WO2021238882A1 - 一种实现业务连续性的方法及装置 - Google Patents

一种实现业务连续性的方法及装置 Download PDF

Info

Publication number
WO2021238882A1
WO2021238882A1 PCT/CN2021/095602 CN2021095602W WO2021238882A1 WO 2021238882 A1 WO2021238882 A1 WO 2021238882A1 CN 2021095602 W CN2021095602 W CN 2021095602W WO 2021238882 A1 WO2021238882 A1 WO 2021238882A1
Authority
WO
WIPO (PCT)
Prior art keywords
service
remote
network element
relay
management function
Prior art date
Application number
PCT/CN2021/095602
Other languages
English (en)
French (fr)
Inventor
张迪
吴问付
丁辉
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2021238882A1 publication Critical patent/WO2021238882A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0055Transmission or use of information for re-establishing the radio link
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/11Allocation or use of connection identifiers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/30Connection release
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/02Terminal devices
    • H04W88/04Terminal devices adapted for relaying to or from another terminal or user

Definitions

  • This application relates to the field of communication technology, and in particular to a method and device for realizing business continuity.
  • the cellular communication network introduces proximity-based services (ProSe) relay communication.
  • the application scenarios of this method may include scenarios such as enhancement of coverage edge signals of base stations, and relay access to operator networks in uncovered areas.
  • the application scenario of base station coverage edge signal enhancement can be understood as when user equipment (UE) is in the edge area of the base station, due to signal attenuation, the signal strength cannot meet the high-bandwidth services required by the application services.
  • the relay UE accesses the 5th generation (5G) communication system; the application scenario of relay access to the operator’s network without coverage area can be understood as when the UE is outside the coverage area of the operator’s network, through the relay UE Indirect access to 5G network.
  • the UE can be assisted by the relay UE, that is, the communication between the UE and the relay UE , And relay the communication between the UE and the network-side server to realize the communication between the UE and the network-side server.
  • the Internet protocol (IP) address of the remote UE is allocated by the relay UE.
  • IP Internet protocol
  • the present application provides a method and device for realizing service continuity, which are used to improve the problem of discontinuity of communication services caused by relay UE handover.
  • the embodiments of the present application provide a method for realizing service continuity.
  • the method can be executed by the second relay UE or the internal chip of the second relay UE.
  • the method is suitable for the transmission path switching of the remote UE.
  • the method includes: after the second relay UE receives the first communication request message from the remote UE that the first service is switched to the second relay UE, the second relay UE sends the first communication request message to the second session management function network element.
  • the first indication is used to indicate that the session between the second session management function network element and the second user plane function network element is to be established or modified to send the second indication, or the first indication is used to indicate the first indication of the remote UE
  • the service is switched to the second relay UE, or the first indication is used to indicate that the SSC mode of the first service is the third mode, or the first indication is used to indicate that the first service requires high-level service continuity, or the first indication is used After instructing to establish the IP address after switching, release the IP address before switching.
  • the second session management function network element sends a second instruction to the second relay UE after completing the establishment or modification of the session of the first service.
  • the second relay UE When the second relay UE receives the second indication from the second session management function network element, because the second indication is used to indicate the success of the first service handover, the second relay UE sends to the remote UE the release before the remote UE handover The third indication of the resources, so that the remote UE releases the resources before the handover.
  • this method can realize that the remote UE's service switch is successful before disconnecting the previous session, thereby ensuring the continuity of the service of the remote UE.
  • the resources before the remote UE switch are timely after the switch is completed. Release to improve resource utilization.
  • the second relay UE may bind the identification information of the remote UE with the identification information of the first service; After receiving the second indication, the second relay UE may also send the identification information of the first service to the remote UE.
  • the identification information of the first service is used to indicate that the first service is successfully handed over, and the remote UE receives the third indication After receiving the identification information of the first service, the remote UE releases the resources before the handover.
  • the remote UE releases The address allocated by the first relay UE; in another case, the third indication can be used to indicate the release of the resources of the first service before the remote UE handover, that is, if the remote UE has all the resources before the handover
  • the address allocated by the connected first relay UE for the first service of the remote UE is in one-to-one correspondence with the remote UE, and the remote UE releases the first address allocated by the first relay UE for the first service.
  • the first address in the embodiment of the present application may be at least one of an address and a port number/port range.
  • the first address may be an IPv4 address+port number/port range; or the first address may be an IPv6 address.
  • the second relay UE determines that the SSC mode of the first service is the third mode before sending the first indication to the first session management function network element; otherwise, the first indication is not sent, where the first indication is not sent.
  • the three modes are used to characterize the high-priority business continuity requirements of the first service.
  • the second relay UE determines the SSC mode of the first service according to at least one of the following ways: Method 1, the second relay UE according to the relay of the first service from the remote UE The service identifier determines that the SSC mode is the third mode; mode two, the second relay UE determines that the SSC mode is the third mode according to the type of the first communication request message from the remote UE as a handover request; mode three, the second relay The UE determines that the SSC mode is the third mode according to the indication information used to indicate that the SSC mode of the first service is the third mode in the message from the remote UE.
  • the second relay UE when the first communication request message is used to instruct the remote UE to switch the first service and the second service to the second relay UE, or the second relay UE also receives The UE’s second communication request message for instructing the second service to switch to the second relay UE.
  • the second relay UE sends a first indication to the SMF network element.
  • the first indication is used to indicate the difference between the SMF network element and the UPF network element.
  • the second instruction and the fourth instruction are sent, or the first instruction is used to instruct the remote UE to switch the first service and the second service to the second relay UE, or the first instruction is used to indicate
  • the SSC mode of the first service and the second service is the third mode, or the first indication is used to indicate that the first service and the second service require high-level service continuity, or the first indication is used to indicate that the handover IP is established first After the address, release the IP address before the switch.
  • the SMF network element sends a second indication and a fourth indication to the second relay UE after completing the establishment or modification of the first service and the second service session.
  • the second relay UE receives the second indication and the first In the case of four instructions, the second relay UE sends a third instruction to release the resources before handover to the remote UE.
  • the second relay UE sends the first indication to the SMF network element when it determines that the SSC mode of the first service and the SSC mode of the second service are both the third mode. After the second relay UE receives the second indication and the fourth indication from the remote UE, the third indication is sent to the remote UE.
  • the second relay UE determines the SSC mode of the first service and the SSC mode of the second service according to at least one of the following ways.
  • the second relay UE determines that the SSC mode of the first service and the second service is the third mode according to the relay service identifier from the remote UE;
  • the type of the communication request message (or the first communication request message and the second communication request message) determines that the SSC mode of the first service and the second service is the third mode;
  • mode three the second relay UE is based on the message from the remote UE Indicates that the SSC mode of the first service and the second service is the third mode in the indication information, and the SSC mode of the first service and the second service is determined to be the third mode.
  • the second relay UE when the second relay UE receives the first communication request message, it establishes or modifies the protocol data unit PDU session for the first service. In addition, the second relay UE receives the protocol data unit PDU session from the first session management function. The fourth address of the PDU session of the network element, and the second relay UE also allocates the port number used to transmit the data of the first service on the fourth address for the remote UE, and finally the second relay UE establishes the PDU session The corresponding relationship between the identifier, the fourth address, and the port number.
  • the second relay UE also sends the identification information, the fourth address and the port number of the remote UE to the first session management function network element; or the second relay UE also sends the first session management function
  • the network element sends the identification information of the remote UE, the identification information of the PDU session, and the port number, so that the first session management function network element establishes and saves the binding relationship between the above-mentioned information.
  • the embodiments of the present application provide a method for realizing service continuity.
  • the method can be executed by the remote UE or the internal chip of the remote UE.
  • the method includes: the remote UE receives the identification information of the first service from the second relay UE, the identification information of the first service is used to indicate the success of the first service handover; after that, the remote UE is based on the identification information of the first service , It is determined that the first service of the remote UE is handed over to the first relay UE accessed by the second relay UE, and then the remote UE sends to the first relay UE an instruction to release the remote UE before the handover.
  • the fifth indication of the resource the first relay UE releases the resource before the handover after receiving the fifth indication.
  • the method can release the resources before the handover after the service handover of the remote UE is successful, that is, disconnect the previous session connection, which can ensure the continuity of the service of the remote UE and increase the resources. Utilization rate.
  • the fifth indication is used to instruct to release the resources of the remote UE before handover includes: the fifth indication is used to instruct to release the first address allocated by the first relay UE for the remote UE, for example,
  • the first address allocated by a relay UE to the remote UE may be an IPv4 address+port number/port range; or the first address may be an IPv6 address.
  • the remote UE After the first relay UE releases the first address, it notifies the remote UE that the first address has been released.
  • the remote UE receives the fifth instruction from the first relay UE, the remote UE also synchronously releases the first address.
  • the embodiments of the present application provide a method for realizing service continuity.
  • the method can be executed by the remote UE or the internal chip of the remote UE.
  • the method includes: a remote UE receives identification information of a first service from a second relay UE, the identification information of the first service is used to indicate that the first service is successfully handed over, and then the remote UE according to the identification information of the first service , To release the resources of the remote UE before handover.
  • the remote UE releasing the resources before the remote UE handover includes: the remote UE releasing the first address allocated by the first relay UE for the remote UE, where the first intermediate After the UE is the remote UE, the first service is switched to the relay UE accessed before the second relay UE. After the remote UE releases the first address, it notifies the first relay UE that the first address has been released.
  • the remote UE notifies the first relay UE to delete the first address, the second address, and the port number, where the first address is the address allocated by the first relay UE to the remote UE.
  • the second address is the address for transmitting the first service data between the first relay UE and the first user plane network element function network element, and the port number is the port number allocated by the first relay UE for the PDU session of the first service.
  • the method can release the resources before the handover after the service handover of the remote UE is successful, that is, disconnect the previous session connection, which can ensure the continuity of the service of the remote UE and increase the resources. Utilization rate.
  • the embodiments of the present application provide a method for realizing service continuity.
  • the method can be executed by the internal chip of the first relay UE or the first relay UE.
  • the method is suitable for the handover of the transmission path of the remote UE.
  • the method includes: a first relay UE receives a fifth instruction from a remote UE, and the first relay UE releases resources before the remote UE is handed over from the first relay UE to the second relay UE according to the fifth instruction.
  • the first relay UE also notifies the second session management function network element and the second user plane function network element to release the resources of the remote UE before the handover.
  • the resource before handover may include the first address allocated by the first relay UE to the remote UE.
  • this method can realize that only after the service handover of the remote UE is successful, the first relay UE releases the resources before the handover, that is, disconnects the previous session connection, which can ensure the continuity of the service of the remote UE It can also improve resource utilization.
  • the embodiments of the present application provide a method for realizing service continuity.
  • the method can be executed by the internal chip of the second session management function network element or the second session management function network element.
  • the method is suitable for remote UEs. A scenario where the transmission path is switched, and after the handover, the remote UE accesses the network through the second relay UE.
  • the method includes: a second session management function network element receives a first indication from a second relay UE, and the first indication is generated after the first service of the remote UE is switched to the second relay UE, and the second session management function According to the first instruction, the network element sends to the second relay UE the second relay UE indicating the success of the first service handover after the session of the interface between the second session management function network element and the second user plane function network element is established or modified. Two indications, so that the second relay UE instructs the remote UE to release the resources before the handover.
  • the second session management function network element when the relay UE connected to the remote UE is switched, the second session management function network element will only instruct the disconnection of the previous session after the service of the remote UE is successfully switched, thereby ensuring the remote UE’s Service continuity.
  • the resources of the remote UE before the handover are released in time after the handover is completed to improve resource utilization.
  • the second session management function network element allocates a fourth address to the PDU session established or self-modified by the first service, and the second session management function network element receives the remote UE from the second relay UE.
  • Identification information and port number the second session management function network element binds the identification information of the first service, the fourth address, the identification information of the remote UE, and the port number; or, the second session management The functional network element receives the identification information of the remote UE, the identification information of the DU session and the port number from the second relay UE, and the second session management functional network element binds the identification information and the fourth address of the first service , The identification information of the remote UE, the identification information of the PDU session, and the port number.
  • the embodiments of the present application provide a method for realizing business continuity.
  • the method can be executed by the unified data management function network element or the internal chip of the unified data management network element, or the method can be performed by the unified data storage network element. Or the internal chip implementation of unified data storage.
  • This method is suitable for the scenario where the transmission path of the remote UE is switched, and after the switch, the remote UE accesses the network through the second relay UE.
  • the method includes: a unified data management network element or a unified data storage determining that the session management function network element serving the first service of the remote UE is switched from the first session management function network element to the second session management function network element; unified data management The network element or the unified data storage sends a first notification to the first session management function network element, where the first notification is used to notify the first session management function network element that the first service service is no longer provided to the remote UE.
  • the resource release process before handover is triggered by the data management function network element on the network side or unified data storage.
  • the remote UE accesses the relay UE and the handover occurs, it is still in session establishment or modification.
  • the resources before the handover will be released later, and the transmission of high-priority service continuity services will not be interrupted, that is, the service transmission between the remote UE and the network server will not be interrupted before and after the transmission path is switched, thereby ensuring service continuity .
  • the unified data management network element or the unified data store receives information about the first service before the handover from the first session management function network element; after the handover, the unified data management network element or unified data Store and receive related information of the first service after the handover from the second session management function network element.
  • the unified data management network element or the unified data storage can bind the related information of the first service before the switch and the identification information of the first session management function network element; the unified data management network element or the unified data storage can be bound after the switch The related information of the first service and the identification information of the network element of the second session management function.
  • the unified data management network element or unified data storage is based on the identification information of the first session management function network element corresponding to the relevant information of the first service, and the second session management function network element corresponding to the relevant information of the first service
  • the session management function network element is different, it is determined that the session management function network element serving the first service of the remote UE is switched from the first session management function network element to the second session management function network element; or, when The unified data management network element or unified data storage determines according to the identification information of the first relay UE corresponding to the related information of the first service and the identification information of the second relay UE corresponding to the related information of the first service.
  • the relay UE is different, it is determined that the session management function network element serving the first service of the remote UE is switched from the first session management function network element to the second session management function network element.
  • the related information of the first service before the handover includes the identification information of the remote UE.
  • the related information of the first service before the handover also includes any one or more of the following: the port number of the data of the first service before the handover, the PDU session identifier of the first service before the handover, and the information about the first service before the handover IP address.
  • the related information of the first service after the handover includes the identification information of the remote UE.
  • the related information of the first service after the handover also includes any one or more of the following: the port number of the data of the first service after the handover, the PDU session identifier of the first service after the handover, and the first service after the handover Internet Protocol IP address.
  • the embodiments of the present application provide a method for realizing service continuity.
  • the method can be executed by the internal chip of the first session management function network element or the first session management function network element.
  • the method is suitable for remote UEs. A scenario where the transmission path is switched, and after the handover, the remote UE accesses the network through the second relay UE.
  • the method includes: a first session management function network element receives a first notification from a unified data management network element, because the first notification is used for notifying that the first session management function network element will no longer provide the remote UE with the The service of the first service; therefore, the first session management function network element notifies the first user plane function network element and the first relay UE to release the resources of the remote UE before the handover from the first relay UE to the second relay UE .
  • the resource release process before handover is triggered by the data management function network element on the network side.
  • the remote UE accesses the relay UE and the handover occurs, it is still released after the session is established or modified.
  • the resources before the handover and the transmission of high-priority service continuity services will not be interrupted, that is, the service transmission between the remote UE and the network server before and after the transmission path is switched is not interrupted, thereby ensuring service continuity.
  • the first session management function network element notifies the user plane function network element and the first relay UE to release the resources of the remote UE before the handover from the first relay UE to the second relay UE, include:
  • the first session management function network element notifies the first user plane function network element to release the port number information allocated for the first service of the first relay UE; the port number information is used to instruct the first user plane function network element to release the port number The downstream data stream received at the port number indicated by the message;
  • the first session management function network element notifies the first relay UE to release the first address, where the first address is the address allocated by the first relay UE to the remote UE.
  • the embodiments of the present application provide a method for realizing service continuity.
  • the method can be executed by the first relay UE or the internal chip of the first relay UE.
  • the method is suitable for the transmission path switching of the remote UE.
  • the method includes: a first relay UE receives a second notification from a first session management function network element; according to the second notification, the first relay UE releases the remote UE to switch from the first relay UE to the second middle Resources following the UE.
  • the resource includes a first address
  • the first address is an address allocated by the first relay UE to the remote UE.
  • the present application provides a communication device.
  • the communication device may be a second relay UE or a chip provided in the second relay UE.
  • the communication device is capable of realizing the functions performed by the second relay UE or a chip set inside the second relay UE.
  • the communication device includes modules or units or means corresponding to the steps involved in the first aspect. (means), the function or unit or means can be realized by software, or by hardware, or by hardware executing corresponding software.
  • the communication device includes a processing unit and a communication unit.
  • the communication unit can be used to send and receive signals to achieve communication between the communication device and other devices.
  • the communication unit is used to receive The first communication request message of the remote UE; the processing unit may be used to perform some internal operations of the communication device.
  • the functions performed by the processing unit and the communication unit may correspond to the steps involved in the second relay UE in the foregoing aspects.
  • the communication device includes a processor, and may also include a transceiver.
  • the transceiver is used to send and receive signals, and the processor executes program instructions to complete any possible design or implementation of the above aspects.
  • the communication device may further include one or more memories, and the memories are used for coupling with the processor.
  • the one or more memories may be integrated with the processor, or may be provided separately from the processor, which is not limited in this application.
  • the memory can store the necessary computer programs or instructions to realize the functions involved in the above-mentioned various aspects.
  • the processor can execute the computer program or instruction stored in the memory, and when the computer program or instruction is executed, the communication device realizes any possible design or implementation manner involved in the second relay UE of the above aspects In the method.
  • the communication device includes a processor and a memory, and the memory can store necessary computer programs or instructions for realizing the functions involved in the first aspect.
  • the processor can execute the computer program or instruction stored in the memory, and when the computer program or instruction is executed, the communication device realizes any possible design or implementation manner involved in the second relay UE of the above aspects In the method.
  • the communication device includes at least one processor and an interface circuit, where at least one processor is used to communicate with other devices through the interface circuit and execute any possible design or implementation of the above aspects In the method performed by the second relay UE.
  • the present application provides a communication device.
  • the communication device may be a remote UE or a chip set inside the remote UE.
  • the communication device is capable of implementing the functions performed by the remote UE or a chip set inside the remote UE.
  • the communication device includes modules or units or means corresponding to the steps involved in the second or third aspects. (means), the function or unit or means can be realized by software, or by hardware, or by hardware executing corresponding software.
  • the communication device includes a processing unit and a communication unit.
  • the communication unit can be used to send and receive signals to achieve communication between the communication device and other devices.
  • the communication unit is used to receive The third instruction of the second relay UE; the processing unit may be used to perform some internal operations of the communication device.
  • the functions performed by the processing unit and the communication unit may correspond to the steps involved in the remote UE in the foregoing aspects.
  • the communication device includes a processor, and may also include a transceiver.
  • the transceiver is used to send and receive signals, and the processor executes program instructions to complete any possible design or implementation of the above aspects.
  • the communication device may further include one or more memories, and the memories are used for coupling with the processor.
  • the one or more memories may be integrated with the processor, or may be provided separately from the processor, which is not limited in this application.
  • the memory can store the necessary computer programs or instructions to realize the functions involved in the above-mentioned various aspects.
  • the processor can execute the computer program or instruction stored in the memory, and when the computer program or instruction is executed, the communication device realizes any of the possible designs or implementations related to the remote UE in the above aspects. method.
  • the communication device includes a processor and a memory, and the memory can store necessary computer programs or instructions for realizing the functions involved in the first aspect.
  • the processor can execute the computer program or instruction stored in the memory, and when the computer program or instruction is executed, the communication device realizes any of the possible designs or implementations related to the remote UE in the above aspects. method.
  • the communication device includes at least one processor and an interface circuit, where at least one processor is used to communicate with other devices through the interface circuit and execute any possible design or implementation of the above aspects In the method performed by the remote UE.
  • the present application provides a communication device.
  • the communication device may be a first relay UE or a chip provided in the first relay UE.
  • the communication device is capable of realizing the functions performed by the first relay UE or a chip set in the first relay UE.
  • the communication device includes modules corresponding to the steps involved in the fourth and eighth aspects described above.
  • a unit or means (means) the function or unit or means can be realized by software, or by hardware, or by hardware executing corresponding software.
  • the communication device includes a processing unit and a communication unit.
  • the communication unit can be used to send and receive signals to achieve communication between the communication device and other devices.
  • the communication unit is used to receive The second notification of the first session management function network element; the processing unit may be used to perform some internal operations of the communication device.
  • the functions performed by the processing unit and the communication unit may correspond to the steps involved in the first relay UE in the foregoing aspects.
  • the communication device includes a processor, and may also include a transceiver.
  • the transceiver is used to send and receive signals, and the processor executes program instructions to complete any possible design or implementation of the above aspects.
  • the communication device may further include one or more memories, and the memories are used for coupling with the processor.
  • the one or more memories may be integrated with the processor, or may be provided separately from the processor, which is not limited in this application.
  • the memory can store the necessary computer programs or instructions to realize the functions involved in the above-mentioned various aspects.
  • the processor can execute the computer program or instruction stored in the memory, and when the computer program or instruction is executed, the communication device realizes any possible design or implementation manner involved in the first relay UE in the above aspects In the method.
  • the communication device includes a processor and a memory, and the memory can store necessary computer programs or instructions for realizing the functions involved in the first aspect.
  • the processor can execute the computer program or instruction stored in the memory, and when the computer program or instruction is executed, the communication device realizes any possible design or implementation manner involved in the first relay UE in the above aspects In the method.
  • the communication device includes at least one processor and an interface circuit, where at least one processor is used to communicate with other devices through the interface circuit and execute any possible design or implementation of the above aspects In the method performed by the first relay UE.
  • the present application provides a communication device.
  • the communication device may be a second session management function network element or a chip provided inside the second session management function network element.
  • the communication device is capable of realizing the functions performed by the second session management function network element or a chip set inside the second session management function network element.
  • the communication device includes a module corresponding to the steps involved in the fifth aspect.
  • a unit or means (means) the function or unit or means can be realized by software, or by hardware, or by hardware executing corresponding software.
  • the communication device includes a processing unit and a communication unit.
  • the communication unit can be used to send and receive signals to achieve communication between the communication device and other devices.
  • the communication unit is used to receive The first instruction of the second relay UE; the processing unit may be used to perform some internal operations of the communication device.
  • the functions performed by the processing unit and the communication unit may correspond to the steps involved in the second session management function network element of the above aspects.
  • the communication device includes a processor, and may also include a transceiver.
  • the transceiver is used to send and receive signals, and the processor executes program instructions to complete any possible design or implementation of the above aspects.
  • the communication device may further include one or more memories, and the memories are used for coupling with the processor.
  • the one or more memories may be integrated with the processor, or may be provided separately from the processor, which is not limited in this application.
  • the memory can store the necessary computer programs or instructions to realize the functions involved in the above-mentioned various aspects.
  • the processor can execute the computer program or instruction stored in the memory, and when the computer program or instruction is executed, the communication device realizes any possible design or any possible design or network element involved in the second session management function network element of the above aspects.
  • the communication device includes a processor and a memory, and the memory can store necessary computer programs or instructions for realizing the functions involved in the first aspect.
  • the processor can execute the computer program or instruction stored in the memory, and when the computer program or instruction is executed, the communication device realizes any possible design or any possible design or network element involved in the second session management function network element of the above aspects. The method in the implementation mode.
  • the communication device includes at least one processor and an interface circuit, where at least one processor is used to communicate with other devices through the interface circuit and execute any possible design or implementation of the above aspects In the method executed by the second session management function network element.
  • the present application provides a communication device.
  • the communication device may be a unified data management network element or a chip set inside the unified data management network element.
  • the communication device is capable of implementing the functions performed by the unified data management network element or a chip set inside the unified data management network element.
  • the communication device includes modules or units or means corresponding to the steps involved in the sixth aspect. (means), the function or unit or means can be realized by software, or by hardware, or by hardware executing corresponding software.
  • the communication device includes a processing unit and a communication unit.
  • the communication unit can be used to send and receive signals to achieve communication between the communication device and other devices.
  • the communication unit is used to communicate A session management function network element sends the first notification;
  • the processing unit may be used to perform some internal operations of the communication device.
  • the functions performed by the processing unit and the communication unit may correspond to the steps involved in the unified data management network element in the above aspects.
  • the communication device includes a processor, and may also include a transceiver.
  • the transceiver is used to send and receive signals, and the processor executes program instructions to complete any possible design or implementation of the above aspects.
  • the communication device may further include one or more memories, and the memories are used for coupling with the processor.
  • the one or more memories may be integrated with the processor, or may be provided separately from the processor, which is not limited in this application.
  • the memory can store the necessary computer programs or instructions to realize the functions involved in the above-mentioned various aspects.
  • the processor can execute the computer program or instruction stored in the memory, and when the computer program or instruction is executed, the communication device realizes any possible design or implementation manner involved in the unified data management network element of the above aspects In the method.
  • the communication device includes a processor and a memory, and the memory can store necessary computer programs or instructions for realizing the functions involved in the first aspect.
  • the processor can execute the computer program or instruction stored in the memory, and when the computer program or instruction is executed, the communication device realizes any possible design or implementation manner involved in the unified data management network element of the above aspects In the method.
  • the communication device includes at least one processor and an interface circuit, where at least one processor is used to communicate with other devices through the interface circuit and execute any possible design or implementation of the above aspects The method implemented by the unified data management network element in the.
  • the present application provides a communication device.
  • the communication device may be a first session management function network element or a chip set inside the first session management function network element.
  • the communication device is capable of implementing the functions performed by the first session management function network element or a chip provided inside the first session management function network element.
  • the communication device includes a module corresponding to the steps involved in the fifth aspect.
  • a unit or means (means) the function or unit or means can be realized by software, or by hardware, or by hardware executing corresponding software.
  • the communication device includes a processing unit and a communication unit.
  • the communication unit can be used to send and receive signals to achieve communication between the communication device and other devices.
  • the communication unit is used to receive The first instruction of the second relay UE; the processing unit may be used to perform some internal operations of the communication device.
  • the functions performed by the processing unit and the communication unit may correspond to the steps involved in the first session management function network element in the above aspects.
  • the communication device includes a processor, and may also include a transceiver.
  • the transceiver is used to send and receive signals, and the processor executes program instructions to complete any possible design or implementation of the above aspects.
  • the communication device may further include one or more memories, and the memories are used for coupling with the processor.
  • the one or more memories may be integrated with the processor, or may be provided separately from the processor, which is not limited in this application.
  • the memory can store the necessary computer programs or instructions to realize the functions involved in the above-mentioned various aspects.
  • the processor can execute the computer program or instruction stored in the memory, and when the computer program or instruction is executed, the communication device realizes any possible design or any possible design or instruction involved in the first session management function network element of the above aspects.
  • the communication device includes a processor and a memory, and the memory can store necessary computer programs or instructions for realizing the functions involved in the first aspect.
  • the processor can execute the computer program or instruction stored in the memory, and when the computer program or instruction is executed, the communication device realizes any possible design or any possible design or instruction involved in the first session management function network element of the above aspects. The method in the implementation mode.
  • the communication device includes at least one processor and an interface circuit, where at least one processor is used to communicate with other devices through the interface circuit and execute any possible design or implementation of the above aspects In the method executed by the first session management function network element.
  • an embodiment of the present application provides a communication system, which includes a second relay UE, a remote UE, a first relay UE, and a second session management function network element, where:
  • the second relay UE may be used to execute any one of the above-mentioned first aspect or the first aspect.
  • the remote UE may be used to execute any method in the second aspect or the second aspect, or any method in the third aspect or the third aspect.
  • the first relay UE may be used to perform any one of the foregoing fourth aspect or the fourth aspect.
  • the second session management function network element may be used to execute any one of the above-mentioned fifth aspect or the fifth aspect.
  • an embodiment of the present application provides a communication system, which includes a data management function network element and a first session management function network element, where;
  • the data management function network element may be used to execute any one of the above-mentioned sixth aspect or the sixth aspect.
  • the network element with the first session management function may be used to execute any one of the above-mentioned seventh aspect or the seventh aspect.
  • this application provides a computer-readable storage medium that stores computer-readable instructions.
  • the computer reads and executes the computer-readable instructions, the computer executes the above-mentioned aspects. Any possible design method.
  • this application provides a computer program product, which when a computer reads and executes the computer program product, causes the computer to execute any of the possible design methods in the above-mentioned various aspects.
