selects the second SMF according to the S-NSSAI and/or DNN in the session establishment request.
  • the AMF sends a context creation request to the second SMF.
  • the second SMF receives the context creation request from the AMF.
  • the request for creating a context includes a request for multiple access sessions and an access technology.
  • the access technology is Non-3GPP.
  • the AMF triggers the second SMF to create a session management context for the UE by invoking a session management context request (for example, Nsmf_PDUSession_CreateSMContext Request) service.
  • a session management context request for example, Nsmf_PDUSession_CreateSMContext Request
  • the second SMF selects the first UPF.
  • the second SMF and the first UPF perform an N4 session establishment process.
  • the N4 session establishment process includes: the second SMF sends an N4 session establishment request to the first UPF, and the first UPF sends an N4 session establishment response to the second SMF.
  • the N4 session establishment response includes the information of the third uplink user plane in FIG. 4.
  • the N4 session establishment response further includes information about the second uplink user plane.
  • the second SMF sends an information transmission message to the AMF.
  • the AMF receives the information transmission message from the second SMF.
  • the second SMF sends an information transfer message to the AMF by invoking an information transfer (for example, Namf_Communication_N1N2MessageTransfer) service.
  • an information transfer for example, Namf_Communication_N1N2MessageTransfer
  • the information transmission message includes N2 session management information (N2 SM info), and N2 SM info includes information about the third uplink user plane.
  • N2 SM info includes information about the third uplink user plane.
  • the information of the third uplink user plane is also called second information.
  • step 807 to step 809 reference may be made to the description of step 522 to step 524 in FIG. 5, which will not be repeated here.
  • the AMF sends a context update request to the second SMF.
  • the second SMF receives the context update request from the AMF.
  • the AMF invokes the update session management context request (for example, Nsmf_PDUSession_UpdateSMContext Request) service, and sends the update session management context request to the second SMF.
  • the update session management context request for example, Nsmf_PDUSession_UpdateSMContext Request
  • the request to update the session management context includes N2 SM info in step 809.
  • the second SMF and the first UPF perform an N4 session modification process.
  • the N4 session modification process includes: the second SMF sends an N4 session modification request to the first UPF, and the first UPF sends an N4 session modification response to the second SMF.
  • the N4 session modification request includes the first information in step 526.
  • the second SMF sends an update context response to the AMF.
  • the AMF receives the update context response from the second SMF.
  • the second SMF invokes an update session management context response (for example, Nsmf_PDUSession_UpdateSMContext Response) service to send an update context response to the AMF.
  • an update session management context response for example, Nsmf_PDUSession_UpdateSMContext Response
  • the UE sends a NAS message to the AMF through the second access network device.
  • the AMF receives the NAS message from the UE through the second access network device.
  • the AMF determines to insert the first SMF.
  • the AMF determines the first SMF according to the location of the UE and the service range of the second SMF.
  • the AMF determines to insert the first SMF according to the session identifier and the multi-access session request included in the NAS message in step 813; or, the AMF determines to insert the first SMF according to the session identifier, the multi-access session request and the access technology included in the NAS message in step 813 as 3GPP Make sure to insert the first SMF.
  • step 815 reference may be made to the description of step 503 in FIG. 5, which will not be repeated here.
  • the first SMF and the second SMF perform a session context request process.
  • the first SMF sends a session context request (Nsmf_PDUSession_Context Request) to the second SMF, and the second SMF returns a session context request response (Nsmf_PDUSession_Context Response) to the first SMF.
  • the session context response includes the session context (SM context).
  • Step 817 to step 821 can be described with reference to step 504 to step 508 in FIG. 5, and will not be repeated here.
  • the first UPF sends the second uplink user plane information to the second SMF.
  • the second SMF receives the information of the second uplink user plane from the first UPF.
  • the second SMF sends an N4 session establishment request to the first UPF
  • the first UPF sends an N4 session establishment response to the second SMF, where the N4 session establishment response includes the information of the second uplink user plane.
  • the second SMF sends an N4 session modification request to the first UPF
  • the first UPF sends an N4 session modification response to the second SMF, where the N4 session modification response includes the information of the second uplink user plane.
  • step 822 is an optional step. For example, when the information of the second uplink user plane is already included in step 805, this step can be omitted.
  • step 823 to step 831 reference may be made to the description of step 511 to step 519 in FIG. 5, which will not be repeated here.
  • the UE has already established a MA PDU session through the Non-3GPP access network device, and has registered in the network through the 3GPP access network device, and then requests the establishment of the MA PDU session through the 3GPP access network device,
  • an intermediate SMF needs to be inserted, the user plane connection of MA PDU session can be established.
  • the user plane connection is in the following state: (1) For the 3GPP side, the air interface connection between the UE and the second access network device, the second access network device and the first The user plane connections between the two UPFs are both disconnected; (2) For the Non-3GPP side, the air interface connection between the UE and the first access network device, and the user plane between the first access network device and the first UPF All connections are disconnected.
  • the transmission of the downlink data includes the following two methods: (1) The downlink data is transmitted through the user plane of the 3GPP access network, that is, the downlink data to be transmitted is sent to the UE through the second access network device; (2) The downlink data is transmitted through the user plane of the Non-3GPP access network, that is, the downlink data to be transmitted is sent to the UE through the first access network device.
  • the above-mentioned use mode (1) method for transmitting downlink data includes: after the first UPF receives the downlink data, the downlink data is forwarded through the user plane connection between the first UPF and the second UPF To the second UPF.
  • the second UPF sends a data notification message to the first SMF; the first SMF sends an information transmission message to the AMF, which carries the session identifier corresponding to the downlink data.
  • AMF triggers paging to the UE.
  • the above-mentioned use mode (2) method for transmitting downlink data can be any of the following two methods:
  • Method A After the first UPF receives the downlink data, the first UPF sends a data notification message to the second SMF; the second SMF sends a notification message to the first SMF, which carries the session identifier corresponding to the downlink data; the first SMF sends to the AMF
  • the information transmission message carries the session identifier.
  • AMF triggers paging to the UE.
  • Method B The second SMF sends a forwarding rule to the first UPF.
  • the forwarding rule is used to instruct the first UPF to send the received downlink data to the second UPF.
  • the second SMF initiates an N4 session modification process to the first UPF, and in this process, the second SMF sends a forwarding rule to the first UPF. Therefore, when the first UPF receives the downlink data, it forwards the downlink data to the second UPF according to the forwarding rule.
  • the second UPF sends a data notification message to the first SMF.
  • the first SMF sends an information transmission message to the AMF, which carries the session identifier corresponding to the downlink data.
  • AMF triggers paging to the UE.
  • FIG. 9 is a flowchart of another method for establishing a session according to an embodiment of the application. This method can be used in the scenario described in Figure 8: the UE has established a MA PDU session through the Non-3GPP access network equipment, and after the 3GPP access network equipment is registered in the network, it then requests the establishment of an MA through the 3GPP access network equipment PDU session.
  • FIG. 9 when the 3GPP access network is used for data transmission, the user plane connections of the session are: UE, 3GPP access network equipment, I-UPF, PSA, DN, when using Non-3GPP access network for data transmission, the user plane connections of the session are: UE, Non-3GPP access network equipment, PSA, DN; in the method described in Figure 9, when using 3GPP access When accessing the network for data transmission, the user plane connection of the session is: UE, 3GPP access network equipment, I-UPF, PSA, DN, when using the Non-3GPP access network for data transmission, the user plane connection of the session It is: UE, Non-3GPP access network equipment, I-UPF, PSA, DN.
  • the architecture diagram described in Figure 9 is shown in Figure 10. FIG. 9 will be described in conjunction with FIG. 8. As shown in FIG. 9, the method may include:
  • step 901 to step 917 reference may be made to the description of step 801 to step 817 in FIG. 8, which will not be repeated here.
  • the first SMF and the second UPF perform an N4 session establishment process.
  • the N4 session establishment process includes: the first SMF sends an N4 session establishment request to the second UPF, and the second UPF sends an N4 session establishment response to the first SMF.
  • the N4 session establishment response includes seventh, eighth, ninth, and tenth information.
  • the seventh information is used to establish an uplink user plane connection between the 3GPP access network device and the second UPF.
  • the eighth information is used to establish an uplink user plane connection between the Non-3GPP access network device and the second UPF.
  • the ninth information is used to establish a downlink user plane connection between the first UPF and the second UPF used in the 3GPP access network.
  • the tenth information is used to establish a downlink user plane connection between the first UPF and the second UPF used in the Non-3GPP access network.
  • the first SMF sends a session creation request to the second SMF.
  • the second SMF receives the session creation request from the first SMF.
  • the first SMF requests session creation from the second SMF by invoking the create session creation request (for example, Nsmf_PDUSession_Create Request) service.
  • create session creation request for example, Nsmf_PDUSession_Create Request
  • the session creation request includes ninth information, tenth information, multiple access session request, and access technology.
  • the access technology is 3GPP.
  • the session creation request further includes one or more of the following: session identifier, ID of the first SMF, or session type.
  • the first UPF sends the eleventh information to the second SMF.
  • the second SMF receives the eleventh information from the first UPF.
  • the eleventh information is used to establish an uplink user plane connection between the first UPF and the second UPF used in the 3GPP access network.
  • the second SMF sends an N4 session establishment request to the first UPF
  • the first UPF sends an N4 session establishment response to the second SMF, where the N4 session establishment response includes the eleventh information.
  • the N4 session establishment response also includes twelfth information, where the twelfth information is used to establish a connection between the first UPF and the second UPF. Uplink user plane connection.
  • the second SMF sends an N4 session modification request to the first UPF
  • the first UPF sends an N4 session modification response to the second SMF, where the N4 session modification response includes the eleventh information.
  • the SMF does not obtain the twelfth information in step 905
  • the N4 session modification response also includes twelfth information, where the twelfth information is used to establish a connection between the first UPF and the second UPF. Uplink user plane connection.
  • the second SMF sends a session creation response to the first SMF.
  • the first SMF receives the session creation response from the second SMF.
  • the second SMF responds to the second SMF to create a session by invoking the create session creation response (for example, Nsmf_PDUSession_Create Response) service.
  • create session creation response for example, Nsmf_PDUSession_Create Response
  • the session creation response includes the eleventh information and the access technology in step 920.
  • the access technology is 3GPP.
  • the session creation request further includes one or more of the following: session identifier, multiple access acceptance information, or selected session type, etc.
  • step 922 to step 929 reference may be made to the description of step 824 to step 831 in FIG. 8, which will not be repeated here.
  • the first SMF or the second SMF initiates the update process of the Non-3GPP side user plane connection, including steps 930 to 937.
  • the second SMF sends the first SMF for establishing the Non-3GPP access network to the first SMF.
  • the first SMF sends an information transmission message to the AMF.
  • the AMF receives the information transmission message from the first SMF.
  • the first SMF invokes the information transfer (for example, Namf_Communication_N1N2MessageTransfer) service.
  • the information transfer for example, Namf_Communication_N1N2MessageTransfer
  • the information transmission message includes N2 session management information (N2 SM info), and N2 SM info includes eighth information.
  • the information transmission message also includes a session identifier.
  • the AMF sends an N2 session request to the first access network device.
  • the first access network device receives the N2 session request from the AMF.
  • the N2 session request includes eighth information.
  • the N2 session request includes N2 SM info
  • N2 SM info includes the eighth information.
  • the first access network device initiates a radio resource establishment procedure with the UE.
  • the first access network device establishes radio resources by sending a NAS message to the UE.
  • the NAS message contains the session identifier.
  • This step is optional.
  • the first access network device sends an N2 session response to the AMF.
  • the AMF receives the N2 session response from the first access network device.
  • the N2 session response includes the session identifier and N2 SM info.
  • N2 SM info includes the user plane information of the access network equipment on the Non-3GPP side. This information is used to establish a downlink data plane connection between the first access network device and the second UPF.
  • the AMF sends a context update request to the first SMF.
  • the first SMF receives the context update request from the AMF.
  • the AMF invokes the update session management context request (for example, Nsmf_PDUSession_UpdateSMContext Request) service, and sends the update session management context request to the first SMF.
  • the update session management context request for example, Nsmf_PDUSession_UpdateSMContext Request
  • the update context request includes N2 SM info in step 931.
  • the first SMF initiates an N4 session modification process to the second UPF.
  • the first SMF sends the user plane information and twelfth information of the access network equipment on the Non-3GPP side to the second UPF to establish a downlink between the second UPF and the access network equipment on the Non-3GPP side.
  • the UE has already established a MA PDU session through the Non-3GPP access network device, and has registered in the network through the 3GPP access network device, and then requests the establishment of the MA PDU session through the 3GPP access network device,
  • an intermediate SMF needs to be inserted, the user plane connection of MA PDU session can be established.
  • FIG. 11 is another session establishment method provided by an embodiment of the application.
  • AMF has an N11 interface with I-SMF and an N11 interface with SMF.
  • the control plane connections established through the 3GPP access network equipment are: AMF, I-SMF, SMF; the control plane connections established through the Non-3GPP access network equipment are: AMF, SMF.
  • Figure 11 can be applied to the following four scenarios.
  • Scenario A The UE is registered in the network through the 3GPP access network equipment, and is registered in the network through the Non-3GPP access network equipment. Then the UE requests the establishment of a MA PDU session through the 3GPP access network equipment.
  • AMF selects I-SMF and SMF to provide services for the UE, and the user plane connections are: UE, 3GPP access network equipment, I-UPF, PSA, and DN. Then the SMF obtains the AMF identifier, thereby initiating the establishment of the user plane connection on the Non-3GPP side.
  • SMF can obtain the AMF ID in either of the following two ways:
  • Method 1 In the process of establishing an MA PDU session by the UE through the 3GPP access network equipment, the AMF sends the AMF identifier to the SMF through the I-SMF.
  • Manner 2 In the process of establishing an MA PDU session by the UE through the 3GPP access network equipment, after AMF selects I-SMF and SMF, AMF sends a context creation request to I-SMF and SMF respectively.
  • the context creation request sent by the AMF to the SMF includes the AMF identifier.
  • the context creation request sent by AMF to I-SMF is used to establish a control plane connection corresponding to the 3GPP access technology
  • the context creation request sent by AMF to SMF is used to establish a control plane corresponding to the Non-3GPP access technology connection.
  • SMF After SMF obtains the AMF logo, it initiates the user plane connection establishment process on the Non-3GPP side, including: SMF sends an information transmission message to the AMF, which carries the user plane information of the PSA, where the user plane information of the PSA is used to establish Non-3GPP The uplink user plane connection between the access network equipment and the PSA.
  • the AMF sends an N2 session request to the Non-3GPP access network device, carrying the user plane information of the PSA.
  • the Non-3GPP access network device initiates a wireless connection establishment process with the UE.
  • the Non-3GPP access network device returns the N2 session response to the AMF, which carries the user plane information of Non-3GPP.
  • the user plane information of Non-3GPP is used to establish the downlink user plane between the Non-3GPP access network device and the PSA. connection.
  • the AMF sends the user plane information of Non-3GPP to the SMF.
  • the SMF initiates the N4 session modification process to the PSA, and sends the user plane information of Non-3GPP to the PSA.
  • the I-SMF determines that the UE is in a non-roaming scenario.
  • the I-SMF receives the user plane information of the I-UPF from the I-UPF, where the user plane information of the I-UPF is used to establish the uplink user plane connection between the 3GPP access network equipment and the I-UPF, as well as the I-UPF and PSA The downlink user plane connection between.
  • Scenario B The UE is registered in the network through the 3GPP access network device, and is registered in the network through the Non-3GPP access network device. Then the UE requests the establishment of a MA PDU session through the Non-3GPP access network equipment.
  • the AMF selects I-SMF and SMF to provide services for the UE.
  • Non-3GPP control plane connection is: AMF, SMF.
  • Non-3GPP user plane connections are: UE, Non-3GPP access network equipment, PSA, and DN.
  • the SMF obtains the I-SMF identifier, thereby initiating the establishment of the user plane connection on the 3GPP side.
  • SMF can obtain the I-SMF ID in either of the following two ways:
  • Method A When the UE establishes an MA PDU session through the Non-3GPP access network device, the AMF sends a context creation request to the SMF, where the context creation request includes the I-SMF identifier.
  • Method B When the UE establishes an MA PDU session through a Non-3GPP access network device, after AMF selects I-SMF and SMF, AMF sends a context creation request to I-SMF and SMF respectively. For example, AMF sends a context creation request to SMF, thereby establishing a control plane connection on the Non-3GPP side. For example, an AMF sends a context creation request to an I-SMF, where the context creation request includes an SMF identifier; the I-SMF sends a session creation request to the SMF according to the SMF identifier. This establishes a connection to the 3GPP side control plane.
  • the SMF After the SMF obtains the I-SMF identifier, it initiates the user plane connection establishment process on the 3GPP side, including: SMF sends the user plane information of the PSA to the I-SMF, where the user plane information of the PSA is used to establish the relationship between the I-UPF and the PSA Uplink user plane connection between.
  • the I-SMF sends an information transmission message to the AMF, which carries the user plane information of the I-UPF, where the user plane information of the I-UPF is used to establish an uplink user plane connection between the 3GPP access network device and the I-UPF.
  • the AMF sends an N2 session request to the 3GPP access network device, carrying the user plane information of the I-UPF.
  • the 3GPP access network device initiates a radio resource establishment procedure with the UE.
  • the 3GPP access network device returns an N2 session response to the AMF, carrying 3GPP user plane information, where the 3GPP user plane information is used to establish a downlink user plane connection between the 3GPP access network device and the I-UPF.
  • the AMF sends 3GPP user plane information to the I-SMF.
  • the I-SMF initiates the N4 session modification process to the I-UPF, and sends the user plane information of the 3GPP to the I-UPF, thereby establishing a downlink user plane connection between the 3GPP access network equipment and the I-UPF.
  • Scenario C The UE registers in the network through the 3GPP access network equipment, and the UE establishes an MA PDU session through the 3GPP access network equipment. After that, the UE has been registered in the network through the Non-3GPP access network device, and then the UE requests the establishment of a MA PDU session through the Non-3GPP access network device.
  • the AMF When the UE establishes the MA PDU session through the 3GPP access network equipment, the AMF saves the corresponding relationship between the session identifier, the I-SMF identifier, and the SMF identifier.
  • the AMF determines to send a context creation request to the SMF according to the session identifier in the NAS message and the multi-access session request; or; AMF according to the session identifier in the NAS message ,
  • the multi-access session request and the access technology are determined by Non-3GPP to send a context creation request to the SMF.
  • Scenario D The UE registers in the network through the Non-3GPP access network equipment, and the UE establishes a MA PDU session through the Non-3GPP access network equipment. After that, the UE registers in the network through the 3GPP access network equipment, and then the UE requests the establishment of a MA PDU session through the 3GPP access network equipment.
  • the UE saves the correspondence between the session identifier and the SMF identifier.
  • the AMF determines to insert the I-SMF according to the session identifier in the NAS message and the multiple access session request; or, the AMF determines to insert the I-SMF according to the session identifier and multiple access in the NAS message.
  • the session request and access technology is 3GPP, and I-SMF is determined to be inserted.
  • each network element and device such as the above-mentioned wireless access network device, access and mobility management function network element, terminal device, data management function network element, and network slice selection function network element, in order to realize the above functions, Contains the corresponding hardware structure and/or software module to perform each function.
  • the present application can be implemented in the form of hardware or a combination of hardware and computer software. Whether a certain function is executed by hardware or computer software-driven hardware depends on the specific application and design constraint conditions of the technical solution. Professionals and technicians can use different methods for each specific application to implement the described functions, but such implementation should not be considered beyond the scope of this application.
  • the apparatus for establishing a session may include a receiving module 1201 and a sending module 1203, and optionally, a processing module 1202, as shown in FIG. 12A.
  • the apparatus for establishing a session may be used to perform the operation of the first SMF in FIG. 3 to FIG. 7 described above.
  • the device for establishing the session includes:
  • the receiving module 1201 is configured to receive a multi-access session request, where the multi-access session request is used to instruct the first session to use the 3GPP access network and the Non-3GPP access network to transmit data.
  • the sending module 1203 is used to receive the access type from the AMF, and the access type is non-3GPP.
  • the sending module 1203 is further configured to send first information to the first UPF through the second SMF, where the first information is used to establish a downlink data plane connection between the non-3GPP first access device and the first UPF, and the first UPF is the UPF managed by the second SMF.
  • the first SMF when the UE requests to establish a MA PDU session, the first SMF sends the first information to the first UPF according to the access type being non-3GPP, so that the first access network device and the first UPF The connection of the downlink data plane can be established, so that the establishment of MA PDU session can be realized.
  • the sending module 1203 is also used to send second information to the first access device through AMF, where the second information is used to establish the first access device and the first UPF The uplink user plane connection.
  • it further includes a processing module 1202, configured to determine that the access type is 3GPP, and the sending module 1203 is further configured to send third information and fourth information to the second UPF, and the third information is used to establish a second access of 3GPP.
  • the device is connected to the downlink data plane of the second UPF, and the fourth information is used to establish an uplink data plane connection between the first UPF and the second UPF, and the second UPF is a UPF managed by the first SMF.
  • the sending module 1203 is further configured to send fifth information to the second access device of 3GPP through AMF, and the fifth information is used to establish the uplink user of the second access device and the second UPF In the face connection, the second UPF is the UPF managed by the first SMF.
  • the apparatus for establishing a session further includes a processing module 1202, configured to determine that the PLMN corresponding to the first SMF is the same as the PLMN corresponding to the second SMF.
  • the receiving module 1201 is further configured to receive indication information from the AMF, where the indication information is used to indicate that the PLMN corresponding to the first SMF is the same as the PLMN corresponding to the second SMF.
  • the processing module 1202 is configured to allocate fifth information and sixth information, where the fifth information is used to establish an uplink user plane connection between the second 3GPP access device and the second UPF, and the sixth information is used to establish the first A downlink user plane connection between a UPF and a second UPF, where the second UPF is a UPF managed by the first SMF.
  • the receiving module 1201 is further configured to receive fifth information and sixth information from the second UPF, where the fifth information is used to establish an uplink user plane connection between the second access device of 3GPP and the second UPF.
  • the sixth information is used to establish a downlink user plane connection between the first UPF and the second UPF, and the second UPF is a UPF managed by the first SMF.
  • the receiving module 1201 is further configured to receive a session establishment request from the terminal device through the first access device, where the session establishment request is used to instruct the terminal device to request the establishment of a session.
  • the sending module 1203 is also used to send a session establishment request to the second SMF.
  • the processing module 1202 is used to determine that the access type is 3GPP; the sending module 1203 is also used to send a first session update response message to the AMF, and the processing module 1202 is used to set the access type to non-3GPP.
  • the processing module 1202 is used to determine that the access type is non-3GPP; the sending module 1203 is also used to send a second session update response message to the AMF, and the processing module 1202 is used to set the access type to 3GPP.
  • the receiving module 1201, the processing module 1202, and the sending module 1203 in the apparatus for establishing a session can also implement other operations or functions of the first SMF in FIG. 3 to FIG. 7, which will not be repeated here.
  • the apparatus for establishing a session shown in FIG. 12A may also be used to perform the AMF operations in FIGS. 8 to 10.
  • the device for establishing the session includes:
  • the receiving module 1201 is configured to receive a first multiple access session request from a terminal device through the first access device of Non-3GPP, where the first multiple access session request is used to instruct the first session to use the 3GPP access network and Non-3GPP access network transmits data.
  • the processing module 1202 is configured to select the second SMF to provide services for the first session.
  • the receiving module 1201 is further configured to receive a second multiple access session request from the terminal device through the second access device of 3GPP, where the second multiple access session request is used to instruct the first session to use the 3GPP access network and Non-3GPP access network transmits data.
  • the processing module 1202 is further configured to determine the first SMF according to the location of the terminal device and the service range of the second SMF, where the first SMF and the second SMF are used to provide services for the first session.
  • the UE after the UE has established a MA PDU session through the Non-3GPP access network device and registered in the network through the 3GPP access network device, it then requests the establishment of the MA PDU through the 3GPP access network device.
  • the session scenario when an intermediate SMF needs to be inserted, the user plane connection of the MA PDU session can be established.
  • the PLMN corresponding to the first SMF is the same as the PLMN corresponding to the second SMF.
  • the receiving module 1201, the processing module 1202, and the sending module 1203 in the apparatus for establishing a session can also implement other operations or functions of the AMF in FIG. 8 to FIG. 10, which will not be repeated here.
  • FIG. 12B shows another possible structural schematic diagram of the apparatus for establishing a session involved in the foregoing embodiment.
  • the apparatus for establishing a session includes a transceiver 1204 and a processor 1205, as shown in FIG. 12B.
  • the processor 1205 may be a general-purpose microprocessor, a data processing circuit, an application specific integrated circuit (ASIC) or a field-programmable gate array (FPGA) circuit.
  • the apparatus for establishing a session may further include a memory 1206, for example, the memory is a random access memory (RAM).
  • the memory is used for coupling with the processor 1205, and it stores the computer program 12061 necessary for the apparatus for establishing the session.
  • the apparatus for establishing a session involved in the foregoing embodiment further provides a carrier 1207 in which a computer program 12071 of the apparatus for establishing a session is stored, and the computer program 12071 can be loaded into the processor 1205.
  • the above-mentioned carrier may be an optical signal, an electric signal, an electromagnetic signal, or a computer-readable storage medium (for example, a hard disk).
  • the computer can be caused to execute the above-mentioned method.
  • the processor 1205 is configured as other operations or functions of the first SMF (the first SMF in FIGS. 3 to 7).
  • the transceiver 1204 is used to implement communication between the first SMF and the AMF/second SMF/second UPF.
  • the processor 1205 is configured as other operations or functions of the AMF (for example, the AMF in FIGS. 8 to 10).
  • the transceiver 1204 is used to implement communication between the AMF and the first access network device/second access network device/first SMF.
  • a session establishment system is shown in FIG. 13, and includes AMF 1301 and a first SMF 1302.
  • the AMF in the session establishment system can be used to perform the AMF operations in Figs. 8-10
  • the first SMF in the session establishment system can be used to perform the first SMF operations in Figs. 8-10.
  • AMF 1301 is used to receive a first multiple access session request from a terminal device through the first access device of Non-3GPP, where the first multiple access session request is used to instruct the first session to use the 3GPP access network and Non- The 3GPP access network transmits data.
  • the AMF 1301 is also used to select the second SMF to provide services for the first session.
  • AMF 1301 is also used to receive a second multiple access session request from a terminal device through a 3GPP second access device, where the second multiple access session request is used to indicate that the first session uses 3GPP access network and Non-3GPP The access network to transmit data.
  • the AMF 1301 is also used to determine the first SMF 1302 according to the location of the terminal device and the service range of the second SMF, where the first SMF 1302 and the second SMF are used to provide services for the first session.
  • the first SMF 1302 is used to determine that the access type is 3GPP.
  • the first SMF 1302 is also used to send third information and fourth information to the second UPF, where the third information is used to establish a downlink data plane connection between the second access device and the second UPF, and the fourth information is used to establish the second UPF.
  • One UPF is connected to the uplink data plane of the second UPF, the first UPF is the UPF managed by the second SMF, and the second UPF is the UPF managed by the first SMF 1302.
  • the session establishment system provided by the embodiment of the present invention, after the UE has established a MA PDU session through the Non-3GPP access network device, and registered in the network through the 3GPP access network device, it passes the 3GPP In the scenario where the access network device requests the establishment of the MA PDU session, when the intermediate SMF needs to be inserted, the user plane connection of the MA PDU session can be established.
  • the PLMN corresponding to the first SMF 1302 is the same as the PLMN corresponding to the second SMF.
  • the first SMF 1302 is also used to send fifth information to the second access device through the AMF 1301, where the fifth information is used to establish an uplink user plane connection between the second access device and the second UPF.
  • the first SMF 1302 is also used to allocate fifth information and sixth information, the fifth information is used to establish an uplink user plane connection between the second access device and the second UPF, and the sixth information is used to establish the first UPF Downlink user plane connection with the second UPF.
  • the first SMF 1302 is also used to receive fifth information and sixth information from the second UPF, the fifth information is used to establish an uplink user plane connection between the second access device and the second UPF, and the sixth information is used to Establish a downlink user plane connection between the first UPF and the second UPF.
  • the processor may include, but is not limited to, at least one of the following: central processing unit (CPU), microprocessor, digital signal processor (DSP), microcontroller (microcontroller unit, MCU), or artificial intelligence
  • CPU central processing unit
  • DSP digital signal processor
  • MCU microcontroller unit
  • Artificial intelligence Various computing devices such as processors that run software. Each computing device may include one or more cores for executing software instructions to perform operations or processing.
  • the processor can be built in SoC (system on chip) or application specific integrated circuit (ASIC), or it can be an independent semiconductor chip.
  • the processor's internal processing is used to execute software instructions for calculations or processing, and may further include necessary hardware accelerators, such as field programmable gate array (FPGA), PLD (programmable logic device) , Or a logic circuit that implements dedicated logic operations.
  • FPGA field programmable gate array
  • PLD programmable logic device
  • the hardware can be CPU, microprocessor, DSP, MCU, artificial intelligence processor, ASIC, SoC, FPGA, PLD, dedicated digital circuit, hardware accelerator or non-integrated discrete device
  • the hardware can run necessary software or does not rely on software to perform the above method flow.
  • the computer program product includes one or more computer instructions.
  • the computer may be a general-purpose computer, a special-purpose computer, a computer network, or other programmable devices.
  • the computer instructions may be stored in a computer-readable storage medium, or transmitted from one computer-readable storage medium to another computer-readable storage medium.
  • the computer instructions may be transmitted from a website, computer, server, or data center.
  • the computer-readable storage medium may be any available medium that can be accessed by a computer or a data storage device such as a server or a data center integrated with one or more available media.
  • the usable medium may be a magnetic medium (for example, a floppy disk, a hard disk, and a magnetic tape), an optical medium (for example, a DVD), or a semiconductor medium (for example, a solid state disk (SSD)).

