WO2022048394A1 - 网络连接方法、网络去连接方法及通信装置 - Google Patents

网络连接方法、网络去连接方法及通信装置 Download PDF

Info

Publication number
WO2022048394A1
WO2022048394A1 PCT/CN2021/110993 CN2021110993W WO2022048394A1 WO 2022048394 A1 WO2022048394 A1 WO 2022048394A1 CN 2021110993 W CN2021110993 W CN 2021110993W WO 2022048394 A1 WO2022048394 A1 WO 2022048394A1
Authority
WO
WIPO (PCT)
Prior art keywords
relay
remote
message
network device
network
Prior art date
Application number
PCT/CN2021/110993
Other languages
English (en)
French (fr)
Inventor
窦凤辉
金辉
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2022048394A1 publication Critical patent/WO2022048394A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W60/00Affiliation to network, e.g. registration; Terminating affiliation with the network, e.g. de-registration
    • H04W60/04Affiliation to network, e.g. registration; Terminating affiliation with the network, e.g. de-registration using triggered events
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W40/00Communication routing or communication path finding
    • H04W40/02Communication route or path selection, e.g. power-based or shortest path routing
    • H04W40/22Communication route or path selection, e.g. power-based or shortest path routing using selective relaying for reaching a BTS [Base Transceiver Station] or an access point
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/20Manipulation of established connections
    • H04W76/27Transitions between radio resource control [RRC] states
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/30Connection release
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W8/00Network data management