  • the present application provides a chip including a processor, the processor is coupled with a memory, and is configured to read and execute a software program stored in the memory to implement any of the above aspects.
  • a possible design approach A possible design approach.
  • Fig. 1 is a schematic diagram of a communication scenario provided by the prior art
  • FIG. 2 is a schematic diagram of the architecture of a communication system provided by an embodiment of the application.
  • 3A to 3B are schematic diagrams of two application communication scenarios provided by embodiments of this application.
  • FIG. 5 is a schematic flowchart of a second method for realizing business continuity provided by an embodiment of this application.
  • FIG. 6 is a schematic flowchart of a method for establishing a PDU session before handover according to an embodiment of the application
  • FIG. 7A is a schematic diagram of a handover method provided by an embodiment of this application.
  • FIG. 7B is a schematic diagram of a handover scenario provided by an embodiment of the application.
  • FIG. 8 is a schematic diagram of a handover scenario provided by an embodiment of the application.
  • FIG. 9 is a schematic flowchart of another method for establishing a PDU session before handover according to an embodiment of the application.
  • FIG. 10 is a schematic diagram of another handover method provided by an embodiment of this application.
  • FIG. 11 is a possible exemplary block diagram of a device involved in an embodiment of this application.
  • FIG. 12 is a schematic structural diagram of a remote UE or a second relay UE provided by an embodiment of this application.
  • FIG. 13 is a schematic structural diagram of a network device provided by an embodiment of this application.
  • Terminal equipment also known as terminal, user equipment (UE), mobile station (MS), mobile terminal (MT), etc.
  • UE user equipment
  • MS mobile station
  • MT mobile terminal
  • terminal equipment is a way of providing voice to users And/or data connectivity devices, for example, may include a handheld device with a wireless connection function, or a processing device connected to a wireless modem.
  • the terminal can communicate with the core network via a radio access network (RAN), and exchange voice and/or data with the RAN.
  • the terminal may include user equipment (UE), wireless terminal, mobile terminal, subscriber unit (subscriber unit), subscriber station (subscriber station), mobile station (mobile station), remote station (remote station), access Point (access point, AP), remote terminal (remote terminal), access terminal (access terminal), user terminal (user terminal), user agent (user agent), or user equipment (user device), etc.
  • a remote UE may be connected to the network through an access network device, or may be connected to the network through a relay UE (relay UE).
  • it may include mobile phones (or “cellular” phones), computers with mobile terminals, portable, pocket-sized, handheld, computer-built or vehicle-mounted mobile devices, smart wearable devices, and so on.
  • mobile phones or “cellular” phones
  • PCS personal communication service
  • SIP session initiation protocol
  • WLL wireless local loop
  • PDA personal digital assistant
  • the terminal device may also include restricted devices, such as devices with low power consumption, or devices with limited storage capabilities, or devices with limited computing capabilities. Examples include barcodes, radio frequency identification (RFID), sensors, global positioning system (GPS), laser scanners and other information sensing equipment.
  • restricted devices such as devices with low power consumption, or devices with limited storage capabilities, or devices with limited computing capabilities. Examples include barcodes, radio frequency identification (RFID), sensors, global positioning system (GPS), laser scanners and other information sensing equipment.
  • RFID radio frequency identification
  • GPS global positioning system
  • laser scanners and other information sensing equipment.
  • smart wearable devices are the general term for using wearable technology to intelligently design daily wear and develop wearable devices, such as glasses, gloves, watches, clothing and shoes Wait.
  • a smart wearable device is a portable device that is directly worn on the body or integrated into the user's clothes or accessories.
  • Smart wearable devices are not only a hardware device, but also realize powerful functions through software support, data interaction, and cloud interaction. Broadly speaking, smart wearable devices include full-featured, large-sized, complete or partial functions that can be implemented without relying on smartphones, such as smart watches or smart glasses, and only focus on a certain type of application function, and need to cooperate with other devices such as smart phones. Use, such as all kinds of smart bracelets, smart helmets, smart jewelry, etc. for physical sign monitoring.
  • the terminal may also be a virtual reality (VR) device, an augmented reality (AR) device, a wireless terminal in industrial control, a wireless terminal in driverless, and a remote Wireless terminal in remote medical surgery, wireless terminal in smart grid, wireless terminal in transportation safety, wireless terminal in smart city, smart home ) In the wireless terminal, etc.
  • VR virtual reality
  • AR augmented reality
  • wireless terminal in industrial control a wireless terminal in driverless
  • remote Wireless terminal in remote medical surgery wireless terminal in smart grid, wireless terminal in transportation safety, wireless terminal in smart city, smart home ) In the wireless terminal, etc.
  • (Radio) access network ((radio) access network, (R) AN) equipment for example, includes a base station (e.g., access point), which may refer to the access network through one or more cells on the air interface to communicate with the radio Terminal communication equipment.
  • the (wireless) access network equipment can be used to convert received air frames and Internet Protocol (IP) packets to each other, as a router between the remote UE and the rest of the access network, where the rest of the access network can be Including IP networks.
  • IP Internet Protocol
  • the (wireless) access network equipment can also coordinate the attribute management of the air interface.
  • (wireless) access network equipment may include radio network controller (RNC), node B (Node B, NB), base station controller (BSC), and base transceiver station (base transceiver station).
  • RNC radio network controller
  • Node B Node B
  • BSC base station controller
  • base transceiver station base transceiver station
  • BTS radio network controller
  • home base station for example, home evolved NodeB, or home Node B, HNB
  • BBU baseband unit
  • Wi-Fi wireless fidelity
  • the (wireless) access network equipment may also include a long term evolution (LTE) system or an evolved LTE system (LTE-Advanced, LTE-A) or the 4th generation mobile communication technology (4G) ) Evolved base station (NodeB or eNB or e-NodeB, evolutional Node B) in the system.
  • LTE long term evolution
  • LTE-A evolved LTE system
  • 4G 4th generation mobile communication technology
  • NodeB or eNB or e-NodeB, evolutional Node B Evolved base station in the system.
  • the (wireless) access network equipment may also include the next generation node B (gNB) and the transmission and reception point (TRP) in the 5G system or the new radio (NR) system, Or transmission point (TP).
  • gNB next generation node B
  • TRP transmission and reception point
  • TP transmission point
  • the (wireless) access network equipment may also include a centralized unit (CU) and/or a distributed unit (DU) in a cloud radio access network (CloudRAN) system,
  • CU centralized unit
  • DU distributed unit
  • CloudRAN cloud radio access network
  • the core network (CN) equipment is connected to multiple access networks, including the Circuit Switched (CS) domain and/or the Data Switched (Packet Switched, PS) domain.
  • the CS network element has a mobile switching center , Visit location register and gateway mobile switching center, PS network element has general packet radio service (general packet radio service, GPRS) node and gateway GPRS support node.
  • GPRS general packet radio service
  • Some network elements such as home location register, visitor location register, authentication center can be shared by CS domain and PS domain.
  • multiple refers to two or more than two. In view of this, “multiple” can also be understood as “at least two” in the embodiments of this application. “At least one” can be understood as one or more, for example, one, two or more.
  • including at least one means including one, two or more, and does not limit which ones are included.
  • including at least one of A, B, and C then the included can be A, B, C, A and B, A and C, B and C, or A and B and C.
  • ordinal numbers such as “first” and “second” mentioned in the embodiments of the present application are used to distinguish multiple objects, and are not used to limit the order, timing, priority, or importance of multiple objects.
  • the embodiments of the present application provide a method for realizing service continuity.
  • the second relay UE determines the first communication request message of the remote UE.
  • a service is switched to the second relay UE. Therefore, the second relay UE sends a first indication to the second session management function network element.
  • the first indication is used to indicate the second session management function network element and the second user plane function network element. After the session between the elements is established or modified, the second instruction is sent.
  • the relay UE sends a third instruction to the remote UE.
  • the remote UE releases the resources before the handover after receiving the third instruction.
  • the transmission path before the handover is disconnected after the handover is successful, such as disconnecting the previous PDU session, so as to ensure that the service transmission of the remote UE is not interrupted, thereby ensuring the continuity of the remote UE.
  • the resources of the remote UE before the handover are After the handover is completed, it is released in time to improve resource utilization.
  • the method and the device are based on the same inventive concept. Since the principles of the method and the device to solve the problem are similar, the implementation of the device and the method can be referred to each other, and the repetition will not be repeated.
  • "and/or" describes the association relationship of the associated objects, indicating that there can be three types of relationships, for example, A and/or B, which can mean: A alone exists, and A and B exist at the same time. There are three situations of B.
  • the character "/" generally indicates that the associated objects before and after are in an "or” relationship. At least one involved in this application refers to one or more; multiple refers to two or more.
  • both the core network device and the access network device may be referred to as network devices.
  • the embodiments of this application may use words such as "first" and "second" to distinguish the description. It is understandable that such words cannot be understood as indicating or implying relative importance. Nor can it be understood as indicating or implying order.
  • LTE long term evolution
  • WiMAX worldwide interoperability for microwave access
  • 5G fifth generation
  • NR radio access technology
  • 6G future communication systems
  • MTC machine type communication
  • MTC machine type communication
  • NB-IoT narrowband internet of things
  • FIG. 2 is a schematic diagram of the architecture of a possible communication system to which the embodiments of this application are applicable.
  • the radio access network is the next generation radio access network (NG-RAN), which is used to implement functions related to radio access.
  • the core network includes: access and mobility management function (AMF) network elements, session management function (SMF) network elements, user plane function (UPF) network elements, unified Data management (unified data management, UDM) network elements, etc.
  • AMF access and mobility management function
  • SMF session management function
  • UPF user plane function
  • UDM unified Data management
  • the AMF network element is mainly responsible for mobility management.
  • AMF network elements may also be referred to as AMF devices or AMF entities.
  • the SMF network element is mainly responsible for session management.
  • the SMF network element may also be referred to as an SMF device or an SMF entity.
  • the UPF network element is mainly responsible for processing user messages, such as forwarding.
  • the UE can access the DN by establishing a session from the UE to the NG-RAN to the UPF to the data network (DN).
  • the UDM network element is mainly used to store the subscription information of the remote UE.
  • the communication system architecture provided by the embodiments of this application is only an example, which can be applied to 5G systems, advanced long term evolution (LTE-A) systems, and worldwide microwave interconnection access (worldwide interoperability). for microwave access, WiMAX), or wireless local area networks (WLAN) systems, etc.
  • LTE-A advanced long term evolution
  • WLAN wireless local area networks
  • the communication system architecture may also be suitable for future-oriented communication technologies.
  • the communication system architecture described in the embodiments of the present application is intended to more clearly illustrate the technical solutions of the embodiments of the present application, and does not constitute a reference to the embodiments of the present application.
  • the technical solution provided in the embodiments of the present application is equally applicable to similar technical problems.
  • the interactive equipment may include remote UE, relay UE, RAN, SMF, UPF, UDM, and so on.
  • the embodiment of the present application provides a method for realizing service continuity.
  • the method can be applied to a scenario where a remote UE switches from directly accessing RAN1 to a scenario where the remote UE accesses RAN2 through a second relay UE, as shown in FIG. 3A.
  • the remote UE switches from directly accessing RAN1 to accessing RAN2 through the second relay UE.
  • the remote UE can transmit the uplink and downlink data with the network server through the transmission path between the second relay UE and the UPF2.
  • the method provided in the embodiment of the present application may be applied to a scenario where the remote UE switches from accessing the first relay UE to the remote UE accessing the second relay UE.
  • the remote UE switches from connecting to the first relay UE to connecting to the second relay UE.
  • Two relay UE In this way, after the transmission path is switched, the remote UE can transmit the uplink and downlink data with the network server through the transmission path between the second relay UE and the UPF2.
  • RAN1 and RAN2 can be the same RAN or different RANs, and UPF1 and UPF2 can be the same RAN or different RANs, SMF1 and RAN. SMF2 can be a different SMF or the same SMF.
  • FIG. 4 is a schematic flow chart of the first method for realizing business continuity provided by an embodiment of this application.
  • the method includes the following steps.
  • Step 401 The second relay UE receives the first communication request message from the remote UE.
  • the first communication request message is used to instruct the first service of the remote UE to switch to the second relay UE.
  • the remote UE may directly access the RAN through the method shown in FIG. 3A before the handover; or, the remote UE is in the handover Previously, it was possible to access the RAN through the first relay UE in the manner shown in FIG. 3B.
  • the remote UE When the remote UE is out of network coverage or the communication signal between the remote UE and the RAN is not good, after the remote UE and the second relay UE discover each other, the remote UE sends the first relay to the second relay UE.
  • the first communication request message may be a handover request message that directly instructs the first service to be switched to the second relay UE, or an indirect communication request message that indirectly instructs the first service to be switched to the second relay UE. Specifically, it may be Refer to any of the following situations:
  • the first communication request message is a handover request (handover communication request) message
  • the handover request message itself directly instructs the remote UE to switch the first service of the remote UE to the second relay UE.
  • the first communication request message is an indirect communication request message.
  • the indirect communication request message indirectly indicates that the first service of the remote UE is switched to the second relay UE.
  • the indirect communication request message is sent by the remote UE to the second relay UE, and is a request message used by the remote UE to request communication with the second relay UE, and the indirect communication request message carries a handover request indication,
  • the handover request indicates that the first service of the remote UE is handed over to the second relay UE.
  • the handover request indication may be the identifier of the remote UE and the identifier of the first service, and the identifier of the remote UE and the identifier of the first service may be used to instruct the remote UE to switch the first service to the second relay.
  • the transmission path of the UE, that is, the remote UE, is switched.
  • the remote UE after the remote UE discovers the second relay UE, it establishes a PC5 communication link with the second relay UE, and the remote UE informs the second relay UE that the remote UE’s first service is switched to the second relay through the PC5 communication link.
  • Relay UE For example, the remote UE sends a relay access request through the PC5 communication link, and the relay access request message is used to instruct the remote UE to switch the first service of the remote UE to the second relay UE.
  • the remote UE after the remote UE discovers the second relay UE, the remote UE sends a relay access request message to the second relay UE.
  • the message includes at least the identifier of the remote UE (for example, Remote UE ID) and the identity of the first service.
  • the identifier of the remote UE and the identifier of the first service may be used to indicate that the first service of the remote UE is switched to the second relay UE, that is, the transmission path of the remote UE is switched.
  • the second relay UE requests the second session management function network element to be the remote UE Establish or modify the PDU session.
  • the second session management function network element After the second session management function network element establishes or modifies the PDU session, it allocates the PDU session identification information (PDU Session ID) and the fourth address of the PDU session (IP@2 in this article) # Refers to the fourth address). That is, after the PC5 security link between the remote UE and the second relay UE is successfully established, the remote UE initiates a dynamic host configuration protocol (dynamic host configuration protocol, DHCP) process, and the second relay UE is the remote UE or the remote UE.
  • DHCP dynamic host configuration protocol
  • the service configuration of the end UE is a third address (in this article, IP@1# is used to refer to the third address).
  • the third address is used for communication between the remote UE and the second relay UE.
  • the second relay UE allocates a port number/port range (port range) for communicating with the PDU session anchor or DN on the fourth address for the remote UE.
  • the second relay UE can configure the third address in any of the following two ways, and establish the binding relationship in any of the following two ways.
  • the second relay UE allocates the third address to the remote UE based on the granularity of the remote UE, when each remote UE uniquely corresponds to a third address. If the UE includes at least one service, and the at least one service includes the first service, each service has unique identification information of the corresponding PDU session, the fourth address of the PDU session on the network side, port number/port range, and SSC mode , Exemplarily, the binding relationship established by the second relay UE is shown in Table 1.
  • the second relay UE allocates the third address to the remote UE at the granularity of the service, and the second relay UE allocates a unique corresponding third address to each service of each remote UE. If the UE includes at least one service, and the at least one service includes the first service, each service has a unique corresponding PDU session identification information, a fourth address, port number/port range, and SSC mode, for example, the first The binding relationship established by the second relay UE is shown in Table 2.
  • the second relay UE establishes a binding relationship between the identification information of the remote UE, the fourth address, and the port number/port range, and reports the binding relationship to the second session management Functional network element; or the second relay UE establishes the mapping relationship between the identification information of the remote UE, the identification information of the PDU session, and the port number/port range, and reports the binding relationship to the second session management function network element .
  • the second relay UE may report according to the number of PDU sessions serving the remote UE. For example, the binding relationship of each report corresponds to one PDU session; or, the second relay UE may also report through one report. All the binding relationships corresponding to the PDU sessions served by the remote UE are reported to the second session management function network element.
  • the specific process of the second relay UE reporting the above-mentioned binding relationship to the second session management function network element is divided into two steps.
  • the AMF network element receives the reported information from the remote UE (remote UE). report), if the reported information contains the identification information (PDU session ID) of multiple PDU sessions; then, when the AMF network element determines that it corresponds to the same second session management function network element according to the identification information of the PDU session, the AMF network element Forward the above reported information to the second session management function network element.
  • Step 402 The second relay UE sends a first indication to a second session management function network element.
  • the first instruction is used to instruct the second instruction to be sent after the session of the interface between the second session management function network element and the second user plane function network element is established or modified.
  • the first indication in the embodiment of the present application may be a path switch indication 2 (path switch indication).
  • the remote UE after the remote UE discovers the second relay UE, the remote UE sends a relay access request message to the second relay UE.
  • the relay access request message is the aforementioned first relay UE.
  • the second relay UE After the second relay UE receives the relay access request message, the second relay UE sends a session establishment message or a PDU session modification request message to the SMF2 network element, and the message carries the first The identifier of a service, the identifier of the remote UE, and the first indication, so that the SMF2 network element determines that the first service of the remote UE is switched to the second relay UE according to the first indication and sends the second indication.
  • the second relay UE When the second relay UE determines that the SSC mode of the first service is the third mode, it sends a first indication to the first session management function network element, specifically, triggers the second relay UE to send to the second session management function network element
  • the situation of sending the first instruction can refer to any of the following situations:
  • Case A When the session and service continuity (session and service continuity, SSC) mode of the first service carried in the message received from the remote UE by the second relay UE is the third mode, that is, the SSC mode of the first service The value is 3. Because the third mode is used to characterize that the first service requires high-priority service continuity, allowing the remote UE to establish a session anchor point to the same DN before handover, so the second relay UE sends the second session The management function network element sends the first instruction.
  • SSC session and service continuity
  • the second relay UE determines that the SSC mode of the first service is the third mode according to the relay service code of the first service from the remote UE, so the second relay UE communicates to the second session
  • the management function network element sends the first instruction.
  • the second relay UE determines that the SSC mode is the third mode according to the type of the first communication request message as a handover request. In other words, when the first communication request message is a handover request (handover communication request) message, The second relay UE determines that the SSC mode of the first service is the third mode.
  • Step 403 The second session management function network element establishes or modifies the session of the interface between the second session management function network element and the second user plane function network element.
  • the second session management function network element determines the corresponding relationship between the address of the PDU session or the identification information of the PDU session and the identification of the N4 session It finds the corresponding one or more user plane function network elements, and initiates the N4 session modification process to the second user plane function network element, thereby establishing or modifying the connection between the second session management function network element and the second user plane function network element The session of the interface, and put the port number or port range in the packet detection rule (PDR).
  • PDR packet detection rule
  • the second session management function network element when the second session management network element determines that there is no PDU session corresponding to the first service according to the identifier of the first service, the second session management function network element creates the second session management function network element and the second session management function network element. Sessions of interfaces between user plane function network elements; when the second session management network element determines that there is a PDU session corresponding to the first service according to the identifier of the first service, the second session management function network element corresponds to the first service The PDU session is modified.
  • this step 403 may also include any one or more of the following situations.
  • the second session management function network element receives the first indication and learns that the first service of the remote UE needs to be switched to the second relay UE, so that the second session management function network element and the second user plane function network After the session of the interface between the elements is established or modified, the second session management function network element sends a second indication to the second relay UE.
  • the first indication is used to instruct the remote UE to switch the first service to The second relay UE.
  • the first indication is used to indicate that the SSC mode of the first service is equal to 3.
  • the second session management function network element receives the first indication and learns that the first service of the remote UE requires high-level service continuity, so that the second session management function network element and the second user plane function network element After the session between the interface is established or modified, the second session management function network element sends a second indication to the second relay UE.
  • the first indication is used to indicate that the first service requires high-level service continuity.
  • the second session management function network element receives the first instruction and learns that the remote UE needs to establish the IP address after the handover and then release the IP address before the handover, so that the second session management function network element and the second user After the session of the interface between the plane function network elements is established or modified, the second session management function network element sends a second instruction to the second relay UE.
  • the first instruction is used to instruct to establish the handover IP first. After the address, release the IP address before the switch.
  • the second session management function network element receives the first instruction, learns that the remote UE needs to establish the PDU session address after the handover, and then releases the PDU session before the handover, so that the second session management function network element communicates with the second After the session of the interface between the user plane function network elements is established or modified, the second session management function network element sends a second indication to the second relay UE.
  • the first indication is used to instruct to establish the handover After the PDU session, the PDU session before the handover is released.
  • Step 404 The second relay UE receives a second indication from a second session management function network element, where the second indication is used to indicate that the handover of the first service is successful.
  • the second session management function network element replies to the second relay UE with a second indication indicating that the first service is successfully switched, and the purpose is to notify the second relay UE , PDU sessions that require business continuity have been assisted by the network side, and the continuity of the application layer is guaranteed.
  • Step 405 The second relay UE sends a third indication to the remote UE, where the third indication is used to instruct to release the resources of the remote UE before the handover.
  • step 405 can be understood as the following possible situations.
  • the second relay UE forwards the first service handover success message from the second session management function network element to the remote UE, and the first service handover success message is used to indicate the release
  • the third indication of the resources of the remote UE before the handover The remote UE releases the resources before the remote UE handover according to the message. It can also be said that the message is used to indicate the release of the resources of the remote UE before the handover.
  • the second relay UE sends a dynamic host configuration protocol (DHCP) release request message to the remote UE.
  • the DHCP release request message is used to instruct the remote UE to release the remote.
  • the third indication of the resources before the UE handover the remote UE releases the resources before the remote UE handover according to the DHCP release request. It can also be said that the DHCP release request is used to indicate the release of the resources before the remote UE handover.
  • the second relay UE because the second relay UE is bound with the identification information of the remote UE and the identification information of the first service, the second relay UE sends the identification information of the first service and the identification information of the first service to the remote UE.
  • the third indication wherein the identification information of the first service is used to indicate that the handover of the first service is successful, and the remote UE releases the resources of the remote UE before the handover according to the identification information of the first service and the third indication.
  • Step 406 The remote UE releases the resources before the handover.
  • the address allocated by the first relay UE to the remote UE is allocated at the granularity of the remote UE, and the remote UE releases the resources of the remote UE before the handover; it is assumed that the first relay UE is the remote UE.
  • the address allocated by the end UE is allocated at the granularity of services, and the remote UE releases the resources of the first service before the handover.
  • Method A After the remote UE receives the third instruction, the remote UE determines the SMF1 network element and UPF1 network element that it accessed before the handover, and RAN1 informs the SMF1 network element and UPF1 network element on the network side to release the PDU session before the handover. Address and port number/port range.
  • the remote UE determines the first relay UE connected before the handover, and the remote UE releases the first address allocated by the first relay UE for itself, or the remote UE The UE releases the first address allocated by the first relay UE for the first service. After the remote UE releases the first address, it informs the first relay UE that the first address has been released, so that the first relay UE can release the first address in time, or configure the first address to other remote UEs or Other business.
  • the remote UE determines the first relay UE connected before the handover, and the remote UE sends a notification to the first relay UE (for example, the notification is a DHCP release request)
  • the notification is used to notify the first relay UE to release the first address allocated for the remote UE or the first service.
  • the remote UE stops using the first address to perform service data transmission with the first relay UE.
  • the UE may also notify the SMF1 network element and the UPF1 network element on the network side to release the second address and port number/port range of the PDU session before the handover.
  • the transmission path of the remote UE when the transmission path of the remote UE is switched, although the UE will use the newly configured IP address to communicate with the network-side server after the switch, the second session management function network element and the second user plane function
  • the resources before the handover will be released only after the session of the interface between network elements is established or modified.
  • the transmission of high-priority service continuity services will not be interrupted, that is, between the remote UE and the network server before and after the transmission path is switched.
  • Business transmission is not interrupted, thus ensuring business continuity.
  • FIG. 5 is a schematic flow chart of the second method for realizing business continuity provided by this embodiment of the application, the method includes the following steps.
  • Step 501 The second relay UE receives a communication request message from a remote UE.
  • the second relay UE receives the first communication request message and the second communication request message from the remote UE.
  • the first communication request message is used to instruct the first service of the remote UE to switch to the second relay UE
  • the second communication request message is used to instruct the remote UE's second service to switch to the second relay UE.
  • the second relay UE receives a communication request message from the remote UE, where the communication request message is used to instruct the first service and the second service of the remote UE to switch to the second relay UE.
  • the first service and the second service refer to different services.
  • the second relay UE may also receive other communication request messages from the remote UE.
  • the service and the second service exemplarily illustrate the switching mode of multiple services of the remote UE, and does not limit the specific number of services.
  • the second relay UE receives the specific content of the second communication request message from the remote UE.
  • the content is similar to the specific content of the first communication request message, and will not be repeated here.
  • Step 502 The second relay UE sends a first instruction to the second session management function network element and the third session management function network element.
  • the first instruction is used to indicate that the session of the first service of the interface between the second session management function network element and the second user plane function network element is established or modified to send the second instruction; and the first instruction is used to indicate the third
  • the fourth instruction is sent after the session of the second service of the interface between the session management function network element and the third user plane function network element is established or modified.
  • the above step 502 can be understood as the following two possible cases.
  • Case 1 the second relay UE sends indication A to the second session management function network element and the third session management function network element, and the indication A is used for Instruct the second session management function network element and the second user plane function network element to establish or modify the session of the first service and send a second instruction; and, the second relay UE sends a second instruction to the second session management function network element and
  • the third session management function network element sends an indication B, where the indication B is used to indicate that the session of the second service of the interface between the third session management function network element and the third user plane function network element is established or modified, and then the fourth indication is sent.
  • the above-mentioned indication A and indication B are collectively referred to as the first indication.
  • Case 2 The second relay UE sends a first indication to the second session management function network element and the third session management function network element.
  • the first indication is used to indicate the information indicated by the above indication A and also used to indicate the above Indicates the information indicated by B.
  • the second session management function network element in the session of the first service and the third session management function network element of the second service session may be different session management function network elements, or may be the same session management function.
  • Network element; the second user plane function network element in the session of the first service and the third user plane function network element in the session of the second service may be different user plane function network elements, or the same user plane function network element.
  • the first session management function network element and the second session management function network element are the same session management function network element; if the first The service and the second service are managed by different session management function network elements, and the first session management function network element and the second session management function network element are different session management function network elements.
  • the second relay UE determines that the SSC mode of the first service is the third mode and the SSC mode of the second service is the third mode, it sends a first indication to the first session management function network element, specifically, triggers the first
  • the situation that the second relay UE sends the first indication to the second session management function network element and the third session management function network element may refer to any one of the following situations.
  • Case A when the SSC of the first service carried in the message received by the second relay UE from the remote UE is in the third mode, and the SSC mode of the second service is the third mode, that is, the SSC mode of the first service
  • the value of the SSC mode of the second service is 3, and the value of the SSC mode of the second service is 3. Because the third mode is used to characterize that the first service and the second service require high-priority service continuity, allowing the remote UE to establish and reach the same before handover
  • the session anchor point of the DN so the second relay UE sends the first indication to the network element of the second session management function and the third session management function.
  • the second relay UE determines that the SSC mode of the first service and the second service is the first service code according to the relay service code of the first service and the relay service code of the second service from the remote UE. In the three mode, the second relay UE sends the first instruction to the second session management function network element and the third session management function network element.
  • the second relay UE determines that the SSC mode is the third mode according to the type of the first communication request message as a handover request. In other words, when the first communication request message is a handover request (handover communication request) message, The second relay UE determines that the SSC mode of the first service is the third mode.
  • Step 503 The second session management function network element establishes or modifies the first service session of the interface between the second session management function network element and the second user plane function network element, and the third session management function network element establishes or modifies the first service session.
  • the process of establishing or modifying the session of the first service can refer to the above step 403, and the process of establishing or modifying the session of the second service can refer to the first service, which will not be repeated here.
  • Step 504 The second relay UE receives a second indication from a second session management function network element, where the second indication is used to indicate that the first service is successfully switched. And, the second relay UE receives the fourth indication from the third session management function network element, where the fourth indication is used to indicate that the second service handover is successful.
  • the second session management function network element replies to the second relay UE with a second indication indicating that the first service handover is successful; and the second relay UE is executing
  • the third session management function network element returns a fourth instruction to the second relay UE, indicating that the second service handover is successful.
  • the second indication and the third indication are intended to inform the second relay UE that the PDU session requiring service continuity has been assisted by the network side, and the continuity guarantee of the application layer can be obtained.
  • the second relay UE may wait for the indication services corresponding to all services Step 505 is executed only after the indication information corresponding to the successful switching of the PDU session.
  • the second indication and the fourth indication may be carried in the same message, and the second relay UE may obtain the second indication and the fourth indication from a received message; the second indication and the fourth indication may be carried In different messages, the second relay UE may obtain the second indication and the fourth indication from the received message respectively.
  • Step 505 The second relay UE sends a third indication to the remote UE, where the third indication is used to instruct to release the resources of the remote UE before the handover.
  • this step 505 can be understood as a variety of situations, and reference may be made to the first possible situation to the third possible situation shown in the foregoing step 405, which will not be repeated here.
  • Step 506 The remote UE releases the resources before the handover.
  • the address allocated by the first relay UE to the remote UE is allocated at the granularity of the remote UE, and the remote UE releases the resources of the remote UE before the handover; it is assumed that the first relay UE is the remote UE.
  • the address allocated by the end UE is allocated at the granularity of services, and the remote UE releases the resources of the first service and the resources of the second service before the handover.
  • the resource release process before handover corresponding to the first service can refer to the above step 406, because the resource release process before handover corresponding to the second service is similar to it, it will not be repeated here.
  • the remote UE will release the resources before handover, and the transmission of high-priority service continuity services will not Interrupted, that is, the service transmission between the remote UE and the network server is not interrupted before and after the transmission path is switched, thereby ensuring service continuity.
  • the above method will be further described with an example in combination with the scenario shown in FIG. 3B below.
  • the process shown in FIG. 6 corresponds to the PDU session establishment process before the remote UE handover
  • the process shown in Fig. 7A corresponds to the PDU session modification process after the remote UE handover.
  • the PDU session establishment process includes the following steps.
  • Step 600 A discovery procedure is performed between the remote UE and the first relay UE.
  • Step 601a The remote UE sends an indirect communication request message to the first relay UE, where the indirect communication request message is used to instruct the remote UE to switch the first service of the remote UE to the second relay UE.