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请涉及无线通信技术领域,提供了一种会话建立的方法,包括:SMF网元接收多接入会话请求,该多接入会话请求用于指示第一会话使用3GPP的接入网和Non-3GPP的接入网传输数据;第一SMF网元从AMF网元接收接入类型,接入类型为non-3GPP;第一SMF网元通过第二SMF网元向第一UPF网元发送第一信息,第一信息用于建立non-3GPP的第一接入设备和第一UPF网元的下行数据面连接,第一UPF网元为第二SMF网元管理的UPF网元。通过本实施例提供的方案,可以实现多接入PDU会话的3GPP侧和non-3GPP侧的数据面连接的建立。

Description

一种会话建立的方法及装置 技术领域
本发明涉及通信技术领域,特别涉及一种会话建立的方法及装置。
背景技术
在现有的通信网络中,可以通过接入流的选择、切换和分流(Access Traffic Steering,Switching,and Splitting,ATSSS)技术实现在第三代合作伙伴计划(3rd generation partnership project,3GPP)网络和非3GPP(Non-3GPP)网络之间进行业务分发路径的选择、切换和分流。其中,接入流的选择(Access Traffic Steering)用于为一个新的数据流选择一个接入网络(3GPP接入网络或non-3GPP接入网络)来传输该数据流的业务;接入流的切换(Access Traffic Switching)用于将一个在线业务流从一个接入网络切换到另一个接入网络并且保证数据流的连续性;接入流的分流(Access Traffic Splitting)用于将一个数据流的业务分发到不同的接入网络中,该数据流一部分业务包通过一种接入技术传输,一部分业务包通过另一种接入技术传输。
支持ATSSS技术的第五代(the 5th-Generation,5G)通信架构如图1所示。在ATSSS特性下,UE通过3GPP接入网和非3GPP接入网建立多接入分组数据单元会话(multi-access Packet Data Unit session,MA PDU session),同时利用两个接入网进行数据传输,实现了用户设备(user equipment,UE)与数据网络(data network,DN)之间的数据传输。
在图1的通信架构中,假设UE建立了MA PDU session,该会话的控制面由会话管理功能(session management function,SMF)网元提供会话管理服务,该会话的用户面由PDU会话锚点(PDU session anchor,PSA)提供转发服务。由于SMF具有一定的覆盖范围(SMF service area,SMF SA),该SMF SA可以理解为SMF管理的所有用户面功能网元(User Plane Function,UPF)的服务范围之和。所以当UE移出SMF SA时,在控制面需要插入中间SMF(I-SMF)用于连接到SMF,在用户面需要插入中间UPF(I-UPF)以连接到PSA,由I-SMF和I-UPF为UE提供服务,从而保证业务连续性。
然而,插入了I-SMF和I-UPF后,图1所示的通信架构发生了改变,UE根据现有架构无法建立MA PDU session的控制面和用户面连接。所以当UE移出SMF SA时,如何建立MA PDU session有待解决。
发明内容
本发明实施例提供了一种会话建立的方法及装置。
一方面,本申请的实施例提供了一种会话建立的方法,该方法包括:第一SMF(例如,I-SMF)接收多接入会话请求,其中,多接入会话请求用于指示第一会话使用3GPP的接入网和Non-3GPP的接入网传输数据。第一SMF从AMF接收接入类型,接入类型为non-3GPP。第一SMF通过第二SMF(例如,SMF)向第一UPF(例如,PSA)发送第一信息,其中,第一信息用于建立non-3GPP的第一接入设备(non-3GPP接入网设备)和第一UPF的下行数据面连接,第一UPF为第二SMF管理的UPF。
根据上述方法,当UE请求建立MA PDU session时,第一SMF网元根据接入类型为 non-3GPP,向第一UPF网元发送第一信息,使得第一接入网设备和第一UPF网元的下行数据面的连接能够建立,从而可以实现MA PDU session的建立。
在一种可能的设计中,若接入类型为non-3GPP,第一SMF通过AMF向第一接入设备发送第二信息,第二信息用于建立第一接入设备与第一UPF的上行用户面连接。
在一种可能的设计中,第一SMF确定接入类型为3GPP,第一SMF向第二UPF发送第三信息和第四信息,第三信息用于建立3GPP的第二接入设备和第二UPF的下行数据面连接,第四信息用于建立第一UPF和第二UPF的上行数据面连接,第二UPF为第一SMF管理的UPF。由此,可以实现MA PDU session的3GPP接入网侧的数据面的建立。
在一种可能的设计中,若接入类型为3GPP,第一SMF通过AMF向3GPP的第二接入设备发送第五信息,第五信息用于建立第二接入设备与第二UPF的上行用户面连接,第二UPF为第一SMF管理的UPF。
在一种可能的设计中,第一SMF确定第一SMF对应的PLMN和第二SMF对应的PLMN相同。由此,第一SMF可以确定UE处于非漫游场景,也可以确定第一SMF是I-SMF,而不是漫游场景下的V-SMF。
在一种可能的设计中,第一SMF从AMF接收指示信息,指示信息用于指示第一SMF对应的PLMN和第二SMF对应的PLMN相同。由此,第一SMF可以确定UE处于非漫游场景,也可以确定第一SMF是I-SMF,而不是漫游场景下的V-SMF。
在一种可能的设计中,第一SMF分配第五信息和第六信息,第五信息用于建立3GPP的第二接入设备与第二UPF的上行用户面连接,第六信息用于建立第一UPF与第二UPF之间的下行用户面连接,第二UPF为第一SMF管理的UPF。由此,第一SMF可以获得第五信息和第六信息,从而可以实现MA PDU session的3GPP接入网侧的数据面的建立。
在一种可能的设计中,第一SMF从第二UPF接收第五信息和第六信息,第五信息用于建立3GPP的第二接入设备与第二UPF的上行用户面连接,第六信息用于建立第一UPF与第二UPF之间的下行用户面连接,第二UPF为第一SMF管理的UPF。由此,第一SMF可以获得第五信息和第六信息,从而可以实现MA PDU session的3GPP接入网侧的数据面的建立。
在一种可能的设计中,第一SMF通过第一接入设备从终端设备接收会话建立请求,会话建立请求用于指示终端设备请求建立会话;第一SMF向第二SMF发送会话建立请求。由此,第一SMF不解析会话建立请求,从而在会话管理上实现3GPP和non-3GPP的隔离。
在一种可能的设计中,第一SMF确定接入类型为3GPP,第一SMF向AMF发送第一会话更新响应消息,第一SMF将接入类型设置为non-3GPP;或者,第一SMF确定接入类型为non-3GPP,第一SMF向AMF发送第二会话更新响应消息,第一SMF将接入类型设置为3GPP。由此可以实现MA PDU session的3GPP接入网侧和non-3GPP接入网侧的数据面的建立。
又一方面,本申请还公开了一种会话建立的方法,该方法包括:AMF通过Non-3GPP的第一接入设备(例如,Non-3GPP接入网设备)从终端设备(例如,UE)接收第一多接入会话请求,其中,第一多接入会话请求用于指示第一会话使用3GPP的接入网和Non-3GPP的接入网传输数据。AMF选择第二SMF(例如,SMF)为第一会话提供服务。AMF通过3GPP的第二接入设备(例如,3GPP接入网设备)从终端设备接收第二多接入会话请求,第二多接入会话请求用于指示第一会话使用3GPP的接入网和Non-3GPP的接入网传输数据。AMF根据终端设备的位置和第二SMF的服务范围确定第一SMF(例如,I-SMF),第一SMF和第二SMF用于为第一会话提供服务。
根据上述方法,在UE已经通过Non-3GPP接入网设备建立了MA PDU session,并通过3GPP 接入网设备在网络中注册之后,再通过3GPP接入网设备请求建立MA PDU session的场景下,当需要插入中间SMF时,可以实现建立MA PDU session的用户面连接。
在一种可能的设计中,第一SMF对应的PLMN和第二SMF对应的PLMN相同。由此,UE处于非漫游场景,第一SMF是I-SMF而不是漫游场景下的V-SMF。又一方面,本申请实施例提供了一种会话建立的装置,该装置具有实现上述方法中第一SMF行为的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的模块。在一个可能的设计中,上述装置的结构中包括处理器和收发器,所述处理器被配置为处理该装置执行上述方法中相应的功能。所述收发器用于实现上述装置与AMF/第二SMF/第二UPF之间的通信。所述装置还可以包括存储器,所述存储器用于与处理器耦合,其保存该装置必要的程序指令和数据。
又一方面,本申请实施例提供了一种会话建立的装置,该装置具有实现上述方法中AMF行为的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的模块。在一个可能的设计中,上述装置的结构中包括处理器和收发器,所述处理器被配置为处理该装置执行上述方法中相应的功能。所述收发器用于实现上述装置与第一接入网设备/第二接入网设备/第一SMF之间的通信。所述装置还可以包括存储器,所述存储器用于与处理器耦合,其保存该装置必要的程序指令和数据。
又一方面,本申请实施例提供了一种计算机可读存储介质,所述计算机可读存储介质中存储有指令,当其在计算机上运行时,使得计算机执行上述各方面所述的方法。
又一方面,本申请实施例提供了一种包含指令的计算机程序产品,当其在计算机上运行时,使得计算机执行上述各方面所述的方法。
又一方面,本申请提供了一种芯片系统,该芯片系统包括处理器,用于支持上述装置或终端设备实现上述方面中所涉及的功能,例如,生成或处理上述方法中所涉及的信息。在一种可能的设计中,所述芯片系统还包括存储器,所述存储器,用于保存数据发送设备必要的程序指令和数据。该芯片系统,可以由芯片构成,也可以包含芯片和其他分立器件。
附图说明
为了更清楚地说明本发明实施例中的技术方案,下面将对本发明实施例或背景技术中所需要使用的附图进行说明。
图1为第一种通信架构示意图;
图2为第二种通信架构示意图;
图3为根据本申请实施例提供的一种会话建立的方法;
图4为根据本申请实施例提供的又一种会话建立的方法;
图5为根据本申请实施例提供的一种会话建立的流程图;
图6为根据本申请实施例提供的又一种会话建立的流程图;
图7为根据本申请实施例提供的又一种会话建立的流程图;
图8为根据本申请实施例提供的又一种会话建立的流程图;
图9为根据本申请实施例提供的又一种会话建立的流程图;
图10为根据本申请实施例提供的又一种会话建立的方法;
图11为根据本申请实施例提供的又一种会话建立的方法;
图12A、12B为根据本申请实施例中提供的一种会话建立的装置的结构示意图;
图13为根据本申请实施例中提供的一种会话建立的系统的结构示意图。
具体实施方式
在本申请的描述中,为了便于清楚描述本申请实施例的技术方案,采用了“第一”、“第二”等字样对功能和作用基本相同的相同项或相似项进行区分。本领域技术人员可以理解“第一”、“第二”等字样并不对数量和执行次序进行限定,并且“第一”、“第二”等字样也并不限定一定不同。该“第一”、第二”描述的技术特征间无先后顺序或者大小顺序。
在本申请的描述中,“示例性的”或者“例如”等词用于表示作例子、例证或说明。本申请实施例中被描述为“示例性的”或者“例如”的任何实施例或设计方案不应被解释为比其它实施例或设计方案更优选或更具优势。确切而言,使用“示例性的”或者“例如”等词旨在以具体方式呈现相关概念,便于理解。
在本申请的描述中,除非另有说明,“/”表示或的意思,例如,A/B可以表示A或B;本申请中的“和/或”仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,在本申请的描述中,“多个”是指两个或两个以上。“以下至少一项(个)”或其类似表达,是指的这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,a,b,或c中的至少一项(个),可以表示:a,b,c,a-b,a-c,b-c,或a-b-c,其中a,b,c可以是单个,也可以是多个。
在描述本申请的实施例之前,此处先对本申请涉及的名词统一进行解释说明,后续不再一一进行说明。
3GPP接入技术,是指由3GPP组织所提出的接入网技术,比如时分-同步码分多址(Time Division-Synchronous Code Division Multiple Access,TD-SCDMA)技术、宽带码分多址(Wideband Code Division Multiple Access,WCDMA)技术等。例如,在LTE系统中,3GPP接入技术对应的接入设备包括演进的节点B(evolved NodeB,eNB或者eNodeB)。在第三代(3rd generation,3G)系统中,3GPP接入技术对应的接入设备包括节点B(Node B)等。在新一代系统中,3GPP接入技术对应的接入设备包括gNB(gNodeB)。
Non-3GPP接入技术,指的是由其它非3GPP组织所做的接入技术,比如码分多址接入(Code Division Multiple Access,CDMA)技术。Non-3GPP接入技术对应的接入设备包括但不限于无线保真接入点(Wireless Fidelity Access Point,WiFi AP)、全球微波互联接入基站(Worldwide Interoperability for Microwave Access Base Station,WiMAX BS)等。
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚地描述。
图2示出了本申请实施例提供的通信架构示意图。在5G移动网络架构中,移动网关的控制面功能和转发面功能解耦,其分离出来的控制面功能与3GPP传统的控制网元移动性管理实体(mobility management entity,MME)等合并成统一的控制面(control plane)。UPF网元能实现服务网关(serving gateway,SGW)和分组数据网络网关(packet data network gateway,PGW)的用户面功能(SGW-U和PGW-U)。进一步的,统一的控制面网元可以分解成接入和移动性管理功能(access and mobility management function,AMF)网元和SMF网元。
如图2所示的通信系统至少包括UE 201、3GPP接入网设备202、Non-3GPP接入网设备203、I-UPF网元204、PSA网元205、AMF网元207、I-SMF网元208、SMF网元209和DN 206。
其中,本系统中所涉及到的UE 201不受限于5G网络,包括:手机、物联网设备、智能家居设备、工业控制设备、车辆设备等等。所述UE也可以称为移动站(Mobile Station)、移动台(Mobile)、远程站(Remote Station)、远程终端(Remote Terminal)、接入终端(Access Terminal)、终端设备(User Terminal)、用户代理(User Agent),在此不作限定。上述终 端设备还可以车与车(Vehicle-to-vehicle,V2V)通信中的汽车、机器类通信中的机器等。
本系统中所涉及到的3GPP接入网设备202是一种用于为UE 201提供3GPP接入功能的装置,可以包括各种形式的基站,例如:宏基站,微基站(也称为小站),中继站,接入点等。在采用不同的无线接入技术的系统中,具备基站功能的设备的名称可能会有所不同,例如,eNB、Node B和gNB等。
本系统中所涉及到的Non-3GPP接入网设备203是一种用于为UE 201提供非3GPP接入功能的装置,可以包括但不限于无线保真接入点(Wireless Fidelity Access Point,WiFi AP)、全球微波互联接入基站(Worldwide Interoperability for Microwave Access Base Station,WiMAX BS)等。
本系统中所涉及到的I-UPF 204和PSA 205可以实现用户报文的转发、统计和检测等功能。其中,PSA为具有锚点功能的UPF。UPF也可称为UPF设备或UPF网元或UPF实体。PSA也可称为PSA设备或PSA网元或PSA实体。