Definitions

  • the present application relates to the field of communications, and in particular, to a network connection method, a network disconnection method, and a communication device.
  • UE user equipment
  • relay relay
  • the user equipment serving as a relay may be referred to as relay user equipment (relay user equipment, relay UE), and the UE that uses the relay UE to access network equipment may be referred to as remote user equipment (remote user equipment, remote UE).
  • relay user equipment relay user equipment
  • remote user equipment remote user equipment
  • certain restrictions may be imposed on the service area of the UE.
  • the UE When the UE is in certain areas, it cannot actively initiate communication.
  • a service area restriction Service Area Restriction
  • Service area restrictions define allowed areas and non-allowed areas.
  • the messages and data sent by the UE to the network device are not restricted, and the UE can initiate communication with the network device; if the UE is in the non-allowed area, the messages sent by the UE to the network device are subject to certain restrictions (for example, the UE can The network initiates the registration process, but cannot initiate other processes, such as the service request (service request) process or the session management (session management, SM) process), so the UE also cannot send data to the network.
  • service request service request
  • SM session management
  • the relay UE is in the disallowed area but the remote UE is in the allowed area. Since the relay UE is restricted from accessing the network, the relay UE may not be able to provide relay services for the remote UE, so that the remote UE cannot send and receive data, and the normal communication of the remote UE is affected.
  • the embodiments of the present application provide a network connection method, a network disconnection method, and a communication device, so as to reduce the impact on the normal communication of the remote UE as much as possible when the relay UE is in a fee-allowing area.
  • a network connection method is provided, and the method may be performed by, for example, a relay UE, or may also be performed by a component (eg, a chip, a chip system, etc.) configured in the relay UE. This application does not limit this.
  • the method includes: a relay user equipment UE receives a first message or data from a remote UE, where the first message is used to request to connect to a network device through the relay UE, and the data is to be sent to Data of the network device; when the relay UE is in a non-permitted area, it sends a second message to the network device, where the second message is used to request the establishment of the relay UE and the network device the connection between.
  • the remote UE when the relay UE is used as a relay, even if the communication cannot be initiated due to the restriction of the non-permitted area, the remote UE can still send a second message to the network device when the remote UE has service requirements, and request the establishment of The connection with the network device enters and remains in the connected state to provide relay services for remote UEs. Therefore, the influence on the normal communication of the remote UE can be reduced, which is beneficial to improve the user experience.
  • the second message is used to request the establishment of a connection between the relay UE and the network device, including: the second message is used to request the The network device performs the process of bringing the relay UE into the connected state.
  • the second message includes first indication information, where the first indication information is used to indicate that the relay UE provides services for the remote UE.
  • the remote UE described here may be the remote UE mentioned in this embodiment, or may be other remote UEs, which are not limited in this application.
  • the service provided for the remote UE is a relay service.
  • Carrying the first indication information in the second message can facilitate the network device to determine whether to accept the request for establishing the connection between the relay UE and the network device.
  • the second message is a service request message
  • the service request message includes the first indication information
  • the first indication information is used to request the network
  • the device accepts the service request message within the disallowed area.
  • the first indication information is used to request the network device to accept the service request message in the non-permitted area, which can also be understood as a request to exempt the relay UE from the restriction in the non-permitted area.
  • the first indication information is included in the service request message to request to exempt the relay UE from the restriction in the non-permitted area, so that the relay UE can also initiate a service request process in the non-permitted area, and enter the In the connected state, it provides relay services for remote UEs.
  • the second message is a registration request message
  • the registration request message includes the first indication information
  • the first indication information is used to indicate the middle
  • the following UE is used as a relay.
  • the relay UE may initiate a service request process without initiating a registration process when receiving a request from a remote UE to connect to a network device through the relay UE.
  • the relay UE in the non-permitted area enters the connected state by initiating a registration process, and remains in the connected state, thereby being able to provide relay services for the remote UE.
  • the relay UE in the allowed area can still use the existing service request process to provide relay service for the remote UE. Therefore, the changes to the existing protocol are minor.
  • the method further includes: the relay UE sends relay capability information to the network device, where the relay capability information is used to indicate the relay UE Can be used as a relay.
  • the relay capability information can be used by the network device to determine whether the relay UE has the capability to act as a relay, and then determine whether to perform the operation of entering the relay UE into the connected state.
  • a network connection method is provided.
  • the method may be performed by a network device, or may also be performed by a component (eg, a chip, a chip system, etc.) configured in the network device. This application does not limit this.
  • the method includes: the network device receives a second message from the relay user equipment UE; the second message is based on the first message received from the remote UE when the relay UE is in a non-allowed area.
  • a message sent by a message or data the first message is used to request the relay UE to connect to the network device, and the data is the data to be sent to the network device; the second message is used for requesting to establish a connection between the relay UE and the network device; the network device establishes a connection with the relay UE based on the second message.
  • the remote UE when the relay UE is used as a relay, even if the communication cannot be initiated due to the restriction of the non-permitted area, the remote UE can still send a second message to the network device when the remote UE has service requirements, and request the establishment of connections to network devices.
  • the network device may, based on the second message, perform an operation of entering and maintaining the relay UE in the connected state. Therefore, the relay UE can continue to provide relay services for the remote UE, thereby reducing the impact on the normal communication of the remote UE, which is beneficial to improve user experience.
  • the network device establishes a connection with the relay UE based on the second message, including: the network device, based on the second message, An operation of bringing the relay UE into a connected state is performed.
  • the second message includes first indication information, where the first indication information is used to indicate that the relay UE provides services for the remote UE.
  • the remote UE described here may be the remote UE mentioned in this embodiment, or may be other remote UEs, which are not limited in this application.
  • the service provided for the remote UE is a relay service.
  • Carrying the first indication information in the second message can facilitate the network device to determine whether to accept the request for establishing the connection between the relay UE and the network device.
  • the second message is a service request message
  • the service request message includes the first indication information
  • the first indication information is used to request the network
  • the device accepts the service request message within the disallowed area.
  • the first indication information is used to request the network device to accept the service request message in the non-permitted area, which can also be understood as a request to exempt the relay UE from the restriction in the non-permitted area.
  • the method further includes: the network device accepts the service request message based on the first indication information.
  • the first indication information is included in the service request message to request to exempt the relay UE from the restriction in the non-permitted area, so that the relay UE can also initiate a service request process in the non-permitted area, and enter the In the connected state, it provides relay services for remote UEs.
  • the second message is a registration request message
  • the registration request message includes the first indication information
  • the first indication information is used to indicate the middle
  • the following UE is used as a relay.
  • the method further includes: based on the first indication information, the network device maintains the connected state of the UE after the registration process of the relay UE.
  • the relay UE may initiate a service request process without initiating a registration process when receiving a request from a remote UE to connect to a network device through the relay UE.
  • the relay UE in the non-permitted area enters the connected state by initiating a registration process, and remains in the connected state, thereby being able to provide relay services for the remote UE.
  • the relay UE in the allowed area can still use the existing service request process to provide relay service for the remote UE. Therefore, the changes to the existing protocol are minor.
  • the method further includes: receiving, from the network device, relay capability information from the relay UE, where the relay capability information is used to indicate the middle
  • the relay UE can be used as a relay.
  • the network device establishing a connection with the relay UE based on the second message includes: when the network device receives the second message, based on the middle
  • the relay capability information determines whether the relay UE can be used as a relay; the network device establishes a connection with the relay UE under the condition that it is determined that the relay UE can be used as a relay.
  • the relay capability information is used to indicate whether the UE can be used as a relay, that is, whether the UE has relay capability.
  • the relay capability information can be used by the network device to determine whether the relay UE has the capability to act as a relay, and then determines to establish a connection with the relay UE.
  • the network device may accept the request of the relay UE to establish a connection with the network device when the relay UE has the relay capability; when the relay UE does not have the relay capability, refuse the relay UE to establish a connection with the network device. connection request.
  • the first message includes: a request message for the remote UE to request to connect to the network device; or, the remote UE requests to connect with the network device.
  • the relay UE establishes a request message for direct communication.
  • the request message for the remote UE to request to connect to the network device may be understood as a request message for indirect communication between the remote UE and the network device.
  • the request message for the remote UE to request to establish direct communication with the relay UE can be understood as a request message for establishing a PC5 connection between the remote UE and the relay UE. This application does not limit the specific signaling name and form of the first message.
  • a network disconnection method is provided.
  • the method may be performed by the relay UE, or may also be performed by a component (eg, a chip, a chip system, etc.) configured in the relay UE. This application does not limit this.
  • the method includes: the relay UE provides a remote UE with a relay service for connecting to a network device; when the relay UE is in a non-allowed area, sending a disconnection request message to the remote UE, The disconnection request message is used to request to disconnect the connection between the relay UE and the remote UE.
  • the relay UE when it cannot initiate communication due to the restriction of the non-permitted area, it can actively send a disconnection request message to the remote UE to trigger the remote UE to take Corresponding countermeasures are taken to reduce the impact on the normal communication of the remote UE.
  • the method further includes: receiving, by the relay UE, a disconnection request response message from the remote UE.
  • the PC5 connection between the remote UE and the relay UE is disconnected.
  • the relay UE no longer provides relay services for the remote UE.
  • a network connection method is provided.
  • the method may be performed by a remote UE, or may also be performed by a component (eg, a chip, a chip system, etc.) configured in the remote UE. This application does not limit this.
  • the method includes: a remote UE receiving a disconnection request message from a relay UE, where the remote UE is a UE connected to a network device based on a relay service of the relay UE, the disconnection request message is used to request to disconnect the connection between the relay UE and the remote UE; and the remote UE performs device reselection based on the disconnection request message to determine a new relay UE; or
  • the remote UE performs a path switching process from a PC5 interface to a Uu interface, so as to communicate through the Uu interface; wherein, the PC5 interface is an interface used for direct communication between the remote UE and the relay UE, The Uu interface is an interface used for direct communication between the remote UE and a radio access network device.
  • the relay UE when it cannot initiate communication due to the restriction of the non-permitted area, it can actively send a disconnection request message to the remote UE to trigger the remote UE to execute Device discovery or path switching process to maintain normal communication. Therefore, even if the relay UE enters the non-allowed area, it can quickly notify the remote UE, so that the remote UE is not affected by the communication limitation of the relay UE, and the influence on the normal communication of the remote UE is reduced as much as possible.
  • the disconnection request message carries a cause value
  • the cause value is used to indicate that the relay UE is in the non-allowed area.
  • the method further includes: the remote UE sends a disconnection request response message to the relay UE based on the received disconnection request message .
  • the PC5 connection between the remote UE and the relay UE is disconnected.
  • the relay UE no longer provides relay services for the remote UE.
  • a network connection method is provided.
  • the method may be performed by the relay UE, or may also be performed by a component (eg, a chip, a chip system, etc.) configured in the relay UE. This application does not limit this.
  • the method includes: the relay UE receives a first message from a remote UE, where the first message is used to request to connect to a network device through the relay UE; the relay UE is in a non-allowed area when In this case, a rejection message is sent to the remote UE to reject the request of the remote UE.
  • the relay UE when it cannot initiate communication due to the restriction of the non-permitted area, once it receives a request message for establishing a connection from the remote UE, it can refuse to establish the connection, thereby triggering the remote UE to take corresponding measures. countermeasures to reduce the impact on the normal communication of the remote UE.
  • a network connection method is provided.
  • the method may be performed by a remote UE, or may also be performed by a component (eg, a chip, a chip system, etc.) configured in the remote UE.
  • a component eg, a chip, a chip system, etc.
  • the method includes: a remote UE sends a first message to a relay UE, where the first message is used to request to connect to a network device through the relay UE; and the remote UE receives data from the relay UE
  • the rejection message is used to reject the request of the remote UE; and the remote UE performs device reselection based on the rejection message to determine a new relay UE; or the remote UE performs device reselection based on the rejection message.
  • the UE executes the path switching process from the PC5 interface to the Uu interface to communicate through the Uu interface; wherein the PC5 interface is an interface used for direct communication between the remote UE and the relay UE, and the Uu interface is used for direct communication between the remote UE and the relay UE.
  • the interface is an interface used for direct communication between the remote UE and the radio access network device.
  • the relay UE when it cannot initiate communication due to the restriction of the non-permitted area, once it receives a request message for establishing a connection from the remote UE, it can refuse to establish the connection, thereby triggering the remote UE to execute the device. Discovery or path switching process to maintain normal communication. Therefore, even if the relay UE enters the non-allowed area, it can notify the remote UE in time when the remote UE has communication requirements, so that the remote UE is not affected by the communication limitation of the relay UE as much as possible, reducing the Small impact on the normal communication of the remote UE.
  • the rejection message carries a cause value
  • the cause value is used to indicate that the relay UE is in the non-allowed area.
  • the first message includes: a request message from the remote UE for requesting to connect to the network device; or, the remote UE requesting and The relay UE establishes a request message for direct communication.
  • the request message for the remote UE to request to connect to the network device may be understood as a request message for indirect communication between the remote UE and the network device.
  • the request message for the remote UE to request to establish direct communication with the relay UE can be understood as a request message for establishing a PC5 connection between the remote UE and the relay UE. This application does not limit the specific signaling name and form of the first message.
  • the relay UE is a relay service or layer for providing layer 2 (layer 2) for the remote UE 3 (layer 3) relay service.
  • the present application provides a communication apparatus, including each module or unit for executing the method in any possible implementation manner of the first aspect to the sixth aspect.
  • the present application provides a communication device, including: a processor and a communication interface.
  • the processor sends data through the communication interface; the processor is configured to implement the method performed by the relay UE in the first aspect, the third aspect or the fifth aspect.
  • the above communication apparatus further includes: a memory; the memory is used for storing program codes, and the processor executes the program codes stored in the memory, so that the communication apparatus executes the first aspect, The method performed by the relay UE in the third aspect or the fifth aspect.
  • the present application provides a communication device, including: a processor and a communication interface.
  • the processor sends data through the communication interface; the processor is configured to implement the method performed by the network device in the second aspect.
  • the above communication apparatus further includes: a memory; the memory is used for storing program codes, and the processor executes the program codes stored in the memory, so that the communication apparatus executes the second aspect above.
  • the present application provides a communication device, including: a processor and a communication interface.
  • the processor sends data through the communication interface; the processor is configured to implement the method performed by the remote UE in the fourth aspect or the sixth aspect.
  • the above communication apparatus further includes: a memory; the memory is used for storing program codes, and the processor executes the program codes stored in the memory, so that the communication apparatus executes the above fourth aspect or A method performed by a remote UE in the sixth aspect.
  • a computer program product comprising: a computer program (also referred to as code, or instructions), which, when the computer program is executed, causes a computer to execute the above-mentioned first aspect to The method in any possible implementation manner of the sixth aspect.
  • a computer program also referred to as code, or instructions
  • a twelfth aspect provides a computer-readable storage medium, where the computer-readable storage medium stores a computer program (also referred to as code, or instruction), when it is run on a computer, to cause the computer to execute the above-mentioned first
  • a computer program also referred to as code, or instruction
  • the present application provides a system, including the foregoing relay UE, remote UE and network equipment.
  • FIGS. 1 and 2 are schematic diagrams of network architectures to which the methods provided in the embodiments of the present application are applicable;
  • FIG. 3 is a schematic diagram of a user plane protocol stack for a layer 2 relay UE
  • 4 is a schematic diagram of a protocol stack for a layer 3 relay UE
  • 5 is a schematic diagram of an allowed area and a non-allowed area
  • FIG. 6 is a schematic flowchart of a remote UE establishing indirect communication through a layer 2 relay UE;
  • FIG. 7 is a schematic flow chart of a remote UE establishing indirect communication through a relay UE of layer 3;
  • FIGS. 8 to 12 are schematic flowcharts of a network connection method provided by an embodiment of the present application.
  • FIG. 13 and FIG. 14 are schematic block diagrams of a communication apparatus provided by an embodiment of the present application.
  • the technical solutions of the embodiments of the present application can be applied to various communication systems, for example, a fifth generation (5th Generation, 5G) mobile communication system or a new radio access technology (NR).
  • the 5G mobile communication system may include a non-standalone (NSA, NSA) and/or an independent network (standalone, SA).
  • NSA non-standalone
  • SA independent network
  • the technical solutions provided in this application can also be applied to machine type communication (MTC), Long Term Evolution-machine (LTE-M), device-to-device (D2D) Network, machine to machine (M2M) network, internet of things (IoT) network or other network.
  • the IoT network may include, for example, the Internet of Vehicles.
  • vehicle to X, V2X, X can represent anything
  • the V2X may include: vehicle to vehicle (vehicle to vehicle, V2V) communication, vehicle and vehicle Infrastructure (V2I) communication, vehicle to pedestrian (V2P) or vehicle to network (V2N) communication, etc.
  • UE User equipment in the embodiments of the present application may also be referred to as terminal equipment, access terminal, subscriber unit, subscriber station, mobile station, mobile station, remote station, remote terminal, mobile device, user terminal, terminal, and wireless communication device , user agent or user device.
  • the terminal device may be a device that provides voice/data connectivity to the user, such as a handheld device with a wireless connection function, a vehicle-mounted device, and the like.
  • some examples of terminals can be: mobile phone (mobile phone), tablet computer (pad), computer with wireless transceiver function (such as notebook computer, palmtop computer, etc.), mobile internet device (mobile internet device, MID), virtual reality (virtual reality, VR) equipment, augmented reality (augmented reality, AR) equipment, wireless terminals in industrial control (industrial control), wireless terminals in unmanned driving (self driving), wireless terminals in remote medical (remote medical) Terminal, wireless terminal in smart grid, wireless terminal in transportation safety, wireless terminal in smart city, wireless terminal in smart home, cellular phone, cordless Telephone, session initiation protocol (SIP) telephone, wireless local loop (WLL) station, personal digital assistant (PDA), handheld device, computing device or connection with wireless communication capabilities
  • the terminal device may also be a terminal device in an Internet of things (Internet of things, IoT) system.
  • IoT Internet of things
  • IoT is an important part of the development of information technology in the future. Its main technical feature is to connect items to the network through communication technology, so as to realize the intelligent network of human-machine interconnection and interconnection of things. IoT technology can achieve massive connections, deep coverage, and terminal power saving through, for example, narrow-band NB technology.
  • terminal equipment can also include sensors such as smart printers, train detectors, and gas stations.
  • the main functions include collecting data (part of terminal equipment), receiving control information and downlink data of network equipment, and sending electromagnetic waves to transmit uplink data to network equipment. .
  • An access network can provide network access functions for authorized users in a specific area, and can use different quality transmission tunnels according to user levels and service requirements.
  • An access network that implements access network functions based on wireless communication technology is called a radio access network (RAN).
  • the radio access network can manage radio resources, provide access services for the UE, and then complete the forwarding of control signals and user data between the UE and the core network.
  • the radio access network equipment may include, but is not limited to: a radio network controller (radio network controller, RNC), a node B (Node B, NB), a base station controller (base station controller, BSC), a base transceiver station (base transceiver station) station, BTS), home base station (for example, home evolved NodeB, or home Node B, HNB), baseband unit (baseband unit, BBU), AP in WiFi system, wireless relay node, wireless backhaul node, transmission point ( transmission point, TP) or transmission and reception point (TRP), gNB in 5G system, and base station in next-generation communication system, etc.
  • RNC radio network controller
  • RNC radio network controller
  • Node B Node B
  • BSC base station controller
  • base transceiver station base transceiver station
  • BTS home base station
  • home base station for example, home evolved NodeB, or home Node B, HNB
  • baseband unit baseband unit
  • AP in WiFi system
  • the core network (core network) in the embodiment of the present application may be, for example, a core network in a 4G system, a core network (5G core network, 5GC) in a 5G system, or a core network (new generation core network, NGC), etc.
  • the core network device may include, for example, a mobility management entity (MME) in a 4G network, or an access and mobility management function (AMF) network element in a 5G network, or the like, or may also include A network element that can implement mobility management functions in a new generation network. This application does not limit this.
  • the core network device may also include network elements that can be used to implement other functions, such as network elements of a unified policy framework for guiding network behavior, such as policy control function (PCF) network elements; Network elements for session management functions, such as session management function (SMF) network elements; network elements for implementing user plane management functions, such as user plane function (user plane function, UPF) network elements, and so on.
  • PCF policy control function
  • SMF session management function
  • UPF user plane function
  • the core network device and the access network device may be collectively referred to as network devices sometimes.
  • the communication between the UE and the network device involved in the following may specifically refer to that the UE communicates with the core network device through the access network device, for example, the UE communicates with the core network device (such as AMF) through the access network device.
  • the core network device such as AMF
  • a core network device such as a UPF
  • FIG. 1 shows an example of a network architecture to which the methods provided by the embodiments of the present application are applicable.
  • the network architecture may be, for example, the 5G system (the 5h generation system, 5GS) defined in the 3rd Generation Partnership Project (3rd Generation Partnership Project, 3GPP) protocol TS23.501.
  • the network architecture can be divided into two parts: the access network and the core network.
  • the access network can be used to realize functions related to wireless access
  • the core network mainly includes the following key logical network elements: AMF, SMF, UPF, PCF, etc.
  • AMF Mainly used for mobility management and access management, such as user location update, user registration network, user switching, etc.
  • AMF can also be used to implement other functions than session management in mobility management entity (mobility management entity, MME). For example, legal interception, or access authorization (or authentication) and other functions.
  • SMF It is mainly used for session management, UE's Internet Protocol (IP) address allocation and management, selection and management of user plane functions, policy control, or termination point of charging function interfaces, and downlink data notification, etc.
  • IP Internet Protocol
  • the SMF primary user is responsible for session management in the mobile network, such as session establishment, modification, release, and the like.
  • Specific functions may include, for example, assigning IP addresses to terminal devices, selecting UPFs that provide packet forwarding functions, and the like.
  • UPF That is, the data plane gateway. It can be used for packet routing and forwarding, or quality of service (QoS) processing of user plane data. User data can be accessed to a data network (DN) through this network element. In this embodiment of the present application, it can be used to implement the function of the user plane gateway.
  • DN data network
  • Data network An operator network used to provide data services to users.
  • the network of the operator's service the Internet (Internet)
  • the service network of the third party the service network of the third party
  • IP multimedia service service IP multi-media service
  • Authentication service network element (authentication server function, AUSF): mainly used for user authentication, etc.
  • Network exposure function used to securely open services and capabilities provided by 3GPP network functions to the outside world.
  • Network storage network element (network function (NF) repository function, NRF): used to store network function entities and description information of the services they provide, as well as support service discovery, network element entity discovery, etc.
  • NF network function repository function
  • PCF Policy Control Function Network Element
  • Unified data management network element used to store user data, such as subscription information, authentication/authorization information, etc.
  • Application function network element responsible for providing services to the 3GPP network, such as affecting service routing, interacting with PCF for policy control, etc.
  • each network element can communicate through the interface shown in the figure.
  • the N1 interface is the reference point between the UE and the AMF
  • the N2 interface is the reference point between the RAN and the AMF, which is used for sending non-access stratum (NAS) messages
  • the N3 interface is the RAN The reference point between the UPF and the UPF, which is used to transmit data on the user plane, etc.
  • the N4 interface is the reference point between the SMF and the UPF, which is used to transmit, for example, the tunnel identification information of the N3 connection, the data buffer indication information, and the downlink data notification message.
  • the N6 interface is the reference point between the UPF and the DN, and is used to transmit data on the user plane.
  • the relationship between other interfaces and each network element is shown in FIG. 1 , and for the sake of brevity, it will not be described in detail here.
  • the above-mentioned network architecture applied to the embodiments of the present application is only a network architecture described from the perspective of a traditional point-to-point architecture and a service-oriented architecture, and the network architecture applicable to the embodiments of the present application is not limited thereto. Any network architecture capable of implementing the functions of the foregoing network elements is applicable to the embodiments of the present application.
  • Functional network elements for example, can be combined into network slices on demand.
  • These core network elements may be independent devices, or may be integrated into the same device to implement different functions.
  • the present application does not limit the specific forms of the foregoing network elements.
  • FIG. 2 shows another schematic diagram of a network architecture to which the method provided by the embodiment of the present application is applicable.
  • the network architecture shown in FIG. 2 is a possible network architecture in the 5G system, and the network elements and the communication interfaces between the network elements shown in the figure are only examples of network elements and communication interfaces in the 5G system. , shall not constitute any limitation to this application.
  • the network elements and the communication interfaces between the network elements in the figure can be replaced with network elements and communication interfaces with the same or similar functions in other communication systems.
  • the drawings are not described one by one here.
  • the network architecture may include remote UEs, UEs that can implement UE-to-network relay (UE-to-network relay) (referred to as relay UEs for short), gNBs (that is, radio access network equipment) example), 5GC (that is, an example of core network equipment), and data network (DN).
  • UE-to-network relay UE-to-network relay
  • gNBs that is, radio access network equipment
  • 5GC that is, an example of core network equipment
  • DN data network
  • the data network is an operator network that provides data services to users.
  • the data network may include, but is not limited to, a network of operator services, the Internet (Internet), a third-party service network, an IP multimedia service (IP multi-media service) network, and the like.
  • the UE may obtain data from the data network through the network device.
  • the UE can send a service request to the 5GC through the gNB, and the 5GC can obtain the data requested by the UE from the data network based on the service request, and transmit it to the UE through the gNB.
  • the above-mentioned UE may include the above-mentioned relay UE and remote UE.
  • the relay UE may directly communicate with the network device.