  • the indirect communication request message may be sent by the remote UE to the second relay UE, and is a request message used by the remote UE to request communication with the second relay UE.
  • the indirect communication request message A handover request indication is carried, and the handover request instructs the first service of the remote UE to be switched to the second relay UE.
  • the handover request indication may be the identifier of the remote UE and the identifier of the first service, and the identifier of the remote UE and the identifier of the first service may be used to instruct the remote UE to switch the first service to the second relay.
  • the transmission path of the UE, that is, the remote UE, is switched.
  • Step 601b After receiving the indirect communication request message, the first relay UE establishes a PC5 secure connection with the remote UE. After that, the remote UE and the first relay UE can transfer control plane information through the PC5 secure connection.
  • step 601c in a case, if the first relay UE determines that no PDU session is available locally for the remote UE to serve, the first relay UE may use the identification of the network slice requested by the remote UE (single network dlice selection assistance information). , S-NSSAI), data network name (data network name, DNN), or at least one of the information in the SSC mode establishes a one-to-one corresponding PDU session with the service. For example, the first relay UE may establish an identity with the first service The first PDU session corresponding to the information. The first relay UE may obtain the above-mentioned S-NSSAI/DNN/SSC mode information in step 600 or step 601a.
  • the first relay UE may also infer the SSC mode requested by the remote UE through the relay service code of the first service; or the first relay UE may send the first communication request message Later, or after the secure PC5 connection is established, the first relay UE is notified of the SSC mode corresponding to this request.
  • the first relay UE judges that no PDU session is available locally to serve the remote UE, the first relay UE establishes a new service based on the S-NSSAI/DNN/SSC mode requested by the remote UE. One corresponding PDU session.
  • the first relay UE determines that there is a local available PDU session serving the remote UE, the first relay UE modifies the one-to-one correspondence with the service according to the S-NSSAI/DNN/SSC mode requested by the remote UE PDU session.
  • Step 601d After the first relay UE establishes the PDU session corresponding to the service, the first relay UE obtains the second IP address of the PDU session from the SMF1 network element through the AMF network element, and the second IP address is used for the first Relay the communication between the UE and the PDU session anchor or DN of the corresponding service.
  • Step 602 After the PC5 secure connection is successfully established, the remote UE initiates a DHCP procedure, and the first relay UE allocates a first IP address to the remote UE or service. The first IP address is used for communication between the remote UE and the first relay UE.
  • the first relay UE may configure the first address in any of the following two ways, and establish the binding relationship in any one of the following two ways.
  • Manner 1 The first relay UE allocates a uniquely corresponding first IP address to the remote UE, and each remote UE is allocated a uniquely corresponding first IP address.
  • the first relay UE allocates a unique corresponding first IP address to each service of the remote UE, and each service of the remote UE allocates a unique corresponding first IP address. In addition, the first relay UE allocates a port number/port range for communicating with the PDU session anchor or DN on the second IP address for the remote UE.
  • Step 603 The first relay UE binds the identification information of the remote UE, the first IP address, the second IP address, the port number/port range, and the identifier of the PDU session.
  • the second relay UE allocates IP addresses to the remote UE at the granularity of the remote UE.
  • the At least one service includes the above-mentioned first service, and each service has a unique corresponding PDU session identification information, a second IP address of the PDU session, port number/port range, and SSC mode, as shown in Table 3 for example.
  • the second relay UE allocates IP addresses to remote UEs at the granularity of services, and the second relay UE allocates a unique first IP address for each service of each remote UE. If the UE has at least one service, where the at least one service includes the above-mentioned first service, each service has a unique corresponding PDU session identification information, a second IP address of the PDU session, port number/port range, and SSC mode, Exemplarily, as shown in Table 4.
  • Step 604 The first relay UE notifies the SMF1 network element of the identification information of the remote UE, the second IP address, and the binding relationship between the port number/port range, or the first relay UE informs the remote UE of the binding relationship.
  • the identification information, the identification information of the PDU session, the second IP address, and the binding relationship between the port number/port range are notified to the SMF1 network element.
  • Step 605 The SMF1 network element finds one or more UPF1 network elements corresponding to the corresponding relationship between the second IP address or the PDU session ID and the N4 session ID, and initiates N4 session establishment or modification to the one or more UPF1 network elements Process and save the port number/port range to the PDR.
  • the PDU session establishment or modification process includes the following steps.
  • the session management functions of the first service and the second service are both managed by SMF2, and the user plane functions of the first service and the second service All are managed by UPF2.
  • step 700 before the remote UE switches the transmission path, the remote UE connects to the network through the first relay UE.
  • the remote UE may establish a connection with the first relay UE through the method shown in FIG. 6, and the first relay UE establishes a PDU session with the network side.
  • Step 701a When the remote UE finds that the communication quality is poor or degraded and cannot meet the current service requirements, the remote UE performs relay reselection, finds the second relay UE, and sends the first communication request to the second relay UE Message, the first communication request message is used to request the first service to be switched to the second relay UE, or the first communication request message is used to request the first service and the second service to be switched to the second relay UE.
  • Step 701b The remote UE establishes a PC5 link with the second relay UE.
  • Step 702 The second relay UE allocates a third address to the remote UE, or the second relay UE allocates a third address to the first service and the second service respectively.
  • Step 703 In one case, if the second relay UE determines that there is no PDU session corresponding to the service locally, the second relay UE may establish a connection with the service according to the S-NSSAI/DNN/SSC mode requested by the remote UE. For example, the second relay UE may establish a first PDU session corresponding to the identification information of the first service, and the second relay UE may establish a first PDU session corresponding to the identification information of the second service. Two PDU sessions. The second relay UE may obtain the above-mentioned S-NSSAI/DNN/SSC mode information in step 701 or step 702.
  • the second relay UE determines that there is a local available PDU session serving the remote UE, the second relay UE will modify the S-NSSAI/DNN/SSC mode requested by the remote UE to correspond to the service one-to-one. PDU session.
  • the second relay requests the SMF2 network element (corresponding to the second session management function network element above) to establish or modify the PDU session for the remote UE.
  • the SMF2 After the SMF2 establishes or modifies the PDU session, it allocates the PDU session for the PDU session The identification information (PDU Session ID) and the fourth address of the PDU session.
  • the second relay UE allocates a port number/port range (port range) for communicating with the PDU session anchor or DN at the fourth address for the remote UE.
  • the second relay UE establishes the identification information of the remote UE, the binding relationship between the fourth address and the port number/port range, or the second relay UE establishes the identification information of the remote UE and the identification information of the PDU session And port number/port range mapping relationship.
  • the identification information of the remote UE For specific examples, see Table 1 and Table 2 above, which will not be repeated here.
  • Step 704 The second relay UE sends a first indication to the SMF2, along with the identification of the remote UE, the identification of the PDU session, the fourth IP address and the port number/port range.
  • the second relay UE When the second relay UE determines that the SSC mode of the service that needs to be switched is the third mode, it sends a first indication to the first session management function network element, which triggers the second relay UE to send the first indication to the second session management function network element.
  • the indicated situation refer to any one of the situation A to the situation C in the above step 402.
  • the first indication may be used to indicate that the first service of the remote UE is switched to the second relay UE, or the first indication may be used to indicate the service of the first service
  • the SSC mode is equal to 3, or the first indication is used to indicate that the first service requires high-level service continuity, or the first indication is used to indicate that the IP address after the handover is established first and then the IP address before the handover is released. For details, see the four possible situations shown in the first embodiment.
  • the first indication can be used to indicate that the first service and the second service of the remote UE are switched to the second relay UE, or the first indication is used to indicate The SSC modes of the first service and the second service are both equal to 3, or the first indication is used to indicate that the first service and the second service require high-level service continuity, or the first indication is used to indicate that the handover IP is established first After the address, release the IP address before the switch.
  • the SMF2 network element finds at least one UPF2 network element corresponding to the fourth address or the corresponding relationship between the PDU session identifier and the N4 session ID, and initiates the N4 session modification process to the UPF2 network element, and saves the port number/port range in the PDR .
  • Step 706 After performing the N4 session modification, the SMF 2 network element sends a second indication for indicating that the first service is successfully switched to the second relay UE.
  • step 701 if in step 701, the first communication request message is also used to request the second service to be switched to the second relay UE, or in step 701, the second communication request message is also received to request The second service is switched to the second relay UE, and the SMF 2 network element sends a fourth indication for indicating that the second service is successfully switched to the second relay UE.
  • Step 707 After the second relay UE receives the third indication and the fourth indication of the first service and the second service, the second relay UE notifies the remote UE to release the resources before the handover.
  • the second relay UE After the second relay UE determines that all services that require high-priority service continuity are successfully handed over, the second relay UE notifies the remote UE to release the resources before the handover.
  • Step 708a The remote UE sends a DHCP release request or a handover success notification to the first relay UE, which is used to notify the first relay UE to release the IP address allocated for the remote UE or service.
  • Step 709a After receiving the DHCP release request or the handover success notification, the first relay UE releases the IP address allocated for the remote UE or service.
  • Step 708b The remote UE releases the first address (IP@1 shown in Table 3) allocated for the remote UE or service.
  • Step 710 The first relay UE determines SMF1 and UPF1 corresponding to the session according to the previously established binding relationship, so that the first relay informs SMF1 and UPF1 to release the second address of the PDU session (as shown in Table 3, IP@ 2) and port number/port range (such as port 1 shown in Table 3), so that the remote UE's downlink data will no longer be transmitted through the second address and port number, the transmission path of the remote UE before handover Is disconnected.
  • the second address of the PDU session as shown in Table 3, IP@ 2
  • port number/port range such as port 1 shown in Table 3
  • this method can realize that the remote UE's service switch is successful before disconnecting the previous session, thereby ensuring the continuity of the service of the remote UE.
  • the resources before the remote UE switch are timely after the switch is completed. Release to improve resource utilization.
  • the transmission path of the remote UE is managed by the same SMF network element before and after the handover, and the same UPF network element is responsible for management before and after the handover.
  • the remote UE accesses the network through the first relay UE.
  • the first relay UE establishes a PDU session corresponding to the first service, the first relay UE allocates a first IP address (IP@1 as shown in the figure) to the remote UE, and the first relay UE obtains the first IP address from the SMF network element.
  • IP@1 IP address
  • the second IP address is a session PDU (as shown in FIG IP @ 2), a first relay and the UE is assigned a first distal port session PDU number DN or anchor in communication with the second IP address /Port range.
  • the distal end of the first relay to establish identification information of the UE, a first IP address, the second IP address binding relationship between identification information of the first session of the PDU and the first port number / port range.
  • the SMF network element establishes a binding relationship between the identification information of the remote UE, IP@2, the identification information of the first PDU session, and the first port number/port range through the message obtained from the first relay UE.
  • the remote UE accesses the network through the second relay UE.
  • the second relay UE modifies the first PDU session corresponding to the first service, the second relay UE allocates a third IP address (IP@1# as shown in the figure) to the remote UE, and the second relay UE receives the SMF network from the SMF network.
  • IP@1# IP address
  • the meta obtains the modified fourth IP address of the first PDU session ( IP@2# as shown in the figure), and the second relay allocates the anchor point or DN for the session with the PDU on the fourth IP address for the remote UE.
  • a second port number / port range communications is a second port number / port range communications.
  • the second relay establishes a binding relationship between the identification information of the remote UE, the third IP address, the fourth IP address, the identification information of the first PDU session, and the second port number/port range.
  • the SMF network element establishes the binding relationship between the identification information of the remote UE, IP@2#, the identification information of the first PDU session, and the second port number/port range through the message obtained from the second relay UE. .
  • the second relay UE notifies the remote UE to release the handover resources.
  • the remote UE After receiving the notification, the remote UE notifies the first relay UE to release the first IP address, and the first relay UE releases the handover binding relationship through the SMF network element.
  • the resources before the switch will be released only after the session corresponding to the service of the remote UE is established or modified. It will not be interrupted, that is, the service transmission between the remote UE and the network server is not interrupted before and after the transmission path is switched, thereby ensuring service continuity.
  • Step 801 The UDM or UDR determines that the session management function network element serving the first service of the remote UE is switched from the first session management function network element to the second session management function network element.
  • the remote UE accesses the network through the first relay UE, and the first relay UE reports information about the first service before the handover to the first session management function network element.
  • the element reports the relevant information of the first service to UDM or UDR, and the UDM or UDR further adds the identity of the first session management function network element and the identity of the first relay UE to the relevant information of the first service.
  • the relevant information of the first service before the handover stored in the UDM or UDR is shown in Table 5.
  • the remote UE accesses the network through the second relay UE.
  • the second relay UE reports information about the first service after the handover to the second session management function network element.
  • the relevant information of a service is reported to UDM or UDR, and the UDM or UDR is further added to the relevant information of the first service as the identity of the second session management function network element and the identity of the second relay UE, for example, UDM or
  • the related information of the first service after the handover stored in the UDR is shown in Table 6.
  • Method 1 UDM or UDR determines the service based on the identification information of the first session management function network element corresponding to the related information of the first service and the identification information of the second session management function network element corresponding to the related information of the first service The session management function network element of the first service at the remote UE is switched from the first session management function network element to the second session management function network element.
  • the UDM or UDR determines that the session management function network element of the first service is switched from the first session management function network element to the second session management function network element according to the SMF network element identifiers in Table 5 and Table 6.
  • Manner 2 UDM or UDR determines to serve the remote UE based on the identification information of the first relay UE corresponding to the related information of the first service and the identification information of the second relay UE corresponding to the related information of the first service The relay UE is handed over, so that the UDM or UDR determines the first session management function network element and the second session management function network element that serve the remote UE before and after the handover according to the identifier or port number of the remote UE.
  • step 802 the UDM or UDR sends a first notification to the first session management function network element, where the first notification is used to notify the first session management function network element that it will no longer provide the service of the first service to the remote UE.
  • the UDM or UDR instructs the first session management function network element to release the downstream data stream received by the port number allocated before the handover.
  • Step 803 The first session management function network element releases the resources of the remote UE before handover.
  • the first session management function network element releases the IP address allocated for the PDU session of the first service.
  • the first session management function network element notifies the user plane function network element and the first relay UE to release the resources of the remote UE before the handover from the first relay UE to the second relay UE.
  • the first session management function network element notifies the user plane function network element to release the port number information allocated for the first service of the first relay UE.
  • the first session management function network element notifies the first relay UE to release the first address. After receiving the notification, the first relay UE releases the first address and port number information allocated by the remote UE to the remote UE.
  • the difference from the foregoing embodiment 1 and embodiment 2 is that the resource release process before handover is triggered by the network side. Although the remote UE accesses the relay UE and the handover occurs, it is still The resources before the handover will be released only after the session is established or modified. The transmission of high-priority service continuity services will not be interrupted, that is, the service transmission between the remote UE and the network server will not be interrupted before and after the transmission path is switched. Ensure business continuity.
  • the process shown in FIG. 9 corresponds to the PDU session establishment process before the remote UE handover
  • the process shown in Fig. 10 corresponds to the PDU session modification process after the remote UE handover.
  • the PDU session establishment process includes the following steps.
  • Steps 900 to 905 are the same as steps 601 to 605 shown in FIG. 6.
  • Step 906 The SMF1 network element reports the obtained binding relationship of the first service to UDM.
  • the SMF1 network element reports the identification information of the remote UE, the second IP address, the port number/port range, and the PDU session to the UPF1 network element. logo, etc.
  • the UDM adds the identification of the SMF1 serving the PDU session and the identification information of the first relay UE on the basis of the binding relationship.
  • the PDU session establishment modification process includes the following steps.
  • Step 1000 When a connection is established between the remote UE and the second relay UE, the communication request message sent by the remote UE to the second relay UE may not indicate that the communication request message is a handover request.
  • Steps 1001 to 1005 are the same as steps 701 to 705 shown in FIG. 7A.
  • Step 1006 The SMF2 network element reports the obtained binding relationship of the first service to UDM.
  • the SMF2 network element reports the identification information of the remote UE, the fourth IP address, the port number/port range, and the PDU session to the UPF2 network element. logo, etc.
  • the UDM adds the identification of the SMF2 serving the PDU session and the identification information of the second relay UE on the basis of the binding relationship.
  • Step 1008 UDM determines that the identity of the relay UE serving the remote UE has changed, and UDM determines the SMF 1 corresponding to the identity of the remote UE. UDM notifies the SMF1 network element that the first relay UE does not need to continue to provide services for the first service of the remote UE. For example, UDM sends a "relay service change instruction" to the SMF1 network element. This "relay service change instruction" is used To notify SMF1 that the remote UE's relay UE has changed.
  • Step 1009 After receiving the "relay service change instruction", the SMF1 network element determines the ID and port number of the PDU session corresponding to the first relay UE, and informs the UPF2 network element of the port number through the N4 session to facilitate UPF2 The network element releases the downstream data stream received by this port range.
  • the SMF1 network element informs the first relay UE1 that the remote UE served by its PDU session identifier has changed the relay, and the first relay UE1 needs to release the IP address allocated for the remote UE.
  • Step 1011 The first relay UE releases the first IP address.
  • Embodiment 1 and Embodiment 3 can be implemented separately in different scenarios, or can be implemented in combination in the same scenario, or different implementations
  • the different solutions involved in the examples can also be implemented in combination (for example, part or all of the solutions involved in the first embodiment can be implemented in combination with the third embodiment), which is not specifically limited.
  • step numbers of the flowcharts described in the embodiments of the present application are only an example of the execution process, and do not constitute a restriction on the order of execution of the steps. There is no timing dependency between the embodiments of the present application. There is no strict execution order between the steps.
  • the network device or the terminal device may include a corresponding hardware structure and/or software module for performing each function.
  • the embodiments of the present application can be implemented in the form of hardware or a combination of hardware and computer software. Whether a certain function is executed by hardware or computer software-driven hardware depends on the specific application and design constraint conditions of the technical solution. Professionals and technicians can use different methods for each specific application to implement the described functions, but such implementation should not be considered as going beyond the scope of this application.
  • each functional unit may be divided corresponding to each function, or two or more functions may be integrated into one unit.
  • the above-mentioned integrated unit can be implemented in the form of hardware or software functional unit.
  • FIG. 11 shows a possible exemplary block diagram of a device involved in an embodiment of the present application.
  • the apparatus 1100 may include: a processing unit 1102 and a communication unit 1103.
  • the processing unit 1102 is used to control and manage the actions of the device 1100.
  • the communication unit 1103 is used to support communication between the apparatus 1100 and other devices.
  • the communication unit 1103 is also called a transceiving unit, and may include a receiving unit and/or a sending unit, which are used to perform receiving and sending operations, respectively.
  • the device 1100 may further include a storage unit 1101 for storing program codes and/or data of the device 1100.
  • the apparatus 1100 may be the remote UE in any of the foregoing embodiments, or may also be a chip set in the remote UE.
  • the processing unit 1102 may support the apparatus 1100 to perform the actions of the remote UE in the foregoing method examples. Alternatively, the processing unit 1102 mainly executes the internal actions of the remote UE in the method example, and the communication unit 1103 may support communication between the apparatus 1100 and a relay device (such as a second relay UE).
  • the apparatus 1100 may be the second relay UE in any of the foregoing embodiments, or may also be a chip set in the second relay UE.
  • the processing unit 1102 may support the apparatus 1100 to perform the actions of the second relay UE in the foregoing method examples.
  • the processing unit 1102 mainly executes the internal actions of the second relay UE in the method example, and the communication unit 1103 may support communication between the apparatus 1100 and a network device (such as a second session management function network element).
  • the apparatus 1100 may be the first relay UE in any of the foregoing embodiments, or may also be a chip provided in the first relay UE.
  • the processing unit 1102 may support the apparatus 1100 to perform the actions of the first relay UE in the foregoing method examples. Alternatively, the processing unit 1102 mainly executes the internal actions of the first relay UE in the method example, and the communication unit 1103 may support communication between the apparatus 1100 and a network device (such as a first session management function network element).
  • the apparatus 1100 may be a network device in any of the foregoing embodiments (for example, a first session management function network element, a second session management function network element, a unified data management network element, unified data storage), or may also be a network device for setting (For example, the second session management function network element, unified data management network element, unified data storage) in the chip.
  • the processing unit 1102 may support the apparatus 1100 to execute the actions of the network device in the above method examples. Alternatively, the processing unit 1102 mainly executes the internal actions of the network device in the method example, and the communication unit 1103 can support communication between the apparatus 1100 and the network device.
  • each unit in the device can be all implemented in the form of software called by processing elements; they can also be all implemented in the form of hardware; part of the units can also be implemented in the form of software called by the processing elements, and some of the units can be implemented in the form of hardware.
  • each unit can be a separately set up processing element, or it can be integrated in a certain chip of the device for implementation.
  • it can also be stored in the memory in the form of a program, which is called and executed by a certain processing element of the device. Function.
  • each step of the above method or each of the above units may be implemented by an integrated logic circuit of hardware in a processor element or implemented in a form of being called by software through a processing element.
  • the unit in any of the above devices may be one or more integrated circuits configured to implement the above method, for example: one or more application specific integrated circuits (ASIC), or, one or Multiple microprocessors (digital singnal processors, DSPs), or, one or more field programmable gate arrays (Field Programmable Gate Arrays, FPGAs), or a combination of at least two of these integrated circuits.
  • ASIC application specific integrated circuits
  • DSPs digital singnal processors
  • FPGAs Field Programmable Gate Arrays
  • the unit in the device can be implemented in the form of a processing element scheduler
  • the processing element can be a processor, such as a general-purpose central processing unit (central processing unit, CPU), or other processors that can call programs.
  • CPU central processing unit
  • these units can be integrated together and implemented in the form of a system-on-a-chip (SOC).
  • the above receiving unit is an interface circuit of the device for receiving signals from other devices.
  • the receiving unit is an interface circuit used by the chip to receive signals from other chips or devices.
  • the above unit for sending is an interface circuit of the device for sending signals to other devices.
  • the sending unit is an interface circuit used by the chip to send signals to other chips or devices.
  • FIG. 12 is a schematic structural diagram of a remote UE or a second relay UE according to an embodiment of the application. It may be the remote UE or the second relay UE in the above embodiment, and is used to implement the operation of the remote UE or the second relay UE in the above embodiment.
  • the remote UE or the second relay UE includes: an antenna 1210, a radio frequency part 1220, and a signal processing part 1230.
  • the antenna 1210 is connected to the radio frequency part 1220.
  • the radio frequency part 1220 receives the information sent by the network device through the antenna 1210, and sends the information sent by the network device to the signal processing part 1230 for processing.
  • the signal processing part 1230 processes the information of the remote UE or the second relay UE and sends it to the radio frequency part 1220.
  • the radio frequency part 1220 processes the information of the remote UE or the second relay UE after processing
  • the antenna 1210 is sent to the network device.
  • the signal processing part 1230 may include a modem subsystem, which is used to process the various communication protocol layers of the data; it may also include a central processing subsystem, which is used to implement the operating system and application layer of the remote UE or the second relay UE. ⁇ Treatment.
  • the modem subsystem may include one or more processing elements 1231, for example, including a main control CPU and other integrated circuits.
  • the modem subsystem may also include a storage element 1232 and an interface circuit 1233.
  • the storage element 1232 is used to store data and programs, but the program used to execute the method executed by the remote UE or the second relay UE in the above method may not be stored in the storage element 1232, but in the modem sub In the memory outside the system, the modem subsystem is loaded and used when in use.
  • the interface circuit 1233 is used to communicate with other subsystems.
  • the modem subsystem can be implemented by a chip, the chip includes at least one processing element and an interface circuit, wherein the processing element is used to execute the steps of any method performed by the above remote UE or the second relay UE, the interface circuit Used to communicate with other devices.
  • the remote UE or the second relay UE implements the units in the above methods in the form of a processing element scheduler.
  • the device for the remote UE or the second relay UE includes a processing element.
  • the storage element the processing element calls the program stored in the storage element to execute the method executed by the remote UE or the second relay UE in the above method embodiment.
  • the storage element may be a storage element whose processing element is on the same chip, that is, an on-chip storage element.
  • the program used to execute the method executed by the remote UE or the second relay UE in the above method may be in a storage element on a different chip from the processing element, that is, an off-chip storage element.
  • the processing element calls or loads a program from the off-chip storage element on the on-chip storage element to call and execute the method executed by the remote UE or the second relay UE in the above method embodiment.
  • the unit for the remote UE or the second relay UE to implement each step in the above method may be configured as one or more processing elements, and these processing elements are set on the modem subsystem, here
  • the processing element may be an integrated circuit, for example: one or more ASICs, or, one or more DSPs, or, one or more FPGAs, or a combination of these types of integrated circuits. These integrated circuits can be integrated together to form a chip.
  • the units of the remote UE or the second relay UE that implement each step in the above method can be integrated together and implemented in the form of an SOC, and the SOC chip is used to implement the above method.
  • At least one processing element and a storage element can be integrated in the chip, and the above method executed by the remote UE or the second relay UE can be implemented by the processing element calling the stored program of the storage element; or, the chip can integrate at least one integrated
  • the circuit is used to implement the method performed by the above remote UE or the second relay UE; or, it can be combined with the above implementation.
  • the functions of some units are implemented in the form of processing element calling programs, and the functions of some units are implemented in the form of integrated circuits. .
  • the above apparatus for remote UE or second relay UE may include at least one processing element and interface circuit, wherein at least one processing element is used to execute any remote UE or second relay provided in the above method embodiments.
  • the processing element can execute part or all of the steps performed by the remote UE or the second relay UE in the first way: calling the program stored in the storage element; or in the second way: using the program in the processor element
  • the integrated logic circuit of the hardware executes part or all of the steps executed by the remote UE or the second relay UE in a manner of combining instructions; of course, the remote UE or the second relay UE can also be executed by combining the first method and the second method Some or all of the steps performed.
  • the processing element here is the same as that described above, and can be implemented by a processor, and the function of the processing element can be the same as the function of the processing unit described in FIG. 9.
  • the processing element may be a general-purpose processor, such as a CPU, or one or more integrated circuits configured to implement the above methods, such as: one or more ASICs, or, one or more microprocessors DSP , Or, one or more FPGAs, etc., or a combination of at least two of these integrated circuit forms.
  • the storage element may be realized by a memory, and the function of the storage element may be the same as the function of the storage unit described in FIG. 9.
  • the storage element may be realized by a memory, and the function of the storage element may be the same as the function of the storage unit described in FIG. 9.
  • the storage element can be one memory or a collective term for multiple memories.
  • the remote UE shown in FIG. 12 can implement various processes involving the remote UE in the method embodiments illustrated in FIG. 4 to FIG. 10. The operations and/or functions of the various modules in the remote UE shown in FIG. 12 are used to implement the corresponding procedures in the foregoing method embodiments.
  • the second relay UE shown in FIG. 12 can implement each process involving the second relay UE in the method embodiments shown in FIG. 4 to FIG. 10. The operations and/or functions of each module in the second relay UE shown in FIG. 12 are used to implement the corresponding procedures in the foregoing method embodiments.
  • FIG. 13 is a schematic structural diagram of a network device (for example, a first session management function network element, a second session management function network element, a unified data management network element, and a unified data storage) provided by an embodiment of the application. It is used to implement the operations of the network equipment (for example, the first session management function network element, the second session management function network element, the unified data management network element, and the unified data storage) in the above embodiments.
  • the network equipment includes: an antenna 1301, a radio frequency device 1302, and a baseband device 1303.
  • the antenna 1301 is connected to the radio frequency device 1302.
  • the radio frequency device 1302 receives the information sent by the remote UE or the second relay UE through the antenna 1301, and sends the information sent by the remote UE or the second relay UE to the baseband device 1303 for processing.
  • the baseband device 1303 processes the information of the remote UE or the second relay UE and sends it to the radio frequency device 1302.
  • the radio frequency device 1302 processes the information of the remote UE or the second relay UE and then passes through the antenna 1301. Sent to the remote UE or the second relay UE.
  • the baseband device 1303 may include one or more processing elements 13031, for example, a main control CPU and other integrated circuits.
  • the baseband device 1303 may also include a storage element 13032 and an interface 13033.
  • the storage element 13032 is used to store programs and data; the interface 13033 is used to exchange information with the radio frequency device 1302.
  • the interface is, for example, a common public radio interface. , CPRI).
  • the above apparatus for network equipment may be located in the baseband apparatus 1303.
  • the above apparatus for network equipment may be a chip on the baseband apparatus 1303.
  • the chip includes at least one processing element and an interface circuit, wherein the processing element is used to execute the above network For each step of any method executed by the device, the interface circuit is used to communicate with other devices.
  • the unit for the network device to implement each step in the above method can be implemented in the form of a processing element scheduler.
  • the device for the network device includes a processing element and a storage element, and the processing element calls the program stored by the storage element to Perform the method performed by the network device in the above method embodiment.
  • the storage element may be a storage element with the processing element on the same chip, that is, an on-chip storage element, or a storage element on a different chip from the processing element, that is, an off-chip storage element.
  • the unit of the network device that implements each step in the above method may be configured as one or more processing elements, and these processing elements are provided on the baseband device.
  • the processing elements here may be integrated circuits, for example: one Or multiple ASICs, or, one or more DSPs, or, one or more FPGAs, or a combination of these types of integrated circuits. These integrated circuits can be integrated together to form a chip.
  • the network equipment that implements the various steps in the above method can be integrated together and implemented in the form of a system-on-a-chip (SOC).
  • the baseband device includes the SOC chip for implementing the above method.
  • At least one processing element and storage element can be integrated in the chip, and the processing element can call the stored program of the storage element to implement the method executed by the above network device; or, at least one integrated circuit can be integrated in the chip to implement the above network The method executed by the device; or, it can be combined with the above implementations.
  • the functions of some units are implemented in the form of calling programs by processing elements, and the functions of some units are implemented in the form of integrated circuits.
  • the above apparatus for a network device may include at least one processing element and an interface circuit, wherein at least one processing element is used to execute any of the methods performed by the network device provided in the above method embodiments.
  • the processing element can execute part or all of the steps executed by the network device in the first way: calling the program stored in the storage element; or in the second way: combining instructions through the integrated logic circuit of the hardware in the processor element Part or all of the steps performed by the network device are executed in the method; of course, part or all of the steps executed by the network device above can also be executed in combination with the first method and the second method.
  • the processing element here is the same as that described above, and can be implemented by a processor, and the function of the processing element can be the same as the function of the processing unit described in FIG. 10.
  • the processing element may be a general-purpose processor, such as a CPU, or one or more integrated circuits configured to implement the above methods, such as: one or more ASICs, or, one or more microprocessors DSP , Or, one or more FPGAs, etc., or a combination of at least two of these integrated circuit forms.
  • the storage element may be realized by a memory, and the function of the storage element may be the same as the function of the storage unit described in FIG. 11.
  • the storage element may be realized by a memory, and the function of the storage element may be the same as the function of the storage unit described in FIG. 11.
  • the storage element can be one memory or a collective term for multiple memories.
  • the network device shown in FIG. 13 can implement various processes related to the network device in the foregoing method embodiments.
  • the operations and/or functions of each module in the network device shown in FIG. 13 are used to implement the corresponding processes in the foregoing method embodiments.
  • this application can be provided as a method, a system, or a computer program product. Therefore, this application may adopt the form of a complete hardware embodiment, a complete software embodiment, or an embodiment combining software and hardware. Moreover, this application may adopt the form of a computer program product implemented on one or more computer-usable storage media (including but not limited to disk storage, CD-ROM, optical storage, etc.) containing computer-usable program codes.
  • a computer-usable storage media including but not limited to disk storage, CD-ROM, optical storage, etc.
  • These computer program instructions can also be stored in a computer-readable memory that can direct a computer or other programmable data processing equipment to work in a specific manner, so that the instructions stored in the computer-readable memory produce an article of manufacture including the instruction device.
  • the device implements the functions specified in one process or multiple processes in the flowchart and/or one block or multiple blocks in the block diagram.
  • These computer program instructions can also be loaded on a computer or other programmable data processing equipment, so that a series of operation steps are executed on the computer or other programmable equipment to produce computer-implemented processing, so as to execute on the computer or other programmable equipment.
  • the instructions provide steps for implementing functions specified in a flow or multiple flows in the flowchart and/or a block or multiple blocks in the block diagram.