本系统中所涉及到的DN 206可以为运营商提供的服务、互联网接入服务,或者第三方提供的服务。
本系统中所涉及到的AMF 207可负责终端设备的注册、移动性管理、跟踪区更新流程等。AMF也可称为AMF设备或AMF网元或AMF实体。
本系统中所涉及到的I-SMF网元208和SMF网元209可负责终端设备的会话管理。例如,会话管理包括用户面设备的选择、用户面设备的重选、网络协议(internet protocol,IP)地址分配、服务质量(quality of service,QoS)控制,以及会话的建立、修改或释放等。SMF网元也可称为SMF设备或SMF实体。
上述各网元既可以是在专用硬件上实现的网络元件,也可以是在专用硬件上运行的软件实例,或者是在虚拟化平台上虚拟化功能的实例,例如,上述虚拟化平台可以为云平台。
此外,本申请实施例还可以适用于面向未来的其他通信技术。本申请描述的网络架构以及业务场景是为了更加清楚的说明本申请的技术方案,并不构成对本申请提供的技术方案的限定,本领域普通技术人员可知,随着网络架构的演变和新业务场景的出现,本申请提供的技术方案对于类似的技术问题,同样适用。
在图2所示的通信系统中,假设UE 201建立MA PDU session,无论是利用3GPP接入网进行数据传输还是利用Non-3GPP接入网进行数据传输,该会话的控制面的连接均为:AMF 207、I-SMF 208、SMF 209。当利用3GPP接入网进行数据传输时,该会话的用户面连接为:UE 201、3GPP接入网设备202、I-UPF 204、PSA 205、DN 206。当利用Non-3GPP接入网进行数据传输时,该会话的用户面连接为:UE 201、Non-3GPP接入网设备203、PSA 205、DN 206。
下面以图2所示的通信架构为例,通过一些实施例对本申请的技术方案进行详细说明。下面这几个实施例可以相互结合,对于相同或相似的概念或过程可能在某些实施例不再赘述。
图3为本申请实施例提供的一种会话建立的方法,该方法可以适用于图2所示的通信系统。通过该方法,在图2所示的存在I-SMF的架构中可以实现MA PDU session的建立。如图3所示,该方法可以包括:
S301、第一SMF网元接收多接入会话请求。其中,该多接入会话请求用于指示第一会话使用3GPP的接入网和Non-3GPP的接入网传输数据。
例如,第一SMF为图2中的I-SMF。
例如,该多接入会话请求为MA PDU session请求,用于指示第一会话使用图2中3GPP接入网设备202和Non-3GPP接入网设备203传输数据。
S302、第一SMF网元从AMF网元接收接入类型,其中,该接入类型为non-3GPP。
例如,AMF为图2中的AMF 207。
S303、第一SMF网元通过第二SMF网元向第一UPF网元发送第一信息。其中,该第一信息用于建立Non-3GPP的第一接入设备和第一UPF网元的下行数据面连接,第一UPF网元为第二SMF网元管理的UPF网元。
例如,第二SMF为图2中的SMF 209。第一UPF网元为图2中的PSA 205。Non-3GPP的第一接入设备为图2中的Non-3GPP接入网设备203。
例如,第一信息用于建立图2中Non-3GPP接入网设备和PSA 205的下行数据面连接。
可选的,在第一SMF网元通过第二SMF网元向第一UPF网元发送第一信息之前,第一SMF网元确定第一SMF网元对应的公用陆地移动网(Public Land Mobile Network,PLMN)和第二SMF网元对应的PLMN相同。也就是说,第一SMF网元确定第一SMF网元是I-SMF网元,而不是漫游场景下的拜访域SMF(visited-session management function,V-SMF)。
根据本发明实施例的方法,在图2所示的场景中,当UE请求建立MA PDU session时,第一SMF网元根据接入类型为non-3GPP,向第一UPF网元发送第一信息,使得第一接入网设备和第一UPF网元的下行数据面的连接能够建立,从而可以实现MA PDU session的建立。
图4为本申请实施例提供的又一种会话建立的方法,用于描述图3所述的方法在不同场景下的实施方式。图4将结合图2和图3来描述。
例如,图4中的第一网络设备为图2中的Non-3GPP接入网设备,也为图3步骤S303中的第一网络设备。
例如,图4中的第二网络设备为图2中的3GPP接入网设备。
例如,图4中的第一SMF为图2中的I-SMF,也为图3步骤S301-S303中的第一SMF。第一SMF控制的第二UPF为图2中的I-UPF。
例如,图4中的第二SMF为图2中的SMF,也为图3步骤S303中的第二SMF。第二SMF控制的第一UPF为图2中的PSA,也为图3步骤S303中的第一UPF。
如图4所示,第一上行用户面表示第二接入网设备与第二UPF的上行数据面连接,例如第一上行用户面可以为上行N3隧道信息(UL N3 tunnel info);第一下行用户面表示第二接入网设备与第二UPF的下行数据面连接,例如第一下行用户面可以为下行N3隧道信息(DL N3 tunnel info)。第二上行用户面表示第二UPF与第一UPF的上行数据面连接,例如第二上行用户面可以为上行N9隧道信息(UL N9 tunnel info);第二下行用户面表示第二UPF与第一UPF的下行数据面连接,例如第二下行用户面可以为下行N9隧道信息(DL N9 tunnel info)。第三上行用户面表示第一UPF与第一接入网设备的上行数据面连接,例如第三上行用户面可以为UL N3 tunnel info;第二下行用户面表示第一UPF与第一接入网设备的下行数据面连接,例如第三下行用户面可以为DL N3 tunnel info。
根据UE在网络中的注册顺序不同以及UE请求建立MA PDU session时的接入网不同,图3的实施例可适用于以下三种场景:
场景一:UE通过3GPP接入网设备在网络中注册,且通过Non-3GPP接入网设备在网络中注册。然后,UE再通过3GPP接入网设备请求建立MA PDU session。
场景二:UE通过3GPP接入网设备在网络中注册,且通过Non-3GPP接入网设备在网络中注册。然后,UE再通过Non-3GPP接入网设备请求建立MA PDU session。
场景三:UE通过3GPP接入网设备在网络中注册,且UE通过3GPP接入网设备建立了MA PDU session。之后,UE通过Non-3GPP接入网设备在网络中注册,然后UE再通过Non-3GPP接入 网设备请求建立MA PDU session。
下面针对上述3种不同的场景,分别描述根据图3所述的方法建立MA PDU session用户面连接的实施方式:
在场景一中,UE在双接入技术(3GPP接入技术和Non-3GPP接入技术)注册,然后通过3GPP接入网设备请求建立MA PDU session。此时,AMF向第一SMF发送的接入类型为3GPP。第一SMF获取第一上行用户面的信息和第二下行用户面的信息。第一SMF通过第二SMF向第一UPF发送第二下行用户面的信息。第二SMF获取第二上行用户面的信息和第三上行用户面的信息,并发送给第一SMF。由于接入类型为3GPP,第一SMF通过AMF向第二接入设备发送第五信息,第五信息用于建立第二接入设备与第二UPF网元的上行用户面连接,第二UPF网元为第一SMF网元管理的UPF网元。换句话说,第五信息为第一上行用户面的信息。第一SMF通过AMF从第二接入网设备接收第一下行用户面的信息。第一SMF确定接入类型为3GPP,第一SMF向第二UPF发送第三信息和第四信息,第三信息用于建立3GPP的第二接入设备和第二UPF的下行数据面连接,第四信息用于建立第一UPF和第二UPF的上行数据面连接,第二UPF为第一SMF管理的UPF网元。换句话说,第三信息为第一下行用户面的信息,第四信息为第二上行用户面的信息。至此,该MA PDU session的3GPP接入侧的用户面连接已经建立完成。第一SMF网元将接入类型设置为Non-3GPP,然后建立Non-3GPP接入侧的用户面连接。此时接入类型为non-3GPP,第一SMF网元通过AMF向第一接入设备发送第二信息,第二信息用于建立第一接入设备与第一UPF网元的上行用户面连接。换句话说,第二信息为第三上行用户面的信息。第一SMF网元通过AMF从第一接入设备接收第三下行用户面的信息。第一SMF通过第二SMF向第一UPF发送第一信息,第一信息用于建立第一接入设备和第一UPF的下行数据面连接,第一UPF为第二SMF管理的UPF网元。换句话说,第一信息为第三下行用户面的信息。至此,该MA PDU session的Non-3GPP接入侧的用户面连接已经建立完成。根据上述的方法可以实现场景一中的MA PDU session用户面连接的建立。
在场景二中,UE在双接入技术(3GPP接入技术和Non-3GPP接入技术)注册,然后通过Non-3GPP接入网设备请求建立MA PDU session。此时,AMF向第一SMF发送的接入类型为Non-3GPP。第一SMF获取第一上行用户面的信息和第二下行用户面的信息。第一SMF通过第二SMF向第一UPF发送第二下行用户面的信息。第二SMF获取第二上行用户面的信息和第三上行用户面的信息,并发送给第一SMF。由于接入类型为Non-3GPP,第一SMF网元通过AMF向第一接入设备发送第二信息,第二信息用于建立第一接入设备与第一UPF网元的上行用户面连接。换句话说,第二信息为第三上行用户面的信息。第一SMF网元通过AMF从第一接入设备接收第三下行用户面的信息。第一SMF通过第二SMF向第一UPF发送第一信息,第一信息用于建立第一接入设备和第一UPF的下行数据面连接,第一UPF为第二SMF管理的UPF网元。换句话说,第一信息为第三下行用户面的信息。至此,该MA PDU session的Non-3GPP接入侧的用户面连接已经建立完成。第一SMF网元将接入类型设置为3GPP,然后建立3GPP接入侧的用户面连接。此时接入类型为3GPP,第一SMF通过AMF向第二接入设备发送第五信息,第五信息用于建立第二接入设备与第二UPF网元的上行用户面连接,第二UPF网元为第一SMF网元管理的UPF网元。换句话说,第五信息为第一上行用户面的信息。第一SMF通过AMF从第二接入网设备接收第一下行用户面的信息。第一SMF确定接入类型为3GPP,第一SMF向第二UPF发送第三信息和第四信息,第三信息用于建立3GPP的第二接入设备和第二UPF的下行数据面连接,第四信息用于建立第一UPF和第二UPF的上行数据面连接,第二UPF为第一SMF管理的UPF网元。换句话说,第三信息为第一下行用户面的信息,第四信息为第二上 行用户面的信息。至此,该MA PDU session的3GPP接入侧的用户面连接已经建立完成。根据上述的方法可以实现场景二中的MA PDU session用户面连接的建立。
在场景三中,UE已经通过3GPP接入网设备建立了MA PDU session,并通过Non-3GPP接入网设备在网络中注册之后,再通过Non-3GPP接入网设备请求建立MA PDU session。此时,AMF向第一SMF发送的接入类型为Non-3GPP。第一SMF从第二SMF接收第三上行用户面的信息。由于接入类型为Non-3GPP,第一SMF网元通过AMF向第一接入设备发送第二信息,第二信息用于建立第一接入设备与第一UPF网元的上行用户面连接。换句话说,第二信息为第三上行用户面的信息。第一SMF网元通过AMF从第一接入设备接收第三下行用户面的信息。第一SMF通过第二SMF向第一UPF发送第一信息,第一信息用于建立第一接入设备和第一UPF的下行数据面连接,第一UPF为第二SMF管理的UPF网元。换句话说,第一信息为第三下行用户面的信息。至此,该MA PDU session的Non-3GPP接入侧的用户面连接已经建立完成。由于该MA PDU session的3GPP接入侧的用户面连接已经建立完成,所以该MA PDU session的用户面连接都已经建立完成。根据上述的方法可以实现场景三中的MA PDU session用户面连接的建立。
对于上述3种场景,当UE进入空闲态时,用户面连接处于如下状态:(1)对于3GPP侧,UE与第二接入网设备之间的空口连接、第二接入网设备与第二UPF之间的用户面连接均断开;(2)对于Non-3GPP侧,UE与第一接入网设备之间的空口连接、第一接入网设备与第一UPF之间的用户面连接均断开。
在上述用户面连接状态下,当下行数据到达时,需要恢复上述断开的用户面连接。由于该MA PDU session既可以通过3GPP接入网的用户面传输下行数据,也可以通过Non-3GPP接入网的用户面传输下行数据。所以当下行数据到达时,对下行数据的传输包括以下两种方式:(1)通过3GPP接入网的用户面传输下行数据,即将待传输的下行数据通过第二接入网设备发送至UE;(2)通过Non-3GPP接入网的用户面传输下行数据,即将待传输的下行数据通过第一接入网设备发送至UE。
例如,当UE进入空闲态时,上述使用方式(1)传输下行数据的方法包括:第一UPF收到下行数据后,将该下行数据通过第一UPF与第二UPF之间的用户面连接转发至第二UPF。第二UPF向第一SMF发送数据通知消息;第一SMF向AMF发送信息传输消息,携带下行数据对应的会话标识。可选的,AMF触发对UE的寻呼。
例如,当UE进入空闲态时,上述使用方式(2)传输下行数据的方法可以为以下两种方法中的任一种:
方法A:第一UPF收到下行数据后,第一UPF向第二SMF发送数据通知消息;第二SMF向第一SMF发送通知消息,携带该下行数据对应的会话标识;第一SMF向AMF发送信息传输消息,携带会话标识。可选的,AMF触发对UE的寻呼。
方法B:第二SMF向第一UPF发送转发规则。例如,该转发规则用于指示第一UPF将收到的下行数据发送至第二UPF。可选的,当UE在Non-3GPP侧进入空闲状态时,第二SMF向第一UPF发起N4会话修改过程,在此过程中,第二SMF向第一UPF发送转发规则。由此,当第一UPF收到下行数据时,根据转发规则将该下行数据转发至第二UPF。第二UPF向第一SMF发送数据通知消息。第一SMF向AMF发送信息传输消息,携带下行数据对应的会话标识。可选的,AMF触发对UE的寻呼。
针对上述3种场景下的实施方式,下面将通过图5-7的流程图分别进行描述。
图5为本申请实施例提供的又一种会话建立的方法的流程图。该方法可用于图4中场景 一的情况:UE在双接入技术(3GPP接入技术和Non-3GPP接入技术)注册,然后通过3GPP接入网设备请求建立MA PDU session。图5将结合图3和图4进行描述,如图5所示,该方法可以包括:
501、UE通过第二接入网设备向AMF发送非接入层(non-access stratum,NAS)消息。相应的,AMF通过第二接入网设备从UE接收NAS消息。
其中,该NAS消息包括多接入会话请求。该多接入会话请求可参考图3的步骤S301中对多接入会话请求的描述,此处不再赘述。
例如,该NAS消息还包括会话建立请求。其中,会话建立请求中包括以下一项或多项:数据网络名称(data network name,DNN)、单网络切片选择辅助信息(Single Network Slice Selection Assistance Information,S-NSSAI)或会话标识(identifier,ID)。
502、AMF选择第一SMF,第二SMF。
例如,AMF根据UE的位置信息选择第一SMF。
例如,AMF根据会话建立请求中的S-NSSAI和/或DNN选择第二SMF。
503、AMF向第一SMF发送创建上下文请求。相应的,第一SMF从AMF接收创建上下文请求。
例如,创建上下文请求中包括多接入会话请求、UE在双接入技术注册(UE is registered over both accesses or not)和接入技术(access type)。其中,UE在双接入技术注册表示UE在3GPP接入技术和Non-3GPP接入技术均注册。接入技术为3GPP。
可选的,创建上下文请求中还包括第二SMF的ID。
例如,AMF通过调用创建会话管理上下文请求(例如,Nsmf_PDUSession_CreateSMContext Request)服务,触发第一SMF为UE创建会话管理上下文。
504、第一SMF选择第二UPF。
505、第一SMF判断第一SMF对应的PLMN和第二SMF对应的PLMN相同。
步骤505是可选步骤。其中,第一SMF判断第一SMF对应的PLMN和第二SMF对应的PLMN相同,还可以描述为第一SMF判断UE处于非漫游场景。
第一SMF通过确定第一SMF对应的PLMN和第二SMF对应的PLMN相同,可以确定第一SMF是I-SMF,而不是漫游场景下的V-SMF。
由于在建立MA PDU Session时,V-SMF需要获取两个上行N3隧道信息和两个下行N9隧道信息,所以第一SMF执行与V-SMF不同的操作。