  • the relay UE can communicate with the 5GC directly through the gNB.
  • the communication interface between the relay UE and the gNB is the NR Uu interface, and the relay UE can communicate with the gNB through the NR Uu interface.
  • the remote UE can communicate with the network device based on the relay service provided by the relay UE.
  • the remote UE can communicate with the 5GC through the gNB based on the relay service provided by the relay UE.
  • the communication interface between the remote UE and the relay UE is the PC5 interface, and the remote UE can communicate with the relay UE through the PC5 interface.
  • the PC5 interface is a direct communication interface from a terminal device to a terminal device defined in the 3GPP standard, and can be used to support data transmission between any two terminal devices through a direct link within a preset range.
  • a connection based on the PC5 interface may be referred to as a PC5 connection.
  • the communication through the PC5 interface is only a possible implementation manner for realizing the communication between the remote UE and the relay UE in the 5G system shown in FIG. 2 .
  • the remote UE may also be connected to the relay UE in other ways, such as connecting to the relay UE through wifi, or connecting to the relay UE through Bluetooth, etc., which is not limited in this application.
  • a UE can successfully establish a PC5 link (PC5link) with the layer 2 relay UE, the UE can be considered as a remote UE.
  • the remote UE may be within the coverage of the wireless access network, or may be outside the coverage of the wireless access network. This application does not limit this.
  • the relay service provided by the relay UE may specifically refer to forwarding data sent by the remote UE to the network device, or forwarding the network device sent by the network device to the remote UE, so that the network can be effectively extended. Coverage and reduce power consumption of remote UE and core network equipment.
  • the relay service provided by the relay UE may be used to implement layer 2 relay or layer 3 relay.
  • the relay UE may be a layer 2 relay UE or a layer 3 relay UE.
  • the relay UE of layer 2 can provide the connection of the remote UE to the network system (such as a 5G system (5G system, 5GS)).
  • Layer 2 relays belong to the link layer relays. Therefore, the layer 2 relay UE itself does not need to establish a protocol data unit (PDU) session (PDU session), and only needs to enter the connected state to relay the signaling or data of the remote UE to the radio access network device.
  • PDU protocol data unit
  • Figure 3 shows a user plane protocol stack for a layer 2 relay UE.
  • the protocol stack includes: a physical (PHY) layer (including the physical layer of the PC5 interface and the physical layer of the Uu interface), a medium access control (MAC) layer (including the PC5 interface MAC layer and the MAC layer of the Uu interface), radio link control (radio link control, RLC) layer (including the RLC layer of the PC5 interface and the RLC layer of the Uu interface), packet data convergence layer protocol (packet data convergence protocol, PDCP) layer (specifically, the PDCP layer of the Uu interface), the service data adaptation protocol (SDAP) layer (specifically, the SDAP layer of the Uu interface), the protocol data unit (protocol data unit, PDU) layer, the application (application , AP) layer, adaptation (adaptation) layer, IP layer, user data protocol (user datagram protocol, UDP) layer, general packet radio service (general packet radio service, GPRS) tunneling protocol (GPRS tunneling protocol, GTP)
  • the layer 3 relay belongs to the Internet protocol (Internet protocol, IP) layer relay, so the layer 3 relay UE itself needs to establish a PDU session to relay the data of the remote UE at the IP layer. In other words, the data flow of the remote UE can be transmitted through the PDU session of the relay UE.
  • IP Internet protocol
  • the layer 3 relay UE After the layer 3 relay UE triggers the service request process to enter the connected state, it also needs a PDU session to relay the data of the remote UE.
  • the relay UE enters the connected state the user plane connection of the PDU session needs to be established.
  • the user plane connection may refer to including the connection between the relay UE and the UPF, and may specifically include the connection between the relay UE and the access network device and the connection between the access network device and the UPF. After the user plane connection is established, data transmission can be performed.
  • Figure 4 shows the protocol stack for a layer 3 relay UE.
  • the protocol stack includes: layer 1, MAC layer, RLC layer, PDCP layer, SDAP layer, PDU layer, adaptive layer, UDP layer, IP layer, GTP-U layer, etc.
  • the PDU layer relay is located at layer 3, that is, the link layer is above and the application layer is below. It should be understood that the above description about the relay of layer 2 and the relay of layer 3 is only for the convenience of understanding, and should not constitute any limitation to the present application.
  • CM connection management
  • NAS non-access stratum
  • the NAS signaling connection is through the RRC connection between the UE and the access network equipment and the next generation application protocol (NGAP) UE connection used for connecting the access network and the AMF in the 3GPP access technology.
  • NGAP next generation application protocol
  • CM-idle connection management-idle state
  • the N1 interface with the AMF does not have a NAS signaling connection.
  • the UE may perform operations such as cell selection or cell reselection.
  • the service area is restricted.
  • the UE may not be able to initiate communication when it is in certain areas.
  • service area restrictions have been introduced into the 5G system.
  • the service area restriction defines the areas in which the UE can initiate communication and in which areas the UE cannot initiate communication with the network device. Based on whether the UE can initiate communication, service area restrictions can be divided into allowed areas and non-allowed areas. The UE in the allowed area can perform normal service communication with the network.
  • the UE in the non-permitted area is allowed to initiate the registration process, but other communications are not allowed, for example, it is not allowed to initiate a service request, request the connection of the data plane data control panel data, or initiate a session management process to obtain user services; Entry into a non-permitted area triggers network selection or cell reselection.
  • the UE in the non-permitted area can camp as in the permitted area, but cannot actively initiate services (such as chatting, visiting web pages, etc.).
  • the service area restriction is UE level. That is, a certain area is a disallowed area for one UE, but may be an allowed area for another UE.
  • a certain area is a disallowed area for one UE, but may be an allowed area for another UE.
  • their mobile phones ie, an example of UE
  • the military base is a non-allowed area; but for military personnel, their Mobile phones can initiate communication at this military base.
  • the military base is an allowed area.
  • FIG. 5 exemplarily shows the permitted area and the non-permitted area.
  • the allowable area is shown as a solid line in the figure, and the non-allowable area is shown as a dotted line.
  • UE2 can act as a relay UE of UE1, and for UE2, UE1 is a remote UE.
  • the UE2 shown in the figure is currently in the allowable area, and the UE1 can access the network based on the relay service provided by the UE2 to perform normal communication.
  • FIG. 6 shows a flow of establishing indirect communication by a remote UE through a layer 2 relay UE.
  • UE1 and UE2 are within the coverage of the radio access network. It should be understood that the process shown in FIG. 6 is only an example, and should not constitute any limitation to the present application.
  • UE1 may be, for example, UE1 in FIG. 5 , and may be used as an example of a remote UE in the process shown in FIG. 6 ;
  • UE2 may be, for example, UE2 in the allowable area in FIG. As an example of a relay UE.
  • FIG. 6 shows the serving AMF of UE1 (ie, AMF1 in FIG. 6 ) and the serving AMF of UE2 (ie, AMF2 in FIG. 6 ) as different network elements.
  • the serving AMF of UE1 and the serving AMF of UE2 may be the same AMF or different AMFs, which is not limited in this application.
  • both the SMF and the UPF shown in FIG. 6 are the serving SMF and the serving UPF of the UE1, and the serving SMF and the serving UPF of the UE2 are not shown.
  • the serving SMFs of UE1 and UE2 may be the same SMF or different SMFs; the serving UPFs of UE1 and UE2 may be the same UPF or different UPFs. This application does not limit this.
  • relay UE of UE1 it should also be understood that although only one relay UE of UE1 is shown in the figure, this does not limit the number of relay UEs of UE1. As mentioned above, there may be one or more UEs that provide relay services for one UE.
  • the process includes steps 601 to 610 . Each step is described in detail below.
  • step 601 UE1 and UE2 respectively initiate an initial registration process to the network device.
  • UE1 and UE2 can each independently initialize the registration process with the network device.
  • step 602 UE1 and UE2 obtain service authorization (service authorization) respectively.
  • UE1 and UE2 may respectively obtain service authorization for indirect communication from the network device.
  • step 603 UE1 and UE2 perform a device discovery process.
  • UE1 and UE2 may perform device discovery procedures respectively to discover each other.
  • step 604 UE1 performs relay selection.
  • UE1 may select UE2 as its own relay. Therefore, UE1 is a remote UE, and UE2 is a relay UE.
  • step 605 UE1 sends an indirect communication request message to UE2. Accordingly, UE2 receives the indirect communication request message from UE1.
  • UE1 When UE1 has a communication requirement, such as wishing to access a web page, or need to send chat information, etc., it can initiate a one-to-one communication connection with the relay UE based on the PC5 interface by sending an indirect communication request message to UE2.
  • a communication requirement such as wishing to access a web page, or need to send chat information, etc.
  • the indirect communication request can be understood as follows: UE1 communicates with the network device based on the relay service provided by UE2; instead of directly communicating with the network device based on the Uu interface. Therefore, the communication between UE1 and the network device is called indirect communication, and the request of UE1 to request indirect communication is an indirect communication request.
  • step 606 UE2 initiates a service request process.
  • UE2 can enter the connected state by initiating a service request process, and obtain authorization to provide relay services.
  • UE2 may send information to its serving AMF (ie, AMF2) to indicate that UE2 is providing relay services for remote UEs and to instruct the radio access network to maintain the RRC connection with UE2.
  • AMF2 serving AMF
  • step 607 UE2 sends an indirect communication response message to UE1. Accordingly, UE1 receives the indirect communication response message from UE2.
  • UE2 may provide relay service for UE1 after step 606 .
  • UE2 may send an indirect communication response message to UE1.
  • step 608 UE1 sends a non-access stratum (non-access stratum, NAS) message to AMF1. Accordingly, AMF1 receives the NAS message from UE1.
  • NAS non-access stratum
  • UE1 may send a NAS message to its serving AMF (ie, AMF1 ) based on the indirect communication response message received in step 607 .
  • the NAS message can be sent to the UE2 through the PC5 interface, and then forwarded to the radio access network by the UE2.
  • the radio access network acquires the serving AMF of UE1, and forwards the NAS message to AMF1.
  • the NAS message may be a service request message.
  • step 609 UE1 triggers the establishment process of the PDU session.
  • step 610 UE1 transmits data with the network device based on the relay service provided by UE2.
  • the UE1 may receive data from the network device through the PC5 interface based on the relay service provided by the UE2, or send data to the network device through the PC5 interface. More specifically, UE2 can forward the data received through the PC5 interface from UE1 to the wireless access network through the Uu interface, and then send it to the core network by the wireless access network; it can also forward the data received through the Uu interface to the core network. .
  • the data received from the radio access network (it can be understood that the data may be data sent by the core network to the radio access network) is sent to the UE1 through the PC5 interface.
  • UE2 can transparently transmit data between UE1 and the radio access network.
  • the data may be encrypted, for example, based on a key negotiated between UE1 and the radio access network, and not exposed to UE2.
  • the UE1 does not necessarily need to initiate an initial registration process to the network device before sending the indirect communication request message.
  • UE1 may initiate an initial registration process after receiving an indirect communication response message from UE2.
  • the initial registration process can be performed based on the relay service of UE2.
  • the NAS message in step 608 may be an initial registration message.
  • FIG. 7 shows a flow of establishing indirect communication by a remote UE through a layer 3 relay UE.
  • UE1 and UE2 are within the coverage of the radio access network. It should be understood that the process shown in FIG. 7 is only an example, and should not constitute any limitation to the present application.
  • the process includes steps 701 to 708 . Each step is described in detail below.
  • step 701 UE1 and UE2 obtain authorization and provisioning from network equipment, respectively.
  • UE1 and UE2 may independently obtain authorization and configuration from the network device.
  • step 702 UE2 initiates a PDU session establishment process.
  • the UE2 may establish a user plane connection of the PDU session of the UE2 by initiating a PDU session establishment procedure.
  • step 703 UE1 and UE2 perform a device discovery process.
  • UE1 and UE2 may perform device discovery procedures respectively to discover each other.
  • step 704 UE1 establishes a one-to-one communication connection with UE2 (connection for one-to-one communication).
  • step 705 UE2 establishes a new PDU session or updates an existing PDU session for relaying.
  • the layer 3 relay UE needs to establish a PDU session.
  • UE2 can forward data for UE1 by establishing a new PDU session or updating an existing PDU session.
  • step 706 an IP address or prefix is allocated to UE1.
  • UE2 which is a relay UE, can allocate an IP address or prefix to the remote UE (ie, UE1), for example, allocate an IPv4 address or an IPv6 prefix. From then on, uplink and downlink relay between UE1 and network equipment can be realized.
  • step 707 UE2 reports to the remote UE.
  • UE2 can report UE1.
  • UE2 may report UE1's
  • step 708 UE1 transmits data with the network device based on the relay service provided by UE2.
  • the UE1 may receive data from the network device through the PC5 interface based on the relay service provided by the UE2, or send data to the network device through the PC5 interface. More specifically, UE2 can forward the data received through the PC5 interface from UE1 to the wireless access network through the Uu interface, and then send it to the core network by the wireless access network; it can also forward the data received through the Uu interface to the core network. .
  • the data received from the radio access network (it can be understood that the data may be data sent by the core network to the radio access network) is sent to the UE1 through the PC5 interface.
  • UE2 can directly forward data between UE1 and the access network through the PDU session established or updated in step 705 above.
  • UE1 which is a remote UE, can communicate with the network device based on the relay service provided by UE2. However, as UE2 moves, UE2 may enter the non-allowed area, as shown by the dotted line in FIG. 5 . After UE2 enters the non-permitted area, UE2 may not be able to continue to provide relay services for UE1. Communication of UE1 may be affected.
  • the present application provides a method to reduce the impact on the communication of the remote UE as much as possible after the relay UE enters the non-allowed area.
  • the relay UE enters a connected state by initiating a registration process or a service request process in a non-permitted area, and provides relay services for the remote UE;
  • the remote UE is refused to provide relay services in the allowable area, thereby triggering the remote UE to perform relay reselection or path switching procedures.
  • FIGS. 8 to 10 show the specific flow of the former implementation manner
  • FIGS. 11 and 12 show the specific flow of the latter implementation manner.
  • the embodiments are described in detail below with reference to the accompanying drawings.
  • the remote UE may correspond to UE1 in FIG. 5 , for example.
  • the remote UE may be a UE within the coverage of the wireless access network, or may be a UE outside the coverage of the wireless access network, which is not limited in this application.
  • the UE1 may search for the relay UE through device discovery, for example, and communicate with the selected relay UE through the PC5 interface.
  • the relay UE may correspond to UE2 in FIG. 5 , for example.
  • UE2 is within the coverage of the radio access network and has good signal quality.
  • UE1 can determine that UE2 can act as a relay UE through device discovery and relay selection.
  • UE2 which is a relay UE, is currently in an idle state. And, due to the high mobility of the UE, the UE2 moves from the permitted area shown in FIG. 5 to the non-permitted area.
  • a possible situation is that UE1 sends a first message to UE2 in a non-allowed area due to service requirements, so as to request to connect to a network device through UE2.
  • the PC5 connection between UE1 and UE2 has not been established, or in other words, does not exist yet.
  • UE1 has received a response to the first message from UE2 before UE2 entered the non-permitted area, established a PC5 connection with UE1, but sent a message to UE2 after UE2 entered the non-permitted area to be forwarded The data.
  • the UE2 can provide a relay service for the remote UE through the methods provided in the following embodiments.
  • FIG. 8 is a schematic flowchart of a network connection method 800 according to an embodiment of the present application. As shown in FIG. 8 , the method 800 may include steps 810 to 850 . Each step in FIG. 8 will be described in detail below.
  • step 810 the remote UE sends the first message or data to the relay UE. Accordingly, the relay UE receives the first message or data from the remote UE.
  • the first message is used to request to connect to the network device through the relay UE, and then can communicate with the network device based on the relay service provided by the relay UE.
  • the first message may be a request message for a remote UE to request to connect to the network device, for example, the indirect communication request message described above.
  • the first message may be a request message for the remote UE to request to establish direct communication with the relay UE.
  • the above-mentioned indirect communication may specifically refer to the indirect communication between the remote UE and the network device; the above-mentioned direct communication may specifically refer to the direct communication between the remote UE and the relay UE.
  • the remote UE may send the first message or send data in step 810 .
  • the data may be data to be sent by the remote UE to the network device.
  • step 820 the relay UE determines that it is in a non-allowed area.
  • the network device may send the indication information of the allowed area or the non-allowed area to the relay UE. If the UE receives the indication information of the allowable area, it may be considered that the tracking area (tracking area, TA) excluding the allowable area indicated by the indication information is a non-allowable area. If the UE receives the indication information of the non-allowed area, it can be considered that the TA outside the non-allowed area indicated by the indication information is the allowed area.
  • tracking area tracking area, TA
  • the above-mentioned indication information of the permitted area or the non-permitted area may be, for example, the tracking area identity (tracking area identity, TAI) of the permitted area or the non-permitted area, a radio access network identity, or a cell identity, and the like.
  • TAI tracking area identity
  • This application does not limit this. Taking TAI as an example, if the relay UE moves to a certain area and receives a new TAI, it can determine whether it is currently in the disallowed area based on the previously received indication information of the allowed area or the disallowed area.
  • step 830 the relay UE sends a second message to the network device to enter the connected state.
  • the relay UE may send a second message to the network device to request to establish a connection between the relay UE and the network device.
  • the relay UE sends a request to the network device to establish a connection with the network device, which may be specifically implemented by requesting the network device to put the relay UE into a connected state.
  • the relay UE performs a registration process to enter a connected state.
  • the second message may be a registration request message.
  • the network device receives the registration request message, it can accept the registration request of the relay UE, and after the registration process of the relay UE is completed, the signaling connection with the relay UE is not released, or the relay UE is not set as idle. (idle) state, keep the relay UE in the connected state.
  • the relay UE may perform a service request process to enter the connected state.
  • the second message may be a service request message.
  • the network device receives the service request message, it can receive the service request of the relay UE, and after the service request process of the relay UE is completed, the signaling connection with the relay UE is not released, or the relay UE is not set as The idle state keeps the relay UE in the connected state.
  • the method further includes: the relay UE sends relay capability information to the network device.
  • the relay capability information may be used to indicate whether the relay UE can be used as a relay.
  • the relay capability information may be used as an item of UE capability, and is reported to the network device in the UE capability information.
  • the relay capability information may be a field carried in the UE capability information, and is indicated by one or more bits. For example, it is indicated by one bit, "0" indicates that the UE cannot be used as a relay, and "1" indicates that the UE can be used as a relay.
  • relay capability information may also be carried in other signaling and reported, or indicated by other means. This application does not limit this.
  • the relay UE can be used as a relay.
  • the network device eg, core network, such as AMF in 5G
  • the network device may further combine the subscription information of the relay UE to determine whether to agree to use the relay UE as a relay. If so, the network device may accept the request of the relay UE to establish a connection (such as the registration process initiated by the relay UE through the registration request message or the service request process initiated by the service request message) when it subsequently receives the second message, The relay UE can thus enter the connected state.
  • the network device may reject the request of the relay UE to establish a connection (such as the registration process initiated by the relay UE through the registration request message or the service request process initiated by the service request message) when the network device subsequently receives the second message.
  • the relay UE may still be in an idle state and may not be able to provide relay for the remote UE.
  • step 840 the relay UE sends a response message of the first message to the remote UE.
  • the remote UE receives a response message to the first message from the relay UE.
  • the relay UE may send a response message to the remote UE to notify the remote UE that the relay service can be provided for it.
  • step 850 is an optional step. If the remote UE sends data to the relay UE in step 810 instead of the first message, step 850 may be directly executed.
  • step 850 the remote UE transmits data with the network device based on the relay service provided by the relay UE.
  • the remote UE can receive data from the network device through the PC5 interface based on the relay service provided by the relay UE, or send data to the network device through the PC5 interface. More specifically, the remote UE can forward the data received through the PC5 interface from the relay UE to the wireless access network through the Uu interface, and then send it to the core network by the wireless access network; The data received by the interface and received from the radio access network (it can be understood that the data may be data sent by the core network to the radio access network) is sent to the relay UE through the PC5 interface.
  • the relay UE can transparently transmit data between the remote UE and the radio access network.
  • the data may be encrypted and obtained based on a key negotiated between the relay UE and the radio access network, and will not be exposed to the remote UE.
  • the relay UE may forward the data in step 850 .
  • the relay UE when used as a relay, even if it cannot initiate communication due to the restriction of the non-permitted area, it can still send a second message to the network device when the remote UE has service requirements. Establish a connection with the network device, enter and maintain the connection state, and provide relay services for remote UEs. Therefore, the influence on the normal communication of the remote UE can be reduced, which is beneficial to improve the user experience.
  • FIG. 9 is a schematic flowchart of a network connection method 900 provided by another embodiment of the present application. As shown in FIG. 9 , the method 900 may include steps 910 to 960 . Each step in FIG. 9 will be described in detail below.
  • step 910 the remote UE sends the first message or data to the relay UE. Accordingly, the relay UE receives the first message or data from the remote UE.
  • step 910 is the same as the specific process of step 810 in the above method 800, and reference may be made to the relevant description of step 810 above, which is not repeated here for brevity.
  • step 920 the relay UE determines whether it is in a non-allowed area.
  • step 820 of the above method 800 Since the disallowed area has been described in detail in step 820 of the above method 800, and how the relay UE determines whether it is in the disallowed area is described in conjunction with the specific implementation manner, it is not repeated here for brevity.
  • step 930 may be executed, and the relay UE initiates a registration process by sending a registration request message.
  • the registration request message is an example of the second message.
  • the UE can initiate the registration process when it is in the non-allowed area, so the relay UE can initiate the registration process by sending the registration request message to enter the connected state.
  • the relay UE when it receives the first message from the remote UE, it usually initiates a service request process, but does not initiate a registration process.
  • different processes are performed according to the different areas where the relay UE is located, for example, the service request process is performed in the permitted area, and the registration process is performed in the non-permitted area to enter the connected state.
  • the remote UE provides relay services.
  • the registration request message includes first indication information, where the first indication information is used to indicate that the relay UE provides services for the remote UE.
  • the first indication information is information used to indicate that the relay UE is used as a relay.
  • the information used to indicate that the relay UE is used as a relay may be referred to as relay indication information for short. That is, the registration request message includes relay indication information.
  • the relay indication information may be specifically used to indicate that the relay UE is used as a relay.
  • a network device for example, a core network, such as AMF in 5G
  • the network device may continue to maintain the connected state of the relay UE based on the relay indication information, without releasing the signaling connection with the relay UE, or without releasing the signaling connection with the relay UE.
  • the relay UE is set to idle state.
  • the relay indication information may be carried in a field in the second message, and indicated by one or more bits. For example, it is indicated by one bit, "0" indicates that the UE is not used as a relay, and "1" indicates that the UE is used as a relay.
  • the first indication information is used for the first indication information to be used for requesting the network device to accept the service request message in the disallowed area. It should be understood that the first indication information is used to request the network device to accept the service request message in the non-permitted area, which can also be understood as a request to exempt the relay UE from the restriction in the non-permitted area.
  • the information for requesting the network device to accept the service request message in the non-allowed area (or, in other words, for requesting to exempt the relay UE from being in the non-allowed area) restricted information) may be referred to as exempt information. That is, the registration request message includes exemption information.
  • Exemption information can be used to exempt restricted areas. That is to say, when the network device (such as the core network, such as AMF in 5G) reads the exemption information, it can exempt the service area restriction of the relay UE, and the relay UE can enter the connected state through the registration process . Based on the exemption information, the network device may continue to maintain the connection state of the relay UE without releasing the signaling connection with the relay UE, or not set the relay UE in the idle state.
  • the network device such as the core network, such as AMF in 5G
  • the exemption information may be indicated by one or more bits in the second message. For example, it is indicated by one bit, “0" indicates that the service area restriction is not exempted, and "1" indicates that the service area restriction is exempted.
  • the network device may determine to continue to maintain the connection state of the relay UE based on any one of the two. Therefore, the functions of the two are similar.
  • exemption information and the relay indication information can be understood as different fields carried in the second message. This application does not limit the specific names of the fields.
  • the first indication information may be indication information of a registration type.
  • the registration type may, for example, indicate that the relay UE provides a relay service for the remote UE, or enters a connected state in a non-allowed area, and so on.
  • the network device can determine that the relay UE is in a non-allowed area, and needs to enter a connected state when there is a need to provide relay services. Then, the operation of bringing the relay UE into the connected state can be performed, and the connected state of the relay UE can be maintained.
  • the above-mentioned registration type may be carried, for example, in a certain field in the registration request message, and different registration types are indicated by different values.
  • the registration types may include, for example, location area updates, and the like. This application does not limit this.
  • the method may further include: the relay UE sends relay capability information to the network device. Accordingly, the network device receives relay capability information from the relay UE.
  • the relay capability information can be used to indicate whether the relay UE can be used as a relay. It should be understood that if the relay capability information indicates that the UE can be used as a relay, it does not mean that the UE is currently used as a relay. If the relay capability information indicates that the UE cannot be used as a relay, it can be determined that the UE is not currently used as a relay. Since the relay capability information has been described in detail in the foregoing method 800, it is not repeated here for brevity.
  • the protocol may also define: when the relay UE is in a non-allowed area, if the registration request message sent by the relay UE does not carry exemption information or relay indication information, the network device may reject the registration request message. Following the registration request of the UE; if the registration request sent by the relay UE carries exemption information and/or relay indication information, the network device may accept the registration request of the relay UE.
  • step 940 may be executed, and the relay UE initiates a service request process to enter the connected state.
  • the relay UE may initiate a service request process according to the prior art to enter the connected state.
  • step 950 the relay UE sends a response message of the first message to the remote UE.
  • step 950 is the same as the specific process of step 830 in the above method 800, and reference may be made to the above related description of step 830, which is not repeated here for brevity.
  • step 960 the remote UE transmits data with the network device based on the relay service provided by the relay UE.
  • step 960 is the same as the specific process of step 850 above, and reference may be made to the relevant description of step 850 above, which is not repeated here for brevity.
  • the relay UE can forward the data in step 960 .
  • the relay UE when used as a relay, even if the communication cannot be initiated due to the restriction of the non-permissible area, it can still initiate a registration request process to the network device when the remote UE has business requirements, and furthermore The end UE provides relay services. Therefore, the influence on the normal communication of the remote UE can be reduced, which is beneficial to improve the user experience.
  • the UE in the non-permitted area can initiate the registration procedure, the UE in the permitted area can still execute the service request procedure according to the procedure in the existing protocol, generally speaking, the changes to the existing protocol are small.
  • FIG. 10 is a schematic flowchart of a method 1000 provided by another embodiment of the present application. As shown in FIG. 10 , the method 1000 may include steps 1010 to 1050 . Each step in FIG. 10 will be described in detail below.
  • step 1010 the remote UE sends a first message or data to the relay UE. Accordingly, the relay UE receives the first message or data from the remote UE.
  • step 1010 is the same as the specific process of step 810 in the above method 800, and reference may be made to the above related description of step 810, which is not repeated here for brevity.
  • step 1020 the relay UE determines whether it is in a non-allowed area.
  • step 820 of the above method 800 Since the disallowed area has been described in detail in step 820 of the above method 800, and how the relay UE determines whether it is in the disallowed area is described in conjunction with the specific implementation manner, it is not repeated here for brevity.
  • step 1030 may be executed, and the relay UE sends a service request message including the first indication information to initiate a service request process.