Abstract

一种实现业务连续性的方法及装置,该方法包括:当远端UE的通信信号不好时,远端UE切换为通过第二中继UE接入RAN,当第二中继UE接收来自远端UE的第一业务切换到第二中继UE的通信请求消息之后,第二中继UE向SMF网元发送第一指示,第一指示用于指示SMF2网元与UPF2网元之间的会话建立或修改后发送第二指示,所以当第二中继UE从SMF2网元接收到第二指示后,因第二指示用于指示第一业务切换成功,第二中继UE向远端UE发送指示释放远端UE切换前的资源的第三指示,从而远端UE释放切换前的资源,该方法可以实现远端UE的业务切换成功后才断开切换前的传输路径,从而保证远端UE的业务的连续性。

Description

一种实现业务连续性的方法及装置
相关申请的交叉引用
本申请要求在2020年05月27日提交中国专利局、申请号为202010463560.6、申请名称为“一种实现业务连续性的方法及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,尤其涉及一种实现业务连续性的方法及装置。
背景技术
为了提高无线频谱利用率并为蜂窝网络覆盖之外的终端提供蜂窝网络服务,蜂窝通信网络引入了邻近服务(proximity-based services,ProSe)中继通信。该方式的应用场景可包括基站覆盖边缘信号增强、无覆盖区域中继接入运营商网络等场景。其中,基站覆盖边缘信号增强这一应用场景可理解为用户设备(user equipment,UE)在基站覆盖边缘区域时,由于信号衰减,导致信号强度无法满足应用业务所需的高带宽业务,因此可通过中继UE接入第五代(5th generation,5G)通信系统;无覆盖区域中继接入运营商网络这一应用场景则可理解为UE在运营商网络覆盖范围之外时,通过中继UE间接接入5G网络。如图1所示,当UE处于网络覆盖之外或远端UE与接入网设备之间通信信号不好时,UE可以通过中继UE进行辅助,即通过UE与中继UE之间的通信,以及中继UE与网络侧服务器之间的通信进而实现UE与网络侧服务器通信。
目前在ProSe中继通信实现方案中,因接入中继UE的远端UE对5G的核心网络侧是不可见的,远端UE的互联网协议(internet protocol,IP)地址由中继UE分配,当UE在通过中继UE进行辅助通信过程中所连接的中继UE发生切换,因远端UE新接入的中继UE使用新配置的IP地址与网络侧服务器进行通信,导致通信发生中断,因此业务连续性难以保障。
发明内容
本申请提供了一种实现业务连续性的方法及装置,用以改善因中继UE切换导致的通信业务不连续问题。
第一方面,本申请实施例提供一种实现业务连续性的方法,该方法可以由第二中继UE或第二中继UE的内部芯片执行,该方法适用于远端UE的传输路径发生切换,且切换后远端UE通过第二中继UE接入网络的场景。该方法包括:当第二中继UE接收来自远端UE的第一业务切换到第二中继UE的第一通信请求消息之后,第二中继UE向第二会话管理功能网元发送第一指示,第一指示用于指示第二会话管理功能网元与第二用户面功能网元之间的会话建立或修改后发送第二指示,或者,第一指示用于指示远端UE的第一业务切换到第二中继UE,或者第一指示用于指示第一业务的SSC模式为第三模式,或者第一指示用于指示第一业务需要高级别的业务连续性,或者第一指示用于指示先建立切换后的 IP地址后释放切换前的IP地址。第二会话管理功能网元在完成第一业务的会话建立或修改之后向第二中继UE发送第二指示。当第二中继UE从第二会话管理功能网元接收到第二指示后,因第二指示用于指示第一业务切换成功,第二中继UE向远端UE发送释放远端UE切换前的资源的第三指示,从而远端UE释放切换前的资源。
本申请实施例中,该方法可以实现远端UE的业务切换成功后才断开之前的会话,从而保证远端UE的业务的连续性,另外,远端UE切换前资源在完成切换后被及时释放,以提高资源利用率。
在一种可能的设计中,第二中继UE接收到第一通信请求消息之后,第二中继UE可以绑定远端UE的标识信息和第一业务的标识信息;在第二中继UE接收到第二指示之后,第二中继UE还可以向远端UE发送第一业务的标识信息,该第一业务的标识信息用于指示第一业务切换成功,远端UE收到第三指示和第一业务的标识信息之后,远端UE释放切换前的资源。
在一种可能的设计中,一种情况下,若远端UE切换之前所连接的第一中继UE为该远端UE分配的地址是与远端UE一一对应的,则远端UE释放第一中继UE为其分配的地址;另一种情况下,第三指示可以用于指示释放所述远端UE切换前的第一业务的资源,也就是说,若远端UE切换之前所连接的第一中继UE为该远端UE的第一业务分配的地址是与远端UE一一对应的,则远端UE释放第一中继UE为第一业务分配的第一地址。本申请实施例中的第一地址可以是地址和端口号/端口范围中的至少一种。例如,第一地址可以为IPv4地址+端口号/端口范围;或者第一地址为IPv6地址。
在一种可能的设计中,第二中继UE确定第一业务的SSC模式为第三模式才向第一会话管理功能网元发送第一指示,否则不发送第一指示,其中,所述第三模式用于表征所述第一业务具有高优先级的业务连续性需求。
在一种可能的设计中,第二中继UE根据如下方式中的至少一种方式确定第一业务的SSC模式:方式一,第二中继UE根据来自远端UE的第一业务的中继业务标识确定SSC模式为第三模式;方式二,第二中继UE根据来自远端UE的第一通信请求消息的类型为切换请求,确定SSC模式为第三模式;方式三,第二中继UE根据来自远端UE的消息中的用于指示第一业务的SSC模式为第三模式的指示信息,确定SSC模式为第三模式。
在一种可能的设计中,当第一通信请求消息用于指示远端UE的第一业务和第二业务切换到所述第二中继UE时,或者第二中继UE还接收来自远端UE的用于指示第二业务切换到第二中继UE的第二通信请求消息,第二中继UE向SMF网元发送第一指示,第一指示用于指示SMF网元与UPF网元之间的会话建立或修改后发送第二指示和第四指示,或者,第一指示用于指示远端UE的第一业务和第二业务切换到第二中继UE,或者第一指示用于指示第一业务和第二业务的SSC模式为第三模式,或者第一指示用于指示第一业务和第二业务需要高级别的业务连续性,或者第一指示用于指示先建立切换后的IP地址后释放切换前的IP地址。SMF网元在完成第一业务和第二业务会话建立或修改之后向第二中继UE发送第二指示和第四指示,当所述第二中继UE接收所述第二指示和所述第四指示时,所述第二中继UE向远端UE发送释放切换前资源的第三指示。
在一种可能的设计中,第二中继UE确定第一业务的SSC模式为和第二业务的SSC模式皆为第三模式时才向SMF网元发送第一指示。当第二中继UE接收到来自远端UE的第二指示和第四指示之后,才向远端UE发送第三指示。
在一种可能的设计中,第二中继UE根据如下方式中的至少一种方式确定第一业务的SSC模式,以及第二业务的SSC模式。方式一,第二中继UE根据来自远端UE的中继业务标识确定第一业务和第二业务的SSC模式为第三模式;方式二,第二中继UE根据来自远端UE的第一通信请求消息(或者第一通信请求消息和第二通信请求消息)的类型确定第一业务和第二业务的SSC模式为第三模式;方式三,第二中继UE根据来自远端UE的消息中的用于指示第一业务和第二业务的SSC模式为第三模式的指示信息,确定第一业务和第二业务的SSC模式为第三模式。
在一种可能的设计中,第二中继UE在接收到第一通信请求消息时,为第一业务建立或修改协议数据单元PDU会话,另外,第二中继UE接收来自第一会话管理功能网元的PDU会话的第四地址,且第二中继UE还为远端UE分配所述第四地址上用于传输第一业务的数据的端口号,最终第二中继UE建立PDU会话的标识、第四地址和端口号之间的对应关系。
在一种可能的设计中,第二中继UE还向第一会话管理功能网元发送远端UE的标识信息、第四地址和端口号;或者第二中继UE还向第一会话管理功能网元发送远端UE的标识信息、PDU会话的标识信息和端口号,以便于第一会话管理功能网元建立并保存上述信息之间的绑定关系。
第二方面,本申请实施例提供一种实现业务连续性的方法,该方法可以由远端UE或远端UE的内部芯片执行,该方法适用于远端UE的传输路径发生切换,且切换后远端UE通过第二中继UE接入网络的场景。该方法包括:远端UE接收来自第二中继UE的第一业务的标识信息,该第一业务的标识信息用于指示第一业务切换成功;之后,远端UE根据第一业务的标识信息,确定远端UE的第一业务切换至第二中继UE之前所接入的第一中继UE,然后远端UE向第一中继UE发送用于指示释放所述远端UE切换前的资源的第五指示,第一中继UE收到该第五指示后释放切换前的资源。
本申请实施例中,该方法可以实现在远端UE的业务切换成功后才释放切换前的资源,即断开之前的会话连接,既可以保证远端UE的业务的连续性,还可以提高资源利用率。
在一种可能的设计中,第五指示用于指示释放所述远端UE切换前的资源包括:第五指示用于指示释放第一中继UE为远端UE分配的第一地址,例如第一中继UE为远端UE分配的第一地址可以为IPv4地址+端口号/端口范围;或者第一地址为IPv6地址。第一中继UE释放第一地址之后,通知远端UE该第一地址已释放。或者,远端UE接收来自第一中继UE的第五指示之后,远端UE也同步释放该第一地址。
第三方面,本申请实施例提供一种实现业务连续性的方法,该方法可以由远端UE或远端UE的内部芯片执行,该方法适用于远端UE的传输路径发生切换,且切换后远端UE通过第二中继UE接入网络的场景。该方法包括:远端UE接收来自第二中继UE的第一业务的标识信息,该第一业务的标识信息用于指示第一业务切换成功,之后,远端UE根据第一业务的标识信息,释放远端UE切换前的资源。
在一种可能的设计中,远端UE释放所述远端UE切换前的资源,包括:远端UE释放第一中继UE为所述远端UE分配的第一地址,其中,第一中继UE为远端UE的第一业务切换至所述第二中继UE之前所接入的中继UE。远端UE释放第一地址之后,通知第一 中继UE该第一地址已释放。
在一种可能的设计中,远端UE通知第一中继UE删除第一地址、第二地址和端口号,其中,该第一地址是第一中继UE为远端UE分配的地址,第二地址是第一中继UE和第一用户面网元功能网元之间传输第一业务数据的地址,端口号是第一中继UE为第一业务的PDU会话分配的端口号。
本申请实施例中,该方法可以实现在远端UE的业务切换成功后才释放切换前的资源,即断开之前的会话连接,既可以保证远端UE的业务的连续性,还可以提高资源利用率。
第四方面,本申请实施例提供一种实现业务连续性的方法,该方法可以由第一中继UE或第一中继UE的内部芯片执行,该方法适用于远端UE的传输路径发生切换,且切换后远端UE通过第二中继UE接入网络的场景。该方法包括:第一中继UE接收来自远端UE的第五指示,第一中继UE根据该第五指示释放远端UE从第一中继UE切换至第二中继UE之前的资源。
在一种可能的实施例中,第一中继UE还通知第二会话管理功能网元和第二用户面功能网元释放所述远端UE切换前的资源。其中,该切换前的资源可以包括第一中继UE为远端UE分配的第一地址。
本申请实施例中,该方法可以实现在远端UE的业务切换成功后,第一中继UE才释放切换前的资源,即断开之前的会话连接,既可以保证远端UE的业务的连续性,还可以提高资源利用率。
第五方面,本申请实施例提供一种实现业务连续性的方法,该方法可以由第二会话管理功能网元或第二会话管理功能网元的内部芯片执行,该方法适用于远端UE的传输路径发生切换,且切换后远端UE通过第二中继UE接入网络的场景。该方法包括:第二会话管理功能网元接收来自第二中继UE的第一指示,且第一指示是远端UE的第一业务切换到第二中继UE之后生成,第二会话管理功能网元根据第一指示,在第二会话管理功能网元与第二用户面功能网元之间的接口的会话建立或修改后向第二中继UE发送用于指示第一业务切换成功的第二指示,从而第二中继UE指示远端UE释放切换前的资源。
本申请实施例中,在远端UE所连接的中继UE发生切换时,第二会话管理功能网元将远端UE的业务切换成功后才指示断开之前的会话,从而保证远端UE的业务的连续性,另外,远端UE切换前资源在完成切换后被及时释放,以提高资源利用率。
在一种可能的设计中,第二会话管理功能网元为第一业务建立或自修改的PDU会话分配第四地址,第二会话管理功能网元接收来自第二中继UE的远端UE的标识信息和端口号,第二会话管理功能网元绑定所述第一业务的标识信息、所述第四地址、所述远端UE的标识信息和所述端口号;或者,第二会话管理功能网元接收来自所述第二中继UE的所述远端UE的标识信息、DU会话的标识信息和端口号,第二会话管理功能网元绑定第一业务的标识信息、第四地址、远端UE的标识信息、PDU会话的标识信息和端口号。
第六方面,本申请实施例提供一种实现业务连续性的方法,该方法可以由统一数据管理功能网元或统一数据管理网元的内部芯片执行,或者,该方法可以由统一数据存储网元或统一数据存储的内部芯片执行。该方法适用于远端UE的传输路径发生切换,且切换后 远端UE通过第二中继UE接入网络的场景。该方法包括:统一数据管理网元或统一数据存储确定服务于远端UE的第一业务的会话管理功能网元从第一会话管理功能网元切换为第二会话管理功能网元;统一数据管理网元或统一数据存储向第一会话管理功能网元发送第一通知,第一通知用于通知第一会话管理功能网元不再向远端UE提供第一业务的服务。
本申请实施例中,切换前的资源的释放过程是由网络侧的数据管理功能网元或统一数据存储触发的,虽然远端UE接入中继UE发生切换,但是仍然是在会话建立或修改后才会释放切换前的资源,高优先级业务连续性的业务的传输并不会被中断,即在传输路径切换前后远端UE和网络服务器之间的业务传输不中断,从而保证业务连续性。
在一种可能的设计中,切换前,统一数据管理网元或统一数据存储接收来自第一会话管理功能网元的切换前第一业务的相关信息;切换后,统一数据管理网元或统一数据存储接收来自第二会话管理功能网元的切换后第一业务的相关信息。统一数据管理网元或统一数据存储可以绑定切换前所述第一业务的相关信息与所述第一会话管理功能网元的标识信息;统一数据管理网元或统一数据存储可以绑定切换后第一业务的相关信息与第二会话管理功能网元的标识信息。当统一数据管理网元或统一数据存储根据与第一业务的相关信息对应的所述第一会话管理功能网元的标识信息,以及与第一业务的相关信息对应的第二会话管理功能网元的标识信息,确定会话管理功能网元不同时,确定服务于远端UE的第一业务的会话管理功能网元从第一会话管理功能网元切换为第二会话管理功能网元;或者,当统一数据管理网元或统一数据存储根据与第一业务的相关信息对应的所述第一中继UE的标识信息,以及与第一业务的相关信息对应的第二中继UE的标识信息,确定中继UE不同时,确定服务于远端UE的第一业务的会话管理功能网元从第一会话管理功能网元切换为第二会话管理功能网元。
在一种可能的设计中,切换前第一业务的相关信息包括远端UE的标识信息。另外,进一步地,切换前第一业务的相关信息还包括以下任意一项或多项:切换前第一业务的数据的端口号、切换前第一业务的PDU会话标识和切换前第一业务的IP地址。
在一种可能的设计中,切换后第一业务的相关信息包括远端UE的标识信息。另外,进一步地,切换后第一业务的相关信息还包括以及以下任意一项或多项:切换后第一业务的数据的端口号、切换后第一业务的PDU会话标识、切换后第一业务互联网协议IP地址。
第七方面,本申请实施例提供一种实现业务连续性的方法,该方法可以由第一会话管理功能网元或第一会话管理功能网元的内部芯片执行,该方法适用于远端UE的传输路径发生切换,且切换后远端UE通过第二中继UE接入网络的场景。该方法包括:第一会话管理功能网元接收来自统一数据管理网元的第一通知,因第一通知用于通知所述第一会话管理功能网元不再向所述远端UE提供所述第一业务的服务;所以第一会话管理功能网元通知第一用户面功能网元和第一中继UE释放远端UE从所述第一中继UE切换至第二中继UE之前的资源。
本申请实施例中,切换前的资源的释放过程是由网络侧的数据管理功能网元触发的,虽然远端UE接入中继UE发生切换,但是仍然是在会话建立或修改后才会释放切换前的资源,高优先级业务连续性的业务的传输并不会被中断,即在传输路径切换前后远端UE和网络服务器之间的业务传输不中断,从而保证业务连续性。
在一种可能的设计中,第一会话管理功能网元通知用户面功能网元和第一中继UE释 放所述远端UE从第一中继UE切换至第二中继UE之前的资源,包括:
第一会话管理功能网元通知第一用户面功能网元释放为第一中继UE的第一业务分配的端口号信息;端口号信息用于指示第一用户面功能网元释放由此端口号信息所指示的端口号收到的下行数据流;
第一会话管理功能网元通知第一中继UE释放第一地址,该第一地址为第一中继UE为远端UE分配的地址。
第八方面,本申请实施例提供一种实现业务连续性的方法,该方法可以由第一中继UE或第一中继UE的内部芯片执行,该方法适用于远端UE的传输路径发生切换,且切换后远端UE通过第二中继UE接入网络的场景。该方法包括:第一中继UE接收来自第一会话管理功能网元的第二通知;第一中继UE根据所述第二通知,释放远端UE从第一中继UE切换至第二中继UE之前的资源。
在一种可能的实施例中,该资源包括第一地址,所述第一地址为第一中继UE为所述远端UE分配的地址。
第九方面,本申请提供一种通信装置,所述通信装置可以为第二中继UE或者设置在第二中继UE内部的芯片。所述通信装置具备实现上述由第二中继UE或者设置在第二中继UE内部的芯片执行的功能,比如,所述通信装置包括执行上述第一方面涉及步骤所对应的模块或单元或手段(means),所述功能或单元或手段可以通过软件实现,或者通过硬件实现,也可以通过硬件执行相应的软件实现。
在一种可能的设计中,所述通信装置包括处理单元、通信单元,其中,通信单元可以用于收发信号,以实现该通信装置和其它装置之间的通信,比如,通信单元用于接收来自远端UE的第一通信请求消息;处理单元可以用于执行该通信装置的一些内部操作。处理单元、通信单元执行的功能可以和上述各方面第二中继UE涉及的步骤相对应。
在一种可能的设计中,所述通信装置包括处理器,还可以包括收发器,所述收发器用于收发信号,所述处理器执行程序指令,以完成上述各方面中任意可能的设计或实现方式中的方法。其中,所述通信装置还可以包括一个或多个存储器,所述存储器用于与处理器耦合。所述一个或多个存储器可以和处理器集成在一起,也可以与处理器分离设置,本申请并不限定。存储器可以保存实现上述各方面涉及的功能的必要计算机程序或指令。所述处理器可执行所述存储器存储的计算机程序或指令,当所述计算机程序或指令被执行时,使得所述通信装置实现上述各方面第二中继UE涉及的任意可能的设计或实现方式中的方法。
在一种可能的设计中,所述通信装置包括处理器和存储器,存储器可以保存实现上述第一方面涉及的功能的必要计算机程序或指令。所述处理器可执行所述存储器存储的计算机程序或指令,当所述计算机程序或指令被执行时,使得所述通信装置实现上述各方面第二中继UE涉及的任意可能的设计或实现方式中的方法。
在一种可能的设计中,所述通信装置包括至少一个处理器和接口电路,其中,至少一个处理器用于通过所述接口电路与其它装置通信,并执行上述各方面任意可能的设计或实现方式中由第二中继UE执行的方法。
第十方面,本申请提供一种通信装置,所述通信装置可以为远端UE或者设置在远端UE内部的芯片。所述通信装置具备实现上述由远端UE或者设置在远端UE内部的芯片执行的功能,比如,所述通信装置包括执行上述第二方面或第三方面涉及步骤所对应的模块或单元或手段(means),所述功能或单元或手段可以通过软件实现,或者通过硬件实现,也可以通过硬件执行相应的软件实现。
在一种可能的设计中,所述通信装置包括处理单元、通信单元,其中,通信单元可以用于收发信号,以实现该通信装置和其它装置之间的通信,比如,通信单元用于接收来自第二中继UE的第三指示;处理单元可以用于执行该通信装置的一些内部操作。处理单元、通信单元执行的功能可以和上述各方面远端UE涉及的步骤相对应。
在一种可能的设计中,所述通信装置包括处理器,还可以包括收发器,所述收发器用于收发信号,所述处理器执行程序指令,以完成上述各方面中任意可能的设计或实现方式中的方法。其中,所述通信装置还可以包括一个或多个存储器,所述存储器用于与处理器耦合。所述一个或多个存储器可以和处理器集成在一起,也可以与处理器分离设置,本申请并不限定。存储器可以保存实现上述各方面涉及的功能的必要计算机程序或指令。所述处理器可执行所述存储器存储的计算机程序或指令,当所述计算机程序或指令被执行时,使得所述通信装置实现上述各方面远端UE涉及的任意可能的设计或实现方式中的方法。
在一种可能的设计中,所述通信装置包括处理器和存储器,存储器可以保存实现上述第一方面涉及的功能的必要计算机程序或指令。所述处理器可执行所述存储器存储的计算机程序或指令,当所述计算机程序或指令被执行时,使得所述通信装置实现上述各方面远端UE涉及的任意可能的设计或实现方式中的方法。
在一种可能的设计中,所述通信装置包括至少一个处理器和接口电路,其中,至少一个处理器用于通过所述接口电路与其它装置通信,并执行上述各方面任意可能的设计或实现方式中由远端UE执行的方法。
第十一方面,本申请提供一种通信装置,所述通信装置可以为第一中继UE或者设置在第一中继UE内部的芯片。所述通信装置具备实现上述由第一中继UE或者设置在第一中继UE内部的芯片执行的功能,比如,所述通信装置包括执行上述第四方面、第八方面涉及步骤所对应的模块或单元或手段(means),所述功能或单元或手段可以通过软件实现,或者通过硬件实现,也可以通过硬件执行相应的软件实现。
在一种可能的设计中,所述通信装置包括处理单元、通信单元,其中,通信单元可以用于收发信号,以实现该通信装置和其它装置之间的通信,比如,通信单元用于接收来自第一会话管理功能网元的第二通知;处理单元可以用于执行该通信装置的一些内部操作。处理单元、通信单元执行的功能可以和上述各方面第一中继UE涉及的步骤相对应。
在一种可能的设计中,所述通信装置包括处理器,还可以包括收发器,所述收发器用于收发信号,所述处理器执行程序指令,以完成上述各方面中任意可能的设计或实现方式中的方法。其中,所述通信装置还可以包括一个或多个存储器,所述存储器用于与处理器耦合。所述一个或多个存储器可以和处理器集成在一起,也可以与处理器分离设置,本申请并不限定。存储器可以保存实现上述各方面涉及的功能的必要计算机程序或指令。所述处理器可执行所述存储器存储的计算机程序或指令,当所述计算机程序或指令被执行时,使得所述通信装置实现上述各方面第一中继UE涉及的任意可能的设计或实现方式中的方 法。
在一种可能的设计中,所述通信装置包括处理器和存储器,存储器可以保存实现上述第一方面涉及的功能的必要计算机程序或指令。所述处理器可执行所述存储器存储的计算机程序或指令,当所述计算机程序或指令被执行时,使得所述通信装置实现上述各方面第一中继UE涉及的任意可能的设计或实现方式中的方法。
在一种可能的设计中,所述通信装置包括至少一个处理器和接口电路,其中,至少一个处理器用于通过所述接口电路与其它装置通信,并执行上述各方面任意可能的设计或实现方式中由第一中继UE执行的方法。
第十二方面,本申请提供一种通信装置,所述通信装置可以为第二会话管理功能网元或者设置在第二会话管理功能网元内部的芯片。所述通信装置具备实现上述由第二会话管理功能网元或者设置在第二会话管理功能网元内部的芯片执行的功能,比如,所述通信装置包括执行上述第五方面涉及步骤所对应的模块或单元或手段(means),所述功能或单元或手段可以通过软件实现,或者通过硬件实现,也可以通过硬件执行相应的软件实现。
在一种可能的设计中,所述通信装置包括处理单元、通信单元,其中,通信单元可以用于收发信号,以实现该通信装置和其它装置之间的通信,比如,通信单元用于接收来自第二中继UE的第一指示;处理单元可以用于执行该通信装置的一些内部操作。处理单元、通信单元执行的功能可以和上述各方面第二会话管理功能网元涉及的步骤相对应。
在一种可能的设计中,所述通信装置包括处理器,还可以包括收发器,所述收发器用于收发信号,所述处理器执行程序指令,以完成上述各方面中任意可能的设计或实现方式中的方法。其中,所述通信装置还可以包括一个或多个存储器,所述存储器用于与处理器耦合。所述一个或多个存储器可以和处理器集成在一起,也可以与处理器分离设置,本申请并不限定。存储器可以保存实现上述各方面涉及的功能的必要计算机程序或指令。所述处理器可执行所述存储器存储的计算机程序或指令,当所述计算机程序或指令被执行时,使得所述通信装置实现上述各方面第二会话管理功能网元涉及的任意可能的设计或实现方式中的方法。