例如,第一SMF可以通过以下两种方式中任一种判断第一SMF对应的PLMN和第二SMF对应的PLMN相同:
方式一:第一SMF根据步骤503中第二SMF的ID确定第二SMF对应的PLMN为PLMN1,第一SMF自身对应的PLMN为PLMN2。如果PLMN1和PLMN2相同,则第一SMF可以判断UE为非漫游场景,即第一SMF为I-SMF;如果PLMN1和PLMN2不同,则第一SMF可以判断UE为漫游场景,即第一SMF为V-SMF。
方式二:第一SMF从AMF接收第一指示信息,该第一指示信息用于指示第一SMF对应的PLMN和第二SMF对应的PLMN相同。例如,在步骤503之前,AMF判断UE处于非漫游场景,在步骤503AMF向第一SMF发送的创建上下文请求中还包括了第一指示信息。
506、第一SMF获取第五信息和第六信息。
其中,第五信息用于建立第二接入设备与第二UPF的上行用户面连接,第六信息用于建立第一UPF与第二UPF之间的下行用户面连接。
例如,第一SMF可以通过以下两种方式中的任一种获取第五信息和第六信息:第一SMF分配第五信息和第六信息,或者,第一SMF从第二UPF接收第五信息和第六信息。
若第一SMF从第二UPF接收第五信息和第六信息,则第一SMF向第二UPF发送第二指示信息,该第二指示信息用于指示第二UPF分配第五信息和第六信息。例如,第一SMF可以通过步骤507从第二UPF接收第五信息和第六信息。
507、第一SMF和第二UPF执行N4会话建立过程。
例如,该N4会话建立过程包括:第一SMF向第二UPF发送N4会话建立请求,第二UPF向第一SMF发送N4会话建立响应。
可选的,N4会话建立响应中包括步骤506中的第五信息和第六信息。
508、第一SMF向第二SMF发送会话创建请求。相应的,第二SMF从第一SMF接收会话创建请求。
例如,第一SMF通过调用创建会话创建请求(例如,Nsmf_PDUSession_Create Request)服务,向第二SMF请求会话创建。
例如,该会话创建请求中包括第六信息、多接入会话请求和接入技术。其中,接入技术为3GPP。
可选的,会话创建请求中还包括以下一项或多项:会话标识、第一SMF的ID、UE的位置信息或会话类型。
509、第二SMF选择第一UPF。
可选的,在步骤509之前还包括:第一SMF与UDM交互,获取会话管理签约数据。例如,SMF通过调用获取会话管理签约信息(例如,Nudm_SDM_Get)服务,从UDM获取会话管理签约信息。
可选的,在步骤509之前还包括:第一SMF与PCF交互,获取会话策略。
510、第二SMF和第一UPF执行N4会话建立过程。
例如,该N4会话建立过程包括:第二SMF向第一UPF发送N4会话建立请求,第一UPF向第二SMF发送N4会话建立响应。
可选的,N4会话建立响应包括图4中的第二上行用户面的信息和第三上行用户面的信息。其中,第三上行用户面的信息又称为第二信息。例如,第二上行用户面可以为UL N9 tunnel info。第三上行用户面可以为UL N3 tunnel info。
需要说明的是,当第二上行用户面的信息和第三上行用户面的信息由第二SMF分配时,N4会话建立响应中无需包含上述第二上行用户面的信息和第三上行用户面的信息。
511、第二SMF向第一SMF发送会话创建响应。相应的,第一SMF从第二SMF接收会话创建响应。
例如,第二SMF通过调用创建会话创建响应(例如,Nsmf_PDUSession_Create Response)服务,向第二SMF响应会话创建。
例如,该会话创建响应中包括步骤510中的第二上行用户面的信息和接入技术。其中,接入技术为3GPP。
可选的,会话创建响应中还包括以下一项或多项:会话标识、多接入接受(MA PDU session accepted)信息、选择的会话类型等。
可选的,会话创建响应还包括第三上行用户面的信息。
此时,由于接入类型为3GPP,第一SMF确定建立多接入会话的3GPP接入侧的用户面连接,包括以下步骤512至519。
512、第一SMF向AMF发送第五信息。相应的,AMF从第一SMF接收第五信息。
例如,第一SMF通过信息传输消息向AMF发送第五信息。或者,第一SMF通过调用信息传输(例如,Namf_Communication_N1N2MessageTransfer)服务向AMF发送第五信息。
例如,信息传输消息中包括N2会话管理信息(N2 SM info),N2 SM info中包括第五信息。
可选的,信息传输消息中还包括以下一项或多项:会话标识、多会话接受(MA PDU session accepted)信息和N1会话管理容器(N1 SM container)。其中,N1 SM container包含会话建立接受消息,用于SMF通过AMF、RAN设备将其发送至UE。
513、AMF向第二接入网设备发送N2会话请求。相应的,第二接入网设备从AMF接收N2会话请求。其中,N2会话请求中包括第五信息。
例如,N2会话请求中包括N2 SM info,N2 SM info中包括第五信息。
例如,N2会话请求中还包括以下一项或多项:会话标识或N1 SM container。
514、第二接入网设备发起与UE间的无线资源建立流程。
例如,第二接入网设备通过向UE发送NAS消息建立无线资源。其中,NAS消息包含会话标识、N1 SM container。
515、第二接入网设备向AMF发送N2会话响应。相应的,AMF从第二接入网设备接收N2会话响应。
例如,N2会话响应中包括会话标识和N2 SM info。其中,N2 SM info中包括图4中的第三信息。第三信息用于建立第二接入设备和第二UPF的下行数据面连接。
516、AMF向第一SMF发送更新上下文请求。相应的,第一SMF从AMF接收更新上下文请求。
例如,AMF调用更新会话管理上下文请求(例如,Nsmf_PDUSession_UpdateSMContext Request)服务,向第一SMF发送更新会话管理上下文请求。
例如,更新上下文请求中包括步骤515中的N2 SM info。
517、第一SMF确定接入类型为3GPP,向第二UPF发送第三信息和第四信息。
例如,第一SMF可以通过步骤518向第二UPF发送第三信息和第四信息。
518、第一SMF和第一UPF执行N4会话修改过程。
例如,该N4会话修改过程包括:第一SMF向第二UPF发送N4会话修改请求,第二UPF向第一SMF发送N4会话修改响应。
例如,N4会话修改请求中包括步骤517中的第三信息和第四信息。
519、第一SMF向AMF发送更新上下文响应。相应的,AMF从第一SMF接收更新上下文响应。
例如,第一SMF调用更新会话管理上下文响应(例如,Nsmf_PDUSession_UpdateSMContext Response)服务向AMF发送更新上下文响应。
至此,该多接入会话的3GPP接入侧的用户面连接已经建立完成。该多接入会话的Non-3GPP接入技术对应的用户面连接建立过程包括以下步骤520至529。
需要说明的是,该过程可以发生在步骤510之后由第二SMF发起,或者发生在步骤511之后由第一SMF发起,或者发生在步骤519之后由第一SMF发起。例如,当由第一SMF发起该过程时,步骤511的会话创建响应中还包括第三上行用户面的信息。例如,当由第二SMF发起该过程时,第二SMF先将第三上行用户面的信息发送至第一SMF,并且向第一SMF发送第三指示信息,该第三指示信息用于表明建立多接入会话的Non-3GPP接入侧的用户面连接, 然后再执行步骤521至529。
520、第一SMF确定建立Non-3GPP用户面的连接。
例如,第一SMF可以通过以下方式中的任一种确定建立Non-3GPP用户面的连接:
第一种方式:第一SMF确定第三指示信息,该第三指示信息用于指示建立Non-3GPP用户面的连接。例如,第三指示信息为接入类型,该接入类型为Non-3GPP。这种方式可以理解为由第一SMF发起Non-3GPP用户面的建立过程。
第二种方式:第一SMF从第二SMF接收第三指示信息,其中,该第三指示信息用于指示建立Non-3GPP用户面的连接。这种方式可以理解为由第二SMF发起Non-3GPP用户面的建立过程。
521、第一SMF向AMF发送第二信息。相应的,AMF从第一SMF接收第二信息。
进一步地,第一SMF还向AMF发送步骤520中的接入技术或第三指示信息。
第一SMF通过步骤510获得第二信息。例如,第二信息用于建立第一接入设备与第一UPF的上行用户面连接。例如,第二信息为图4中的第三上行用户面的信息。
例如,第一SMF通过信息传输消息向AMF发送第二信息。或者,第一SMF通过调用信息传输(例如,Namf_Communication_N1N2MessageTransfer)服务向AMF发送第二信息。
例如,信息传输消息中包括N2会话管理信息(N2 SM info),N2 SM info中包括第二信息。
522、AMF向第一接入网设备发送N2会话请求。相应的,第一接入网设备从AMF接收N2会话请求。其中,N2会话请求中包括第二信息。
例如,N2会话请求中包括N2 SM info,N2 SM info中包括第二信息。
523、第一接入网设备发起与UE间的无线资源建立流程。
例如,第一接入网设备通过向UE发送NAS消息建立无线资源。
524、第一接入网设备向AMF发送N2会话响应。相应的,AMF从第一接入网设备接收N2会话响应。
例如,N2会话响应中包括会话标识和N2 SM info。其中,N2 SM info中包括图4中的第一信息。第一信息用于建立第一接入设备和第一UPF的下行数据面连接。
例如,N2会话响应中还包括接入类型,该接入类型为Non-3GPP。
525、AMF向第一SMF发送更新上下文请求。相应的,第一SMF从AMF接收更新上下文请求。
例如,AMF调用更新会话管理上下文请求(例如,Nsmf_PDUSession_UpdateSMContext Request)服务,向第一SMF发送更新会话管理上下文请求。
例如,更新会话管理上下文请求中包括步骤524中的N2 SM info。
526、第一SMF确定接入类型为Non-3GPP,则第一SMF通过第二SMF向第一UPF发送第一信息。
例如,第一SMF可以通过步骤527和528向第一UPF发送第一信息。
527、第一SMF向第二SMF发送第一信息。
528、第二SMF和第一UPF执行N4会话修改过程。
例如,该N4会话修改过程包括:第二SMF向第一UPF发送N4会话修改请求,第一UPF向第二SMF发送N4会话修改响应。
例如,N4会话修改请求中包括步骤526中的第一信息。
529、第一SMF向AMF发送更新上下文响应。相应的,AMF从第一SMF接收更新上下文响 应。
例如,第一SMF调用更新会话管理上下文响应(例如,Nsmf_PDUSession_UpdateSMContext Response)服务向AMF发送更新上下文响应。
至此,该多接入会话的Non-3GPP接入侧的用户面连接已经建立完成。
根据本发明实施例的方法,在图4所述的场景一中,当存在中间SMF时,可以实现建立MA PDU session的用户面连接。
图6为本申请实施例提供的又一种会话建立的方法的流程图。该方法可用于图4中场景二的情况:UE在双接入技术(3GPP接入技术和Non-3GPP接入技术)注册,然后通过Non-3GPP接入网设备请求建立MA PDU session。图6将结合图3至图5进行描述,如图6所示,该方法可以包括:
601、UE通过第一接入网设备向AMF发送NAS消息。相应的,AMF通过第一接入网设备从UE接收NAS消息。
其中,该NAS消息包括多接入会话请求。该NAS消息可参考图5的步骤S501中对NAS消息的描述,此处不再赘述。
步骤602至步骤611可参考图5中步骤502至步骤511的描述,此处不再赘述。
此时,由于接入类型为Non-3GPP,第一SMF确定建立多接入会话的Non-3GPP接入侧的用户面连接,包括以下步骤612至620。
步骤612至步骤620可参考图5中步骤521至步骤529的描述,此处不再赘述。
可选的,步骤612至步骤620中还包括:
在步骤612中,可选的,信息传输消息中还包括以下一项或多项:会话标识、多会话接受(MA PDU session accepted)信息和N1会话管理容器(N1 SM container)。其中,N1 SM container包含会话建立接受消息,用于SMF通过AMF、RAN设备将其发送至UE。
在步骤613中,可选的,N2会话请求中还包括以下一项或多项:会话标识或N1 SM container。
在步骤613中,可选的,NAS消息还包括会话标识、N1 SM container。
通过步骤612至步骤620,该多接入会话的Non-3GPP接入侧的用户面连接已经建立完成。3GPP侧接入技术对应的用户面连接建立过程,包括以下步骤622至629。
需要说明的是,该过程可以发生在步骤610之后由第二SMF发起,或者发生在步骤611之后由第一SMF发起,或者发生在步骤620之后由第一SMF发起。例如,当由第一SMF发起该过程时,步骤611的会话创建响应中还包括第三上行用户面的信息。例如,当由第二SMF发起该过程时,第二SMF先将第三上行用户面的信息发送至第一SMF,并且向第一SMF发送第四指示信息,该第四指示信息用于表明建立多接入会话的3GPP接入侧的用户面连接,然后再执行步骤622至629。
621、第一SMF确定建立3GPP用户面的连接。
例如,第一SMF可以通过以下方式中的任一种确定建立3GPP用户面的连接:
第一种方式:第一SMF确定第四指示信息,该第四指示信息用于指示建立3GPP用户面的连接。例如,第四指示信息为接入类型,该接入类型为3GPP。这种方式可以理解为由第一SMF发起3GPP用户面的建立过程。
第二种方式:第一SMF从第二SMF接收第四指示信息,其中,该第四指示信息用于指示建立3GPP用户面的连接。这种方式可以理解为由第二SMF发起3GPP用户面的建立过程。
步骤622至步骤629可参考图5中步骤512至步骤519的描述,此处不再赘述。通过步骤622至步骤629,该多接入会话的3GPP接入侧的用户面连接已经建立完成。
需要说明的是,在步骤625中,与步骤524不同的是:步骤625的N2会话响应中还包括接入类型,该接入类型为3GPP。
根据本发明实施例的方法,在图4所述的场景二中,当存在中间SMF时,可以实现建立MA PDU session的用户面连接。
图7为本申请实施例提供的又一种会话建立的方法的流程图。该方法可用于图4中场景三的情况:UE已经通过3GPP接入网设备建立了MA PDU session,并通过Non-3GPP接入网设备在网络中注册之后,再通过Non-3GPP接入网设备请求建立MA PDU session。图7将结合图3至图6进行描述,如图7所示,该方法可以包括:
700、UE通过第二接入网设备建立了MA PDU session。
步骤700的实现过程可参考图5中步骤501至步骤519的描述,此处不再赘述。通过步骤501至步骤519,该多接入会话的3GPP接入侧的用户面连接已经建立完成。
701、UE通过第一接入网设备向AMF发送非接入层NAS消息。相应的,AMF通过第一接入网设备从UE接收NAS消息。
其中,该NAS消息包括多接入会话请求。该多接入会话请求可参考图3的步骤S301中对多接入会话请求的描述,此处不再赘述。
例如,该NAS消息还包括会话建立请求。其中,会话建立请求中包括会话标识。该会话标识和第一会话的会话标识相同。
702、AMF确定已在3GPP接入网建立了第一会话。
例如,AMF根据步骤701中的会话标识和第一会话的会话标识相同,确定已在3GPP接入网建立了第一会话。
703、AMF向第一SMF发送更新上下文请求。第一SMF从AMF接收更新上下文请求。
例如,AMF调用更新会话管理上下文请求(例如,Nsmf_PDUSession_UpdateSMContext Request)服务,向第一SMF发送更新会话管理上下文请求。
例如,更新请求中包括会话标识和接入类型。其中,接入类型为Non-3GPP。
704、第一SMF向第二SMF发送会话更新请求。第二SMF从第一SMF接收会话更新请求。
例如,会话更新请求中包括步骤703中的会话标识和接入类型。
可选的,会话更新请求中还包括会话建立请求。
需要说明的是,第一SMF根据步骤703中的接入类型判断为Non-3GPP,则第一SMF向第二SMF发送会话更新请求。
705、第二SMF和第一UPF执行N4会话修改过程。
步骤705为可选步骤。
例如,该N4会话修改过程包括:第二SMF向第一UPF发送N4会话修改请求,第一UPF向第二SMF发送N4会话修改响应。