  • the first indication information may be used to indicate that the relay UE provides services for the remote UE.
  • the first indication information may be information for requesting to exempt the relay UE from the restriction in the non-allowed area, for example, referred to as exemption information for short.
  • the first indication information may be information used to indicate that the relay UE is used as a relay, for example, referred to as relay indication information for short.
  • the service request message including the first indication information is another example of the second message.
  • the UE is not allowed to initiate a service request procedure when it is in a non-allowed area.
  • the relay UE may include exemption information or relay indication information in the service request message.
  • the exemption information can be used to exempt the service area restriction.
  • the network device such as the core network, such as AMF in 5G
  • the network device can exempt the service area restriction of the relay UE, so the relay UE can initiate the service through the service request message carrying the exemption information. request process.
  • a network device eg, a core network, such as AMF in 5G
  • the relay UE may then enter the connected state.
  • the network device may continue to maintain the connected state of the relay UE without releasing the signaling connection with the relay UE, or not place the relay UE in the idle state.
  • the relay indication information can be used to instruct the relay UE to use as a relay.
  • the network device for example, the core network, such as AMF in 5G
  • the relay UE can initiate the service request process through the service request message carrying the relay indication information to enter the connected state.
  • the network device may continue to maintain the connected state of the relay UE without releasing the signaling connection with the relay UE, or not place the relay UE in the idle state.
  • the relay UE may initiate a service request process to enter the connected state. Moreover, the network device may continue to maintain the connected state of the relay UE without releasing the signaling connection with the relay UE, or not set the relay UE in the idle state.
  • a service request message carrying at least one of exemption information and relay indication information may also be referred to as an enhanced service request message.
  • the method may further include: the relay UE sends relay capability information to the network device. Accordingly, the network device receives relay capability information from the relay UE.
  • the relay capability information can be used to indicate whether the relay UE can be used as a relay. It should be understood that if the relay capability information indicates that the UE can be used as a relay, it does not mean that the UE is currently used as a relay. If the relay capability information indicates that the UE cannot be used as a relay, it can be determined that the UE is not currently used as a relay. Since the relay capability information has been described in detail in the foregoing method 800, it is not repeated here for brevity.
  • step 1040 may be executed, and the relay UE sends a service request message that does not include the first indication information to initiate a service request process.
  • the relay UE Since the relay UE is not in a non-permitted area and communication is not restricted, the relay UE may not carry information such as exemption information or relay indication information that can be used as the first indication information in the service request message.
  • the relay UE may perform the service request process according to the prior art.
  • the network device may accept the service request message of the relay UE, so as to perform the operation of entering the relay UE into the connected state.
  • the network device receiving the service request message may also include activating the PDU session of the relay UE, that is, establishing a user plane connection of the PDU session of the relay UE .
  • the network device accepts the relayed service request message, and can trigger the UE2 in FIG. 7 to execute step 705 in FIG. 7 .
  • step 1050 the relay UE sends a response message of the first message to the remote UE.
  • step 1050 is the same as the specific process of step 830 in the above method 800, and reference may be made to the above related description of step 830, which is not repeated here for brevity.
  • step 1060 the remote UE transmits data with the network device based on the relay service provided by the relay UE.
  • step 1060 is the same as the specific process of step 850 above, and reference may be made to the relevant description of step 610 above, which is not repeated here for brevity.
  • the relay UE may forward the data in step 1060 .
  • the relay UE when used as a relay, even if the communication cannot be initiated due to the restriction of the non-permitted area, it can still initiate a service request process to the network device when the remote UE has business requirements.
  • the request message carries at least one of exemption information, relay indication information and relay capability parameter to exempt the service area restriction.
  • the relay UE can enter the connected state to provide relay services for the remote UE. Therefore, the influence on the normal communication of the remote UE can be reduced, which is beneficial to improve the user experience.
  • a network connection method provided by an embodiment of the present application is described in detail above with reference to FIG. 8 to FIG. 10 , which can continue to provide a relay service for a remote UE when the relay UE is in a non-allowed area.
  • Another network connection method provided by the embodiments of the present application will be described below with reference to FIG. 11 and FIG. 12 .
  • the remote UE is triggered to perform a relay reselection or path switching process.
  • relay UE1 the relay UE currently connected by the remote UE
  • relay UE2 the relay UE determined by the remote UE by performing relay reselection
  • the remote UE may correspond to, for example, UE1 in FIG. 5 .
  • the remote UE may be a UE within the coverage of the wireless access network, or may be a UE outside the coverage of the wireless access network, which is not limited in this application.
  • the UE1 may search for the relay UE through device discovery, for example, and communicate with the selected relay UE through the PC5 interface.
  • the relay UE1 may, for example, correspond to UE2 in FIG. 5 .
  • UE2 is within the coverage of the radio access network and has good signal quality.
  • UE1 can determine that UE2 can act as a relay UE through device discovery and relay selection.
  • the UE2 is currently in an idle state, and due to the high mobility of the UE, the UE2 has moved from the permitted area shown in FIG. 5 to the non-permitted area (ie, an example of the non-permitted area). If UE2 in the non-allowed area cannot continue to provide relay service for UE1, UE1 may be triggered to perform relay selection or path switching procedures through the following embodiments in conjunction with FIG. 11 and FIG. 12 .
  • a possible situation is that the remote UE has received the response to the first message from the relay UE before the relay UE1 enters the non-allowed area, and established a PC5 connection with the relay UE, but when the relay UE1 enters the non-allowed area After the non-allowed area, the remote UE sends the data to be forwarded to the relay UE1.
  • the following describes in detail the process of relay UE1 triggering the remote UE to perform relay reselection or path switching with reference to the embodiment shown in FIG. 11 .
  • FIG. 11 is a schematic flowchart of a network connection method 1100 provided by another embodiment of the present application. As shown in FIG. 11 , the method 1100 may include steps 1110 to 1140 . Each step in FIG. 11 will be described in detail below.
  • the relay UE1 provides the remote UE with a relay service for connecting to a network device.
  • the remote UE may establish a PC5 connection with the relay UE1 through the process shown in FIG. 6 , and then communicate with the network device based on the relay service provided by the relay UE1.
  • the relay UE1 can be used to forward data between the remote UE and the network device.
  • step 1120 the relay UE1 determines that it is in a non-allowed area.
  • step 1120 of the above method 1100 Since the disallowed area has been described in detail in step 1120 of the above method 1100, and how the relay UE1 determines whether it is in the disallowed area is described in conjunction with the specific implementation manner, it is not repeated here for brevity.
  • the relay UE1 is in a non-permitted area.
  • the relay UE1 sends a disconnection request message to the remote UE.
  • the remote UE receives the disconnection request message from the relay UE1.
  • the disconnection request message may be used to request to disconnect the connection between the relay UE1 and the remote UE, that is, the above-mentioned PC5 connection. That is, the remote UE cannot communicate via the PC interface with the relay UE1 thereafter. In other words, the relay UE1 can no longer provide relay services for the remote UE.
  • the disconnect request message carries a cause value.
  • the reason value can be used to indicate that the reason for the disconnection request is: the relay UE1 is in a non-allowed area.
  • the cause value may be indicated by a preset field.
  • This field is for example "cause”.
  • This field may be carried by one or more bits, for example.
  • the reason why the relay UE1 sends the disconnection request message may not be limited to that the relay UE1 is in a non-allowed area.
  • the relay UE1 may also request to disconnect the connection with the remote UE for other reasons.
  • the relay UE1 is currently used as a relay for multiple remote UEs, and the load is large; for another example, the current power of the relay UE1 is low, and in order to save power consumption, it is not expected to be used as a relay, etc. For simplicity, Not listed here.
  • the reason why the relay UE1 sends the disconnection request is indicated by the reason value, which can facilitate the remote UE to take reasonable countermeasures.
  • step 1140 the remote UE sends a disconnection request response message to the relay UE1.
  • the relay UE1 receives the disconnection request response message from the remote UE.
  • the disconnection request response message is also a response to the disconnection request message in step 1130 . After that, the PC5 interface is disconnected, and the relay UE1 and the remote UE cannot communicate directly.
  • step 1150 the remote UE performs a relay reselection or path switch procedure.
  • the remote UE can determine that the relay UE1 cannot continue to provide the relay service for it.
  • the remote UE may perform 850a, performing relay reselection to determine a new relay UE. For example, the remote UE may perform device discovery again to find other relay UEs that can be used as relays, and after discovering a new relay UE. Assuming that the remote UE finds that the new relay UE is the relay UE2, the remote UE can access the network through the relay UE2.
  • the specific process of performing relay reselection by the remote UE is similar to the process described above in conjunction with FIG. 2 , and is not repeated here for brevity.
  • the remote UE may perform step 1150b to perform a path switching process, switching from the indirect communication of the PC5 interface to the direct communication of the Uu interface.
  • the remote UE should be within the coverage of the radio access network. After the remote UE completes the path switching, it can directly communicate with the radio access network device through the Uu interface without requiring other UEs to provide relay services.
  • the remote UE can continue to communicate with the network device.
  • the relay UE when it cannot initiate communication due to the restriction of the non-permitted area, it can actively send a disconnection request message to the remote UE to trigger the remote UE to execute Device discovery or path switching process to maintain normal communication. Therefore, even if the relay UE enters the non-allowed area, it can quickly notify the remote UE, so that the remote UE is not affected by the communication limitation of the relay UE, and the influence on the normal communication of the remote UE is reduced as much as possible.
  • the remote UE sends the first message to the relay UE1 in the non-allowed area due to service requirements , to request to connect to the network device through the relay UE1.
  • the PC5 connection between the remote UE and the relay UE1 has not yet been established, or in other words, does not yet exist.
  • the following describes in detail the process of relay UE2 triggering the remote UE to perform relay reselection or path switching with reference to the embodiment shown in FIG. 12 .
  • FIG. 12 is a schematic flowchart of a network connection method 1200 provided by another embodiment of the present application. As shown in FIG. 12 , the method 1200 may include steps 1210 to 1240 . Each step in FIG. 12 will be described in detail below.
  • the relay UE1 receives the first message from the remote UE.
  • the relay UE1 receives the first message from the remote UE.
  • step 1210 is the same as the specific process of step 810 in the above method 800, and reference may be made to the detailed description of step 810 above, which is not repeated here for brevity.
  • step 1220 the relay UE1 determines that it is in a non-allowed area.
  • step 820 of the above method 800 Since the disallowed area has been described in detail in step 820 of the above method 800, and how the relay UE1 determines whether it is in the disallowed area is described in conjunction with the specific implementation manner, it is not repeated here for brevity.
  • the relay UE1 is in a non-permitted area.
  • step 1230 the relay UE1 sends a reject message to the remote UE.
  • the remote UE receives the rejection message from the relay UE1.
  • the rejection message is a rejection message for the first message received in step 1210 .
  • the first message may be a request message for the remote UE to request to connect to the network device, or a request message for the remote UE to request to establish direct communication with the relay UE1.
  • the above rejection message may be a rejection message for rejecting a request message for the remote UE to connect to the network device, or a rejection message for rejecting a request message for the remote UE to establish direct communication with the relay UE1.
  • the rejection message carries a reason value.
  • the reason value can be used to indicate that the reason for rejecting the request of the remote UE or data forwarding is that the relay UE1 is in a non-allowed area.
  • step 1240 the remote UE performs a relay reselection or path switching procedure.
  • step 1240 includes: step 1240a, performing relay reselection to determine a new relay UE, such as the relay UE2 shown in the figure; or, step 1240b, performing a path switching process, by the slave PC5 interface
  • the indirect communication is switched to the direct communication of the Uu interface.
  • step 1240 is the same as the specific process of step 1150 of the above method 1100, and reference may be made to the detailed description of step 1150 above, which is not repeated here for brevity.
  • the relay UE when it cannot initiate communication due to the restriction of the non-permitted area, once it receives a request message for establishing a connection from the remote UE, it can refuse to establish the connection, thereby triggering the remote UE to execute the device. Discovery or path switching process to maintain normal communication. Therefore, even if the relay UE enters the non-allowed area, it can notify the remote UE in time when the remote UE has communication requirements, so that the remote UE is not affected by the communication limitation of the relay UE as much as possible, reducing the Small impact on the normal communication of the remote UE.
  • each network element may perform some or all of the steps in each of the embodiments. These steps or operations are only examples, and the embodiments of the present application may also perform other operations or variations of various operations. In addition, various steps may be performed in different orders presented in various embodiments, and may not be required to perform all operations in the embodiments of the present application. Moreover, the size of the sequence number of each step does not mean the sequence of execution, and the execution sequence of each process should be determined by its function and internal logic, and should not constitute any limitation on the implementation process of the embodiments of the present application.
  • the remote UE and the relay UE serving as the main body of execution may include a hardware structure and/or a software module, and a hardware structure, a software module, or a hardware structure plus a software module form to achieve the above functions.
  • Whether one of the above functions is performed in the form of a hardware structure, a software module, or a hardware structure plus a software module depends on the specific application and design constraints of the technical solution.
  • FIG. 13 and FIG. 14 show schematic diagrams of a communication apparatus provided by an embodiment of the present application.
  • FIG. 13 is a schematic block diagram of a communication apparatus provided by an embodiment of the present application.
  • the communication apparatus 1300 shown in FIG. 13 may correspond to the relay UE (for example, it may be a relay UE, or a component configured in the relay UE) in the foregoing method embodiments shown in conjunction with FIG. 8 to FIG. 10 . , such as a chip, a chip system, etc.), and execute the method performed by the relay UE; or, it may also correspond to the network device in the foregoing method embodiments (for example, it may be a network device, or a component configured in the network device, such as chip, system-on-a-chip, etc.), and perform the method performed by the network device.
  • the relay UE for example, it may be a relay UE, or a component configured in the relay UE in the foregoing method embodiments shown in conjunction with FIG. 8 to FIG. 10 .
  • the network device for example, it may be a network device, or a component configured in the network device, such as chip, system-on-a-chip, etc.
  • the apparatus 1300 shown in FIG. 13 may include a receiving module 1310 , a sending module 1320 and a processing module 1330 .
  • the receiving module 1310 may be configured to receive the first message or data from the remote UE, the first message using In response to a request to connect to a network device through the device 1300, the data is the data to be sent to the network device; the sending module 1320 may be configured to send a second message to the network device in a non-allowed area, The second message is used to request to establish a connection between the apparatus 1300 and the network device.
  • the second message is used to request to establish a connection between the apparatus 1300 and the network device, including: the second message is used to request the network device to execute the device 1300 into a connection state the process of.
  • the second message includes first indication information, where the first indication information is used to indicate that the apparatus 1300 provides services for the remote UE.
  • the second message is a service request message
  • the service request message includes the first indication information, where the first indication information is used to request to exempt the apparatus 1300 from being restricted in a non-permitted area.
  • the second message is a registration request message
  • the registration request message includes the first indication information
  • the first indication information is used to instruct the apparatus 1300 to use as a relay.
  • the sending module 1320 is further configured to send relay capability information to the network device, where the relay capability information is used to indicate that the apparatus 1300 can be used as a relay.
  • the sending module 1320 is further configured to send a service request message to the network device in the case of being in an allowed area.
  • the apparatus 1300 is configured to provide a layer 2 relay service or a layer 3 relay service for the remote UE.
  • the receiving module 1310 may be configured to receive a second message from the relay UE; the second message is the middle Following a message sent by the UE based on a first message or data received from a remote UE when the UE is in a non-allowed area, the first message is used to request connection to the apparatus 1300 through the relay UE, The data is the data to be sent to the device 1300; the second message is used to request the establishment of a connection between the relay UE and the device 1300; the processing module 1330 can be used to base on the second message , and establish a connection with the relay UE.
  • the processing module 1330 is specifically configured to, based on the second message, execute the process of entering the relay UE into the connected state.
  • the second message includes first indication information, where the first indication information is used to indicate that the relay UE provides a service for the remote UE.
  • the second message is a service request message
  • the service request message includes the first indication information
  • the first indication information is used to request to exempt the relay UE from being in the disallowed area. limits.
  • processing module 1330 is further configured to, based on the first indication information, accept the service request of the service request message.
  • the second message is a registration request message
  • the registration request message includes the first indication information
  • the first indication information is used to instruct the relay UE to use as a relay.
  • processing module 1330 is further configured to, based on the first indication information, maintain the connected state of the UE after the registration process of the relay UE.
  • the receiving module 1310 is further configured to receive relay capability information from the relay UE, where the relay capability information is used to indicate that the relay UE can be used as a relay.
  • the processing module 1330 is specifically configured to, in the case of receiving the second message, determine whether the relay UE can be used as a relay based on the relay capability information; When the relay UE can be used as a relay, a connection with the relay UE is established.
  • the relay UE is configured to provide a layer 2 relay service or a layer 3 relay service for the remote UE.
  • the communication apparatus 1300 shown in FIG. 13 may correspond to the relay UE in the method embodiments shown in the foregoing in conjunction with FIG. 11 and FIG. 12 (for example, it may be a relay UE, or a relay UE configured in the relay UE components, such as a chip, a chip system, etc.), and execute the method performed by the relay UE; or, it may also correspond to the remote UE in the foregoing method embodiments (for example, it may be a remote UE, or it may be configured in the remote UE) components, such as chips, chip systems, etc.), and execute the method performed by the remote UE.
  • the receiving module 1310 can be used to provide the remote UE with a relay service connecting to network equipment; the sending module 1320 can be used In the case of being in a non-permitted area, a disconnection request message is sent to the remote UE, where the disconnection request message is used to request to disconnect the connection between the apparatus 1300 and the remote UE.
  • the disconnection request message carries a cause value, where the cause value is used to indicate that the relay UE is in the disallowed area.
  • the receiving module 1310 is configured to receive a disconnection request response message from the remote UE.
  • the apparatus 1300 is configured to provide a layer 2 relay service or a layer 3 relay service for the remote UE.
  • the receiving module 1310 may be configured to receive a disconnection request message from the relay UE, and the apparatus 1300 is based on the The relay service of the relay UE is connected to the UE of the network equipment or a component configured in the UE, and the disconnection request message is used to request to disconnect the connection between the relay UE and the apparatus 1300;
  • the The processing module 1330 may be configured to, based on the disconnection request message, perform device reselection to determine a new relay UE; or, perform a path switching process from the PC5 interface to the Uu interface, so as to communicate through the Uu interface;
  • the PC5 interface is an interface used for direct communication between the apparatus 1300 and the relay UE, and the Uu interface is an interface used for direct communication between the apparatus 1300 and a radio access network device.
  • the disconnection request message carries a cause value, where the cause value is used to indicate that the relay UE is in the disallowed area.
  • the sending module 1320 is configured to send a disconnection request message response to the relay UE based on the received disconnection request message.
  • the relay UE is configured to provide the apparatus 1300 with a layer 2 relay service or a layer 3 relay service.
  • the specific working mode and principle when the communication device 1300 shown in FIG. 13 is used as a relay UE or a remote UE can refer to the relevant descriptions in the foregoing method embodiments shown in conjunction with FIG. 11 and FIG. 12 . Repeat.
  • the communication apparatus 1300 is a UE (eg, a remote UE or a relay UE) or a network device
  • the receiving module 1310 and the sending module 1320 in the apparatus 1300 may be implemented by a transceiver.
  • the processing module 1330 in the apparatus 1300 may be implemented by at least one processor.
  • the communication apparatus 1300 is a chip or a chip system configured in a UE (such as a remote UE or a relay UE) or a network device
  • the receiving module 1310 and the sending module 1320 in the apparatus 1300 can input /Output interface is implemented
  • the processing module 1330 in the device 1300 can be implemented by a processor, a microprocessor or an integrated circuit, etc. integrated on the chip or a chip system.
  • each module of the above apparatus is only a division of logical functions, and may be fully or partially integrated into a physical entity in actual implementation, or may be physically separated.
  • these modules can all be implemented in the form of software calling through processing elements; they can also all be implemented in hardware; some modules can also be implemented in the form of calling software through processing elements, and some modules can be implemented in hardware.
  • the processing module may be a separately established processing element, or it may be integrated into a certain chip of the above-mentioned apparatus to realize, in addition, it may also be stored in the memory of the above-mentioned apparatus in the form of program code, and a certain processing element of the above-mentioned apparatus may be used. Call and execute the function of the above determined module.
  • each step of the above-mentioned method or each of the above-mentioned modules can be completed by an integrated logic circuit of hardware in the processor element or an instruction in the form of software.
  • the above modules may be one or more integrated circuits configured to implement the above methods, such as: one or more application specific integrated circuits (ASIC), or one or more microprocessors (digital) signal processor, DSP), or, one or more field programmable gate arrays (field programmable gate array, FPGA), etc.
  • ASIC application specific integrated circuits
  • DSP digital signal processor
  • FPGA field programmable gate array
  • the processing element may be a general-purpose processor, such as a central processing unit (central processing unit, CPU) or other processors that can call program codes.
  • these modules can be integrated together and implemented in the form of a system-on-a-chip (SOC).
  • SOC system-on-a-chip
  • the above-mentioned embodiments it may be implemented in whole or in part by software, hardware, firmware or any combination thereof.
  • software it can be implemented in whole or in part in the form of a computer program product.
  • the computer program product includes one or more computer instructions. When the computer program instructions are loaded and executed on a computer, all or part of the processes or functions described in the embodiments of the present application are generated.
  • the computer may be a general purpose computer, special purpose computer, computer network, or other programmable device.
  • the computer instructions may be stored in or transmitted from one computer-readable storage medium to another computer-readable storage medium, for example, the computer instructions may be downloaded from a website site, computer, server, or data center Transmission to another website site, computer, server, or data center is by wire (eg, coaxial cable, optical fiber, digital subscriber line (DSL)) or wireless (eg, infrared, wireless, microwave, etc.).
  • the computer-readable storage medium may be any available medium that can be accessed by a computer or a data storage device such as a server, data center, etc. that includes an integration of one or more available media.
  • the usable media may be magnetic media (eg, floppy disks, hard disks, magnetic tapes), optical media (eg, DVDs), or semiconductor media (eg, solid state disks (SSDs)), and the like.
  • FIG. 14 is another schematic block diagram of a communication apparatus provided by an embodiment of the present application.
  • the communication apparatus 1400 shown in FIG. 14 may include a processor 1410 and a communication interface 1420 .
  • the apparatus 1400 further includes a memory 1430 .
  • the processor 1410, the transceiver 1420 and the memory 1130 communicate with each other through an internal connection path.
  • the memory 1430 is used for storing instructions, and the processor 1410 is used for executing the instructions stored in the memory 1430 to control the transceiver 1420 to transmit and/or receive signals.
  • the memory 1430 may include read-only memory and random access memory and provide instructions and data to the processor 1410 .
  • a portion of memory 1430 may also include non-volatile random access memory.
  • the memory 1130 may be a separate device or may be integrated in the processor 1410 .
  • the processor 1410 may be configured to execute the instructions stored in the memory 1430, and when the processor 1410 executes the instructions stored in the memory, the processor 1410 is configured to execute the above method embodiments corresponding to the relay UE or the remote UE the individual steps and/or processes.
  • the above-mentioned apparatus 1100 may be the relay UE, the network device or the remote UE in the foregoing embodiment.
  • Communication interface 1420 may include a transceiver.
  • a transceiver may include, for example, a transmitter and a receiver.
  • the transceiver may further include antennas, and the number of the antennas may be one or more.
  • the processor 1410, the memory 1430 and the transceiver 1420 may be devices integrated on different chips.
  • the processor 1410 and the memory 1430 may be integrated in the baseband chip, and the transceiver 1420 may be integrated in the radio frequency chip.
  • the processor 1410, the memory 1430 and the transceiver 1420 may also be devices integrated on the same chip. This application does not limit this.
  • the above-mentioned apparatus 1400 may be a component configured in a relay UE, a network device, or a remote UE, such as a chip, a chip system, and the like.
  • Communication interface 1420 may also be a communication interface, such as an input/output interface.
  • the communication interface 1420, the processor 1410 and the memory 1420 can be integrated in the same chip, such as a baseband chip.
  • Any communication interface involved in the embodiments of this application may be a circuit, a bus, a transceiver, or any other device that can be used for signal interaction.
  • the processors involved in the embodiments of the present application may be general-purpose processors, digital signal processors, application-specific integrated circuits, field programmable gate arrays or other programmable logic devices, discrete gate or transistor logic devices, discrete hardware components, and may implement or The methods, steps and logic block diagrams disclosed in the embodiments of this application are executed.
  • a general purpose processor may be a microprocessor or any conventional processor or the like.
  • the steps of the methods disclosed in conjunction with the embodiments of the present application may be directly embodied as executed by a hardware processor, or executed by a combination of hardware and software modules in the processor.
  • the coupling in the embodiments of the present application is an indirect coupling or communication connection between devices, modules or modules, which may be in electrical, mechanical or other forms, and is used for information exchange between devices, modules or modules.
  • the processor may cooperate with the memory.
  • the memory can be a non-volatile memory, such as a hard disk drive (HDD) or a solid-state drive (SSD), etc., or a volatile memory (volatile memory), such as random access memory (random-state drive, SSD), etc. access memory, RAM).
  • Memory is, but is not limited to, any other medium that can be used to carry or store desired program code in the form of instructions or data structures and that can be accessed by a computer.
  • connection medium among the above-mentioned communication interface, processor, and memory is not limited in the embodiments of the present application.
  • the memory, the processor and the communication interface can be connected by a bus.
  • the bus can be divided into an address bus, a data bus, a control bus, and the like.
  • the connection bus between the processor and the memory is not the connection bus between the aforementioned terminal device and the network device.
  • the present application also provides a computer program product, the computer program product includes: computer program code, when the computer program code is run on a computer, the computer is made to execute the steps shown in FIGS. 8 to 12 .
  • the present application further provides a computer-readable medium, where the computer-readable medium stores program codes, and when the program codes are run on a computer, the computer is made to execute the programs shown in FIGS. 8 to 12 .
  • the present application further provides a system, which includes the foregoing relay UE, remote UE, and network equipment.
  • “at least one” refers to one or more, and "a plurality” refers to two or more.
  • “And/or”, which describes the association relationship of the associated objects means that there can be three kinds of relationships, for example, A and/or B, it can mean that A exists alone, A and B exist at the same time, and B exists alone, where A, B can be singular or plural.
  • the character “/” generally indicates that the related objects before and after are an “or” relationship; in the formula, the character “/” indicates that the related objects are a “division” relationship.
  • “At least one item(s) below” or similar expressions thereof refer to any combination of these items, including any combination of single item(s) or plural items(s).
  • At least one item (number) of a, b, or c can represent: a, b, c, ab, ac, bc, or abc, where a, b, and c can be single or multiple indivual.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Databases & Information Systems (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例提供了一种网络连接方法、网络去连接方法及通信装置。该方法包括:中继UE接收来自远端UE的第一消息或数据,该第一消息用于请求通过中继UE连接至网络设备,该数据是待发送给网络设备的数据;该中继UE在处于非允许区域的情况下,向网络设备发送第二消息,该第二消息用于请求建立该中继UE与网络设备之间的连接。其中,该第二消息可以是注册请求消息,或者,也可以是携带豁免信息或中继指示信息的服务请求消息。基于该方法,中继UE在受到非允许区域的限制的情况下,仍然可以进入连接态,为远端UE提供中继服务。因此可以避免对远端UE的通信造成影响。