在一种可能的设计中,所述通信装置包括处理器和存储器,存储器可以保存实现上述第一方面涉及的功能的必要计算机程序或指令。所述处理器可执行所述存储器存储的计算机程序或指令,当所述计算机程序或指令被执行时,使得所述通信装置实现上述各方面第二会话管理功能网元涉及的任意可能的设计或实现方式中的方法。
在一种可能的设计中,所述通信装置包括至少一个处理器和接口电路,其中,至少一个处理器用于通过所述接口电路与其它装置通信,并执行上述各方面任意可能的设计或实现方式中由第二会话管理功能网元执行的方法。
第十三方面,本申请提供一种通信装置,所述通信装置可以为统一数据管理网元或者设置在统一数据管理网元内部的芯片。所述通信装置具备实现上述由统一数据管理网元或者设置在统一数据管理网元内部的芯片执行的功能,比如,所述通信装置包括执行上述第六方面涉及步骤所对应的模块或单元或手段(means),所述功能或单元或手段可以通过软件实现,或者通过硬件实现,也可以通过硬件执行相应的软件实现。
在一种可能的设计中,所述通信装置包括处理单元、通信单元,其中,通信单元可以 用于收发信号,以实现该通信装置和其它装置之间的通信,比如,通信单元用于向第一会话管理功能网元发送第一通知;处理单元可以用于执行该通信装置的一些内部操作。处理单元、通信单元执行的功能可以和上述各方面统一数据管理网元涉及的步骤相对应。
在一种可能的设计中,所述通信装置包括处理器,还可以包括收发器,所述收发器用于收发信号,所述处理器执行程序指令,以完成上述各方面中任意可能的设计或实现方式中的方法。其中,所述通信装置还可以包括一个或多个存储器,所述存储器用于与处理器耦合。所述一个或多个存储器可以和处理器集成在一起,也可以与处理器分离设置,本申请并不限定。存储器可以保存实现上述各方面涉及的功能的必要计算机程序或指令。所述处理器可执行所述存储器存储的计算机程序或指令,当所述计算机程序或指令被执行时,使得所述通信装置实现上述各方面统一数据管理网元涉及的任意可能的设计或实现方式中的方法。
在一种可能的设计中,所述通信装置包括处理器和存储器,存储器可以保存实现上述第一方面涉及的功能的必要计算机程序或指令。所述处理器可执行所述存储器存储的计算机程序或指令,当所述计算机程序或指令被执行时,使得所述通信装置实现上述各方面统一数据管理网元涉及的任意可能的设计或实现方式中的方法。
在一种可能的设计中,所述通信装置包括至少一个处理器和接口电路,其中,至少一个处理器用于通过所述接口电路与其它装置通信,并执行上述各方面任意可能的设计或实现方式中由统一数据管理网元执行的方法。
第十四方面,本申请提供一种通信装置,所述通信装置可以为第一会话管理功能网元或者设置在第一会话管理功能网元内部的芯片。所述通信装置具备实现上述由第一会话管理功能网元或者设置在第一会话管理功能网元内部的芯片执行的功能,比如,所述通信装置包括执行上述第五方面涉及步骤所对应的模块或单元或手段(means),所述功能或单元或手段可以通过软件实现,或者通过硬件实现,也可以通过硬件执行相应的软件实现。
在一种可能的设计中,所述通信装置包括处理单元、通信单元,其中,通信单元可以用于收发信号,以实现该通信装置和其它装置之间的通信,比如,通信单元用于接收来自第二中继UE的第一指示;处理单元可以用于执行该通信装置的一些内部操作。处理单元、通信单元执行的功能可以和上述各方面第一会话管理功能网元涉及的步骤相对应。
在一种可能的设计中,所述通信装置包括处理器,还可以包括收发器,所述收发器用于收发信号,所述处理器执行程序指令,以完成上述各方面中任意可能的设计或实现方式中的方法。其中,所述通信装置还可以包括一个或多个存储器,所述存储器用于与处理器耦合。所述一个或多个存储器可以和处理器集成在一起,也可以与处理器分离设置,本申请并不限定。存储器可以保存实现上述各方面涉及的功能的必要计算机程序或指令。所述处理器可执行所述存储器存储的计算机程序或指令,当所述计算机程序或指令被执行时,使得所述通信装置实现上述各方面第一会话管理功能网元涉及的任意可能的设计或实现方式中的方法。
在一种可能的设计中,所述通信装置包括处理器和存储器,存储器可以保存实现上述第一方面涉及的功能的必要计算机程序或指令。所述处理器可执行所述存储器存储的计算机程序或指令,当所述计算机程序或指令被执行时,使得所述通信装置实现上述各方面第一会话管理功能网元涉及的任意可能的设计或实现方式中的方法。
在一种可能的设计中,所述通信装置包括至少一个处理器和接口电路,其中,至少一个处理器用于通过所述接口电路与其它装置通信,并执行上述各方面任意可能的设计或实现方式中由第一会话管理功能网元执行的方法。
第十五方面,本申请实施例提供一种通信系统,该通信系统包括第二中继UE、远端UE、第一中继UE和第二会话管理功能网元,其中;
所述第二中继UE可以用于执行上述第一方面或第一方面中的任意一种方法。
所述远端UE可以用于执行上述第二方面或第二方面中的任意一种方法,或上述第三方面或第三方面中的任意一种方法。
所述第一中继UE可以用于执行上述第四方面或第四方面中的任意一种方法。
所述第二会话管理功能网元可以用于执行上述第五方面或第五方面中的任意一种方法。
第十六方面,本申请实施例提供一种通信系统,该通信系统包括数据管理功能网元、第一会话管理功能网元,其中;
所述数据管理功能网元可以用于执行上述第六方面或第六方面中的任意一种方法。
所述第一会话管理功能网元可以用于执行上述第七方面或第七方面中的任意一种方法。
第十七方面,本申请提供一种计算机可读存储介质,所述计算机存储介质中存储有计算机可读指令,当计算机读取并执行所述计算机可读指令时,使得计算机执行上述各个方面的任一种可能的设计中的方法。
第十八方面,本申请提供一种计算机程序产品,当计算机读取并执行所述计算机程序产品时,使得计算机执行上述各个方面的任一种可能的设计中的方法。
第十九方面,本申请提供一种芯片,所述芯片包括处理器,所述处理器与存储器耦合,用于读取并执行所述存储器中存储的软件程序,以实现上述各个方面的任一种可能的设计中的方法。
附图说明
图1为现有技术提供的一种通信场景示意图;
图2为本申请实施例提供的一种通信系统的架构示意图;
图3A至图3B为本申请实施例提供的两种应用通信场景示意图;
图4为本申请实施例提供的第一种实现业务连续性的方法流程示意图;
图5为本申请实施例提供的第二种实现业务连续性的方法流程示意图;
图6为本申请实施例提供的一种切换前的PDU会话建立方法流程示意图;
图7A为本申请实施例提供的一种切换方法示意图;
图7B为本申请实施例提供的一种切换场景示意图;
图8为本申请实施例提供的一种切换场景示意图;
图9为本申请实施例提供的另一种切换前的PDU会话建立方法流程示意图;
图10为本申请实施例提供的另一种切换方法示意图;
图11为本申请实施例中所涉及的装置的可能的示例性框图;
图12为本申请实施例提供的一种远端UE或第二中继UE的结构示意图;
图13为本申请实施例提供的一种网络设备的结构示意图。
具体实施方式
为了使本申请实施例的目的、技术方案和优点更加清楚,下面将结合附图对本申请实施例作进一步地详细描述。
以下,对本申请实施例中的部分用语进行解释说明,以便于本领域技术人员理解。
1)终端设备(terminal equipment),又称之为终端、用户设备(user equipment,UE)、移动台(mobile station,MS)、移动终端(mobile terminal,MT)等,是一种向用户提供语音和/或数据连通性的设备,例如可以包括具有无线连接功能的手持式设备、或连接到无线调制解调器的处理设备。
该终端可以经无线接入网(radio access network,RAN)与核心网进行通信,与RAN交换语音和/或数据。该终端可以包括用户设备(user equipment,UE)、无线终端、移动终端、订户单元(subscriber unit)、用户站(subscriber station),移动站(mobile station)、远端站(remote station)、接入点(access point,AP)、远端终端(remote terminal)、接入终端(access terminal)、用户终端(user terminal)、用户代理(user agent)、或用户装备(user device)等。在本申请实施例中,远端UE(远端UE)可以通过接入网设备连接到网络,也可以通过中继UE(relay UE)连接到网络。
例如,可以包括移动电话(或称为“蜂窝”电话),具有移动终端的计算机,便携式、袖珍式、手持式、计算机内置的或者车载的移动装置,智能穿戴式设备等。例如,个人通信业务(personal communication service,PCS)电话、无绳电话、会话发起协议(session initiation protocol,SIP)话机、无线本地环路(wireless local loop,WLL)站、个人数字助理(personal digital assistant,PDA)、等设备。
或者,终端设备还可以包括受限设备,例如功耗较低的设备,或存储能力有限的设备,或计算能力有限的设备等。例如包括条码、射频识别(radio frequency identification,RFID)、传感器、全球定位系统(global positioning system,GPS)、激光扫描器等信息传感设备。
作为示例而非限定,在本申请实施例中,智能穿戴式设备,是应用穿戴式技术对日常穿戴进行智能化设计、开发出可以穿戴的设备的总称,如眼镜、手套、手表、服饰及鞋等。智能穿戴式设备即直接穿在身上,或是整合到用户的衣服或配件的一种便携式设备。
智能穿戴式设备不仅仅是一种硬件设备,更是通过软件支持以及数据交互、云端交互来实现强大的功能。广义智能穿戴式设备包括功能全、尺寸大、可不依赖智能手机实现完整或者部分的功能,例如:智能手表或智能眼镜等,以及只专注于某一类应用功能,需要和其它设备如智能手机配合使用,如各类进行体征监测的智能手环、智能头盔、智能首饰等。
或者,该终端还可以是虚拟现实(virtual reality,VR)设备、增强现实(augmented reality,AR)设备、工业控制(industrial control)中的无线终端、无人驾驶(driverless)中的无线终端、远端手术(remote medical surgery)中的无线终端、智能电网(smart grid)中的无 线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端等。
2)(无线)接入网((radio)access network,(R)AN)设备,例如包括基站(例如,接入点),可以是指接入网中在空口通过一个或多个小区与无线终端通信的设备。(无线)接入网设备可用于将收到的空中帧与网际协议(IP)分组进行相互转换,作为远端UE与接入网的其余部分之间的路由器,其中接入网的其余部分可包括IP网络。(无线)接入网设备还可协调对空口的属性管理。
例如,(无线)接入网设备可以包括无线网络控制器(radio network controller,RNC)、节点B(Node B,NB)、基站控制器(base station controller,BSC)、基站收发台(base transceiver station,BTS)、家庭基站(例如,home evolved NodeB,或home Node B,HNB)、基带单元(base band unit,BBU),或无线保真(wireless fidelity,Wi-Fi)接入点(access point,AP)等。
(无线)接入网设备也可以包括长期演进(long term evolution,LTE)系统或演进的LTE系统(LTE-Advanced,LTE-A)或者第四代移动通信技术(the 4th generation mobile communication technology,4G)系统中的演进型基站(NodeB或eNB或e-NodeB,evolutional Node B)。
或者,(无线)接入网设备也可以包括5G系统或新无线(new radio,NR)系统中的下一代节点B(next generation node B,gNB)、收发点(transmission and reception point,TRP),或传输点(transmission point,TP)。
或者,(无线)接入网设备可以也可以包括云接入网(cloud radio access network,CloudRAN)系统中的集中式单元(centralized unit,CU)和/或分布式单元(distributed unit,DU),本申请实施例并不限定。在本申请实施例中,技术术语“(无线)接入网设备”和“接入网设备”可以互换使用。
3)核心网(core network,CN)设备,与多个接入网连接,包括电路交换(Circuit Switched,CS)域和/或数据交换(Packet Switched,PS)域,CS网元有移动交换中心,访问位置寄存器和网关移动交换中心,PS网元有通用分组无线服务(general packet radio service,GPRS)节点和网关GPRS支持节点。一些网元如归属位置寄存器,访问位置寄存器,鉴权中心可以CS域和PS域共享。
4)本申请实施例中“多个”是指两个或两个以上,鉴于此,本申请实施例中也可以将“多个”理解为“至少两个”。“至少一个”,可理解为一个或多个,例如理解为一个、两个或更多个。
例如,包括至少一个,是指包括一个、两个或更多个,而且不限制包括的是哪几个,例如,包括A、B和C中的至少一个,那么包括的可以是A、B、C、A和B、A和C、B和C、或A和B和C。
“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。
另外,字符“/”,如无特殊说明,一般表示前后关联对象是一种“或”的关系。本申请实施例中的术语“系统”和“网络”可被互换使用。
除非有相反的说明,本申请实施例提及“第一”、“第二”等序数词用于对多个对象进行区分,不用于限定多个对象的顺序、时序、优先级或者重要程度。
如上介绍了本申请实施例涉及的一些概念,下面介绍本申请实施例的技术特征。
鉴于此,本申请实施例提供一种实现业务连续性的方法,该方法中当第二中继UE接收来自远端UE的第一通信请求消息之后,第二中继UE确定远端UE的第一业务切换到第二中继UE,因此第二中继UE向第二会话管理功能网元发送第一指示,该第一指示用于指示第二会话管理功能网元与第二用户面功能网元之间的会话建立或修改后发送第二指示,因第二指示用于指示第一业务切换成功,所以当第二中继UE从第二会话管理功能网元接收到第二指示后,第二中继UE向远端UE发送第三指示,远端UE收到第三指示后释放切换前的资源,该方法旨在远端UE所连接的中继UE发生切换时,远端UE的业务切换成功后才断开切换前的传输路径,如断开之前的PDU会话,从而保证远端UE的业务传输不发生中断,从而保证远端UE的连续性,另外,远端UE切换前资源在完成切换后被及时释放,以提高资源利用率。
其中,方法和装置是基于同一发明构思的,由于方法及装置解决问题的原理相似,因此装置与方法的实施可以相互参见,重复之处不再赘述。本申请实施例的描述中,“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。字符“/”一般表示前后关联对象是一种“或”的关系。本申请中所涉及的至少一个是指一个或多个;多个,是指两个或两个以上。另外,需要理解的是,本申请实施例中,核心网设备和接入网设备均可以称为网络设备。在本申请的描述中,为方便说明,本申请实施例可以用“第一”、“第二”等词汇来区分描述,可以理解的是,该类词汇不能理解为指示或暗示相对重要性,也不能理解为指示或暗示顺序。
本申请实施例的技术方案可以应用于各种通信系统,例如:长期演进(long term evolution,LTE)系统,全球互联微波接入(worldwide interoperability for microwave access,WiMAX)通信系统,第五代(5th Generation,5G)通信系统,如新一代无线接入技术(new radio access technology,NR)及未来的通信系统,如6G系统等。具体的,例如,可以应用于机器型态通讯(machine type communication,MTC)的通信场景,也可以应用于基于蜂窝的窄带物联网(narrow band internet of things,NB-IoT)的通信场景,也可以应用于任意下行小数据包的传输场景。
下面将结合附图,对本申请实施例进行详细描述。
图2为本申请实施例适用的一种可能的通信系统的架构示意图。如图2所示统的通信系统架构同样分为无线接入网和核心网两部分。无线接入网为下一代无线接入网(next generation radio access networks,NG-RAN),用于实现无线接入有关的功能。核心网包括:接入和移动性管理功能(access and mobility management function,AMF)网元、会话管理功能(session management function,SMF)网元、用户面功能(user plane function,UPF)网元、统一数据管理(unified data management,UDM)网元等。其中,AMF网元主要负责移动性管理。AMF网元也可称为AMF设备或AMF实体。SMF网元主要负责会话管理。SMF网元也可称为SMF设备或SMF实体。UPF网元主要负责对用户报文进行处理,例如转发等。UE可以通过建立从UE到NG-RAN到UPF到数据网络(data network,DN)之间的会话来访问DN。UDM网元主要用于存储远端UE的签约信息。
应理解的是,本申请实施例提供的通信系统架构仅为一种示例,可以应用于5G系统、先进的长期演进(advanced long term evolution,LTE-A)系统、全球微波互联接入(worldwide interoperability for microwave access,WiMAX),或无线局域网络(wireless local area  networks,WLAN)系统等。
此外,所述通信系统架构还可以适用于面向未来的通信技术,本申请实施例描述的通信系统架构是为了更加清楚的说明本申请实施例的技术方案,并不构成对于本申请实施例提供的技术方案的限定,本领域普通技术人员可知,随着网络架构的演变,本申请实施例提供的技术方案对于类似的技术问题,同样适用。
为便于说明,以该方法应用于图2所示的通信系统架构为例。以下描述中,交互的设备可以包括远端UE、中继UE、RAN、SMF、UPF和UDM等。
本申请实施例提供一种实现业务连续性的方法,该方法可以应用于远端UE从直接接入RAN1切换为远端UE通过第二中继UE接入RAN2的场景,如图3A所示,该场景中,当远端UE与RAN1之间通信信号不好时,远端UE从直接接入RAN1切换为通过第二中继UE接入RAN2。这样,在传输路径切换后,远端UE就可以通过第二中继UE和UPF2之间的传输路径,传输与网络服务器之间的上下行数据。
或者,本申请实施例所提供的方法可以应用于远端UE从接入第一中继UE切换为远端UE接入第二中继UE的场景。如图3B所示,该场景中,当远端UE的位置移动或者远端UE与第一中继UE之间通信信号不好时,远端UE就从连接第一中继UE切换为连接第二中继UE。这样,在传输路径切换后,远端UE就可以通过第二中继UE和UPF2之间的传输路径,传输与网络服务器之间的上下行数据。
需要说明是,在上述图3A和图3B所示的场景中,RAN1和RAN2可以是同一个RAN,也可以是不同的RAN,UPF1和UPF2可以是同一个RAN,也可以是不同RAN,SMF1和SMF2可以是不同的SMF,也可以是同一个SMF。
下面结合附图介绍本申请实施例提供的技术方案。
实施例一
参见图4所示,为本申请实施例提供的第一种实现业务连续性的方法流程示意图,该方法包括如下步骤。
步骤401、第二中继UE接收来自远端UE的第一通信请求消息。其中,第一通信请求消息用于指示远端UE的第一业务切换到第二中继UE。
需要说明的是,在远端UE向第二中继UE发送第一通信请求消息之前,远端UE在切换之前可能通过如图3A所示的方式直接接入RAN;或者,远端UE在切换之前可能通过如图3B所示的方式通过第一中继UE接入RAN。
当远端UE处于网络覆盖之外或远端UE与RAN之间通信信号不好时,远端UE和第二中继UE之间互相发现后,远端UE向第二中继UE发送第一通信请求消息,第一通信请求消息可以是直接指示第一业务切换到第二中继UE的切换请求消息,或者是间接指示第一业务切换到第二中继UE的间接通信请求消息,具体可以参照如下情况中的任一种:
情况a,该第一通信请求消息为切换请求(handover communication request)消息,该切换请求消息本身直接指示远端UE的第一业务切换到第二中继UE。
情况b,该第一通信请求消息是间接通信请求消息。该间接通信请求消息间接指示远端UE的第一业务切换到第二中继UE。
具体的,该间接通信请求消息是远端UE向第二中继UE发送的,是远端UE用于请求与第二中继UE进行通信的请求消息,该间接通信请求消息携带切换请求指示,该切换请求指示远端UE的第一业务切换到第二中继UE。
具体地,切换请求指示可以是该远端UE的标识和第一业务的标识,该远端UE的标识和第一业务的标识可以用于指示远端UE的第一业务切换到第二中继UE,即远端UE的传输路径发生切换。
示例性地,远端UE发现第二中继UE后,与第二中继UE建立PC5通信链接,远端UE通过PC5通信链接通知第二中继UE远端UE的第一业务切换到第二中继UE。例如,远端UE通过PC5通信链接发送中继接入请求,该中继接入请求消息用于指示远端UE的第一业务切换到第二中继UE。示例性地,结合图3B来说,远端UE发现第二中继UE后,远端UE向该第二中继UE发送中继接入请求消息,消息中至少包括远端UE的标识(例如远端UE ID)和第一业务的标识。该远端UE的标识和第一业务的标识可以用于指示远端UE的第一业务切换到第二中继UE,即远端UE的传输路径发生切换。
本申请实施例中,在一种可能的实施例中,当第二中继UE接收到该第一通信请求消息之后,第二中继UE向第二会话管理功能网元请求为该远端UE建立或修改PDU会话,第二会话管理功能网元建立或修改该PDU会话之后,为该PDU会话分配PDU会话的标识信息(PDU Session ID)和PDU会话的第四地址(本文中用IP@2#指代该第四地址)。即在远端UE与第二中继UE之间的PC5安全链接建立成功后,远端UE发起动态主机配置协议(dynamic host configuration protocol,DHCP)流程,第二中继UE为远端UE或远端UE的业务配置第三地址(本文中用IP@1#指代该第三地址)。该第三地址用于远端UE和第二中继UE之间通信。同时第二中继UE为该远端UE分配了在第四地址上与PDU会话锚点或DN通信的端口号(port number)/端口范围(port range)。
具体来说,第二中继UE可以分如下两种方式中的任意一种方式配置第三地址,并按照如下任意两种方式中的任意一下方式建立绑定关系。
方式一,第二中继UE为远端UE分配第三地址是以远端UE为粒度进行分配的,当每个远端UE唯一对应一个第三地址。若该UE包括至少一个业务,其中该至少一个业务包括第一业务,每个业务均有唯一对应的PDU会话的标识信息、网络侧的PDU会话的第四地址、端口号/端口范围和SSC模式,示例性地,第二中继UE建立的绑定关系如表1所示。
表1
Figure PCTCN2021095602-appb-000001
方式二,第二中继UE为远端UE分配第三地址是以业务为粒度进行分配的,第二中 继UE为每个远端UE的每个业务都分配唯一对应的第三地址。若该UE包括至少一个业务,其中该至少一个业务包括第一业务,每个业务都有唯一对应的PDU会话的标识信息、第四地址、端口号/端口范围和SSC模式,示例性地,第二中继UE建立的绑定关系如表2所示。
表2
Figure PCTCN2021095602-appb-000002