若UE在3GPP接入网建立第一会话时,第二SMF没有获取图4中的第三上行用户面的信息,则需要执行步骤704以获取第三上行用户面的信息。例如,第三上行用户面可以为UL N3 tunnel info。若UE在3GPP接入网建立第一会话时,第二SMF已经获取了第三上行用户面的信息,则第二SMF不执行步骤704。
706、第二SMF向第一SMF发送会话更新响应。第一SMF从第二SMF接收会话更新响应。
例如,会话更新响应可以为以下两种形式中的任一种:
第一种形式:会话更新响应包括会话标识、N1 SM container和N2 SM info。例如,N1 SM container包含会话建立接受。N2 SM info包含第三上行用户面的信息。
第二种形式:会话更新响应包括会话标识和第三上行用户面的信息。
需要说明的是,当步骤704的会话更新请求中包括会话建立请求时,会话更新响应为第一种形式;当步骤704的会话更新请求中不包括会话建立请求时,会话更新响应为第二种形式。
步骤707至步骤715可参考图5中步骤521至步骤529的描述,此处不再赘述。
通过以上步骤,该多接入会话的Non-3GPP接入侧的用户面连接已经建立完成。
根据本发明实施例的方法,在图4所述的场景三中,当存在中间SMF时,可以实现建立MA PDU session的用户面连接。
图8为本申请实施例提供的又一种会话建立的方法的流程图。该方法可用于以下场景:UE已经通过Non-3GPP接入网设备建立了MA PDU session,并通过3GPP接入网设备在网络中注册之后,再通过3GPP接入网设备请求建立MA PDU session。图8将结合图3至图7进行描述,如图8所示,该方法可以包括:
801、UE通过第一接入网设备向AMF发送NAS消息。相应的,AMF通过第一接入网设备从UE接收NAS消息。
其中,该NAS消息可参考图5的步骤S501中对NAS消息的描述,此处不再赘述。
802、AMF选择第二SMF。
例如,AMF根据会话建立请求中的S-NSSAI和/或DNN选择第二SMF。
803、AMF向第二SMF发送创建上下文请求。相应的,第二SMF从AMF接收创建上下文请求。
例如,创建上下文请求中包括多接入会话请求和接入技术。接入技术为Non-3GPP。
例如,AMF通过调用创建会话管理上下文请求(例如,Nsmf_PDUSession_CreateSMContext Request)服务,触发第二SMF为UE创建会话管理上下文。
804、第二SMF选择第一UPF。
805、第二SMF和第一UPF执行N4会话建立过程。
例如,该N4会话建立过程包括:第二SMF向第一UPF发送N4会话建立请求,第一UPF向第二SMF发送N4会话建立响应。
N4会话建立响应中包括图4中第三上行用户面的信息。可选的,N4会话建立响应中还包括第二上行用户面的信息。
806、第二SMF向AMF发送信息传输消息。相应的,AMF从第二SMF接收信息传输消息。
例如,第二SMF通过调用信息传输(例如,Namf_Communication_N1N2MessageTransfer)服务向AMF发送信息传输消息。
例如,信息传输消息中包括N2会话管理信息(N2 SM info),N2 SM info中包括第三上行用户面的信息。例如,第三上行用户面的信息又称为第二信息。
步骤807至步骤809可参考图5中步骤522至步骤524的描述,此处不再赘述。
810、AMF向第二SMF发送更新上下文请求。相应的,第二SMF从AMF接收更新上下文请求。
例如,AMF调用更新会话管理上下文请求(例如,Nsmf_PDUSession_UpdateSMContext  Request)服务,向第二SMF发送更新会话管理上下文请求。
例如,更新会话管理上下文请求中包括步骤809中的N2 SM info。
811、第二SMF和第一UPF执行N4会话修改过程。
例如,该N4会话修改过程包括:第二SMF向第一UPF发送N4会话修改请求,第一UPF向第二SMF发送N4会话修改响应。
例如,N4会话修改请求中包括步骤526中的第一信息。
812、第二SMF向AMF发送更新上下文响应。相应的,AMF从第二SMF接收更新上下文响应。
例如,第二SMF调用更新会话管理上下文响应(例如,Nsmf_PDUSession_UpdateSMContext Response)服务向AMF发送更新上下文响应。
至此,该多接入会话的Non-3GPP接入侧的用户面连接已经建立完成。当UE在3GPP侧注册并发起MA PDU session建立时,执行步骤813至831。
813、UE通过第二接入网设备向AMF发送NAS消息。相应的,AMF通过第二接入网设备从UE接收NAS消息。
其中,该NAS消息可参考图5的步骤S501中对NAS消息的描述,此处不再赘述。
814、AMF确定插入第一SMF。
例如,AMF根据UE的位置和第二SMF的服务范围确定第一SMF。
例如,AMF根据步骤813中NAS消息包括的会话标识和多接入会话请求确定插入第一SMF;或者,AMF根据步骤813中NAS消息包括的会话标识、多接入会话请求和接入技术为3GPP确定插入第一SMF。步骤815可参考图5中步骤503的描述,此处不再赘述。
816、第一SMF与第二SMF执行会话上下文请求过程。
例如,第一SMF向第二SMF发送会话上下文请求(Nsmf_PDUSession_Context Request),第二SMF向第一SMF返回会话上下文请求响应(Nsmf_PDUSession_Context Response)。其中,会话上下文响应中包括会话上下文(SM context)。
步骤817至步骤821可参考图5中步骤504至步骤508描述,此处不再赘述。
822、第一UPF向第二SMF发送第二上行用户面的信息。相应地,第二SMF从第一UPF接收第二上行用户面的信息。
例如,第二SMF向第一UPF发送N4会话建立请求,第一UPF向第二SMF发送N4会话建立响应,其中,N4会话建立响应中包括第二上行用户面的信息。
或者,第二SMF向第一UPF发送N4会话修改请求,第一UPF向第二SMF发送N4会话修改响应,其中,N4会话修改响应中包括第二上行用户面的信息。
需要说明的是,步骤822为可选步骤,例如当步骤805中已经包含了第二上行用户面的信息时,该步骤可以省略。
步骤823至步骤831可参考图5中步骤511至步骤519的描述,此处不再赘述。
通过以上步骤813至831,该多接入会话的3GPP接入侧的用户面连接已经建立完成。
根据本发明实施例的方法,UE已经通过Non-3GPP接入网设备建立了MA PDU session,并通过3GPP接入网设备在网络中注册之后,再通过3GPP接入网设备请求建立MA PDU session,当需要插入中间SMF时,可以实现建立MA PDU session的用户面连接。
对于图8描述的场景,当UE进入空闲态时,用户面连接处于如下状态:(1)对于3GPP侧,UE与第二接入网设备之间的空口连接、第二接入网设备与第二UPF之间的用户面连接均断开;(2)对于Non-3GPP侧,UE与第一接入网设备之间的空口连接、第一接入网设备与第 一UPF之间的用户面连接均断开。
在上述用户面连接状态下,当下行数据到达时,需要恢复上述断开的用户面连接。由于该MA PDU session既可以通过3GPP接入网的用户面传输下行数据,也可以通过Non-3GPP接入网的用户面传输下行数据。所以当下行数据到达时,对下行数据的传输包括以下两种方式:(1)通过3GPP接入网的用户面传输下行数据,即将待传输的下行数据通过第二接入网设备发送至UE;(2)通过Non-3GPP接入网的用户面传输下行数据,即将待传输的下行数据通过第一接入网设备发送至UE。
例如,当UE进入空闲态时,上述使用方式(1)传输下行数据的方法包括:第一UPF收到下行数据后,将该下行数据通过第一UPF与第二UPF之间的用户面连接转发至第二UPF。第二UPF向第一SMF发送数据通知消息;第一SMF向AMF发送信息传输消息,携带下行数据对应的会话标识。可选的,AMF触发对UE的寻呼。
例如,当UE进入空闲态时,上述使用方式(2)传输下行数据的方法可以为以下两种方法中的任一种:
方法A:第一UPF收到下行数据后,第一UPF向第二SMF发送数据通知消息;第二SMF向第一SMF发送通知消息,携带该下行数据对应的会话标识;第一SMF向AMF发送信息传输消息,携带会话标识。可选的,AMF触发对UE的寻呼。
方法B:第二SMF向第一UPF发送转发规则。例如,该转发规则用于指示第一UPF将收到的下行数据发送至第二UPF。可选的,当UE在Non-3GPP侧进入空闲状态时,第二SMF向第一UPF发起N4会话修改过程,在此过程中,第二SMF向第一UPF发送转发规则。由此,当第一UPF收到下行数据时,根据转发规则将该下行数据转发至第二UPF。第二UPF向第一SMF发送数据通知消息。第一SMF向AMF发送信息传输消息,携带下行数据对应的会话标识。可选的,AMF触发对UE的寻呼。
图9为本申请实施例提供的又一种会话建立的方法的流程图。该方法可用于图8中描述的场景:UE已经通过Non-3GPP接入网设备建立了MA PDU session,并通过3GPP接入网设备在网络中注册之后,再通过3GPP接入网设备请求建立MA PDU session。图9与图8的区别在于:图8所描述的方法中,当利用3GPP接入网进行数据传输时,该会话的用户面连接为:UE、3GPP接入网设备、I-UPF、PSA、DN,当利用Non-3GPP接入网进行数据传输时,该会话的用户面连接为:UE、Non-3GPP接入网设备、PSA、DN;在图9所描述的方法中,当利用3GPP接入网进行数据传输时,该会话的用户面连接为:UE、3GPP接入网设备、I-UPF、PSA、DN,当利用Non-3GPP接入网进行数据传输时,该会话的用户面连接为:UE、Non-3GPP接入网设备、I-UPF、PSA、DN。图9所描述的架构图如图10所示。图9将结合图8进行描述,如图9所示,该方法可以包括:
步骤901至步骤917可参考图8中步骤801至步骤817的描述,此处不再赘述。
918、第一SMF和第二UPF执行N4会话建立过程。
例如,该N4会话建立过程包括:第一SMF向第二UPF发送N4会话建立请求,第二UPF向第一SMF发送N4会话建立响应。
例如,N4会话建立响应中包括第七信息、第八信息、第九信息和第十信息。其中,第七信息用于建立3GPP接入网设备与第二UPF之间的上行用户面连接。第八信息用于建立Non-3GPP接入网设备与第二UPF之间的上行用户面连接。第九信息用于建立用于3GPP接入网的第一UPF与第二UPF之间的下行用户面连接。第十信息用于建立用于Non-3GPP接入网的第一UPF与第二UPF之间的下行用户面连接。
919、第一SMF向第二SMF发送会话创建请求。相应的,第二SMF从第一SMF接收会话创建请求。
例如,第一SMF通过调用创建会话创建请求(例如,Nsmf_PDUSession_Create Request)服务,向第二SMF请求会话创建。
例如,该会话创建请求中包括第九信息、第十信息、多接入会话请求和接入技术。其中,接入技术为3GPP。
可选的,会话创建请求中还包括以下一项或多项:会话标识、第一SMF的ID或会话类型。
920、第一UPF向第二SMF发送第十一信息。相应地,第二SMF从第一UPF接收第十一信息。其中,第十一信息用于建立用于3GPP接入网的第一UPF与第二UPF之间的上行用户面连接。
例如,第二SMF向第一UPF发送N4会话建立请求,第一UPF向第二SMF发送N4会话建立响应,其中,N4会话建立响应中包括第十一信息。可选的,如果SMF在步骤905中未获取第十二信息,则N4会话建立响应中还包括第十二信息,其中,该第十二信息用于建立第一UPF与第二UPF之间的上行用户面连接。
或者,第二SMF向第一UPF发送N4会话修改请求,第一UPF向第二SMF发送N4会话修改响应,其中,N4会话修改响应中包括第十一信息。可选的,如果SMF在步骤905中未获取第十二信息,则N4会话修改响应中还包括第十二信息,其中,该第十二信息用于建立第一UPF与第二UPF之间的上行用户面连接。
921、第二SMF向第一SMF发送会话创建响应。相应的,第一SMF从第二SMF接收会话创建响应。
例如,第二SMF通过调用创建会话创建响应(例如,Nsmf_PDUSession_Create Response)服务,向第二SMF响应会话创建。
例如,该会话创建响应中包括步骤920中的第十一信息、接入技术。其中,接入技术为3GPP。
可选的,会话创建请求中还包括以下一项或多项:会话标识、多接入接受信息或选择的会话类型等。
步骤922至步骤929可参考图8中步骤824至步骤831的描述,此处不再赘述。
至此,3GPP侧的用户面连接建立完成。第一SMF或第二SMF发起Non-3GPP侧用户面连接的更新过程,包括步骤930至937。当由第一SMF发起时,可以发生在步骤921之后;当由第二SMF发起时,可以发生在步骤920之后,第二SMF向第一SMF发送用于建立Non-3GPP接入网的第一UPF与第二UPF之间的上行用户面连接的信息,然后第一SMF执行步骤930至937。
930、第一SMF向AMF发送信息传输消息。相应的,AMF从第一SMF接收信息传输消息。
例如,第一SMF调用信息传输(例如,Namf_Communication_N1N2MessageTransfer)服务。
例如,信息传输消息中包括N2会话管理信息(N2 SM info),N2 SM info中包括第八信息。
可选的,信息传输消息中还包括会话标识。
931、AMF向第一接入网设备发送N2会话请求。相应的,第一接入网设备从AMF接收N2会话请求。其中,N2会话请求中包括第八信息。
例如,N2会话请求中包括N2 SM info,N2 SM info中包括第八信息。
932、第一接入网设备发起与UE间的无线资源建立流程。
例如,第一接入网设备通过向UE发送NAS消息建立无线资源。其中,NAS消息包含会话标识。
该步骤为可选步骤。
933、第一接入网设备向AMF发送N2会话响应。相应的,AMF从第一接入网设备接收N2会话响应。
例如,可选的,N2会话响应中包括会话标识和N2 SM info。其中,N2 SM info中包括Non-3GPP侧的接入网设备用户面信息。该信息用于建立第一接入网设备和第二UPF的下行数据面连接。
934、AMF向第一SMF发送更新上下文请求。相应的,第一SMF从AMF接收更新上下文请求。
例如,AMF调用更新会话管理上下文请求(例如,Nsmf_PDUSession_UpdateSMContext Request)服务,向第一SMF发送更新会话管理上下文请求。
例如,更新上下文请求中包括步骤931中的N2 SM info。
935、第一SMF向第二UPF发起N4会话修改过程。
在该过程中,第一SMF将Non-3GPP侧的接入网设备用户面信息和第十二信息发送至第二UPF,以建立第二UPF与Non-3GPP侧接入网设备之间的下行用户面连接,以及与Non-3GPP对应的第二UPF与第一UPF之间的上行用户面连接。
通过以上步骤913至935,该多接入会话的3GPP接入侧的用户面连接已经建立完成。
根据本发明实施例的方法,UE已经通过Non-3GPP接入网设备建立了MA PDU session,并通过3GPP接入网设备在网络中注册之后,再通过3GPP接入网设备请求建立MA PDU session,当需要插入中间SMF时,可以实现建立MA PDU session的用户面连接。
图11为本申请实施例提供的又一种会话建立方法。在图11所示的通信架构中,AMF既与I-SMF存在N11接口,也与SMF存在N11接口。在该架构中,在建立MA PDU session时,通过3GPP接入网设备建立的控制面连接为:AMF、I-SMF、SMF;通过Non-3GPP接入网设备建立的控制面连接为:AMF、SMF。
根据UE在网络中的注册顺序不同以及UE请求建立MA PDU session时的接入网不同,图11可以应用在如下4个场景。
场景A:UE通过3GPP接入网设备在网络中注册,且通过Non-3GPP接入网设备在网络中注册。然后UE再通过3GPP接入网设备请求建立MA PDU session。
当UE通过3GPP接入网设备建立MA PDU session时,AMF选择I-SMF和SMF为UE提供服务,用户面连接为:UE、3GPP接入网设备、I-UPF、PSA、DN。然后SMF获取AMF标识,从而发起Non-3GPP侧的用户面连接建立。例如,SMF可以通过如下两种方式中的任一种获取AMF标识:
方式1:在UE通过3GPP接入网设备建立MA PDU session过程中,AMF通过I-SMF向SMF发送AMF标识。