Description

网络连接方法、网络去连接方法及通信装置
本申请要求于2020年09月04日提交中国专利局、申请号为202010923755.4、申请名称为“网络连接方法、网络去连接方法及通信装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信领域,尤其涉及网络连接方法、网络去连接方法及通信装置。
背景技术
在设备到设备(device-to-device,D2D)的基础上,用户设备(user equipment,UE)可以通过中继(relay)的方式接入网络设备,并与网络设备进行数据传输。其中,作为中继的用户设备可以称为中继用户设备(relay user equipment,relay UE),使用Relay UE接入网络设备的UE可以称为远端用户设备(remote user equipment,remote UE)。
在某些通信系统中,对UE的服务区域可能会作出一定的限制。当UE处于某些区域中时,不能主动发起通信。比如,在第五代(5th generation,5G)移动通信系统中对UE引入了服务区限制(Service Area Restriction)。服务区限制定义了允许区域(allowed area)和非允许区域(non-allowed area)。若UE处于允许区域,UE向网络设备发送的消息和数据不受限制,UE可以向网络设备发起通信;若UE处于非允许区域,UE向网络设备发送的消息受到一定的限制(例如UE可以向网络发起注册流程,但不能发起其他流程,如,服务请求(service request)流程或会话管理(session management,SM)流程),因此UE也不能向网络发送数据。
在某些场景中,中继UE处于非允许区域但远端UE处于允许区域。由于Relay UE被限制接入网络,该中继UE可能无法为远端UE提供中继服务,从而导致远端UE也无法收发数据,远端UE的正常通信受到影响。
因此希望提供一种方法,在中继UE处于非允许区域的情况下,尽可能地减小对远端UE的正常通信的影响。
发明内容
本申请实施例提供了提供了网络连接方法、网络去连接方法及通信装置,以期在中继UE处于费允许区域的情况下,尽可能地减小对远端UE的正常通信的影响。
第一方面,提供了一种网络连接方法,该方法例如可以由中继UE执行,或者,也可以由配置在中继UE中的部件(如,芯片、芯片系统等)执行。本申请对此不作限定。
具体地,该方法包括:中继用户设备UE接收来自远端UE的第一消息或者数据,所述第一消息用于请求通过所述中继UE连接至网络设备,所述数据是待发送给所述网络设备的数据;所述中继UE在处于非允许区域的情况下,向所述网络设备发送第二消息,所述第二消息用于请求建立所述中继UE与所述网络设备之间的连接。
基于上述技术方案,中继UE作为中继使用的情况下,即便受到非允许区域的限制不 能发起通信,但仍然可以在远端UE有业务需求时,向网络设备发送第二消息,通过请求建立与网络设备之间的连接,进入并保持在连接态,为远端UE提供中继服务。从而可以减小对远端UE的正常通信的影响,有利于提高用户体验。
结合第一方面,在某些可能的实现方式中,所述第二消息用于请求建立所述中继UE与所述网络设备之间的连接,包括:所述第二消息用于请求所述网络设备执行将所述中继UE进入连接态的过程。
结合第一方面,在某些可能的实现方式中,所述第二消息中包含第一指示信息,所述第一指示信息用于指示:所述中继UE为远端UE提供服务。
应理解,这里所述的远端UE可以是本实施例中所提及的远端UE,也可以是其他远端UE,本申请对此不作限定。另外,所述为远端UE提供的服务为中继服务。
在该第二消息中携带第一指示信息,可以便于网络设备判断是否接受建立中继UE与网络设备之间的连接的请求。
结合第一方面,在某些可能的实现方式中,所述第二消息为服务请求消息,所述服务请求消息中包含所述第一指示信息,所述第一指示信息用于请求所述网络设备在所述非允许区域内接受所述服务请求消息。
应理解,该第一指示信息用于请求网络设备在非允许区域内接受服务请求消息,也就可以理解为,请求免除对所述中继UE在非允许区域的限制。
在当前技术中,处于非允许区域的UE被限制发起服务请求流程。但本实施例中,在服务请求消息中包含第一指示信息,以请求免除对中继UE在非允许区域的限制,从而使得该中继UE在非允许区域中也能够发起服务请求流程,进入连接态,为远端UE提供中继服务。
结合第一方面,在某些可能的实现方式中,所述第二消息为注册请求消息,所述注册请求消息中包含所述第一指示信息,所述第一指示信息用于指示所述中继UE作为中继使用。
在当前技术中,中继UE可以在接收到远端UE的通过中继UE连接至网络设备的请求时,发起服务请求流程,而不发起注册流程。而在本实施例中,处于非允许区域的中继UE通过发起注册流程进入连接态,并保持在连接态,进而能够为远端UE提供中继服务。而处于允许区域的中继UE仍然可以沿用现有的服务请求流程,为远端UE提供中继服务。因此对现有的协议改动较小。
结合第一方面,在某些可能的实现方式中,所述方法还包括:所述中继UE向所述网络设备发送中继能力信息,所述中继能力信息用于指示所述中继UE能够作为中继使用。
中继能力信息可用于网络设备确定该中继UE是否具有作为中继的能力,进而确定是否执行将该中继UE进入连接态的操作。
第二方面,提供了一种网络连接方法,该方法例如可以由网络设备执行,或者,也可以由配置在网络设备中的部件(如,芯片、芯片系统等)执行。本申请对此不作限定。
具体地,该方法包括:网络设备接收来自中继用户设备UE的第二消息;所述第二消息是所述中继UE在处于非允许区域的情况下,基于从远端UE接收到的第一消息或数据而发送的消息,所述第一消息用于请求通过所述中继UE连接至所述网络设备,所述数据是待发送给所述网络设备的数据;所述第二消息用于请求建立所述中继UE与所述网络设备 之间的连接;所述网络设备基于所述第二消息,建立与所述中继UE之间的连接。
基于上述技术方案,中继UE作为中继使用的情况下,即便受到非允许区域的限制不能发起通信,但仍然可以在远端UE有业务需求时,向网络设备发送第二消息,通过请求建立与网络设备之间的连接。网络设备可以基于该第二消息,执行将中继UE进入并保持在连接态的操作。因此,该中继UE可以继续为远端UE提供中继服务,从而可以减小对远端UE的正常通信的影响,有利于提高用户体验。
结合第二方面,在某些可能的实现方式中,所述网络设备基于所述第二消息,建立与所述中继UE之间的连接,包括:所述网络设备基于所述第二消息,执行将所述中继UE进入连接态的操作。
结合第二方面,在某些可能的实现方式中,所述第二消息中包含第一指示信息,所述第一指示信息用于指示:所述中继UE为远端UE提供服务。
应理解,这里所述的远端UE可以是本实施例中所提及的远端UE,也可以是其他远端UE,本申请对此不作限定。另外,所述为远端UE提供的服务为中继服务。
在该第二消息中携带第一指示信息,可以便于网络设备判断是否接受建立中继UE与网络设备之间的连接的请求。
结合第二方面,在某些可能的实现方式中,所述第二消息为服务请求消息,所述服务请求消息中包含所述第一指示信息,所述第一指示信息用于请求所述网络设备在所述非允许区域内接受所述服务请求消息。
应理解,该第一指示信息用于请求网络设备在非允许区域内接受服务请求消息,也就可以理解为,请求免除对所述中继UE在非允许区域的限制。
进一步可选地,该方法还包括:所述网络设备基于所述第一指示信息,接受所述服务请求消息。
在当前技术中,处于非允许区域的UE被限制发起服务请求流程。但本实施例中,在服务请求消息中包含第一指示信息,以请求免除对中继UE在非允许区域的限制,从而使得该中继UE在非允许区域中也能够发起服务请求流程,进入连接态,为远端UE提供中继服务。
结合第二方面,在某些可能的实现方式中,所述第二消息为注册请求消息,所述注册请求消息中包含所述第一指示信息,所述第一指示信息用于指示所述中继UE作为中继使用。
进一步可选地,该方法还包括:所述网络设备基于所述第一指示信息,在所述中继UE的注册流程之后,保持所述UE的连接态。
在当前技术中,中继UE可以在接收到远端UE的通过中继UE连接至网络设备的请求时,发起服务请求流程,而不发起注册流程。而在本实施例中,处于非允许区域的中继UE通过发起注册流程进入连接态,并保持在连接态,进而能够为远端UE提供中继服务。而处于允许区域的中继UE仍然可以沿用现有的服务请求流程,为远端UE提供中继服务。因此对现有的协议改动较小。
结合第二方面,在某些可能的实现方式中,所述方法还包括:向所述网络设备接收来自所述中继UE的中继能力信息,所述中继能力信息用于指示所述中继UE能够作为中继使用。
进一步可选地,所述网络设备基于所述第二消息,建立与所述中继UE之间的连接,包括:所述网络设备在接收到所述第二消息的情况下,基于所述中继能力信息确定所述中继UE是否能够作为中继使用;所述网络设备在确定所述中继UE能够作为中继使用的情况下,建立与所述中继UE之间的连接。
中继能力信息用于指示UE是否能够作为中继使用,也即,指示UE是否具有中继能力。中继能力信息可用于网络设备确定该中继UE是否具有作为中继的能力,进而确定建立与中继UE之间的连接。网络设备可以在中继UE具有中继能力时,接受中继UE建立与网络设备之间的连接的请求;在中继UE不具有中继能力时,拒绝中继UE建立与网络设备之间的连接的请求。
结合第一方面或第二方面,在某些可能的实现方式中,所述第一消息包括:所述远端UE请求连接至所述网络设备的请求消息;或,所述远端UE请求与所述中继UE建立直接通信的请求消息。
其中,远端UE请求连接至网络设备的请求消息,可以理解为是远端UE与网络设备之间的间接通信的请求消息。远端UE请求与中继UE建立直接通信的请求消息,可以理解为是远端UE与中继UE之间建立PC5连接的请求消息。本申请对于第一消息的具体信令名称及形式不作限定。
第三方面,提供了一种网络去连接方法。该方法例如可以由中继UE执行,或者,也可以由配置在中继UE中的部件(如,芯片、芯片系统等)执行。本申请对此不作限定。
具体地,该方法包括:中继UE为远端UE提供连接至网络设备的中继服务;所述中继UE在处于非允许区域的情况下,向所述远端UE发送去连接请求消息,所述去连接请求消息用于请求断开所述中继UE与所述远端UE之间的连接。
基于上述技术方案,中继UE在为远端UE提供中继服务时,一旦受到非允许区域的限制不能发起通信,就可以主动地向远端UE发起去连接请求消息,以触发远端UE采取相应的应对措施,来减小对远端UE的正常通信的影响。
结合第三方面,在某些可能的实现方式中,所述方法还包括:所述中继UE接收来自所述远端UE的去连接请求响应消息。
由此,远端UE与中继UE之间的PC5连接断开。中继UE不再为远端UE提供中继服务。
第四方面,提供了一种网络连接方法。该方法例如可以由远端UE执行,或者,也可以由配置在远端UE中的部件(如,芯片、芯片系统等)执行。本申请对此不作限定。
具体地,该方法包括:远端UE接收来自中继UE的去连接请求消息,所述远端UE为基于所述中继UE的中继服务连接至网络设备的UE,所述去连接请求消息用于请求断开所述中继UE与所述远端UE之间的连接;以及所述远端UE基于所述去连接请求消息,执行设备重选,以确定新的中继UE;或所述远端UE执行PC5接口到Uu接口的路径切换流程,以通过所述Uu接口通信;其中,所述PC5接口是用于所述远端UE与所述中继UE之间直接通信的接口,所述Uu接口是用于所述远端UE与无线接入网设备之间直接通信的接口。
基于上述技术方案,中继UE在为远端UE提供中继服务时,一旦受到非允许区域的限制不能发起通信,就可以主动地向远端UE发起去连接请求消息,以触发远端UE执行设备发现或路径切换流程,以保持正常通信。因此,中继UE即便进入非允许区域,但可以快速地通知远端UE,使得远端UE不受中继UE通信受限的影响,尽可能地减小对远端UE的正 常通信的影响。
结合第三方面或第四方面,在某些可能的实现方式中,所述去连接请求消息中携带原因值,所述原因值用于指示所述中继UE处于所述非允许区域。
通过在去连接请求消息中携带原因值,可以便于远端UE采取合理的应对措施。
结合第四方面,在第四方面的某些可能的实现方式中,所述方法还包括:所述远端UE基于接收到的去连接请求消息,向所述中继UE发送去连接请求响应消息。
由此,远端UE与中继UE之间的PC5连接断开。中继UE不再为远端UE提供中继服务。
第五方面,提供了一种网络去连接方法。该方法例如可以由中继UE执行,或者,也可以由配置在中继UE中的部件(如,芯片、芯片系统等)执行。本申请对此不作限定。
具体地,该方法包括:中继UE接收来自远端UE的第一消息,所述第一消息用于请求通过所述中继UE连接至网络设备;所述中继UE在处于非允许区域的情况下,向所述远端UE发送拒绝消息,以拒绝所述远端UE的请求。
基于上述技术方案,中继UE在受到非允许区域的限制不能发起通信的情况下,一旦接收到来自远端UE的建立连接的请求消息,便可以拒绝建立连接,从而可以触发远端UE采取相应的应对措施,来减小对远端UE的正常通信的影响。
第六方面,提供了一种网络连接方法。该方法例如可以由远端UE执行,或者,也可以由配置在远端UE中的部件(如,芯片、芯片系统等)执行。本申请对此不作限定。
具体地,该方法包括;远端UE向中继UE发送第一消息,所述第一消息用于请求通过所述中继UE连接至网络设备;所述远端UE接收来自所述中继UE的拒绝消息,所述拒绝消息用于拒绝所述远端UE的请求;以及,所述远端UE基于所述拒绝消息,执行设备重选,以确定新的中继UE;或所述远端UE执行PC5接口到Uu接口的路径切换流程,以通过所述Uu接口通信;其中,所述PC5接口是用于所述远端UE与所述中继UE之间直接通信的接口,所述Uu接口是用于所述远端UE与无线接入网设备之间直接通信的接口。
基于上述技术方案,中继UE在受到非允许区域的限制不能发起通信的情况下,一旦接收到来自远端UE的建立连接的请求消息,便可以拒绝建立连接,从而可以触发远端UE执行设备发现或路径切换流程,以保持正常通信。因此,中继UE即便进入非允许区域,但可以在远端UE在有通信需求的情况下及时地通知远端UE,使得远端UE尽可能地不受中继UE通信受限的影响,减小对远端UE的正常通信的影响。
结合第五方面或第六方面,在某些可能的实现方式中,所述拒绝消息中携带原因值,所述原因值用于指示所述中继UE处于所述非允许区域。
通过在去连接请求消息中携带原因值,可以便于远端UE采取合理的应对措施。
结合第五方面或第六方面,在某些可能的实现方式中,所述第一消息包括:所述远端UE请求连接至所述网络设备的请求消息;或,所述远端UE请求与所述中继UE建立直接通信的请求消息。
其中,远端UE请求连接至网络设备的请求消息,可以理解为是远端UE与网络设备之间的间接通信的请求消息。远端UE请求与中继UE建立直接通信的请求消息,可以理解为是远端UE与中继UE之间建立PC5连接的请求消息。本申请对于第一消息的具体信令名称及形式不作限定。
结合第一方面至第六方面中的任意一个方面,在某些可能的实现方式中,所述中继UE 为用于为所述远端UE提供层2(layer 2)的中继服务或者层3(layer 3)的中继服务。
第七方面,本申请提供了一种通信装置,包括用于执行第一方面至第六方面任一种可能实现方式中的方法的各个模块或单元。
第八方面,本申请提供一种通信装置,包括:处理器和通信接口。所述处理器通过所述通信接口发送数据;所述处理器用于实现上述第一方面、第三方面或第五方面中由中继UE执行的方法。
作为一种可能的设计,上述通信装置还包括:存储器;所述存储器用于存储程序代码,所述处理器执行所述存储器中存储的程序代码,以使得所述通信装置执行上述第一方面、第三方面或第五方面中由中继UE执行的方法。
第九方面,本申请提供一种通信装置,包括:处理器和通信接口。所述处理器通过所述通信接口发送数据;所述处理器用于实现上述第二方面中由网络设备执行的方法。
作为一种可能的设计,上述通信装置还包括:存储器;所述存储器用于存储程序代码,所述处理器执行所述存储器中存储的程序代码,以使得所述通信装置执行上述第二方面中由网络设备执行的方法。
第十方面,本申请提供一种通信装置,包括:处理器和通信接口。所述处理器通过所述通信接口发送数据;所述处理器用于实现上述第四方面或第六方面中由远端UE执行的方法。
作为一种可能的设计,上述通信装置还包括:存储器;所述存储器用于存储程序代码,所述处理器执行所述存储器中存储的程序代码,以使得所述通信装置执行上述第四方面或第六方面中由远端UE执行的方法。
第十一方面,提供了一种计算机程序产品,所述计算机程序产品包括:计算机程序(也可以称为代码,或指令),当所述计算机程序被运行时,使得计算机执行上述第一方面至第六方面中任一种可能实现方式中的方法。
第十二方面,提供了一种计算机可读存储介质,所述计算机可读存储介质存储有计算机程序(也可以称为代码,或指令)当其在计算机上运行时,使得计算机执行上述第一方面至第六方面中任一种可能实现方式中的方法。
第十三方面,本申请提供一种系统,包括前述的中继UE、远端UE和网络设备。
附图说明
图1和图2是本申请实施例提供的方法所适用的网络架构的示意图;
图3是用于层2的中继UE的用户面协议栈的示意图;
图4是用于层3的中继UE的协议栈的示意图;
图5是允许区域和非允许区域的示意图;
图6是远端UE通过层2的中继UE建立间接通信的示意性流程图;
图7是远端UE通过层3的中继UE建立间接通信的示意性流程图;
图8至图12是本申请实施例提供的网络连接方法的示意性流程图;
图13和图14是本申请实施例提供的通信装置的示意性框图。
具体实施方式
这里将详细地对示例性实施例进行说明,其示例表示在附图中。下面的描述涉及附图时,除非另有表示,不同附图中的相同数字表示相同或相似的要素。以下示例性实施例中所描述的实施方式并不代表与本申请相一致的所有实施方式。相反,它们仅是与如所附权利要求书中所详述的、本申请的一些方面相一致的装置和方法的例子。
本申请实施例的技术方案可以应用于各种通信系统,例如:第五代(5th Generation,5G)移动通信系统或新无线接入技术(new radio access technology,NR)。其中,5G移动通信系统可以包括非独立组网(non-standalone,NSA)和/或独立组网(standalone,SA)。
本申请提供的技术方案还可以应用于机器类通信(machine type communication,MTC)、机器间通信长期演进技术(Long Term Evolution-machine,LTE-M)、设备到设备(device-to device,D2D)网络、机器到机器(machine to machine,M2M)网络、物联网(internet of things,IoT)网络或者其他网络。其中,IoT网络例如可以包括车联网。其中,车联网系统中的通信方式统称为车到其他设备(vehicle to X,V2X,X可以代表任何事物),例如,该V2X可以包括:车辆到车辆(vehicle to vehicle,V2V)通信,车辆与基础设施(vehicle to infrastructure,V2I)通信、车辆与行人之间的通信(vehicle to pedestrian,V2P)或车辆与网络(vehicle to network,V2N)通信等。
本申请提供的技术方案还可以应用于未来的通信系统,如第六代移动通信系统等。本申请对此不作限定。
本申请实施例中的用户设备(UE)也可以称终端设备、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置。
终端设备可以是一种向用户提供语音/数据连通性的设备,例如,具有无线连接功能的手持式设备、车载设备等。目前,一些终端的举例可以为:手机(mobile phone)、平板电脑(pad)、带无线收发功能的电脑(如笔记本电脑、掌上电脑等)、移动互联网设备(mobile internet device,MID)、虚拟现实(virtual reality,VR)设备、增强现实(augmented reality,AR)设备、工业控制(industrial control)中的无线终端、无人驾驶(self driving)中的无线终端、远程医疗(remote medical)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端、蜂窝电话、无绳电话、会话启动协议(session initiation protocol,SIP)电话、无线本地环路(wireless local loop,WLL)站、个人数字助理(personal digital assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备,5G网络中的终端设备或者未来演进的公用陆地移动通信网络(public land mobile network,PLMN)中的终端设备等。
此外,终端设备还可以是物联网(Internet of things,IoT)系统中的终端设备。IoT是未来信息技术发展的重要组成部分,其主要技术特点是将物品通过通信技术与网络连接,从而实现人机互连,物物互连的智能化网络。IoT技术可以通过例如窄带(narrow band)NB技术,做到海量连接,深度覆盖,终端省电。
此外,终端设备还可以包括智能打印机、火车探测器、加油站等传感器,主要功能包 括收集数据(部分终端设备)、接收网络设备的控制信息与下行数据,并发送电磁波,向网络设备传输上行数据。
接入网(access network,AN)可以为特定区域的授权用户提供入网功能,并能够根据用户的级别、业务的需求等使用不同质量的传输隧道。基于无线通信技术实现接入网络功能的接入网称为无线接入网(radio access network,RAN)。无线接入网能够管理无线资源,为UE提供接入服务,进而完成控制信号和用户数据在UE和核心网之间的转发。
无线接入网设备例如可以包括但不限于:无线网络控制器(radio network controller,RNC)、节点B(Node B,NB)、基站控制器(base station controller,BSC)、基站收发台(base transceiver station,BTS)、家庭基站(例如,home evolved NodeB,或home Node B,HNB)、基带单元(baseband unit,BBU),WiFi系统中的AP、无线中继节点、无线回传节点、传输点(transmission point,TP)或者传输接收点(transmission and reception point,TRP),5G系统中的gNB,以及下一代通信系统中的基站等。应理解,本申请实施例对无线接入网设备所采用的具体技术和具体设备形态不做限定。
本申请实施例中的核心网(core network)例如可以是4G系统中的核心网、5G系统中的核心网(5G core network,5GC),或者也可以是新一代通信系统中的核心网(new generation core network,NGC)等。核心网设备例如可以包括4G网络中的移动管理实体(mobility management entity,MME),或者包括5G网络中的接入和移动管理功能(access and mobility management function,AMF)网元等,或者还可以包括新一代网络中可实现移动管理功能的网元。本申请对此不作限定。应理解,核心网设备还可以包括可用于实现其他功能的网元,比如,用于指导网络行为的统一策略框架的网元,如策略控制功能(policy control function,PCF)网元;用于实现会话管理功能的网元,如会话管理功能(session management function,SMF)网元;用于实现用户面管理功能的网元,如用户面功能(user plane function,UPF)网元,等等。为了简洁,这里不一一列举。
在本申请实施例中,为便于描述,有时将核心网设备和接入网设备可以统称为网络设备。应理解,下文中所涉及的UE与网络设备之间的通信,具体可以是指,UE通过接入网设备与核心网设备通信,比如,UE通过接入网设备与核心网设备(如AMF)发送消息,或从核心网设备(如AMF)接收消息;又比如,UE通过接入网设备从核心网设备(比如UPF)接收数据,等等。下文中为了简洁,省略对相同或相似情况的说明。
为便于理解,图1示出了本申请实施例提供的方法所适用的网络架构的一例。如图1所示,该网络架构例如可以是第三代合作伙伴计划(3rd Generation Partnership Project,3GPP)协议TS23.501中定义的5G系统(the 5h generation system,5GS)。该网络架构可以分为接入网和核心网两部分。其中,接入网可用于实现无线接入有关的功能,核心网主要包括以下几个关键逻辑网元:AMF、SMF、UPF、PCF等。
下面对图1中示出的各网元做简单介绍:
AMF:主要用于移动性管理和接入管理等,如用户位置更新、用户注册网络、用户切换等。AMF还可用于实现移动性管理实体(mobility management entity,MME)中除会话管理之外的其它功能。例如,合法监听、或接入授权(或鉴权)等功能。
SMF:主要用于会话管理、UE的网际协议(Internet Protocol,IP)地址分配和管理、选择可管理用户平面功能、策略控制、或收费功能接口的终结点以及下行数据通知等。在 本申请实施例中,SMF主要用户负责移动网络中的会话管理,如会话建立、修改、释放等。具体功能例如可以包括为终端设备分配IP地址、选择提供报文转发功能的UPF等。
UPF:即,数据面网关。可用于分组路由和转发、或用户面数据的服务质量(quality of service,QoS)处理等。用户数据可通过该网元接入到数据网络(data network,DN)。在本申请实施例中,可用于实现用户面网关的功能。
数据网络(data network,DN):用于为用户提供数据服务的运营商网络。例如,运营商业务的网络、因特网(Internet)、第三方的业务网络、IP多媒体服务业务(IP multi-media service)网络等。
认证服务网元(authentication server function,AUSF):主要用于用户鉴权等。
网络开放网元(network exposure function,NEF):用于安全地向外部开放由3GPP网络功能提供的业务和能力等。
网络存储网元((network function(NF)repository function,NRF):用于保存网络功能实体以及其提供服务的描述信息,以及支持服务发现,网元实体发现等。
策略控制功能网元(PCF):用于指导网络行为的统一策略框架,为控制平面功能网元(例如AMF,SMF网元等)提供策略规则信息等。
统一数据管理网元(unified data management,UDM):用于存储用户数据,如签约信息、鉴权/授权信息等。
应用功能网元(application function,AF):负责向3GPP网络提供业务,如影响业务路由、与PCF之间交互以进行策略控制等。
在图1所示的网络架构中,各网元之间可以通过图中所示的接口通信。如图所示,N1接口为UE与AMF之间的参考点;N2接口为RAN和AMF的参考点,用于非接入层(non-access stratum,NAS)消息的发送等;N3接口为RAN和UPF之间的参考点,用于传输用户面的数据等;N4接口为SMF和UPF之间的参考点,用于传输例如N3连接的隧道标识信息,数据缓存指示信息,以及下行数据通知消息等信息;N6接口为UPF和DN之间的参考点,用于传输用户面的数据等。其他接口与各网元之间的关系如图1中所示,为了简洁,这里不一一详述。
应理解,上述应用于本申请实施例的网络架构仅是举例说明的从传统点到点的架构和服务化架构的角度描述的网络架构,适用本申请实施例的网络架构并不局限于此,任何能够实现上述各个网元的功能的网络架构都适用于本申请实施例。
还应理解,图1中所示的AMF、SMF、UPF、网络切片选择功能网元(network slice selection function,NSSF)、NEF、AUSF、NRF、PCF、UDM可以理解为核心网中用于实现不同功能的网元,例如可以按需组合成网络切片。这些核心网网元可以各自独立的设备,也可以集成于同一设备中实现不同的功能,本申请对于上述网元的具体形态不作限定。
还应理解,上述命名仅为便于区分不同的功能而定义,不应对本申请构成任何限定。本申请并不排除在5G网络以及未来其它的网络中采用其他命名的可能。例如,在6G网络中,上述各个网元中的部分或全部可以沿用5G中的术语,也可能采用其他名称等。图2中的各个网元之间的接口名称只是一个示例,具体实现中接口的名称可能为其他的名称,本申请对此不作具体限定。此外,上述各个网元之间的所传输的消息(或信令)的名称也仅仅是一个示例,对消息本身的功能不构成任何限定。