在一种可能的实施例中,第二中继UE建立远端UE的标识信息、第四地址和端口号/端口范围之间的绑定关系,并将该绑定关系上报至第二会话管理功能网元;或者第二中继UE建立远端UE的标识信息、PDU会话的标识信息和端口号/端口范围之间的映射关系,并将该绑定关系上报至第二会话管理功能网元。具体地,第二中继UE可以根据为远端UE服务的PDU会话数量进行上报,例如每次上报的绑定关系是与一个PDU会话对应的;或者,第二中继UE也可以通过一次上报将为远端UE服务的PDU会话对应的绑定关系全部上报至第二会话管理功能网元。其中,第二中继UE将上述绑定关系上报至第二会话管理功能网元的具体过程是分为两步进行的,第一步,AMF网元接收来自远端UE的上报信息(remote UE report),若该上报信息包含多个PDU会话的标识信息(PDU session ID);然后,当AMF网元根据PDU会话的标识信息确定对应同一个第二会话管理功能网元时,则AMF网元将上述上报信息转发至该第二会话管理功能网元。
步骤402、第二中继UE向第二会话管理功能网元发送第一指示。第一指示用于指示第二会话管理功能网元与第二用户面功能网元之间接口的会话建立或修改后发送第二指示。
其中,本申请实施例中第一指示可以是切换请求指示2(path switch indication)。示例性地,结合图3B来说,远端UE发现第二中继UE后,远端UE向该第二中继UE发送中继接入请求消息,该中继接入请求消息即上述的第一通信请求消息,第二中继UE收到该中继接入请求消息后,第二中继UE向SMF2网元发送会话建立消息,或者是PDU会话修改请求消息,且在该消息中承载第一业务的标识、远端UE的标识和第一指示,以便于SMF2网元根据第一指示确定远端UE的第一业务切换至第二中继UE后发送第二指示。
当第二中继UE确定第一业务的SSC模式为第三模式时,向第一会话管理功能网元发 送第一指示,具体来说,触发第二中继UE向第二会话管理功能网元发送第一指示的情况可以参见如下情况中的任意一种:
情况A,当第二中继UE从远端UE接收的消息中携带的第一业务的会话和服务连续(session and service continuity,SSC)模式为第三模式时,即第一业务的SSC模式的值为3,因第三模式用于表征第一业务需要高优先级的业务连续性,允许远端UE在切换之前先建立到达同一DN的会话锚点,所以第二中继UE向第二会话管理功能网元发送第一指示。
情况B,第二中继UE根据来自远端UE的第一业务的中继业务标识(relay service code),确定第一业务的SSC模式为第三模式,所以第二中继UE向第二会话管理功能网元发送第一指示。
情况C,第二中继UE根据第一通信请求消息的类型为切换请求,确定所述SSC模式为第三模式,换句话说,当第一通信请求消息为切换请求(handover communication request)消息,第二中继UE确定第一业务的SSC模式是第三模式。
步骤403,第二会话管理功能网元建立或修改第二会话管理功能网元与第二用户面功能网元之间接口的会话。
具体地,因第二会话管理功能网元之前从第二中继UE获取远端UE的标识信息、PDU会话的地址和端口号/端口范围之间的绑定关系,或者远端UE的标识信息、PDU会话的标识信息和端口号/端口范围之间的绑定关系,所以第二会话管理功能网元根据PDU会话的地址或者PDU会话的标识信息与N4会话的标识之间对应关系,确定与之找到对应的一个或多个用户面功能网元,并向第二用户面功能网元发起N4会话修改流程,从而建立或修改第二会话管理功能网元与第二用户面功能网元之间接口的会话,并将端口号或端口范围放在包检测规则(packet detection rule,PDR)中。
需要说明的是,当第二会话管理网元根据第一业务的标识确定不存在与第一业务对应的PDU会话时,则第二会话管理功能网元新建第二会话管理功能网元与第二用户面功能网元之间接口的会话;当第二会话管理网元根据第一业务的标识确定存在与第一业务对应的PDU会话时,则第二会话管理功能网元对该第一业务对应的PDU会话进行修改。
换句话来说,结合上述步骤402,该步骤403还可以包括如下任意一种或多种情况。
第一种情况,第二会话管理功能网元接收第一指示,获知远端UE的第一业务需要切换到第二中继UE,从而在第二会话管理功能网元与第二用户面功能网元之间接口的会话建立或修改后,第二会话管理功能网元向第二中继UE发送第二指示,该情况下也可以说第一指示用于指示远端UE的第一业务切换到第二中继UE。
第二种情况,第二会话管理功能网元接收第一指示,获知远端UE的第一业务的SSC=3,从而在第二会话管理功能网元与第二用户面功能网元之间接口的会话建立或修改后,第二会话管理功能网元向第二中继UE发送第二指示,该情况下也可以说第一指示用于指示第一业务的SSC模式等于3。
第三种情况,第二会话管理功能网元接收第一指示,获知远端UE的第一业务需要高级别的业务连续性,从而在第二会话管理功能网元与第二用户面功能网元之间接口的会话建立或修改后,第二会话管理功能网元向第二中继UE发送第二指示,该情况下也可以说第一指示用于指示第一业务需要高级别的业务连续性。
第四种情况,第二会话管理功能网元接收第一指示,获知远端UE需要先建立切换后的IP地址后释放切换前的IP地址,从而在第二会话管理功能网元与第二用户面功能网元 之间接口的会话建立或修改后,第二会话管理功能网元向第二中继UE发送第二指示,该情况下也可以说第一指示用于指示先建立切换后的IP地址后释放切换前的IP地址。
第五种情况,第二会话管理功能网元接收第一指示,获知远端UE需要先建立切换后的PDU会话址后释放切换前的PDU会话,从而在第二会话管理功能网元与第二用户面功能网元之间接口的会话建立或修改后,第二会话管理功能网元向第二中继UE发送第二指示,该情况下也可以说第一指示用于指示先建立切换后的PDU会话后释放切换前的PDU会话。
步骤404、第二中继UE接收来自第二会话管理功能网元的第二指示,其中第二指示用于指示第一业务切换成功。
具体来说,第二中继UE在执行完N4会话修改后,第二会话管理功能网元向第二中继UE回复第二指示,指示第一业务切换成功,目的是通知第二中继UE,需要业务连续性的PDU会话已经得到网络侧辅助,得到应用层的连续性保障。
步骤405,第二中继UE向远端UE发送第三指示,该第三指示用于指示释放远端UE切换前的资源。
换句话说,上述步骤405可以被理解为如下可能的情况。
第一种可能的情况下,第二中继UE将来自第二会话管理功能网元的第一业务切换成功的消息转发至远端UE,该第一业务切换成功的消息即为用于指示释放远端UE切换前的资源的第三指示,远端UE根据该消息,释放远端UE切换前的资源,也可以说该消息用于指示释放远端UE切换前的资源。
第二种可能的情况下,第二中继UE向远端UE发送动态主机配置协议(dynamic host configuration protocol,DHCP)释放(release)请求消息,该DHCP释放请求消息即为用于指示释放远端UE切换前的资源的第三指示,远端UE根据该DHCP释放请求,释放远端UE切换前的资源,也可以说该DHCP释放请求用于指示释放远端UE切换前的资源。
第三种可能的情况下,因第二中继UE绑定有远端UE的标识信息和第一业务的标识信息,则第二中继UE向远端UE发送第一业务的标识信息和该第三指示,其中,第一业务的标识信息用于指示第一业务的切换成功,远端UE根据第一业务的标识信息和该第三指示,释放远端UE切换前的资源。
步骤406,远端UE释放切换前的资源。
需要说明的是,假设第一中继UE为远端UE分配的地址是以远端UE为粒度进行分配的,远端UE释放切换前的远端UE的资源;假设第一中继UE为远端UE分配的地址是以业务为粒度进行分配的,远端UE释放切换前第一业务的资源。
针对图3A所示的场景,可能存在如下可能的释放资源的方式。
方式A,远端UE在收到第三指示后,远端UE确定切换前接入的SMF1网元和UPF1网元,RAN1通知网络侧的SMF1网元和UPF1网元释放切换前的PDU会话的地址和端口号/端口范围。
针对图3B所示的场景,可能存在如下三种可能的释放资源的方式。
方式一,远端UE在收到第三指示后,远端UE确定切换前所连接的第一中继UE,远端UE释放该第一中继UE为自身分配的第一地址,或者远端UE释放第一中继UE为第一业务分配的第一地址。当远端UE释放完第一地址之后,通知第一中继UE的该第一地址已释放,以便于第一中继UE及时释放第一地址,或者将第一地址配置给其它远端UE或 其它业务。
方式二,远端UE在收到第三指示后,远端UE确定切换前所连接的第一中继UE,远端UE向该第一中继UE发送通知(例如该通知为DHCP释放请求),该通知用于通知第一中继UE释放为远端UE或第一业务分配的第一地址。之后,第一中继UE释放第一地址之后,通知远端UE该第一地址已被释放,因此远端UE停止使用第一地址与第一中继UE进行业务的数据传输,另外第一中继UE还可以通知网络侧的SMF1网元和UPF1网元释放切换前的PDU会话的第二地址和端口号/端口范围。
本申请实施例中,在远端UE的传输路径在发生切换时,虽然切换之后UE会使用新配置的IP地址与网络侧服务器进行通信,但是第二会话管理功能网元与第二用户面功能网元之间接口的会话建立或修改后才会释放切换前的资源,高优先级业务连续性的业务的传输并不会被中断,即在传输路径切换前后远端UE和网络服务器之间的业务传输不中断,从而保证业务连续性。
实施例二
参见图5所示,为本申请实施例提供的第二种实现业务连续性的方法流程示意图,该方法包括如下步骤。
步骤501、第二中继UE接收来自远端UE的通信请求消息。
一种可能的方式的,第二中继UE接收来自远端UE的第一通信请求消息和第二通信请求消息。其中,第一通信请求消息用于指示远端UE的第一业务切换到第二中继UE,第二通信请求消息用于指示远端UE的第二业务切换到第二中继UE。
或者,第二中继UE接收来自远端UE的通信请求消息,该通信请求消息用于指示远端UE的第一业务和第二业务切换到第二中继UE。
需要说明的是,第一业务和第二业务指的是不同的业务,在该实施例二中,第二中继UE还可能接收来自远端UE的其它通信请求消息,在此仅以第一业务和第二业务进行示例性地说明远端UE的多个业务的切换方式,并不对业务的具体数量构成限定。
其中,第二中继UE接收来自远端UE的通信请求消息的具体内容可以参照上述步骤400中的情况a至情况c,第二中继UE接收来自远端UE的第二通信请求消息的具体内容与第一通信请求消息的具体内容类似,在此不再重复说明。
步骤502,第二中继UE向第二会话管理功能网元和第三会话管理功能网元发送第一指示。其中,第一指示用于指示第二会话管理功能网元与第二用户面功能网元之间接口的第一业务的会话建立或修改后发送第二指示;以及第一指示用于指示第三会话管理功能网元与第三用户面功能网元之间接口的第二业务的会话建立或修改后发送第四指示。
换句话说,上述步骤502可以被理解如下可能的两种情况,情况一,第二中继UE向第二会话管理功能网元和第三会话管理功能网元发送指示A,该指示A用于指示第二会话管理功能网元与第二用户面功能网元之间接口的第一业务的会话建立或修改后发送第二指示;以及,第二中继UE向第二会话管理功能网元和第三会话管理功能网元发送指示B,该指示B用于指示第三会话管理功能网元与第三用户面功能网元之间接口的第二业务的会话建立或修改后发送第四指示。也就是说,上述指示A和指示B统称为第一指示。情况二,第二中继UE向第二会话管理功能网元和第三会话管理功能网元发送第一指示,该第一指示既用于指示上述指示A所指示的信息,也用于指示上述指示B所指示的信息。
另外需要说明的是,第一业务的会话中的第二会话管理功能网元和第二业务的会话第三会话管理功能网元可以不同的会话管理功能网元,也可以是同一个会话管理功能网元;第一业务的会话中的第二用户面功能网元和第二业务的会话第三用户面功能网元可以不同的用户面功能网元,也可以是同一个用户面功能网元。也就是说,若第一业务和第二业务由同一会话管理功能网元负责管理,则第一会话管理功能网元和第二会话管理功能网元是同一个会话管理功能网元;若第一业务和第二业务由不同会话管理功能网元负责管理,则第一会话管理功能网元和第二会话管理功能网元是不同的会话管理功能网元。
当第二中继UE确定第一业务的SSC模式为第三模式,以及第二业务的SSC模式为第三模式时,向第一会话管理功能网元发送第一指示,具体来说,触发第二中继UE向第二会话管理功能网元和第三会话管理功能网元发送第一指示的情况可以参见如下情况中的任意一种。
情况A,当第二中继UE从远端UE接收的消息中携带的第一业务的SSC为第三模式时,以及第二业务的SSC模式为第三模式时,即第一业务的SSC模式的值为3,第二业务的SSC模式的值为3,因第三模式用于表征第一业务和第二业务需要高优先级的业务连续性,允许远端UE在切换之前先建立到达同一DN的会话锚点,所以第二中继UE向第二会话管理功能和第三会话管理功能网元发送第一指示。
情况B,第二中继UE根据来自远端UE的第一业务的中继业务标识(relay service code)和第二业务的中继业务标识,确定第一业务和第二业务的SSC模式为第三模式,所以第二中继UE向第二会话管理功能网元和第三会话管理功能网元发送第一指示。
情况C,第二中继UE根据第一通信请求消息的类型为切换请求,确定所述SSC模式为第三模式,换句话说,当第一通信请求消息为切换请求(handover communication request)消息,第二中继UE确定第一业务的SSC模式是第三模式。
步骤503,第二会话管理功能网元建立或修改第二会话管理功能网元与第二用户面功能网元之间接口的第一业务的会话,和第三会话管理功能网元建立或修改第三会话管理功能网元与第三用户面功能网元之间接口的第二业务的会话。
具体地,第一业务的会话的建立或修改过程可以参见上述步骤403,第二业务的会话的建立或修改过程可以参照第一业务,在此不再重复赘述。
步骤504,第二中继UE接收来自第二会话管理功能网元的第二指示,其中第二指示用于指示第一业务切换成功。以及,第二中继UE接收来自第三会话管理功能网元的第四指示,其中第四指示用于指示第二业务切换成功。
具体来说,第二中继UE在执行完N4会话修改后,第二会话管理功能网元向第二中继UE回复第二指示,指示第一业务切换成功;以及第二中继UE在执行完N4会话修改后,第三会话管理功能网元向第二中继UE回复第四指示,指示第二业务切换成功。第二指示和第三指示旨在通知第二中继UE需要业务连续性的PDU会话已经得到网络侧辅助,可以得到应用层的连续性保障。
一种可能的实施例中,若在执行步骤504之前,远端UE还请求切换其它业务,且其它业务需要高优先级业务连续性,则第二中继UE可以等待所有业务的指示业务对应的PDU会话对应的切换成功的指示信息后,才执行步骤505。
需要说明的是,第二指示和第四指示可以承载在同一条消息中,第二中继UE可以从接收的一条消息中获取第二指示和第四指示;第二指示和第四指示可以承载在不同的消息 中,第二中继UE可以分别从接收的消息中获取第二指示和第四指示。
步骤505,第二中继UE向远端UE发送第三指示,该第三指示用于指示释放远端UE切换前的资源。
换句话说,第二中继UE根据上述步骤504中的第二指示和第三指示确定SSC=3的第一业务和第二业务均切换成功,因此第二中继UE才向远端UE发送第三指示。
具体地,该步骤505可以理解为多种情况,可以参照上述步骤405所示的第一种可能的情况至第三种可能的情况,在此不再重复赘述。
步骤506,远端UE释放切换前的资源。
需要说明的是,假设第一中继UE为远端UE分配的地址是以远端UE为粒度进行分配的,远端UE释放切换前的远端UE的资源;假设第一中继UE为远端UE分配的地址是以业务为粒度进行分配的,远端UE释放切换前第一业务的资源和第二业务的资源。
具体地,与第一业务对应的切换前的资源释放过程可以参见上述步骤406,因第二业务对应的切换前的资源释放过程与之类似,所以在此不再赘述。
本申请实施例中,用以实现具有高优先级的业务连续性需求的多个业务均切换成功,远端UE才会释放切换前的资源,高优先级业务连续性的业务的传输并不会被中断,即在传输路径切换前后远端UE和网络服务器之间的业务传输不中断,从而保证业务连续性。
以下进一步结合图3B所示的场景,对上述方法进行举例说明。其中,图6所示的过程对应远端UE切换之前PDU会话建立过程,图7A所示的过程对应远端UE切换之后PDU会话修改过程。
如图6所示,远端UE在切换之前,PDU会话建立过程包括如下步骤。
步骤600,远端UE和第一中继UE之间执行发现流程。
步骤601a,远端UE向第一中继UE发送间接通信请求消息,该间接通信请求消息用于指示远端UE的第一业务切换到第二中继UE。
一种可能的情况下,该间接通信请求消息可以是远端UE向第二中继UE发送的,是远端UE用于请求与第二中继UE进行通信的请求消息,该间接通信请求消息携带切换请求指示,该切换请求指示远端UE的第一业务切换到第二中继UE。
具体地,切换请求指示可以是该远端UE的标识和第一业务的标识,该远端UE的标识和第一业务的标识可以用于指示远端UE的第一业务切换到第二中继UE,即远端UE的传输路径发生切换。
步骤601b,第一中继UE接收到间接通信请求消息之后,与远端UE之间建立了PC5安全连接。之后,远端UE和第一中继UE之间可以通过PC5安全连接传递控制面信息。
步骤601c,一种情况,若第一中继UE判断本地无可用的PDU会话为远端UE服务,则第一中继UE可以根据远端UE请求的网络切片的标识(single network dlice selection assistance information,S-NSSAI)、数据网络名词(data network name、DNN)或SSC模式中的至少一个信息建立与业务的一一对应的PDU会话,例如,第一中继UE可以建立与第一业务的标识信息对应的第一PDU会话。其中第一中继UE可以在步骤600或者步骤601a中获得上述S-NSSAI/DNN/SSC mode信息。
需要说明的是,第一中继UE还可以通过第一业务的中继业务标识(relay service code)推测出远端UE请求的SSC模式;或者第一中继UE可以在发送第一通信请求消息之后, 或者在安全PC5连接建立之后通知第一中继UE此次请求对应的SSC模式。
一种可能的情况,若第一中继UE判断本地无可用的PDU会话为远端UE服务,则第一中继UE根据远端UE请求的S-NSSAI/DNN/SSC模式新建与业务的一一对应的PDU会话。另一情况,若第一中继UE判断本地有可用的PDU会话为远端UE服务,则第一中继UE根据远端UE请求的S-NSSAI/DNN/SSC模式修改与业务的一一对应的PDU会话。
步骤601d,当第一中继UE建立与业务对应的PDU会话之后,第一中继UE通过AMF网元从SMF1网元获取该PDU会话的第二IP地址,该第二IP地址用于第一中继UE与对应业务的PDU会话锚点或DN之间的通信。
步骤602,在PC5安全连接建立成功后,远端UE发起DHCP流程,第一中继UE为远端UE或业务分配第一IP地址。第一IP地址用于远端UE和第一中继UE之间通信。
具体来说,第一中继UE可以分如下两种方式中的任意一种方式配置第一地址,并按照如下任意两种方式中的任意一下方式建立绑定关系。
方式一,第一中继UE为远端UE分配唯一对应的第一IP地址,每个远端UE分配有唯一对应的第一IP地址。
方式二,第一中继UE为远端UE的每个业务分配唯一对应的第一IP地址,远端UE的每个业务分配有唯一对应的第一IP地址。另外,第一中继UE为远端UE分配了在第二IP地址上与PDU会话锚点或DN通信的端口号/端口范围。
步骤603,第一中继UE将远端UE的标识信息、第一IP地址、第二IP地址、端口号/端口范围和PDU会话的标识之间进行绑定关系。
情况A,假设第二中继UE为远端UE分配IP地址是以远端UE为粒度进行分配的,当每个远端UE唯一对应一个IP@1,若该UE有至少一个业务,其中该至少一个业务包括上述第一业务,每个业务都有唯一对应的PDU会话的标识信息、PDU会话的第二IP地址、端口号/端口范围和SSC模式,示例性地,如表3所示。
表3
Figure PCTCN2021095602-appb-000003
情况B,假设第二中继UE为远端UE分配IP地址是以业务为粒度进行分配的,第二中继UE为每个远端UE的每个业务都分配唯一对应的第一IP地址,若该UE有至少一个业务,其中该至少一个业务包括上述第一业务,每个业务都有唯一对应的PDU会话的标识信息、PDU会话的第二IP地址、端口号/端口范围和SSC模式,示例性地,如表4所示。
表4
Figure PCTCN2021095602-appb-000004
步骤604,第一中继UE将远端UE的标识信息、第二IP地址、端口号/端口范围之间的绑定关系通知至SMF1网元,或者,第一中继UE将远端UE的标识信息、PDU会话的标识信息、第二IP地址、端口号/端口范围之间的绑定关系通知至SMF1网元。
步骤605,SMF1网元根据第二IP地址或者PDU会话的标识,与N4会话ID对应关系找到对应的一个或多个UPF1网元,并向该一个或多个UPF1网元发起N4会话建立或修改流程,并将端口号/端口范围保存至PDR中。
如图7A所示,远端UE在切换时,PDU会话建立或修改过程包括如下步骤。本申请实施例中,假设在第一业务和第二业务均发生切换的场景下,第一业务和第二业务的会话管理功能均由SMF2负责管理,第一业务和第二业务的用户面功能均由UPF2负责管理。
步骤700,远端UE在传输路径切换之前,远端UE通过第一中继UE连接到网络。
具体地,远端UE可以通过如图6所示的方法与第一中继UE建立连接,并且第一中继UE与网络侧建立PDU会话。
步骤701a,当远端UE发现通信质量不好或下降,无法满足当前业务需求时,远端UE进行中继重选,发现第二中继UE,并向第二中继UE发送第一通信请求消息,该第一通信请求消息用于请求第一业务切换至第二中继UE,或者第一通信请求消息用于请求第一业务和第二业务切换至第二中继UE。
步骤701b,远端UE与第二中继UE建立PC5链接。
步骤702,第二中继UE为远端UE分配第三地址,或者第二中继UE为第一业务和第二业务分别分配第三地址。
步骤703,一种情况下,若第二中继UE判断本地不存在与该业务对应的PDU会话,则第二中继UE可以根据远端UE请求的S-NSSAI/DNN/SSC模式建立与该业务的一一对应的PDU会话,例如,第二中继UE可以建立与第一业务的标识信息对应的第一PDU会话,以及第二中继UE可以建立与第二业务的标识信息对应的第二PDU会话。其中第二中继UE可以在步骤701或者步骤702中获得上述S-NSSAI/DNN/SSC mode信息。
另一情况下,若第二中继UE判断本地有可用的PDU会话为远端UE服务,则第二中继UE根据远端UE请求的S-NSSAI/DNN/SSC模式修改与业务一一对应的PDU会话。第二中继向SMF2网元(对应上文的第二会话管理类功能网元)请求为该远端UE建立或修改PDU会话,SMF2建立或修改该PDU会话之后,为该PDU会话分配PDU会话的标识信息(PDU Session ID)和PDU会话的第四地址。另外,第二中继UE为该远端UE分配了在第四地址上与PDU会话锚点或DN,通信的端口号(port number)/端口范围(port range)。
之后,第二中继UE建立远端UE的标识信息、第四地址和端口号/端口范围之间的绑定关系,或者第二中继UE建立远端UE的标识信息、PDU会话的标识信息和端口号/端口范围之间的映射关系。具体示例可以参见上述表1和表2,在此不再重复赘述。
步骤704,第二中继UE向SMF2发送第一指示,以及远端UE的标识、PDU会话的标识、第四IP地址和端口号/端口范围。
当第二中继UE确定需要切换的业务的SSC模式为第三模式时,向第一会话管理功能网元发送第一指示,触发第二中继UE向第二会话管理功能网元发送第一指示的情况可以参见上述步骤402中情况A至情况C中的任意一种。具体来说,针对需要切换的业务为第一业务的场景下,第一指示可以用于指示远端UE的第一业务切换到第二中继UE,或者第一指示用于指示第一业务的SSC模式等于3,或者第一指示用于指示第一业务需要高级别的业务连续性,再或者第一指示用于指示先建立切换后的IP地址后释放切换前的IP地址。具体可以参见实施例一所示的四种可能的情况。
针对需要切换的业务为第一业务和第二业务的场景下,第一指示可以用于指示远端UE的第一业务和第二业务切换到第二中继UE,或者第一指示用于指示第一业务和第二业务的SSC模式均等于3,或者第一指示用于指示第一业务和第二业务需要高级别的业务连续性,再或者第一指示用于指示先建立切换后的IP地址后释放切换前的IP地址。
步骤705,SMF2网元根据第四地址或者PDU会话标识与N4会话ID对应关系找到对应的至少一个UPF2网元,并向UPF2网元发起N4会话修改流程,将端口号/端口范围保存在PDR中。
步骤706,在执行完N4会话修改后,SMF 2网元向第二中继UE发送用于指示第一业务切换成功的第二指示。