方式2:在UE通过3GPP接入网设备建立MA PDU session过程中,AMF选择I-SMF、SMF后,AMF分别向I-SMF、SMF发送创建上下文请求。其中,AMF向SMF发送的创建上下文请求中包括AMF标识。例如,AMF向I-SMF发送的创建上下文请求,用于建立与3GPP接入技术对应的控制面连接;AMF向SMF发送的创建上下文请求,用于建立与Non-3GPP接入技术对应的控制面连接。
例如,SMF获取到AMF标识后发起Non-3GPP侧的用户面连接建立过程,包括:SMF向AMF发送信息传输消息,携带PSA的用户面信息,其中,PSA的用户面信息用于建立Non-3GPP接入网设备与PSA之间的上行用户面连接。AMF向Non-3GPP接入网设备发送N2会话请求,携带PSA的用户面信息。Non-3GPP接入网设备发起与UE之间的无线连接建立过程。Non-3GPP接入网设备向AMF返回N2会话响应,携带Non-3GPP的用户面信息,其中,Non-3GPP的用户面信息用于建立Non-3GPP接入网设备与PSA之间的下行用户面连接。AMF根据接入技术为Non-3GPP,向SMF发送Non-3GPP的用户面信息。SMF向PSA发起N4会话修改过程,将Non-3GPP的用户面信息发送至PSA。
可选的,在UE通过3GPP接入网设备建立MA PDU session过程中,AMF向I-SMF发送创建上下文请求后,即I-SMF接收创建上下文请求时,I-SMF判断UE为非漫游场景。I-SMF从I-UPF接收I-UPF的用户面信息,其中,I-UPF的用户面信息用于建立3GPP接入网设备与I-UPF之间的上行用户面连接以及I-UPF与PSA之间的下行用户面连接。
场景B:UE通过3GPP接入网设备在网络中注册,且通过Non-3GPP接入网设备在网络中注册。然后UE再通过Non-3GPP接入网设备请求建立MA PDU session。
当UE通过Non-3GPP接入网设备建立MA PDU session时,在UE通过Non-3GPP接入网设备建立MA PDU session过程中,AMF选择I-SMF和SMF为UE提供服务。Non-3GPP控制面连接为:AMF、SMF。Non-3GPP用户面连接为:UE、Non-3GPP接入网设备、PSA、DN。然后SMF获取I-SMF标识,从而发起3GPP侧的用户面连接建立。例如,SMF可以通过如下两种方式中的任一种获取I-SMF标识:
方式A:当UE通过Non-3GPP接入网设备建立MA PDU session时,AMF向SMF发送创建上下文请求,其中,该创建上下文请求中包括I-SMF标识。
方式B:在UE通过Non-3GPP接入网设备建立MA PDU session过程中,AMF选择I-SMF、SMF后,AMF分别向I-SMF、SMF发送创建上下文请求。例如,AMF向SMF发送的创建上下文请求,由此建立了Non-3GPP侧的控制面连接。例如,AMF向I-SMF发送的创建上下文请求,其中,该创建上下文请求中包括SMF标识;I-SMF根据SMF标识向SMF发送会话创建请求。由此建立了3GPP侧控制面的连接。
例如,SMF获取到I-SMF标识后发起3GPP侧的用户面连接建立过程,包括:SMF向I-SMF发送PSA的用户面信息,其中,PSA的用户面信息用于建立I-UPF与PSA之间的上行用户面连接。I-SMF向AMF发送信息传输消息,携带I-UPF的用户面信息,其中,I-UPF的用户面信息用于建立3GPP接入网设备与I-UPF之间的上行用户面连接。AMF向3GPP接入网设备发送N2会话请求,携带I-UPF的用户面信息。3GPP接入网设备发起与UE之间的无线资源建立流程。3GPP接入网设备向AMF返回N2会话响应,携带3GPP的用户面信息,其中,3GPP的用户面信息用于建立3GPP接入网设备与I-UPF之间的下行用户面连接。AMF根据接入技术为3GPP,向I-SMF发送3GPP的用户面信息。I-SMF向I-UPF发起N4会话修改过程,将3GPP的用户面信息发送至I-UPF,从而建立3GPP接入网设备与I-UPF之间的下行用户面连接。
场景C:UE通过3GPP接入网设备在网络中注册,且UE通过3GPP接入网设备建立了MA PDU session。之后,UE通过Non-3GPP接入网设备在网络中已注册,然后UE再通过Non-3GPP接入网设备请求建立MA PDU session。
UE通过3GPP接入网设备建立MA PDU session的过程中,AMF保存了会话标识、I-SMF标识、SMF标识的对应关系。当UE再通过Non-3GPP接入网设备建立MA PDU session时,AMF根据NAS消息中的会话标识和多接入会话请求,确定向SMF发送创建上下文请求;或者;AMF 根据NAS消息中的会话标识、多接入会话请求和接入技术为Non-3GPP确定向SMF发送创建上下文请求。
场景D:UE通过Non-3GPP接入网设备在网络中注册,且UE通过Non-3GPP接入网设备建立了MA PDU session。之后,UE通过3GPP接入网设备在网络中注册,然后UE再通过3GPP接入网设备请求建立MA PDU session。
UE通过Non-3GPP接入网设备建立MA PDU session的过程中,保存了会话标识与SMF标识的对应关系。当UE再通过3GPP接入网设备建立MA PDU session时,AMF根据NAS消息中的会话标识和多接入会话请求,确定插入I-SMF;或者,AMF根据NAS消息中的会话标识、多接入会话请求和接入技术为3GPP,确定插入I-SMF。
上述本申请提供的实施例中,分别从各个网元本身、以及从各个网元之间交互的角度对本申请实施例提供的通信方法的各方案进行了介绍。可以理解的是,各个网元和设备,例如上述无线接入网设备、接入及移动性管理功能网元、终端设备、数据管理功能网元和网络切片选择功能网元为了实现上述功能,其包含了执行各个功能相应的硬件结构和/或软件模块。本领域技术人员应该很容易意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,本申请能够以硬件或硬件和计算机软件的结合形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
例如,当上述通过软件模块来实现相应的功能。该会话建立的装置可包括接收模块1201和发送模块1203,可选的,还包括处理模块1202,如图12A所示。
在一个实施例中,该会话建立的装置可用于执行上述图3至图7中第一SMF的操作。例如,该会话建立的装置包括:
接收模块1201,用于接收多接入会话请求,其中,多接入会话请求用于指示第一会话使用3GPP的接入网和Non-3GPP的接入网传输数据。发送模块1203,用于从AMF接收接入类型,接入类型为non-3GPP。该发送模块1203,还用于通过第二SMF向第一UPF发送第一信息,其中,第一信息用于建立non-3GPP的第一接入设备和第一UPF的下行数据面连接,第一UPF为第二SMF管理的UPF。
由此,本发明实施例中,当UE请求建立MA PDU session时,第一SMF根据接入类型为non-3GPP,向第一UPF发送第一信息,使得第一接入网设备和第一UPF的下行数据面的连接能够建立,从而可以实现MA PDU session的建立。
可选的,若接入类型为non-3GPP,发送模块1203,还用于通过AMF向第一接入设备发送第二信息,其中,第二信息用于建立第一接入设备与第一UPF的上行用户面连接。
可选的,还包括处理模块1202,用于确定接入类型为3GPP,发送模块1203还用于向第二UPF发送第三信息和第四信息,第三信息用于建立3GPP的第二接入设备和第二UPF的下行数据面连接,第四信息用于建立第一UPF和第二UPF的上行数据面连接,第二UPF为第一SMF管理的UPF。
可选的,若接入类型为3GPP,发送模块1203还用于通过AMF向3GPP的第二接入设备发送第五信息,第五信息用于建立第二接入设备与第二UPF的上行用户面连接,第二UPF为第一SMF管理的UPF。
可选的,该会话建立的装置还包括处理模块1202,用于确定第一SMF对应的PLMN和第二SMF对应的PLMN相同。
可选的,接收模块1201还用于从AMF接收指示信息,指示信息用于指示第一SMF对应的PLMN和第二SMF对应的PLMN相同。
可选的,处理模块1202用于分配第五信息和第六信息,其中,第五信息用于建立3GPP的第二接入设备与第二UPF的上行用户面连接,第六信息用于建立第一UPF与第二UPF之间的下行用户面连接,第二UPF为第一SMF管理的UPF。
可选的,该接收模块1201还用于从第二UPF接收第五信息和第六信息,其中,第五信息用于建立3GPP的第二接入设备与第二UPF的上行用户面连接,第六信息用于建立第一UPF与第二UPF之间的下行用户面连接,第二UPF为第一SMF管理的UPF。
可选的,该接收模块1201还用于通过第一接入设备从终端设备接收会话建立请求,其中,会话建立请求用于指示终端设备请求建立会话。该发送模块1203还用于向第二SMF发送会话建立请求。
可选的,处理模块1202用于确定接入类型为3GPP;该发送模块1203还用于向AMF发送第一会话更新响应消息,该处理模块1202用于将接入类型设置为non-3GPP。或者,该处理模块1202用于确定接入类型为non-3GPP;该发送模块1203还用于向AMF发送第二会话更新响应消息,该处理模块1202用于将接入类型设置为3GPP。
此外,会话建立的装置中的接收模块1201、处理模块1202和发送模块1203还可实现图3至图7中第一SMF的其他操作或功能,此处不再赘述。
在另一个实施例中,图12A所示的会话建立的装置还可用于执行图8至图10中AMF的操作。例如,该会话建立的装置包括:
接收模块1201,用于通过Non-3GPP的第一接入设备从终端设备接收第一多接入会话请求,其中,第一多接入会话请求用于指示第一会话使用3GPP的接入网和Non-3GPP的接入网传输数据。处理模块1202,用于选择第二SMF为第一会话提供服务。该接收模块1201,还用于通过3GPP的第二接入设备从终端设备接收第二多接入会话请求,其中,第二多接入会话请求用于指示第一会话使用3GPP的接入网和Non-3GPP的接入网传输数据。该处理模块1202,还用于根据终端设备的位置和第二SMF的服务范围确定第一SMF,其中,第一SMF和第二SMF用于为第一会话提供服务。
由此,本发明实施例中,在UE已经通过Non-3GPP接入网设备建立了MA PDU session,并通过3GPP接入网设备在网络中注册之后,再通过3GPP接入网设备请求建立MA PDU session的场景下,当需要插入中间SMF时,可以实现建立MA PDU session的用户面连接。
可选的,第一SMF对应的PLMN和第二SMF对应的PLMN相同。
此外,会话建立的装置中的接收模块1201、处理模块1202和发送模块1203还可实现图8至图10中AMF的其他操作或功能,此处不再赘述。
图12B示出了上述实施例中所涉及的会话建立的装置的另一种可能的结构示意图。会话建立的装置包括收发器1204和处理器1205,如图12B所示。例如,处理器1205可以为通用微处理器、数据处理电路、专用集成电路(application specific integrated circuit,ASIC)或者现场可编程门阵列(field-programmable gate arrays,FPGA)电路。所述会话建立的装置还可以包括存储器1206,例如,存储器为随机存取存储器(random access memory,RAM)。所述存储器用于与处理器1205耦合,其保存该会话建立的装置必要的计算机程序12061。
此外,上述实施例中所涉及的会话建立的装置还提供了一种载体1207,所述载体内保存有该会话建立的装置的计算机程序12071,可以将计算机程序12071加载到处理器1205中。上述载体可以为光信号、电信号、电磁信号或者计算机可读存储介质(例如,硬盘)。
当上述计算机程序12061或12071在计算机(例如,处理器1205)上运行时,可使得计算机执行上述的方法。
例如,在一个实施例中,处理器1205被配置为第一SMF(图3至图7中第一SMF)的其他操作或功能。收发器1204用于实现第一SMF与AMF/第二SMF/第二UPF之间的通信。
在另一个实施例中,处理器1205被配置为AMF(例如,图8至图10中AMF)的其他操作或功能。收发器1204用于实现AMF与第一接入网设备/第二接入网设备/第一SMF之间的通信。
在另一个实施例中,一种会话建立的系统如图13所示,包括AMF 1301和第一SMF 1302。该会话建立的系统中的AMF可用于执行上述图8至图10中AMF的操作,该会话建立的系统中的第一SMF可用于执行上述图8至图10中第一SMF的操作。例如:
AMF 1301用于通过Non-3GPP的第一接入设备从终端设备接收第一多接入会话请求,其中,第一多接入会话请求用于指示第一会话使用3GPP的接入网和Non-3GPP的接入网传输数据。AMF 1301还用于选择第二SMF为第一会话提供服务。AMF 1301还用于通过3GPP的第二接入设备从终端设备接收第二多接入会话请求,其中,第二多接入会话请求用于指示第一会话使用3GPP的接入网和Non-3GPP的接入网传输数据。AMF 1301还用于根据终端设备的位置和第二SMF的服务范围确定第一SMF 1302,其中,第一SMF 1302和第二SMF用于为第一会话提供服务。第一SMF 1302用于确定接入类型为3GPP。第一SMF 1302还用于向第二UPF发送第三信息和第四信息,其中,第三信息用于建立第二接入设备和第二UPF的下行数据面连接,第四信息用于建立第一UPF和第二UPF的上行数据面连接,第一UPF为第二SMF管理的UPF,第二UPF为第一SMF 1302管理的UPF。
由此,根据本发明实施例提供的一种会话建立的系统,在UE已经通过Non-3GPP接入网设备建立了MA PDU session,并通过3GPP接入网设备在网络中注册之后,再通过3GPP接入网设备请求建立MA PDU session的场景下,当需要插入中间SMF时,可以实现建立MA PDU session的用户面连接。
可选的,第一SMF 1302对应的PLMN和第二SMF对应的PLMN相同。
可选的,第一SMF 1302还用于通过AMF 1301向第二接入设备发送第五信息,其中,第五信息用于建立第二接入设备与第二UPF的上行用户面连接。
可选的,第一SMF 1302还用于分配第五信息和第六信息,第五信息用于建立第二接入设备与第二UPF的上行用户面连接,第六信息用于建立第一UPF与第二UPF之间的下行用户面连接。
可选的,第一SMF 1302还用于从第二UPF接收第五信息和第六信息,第五信息用于建立第二接入设备与第二UPF的上行用户面连接,第六信息用于建立第一UPF与第二UPF之间的下行用户面连接。
以上模块或单元的一个或多个可以软件、硬件或二者结合来实现。当以上任一模块或单元以软件实现的时候,所述软件以计算机程序指令的方式存在,并被存储在存储器中,处理器可以用于执行所述程序指令并实现以上方法流程。所述处理器可以包括但不限于以下至少一种:中央处理单元(central processing unit,CPU)、微处理器、数字信号处理器(DSP)、微控制器(microcontroller unit,MCU)、或人工智能处理器等各类运行软件的计算设备,每种计算设备可包括一个或多个用于执行软件指令以进行运算或处理的核。该处理器可以内置于SoC(片上系统)或专用集成电路(application specific integrated circuit,ASIC),也可是一个独立的半导体芯片。该处理器内处理用于执行软件指令以进行运算或处理的核外,还可进一步包括必要的硬件加速器,如现场可编程门阵列(field programmable gate array, FPGA)、PLD(可编程逻辑器件)、或者实现专用逻辑运算的逻辑电路。
当以上模块或单元以硬件实现的时候,该硬件可以是CPU、微处理器、DSP、MCU、人工智能处理器、ASIC、SoC、FPGA、PLD、专用数字电路、硬件加速器或非集成的分立器件中的任一个或任一组合,其可以运行必要的软件或不依赖于软件以执行以上方法流程。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本发明实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质(例如固态硬盘Solid State Disk(SSD))等。
以上所述的具体实施方式,对本发明的目的、技术方案和有益效果进行了进一步详细说明,所应理解的是,以上所述仅为本发明的具体实施方式而已,并不用于限定本发明的保护范围,凡在本发明的技术方案的基础之上,所做的任何修改、等同替换、改进等,均应包括在本发明的保护范围之内。