图2示出了本申请实施例所提供的方法所适用的网络架构的另一示意图。应理解,图2所示的网络架构为5G系统中的一种可能的网络架构,图中所示的各网元及网元间的通信接口仅为5G系统中的网元和通信接口的示例,不应对本申请构成任何限定。图中的各网元及网元间的通信接口可以替换为其他通信系统中具有相同或相似功能的网元及通信接口。为了简洁,这里不一一附图说明。
如图2所示,网络构架可以包括远端UE、可实现UE到网络的中继(UE-to-network relay)的UE(可简称为中继UE)、gNB(即,无线接入网设备的一例)、5GC(即,核心网设备的一例)及数据网络(data network,DN)。
其中,数据网络是为用户提供数据服务的运营商网络。数据网络例如可以包括但不限于,运营商业务的网络、因特网(Internet)、第三方的业务网络、IP多媒体服务业务(IP multi-media service)网络等。
UE可通过网络设备从数据网络获取数据。示例性地,若UE希望从数据网络获取数据,则可通过gNB向5GC发送服务请求,5GC可以基于该服务请求从数据网络获取UE请求的数据,并通过gNB传输至UE。
应理解,上述UE可以包括上述中继UE和远端UE。其中,中继UE可以直接与网络设备通信。例如,中继UE可以直接通过gNB与5GC通信。如图所示,中继UE与gNB之间的通信接口为NR Uu接口,中继UE可通过NR Uu接口与gNB通信。
远端UE可以基于中继UE提供的中继服务与网络设备通信。例如,远端UE可以基于中继UE提供的中继服务,通过gNB与5GC通信。如图所示,远端UE与中继UE之间的通信接口为PC5接口,远端UE可通过PC5接口与中继UE通信。其中,PC5接口是在3GPP标准中定义的终端设备到终端设备的直接通信接口,可以用于支持任意两个终端设备在预设范围内通过直连链路进行数据传输。基于PC5接口的连接可以称为PC5连接。
应理解,通过PC5接口通信仅为图2所示的5G系统中用于实现远端UE和中继UE间通信的一种可能的实现方式。在其他通信系统中,远端UE也可以通过其他方式连接至中继UE,比如,通过wifi连接至中继UE,或通过蓝牙连接至中继UE等,本申请对此不做限定。
如果一个UE可以成功建立与层2的中继UE之间的PC5链路(PC5link),该UE就可以被认为是远端UE。远端UE可能处于无线接入网的覆盖范围内,也可能处于无线接入网的覆盖范围外。本申请对此不作限定。
还应理解,中继UE提供的中继服务具体可以是指,对远端UE发送至网络设备的数据进行转发,或对网络设备发送至远端UE的网络设备进行转发,从而可以有效延展网络覆盖,降低远端UE和核心网设备的功耗。
在本申请实施例中,中继UE提供的中继服务可用于实现层2的中继或层3的中继。与之相对应,中继UE可以是层2的中继UE或层3的中继UE。
其中,层2的中继UE可以提供远端UE至网络系统(如5G系统(5G system,5GS))的连接。层2的中继属于链路层的中继。因此层2的中继UE自身无需建立协议数据单元(protocol data unit,PDU)会话(PDU session),只需要进入连接态后将远端UE的信令或数据中继到无线接入网设备即可。
图3示出了用于层2的中继UE的用户面(user plane)协议栈。如图3所示,该协 议栈包括:物理(physical,PHY)层(包括PC5接口的物理层和Uu接口的物理层)、介质接入控制(medium access control,MAC)层(包括PC5接口的MAC层和Uu接口的MAC层)、无线链路控制(radio link control,RLC)层(包括PC5接口的RLC层和Uu接口的RLC层)、分组数据汇聚层协议(packet data convergence protocol,PDCP)层(具体为Uu接口的PDCP层)、服务数据适配协议(service data adaptation protocol,SDAP)层(具体为Uu接口的SDAP层)、协议数据单元(protocol data unit,PDU)层、应用(application,AP)层、自适应(adaptation)层、IP层、用户数据协议(user datagram protocol,UDP)层、通用无线分组业务(general packet radio service,GPRS)隧道传输协议(GPRS tunneling protocol,GTP)-用户面(GTP-U)层等。其中,SDAP层向下至MAC层属于链路层。
由图3可以看到,PDCP层链路的两端是远端UE和接入网。因此中继功能在PDCP层以下的层执行。这也就意味着远端UE和接入网之间的数据安全可以得以保证,数据不会被暴露给中继UE。层3的中继属于因特网协议(Internet protocol,IP)层的中继,因此层3的中继UE自身需要建立PDU会话在IP层中继远端UE的数据。换言之,远端UE的数据流可以通过中继UE的PDU会话来传输。
层3的中继UE在触发服务请求流程进入连接态后,还需要有一个PDU会话来中继远端UE的数据。当中继UE进入连接态时,需要将此PDU会话的用户面连接建立起来。所述用户面连接可以是指包括中继UE至UPF之间的连接,具体可以包括中继UE与接入网设备之间的连接以及接入网设备与UPF之间的连接。用户面连接建立后便可进行数据传输。
图4示出了用于层3的中继UE的协议栈。如图4所示,该协议栈包括:层1、MAC层、RLC层、PDCP层、SDAP层、PDU层、自适应层、UDP层、IP层、GTP-U层等。由图4可以看到,中继UE在PDU层中继。PDU层中继位于层3,即链路层至上,应用层之下。应理解,上文对层2的中继和层3的中继的相关说明仅为便于理解,不应对本申请构成任何限定。
此外,当UE处于连接态时,具体是指该UE处于连接管理(connection management,CM)-连接态(CM-connected)。UE处于连接态时,与AMF之间在N1接口具有非接入层(non-access,NAS)信令连接。该NAS信令连接通过UE与接入网设备之间的RRC连接和用于3GPP接入技术中将接入网与AMF之间的下一代应用协议(next generation application protocol,NGAP)UE连接。
与之相对,当UE处于空闲态时,具体是指该UE处于连接管理-空闲态(CM-idle)。UE处于空闲态时,与AMF之间的N1接口不具有NAS信令连接。UE可以执行小区选择或小区重选等操作。
在某些通信系统中,对服务区域做了限制。UE处于某些区域时可能无法发起通信。比如,5G系统中引入了服务区限制。服务区限制定义了哪些区域下UE可以发起通信,哪些区域下UE不能和网络设备发起通信。基于UE是否可以发起通信,服务区限制可分为允许区域和非允许区域。处于允许区域中的UE可以和网络进行正常的业务通信。处于非允许区域的UE允许发起注册流程,但不允许进行其他通信,比如,不允许发起服务请求、请求数据面数据控制面板数据的连接、或发起会话管理流程等去获取用户业务;UE不能因为进入非允许区域而触发网络选择或者小区重选。简而言之,处于非允许区域中的UE可以像在允许区域中一样驻留,但不能主动发起业务(比如聊天、访问网页等)。
应理解,上述服务区限制是针对UE而言的。换言之,服务区限制是UE级别的。也就是说,某一区域对一个UE而言是非允许区域,但对另一个UE而言可能是允许区域。比如,对于普通民众来说,他们的手机(即,UE的一例)在军事基地可能无法发起通信,对这些普通民众的手机而言,该军事基地是非允许区域;但对于军人来说,他们的手机在此军事基地是可以发起通信的,对军人的手机而言,该军事基地是允许区域。
图5示例性地示出了允许区域和非允许区域。为便于区分,图中将允许区域以实线示出,将非允许区域以虚线示出。如图所示,UE2可以作为UE1的中继UE,对于UE2来说,UE1是远端UE。图中示出的UE2当前处于允许区域,UE1可以基于UE2提供的中继服务接入网络,以进行正常通信。
图6示出了远端UE通过层2的中继UE建立间接通信的流程。为便于理解和说明,下文所示的流程中,假设UE1和UE2均处于无线接入网的覆盖范围内。应理解,图6所示的流程仅为示例,不应对本申请构成任何限定。
其中,UE1例如可以是图5中的UE1,在图6所示的流程中可以作为远端UE的一例;UE2例如可以是图5中处于允许区域的UE2,在图6所示的流程中可以作为中继UE的一例。
为便于区分,图6中将UE1的服务AMF(即图6中的AMF1)和UE2的服务AMF(即,图6中的AMF2)以不同的网元示出。事实上,UE1的服务AMF和UE2的服务AMF可以是同一个AMF,也可以是不同的AMF,本申请对此不作限定。
此外,为避免混淆,图6中所示的SMF和UPF均为UE1的服务SMF和服务UPF,而并未示出UE2的服务SMF和服务UPF。但可以理解,UE1和UE2的服务SMF可以是同一个SMF,也可是不同的SMF;UE1和UE2的服务UPF可以是同一个UPF,也可以是不同的UPF。本申请对此不作限定。
还应理解,图中虽然仅示出了UE1的一个中继UE,但这并不对UE1的中继UE的数量构成限定。前已述及,为一个UE提供中继服务的UE可以为一个或多个。
如图6所示,该流程包括步骤601至步骤610。下面对各步骤做详细说明。
在步骤601中,UE1和UE2分别向网络设备发起初始注册流程。
UE1和UE2可以各自独立地向网络设备初始注册流程。
在步骤602中,UE1和UE2分别获取服务授权(service authorization)。
UE1和UE2可以分别从网络设备获取间接通信的服务授权。
在步骤603中,UE1和UE2执行设备发现流程。
UE1和UE2可以分别执行设备发现流程,互相发现对方。
在步骤604中,UE1进行中继选择。
UE1可以将UE2选择为自身的中继。由此,UE1为远端UE,UE2为中继UE。
在步骤605中,UE1向UE2发送间接通信请求消息。相应地,UE2接收来自UE1的间接通信请求消息。
UE1在存在通信需求的情况下,比如希望访问网页,或者需要发送聊天信息等,则可以通过向UE2发送间接通信请求消息,来发起基于PC5接口的、与中继UE的一对一通信连接。
这里,间接通信请求可以这样理解:UE1基于UE2提供的中继服务,与网络设备通信;而并不是基于Uu接口直接与网络设备通信。故将UE1与网络设备之间的通信称为间接通 信,UE1请求进行间接通信的请求即为间接通信请求。
应理解,间接通信请求仅为便于区分和理解而命名,不应对本申请构成任何限定。本申请对于信令的具体名称不作限定。
在步骤606中,UE2发起服务请求流程。
UE2可以通过发起服务请求流程进入连接态,并获得提供中继服务的授权。为了保持UE2的连接态,UE2可以向它的服务AMF(即,AMF2)发送信息,以指示UE2正在为远端UE提供中继服务,并指示无线接入网保持与UE2的RRC连接。
在步骤607中,UE2向UE1发送间接通信响应消息。相应地,UE1接收来自UE2的间接通信响应消息。
UE2可以在步骤606之后,为UE1提供中继服务。作为对步骤605中的间接通信请求消息的响应,UE2可以向UE1发送间接通信响应消息。
在步骤608中,UE1向AMF1发送非接入层(non-access stratum,NAS)消息。相应地,AMF1接收来自UE1的NAS消息。
UE1可以基于在步骤607中接收到的间接通信响应消息,向它的服务AMF(即,AMF1)发送NAS消息。该NAS消息可以经过PC5接口发送至UE2,再由UE2转发至无线接入网。无线接入网获取UE1的服务AMF,并将该NAS消息转发给AMF1。
在一种可能的设计中,该NAS消息可以是服务请求消息。
在步骤609中,UE1触发PDU会话的建立流程。
在步骤610中,UE1基于UE2提供的中继服务,与网络设备传输数据。
UE1可以基于UE2提供的中继服务,通过PC5接口接收来自网络设备的数据,或者,通过PC5接口向网络设备发送数据。更具体地说,UE2可以将通过PC5接口接收到的、来自UE1的数据,通过Uu接口转发至无线接入网,进而由无线接入网发送至核心网;也可以将通过Uu接口接收到的、来自无线接入网接收到的数据(可以理解,该数据可以是由核心网发送给无线接入网的数据),通过PC5接口发送给UE1。
作为层2的中继UE,UE2可以在UE1和无线接入网之间透传数据。该数据例如可以基于UE1和无线接入网之间协商的密钥加密,而并不会暴露给UE2。
应理解,上述流程仅为示例,不应对本申请构成任何限定。比如,其中的一些步骤可以省略,或者,还有一些步骤可以有更多的网元参与。本申请对此不作限定。
又比如,在另一种实现方式中,UE1并不一定要在发送间接通信请求消息前向网络设备发起初始注册流程。UE1例如可以在接收到来自UE2的间接通信响应消息后,发起初始注册流程。此情况下,该初始注册流程可以基于UE2的中继服务而进行。步骤608中的NAS消息可以是初始注册消息。
图7示出了远端UE通过层3的中继UE建立间接通信的流程。为便于理解和说明,下文所示的流程中,假设UE1和UE2均处于无线接入网的覆盖范围内。应理解,图7所示的流程仅为示例,不应对本申请构成任何限定。
如图7所示,该流程包括步骤701至步骤708。下面对各步骤做详细说明。
在步骤701中,UE1和UE2分别从网络设备获取授权(authorization)和配置(provisioning)。
UE1和UE2可以各自独立地从网络设备获取授权和配置。
在步骤702中,UE2发起PDU会话建立流程。
UE2可通过发起PDU会话建立流程,建立UE2的PDU会话的用户面连接。
在步骤703中,UE1和UE2执行设备发现流程。
UE1和UE2可以分别执行设备发现流程,互相发现对方。
在步骤704中,UE1与UE2建立一对一通信连接(connection for one-to-one communication)。
在步骤705中,UE2建立新的PDU会话,或更新已有的PDU会话,以用于中继。
如前所述,层3的中继UE需要建立PDU会话。UE2可以通过建立新的PDU会话,或者对已有的PDU会话进行更新,来为UE1转发数据。
在步骤706中,为UE1分配IP地址或前缀。
作为中继UE的UE2可以为远端UE(即,UE1)分配IP地址或前缀,例如分配IPv4地址或IPv6前缀。自此,UE1和网络设备之间的上行和下行的中继可以实现。
在步骤707中,UE2上报远端UE。
在此流程中,UE2可以上报UE1。UE2例如可以上报UE1的
在步骤708中,UE1基于UE2提供的中继服务,与网络设备传输数据。
UE1可以基于UE2提供的中继服务,通过PC5接口接收来自网络设备的数据,或者,通过PC5接口向网络设备发送数据。更具体地说,UE2可以将通过PC5接口接收到的、来自UE1的数据,通过Uu接口转发至无线接入网,进而由无线接入网发送至核心网;也可以将通过Uu接口接收到的、来自无线接入网接收到的数据(可以理解,该数据可以是由核心网发送给无线接入网的数据),通过PC5接口发送给UE1。
作为层3的中继UE,UE2可以通过上文步骤705中建立或更新的PDU会话在UE1和接入网直接转发数据。
应理解,上述流程仅为示例,不应对本申请构成任何限定。比如,其中的一些步骤可以省略,或者,还有一些步骤可以有更多的网元参与。本申请对此不作限定。
基于上文结合图6和图7所示的流程,作为远端UE的UE1可以基于UE2提供的中继服务,与网络设备通信。然而,随着UE2的移动,UE2可能会进入非允许区域,如图5中虚线所示。UE2进入非允许区域后,UE2可能无法继续为UE1提供中继服务。UE1的通信可能会受到影响。
有鉴于此,本申请提供一种方法,以期在中继UE进入非允许区域后,尽可能地减小对远端UE的通信的影响。
下面将结合附图,对本申请实施例提供的方法进行详细说明。
需要说明的是,下文多个实施例示出了两种不同的实现方式。在一种实现方式中,中继UE在非允许区域中通过发起注册流程或服务请求流程,进入连接态,为远端UE提供中继服务;在后一种实现方式中,中继UE在非允许区域中拒绝为远端UE提供中继服务,从而触发远端UE执行中继重选或路径切换流程。
下文结合图8至图10描述的实施例示出了上述前一种实现方式下的具体流程,结合图11和图12描述的实施例示出了上述后一种实现方式下的具体流程。下面结合附图详细说明各实施例。
还需要说明的是,下文示出的多个流程图中,只是示例性地示出了与所列举步骤相关 的几个网元,且这些网元也仅为一种可能的示例,而不应对本申请构成任何限定。各个流程中所列举的信令仅为示例,不应对本申请构成任何限定。本申请对于信令的具体名称不作限定。
下文在结合图8至图10所示的实施例中,远端UE例如可以对应于图5中的UE1。该远端UE可以是处于无线接入网的覆盖范围内的UE,也可以是处于无线接入网的覆盖范围外的UE,本申请对此不作限定。比如,该UE1虽然处于无线接入网的覆盖范围内,但可能处于小区边缘,信号质量不佳;又如,该UE1处于无线接入网的覆盖范围之外,接收不到信号。故UE1希望通过中继来与网络设备通信。UE1例如可以通过设备发现来寻找中继UE,并与所选择的中继UE通过PC5接口通信。该中继UE例如可以对应于图5中的UE2。UE2在无线接入网的覆盖范围内,且具有较好的信号质量。UE1可以通过设备发现和中继选择,确定UE2可以作为中继UE。
作为中继UE的UE2当前处于空闲(idle)态。且,由于UE的高移动性,UE2从图5所示的允许区域移动到了非允许区域。一种可能的情况是,UE1因业务需求向处于非允许区域的UE2发送第一消息,以请求通过UE2连接至网络设备。此情况下,UE1与UE2之间的PC5连接还未建立,或者说,还不存在。另一种可能的情况是,UE1在UE2进入非允许区域前就已接收到来自UE2的针对第一消息的响应,与UE1建立了PC5连接,但在UE2进入非允许区域后向UE2发送待转发的数据。在上述多种可能的情况下,UE2可通过下文实施例所提供的方法来为远端UE提供中继服务。
请参阅图8,图8为本申请一个实施例的网络连接方法800的流程示意图。如图8所示,该方法800可以包括步骤810至步骤850。下面详细说明图8中的各个步骤。
在步骤810中,远端UE向中继UE发送第一消息或数据。相应地,中继UE接收来自远端UE的第一消息或数据。
其中,该第一消息用于请求通过中继UE连接至网络设备,进而可以基于该中继UE提供的中继服务与网络设备通信。在一种可能的实现方式中,该第一消息可以是远端UE请求连接至该网络设备的请求消息,例如可以是上文所述的间接通信请求消息。在另一种实现方式中,该第一消息可以是远端UE请求与中继UE建立直接通信的请求消息。应理解,上述间接通信具体可以是指远端UE与网络设备之间的间接通信;上述直接通信具体可以是指远端UE与中继UE之间的直接通信。
基于上文所述的两种可能的情况,远端UE可能在步骤810中发送第一消息或发送数据。应理解,该数据可以是该远端UE要发送给网络设备的数据。
步骤820中,中继UE确定处于非允许区域。
由于上文已经结合图5对允许区域和非允许区域做了详细说明,为了简洁,这里不再重复。在一种实现方式中,网络设备可以在中继UE完成初始注册后,向该中继UE发送允许区域或非允许区域的指示信息。如果UE接收到允许区域的指示信息,则可以认为除去该指示信息所指示的允许区域之外的跟踪区(tracking area,TA)为非允许区域。如果UE接收到非允许区域的指示信息,则可以认为处于该指示信息所指示的非允许区域之外的TA为允许区域。
上述允许区域或非允许区域的指示信息例如可以是允许区域或非允许区域的跟踪区标识(tracking area identity,TAI)、无线接入网标识、或小区标识等。本申请对此不 作限定。以TAI为例,中继UE若移动到某一区域接收到新的TAI,便可以基于此前接收到的允许区域或非允许区域的指示信息,确定当前是否处于非允许区域中。
应理解,上文以允许区域和非允许区域为例描述了中继UE确定是否处于非允许区域的一种可能的实现方式,但这不应对本申请构成任何限定。本申请对于UE如何确定是否处于非允许区域的具体实现方式不作限定。
在步骤830中,中继UE向网络设备发送第二消息,以进入连接态。
为了继续向远端UE提供中继服务,中继UE可以向网络设备发送第二消息,以请求建立中继UE与网络设备之间的连接。中继UE向网络设备发送请求建立与网络设备之间的连接,具体可以通过请求网络设备将中继UE进入连接态的操作来实现。
在一种实现方式中,该中继UE执行注册流程,以进入连接态。在这种实现方式中,该第二消息可以是注册请求消息。网络设备在接收到该注册请求消息时,可以接受中继UE的注册请求,并在中继UE的注册流程完成后,不释放与中继UE的信令连接,或者,不置中继UE为空闲(idle)态,使中继UE保持在连接态。
在另一种实现方式中,该中继UE可以执行服务请求流程,以进入连接态。在这种实现方式中,该第二消息可以是服务请求消息。网络设备在接收到该服务请求消息时,可以接收中继UE的服务请求,并在中继UE的服务请求流程完成后,不释放与中继UE的信令连接,或者,不置中继UE为空闲态,使中继UE保持在连接态。
由于下文会结合具体的流程来对上述两种实现方式做详细说明,为了简洁,这里暂且不作详述。
可选地,该方法还包括:中继UE向网络设备发送中继能力信息。该中继能力信息可用于指示该中继UE是否能够作为中继使用。
在一种实现方式中,该中继能力信息可以作为UE能力的一项,在UE能力信息中上报给网络设备。一示例,该中继能力信息可以是承载在UE能力信息中的一个字段,通过一个或多个比特位来指示。例如通过一个比特位来指示,“0”表示该UE不能够作为中继使用,“1”表示该UE能够中继使用。
当然,该中继能力信息也可以携带在其他信令中上报,或通过其他方式来指示。本申请对此不作限定。
本申请实施例中假设该中继UE能够作为中继使用。网络设备(例如核心网,如5G中的AMF)在接收到中继能力信息后,则可以进一步结合该中继UE的签约信息,确定是否同意该中继UE作为中继使用。若同意,则网络设备可以在后续接收到第二消息时,接受中继UE建立连接的请求(如上述中继UE通过注册请求消息发起的注册流程或通过服务请求消息发起的服务请求流程),中继UE由此可进入连接态。若不同意,则网络设备可以在后续接收到第二消息时,拒绝中继UE建立连接的请求(如上述中继UE通过注册请求消息发起的注册流程或通过服务请求消息发起的服务请求流程),此情况下,中继UE可能仍然处于空闲态,可能无法为远端UE提供中继。
在步骤840中,中继UE向远端UE发送第一消息的响应消息。相应地,远端UE接收来自中继UE的第一消息的响应消息。
作为对第一消息的响应,中继UE在进入连接态后,可以向远端UE发送响应消息,以通知远端UE可以为其提供中继服务。
应理解,步骤850是一个可选的步骤,如果远端UE在步骤810中向中继UE发送的是数据而非第一消息,则可直接执行步骤850。
在步骤850中,远端UE基于中继UE提供的中继服务,与网络设备传输数据。
远端UE可以基于中继UE提供的中继服务,通过PC5接口接收来自网络设备的数据,或者,通过PC5接口向网络设备发送数据。更具体地说,远端UE可以将通过PC5接口接收到的、来自中继UE的数据,通过Uu接口转发至无线接入网,进而由无线接入网发送至核心网;也可以将通过Uu接口接收到的、来自无线接入网接收到的数据(可以理解,该数据可以是由核心网发送给无线接入网的数据),通过PC5接口发送给中继UE。
以层2的中继为例,则该中继UE可以在远端UE和无线接入网之间透传数据。该数据例如可以基于中继UE和无线接入网之间协商的密钥加密得到,而并不会暴露给远端UE。
可以理解,若远端UE在步骤810中向中继UE发送的是数据,则该中继UE可以在步骤850中转发该数据。
基于上述技术方案,中继UE在作为中继使用的情况下,即便受到非允许区域的限制不能发起通信,但仍然可以在远端UE有业务需求时,向网络设备发送第二消息,通过请求建立与网络设备之间的连接,进入并保持在连接态,为远端UE提供中继服务。从而可以减小对远端UE的正常通信的影响,有利于提高用户体验。
为了更好地理解本实施例,下文结合图9和图10对本实施例进行更详细地说明。
图9是本申请另一实施例提供的网络连接方法900的示意性流程图。如图9所示,该方法900可以包括步骤910至步骤960。下面详细说明图9中的各个步骤。
在步骤910中,远端UE向中继UE发送第一消息或数据。相应地,中继UE接收来自远端UE的第一消息或数据。
步骤910的具体过程与上文方法800中的步骤810的具体过程相同,可以参考上文对步骤810的相关描述,为了简洁,这里不再重复。
在步骤920中,中继UE确定是否处于非允许区域。
由于上文方法800的步骤820中已经详细说明了非允许区域,并结合具体的实现方式说明了中继UE如何确定是否处于非允许区域,为了简洁,这里不再重复。
若中继UE确定处于非允许区域,则可执行步骤930,中继UE通过发送注册请求消息发起注册流程。
应理解,在本实施例中,注册请求消息是第二消息的一例。如前所述,UE在处于非允许区域时可以发起注册流程,故中继UE可以通过发送注册请求消息发起注册流程,以进入连接态。
需要说明的是,中继UE在处于允许区域中时,若接收到来自远端UE的第一消息,通常会发起服务请求流程,而不发起注册流程。本申请实施例中,通过根据中继UE所处的区域的不同来执行不同的流程,如在允许区域中则执行服务请求流程,在非允许区域中则执行注册流程,来进入连接态,为远端UE提供中继服务。
可选地,该注册请求消息中包含第一指示信息,该第一指示信息用于指示,该中继UE为远端UE提供服务。在一种可能的设计中,该第一指示信息为用于指示该中继UE作为中继使用的信息。为便于区分和说明,在本申请实施例中,该用于指示该中继UE作为中继使用等信息可简称为中继指示信息。即,该注册请求消息中包含中继指示信息。
该中继指示信息具体可用于指示该中继UE作为中继使用。网络设备(例如核心网,如5G中的AMF)在读取到该中继指示信息时,便可以确定该中继UE当前正在提供中继服务。在中继UE通过注册流程进入连接态后,网络设备可以基于该中继指示信息,继续保持该中继UE的连接态,而不释放与中继UE之间的信令连接,或者,不将该中继UE置为空闲态。
一示例,该中继指示信息可以承载在第二消息中的一个字段,通过一个或多个比特位来指示。例如通过一个比特位来指示,“0”表示该UE不作为中继使用,“1”表示该UE作为中继使用。
在另一种可能的设计中,该第一指示信息用于所述第一指示信息用于请求所述网络设备在所述非允许区域内接受所述服务请求消息。应理解,该第一指示信息用于请求网络设备在非允许区域内接受服务请求消息,也就可以理解为,请求免除对所述中继UE在非允许区域的限制。为便于区分和说明,在本申请实施例中,该请求所述网络设备在所述非允许区域内接受所述服务请求消息的信息(或者说,用于请求免除对中继UE在非允许区域的限制的信息)可简称为豁免信息。即,该注册请求消息中包含豁免信息。
豁免信息可用于免除非允许区域的限制。也就是说,网络设备(例如核心网,如5G中的AMF)在读取到该豁免信息时,就可以免除对该中继UE的服务区限制,该中继UE可以通过注册流程进入连接态。基于该豁免信息,网络设备可以继续保持该中继UE的连接态,而不释放与中继UE之间的信令连接,或者,不将该中继UE置为空闲态。
一示例,该豁免信息可以通过第二消息中的一个或多个比特位来指示。例如通过一个比特位来指示,“0”表示不免除服务区限制,“1”表示免除服务区限制。
应理解,豁免信息和中继指示信息的含义虽然不同,但网络设备可以基于二者中的任意一项,确定继续保持该中继UE的连接态。因此,二者的功能是相似的。
还应理解,豁免信息和中继指示信息可以理解为是携带在第二消息中的不同字段。本申请对于字段的具体名称不作限定。
在又一种可能的设计中,该第一指示信息可以是注册类型的指示信息。在本申请实施例中,该注册类型例如可以指示:中继UE为远端UE提供中继服务,或在非允许区域进入连接态,等等。基于该注册类型,网络设备便可以确定该中继UE处于非允许区域,当由于存在提供中继服务的需求,需要进入连接态。进而可以执行将中继UE进入连接态的操作,并保持中继UE的连接态。
上述注册类型例如可以承载在注册请求消息中的某一字段中,通过不同的取值来指示不同的注册类型。例如,除了上文所列举的注册类型外,该注册类型例如还可以包括位置区域更新、等等。本申请对此不作限定。
如前所述,该方法还可以包括:中继UE向网络设备发送中继能力信息。相应地,网络设备接收来自中继UE的中继能力信息。
中继能力信息可用于指示该中继UE是否能够作为中继使用。应理解,若中继能力信息指示UE能够作为中继使用,并不代表该UE当前正作为中继使用。若中继能力信息指示UE不能够作为中继使用,则可以确定该UE当前并没有作为中继使用。由于前文方法800中已经对中继能力信息做了详细说明,为了简洁,这里不再重复。
在另一种实现方式中,协议也可以定义:当中继UE处于非允许区域中时,若中继UE 发送的注册请求消息中不携带豁免信息或中继指示信息,则网络设备可以拒绝该中继UE的注册请求;若中继UE发送的注册请求中携带豁免信息和/或中继指示信息,则网络设备可以接受该中继UE的注册请求。
若中继UE确定不处于非允许区域,则可执行步骤940,中继UE发起服务请求流程,以进入连接态。