在一种可能的实施例中,若上述步骤701中,第一通信请求消息还用于请求第二业务切换至第二中继UE,或者上述步骤701中还接收第二通信请求消息用于请求第二业务切换至第二中继UE,则SMF 2网元向第二中继UE发送用于指示第二业务切换成功的第四指示。
步骤707,第二中继UE在接收到第一业务和第二业务的第三指示和第四指示后,第二中继UE才通知远端UE释放切换前的资源。
换句话说,第二中继UE在确定所有需要高优先级业务连续性的业务切换成功后,第二中继UE才通知远端UE释放切换前的资源。
其中,第二中继UE通知远端UE释放切换前的资源的方式可以参见上述步骤405中的三种可能的情况。
释放切换前的资源的方式有多种,如图所示。
方式一:
步骤708a,远端UE向第一中继UE发送DHCP释放请求或切换成功通知,用于通知 第一中继UE释放为远端UE或业务分配的IP地址。
步骤709a,第一中继UE收到DHCP释放请求或切换成功通知后,释放为远端UE或业务分配的IP地址。
方式二:
步骤708b,远端UE释放为远端UE或业务分配的第一地址(如表3所示的IP@1)。
具体地,可以参见上述步骤406中,针对图3B所示的场景的三种可能的释放资源的方式,在此不再重复赘述。
步骤710,第一中继UE根据之前建立的绑定关系,确定与会话对应的SMF1和UPF1,从而第一中继通知SMF1和UPF1释放PDU会话的第二地址(如表3所示的IP@2)和端口号/端口范围(如表3所示的端口1),这样,远端UE的下行数据就不会再通过该第二地址和端口号传输,远端UE的切换前的传输路径被断开。
本申请实施例中,该方法可以实现远端UE的业务切换成功后才断开之前的会话,从而保证远端UE的业务的连续性,另外,远端UE切换前资源在完成切换后被及时释放,以提高资源利用率。
在一种可能的实施例中,假设远端UE的传输路径在切换前后由同一个SMF网元负责管理,并且切换前后由同一个UPF网元负责管理的场景下,结合图7B来说,远端UE在切换之前,远端UE通过第一中继UE接入网络。第一中继UE建立第一业务对应的PDU会话,第一中继UE为远端UE分配第一IP地址(如图所示的IP@1),第一中继UE从SMF网元获取第一PDU会话的第二IP地址( 如图所示的IP@2),以及第一中继为远端UE分 配了在第二IP地址上与PDU会话锚点或DN通信的第一端口号/端口范围。第一中继建立 远端UE的标识信息、第一IP地址、第二IP地址、第一PDU会话的标识信息和第一端口号/端口范围之间的绑定关系。另外,SMF网元通过从第一中继UE获取的消息,建立远端UE的标识信息、IP@2、第一PDU会话的标识信息、第一端口号/端口范围之间的绑定关系。
在远端UE在切换之后,远端UE通过第二中继UE接入网络。第二中继UE修改第一业务对应的第一PDU会话,第二中继UE为远端UE分配第三IP地址(如图所示的IP@1#),第二中继UE从SMF网元获取修改后的第一PDU会话的第四IP地址( 如图所示的IP@2#), 以及第二中继为远端UE分配了在第四IP地址上与PDU会话锚点或DN通信的第二端口 号/端口范围。第二中继建立远端UE的标识信息、第三IP地址、第四IP地址、第一PDU会话的标识信息和第二端口号/端口范围之间的绑定关系。另外,SMF网元通过从第二中继UE获取的消息,建立远端UE的标识信息、IP@2#、第一PDU会话的标识信息、第二端口号/端口范围之间的绑定关系。之后,第二中继UE通知远端UE释放切换的资源。远端UE收到通知后,通知第一中继UE释放第一IP地址,第一中继UE通过SMF网元释放切换的绑定关系。
这样,对远端UE来说,在远端UE的传输路径切换前后,远端UE的业务对应的会话建立或修改后才会释放切换前的资源,高优先级业务连续性的业务的传输并不会被中断,即在传输路径切换前后远端UE和网络服务器之间的业务传输不中断,从而保证业务连续性。
实施例三
参见图8所示,为本申请实施例提供的第三种实现业务连续性的方法流程示意图,远端UE的传输路径在切换前后由同一个UDM网元或统一数据存储(unified data repository,UDR)负责管理,该方法包括如下步骤。
步骤801、UDM或UDR确定服务于远端UE的第一业务的会话管理功能网元从第一会话管理功能网元切换为第二会话管理功能网元。
具体地,在切换前,远端UE通过第一中继UE接入网络,第一中继UE向第一会话管理功能网元上报切换前的第一业务的相关信息,第一会话管理功能网元将第一业务的相关信息上报至UDM或UDR,UDM或UDR进一步地在第一业务的相关信息中添加为该第一会话管理功能网元的标识和第一中继UE的标识,示例性,UDM或UDR中保存的切换前的第一业务的相关信息如表5所示。
表5
Figure PCTCN2021095602-appb-000005
在切换后,远端UE通过第二中继UE接入网络,第二中继UE向第二会话管理功能网元上报切换后的第一业务的相关信息,第二会话管理功能网元将第一业务的相关信息上报至UDM或UDR,UDM或UDR进一步地在第一业务的相关信息中添加为该第二会话管理功能网元的标识和第二中继UE的标识,示例性,UDM或UDR中保存的切换后的第一业务的相关信息如表6所示。
表6
Figure PCTCN2021095602-appb-000006
方式一,UDM或UDR根据与第一业务的相关信息对应的第一会话管理功能网元的标识信息,以及与第一业务的相关信息对应的第二会话管理功能网元的标识信息,确定服务于远端UE的第一业务的会话管理功能网元从第一会话管理功能网元切换为第二会话管理功能网元。示例性地,UDM或UDR根据表5和表6中SMF网元的标识,确定第一业务的会话管理功能网元从第一会话管理功能网元切换为第二会话管理功能网元。
方式二,UDM或UDR根据与第一业务的相关信息对应的第一中继UE的标识信息, 以及与第一业务的相关信息对应的第二中继UE的标识信息,确定服务于远端UE的中继UE发生切换,从而UDM或UDR根据远端UE的标识或端口号等,确定切换前后为远端UE服务的第一会话管理功能网元和第二会话管理功能网元。
步骤802,UDM或UDR向第一会话管理功能网元发送第一通知,该第一通知用于通知第一会话管理功能网元不再向远端UE提供第一业务的服务。
换句话来说,UDM或UDR指示第一会话管理功能网元释放由切换前分配的端口号所接收的下行数据流。
步骤803,第一会话管理功能网元释放远端UE切换前的资源。
具体地,第一会话管理功能网元释放为第一业务的PDU会话分配的IP地址。
步骤804,第一会话管理功能网元通知用户面功能网元和第一中继UE释放远端UE从第一中继UE切换至第二中继UE之前的资源。
具体地,第一会话管理功能网元通知用户面功能网元释放为第一中继UE的第一业务分配的端口号信息。另外,第一会话管理功能网元通知第一中继UE释放第一地址,第一中继UE收到通知后,释放远端UE为远端UE分配的第一地址和端口号信息。
本申请实施例中,与上述实施例一和实施例二不同之处在于,切换前的资源的释放过程是由网络侧触发的,虽然远端UE接入中继UE发生切换,但是仍然是在会话建立或修改后才会释放切换前的资源,高优先级业务连续性的业务的传输并不会被中断,即在传输路径切换前后远端UE和网络服务器之间的业务传输不中断,从而保证业务连续性。
以下进一步结合图3B所示的场景,对上述方法进行举例说明。其中,图9所示的过程对应远端UE切换之前PDU会话建立过程,图10所示的过程对应远端UE切换之后PDU会话修改过程。
如图9所示,远端UE在切换之前,PDU会话建立过程包括如下步骤。
步骤900至步骤905同图6所示的步骤601至步骤605。
步骤906,SMF1网元将获得的第一业务的绑定关系上报至UDM,例如,SMF1网元向UPF1网元上报远端UE的标识信息、第二IP地址、端口号/端口范围、PDU会话的标识等。
步骤907,UDM在该绑定关系的基础上又添加为此PDU会话服务的SMF1的标识,以及第一中继UE的标识信息。
如图10所示,远端UE在切换时,PDU会话建立会修改过程包括如下步骤。
步骤1000,在远端UE与第二中继UE之间建立连接的时候,远端UE向第二中继UE发送的通信请求消息中可以不指示该通信请求消息为切换请求。
步骤1001至步骤1005同图7A所示的步骤701至步骤705。
步骤1006,SMF2网元将获得的第一业务的绑定关系上报至UDM,例如,SMF2网元向UPF2网元上报远端UE的标识信息、第四IP地址、端口号/端口范围、PDU会话的标识等。
步骤1007,UDM在该绑定关系的基础上又添加为此PDU会话服务的SMF2的标识,以及第二中继UE的标识信息。
步骤1008,UDM确定服务远端UE的中继UE的标识发生了变化,则UDM确定与 远端UE的标识对应的SMF 1。UDM通知SMF1网元、第一中继UE不需要继续为远端UE的第一业务提供服务,例如,UDM向SMF1网元发送“中继服务更改指示”,该“中继服务更改指示”用于通知SMF1远端UE的中继UE发生变化。
步骤1009,SMF1网元收到“中继服务更改指示”后,确定第一中继UE对应的PDU会话的标识和端口号,并将该端口号通过N4会话通知给UPF2网元,以便于UPF2网元释放掉由此端口范围收到的下行数据流。
步骤1010,SMF1网元通知第一中继UE1,其PDU会话的标识服务的远端UE已经更换中继,第一中继UE1需要释放掉为远端UE分配的IP地址。
步骤1011,第一中继UE释放第一IP地址。
针对于上述实施例一至实施例三,需要说明的是:(1)上述实施例一和实施例三可以分别在不同场景中单独实施,或者也可以在同一场景中结合实施,又或者,不同实施例中所涉及的不同方案也可以结合实施(比如实施例一中所涉及的部分或全部方案可以与实施例三结合实施),具体不做限定。
(2)本申请实施例中所描述的各个流程图的步骤编号仅为执行流程的一种示例,并不构成对步骤执行的先后顺序的限制,本申请实施例中相互之间没有时序依赖关系的步骤之间没有严格的执行顺序。
显然,本领域的技术人员可以对本申请进行各种改动和变型而不脱离本申请的精神和范围。这样,倘若本申请的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。
上述主要从网络设备和终端设备之间交互的角度对本申请实施例提供的方案进行了介绍。可以理解的是,为了实现上述功能,网络设备或终端设备可以包括执行各个功能相应的硬件结构和/或软件模块。本领域技术人员应该很容易意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,本申请的实施例能够以硬件或硬件和计算机软件的结合形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
本申请实施例可以根据上述方法示例对终端设备和网络设备进行功能单元的划分,例如,可以对应各个功能划分各个功能单元,也可以将两个或两个以上的功能集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
在采用集成的单元的情况下,图11示出了本申请实施例中所涉及的装置的可能的示例性框图。如图11所示,装置1100可以包括:处理单元1102和通信单元1103。处理单元1102用于对装置1100的动作进行控制管理。通信单元1103用于支持装置1100与其他设备的通信。可选地,通信单元1103也称为收发单元,可以包括接收单元和/或发送单元,分别用于执行接收和发送操作。装置1100还可以包括存储单元1101,用于存储装置1100的程序代码和/或数据。
该装置1100可以为上述任一实施例中的远端UE、或者还可以为设置在远端UE中的芯片。处理单元1102可以支持装置1100执行上文中各方法示例中远端UE的动作。或者,处理单元1102主要执行方法示例中的远端UE的内部动作,通信单元1103可以支持装置1100与中继设备(如第二中继UE)之间的通信。
该装置1100可以为上述任一实施例中的第二中继UE、或者还可以为设置在第二中继 UE中的芯片。处理单元1102可以支持装置1100执行上文中各方法示例中第二中继UE的动作。或者,处理单元1102主要执行方法示例中的第二中继UE的内部动作,通信单元1103可以支持装置1100与网络设备(如第二会话管理功能网元)之间的通信。
该装置1100可以为上述任一实施例中的第一中继UE、或者还可以为设置在第一中继UE中的芯片。处理单元1102可以支持装置1100执行上文中各方法示例中第一中继UE的动作。或者,处理单元1102主要执行方法示例中的第一中继UE的内部动作,通信单元1103可以支持装置1100与网络设备(如第一会话管理功能网元)之间的通信。
该装置1100可以为上述任一实施例中的网络设备(例如第一会话管理功能网元、第二会话管理功能网元、统一数据管理网元、统一数据存储)、或者还可以为设置网络设备(例如第二会话管理功能网元、统一数据管理网元、统一数据存储)中的芯片。处理单元1102可以支持装置1100执行上文中各方法示例中网络设备的动作。或者,处理单元1102主要执行方法示例中的网络设备的内部动作,通信单元1103可以支持装置1100与网络设备之间的通信。
应理解以上装置中单元的划分仅仅是一种逻辑功能的划分,实际实现时可以全部或部分集成到一个物理实体上,也可以物理上分开。且装置中的单元可以全部以软件通过处理元件调用的形式实现;也可以全部以硬件的形式实现;还可以部分单元以软件通过处理元件调用的形式实现,部分单元以硬件的形式实现。例如,各个单元可以为单独设立的处理元件,也可以集成在装置的某一个芯片中实现,此外,也可以以程序的形式存储于存储器中,由装置的某一个处理元件调用并执行该单元的功能。此外这些单元全部或部分可以集成在一起,也可以独立实现。这里所述的处理元件又可以成为处理器,可以是一种具有信号的处理能力的集成电路。在实现过程中,上述方法的各步骤或以上各个单元可以通过处理器元件中的硬件的集成逻辑电路实现或者以软件通过处理元件调用的形式实现。
在一个例子中,以上任一装置中的单元可以是被配置成实施以上方法的一个或多个集成电路,例如:一个或多个特定集成电路(Application Specific Integrated Circuit,ASIC),或,一个或多个微处理器(digital singnal processor,DSP),或,一个或者多个现场可编程门阵列(Field Programmable Gate Array,FPGA),或这些集成电路形式中至少两种的组合。再如,当装置中的单元可以通过处理元件调度程序的形式实现时,该处理元件可以是处理器,比如通用中央处理器(central processing unit,CPU),或其它可以调用程序的处理器。再如,这些单元可以集成在一起,以片上系统(system-on-a-chip,SOC)的形式实现。
以上用于接收的单元是一种该装置的接口电路,用于从其它装置接收信号。例如,当该装置以芯片的方式实现时,该接收单元是该芯片用于从其它芯片或装置接收信号的接口电路。以上用于发送的单元是一种该装置的接口电路,用于向其它装置发送信号。例如,当该装置以芯片的方式实现时,该发送单元是该芯片用于向其它芯片或装置发送信号的接口电路。
请参考图12,其为本申请实施例提供的一种远端UE或第二中继UE的结构示意图。其可以为以上实施例中的远端UE或第二中继UE,用于实现以上实施例中远端UE或第二中继UE的操作。如图12所示,该远端UE或第二中继UE包括:天线1210、射频部分1220、信号处理部分1230。天线1210与射频部分1220连接。在下行方向上,射频部分1220通过天线1210接收网络设备发送的信息,将网络设备发送的信息发送给信号处理部分1230进行处理。在 上行方向上,信号处理部分1230对远端UE或第二中继UE的信息进行处理,并发送给射频部分1220,射频部分1220对远端UE或第二中继UE的信息进行处理后经过天线1210发送给网络设备。
信号处理部分1230可以包括调制解调子系统,用于实现对数据各通信协议层的处理;还可以包括中央处理子系统,用于实现对远端UE或第二中继UE操作系统以及应用层的处理。
调制解调子系统可以包括一个或多个处理元件1231,例如,包括一个主控CPU和其它集成电路。此外,该调制解调子系统还可以包括存储元件1232和接口电路1233。存储元件1232用于存储数据和程序,但用于执行以上方法中远端UE或第二中继UE所执行的方法的程序可能不存储于该存储元件1232中,而是存储于调制解调子系统之外的存储器中,使用时调制解调子系统加载使用。接口电路1233用于与其它子系统通信。
该调制解调子系统可以通过芯片实现,该芯片包括至少一个处理元件和接口电路,其中处理元件用于执行以上远端UE或第二中继UE执行的任一种方法的各个步骤,接口电路用于与其它装置通信。在一种实现中,远端UE或第二中继UE实现以上方法中各个步骤的单元可以通过处理元件调度程序的形式实现,例如用于远端UE或第二中继UE的装置包括处理元件和存储元件,处理元件调用存储元件存储的程序,以执行以上方法实施例中远端UE或第二中继UE执行的方法。存储元件可以为处理元件处于同一芯片上的存储元件,即片内存储元件。
在另一种实现中,用于执行以上方法中远端UE或第二中继UE所执行的方法的程序可以在与处理元件处于不同芯片上的存储元件,即片外存储元件。此时,处理元件从片外存储元件调用或加载程序于片内存储元件上,以调用并执行以上方法实施例中远端UE或第二中继UE执行的方法。
在又一种实现中,远端UE或第二中继UE实现以上方法中各个步骤的单元可以是被配置成一个或多个处理元件,这些处理元件设置于调制解调子系统上,这里的处理元件可以为集成电路,例如:一个或多个ASIC,或,一个或多个DSP,或,一个或者多个FPGA,或者这些类集成电路的组合。这些集成电路可以集成在一起,构成芯片。
远端UE或第二中继UE实现以上方法中各个步骤的单元可以集成在一起,以SOC的形式实现,该SOC芯片,用于实现以上方法。该芯片内可以集成至少一个处理元件和存储元件,由处理元件调用存储元件的存储的程序的形式实现以上远端UE或第二中继UE执行的方法;或者,该芯片内可以集成至少一个集成电路,用于实现以上远端UE或第二中继UE执行的方法;或者,可以结合以上实现方式,部分单元的功能通过处理元件调用程序的形式实现,部分单元的功能通过集成电路的形式实现。
可见,以上用于远端UE或第二中继UE的装置可以包括至少一个处理元件和接口电路,其中至少一个处理元件用于执行以上方法实施例所提供的任一种远端UE或第二中继UE执行的方法。处理元件可以以第一种方式:即调用存储元件存储的程序的方式执行远端UE或第二中继UE执行的部分或全部步骤;也可以以第二种方式:即通过处理器元件中的硬件的集成逻辑电路结合指令的方式执行远端UE或第二中继UE执行的部分或全部步骤;当然,也可以结合第一种方式和第二种方式执行远端UE或第二中继UE执行的部分或全部步骤。
这里的处理元件同以上描述,可以通过处理器实现,处理元件的功能可以和图9中所描述的处理单元的功能相同。示例性地,处理元件可以是通用处理器,例如CPU,还可以 是被配置成实施以上方法的一个或多个集成电路,例如:一个或多个ASIC,或,一个或多个微处理器DSP,或,一个或者多个FPGA等,或这些集成电路形式中至少两种的组合。存储元件可以通过存储器实现,存储元件的功能可以和图9中所描述的存储单元的功能相同。存储元件可以通过存储器实现,存储元件的功能可以和图9中所描述的存储单元的功能相同。存储元件可以是一个存储器,也可以是多个存储器的统称。
图12所示的远端UE能够实现图4至图10所示意的方法实施例中涉及远端UE的各个过程。图12所示的远端UE中的各个模块的操作和/或功能,分别为了实现上述方法实施例中的相应流程。图12所示的第二中继UE能够实现图4至图10所示意的方法实施例中涉及第二中继UE的各个过程。图12所示的第二中继UE中的各个模块的操作和/或功能,分别为了实现上述方法实施例中的相应流程。具体可参见上述方法实施例中的描述,为避免重复,此处适当省略详述描述。
请参考图13,其为本申请实施例提供的一种网络设备(例如第一会话管理功能网元、第二会话管理功能网元、统一数据管理网元、统一数据存储)的结构示意图。用于实现以上实施例中网络设备(例如第一会话管理功能网元、第二会话管理功能网元、统一数据管理网元、统一数据存储)的操作。如图13所示,该网络设备包括:天线1301、射频装置1302、基带装置1303。天线1301与射频装置1302连接。在上行方向上,射频装置1302通过天线1301接收远端UE或第二中继UE发送的信息,将远端UE或第二中继UE发送的信息发送给基带装置1303进行处理。在下行方向上,基带装置1303对远端UE或第二中继UE的信息进行处理,并发送给射频装置1302,射频装置1302对远端UE或第二中继UE的信息进行处理后经过天线1301发送给远端UE或第二中继UE。
基带装置1303可以包括一个或多个处理元件13031,例如,包括一个主控CPU和其它集成电路。此外,该基带装置1303还可以包括存储元件13032和接口13033,存储元件13032用于存储程序和数据;接口13033用于与射频装置1302交互信息,该接口例如为通用公共无线接口(common public radio interface,CPRI)。以上用于网络设备的装置可以位于基带装置1303,例如,以上用于网络设备的装置可以为基带装置1303上的芯片,该芯片包括至少一个处理元件和接口电路,其中处理元件用于执行以上网络设备执行的任一种方法的各个步骤,接口电路用于与其它装置通信。在一种实现中,网络设备实现以上方法中各个步骤的单元可以通过处理元件调度程序的形式实现,例如用于网络设备的装置包括处理元件和存储元件,处理元件调用存储元件存储的程序,以执行以上方法实施例中网络设备执行的方法。存储元件可以为处理元件处于同一芯片上的存储元件,即片内存储元件,也可以为与处理元件处于不同芯片上的存储元件,即片外存储元件。
在另一种实现中,网络设备实现以上方法中各个步骤的单元可以是被配置成一个或多个处理元件,这些处理元件设置于基带装置上,这里的处理元件可以为集成电路,例如:一个或多个ASIC,或,一个或多个DSP,或,一个或者多个FPGA,或者这些类集成电路的组合。这些集成电路可以集成在一起,构成芯片。
网络设备实现以上方法中各个步骤的单元可以集成在一起,以片上系统(system-on-a-chip,SOC)的形式实现,例如,基带装置包括该SOC芯片,用于实现以上方法。该芯片内可以集成至少一个处理元件和存储元件,由处理元件调用存储元件的存储的程序的形式实现以上网络设备执行的方法;或者,该芯片内可以集成至少一个集成电路, 用于实现以上网络设备执行的方法;或者,可以结合以上实现方式,部分单元的功能通过处理元件调用程序的形式实现,部分单元的功能通过集成电路的形式实现。
可见,以上用于网络设备的装置可以包括至少一个处理元件和接口电路,其中至少一个处理元件用于执行以上方法实施例所提供的任一种网络设备执行的方法。处理元件可以以第一种方式:即调用存储元件存储的程序的方式执行网络设备执行的部分或全部步骤;也可以以第二种方式:即通过处理器元件中的硬件的集成逻辑电路结合指令的方式执行网络设备执行的部分或全部步骤;当然,也可以结合第一种方式和第二种方式执行以上网络设备执行的部分或全部步骤。
这里的处理元件同以上描述,可以通过处理器实现,处理元件的功能可以和图10中所描述的处理单元的功能相同。示例性地,处理元件可以是通用处理器,例如CPU,还可以是被配置成实施以上方法的一个或多个集成电路,例如:一个或多个ASIC,或,一个或多个微处理器DSP,或,一个或者多个FPGA等,或这些集成电路形式中至少两种的组合。存储元件可以通过存储器实现,存储元件的功能可以和图11中所描述的存储单元的功能相同。存储元件可以通过存储器实现,存储元件的功能可以和图11中所描述的存储单元的功能相同。存储元件可以是一个存储器,也可以是多个存储器的统称。
图13所示的网络设备能够实现上述方法实施例中涉及网络设备的各个过程。图13所示的网络设备中的各个模块的操作和/或功能,分别为了实现上述方法实施例中的相应流程。具体可参见上述方法实施例中的描述,为避免重复,此处适当省略详述描述。
本领域内的技术人员应明白,本申请的实施例可提供为方法、系统、或计算机程序产品。因此,本申请可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本申请可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。
本申请是参照根据本申请的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。