Claims (35)

  1. 一种会话建立的方法,其特征在于,包括:
    第一会话管理功能SMF网元接收多接入会话请求,所述多接入会话请求用于指示第一会话使用第三代合作伙伴计划3GPP的接入网和非第三代合作伙伴计划Non-3GPP的接入网传输数据;
    所述第一SMF网元从接入及移动性管理功能AMF网元接收接入类型,所述接入类型为所述non-3GPP;
    所述第一SMF网元通过第二SMF网元向第一用户面功能UPF网元发送第一信息,所述第一信息用于建立所述non-3GPP的第一接入设备和所述第一UPF网元的下行数据面连接,所述第一UPF网元为所述第二SMF网元管理的UPF网元。
  2. 根据权利要求1所述的方法,其特征在于,还包括:
    若所述接入类型为所述non-3GPP,所述第一SMF网元通过所述AMF网元向所述第一接入设备发送第二信息,所述第二信息用于建立所述第一接入设备与所述第一UPF网元的上行用户面连接。
  3. 根据权利要求1或2所述的方法,其特征在于,还包括:
    所述第一SMF网元确定所述接入类型为所述3GPP,所述第一SMF网元向第二UPF网元发送第三信息和第四信息,所述第三信息用于建立所述3GPP的第二接入设备和所述第二UPF网元的下行数据面连接,所述第四信息用于建立所述第一UPF网元和所述第二UPF网元的上行数据面连接,所述第二UPF网元为所述第一SMF网元管理的UPF网元。
  4. 根据权利要求1至3任一所述的方法,其特征在于,还包括:
    若所述接入类型为所述3GPP,所述第一SMF网元通过所述AMF网元向所述3GPP的第二接入设备发送第五信息,所述第五信息用于建立所述第二接入设备与第二UPF网元的上行用户面连接,所述第二UPF网元为所述第一SMF网元管理的UPF网元。
  5. 根据权利要求1至4任一所述的方法,其特征在于,还包括:
    所述第一SMF网元确定所述第一SMF网元对应的公用陆地移动网PLMN和所述第二SMF网元对应的PLMN相同。
  6. 根据权利要求1至4任一所述的方法,其特征在于,还包括:
    所述第一SMF网元从所述AMF网元接收指示信息,所述指示信息用于指示所述第一SMF网元对应的PLMN和所述第二SMF网元对应的PLMN相同。
  7. 根据权利要求1至6任一所述的方法,其特征在于,还包括:
    所述第一SMF网元分配第五信息和第六信息,所述第五信息用于建立所述3GPP的第二接入设备与第二UPF网元的上行用户面连接,所述第六信息用于建立所述第一UPF网元与所述第二UPF网元之间的下行用户面连接,所述第二UPF网元为所述第一SMF网元管理的UPF网元。
  8. 根据权利要求1至6任一所述的方法,其特征在于,还包括:
    所述第一SMF网元从第二UPF网元接收第五信息和第六信息,所述第五信息用于建立所述3GPP的第二接入设备与所述第二UPF网元的上行用户面连接,所述第六信息用于建立所述第一UPF网元与所述第二UPF网元之间的下行用户面连接,所述第二UPF网元为所述第一SMF网元管理的UPF网元。
  9. 根据权利要求1至8任一所述的方法,其特征在于,还包括:
    所述第一SMF网元通过所述第一接入设备从终端设备接收会话建立请求,所述会话建立请求用于指示所述终端设备请求建立会话;
    所述第一SMF网元向所述第二SMF网元发送所述会话建立请求。
  10. 根据权利要求1至9任一所述的方法,其特征在于,还包括:
    所述第一SMF网元确定所述接入类型为所述3GPP,所述第一SMF网元向所述AMF网元发送第一会话更新响应消息,所述第一SMF网元将所述接入类型设置为所述non-3GPP;或者,所述第一SMF网元确定所述接入类型为所述non-3GPP,所述第一SMF网元向AMF网元发送第二会话更新响应消息,所述第一SMF将所述接入类型设置为所述3GPP。
  11. 一种会话建立的方法,其特征在于,包括:
    接入及移动性管理功能AMF网元通过非第三代合作伙伴计划Non-3GPP的第一接入设备从终端设备接收第一多接入会话请求,所述第一多接入会话请求用于指示第一会话使用第三代合作伙伴计划3GPP的接入网和所述Non-3GPP的接入网传输数据;
    所述AMF网元选择第二会话管理功能SMF网元为所述第一会话提供服务;
    所述AMF网元通过所述3GPP的第二接入设备从所述终端设备接收第二多接入会话请求,所述第二多接入会话请求用于指示所述第一会话使用所述3GPP的接入网和所述Non-3GPP的接入网传输数据;
    所述AMF网元根据所述终端设备的位置和所述第二SMF网元的服务范围确定第一SMF网元,所述第一SMF网元和所述第二SMF网元用于为所述第一会话提供服务。
  12. 根据权利要求11所述的方法,其特征在于,所述第一SMF网元对应的公用陆地移动网PLMN和所述第二SMF网元对应的PLMN相同。
  13. 一种会话建立的方法,其特征在于,包括:
    接入及移动性管理功能AMF网元通过非第三代合作伙伴计划Non-3GPP的第一接入设备从终端设备接收第一多接入会话请求,所述第一多接入会话请求用于指示第一会话使用第三代合作伙伴计划3GPP的接入网和所述Non-3GPP的接入网传输数据;
    所述AMF网元选择第二会话管理功能SMF网元为所述第一会话提供服务;
    所述AMF网元通过所述3GPP的第二接入设备从所述终端设备接收第二多接入会话请求,所述第二多接入会话请求用于指示所述第一会话使用所述3GPP的接入网和所述Non-3GPP的接入网传输数据;
    所述AMF网元根据所述终端设备的位置和所述第二SMF网元的服务范围确定第一SMF网元,所述第一SMF网元和所述第二SMF网元用于为所述第一会话提供服务;
    所述第一SMF网元确定所述接入类型为所述3GPP,所述第一SMF网元向第二用户面功能UPF网元发送第三信息和第四信息,所述第三信息用于建立所述第二接入设备和所述第二UPF网元的下行数据面连接,所述第四信息用于建立第一UPF网元和所述第二UPF网元的上行数据面连接,所述第一UPF网元为所述第二SMF网元管理的UPF网元,所述第二UPF网元为所述第一SMF管理的UPF网元。
  14. 根据权利要求13所述的方法,其特征在于,所述第一SMF网元对应的公用陆地移动网PLMN和所述第二SMF网元对应的PLMN相同。
  15. 根据权利要求13或14所述的方法,其特征在于,还包括:
    所述第一SMF网元通过所述AMF网元向所述第二接入设备发送第五信息,所述第五信息用于建立所述第二接入设备与第二UPF网元的上行用户面连接。
  16. 根据权利要求13至15任一所述的方法,其特征在于,还包括:
    所述第一SMF网元分配第五信息和第六信息,所述第五信息用于建立所述第二接入设备与所述第二UPF网元的上行用户面连接,所述第六信息用于建立所述第一UPF网元与所述第二UPF网元之间的下行用户面连接。
  17. 根据权利要求13至16任一所述的方法,其特征在于,还包括:
    所述第一SMF网元从所述第二UPF网元接收第五信息和第六信息,所述第五信息用于建立所述第二接入设备与所述第二UPF网元的上行用户面连接,所述第六信息用于建立所述第一UPF网元与所述第二UPF网元之间的下行用户面连接。
  18. 一种会话建立的装置,其特征在于,包括:
    接收模块,用于接收多接入会话请求,所述多接入会话请求用于指示第一会话使用第三代合作伙伴计划3GPP的接入网和非第三代合作伙伴计划Non-3GPP的接入网传输数据;
    发送模块,用于从接入及移动性管理功能AMF网元接收接入类型,所述接入类型为所述non-3GPP;
    所述发送模块,还用于通过第二SMF网元向第一用户面功能UPF网元发送第一信息,所述第一信息用于建立所述non-3GPP的第一接入设备和所述第一UPF网元的下行数据面连接,所述第一UPF网元为所述第二SMF网元管理的UPF网元。
  19. 根据权利要求18所述的装置,其特征在于,
    若所述接入类型为所述non-3GPP,所述发送模块,还用于通过所述AMF网元向所述第一接入设备发送第二信息,所述第二信息用于建立所述第一接入设备与所述第一UPF网元的上行用户面连接。
  20. 根据权利要求18或19所述的装置,其特征在于,还包括:
    处理模块,用于确定所述接入类型为所述3GPP,所述发送模块还用于向第二UPF网元发送第三信息和第四信息,所述第三信息用于建立所述3GPP的第二接入设备和所述第二UPF网元的下行数据面连接,所述第四信息用于建立所述第一UPF网元和所述第二UPF网元的上行数据面连接,所述第二UPF网元为所述第一SMF网元管理的UPF网元。
  21. 根据权利要求18至20任一所述的装置,其特征在于,
    若所述接入类型为所述3GPP,所述发送模块还用于通过所述AMF网元向所述3GPP的第二接入设备发送第五信息,所述第五信息用于建立所述第二接入设备与第二UPF网元的上行用户面连接,所述第二UPF网元为所述第一SMF网元管理的UPF网元。
  22. 根据权利要求18至21任一所述的装置,其特征在于,还包括:
    处理模块,用于确定所述第一SMF网元对应的公用陆地移动网PLMN和所述第二SMF网元对应的PLMN相同。
  23. 根据权利要求18至21任一所述的装置,其特征在于,
    所述接收模块,还用于从所述AMF网元接收指示信息,所述指示信息用于指示所述第一SMF网元对应的PLMN和所述第二SMF网元对应的PLMN相同。
  24. 根据权利要求18至23任一所述的装置,其特征在于,还包括:
    处理模块,用于分配第五信息和第六信息,所述第五信息用于建立所述3GPP的第二接入设备与第二UPF网元的上行用户面连接,所述第六信息用于建立所述第一UPF网元与所述第二UPF网元之间的下行用户面连接,所述第二UPF网元为所述第一SMF网元管理的UPF网元。
  25. 根据权利要求18至23任一所述的装置,其特征在于,
    所述接收模块,还用于从第二UPF网元接收第五信息和第六信息,所述第五信息用于建立 所述3GPP的第二接入设备与所述第二UPF网元的上行用户面连接,所述第六信息用于建立所述第一UPF网元与所述第二UPF网元之间的下行用户面连接,所述第二UPF网元为所述第一SMF网元管理的UPF网元。
  26. 根据权利要求18至25任一所述的装置,其特征在于,
    所述接收模块,还用于通过所述第一接入设备从终端设备接收会话建立请求,所述会话建立请求用于指示所述终端设备请求建立会话;
    所述发送模块,还用于向所述第二SMF网元发送所述会话建立请求。
  27. 根据权利要求18至26任一所述的装置,其特征在于,
    处理模块,用于确定所述接入类型为所述3GPP,所述发送模块还用于向所述AMF网元发送第一会话更新响应消息,所述处理模块还用于将所述接入类型设置为所述non-3GPP;或者,处理模块,用于确定所述接入类型为所述non-3GPP,所述发送模块还用于向AMF网元发送第二会话更新响应消息,所述处理模块还用于将所述接入类型设置为所述3GPP。
  28. 一种会话建立的装置,其特征在于,包括:
    接收模块,用于通过非第三代合作伙伴计划Non-3GPP的第一接入设备从终端设备接收第一多接入会话请求,所述第一多接入会话请求用于指示第一会话使用第三代合作伙伴计划3GPP的接入网和所述Non-3GPP的接入网传输数据;
    处理模块,用于选择第二会话管理功能SMF网元为所述第一会话提供服务;
    所述接收模块,还用于通过所述3GPP的第二接入设备从所述终端设备接收第二多接入会话请求,所述第二多接入会话请求用于指示所述第一会话使用所述3GPP的接入网和所述Non-3GPP的接入网传输数据;
    所述处理模块,还用于根据所述终端设备的位置和所述第二SMF网元的服务范围确定第一SMF网元,所述第一SMF网元和所述第二SMF网元用于为所述第一会话提供服务。
  29. 根据权利要求28所述的装置,其特征在于,所述第一SMF网元对应的公用陆地移动网PLMN和所述第二SMF网元对应的PLMN相同。
  30. 一种会话建立的系统,其特征在于,包括接入及移动性管理功能AMF网元和第一会话管理功能SMF网元,其中:
    所述AMF网元用于通过非第三代合作伙伴计划Non-3GPP的第一接入设备从终端设备接收第一多接入会话请求,所述第一多接入会话请求用于指示第一会话使用第三代合作伙伴计划3GPP的接入网和所述Non-3GPP的接入网传输数据;
    所述AMF网元用于选择第二SMF网元为所述第一会话提供服务;
    所述AMF网元用于通过所述3GPP的第二接入设备从所述终端设备接收第二多接入会话请求,所述第二多接入会话请求用于指示所述第一会话使用所述3GPP的接入网和所述Non-3GPP的接入网传输数据;
    所述AMF网元用于根据所述终端设备的位置和所述第二SMF网元的服务范围确定第一SMF网元,所述第一SMF网元和所述第二SMF网元用于为所述第一会话提供服务;
    所述第一SMF网元用于确定所述接入类型为所述3GPP,所述第一SMF网元用于向第二用户面功能UPF网元发送第三信息和第四信息,所述第三信息用于建立所述第二接入设备和所述第二UPF网元的下行数据面连接,所述第四信息用于建立第一UPF网元和所述第二UPF网元的上行数据面连接,所述第一UPF网元为所述第二SMF网元管理的UPF网元,所述第二UPF网元为所述第一SMF管理的UPF网元。
  31. 根据权利要求30所述的系统,其特征在于,所述第一SMF网元对应的公用陆地移动 网PLMN和所述第二SMF网元对应的PLMN相同。
  32. 根据权利要求30或31所述的系统,其特征在于,
    所述第一SMF网元还用于通过所述AMF网元向所述第二接入设备发送第五信息,所述第五信息用于建立所述第二接入设备与第二UPF网元的上行用户面连接。
  33. 根据权利要求30至32任一所述的系统,其特征在于,
    所述第一SMF网元还用于分配第五信息和第六信息,所述第五信息用于建立所述第二接入设备与所述第二UPF网元的上行用户面连接,所述第六信息用于建立所述第一UPF网元与所述第二UPF网元之间的下行用户面连接。
  34. 根据权利要求30至33任一所述的系统,其特征在于,
    所述第一SMF网元还用于从所述第二UPF网元接收第五信息和第六信息,所述第五信息用于建立所述第二接入设备与所述第二UPF网元的上行用户面连接,所述第六信息用于建立所述第一UPF网元与所述第二UPF网元之间的下行用户面连接。
  35. 一种计算机可读存储介质,包括指令,当其在计算机上运行时,使得计算机执行如权利要求1-17任意一项所述的方法。
PCT/CN2019/130787 2019-12-31 2019-12-31 一种会话建立的方法及装置 WO2021134601A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201980102494.5A CN114731714A (zh) 2019-12-31 2019-12-31 一种会话建立的方法及装置
PCT/CN2019/130787 WO2021134601A1 (zh) 2019-12-31 2019-12-31 一种会话建立的方法及装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/130787 WO2021134601A1 (zh) 2019-12-31 2019-12-31 一种会话建立的方法及装置