若中继UE不处于非允许区域,也即通信不受限。中继UE可以按照现有技术发起服务请求流程,以进入连接态。
在步骤950中,中继UE向远端UE发送第一消息的响应消息。
步骤950的具体过程与上文方法800中的步骤830的具体过程相同,可以参考上文对步骤830的相关描述,为了简洁,这里不再重复。
在步骤960中,远端UE基于中继UE提供的中继服务,与网络设备传输数据。
步骤960的具体过程与上文步骤850的具体过程相同,可以参考上文对步骤850的相关描述,为了简洁,这里不再重复。
可以理解,若远端UE在步骤910中向中继UE发送的是数据,则该中继UE可以在步骤960中转发该数据。
基于上述技术方案,中继UE作为中继使用的情况下,即便受到非允许区域的限制不能发起通信,但仍然可以在远端UE有业务需求时,向网络设备发起注册请求流程,进而为远端UE提供中继服务。从而可以减小对远端UE的正常通信的影响,有利于提高用户体验。此外,由于在非允许区域中的UE可以发起注册流程,而在允许区域中的UE仍可按照现有协议中的流程,执行服务请求流程,总体来说,对现有的协议改动较小。
图10是本申请又一实施例提供的方法1000的示意性流程图。如图10所示,该方法1000可以包括步骤1010至步骤1050。下面详细说明图10中的各个步骤。
在步骤1010中,远端UE向中继UE发送第一消息或数据。相应地,中继UE接收来自远端UE的第一消息或数据。
步骤1010的具体过程与上文方法800中的步骤810的具体过程相同,可以参考上文对步骤810的相关描述,为了简洁,这里不再重复。
在步骤1020中,中继UE确定是否处于非允许区域。
由于上文方法800的步骤820中已经详细说明了非允许区域,并结合具体的实现方式说明了中继UE如何确定是否处于非允许区域,为了简洁,这里不再重复。
若中继UE确定处于非允许区域,则可执行步骤1030,中继UE发送包含第一指示信息的服务请求消息,以发起服务请求流程。
该第一指示信息可用于指示,该中继UE为远端UE提供服务。如前所述,在一种可能的设计中,该第一指示信息可以是用于请求免除对中继UE在非允许区域的限制的信息,例如简称为豁免信息。在另一种可能的设计中,该第一指示信息可以是用于指示该中继UE作为中继使用的信息,例如简称为中继指示信息。
应理解,在本实施例中,包含第一指示信息的服务请求消息是第二消息的另一例。
如前所述,UE在处于非允许区域时不允许发起服务请求流程。为了免除网络设备对该中继UE的服务请求流程的限制,中继UE可以在该服务请求消息中包含豁免信息或中继指示信息。
当该服务请求消息中携带豁免信息时,该豁免信息可用于免除服务区限制。网络设备(例如核心网,如5G中的AMF)在读取到该豁免信息时,便可以免除对该中继UE的服务区限制,因此中继UE可以通过携带豁免信息的服务请求消息发起服务请求流程。网络设备(例如核心网,如5G中的AMF)可以基于该豁免信息接受该中继UE的服务请求。中继UE进而可以进入连接态。网络设备可以继续保持该中继UE的连接态,而不释放与中继UE之间的信令连接,或者,不将该中继UE置为空闲态。
当该服务请求消息中携带中继指示信息时,该中继指示信息可用于指示该中继UE作为中继使用。网络设备(例如核心网,如5G中的AMF)在读取到中继指示信息时,便可以接受该中继UE的服务请求。因此中继UE可以通过携带中继指示信息的服务请求消息发起服务请求流程,以进入连接态。网络设备可以继续保持该中继UE的连接态,而不释放与中继UE之间的信令连接,或者,不将该中继UE置为空闲态。
因此,在本实施例中,基于该携带豁免信息和中继指示信息中至少一项的服务请求消息,中继UE可以发起服务请求流程,以进入连接态。且,网络设备可以继续保持该中继UE的连接态,而不释放与中继UE之间的信令连接,或者,不将该中继UE置为空闲态。
携带了豁免信息和中继指示信息中至少一项的服务请求消息也可以称为增强的服务请求消息。
如前所述,该方法还可以包括:中继UE向网络设备发送中继能力信息。相应地,网络设备接收来自中继UE的中继能力信息。
中继能力信息可用于指示该中继UE是否能够作为中继使用。应理解,若中继能力信息指示UE能够作为中继使用,并不代表该UE当前正作为中继使用。若中继能力信息指示UE不能够作为中继使用,则可以确定该UE当前并没有作为中继使用。由于前文方法800中已经对中继能力信息做了详细说明,为了简洁,这里不再重复。
若中继UE确定不处于非允许区域,则可执行步骤1040,中继UE发送不包含第一指示信息的服务请求消息,以发起服务请求流程。
由于中继UE不处于非允许区域,通信不受限,则中继UE可以不在该服务请求消息中携带豁免信息或中继指示信息等可作为第一指示信息使用的信息。中继UE可以按照现有技术来执行服务请求流程。
网络设备接收到上述服务请求消息之后,可以接受该中继UE的服务请求消息,以执行将中继UE进入连接态的操作。
需要说明的是,若该中继UE提供层3的中继服务,则该网络设备接受服务请求消息还可以包括激活中继UE的PDU会话,也就是建立中继UE的PDU会话的用户面连接。以图7所示的流程为例,该网络设备接受中继的服务请求消息,可以触发图7中的UE2执行图7中的步骤705。
在步骤1050中,中继UE向远端UE发送第一消息的响应消息。
步骤1050的具体过程与上文方法800中的步骤830的具体过程相同,可以参考上文对步骤830的相关描述,为了简洁,这里不再重复。
在步骤1060中,远端UE基于中继UE提供的中继服务,与网络设备传输数据。
步骤1060的具体过程与上文步骤850的具体过程相同,可以参考上文对步骤610的相关描述,为了简洁,这里不再重复。
可以理解,若远端UE在步骤1010中向中继UE发送的是数据,则该中继UE可以在步骤1060中转发该数据。
基于上述技术方案,中继UE作为中继使用的情况下,即便受到非允许区域的限制不能发起通信,但仍然可以在远端UE有业务需求时,向网络设备发起服务请求流程,通过在服务请求消息中携带豁免信息、中继指示信息及中继能力参数中的至少一项,来免除服务区限制。通过服务请求流程,中继UE可以进入连接态,为远端UE提供中继服务。因此,可以减小对远端UE的正常通信的影响,有利于提高用户体验。
上文结合图8至图10详细描述了本申请实施例提供的一种网络连接方法,可以在中继UE处于非允许区域的情况下,继续为远端UE提供中继服务。下文将结合图11和图12描述本申请实施例提供的另一种网络连接方法,在中继UE处于非允许区域的情况下,触发远端UE执行中继重选或路径切换流程。
为便于区分和理解,下文中将远端UE当前连接的中继UE记为中继UE1,远端UE通过执行中继重选确定的中继UE即为中继UE2。
下文在结合图11和图12所示的实施例中,远端UE例如可以对应于图5中的UE1。该远端UE可以是处于无线接入网的覆盖范围内的UE,也可以是处于无线接入网的覆盖范围外的UE,本申请对此不作限定。比如,该UE1虽然处于无线接入网的覆盖范围内,但可能处于小区边缘,信号质量不佳;又如,该UE1处于无线接入网的覆盖范围之外,接收不到信号。故UE1希望通过中继来与网络设备通信。UE1例如可以通过设备发现来寻找中继UE,并与所选择的中继UE通过PC5接口通信。该中继UE1例如可以对应于图5中的UE2。UE2在无线接入网的覆盖范围内,且具有较好的信号质量。UE1可以通过设备发现和中继选择,确定UE2可以作为中继UE。
UE2当前处于空闲(idle)态,且,由于UE的高移动性,UE2从图5所示的允许区域移动到了非允许区域(即,非允许区域的一例)。如果处于非允许区域的UE2不能继续为UE1提供中继服务,则可通过下文结合图11和图12所示的实施例,触发UE1执行中继选择或路径切换流程。
一种可能的情况是,远端UE在中继UE1进入非允许区域前就已接收到来自中继UE的针对第一消息的响应,与中继UE建立了PC5连接,但在中继UE1进入非允许区域后,远端UE向中继UE1发送了待转发的数据。针对这种情况,下文结合图11所示的实施例,详细说明了中继UE1触发远端UE执行中继重选或路径切换流程。
图11是本申请另一实施例提供的网络连接方法1100的示意性流程图。如图11所示,该方法1100可以包括步骤1110至步骤1140。下面详细说明图11中的各个步骤。
在步骤1110中,中继UE1为远端UE提供连接至网络设备的中继服务。
远端UE例如可以通过图6所示的流程与中继UE1建立PC5连接,进而基于中继UE1提供的中继服务与网络设备通信。例如,中继UE1可用于在远端UE与网络设备间转发数据。
在步骤1120中,中继UE1确定处于非允许区域。
由于上文方法1100的步骤1120中已经详细说明了非允许区域,并结合具体的实现方式说明了中继UE1如何确定是否处于非允许区域,为了简洁,这里不再重复。
在本实施例中,假设中继UE1处于非允许区域。
在步骤1130中,中继UE1向远端UE发送去连接请求消息。相应地,远端UE接收来自所述中继UE1的去连接请求消息。该去连接请求消息可用于请求断开中继UE1与远端UE之间的连接,即上述PC5连接。也就是说,远端UE此后不能在通过与中继UE1之间的PC接口通信。换言之,中继UE1不能再为该远端UE提供中继服务。
可选地,该去连接请求消息中携带原因(cause)值。该原因值可用于指示去连接请求的原因为:中继UE1处于非允许区域。
在一种可能的实现方式中,该原因值可以通过某一预设字段来指示。该字段例如为“cause”。该字段例如可以通过一个或多个比特位来承载。
应理解,中继UE1发送去连接请求消息的原因可能并不仅限于中继UE1处于非允许区域。该中继UE1也可能因为其他原因而请求断开与远端UE之间的连接。比如,中继UE1当前作为多个远端UE的中继使用,负载较大;又比如,中继UE1当前电量较低,为节省功耗,不希望作为中继使用,等等,为了简洁,这里不一一列举。
通过原因值来指示中继UE1发送去连接请求的原因,可便于远端UE采取合理的应对措施。
在步骤1140中,远端UE向中继UE1发送去连接请求响应消息。相应地,中继UE1接收来自远端UE的去连接请求响应消息。
该去连接请求响应消息也即对步骤1130中的去连接请求消息的响应。此后,该PC5接口断开,中继UE1与远端UE之间不能直接通信。
在步骤1150中,远端UE执行中继重选或路径切换(path switch)流程。
远端UE基于来自中继UE1的去连接请求消息,可以确定该中继UE1不能继续为它提供中继服务。
为了保持正常通信,在一种实现方式中,该远端UE可以执行850a,执行中继重选,以确定新的中继UE。比如,远端UE可以再次进行设备发现,以寻找其他能够作为中继使用的中继UE,并在发现新的中继UE后。假设该远端UE发现新的中继UE为中继UE2,则该远端UE可以通过该中继UE2接入网络。远端UE执行中继重选的具体过程与上文结合图2所描述的过程相似,为了简洁,这里不再重复。
在另一种实现方式中,该远端UE可以执行步骤1150b,执行路径切换流程,由从PC5接口的间接通信切换到Uu接口的直接通信。在这种实现方式中,该远端UE应处于无线接入网的覆盖范围内。远端UE在完成路径切换后,便可通过Uu接口与无线接入网设备直接通信,而不需要其他UE来提供中继服务。
在完成了中继重选或路径切换流程之后,远端UE便可以继续与网络设备通信。
基于上述技术方案,中继UE在为远端UE提供中继服务时,一旦受到非允许区域的限制不能发起通信,就可以主动地向远端UE发起去连接请求消息,以触发远端UE执行设备发现或路径切换流程,以保持正常通信。因此,中继UE即便进入非允许区域,但可以快速地通知远端UE,使得远端UE不受中继UE通信受限的影响,尽可能地减小对远端UE的正常通信的影响。
除了上文所述的中继UE1已与远端UE建立了PC5连接的情况之外,还有一种可能的情况是,远端UE因业务需求向处于非允许区域的中继UE1发送第一消息,以请求通过中继UE1连接至网络设备。此情况下,远端UE与中继UE1之间的PC5连接还未建立,或者 说,还不存在。这对这两种情况,下文结合图12所示的实施例,详细说明了中继UE2触发远端UE执行中继重选或路径切换流程。
图12是本申请另一实施例提供的网络连接方法1200的示意性流程图。如图12所示,该方法1200可以包括步骤1210至步骤1240。下面详细说明图12中的各个步骤。
在步骤1210中,中继UE1接收来自远端UE的第一消息。相应地,中继UE1接收来自远端UE的第一消息。
步骤1210的具体过程与上文方法800中的步骤810的具体过程相同,可以参考上文对步骤810的详细描述,为了简洁,这里不再重复。
在步骤1220中,中继UE1确定处于非允许区域。
由于上文方法800的步骤820中已经详细说明了非允许区域,并结合具体的实现方式说明了中继UE1如何确定是否处于非允许区域,为了简洁,这里不再重复。
在本实施例中,假设中继UE1处于非允许区域。
在步骤1230中,中继UE1向远端UE发送拒绝消息。相应地,远端UE接收来自中继UE1的拒绝消息。
该拒绝消息是针对步骤1210中接收到的第一消息的拒绝消息。如前所述,第一消息可以是远端UE请求连接至该网络设备的请求消息,也可以是远端UE请求与中继UE1建立直接通信的请求消息。作为响应,上述拒绝消息可以是拒绝远端UE连接至网络设备的请求消息的拒绝消息,也可以是拒绝远端UE与中继UE1建立直接通信的请求消息的拒绝消息。
可选地,该拒绝消息中携带原因值。该原因值可用于指示拒绝远端UE的请求或数据转发的原因为:中继UE1处于非允许区域。
由于上文方法1100中的步骤1140中已经详细说明了原因值,为了简洁,这里不再重复。
在步骤1240中,远端UE执行中继重选或路径切换流程。
可选地,步骤1240包括:步骤1240a,执行中继重选,以确定新的中继UE,比如图中所示的中继UE2;或,步骤1240b,执行路径切换流程,由从PC5接口的间接通信切换到Uu接口的直接通信。
步骤1240的具体过程与上文方法1100的步骤1150的具体过程相同,可以参考上文对步骤1150的详细描述,为了简洁,这里不再重复。
基于上述技术方案,中继UE在受到非允许区域的限制不能发起通信的情况下,一旦接收到来自远端UE的建立连接的请求消息,便可以拒绝建立连接,从而可以触发远端UE执行设备发现或路径切换流程,以保持正常通信。因此,中继UE即便进入非允许区域,但可以在远端UE在有通信需求的情况下及时地通知远端UE,使得远端UE尽可能地不受中继UE通信受限的影响,减小对远端UE的正常通信的影响。
在上文各实施例中,各网元可以执行各实施例中的部分或全部步骤。这些步骤或操作仅是示例,本申请实施例还可以执行其它操作或者各种操作的变形。此外,各个步骤可以按照各实施例呈现的不同的顺序来执行,并且有可能并非要执行本申请实施例中的全部操作。且,各步骤的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
以上,结合图8至图12详细说明了本申请实施例提供的方法。为了实现上述本申请实施例提供的方法中的各功能,作为执行主体的远端UE和中继UE可以包括硬件结构和/或软件模块,以硬件结构、软件模块、或硬件结构加软件模块的形式来实现上述各功能。上述各功能中的某个功能以硬件结构、软件模块、还是硬件结构加软件模块的方式来执行,取决于技术方案的特定应用和设计约束条件。例如,图13和图14示出了本申请实施例提供的通信装置的示意图。
请参阅图13,图13是本申请实施例提供的通信装置的示意性框图。
一示例,图13所示的通信装置1300可对应于前文结合图8至图10所示的方法实施例中的中继UE(例如可以是中继UE,或者,配置在中继UE中的部件,如芯片、芯片系统等),并执行中继UE执行的方法;或者,也可对应于前文方法实施例中的网络设备(例如可以是网络设备,或者,配置在网络设备中的部件,如芯片、芯片系统等),并执行网络设备执行的方法。
具体地,图13所示的装置1300可以包括接收模块1310、发送模块1320和处理模块1330。
当该装置1300对应于前文结合图8至图10示出的方法实施例中的中继UE时,该接收模块1310可用于接收来自远端UE的第一消息或者数据,所述第一消息用于请求通过所述装置1300连接至网络设备,所述数据是待发送给所述网络设备的数据;发送模块1320可用于在处于非允许区域的情况下,向所述网络设备发送第二消息,所述第二消息用于请求建立所述装置1300与所述网络设备之间的连接。
可选地,所述第二消息用于请求建立所述装置1300与所述网络设备之间的连接,包括:所述第二消息用于请求所述网络设备执行将所述装置1300进入连接态的过程。
可选地,所述第二消息中包含第一指示信息,所述第一指示信息用于指示:所述装置1300为所述远端UE提供服务。
可选地,所述第二消息为服务请求消息,所述服务请求消息中包含所述第一指示信息,所述第一指示信息用于请求免除对所述装置1300在非允许区域的限制。
可选地,所述第二消息为注册请求消息,所述注册请求消息中包含所述第一指示信息,所述第一指示信息用于指示所述装置1300作为中继使用。
可选地,所述发送模块1320还用于向所述网络设备发送中继能力信息,所述中继能力信息用于指示所述装置1300能够作为中继使用。
可选地,所述发送模块1320还用于在处于允许区域的情况下,向所述网络设备发送服务请求消息。
可选地,所述装置1300用于为所述远端UE提供层2的中继服务或者层3的中继服务。
当该装置1300对应于前文结合图8至图10示出的方法实施例中的网络设备时,该接收模块1310可用于接收来自中继UE的第二消息;所述第二消息是所述中继UE在处于非允许区域的情况下,基于从远端UE接收到的第一消息或数据而发送的消息,所述第一消息用于请求通过所述中继UE连接至所述装置1300,所述数据是待发送给所述装置1300的数据;所述第二消息用于请求建立所述中继UE与所述装置1300之间的连接;该处理模块1330可用于基于所述第二消息,建立与所述中继UE之间的连接。
可选地,该处理模块1330具体用于,基于所述第二消息,执行将所述中继UE进入连 接态的过程。
可选地,所述第二消息中包含第一指示信息,所述第一指示信息用于指示:所述中继UE为所述远端UE提供服务。
可选地,所述第二消息为服务请求消息,所述服务请求消息中包含所述第一指示信息,所述第一指示信息用于请求免除对所述中继UE在所述非允许区域的限制。
进一步地,所述处理模块1330还用于,基于所述第一指示信息,接受所述服务请求消息的服务请求。
可选地,所述第二消息为注册请求消息,所述注册请求消息中包含所述第一指示信息,所述第一指示信息用于指示所述中继UE作为中继使用。
进一步地,所述处理模块1330还用于,基于所述第一指示信息,在所述中继UE的注册流程之后,保持所述UE的连接态。
可选地,所述接收模块1310还用于接收来自所述中继UE的中继能力信息,所述中继能力信息用于指示所述中继UE能够作为中继使用。
可选地,该处理模块1330具体用于,在接收到所述第二消息的情况下,基于所述中继能力信息确定所述中继UE是否能够作为中继使用;并用于在确定所述中继UE能够作为中继使用的情况下,建立与所述中继UE之间的连接。
可选地,所述中继UE为用于为所述远端UE提供层2的中继服务或者层3的中继服务。
上述如图13所示的通信装置1300作为中继UE或网络设备时的具体工作方式及原理可参照前文结合图8至图10示出的方法实施例中的相关描述,为了简洁,这里不再赘述。
另一示例,图13所示的通信装置1300可对应于前文结合图11和图12所示的方法实施例中的中继UE(例如可以是中继UE,或者,配置在中继UE中的部件,如芯片、芯片系统等),并执行中继UE执行的方法;或者,也可对应于前文方法实施例中的远端UE(例如可以是远端UE,或者,配置在远端UE中的部件,如芯片、芯片系统等),并执行远端UE执行的方法。
当该装置1300对应于前文结合图11和图12示出的方法实施例中的中继UE时,该接收模块1310可用于为远端UE提供连接至网络设备的中继服务;发送模块1320可用于在处于非允许区域的情况下,向所述远端UE发送去连接请求消息,所述去连接请求消息用于请求断开所述装置1300与所述远端UE之间的连接。
可选地,所述去连接请求消息中携带原因值,所述原因值用于指示所述中继UE处于所述非允许区域。
可选地,所述接收模块1310用于接收来自所述远端UE的去连接请求响应消息。
可选地,所述装置1300用于为所述远端UE提供层2的中继服务或者层3的中继服务。
当该装置1300对应于前文结合图11和图12示出的方法实施例中的远端UE时,该接收模块1310可用于接收来自中继UE的去连接请求消息,所述装置1300为基于所述中继UE的中继服务连接至网络设备的UE或配置在该UE中的部件,所述去连接请求消息用于请求断开所述中继UE与所述装置1300之间的连接;该处理模块1330可用于基于所述去连接请求消息,执行设备重选,以确定新的中继UE;或,执行PC5接口到Uu接口的路径切换流程,以通过所述Uu接口通信;其中,所述PC5接口是用于所述装置1300与所述中继UE之间直接通信的接口,所述Uu接口是用于所述装置1300与无线接入网设备之间直接通 信的接口。
可选地,所述去连接请求消息中携带原因值,所述原因值用于指示所述中继UE处于所述非允许区域。
可选地,所述发送模块1320用于,基于接收到的所述去连接请求消息,向所述中继UE发送去连接请求消息响应。
可选地,所述中继UE用于为所述装置1300提供层2的中继服务或者层3的中继服务。
上述如图13所示的通信装置1300作为中继UE或远端UE时的具体工作方式及原理可参照前文结合图11和图12示出的方法实施例中的相关描述,为了简洁,这里不再赘述。
应理解,当所述通信装置1300为UE(例如远端UE或中继UE)或网络设备时,该装置1300中的接收模块1310和发送模块1320可以通过收发器来实现。该装置1300中的处理模块1330可通过至少一个处理器实现。
还应理解,当所述通信装置1300为配置于UE(例如远端UE或中继UE)或网络设备中的芯片或芯片系统时,该装置1300中的接收模块1310和发送模块1320可以通过输入/输出接口实现,该装置1300中的处理模块1330可以通过该芯片或芯片系统上集成的处理器、微处理器或集成电路等实现。
应理解,以上装置的各个模块的划分仅仅是一种逻辑功能的划分,实际实现时可以全部或部分集成到一个物理实体上,也可以物理上分开。且这些模块可以全部以软件通过处理元件调用的形式实现;也可以全部以硬件的形式实现;还可以部分模块通过处理元件调用软件的形式实现,部分模块通过硬件的形式实现。例如,处理模块可以为单独设立的处理元件,也可以集成在上述装置的某一个芯片中实现,此外,也可以以程序代码的形式存储于上述装置的存储器中,由上述装置的某一个处理元件调用并执行以上确定模块的功能。其它模块的实现与之类似。此外这些模块全部或部分可以集成在一起,也可以独立实现。这里所述的处理元件可以是一种集成电路,具有信号的处理能力。在实现过程中,上述方法的各步骤或以上各个模块可以通过处理器元件中的硬件的集成逻辑电路或者软件形式的指令完成。
例如,以上这些模块可以是被配置成实施以上方法的一个或多个集成电路,例如:一个或多个特定集成电路(application specific integrated circuit,ASIC),或,一个或多个微处理器(digital signal processor,DSP),或,一个或者多个现场可编程门阵列(field programmable gate array,FPGA)等。再如,当以上某个模块通过处理元件调度程序代码的形式实现时,该处理元件可以是通用处理器,例如中央处理器(central processing unit,CPU)或其它可以调用程序代码的处理器。再如,这些模块可以集成在一起,以片上系统(system-on-a-chip,SOC)的形式实现。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、 数字用户线(DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质(例如固态硬盘(solid state disk,SSD))等。
图14是本申请实施例提供的通信装置的另一示意性框图。图14所示的通信装置1400可以包括处理器1410和通信接口1420。可选地,该装置1400还包括存储器1430。其中,处理器1410、收发器1420和存储器1130通过内部连接通路互相通信。该存储器1430用于存储指令,该处理器1410用于执行该存储器1430存储的指令,以控制该收发器1420发送信号和/或接收信号。
可选地,该存储器1430可以包括只读存储器和随机存取存储器,并向处理器1410提供指令和数据。存储器1430的一部分还可以包括非易失性随机存取存储器。存储器1130可以是一个单独的器件,也可以集成在处理器1410中。该处理器1410可以用于执行存储器1430中存储的指令,并且当该处理器1410执行存储器中存储的指令时,该处理器1410用于执行上述与中继UE或远端UE对应的方法实施例的各个步骤和/或流程。
一示例,上述装置1100可以是前文实施例中的中继UE、网络设备或远端UE。
通信接口1420可以包括收发器。收发器例如可以包括发射机和接收机。收发器还可以进一步包括天线,天线的数量可以为一个或多个。该处理器1410和存储器1430与收发器1420可以是集成在不同芯片上的器件。如,处理器1410和存储器1430可以集成在基带芯片中,收发器1420可以集成在射频芯片中。该处理器1410和存储器1430与收发器1420也可以是集成在同一个芯片上的器件。本申请对此不作限定。
另一示例,上述装置1400可以是配置在中继UE、网络设备或远端UE中的部件,如芯片、芯片系统等。
通信接口1420也可以是通信接口,如输入/输出接口。该通信接口1420与处理器1410和存储器1420都可以集成在同一个芯片中,如集成在基带芯片中。
本申请实施例中涉及到的任一通信接口可以是电路、总线、收发器或者其它任意可以用于进行信号交互的装置。
本申请实施例中涉及的处理器可以是通用处理器、数字信号处理器、专用集成电路、现场可编程门阵列或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件,可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。
本申请实施例中的耦合是装置、模块或模块之间的间接耦合或通信连接,可以是电性,机械或其它的形式,用于装置、模块或模块之间的信息交互。
处理器可能和存储器协同操作。存储器可以是非易失性存储器,比如硬盘(hard disk drive,HDD)或固态硬盘(solid-state drive,SSD)等,还可以是易失性存储器(volatile memory),例如随机存取存储器(random-access memory,RAM)。存储器是能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质,但不限于此。
本申请实施例中不限定上述通信接口、处理器以及存储器之间的具体连接介质。比如存储器、处理器以及通信接口之间可以通过总线连接。所述总线可以分为地址总线、数据总线、控制总线等。当然,处理器与存储器之间的连接总线,并非为前述终端设备和网络设备之间的连接总线。
根据本申请实施例提供的方法,本申请还提供一种计算机程序产品,该计算机程序产品包括:计算机程序代码,当该计算机程序代码在计算机上运行时,使得该计算机执行图8至图12所示实施例中任意一个实施例的方法。
根据本申请实施例提供的方法,本申请还提供一种计算机可读介质,该计算机可读介质存储有程序代码,当该程序代码在计算机上运行时,使得该计算机执行图8至图12所示实施例中任意一个实施例的方法。
根据本申请实施例提供的方法,本申请还提供一种系统,其包括前述的中继UE、远端UE和网络设备。
在本申请实施例中,“至少一个”是指一个或者多个,“多个”是指两个或两个以上。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B的情况,其中A,B可以是单数或者复数。字符“/”一般表示前后关联对象是一种“或”的关系;在公式中,字符“/”,表示前后关联对象是一种“相除”的关系。“以下至少一项(个)”或其类似表达,是指的这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,a,b,或c中的至少一项(个),可以表示:a,b,c,a-b,a-c,b-c,或a-b-c,其中,a,b,c可以是单个,也可以是多个。
可以理解的是,在本申请实施例中涉及的各种数字编号仅为描述方便进行的区分,并不用来限制本申请实施例的范围。可以理解的是,在本申请的实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
最后应说明的是:以上各实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述各实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的范围。