Claims (34)

  1. 一种实现业务连续性的方法,其特征在于,包括:
    第二中继UE接收来自远端UE的第一通信请求消息,所述第一通信请求消息用于指示所述远端UE的第一业务切换到所述第二中继UE;
    所述第二中继UE向第二会话管理功能网元发送第一指示,所述第一指示用于指示所述第二会话管理功能网元与第二用户面功能网元之间接口的会话建立或修改后发送第二指示,所述第二指示用于指示所述第一业务切换成功;
    所述第二中继UE接收来自所述第二会话管理功能网元的所述第二指示;
    所述第二中继UE向所述远端UE发送第三指示,所述第三指示用于指示释放所述远端UE切换前的资源。
  2. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    所述第二中继UE绑定所述远端UE的标识信息和所述第一业务的标识信息;
    所述第二中继UE向所述远端UE发送所述第一业务的标识信息,所述第一业务的标识信息用于指示所述第一业务切换成功。
  3. 根据权利要求1所述的方法,其特征在于,所述第三指示用于指示释放所述远端UE切换前的资源包括:所述第三指示用于指示释放所述远端UE切换前的所述第一业务的资源。
  4. 根据权利要求2所述的方法,其特征在于,所述方法还包括:
    所述第二中继UE确定所述第一业务的会话和服务连续SSC模式为第三模式,其中,所述第三模式用于表征所述第一业务具有高优先级的业务连续性需求。
  5. 根据权利要求4所述的方法,其特征在于,
    所述第二中继UE根据来自远端UE的所述第一业务的中继业务标识,确定所述SSC模式为第三模式;
    或者,所述第二中继UE根据所述第一通信请求消息的类型为切换请求,确定所述SSC模式为第三模式;
    或者,所述第二中继UE根据来自所述远端UE的消息中的指示信息,确定所述SSC模式为第三模式,所述指示信息用于指示所述第一业务的SSC模式为第三模式。
  6. 根据权利要求1所述的方法,其特征在于,所述第一通信请求消息用于指示所述远端UE的第一业务切换到所述第二中继,包括:所述第一通信请求消息用于指示所述远端UE的第一业务和第二业务切换到所述第二中继UE;
    或者,所述方法还包括:
    所述第二中继UE接收来自所述远端UE的第二通信请求消息,所述第二通信请求消息用于指示所述远端UE的第二业务切换到所述第二中继UE。
  7. 根据权利要求6所述的方法,其特征在于,所述第一指示还用于指示第二会话管理功能网元与用户面功能网元之间接口的会话建立或修改后发送第四指示,所述第四指示用于指示所述第二业务切换成功;
    所述方法还包括:
    所述第二中继UE接收来自第二会话管理功能网元的第四指示;
    所述第二中继UE向所述远端UE发送第三指示包括:
    当所述第二中继UE接收所述第二指示和所述第四指示时,所述第二中继UE向所述远端UE发送第三指示。
  8. 根据权利要求7所述的方法,其特征在于,所述方法还包括:
    所述第二中继UE确定所述第一业务的SSC模式和所述第二业务的SSC模式皆为第三模式,其中,所述第三模式用于表征所述第一业务需要高优先级的业务连续性。
  9. 根据权利要求1至8任一项所述的方法,其特征在于,所述第二中继UE向第二会话管理功能网元发送第一指示之前,所述方法还包括:
    所述第二中继UE为所述第一业务建立或修改协议数据单元PDU会话;
    所述第二中继UE接收来自第二会话管理功能网元的所述PDU会话的第四地址;
    所述第二中继UE为所述远端UE分配所述第四地址上用于传输所述第一业务的数据的端口号。
  10. 根据权利要求9所述的方法,其特征在于,所述方法还包括:
    所述第二中继UE向所述第二会话管理功能网元发送所述远端UE的标识信息、所述第四地址和所述端口号,或者发送所述远端UE的标识信息、所述PDU会话的标识信息和所述端口号。
  11. 一种实现业务连续性的方法,其特征在于,包括:
    统一数据管理网元确定服务于远端UE的第一业务的会话管理功能网元从第一会话管理功能网元切换为第二会话管理功能网元;
    所述统一数据管理网元向所述第一会话管理功能网元发送第一通知,所述第一通知用于通知所述第一会话管理功能网元不再向所述远端UE提供所述第一业务的服务。
  12. 根据权利要求11所述的方法,其特征在于,所述方法还包括:
    所述统一数据管理网元接收来自所述第一会话管理功能网元的切换前所述第一业务的相关信息;
    所述统一数据管理网元接收来自所述第二会话管理功能网元的切换后所述第一业务的相关信息。
  13. 根据权利要求12所述的方法,其特征在于,所述方法还包括:
    所述统一数据管理网元绑定切换前所述第一业务的相关信息与所述第一会话管理功能网元的标识信息;
    所述统一数据管理网元绑定切换后所述第一业务的相关信息与所述第二会话管理功能网元的标识信息。
  14. 根据权利要求13所述的方法,其特征在于,所述统一数据管理网元确定服务于所述远端UE的第一业务的会话管理功能网元从第一会话管理功能网元切换为第二会话管理功能网元,包括:
    所述统一数据管理网元根据与所述第一业务的相关信息对应的所述第一会话管理功能网元的标识信息,以及与所述第一业务的相关信息对应的所述第二会话管理功能网元的标识信息,确定服务于所述远端UE的第一业务的会话管理功能网元从第一会话管理功能网元切换为第二会话管理功能网元。
  15. 一种通信装置,其特征在于,包括通信单元;
    所述通信单元,用于接收来自远端UE的第一通信请求消息,所述第一通信请求消息用于指示所述远端UE的第一业务切换到所述第二中继UE;
    所述通信单元,还用于向第二会话管理功能网元发送第一指示,所述第一指示用于指示所述第二会话管理功能网元与第二用户面功能网元之间接口的会话建立或修改后发送第二指示,所述第二指示用于指示所述第一业务切换成功;
    所述通信单元,还用于接收来自所述第二会话管理功能网元的所述第二指示;
    所述通信单元,还用于向所述远端UE发送第三指示,所述第三指示用于指示释放所述远端UE切换前的资源。
  16. 根据权利要求15所述的通信装置,其特征在于,还包括处理单元;
    所述处理单元,用于绑定所述远端UE的标识信息和所述第一业务的标识信息;
    所述通知模块,还用于向所述远端UE发送所述第一业务的标识信息,所述第一业务的标识信息用于指示所述第一业务切换成功。
  17. 根据权利要求15所述的通信装置,其特征在于,所述第三指示用于指示释放所述远端UE切换前的资源包括:所述第三指示用于指示释放所述远端UE切换前的所述第一业务的资源。
  18. 根据权利要求16所述的通信装置,其特征在于,所述处理单元,还用于确定所述第一业务的会话和服务连续SSC模式为第三模式,其中,所述第三模式用于表征所述第一业务具有高优先级的业务连续性需求。
  19. 根据权利要求18所述的通信装置,其特征在于,所述处理单元还用于:
    根据来自远端UE的所述第一业务的中继业务标识,确定所述SSC模式为第三模式;
    或者,根据所述第一通信请求消息的类型为切换请求,确定所述SSC模式为第三模式;
    或者,根据来自所述远端UE的消息中的指示信息,确定所述SSC模式为第三模式,所述指示信息用于指示所述第一业务的SSC模式为第三模式。
  20. 根据权利要求15所述的通信装置,其特征在于,所述第一通信请求消息用于指示所述远端UE的第一业务切换到所述第二中继,包括:所述第一通信请求消息用于指示所述远端UE的第一业务和第二业务切换到所述第二中继UE;
    或者,所述通信单元还用于:接收来自所述远端UE的第二通信请求消息,所述第二通信请求消息用于指示所述远端UE的第二业务切换到所述第二中继UE。
  21. 根据权利要求20所述的通信装置,其特征在于,所述第一指示还用于指示第二会话管理功能网元与用户面功能网元之间接口的会话建立或修改后发送第四指示,所述第四指示用于指示所述第二业务切换成功;
    所述通信单元还用于:接收来自第二会话管理功能网元的第四指示;
    所述通信单元向所述远端UE发送第三指示包括:
    当所述通信单元接收所述第二指示和所述第四指示时,向所述远端UE发送第三指示。
  22. 根据权利要求21所述的通信装置,其特征在于,所述处理单元还用于:
    确定所述第一业务的SSC模式为和所述第二业务的SSC模式皆为第三模式,其中,所述第三模式用于表征所述第一业务需要高优先级的业务连续性。
  23. 根据权利要求15至22任一项所述的通信装置,其特征在于,所述通信单元向第二会话管理功能网元发送第一指示之前,所述处理单元还用于:
    为所述第一业务建立或修改协议数据单元PDU会话;
    所述通信单元,还用于接收来自第二会话管理功能网元的所述PDU会话的第四地址;
    所述处理单元,还用于为所述远端UE分配所述第四地址上用于传输所述第一业务的 数据的端口号。
  24. 根据权利要求23所述的通信装置,其特征在于,所述通信单元还用于:
    向所述第二会话管理功能网元发送所述远端UE的标识信息、所述第四地址和所述端口号,或者发送所述远端UE的标识信息、所述PDU会话的标识信息和所述端口号。
  25. 一种通信装置,其特征在于,包括处理单元和通信单元;
    所述处理单元,用于确定服务于远端UE的第一业务的会话管理功能网元从第一会话管理功能网元切换为第二会话管理功能网元;
    所述通信单元,用于向所述第一会话管理功能网元发送第一通知,所述第一通知用于通知所述第一会话管理功能网元不再向所述远端UE提供所述第一业务的服务。
  26. 根据权利要求25所述的通信装置,其特征在于,所述通信单元还用于:
    接收来自所述第一会话管理功能网元的切换前所述第一业务的相关信息;
    接收来自所述第二会话管理功能网元的切换后所述第一业务的相关信息。
  27. 根据权利要求26所述的通信装置,其特征在于,所述通信单元还用于:
    绑定切换前所述第一业务的相关信息与所述第一会话管理功能网元的标识信息;
    绑定切换后所述第一业务的相关信息与所述第二会话管理功能网元的标识信息。
  28. 根据权利要求27所述的通信装置,其特征在于,所述处理单元,用于:
    根据与所述第一业务的相关信息对应的所述第一会话管理功能网元的标识信息,以及与所述第一业务的相关信息对应的所述第二会话管理功能网元的标识信息,确定服务于所述远端UE的第一业务的会话管理功能网元从第一会话管理功能网元切换为第二会话管理功能网元。
  29. 一种通信装置,其特征在于,包括至少一个处理器,所述至少一个处理器与存储器相连,所述至少一个处理器用于读取并执行所述存储器中存储的程序,以使得所述装置执行如权利要求1-10中任一项所述的方法。
  30. 一种通信装置,其特征在于,包括至少一个处理器,所述至少一个处理器与存储器相连,所述至少一个处理器用于读取并执行所述存储器中存储的程序,以使得所述装置执行如权利要求11-14中任一项所述的方法。
  31. 一种通信系统,其特征在于,包括:统一数据管理网元、第一会话管理功能网元;
    所述统一数据管理网元,用于确定服务于远端UE的第一业务的会话管理功能网元从第一会话管理功能网元切换为第二会话管理功能网元,然后向所述第一会话管理功能网元发送第一通知,所述第一通知用于通知所述第一会话管理功能网元不再向所述远端UE提供所述第一业务的服务;
    所述第一会话管理功能网元,用于在接收来自所述统一数据管理网元的第一通知后,通知第一用户面功能网元和第一中继UE释放所述远端UE从所述第一中继UE切换至第二中继UE之前的资源。
  32. 一种芯片,其特征在于,所述芯片与存储器耦合,用于读取并执行所述存储器中存储的程序指令,以实现如权利要求1-14任一项所述的方法。
  33. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质存储有计算机指令,当所述指令在计算机上运行时,使得计算机执行如权利要求1-14任一所述的方法。
  34. 一种包含指令的计算机程序产品,其特征在于,当其在计算机上运行时,使得计算机执行如权利要求1-14任意一项所述的方法。
PCT/CN2021/095602 2020-05-27 2021-05-24 一种实现业务连续性的方法及装置 WO2021238882A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010463560.6 2020-05-27
CN202010463560.6A CN113747516B (zh) 2020-05-27 2020-05-27 一种实现业务连续性的方法及装置

Publications (1)

Publication Number Publication Date
WO2021238882A1 true WO2021238882A1 (zh) 2021-12-02

Family

ID=78723471

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/095602 WO2021238882A1 (zh) 2020-05-27 2021-05-24 一种实现业务连续性的方法及装置

Country Status (2)

Country Link
CN (1) CN113747516B (zh)
WO (1) WO2021238882A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023102907A1 (zh) * 2021-12-10 2023-06-15 Oppo广东移动通信有限公司 无线通信方法、第一终端以及网络设备

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115515091A (zh) * 2022-09-23 2022-12-23 中国电信股份有限公司 网络地址转换方法、中继设备、通信系统以及存储介质

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101867984A (zh) * 2010-02-26 2010-10-20 新邮通信设备有限公司 长期演进增强系统中的切换方法、施主基站和中继节点
CN101938795A (zh) * 2009-07-03 2011-01-05 中兴通讯股份有限公司 一种无线中继系统中的切换方法及系统
CN107690165A (zh) * 2016-08-05 2018-02-13 北京信威通信技术股份有限公司 一种网络连接的方法、基站、中继用户设备及系统
CN107889080A (zh) * 2016-09-29 2018-04-06 中兴通讯股份有限公司 一种支持远端用户设备移动性的方法及装置
WO2018129875A1 (zh) * 2017-01-10 2018-07-19 华为技术有限公司 一种通信路径转换方法及设备
CN108377496A (zh) * 2016-11-14 2018-08-07 中兴通讯股份有限公司 终端鉴权、终端状态切换、下行数据投递方法及装置
WO2018170755A1 (zh) * 2017-03-21 2018-09-27 华为技术有限公司 一种通信方法及设备
CN110402599A (zh) * 2017-03-10 2019-11-01 英特尔Ip公司 用于中继布置的演进节点b(enb)、用户设备(ue)以及在直接通信与间接通信之间切换的方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103037548A (zh) * 2011-10-01 2013-04-10 财团法人资讯工业策进会 基地台及其传输路径建立方法
CN104284383B (zh) * 2013-07-02 2018-01-30 电信科学技术研究院 一种保持业务连续性的方法和装置
US9185635B2 (en) * 2013-09-26 2015-11-10 Broadcom Corporation Method and apparatus for supporting proximity-based services
WO2018067956A1 (en) * 2016-10-06 2018-04-12 Convida Wireless, Llc Session management with relaying and charging for indirect connection for internet of things appplications in 3gpp network

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101938795A (zh) * 2009-07-03 2011-01-05 中兴通讯股份有限公司 一种无线中继系统中的切换方法及系统
CN101867984A (zh) * 2010-02-26 2010-10-20 新邮通信设备有限公司 长期演进增强系统中的切换方法、施主基站和中继节点
CN107690165A (zh) * 2016-08-05 2018-02-13 北京信威通信技术股份有限公司 一种网络连接的方法、基站、中继用户设备及系统
CN107889080A (zh) * 2016-09-29 2018-04-06 中兴通讯股份有限公司 一种支持远端用户设备移动性的方法及装置
CN108377496A (zh) * 2016-11-14 2018-08-07 中兴通讯股份有限公司 终端鉴权、终端状态切换、下行数据投递方法及装置
WO2018129875A1 (zh) * 2017-01-10 2018-07-19 华为技术有限公司 一种通信路径转换方法及设备
CN110402599A (zh) * 2017-03-10 2019-11-01 英特尔Ip公司 用于中继布置的演进节点b(enb)、用户设备(ue)以及在直接通信与间接通信之间切换的方法
WO2018170755A1 (zh) * 2017-03-21 2018-09-27 华为技术有限公司 一种通信方法及设备

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023102907A1 (zh) * 2021-12-10 2023-06-15 Oppo广东移动通信有限公司 无线通信方法、第一终端以及网络设备

Also Published As

Publication number Publication date
CN113747516A (zh) 2021-12-03
CN113747516B (zh) 2022-10-11

Similar Documents

Publication Publication Date Title
US11039361B2 (en) Enhanced 5GSM state mapping when interworking
TWI733216B (zh) 無效協定資料單元會話之處理方法及其使用者設備
KR20190133031A (ko) 통신 방법 및 장치
US11799968B2 (en) Communications method and apparatus
WO2020200034A1 (zh) 一种网络接入的方法和装置
US20230199550A1 (en) Relay Management Method and Communication Apparatus
WO2022048394A1 (zh) 网络连接方法、网络去连接方法及通信装置
US20230112588A1 (en) Communication method and related device
WO2021238882A1 (zh) 一种实现业务连续性的方法及装置
US20230156833A1 (en) Packet Forwarding Method, Apparatus, and System
US20230086410A1 (en) Communication method and communication apparatus
WO2023016501A1 (zh) 传输数据的方法和装置
TW201836382A (zh) 通信方法、輔網絡節點和終端
WO2021088769A1 (zh) 一种通信方法及装置
WO2021189269A1 (zh) 一种实现业务连续性的方法及装置
WO2021043386A1 (en) Communication of terminal with multiple access nodes
WO2023066223A1 (zh) 通信方法、通信装置、以及机算机存储介质
EP4087316A1 (en) Communication method and apparatus
WO2023246746A1 (zh) 一种通信方法及相关设备
WO2023050181A1 (zh) 无线通信方法及无线通信装置
WO2023179262A1 (zh) 小区信息的配置方法、装置、可读存储介质及芯片系统
WO2023273880A1 (zh) 传输方式切换的方法和相关装置
WO2020156182A1 (zh) 服务小区信息的更新方法及装置
WO2022000494A1 (zh) 一种通信方法及装置
WO2023020481A1 (zh) 用于传输数据的方法和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21811878

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21811878

Country of ref document: EP

Kind code of ref document: A1