Publications (1)

Publication Number Publication Date
WO2021134601A1 true WO2021134601A1 (zh) 2021-07-08

Family

ID=76687227

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/130787 WO2021134601A1 (zh) 2019-12-31 2019-12-31 一种会话建立的方法及装置

Country Status (2)

Country Link
CN (1) CN114731714A (zh)
WO (1) WO2021134601A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023143450A1 (zh) * 2022-01-27 2023-08-03 维沃移动通信有限公司 数据处理规则的配置方法、终端及网络侧设备

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108632953A (zh) * 2017-02-10 2018-10-09 中兴通讯股份有限公司 一种实现多接入管理的方法及装置
CN109429270A (zh) * 2017-06-23 2019-03-05 华为技术有限公司 通信方法及装置
US20190313477A1 (en) * 2018-04-10 2019-10-10 Electronics And Telecommunications Research Institute Packet data unit session release method and network entity performing the same
WO2019245344A1 (en) * 2018-06-21 2019-12-26 Samsung Electronics Co., Ltd. Method and system for hplmn-based traffic control when ue is registered on different plmns

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108632953A (zh) * 2017-02-10 2018-10-09 中兴通讯股份有限公司 一种实现多接入管理的方法及装置
CN109429270A (zh) * 2017-06-23 2019-03-05 华为技术有限公司 通信方法及装置
US20190313477A1 (en) * 2018-04-10 2019-10-10 Electronics And Telecommunications Research Institute Packet data unit session release method and network entity performing the same
WO2019245344A1 (en) * 2018-06-21 2019-12-26 Samsung Electronics Co., Ltd. Method and system for hplmn-based traffic control when ue is registered on different plmns

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
MOTOROLA MOBILITY, LENOVO, BROADCOM, CONVIDA WIRELESS, HUAWEI, ITRI, NOKIA, NOKIA SHANGHAI BELL, OPPO: "Introduction of ATSSS Support", 3GPP DRAFT; S2-1902359_2332_2249_2230_1699_0883_0831_0750_0063_501_ATSSS_SUPPORT_V4, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. SA WG2, no. Santa Cruz, Tenerife, Spain; 20190225 - 20190301, 1 March 2019 (2019-03-01), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP051610894 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023143450A1 (zh) * 2022-01-27 2023-08-03 维沃移动通信有限公司 数据处理规则的配置方法、终端及网络侧设备

Also Published As

Publication number Publication date
CN114731714A (zh) 2022-07-08

Similar Documents

Publication Publication Date Title
US11197216B2 (en) Handling of collision between SR procedure and PDU session establishment procedure for PDU session handover
EP3641424B1 (en) Method for registering a user equipment with a network slice in a wireless communication system and user equipment therefor
US20230180349A1 (en) Bearer configuration method and apparatus, context information management method and apparatus, releasing method and apparatus, and device
WO2020147761A1 (zh) 一种pdu会话切换方法及其装置
US11864103B2 (en) Network slicing method and device, and storage medium
EP3399830B1 (en) Determination of communication architecture type to be used by a ciot device
CN113767672B (zh) 用于在插入中间会话管理功能之后管理无线通信的移动通信核心网络装置及方法
KR20190133031A (ko) 통신 방법 및 장치
US11483801B2 (en) Resource configuration method and apparatus
WO2020224622A1 (zh) 一种信息配置方法及装置
KR102484223B1 (ko) Pdu 세션 활성화 방법, 페이징 방법 및 그의 장치
CN113709909B (zh) 多连接通信方法和设备
WO2020001562A1 (zh) 一种通信方法及装置
US11968694B2 (en) Communication method and apparatus, and device
JP7324285B2 (ja) サービス承認の方法、端末機器及びネットワーク機器
US20230156833A1 (en) Packet Forwarding Method, Apparatus, and System
US20220150784A1 (en) Handover method and apparatus
CN108781403B (zh) 终端设备、接入网设备、空口配置方法和无线通信系统
WO2021163894A1 (zh) 一种基于中继的通信方法及装置
WO2021134601A1 (zh) 一种会话建立的方法及装置
US20230189054A1 (en) Relay communication method, and communication apparatus
WO2023087965A1 (zh) 一种通信方法及装置
WO2020173146A1 (zh) 一种切换处理的方法、相关设备、程序产品以及存储介质
US20220182910A1 (en) Data Processing Method, Apparatus, And System
US20220353941A1 (en) Ma pdu reactivation requested handling

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19958500

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19958500

Country of ref document: EP

Kind code of ref document: A1