Claims (31)

  1. 一种网络连接方法,其特征在于,包括:
    中继用户设备UE接收来自远端UE的第一消息或者数据,所述第一消息用于请求通过所述中继UE连接至网络设备,所述数据是待发送给所述网络设备的数据;
    所述中继UE在处于非允许区域的情况下,向所述网络设备发送第二消息,所述第二消息用于请求建立所述中继UE与所述网络设备之间的连接。
  2. 根据权利要求1所述的方法,其特征在于,所述第二消息用于请求建立所述中继UE与所述网络设备之间的连接,包括:所述第二消息用于请求所述网络设备执行将所述中继UE进入连接态的过程。
  3. 根据权利要求1或2所述的方法,其特征在于,所述第二消息中包含第一指示信息,所述第一指示信息用于指示:所述中继UE为远端UE提供服务。
  4. 根据权利要求3所述的方法,其特征在于,所述第二消息为服务请求消息,所述服务请求消息中包含所述第一指示信息,所述第一指示信息用于请求所述网络设备在所述非允许区域内接受所述服务请求消息。
  5. 根据权利要求3所述的方法,其特征在于,所述第二消息为注册请求消息,所述注册请求消息中包含所述第一指示信息,所述第一指示信息用于指示所述中继UE作为中继使用。
  6. 根据权利要求1至5中任一项所述的方法,其特征在于,所述方法还包括:
    所述中继UE向所述网络设备发送中继能力信息,所述中继能力信息用于指示所述中继UE能够作为中继使用。
  7. 根据权利要求1至6中任一项所述的方法,其特征在于,所述方法还包括:
    所述中继UE在处于允许区域的情况下,向所述网络设备发送服务请求消息。
  8. 根据权利要求1至7中任一项所述的方法,其特征在于,所述中继UE用于为所述远端UE提供层2的中继服务或者层3的中继服务。
  9. 根据权利要求1至8中任一项所述的方法,其特征在于,所述第一消息包括:
    所述远端UE请求连接至所述网络设备的请求消息;或
    所述远端UE请求与所述中继UE建立直接通信的请求消息。
  10. 一种网络连接方法,其特征在于,包括:
    网络设备接收来自中继用户设备UE的第二消息;所述第二消息是所述中继UE在处于非允许区域的情况下,基于从远端UE接收到的第一消息或数据而发送的消息,所述第一消息用于请求通过所述中继UE连接至所述网络设备,所述数据是待发送给所述网络设备的数据;所述第二消息用于请求建立所述中继UE与所述网络设备之间的连接;
    所述网络设备基于所述第二消息,建立与所述中继UE之间的连接。
  11. 根据权利要求10所述的方法,其特征在于,所述网络设备基于所述第二消息,建立与所述中继UE之间的连接,包括:
    所述网络设备基于所述第二消息,执行将所述中继UE进入连接态的过程。
  12. 根据权利要求10或11所述的方法,其特征在于,所述第二消息中包含第一指示信息,所述第一指示信息用于指示:所述中继UE为远端UE提供服务。
  13. 根据权利要求12所述的方法,其特征在于,所述第二消息为服务请求消息,所 述服务请求消息中包含所述第一指示信息,所述第一指示信息用于请求免除对所述中继UE在所述非允许区域的限制。
  14. 根据权利要求13所述的方法,其特征在于,所述方法还包括:
    所述网络设备基于所述第一指示信息,接受所述服务请求消息。
  15. 根据权利要求12所述的方法,其特征在于,所述第二消息为注册请求消息,所述注册请求消息中包含所述第一指示信息,所述第一指示信息用于指示所述中继UE作为中继使用。
  16. 根据权利要求15所述的方法,其特征在于,所述方法还包括:
    所述网络设备基于所述第一指示信息,在所述中继UE的注册流程之后,保持所述UE的连接态。
  17. 根据权利要求10至16中任一项所述的方法,其特征在于,所述方法还包括:
    所述网络设备接收来自所述中继UE的中继能力信息,所述中继能力信息用于指示所述中继UE能够作为中继使用。
  18. 根据权利要求17所述的方法,其特征在于,所述网络设备基于所述第二消息,建立与所述中继UE之间的连接,包括:
    所述网络设备在接收到所述第二消息的情况下,基于所述中继能力信息确定所述中继UE是否能够作为中继使用;
    所述网络设备在确定所述中继UE能够作为中继使用的情况下,建立与所述中继UE之间的连接。
  19. 根据权利要求10至18中任一项所述的方法,其特征在于,所述中继UE为用于为所述远端UE提供层2的中继服务或者层3的中继服务。
  20. 根据权利要求10至19中任一项所述的方法,其特征在于,所述第一消息包括:
    所述远端UE请求连接至所述网络设备的请求消息;或
    所述远端UE请求与所述中继UE建立直接通信的请求消息。
  21. 一种网络去连接方法,其特征在于,包括:
    中继用户设备UE为远端UE提供连接至网络设备的中继服务;
    所述中继UE在处于非允许区域的情况下,向所述远端UE发送去连接请求消息,所述去连接请求消息用于请求断开所述中继UE与所述远端UE之间的连接。
  22. 根据权利要求21所述的方法,其特征在于,所述去连接请求消息中携带原因值,所述原因值用于指示所述中继UE处于所述非允许区域。
  23. 根据权利要求21或22所述的方法,其特征在于,所述方法还包括:
    所述中继UE接收来自所述远端UE的去连接请求响应消息。
  24. 根据权利要求21至23中任一项所述的方法,其特征在于,所述中继UE用于为所述远端UE提供层2的中继服务或者层3的中继服务。
  25. 一种网络去连接方法,其特征在于,包括:
    远端用户设备UE接收来自中继UE的去连接请求消息,所述远端UE为基于所述中继UE的中继服务连接至网络设备的UE,所述去连接请求消息用于请求断开所述中继UE与所述远端UE之间的连接;以及
    所述远端UE基于所述去连接请求消息,执行设备重选,以确定新的中继UE;或
    所述远端UE执行PC5接口到Uu接口的路径切换流程,以通过所述Uu接口通信;其中,所述PC5接口是用于所述远端UE与所述中继UE之间直接通信的接口,所述Uu接口是用于所述远端UE与无线接入网设备之间直接通信的接口。
  26. 根据权利要求25所述的方法,其特征在于,所述去连接请求消息中携带原因值,所述原因值用于指示所述中继UE处于非允许区域。
  27. 根据权利要求25或26所述的方法,其特征在于,所述方法还包括:
    所述远端UE基于接收到的所述去连接请求消息,向所述中继UE发送去连接请求消息响应。
  28. 根据权利要求25至27中任一项所述的方法,其特征在于,所述中继UE用于为所述远端UE提供层2的中继服务或者层3的中继服务。
  29. 一种通信装置,其特征在于,包括:
    处理器,用于执行存储器中存储的计算机指令,以使得所述装置执行:如权利要求1至9中任一项或权利要求10至20中任一项所述的方法;或,如权利要求21至24中任一项或权利要求25至28中任一项所述的方法。
  30. 一种计算机存储介质,其特征在于,所述计算机存储介质上存储有计算机指令,当所述计算机指令在被处理器运行时,实现如1至9中任一项或权利要求10至20中任一项所述的方法;或,实现如权利要求21至24中任一项或权利要求25至28中任一项所述的方法。
  31. 一种程序产品,其特征在于,所述程序产品包括计算机程序,所述计算机程序存储在可读存储介质中,通信装置的至少一个处理器可以从所述可读存储介质读取所述计算机程序,所述至少一个处理器执行所述计算机程序使得通信装置实施如权利要求1-9任意一项所述的方法或者如权利要求10-20任意一项所述的方法或者如权利要求21-24任意一项所述的方法或者如权利要求25-28任意一项所述的方法。
PCT/CN2021/110993 2020-09-04 2021-08-05 网络连接方法、网络去连接方法及通信装置 WO2022048394A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010923755.4 2020-09-04
CN202010923755.4A CN114143871B (zh) 2020-09-04 2020-09-04 网络连接方法、网络去连接方法及通信装置

Publications (1)

Publication Number Publication Date
WO2022048394A1 true WO2022048394A1 (zh) 2022-03-10

Family

ID=80438726

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/110993 WO2022048394A1 (zh) 2020-09-04 2021-08-05 网络连接方法、网络去连接方法及通信装置

Country Status (2)

Country Link
CN (1) CN114143871B (zh)
WO (1) WO2022048394A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023185820A1 (zh) * 2022-03-28 2023-10-05 维沃移动通信有限公司 基于事件的设备操作方法、装置、通信设备、网络侧设备、存储介质及系统
WO2023212913A1 (zh) * 2022-05-06 2023-11-09 Oppo广东移动通信有限公司 无线通信方法、装置、设备、存储介质及程序产品
CN118200930A (zh) * 2024-03-25 2024-06-14 江苏鸿剑网络科技有限公司 一种云计算的数据安全传输方法

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116074983A (zh) * 2021-11-03 2023-05-05 维沃移动通信有限公司 连接态控制方法、装置、设备及计算机存储介质
WO2023201551A1 (zh) * 2022-04-19 2023-10-26 北京小米移动软件有限公司 信息处理方法及装置、通信设备及存储介质
CN115022850A (zh) * 2022-05-27 2022-09-06 中国电信股份有限公司 一种d2d通信的认证方法、装置、系统、电子设备及介质
WO2024092828A1 (zh) * 2022-11-04 2024-05-10 北京小米移动软件有限公司 一种连接建立的方法及装置
CN115996380B (zh) * 2023-03-22 2023-06-20 北京首信科技股份有限公司 一种网络柔性管控的方法和设备

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019031865A1 (ko) * 2017-08-09 2019-02-14 엘지전자 주식회사 무선 통신 시스템에서 rrc 연결 절차 수행 방법 및 이를 위한 장치
WO2021146685A1 (en) * 2020-01-19 2021-07-22 Talebi Fard Peyman Relay node selection

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10477608B2 (en) * 2016-09-29 2019-11-12 Futurewei Technologies, Inc. System and method for network access using a relay
CN109964509B (zh) * 2016-11-18 2021-10-29 Lg 电子株式会社 在无线通信系统中选择网络节点的方法及其设备
CN108390699B (zh) * 2018-03-15 2023-12-12 深圳有电物联科技有限公司 基于电力线载波技术的云端通信系统及通信方法、装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019031865A1 (ko) * 2017-08-09 2019-02-14 엘지전자 주식회사 무선 통신 시스템에서 rrc 연결 절차 수행 방법 및 이를 위한 장치
US20200178343A1 (en) * 2017-08-09 2020-06-04 Lg Electronics Inc. Method for performing rrc connection procedure in wireless communication system and apparatus therefor
WO2021146685A1 (en) * 2020-01-19 2021-07-22 Talebi Fard Peyman Relay node selection

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
"3rd Generation Partnership Project; Technical Specification Group Services and System Aspects; Study on system enhancement for Proximity based Services (ProSe) in the 5G System (5GS) (Release 17)", 3GPP STANDARD; TECHNICAL REPORT; 3GPP TR 23.752, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, no. V0.5.0, 29 September 2020 (2020-09-29), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , pages 1 - 162, XP051961188 *
APPLE: "KI#3, Sol #7: Update for support of IMS Emergency Services over L2 relay", 3GPP DRAFT; S2-2007730, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. SA WG2, no. Elbonia; 20201012 - 20201023, 2 October 2020 (2020-10-02), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051938760 *
HUAWEI, HISILICON, MEDIATEK: "KI#3, Sol#7: Update to address ENs on U2N Relay", 3GPP DRAFT; S2-2005644, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. SA WG2, no. e-meeting; 20200819 - 20200901, 13 August 2020 (2020-08-13), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051920456 *
HUAWEI, HISILICON: "KI#3, Sol#7: Update to resolve ENs", 3GPP DRAFT; S2-2007214, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. SA WG2, no. e-meeting; 20201012 - 20201023, 2 October 2020 (2020-10-02), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051938258 *
OPPO: "Service area restriciton not applicable to SR for PC5 V2X", 3GPP DRAFT; C1-204563, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. CT WG1, no. Electronic meeting; 20200820 - 20200828, 13 August 2020 (2020-08-13), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051919180 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023185820A1 (zh) * 2022-03-28 2023-10-05 维沃移动通信有限公司 基于事件的设备操作方法、装置、通信设备、网络侧设备、存储介质及系统
WO2023212913A1 (zh) * 2022-05-06 2023-11-09 Oppo广东移动通信有限公司 无线通信方法、装置、设备、存储介质及程序产品
CN118200930A (zh) * 2024-03-25 2024-06-14 江苏鸿剑网络科技有限公司 一种云计算的数据安全传输方法

Also Published As

Publication number Publication date
CN114143871B (zh) 2023-04-04
CN114143871A (zh) 2022-03-04

Similar Documents

Publication Publication Date Title
WO2022048394A1 (zh) 网络连接方法、网络去连接方法及通信装置
US11246172B2 (en) Method for selecting session and service continuity mode in wireless communication system and device therefor
WO2020150876A1 (zh) 会话建立方法、终端设备和网络设备
US20240172084A1 (en) Data transmission method and apparatus
WO2022017285A1 (zh) 报文转发方法、装置及系统
WO2022199451A1 (zh) 会话切换的方法和装置
WO2022194262A1 (zh) 安全通信的方法和装置
WO2022170798A1 (zh) 确定策略的方法和通信装置
WO2023273880A1 (zh) 传输方式切换的方法和相关装置
KR20240060670A (ko) 통신 방법 및 장치
WO2022151129A1 (en) P-bsr enhancements for iab networks to improve e2e latency
WO2023160394A1 (zh) 通信的方法和装置
WO2023197737A1 (zh) 报文发送方法、pin管理方法、通信装置及通信系统
WO2023015973A1 (zh) 一种网络切片准入控制方法和装置
WO2023197789A1 (zh) 通信方法和通信装置
WO2023133871A1 (zh) 通信方法和装置
WO2023051431A1 (zh) 通信的方法和装置
CN117062173B (zh) 边缘网络下的安全通信方法及装置
WO2023016251A1 (zh) 一种通信方法和装置
WO2023103575A1 (zh) 组播/广播通信的方法与相关装置
WO2024001897A1 (zh) 通信方法和装置
WO2023202503A1 (zh) 通信方法和装置
WO2023207958A1 (zh) 策略传输的方法、通信装置和系统
WO2023143252A1 (zh) 授时的方法及通信装置
WO2023020046A1 (zh) 一种通信方法及通信装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21863462

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21863462

Country of ref document: EP

Kind code of ref document: A1