WO2023197789A1 - 通信方法和通信装置 - Google Patents

通信方法和通信装置 Download PDF

Info

Publication number
WO2023197789A1
WO2023197789A1 PCT/CN2023/080397 CN2023080397W WO2023197789A1 WO 2023197789 A1 WO2023197789 A1 WO 2023197789A1 CN 2023080397 W CN2023080397 W CN 2023080397W WO 2023197789 A1 WO2023197789 A1 WO 2023197789A1
Authority
WO
WIPO (PCT)
Prior art keywords
access
3gpp access
mode
offload
network element
Prior art date
Application number
PCT/CN2023/080397
Other languages
English (en)
French (fr)
Inventor
于游洋
时书锋
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2023197789A1 publication Critical patent/WO2023197789A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/16Discovering, processing access restriction or access information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/15Setup of multiple wireless link connections
    • H04W76/16Involving different core network technologies, e.g. a packet-switched [PS] bearer in combination with a circuit-switched [CS] bearer

Definitions

  • the embodiments of the present application relate to the field of communication, and, more specifically, to communication methods and communication devices.
  • a multi-access protocol data unit session (MA PDU session) enables simultaneous 3rd generation partnership project (3GPP) access (such as long term evolution (LTE) ) access, new radio (NR) access, etc.) and non-3GPP (non-3GPP) access (such as wireless fidelity (Wi-Fi) access, wired access, etc.), but for A multi-access PDU session has at most two connections, one 3GPP connection and one non-3GPP connection.
  • 3GPP 3rd generation partnership project
  • LTE long term evolution
  • NR new radio
  • non-3GPP non-3GPP access
  • Wi-Fi wireless fidelity
  • Wi-Fi wireless fidelity
  • Embodiments of the present application provide a communication method and communication device, which determine whether the UE can support multiple 3GPP connections at the same time by controlling the network element, so that the UE can establish multiple 3GPP access sessions of NR and LTE.
  • a communication method is provided.
  • the method may be executed by the control network element, or may be executed by a component (such as a chip or circuit) of the control network element.
  • a component such as a chip or circuit
  • the method may include: controlling the network element to receive first information from the terminal equipment UE, where the first information includes multi-3GPP access request indication information or conversion indication information; controlling the network element to determine whether to allow the UE to establish multi-3GPP based on the first information. Access session; wherein, the multiple 3GPP access request indication information is used to instruct the UE to request the establishment of multiple 3GPP access sessions, and the conversion indication information is used to instruct the UE to allow the control network element to change from establishing a dual access session or a single access session to establishing a dual access session or a single access session. Multiple 3GPP access sessions.
  • control network element determines whether the UE can support multiple 3GPP connections at the same time based on the first information of the terminal device.
  • the multi-3GPP access session includes a protocol data unit PDU session and/or public data network PDN session.
  • the control network element determines whether to allow the UE to establish multiple 3GPP access sessions based on the first information, including: the control network element determines whether to allow the UE to establish multiple 3GPP access sessions based on the first information and the UE's subscription data. Allows the establishment of multiple 3GPP access sessions.
  • control network element can determine whether to allow the establishment of multiple 3GPP access sessions based on the first information and various information in the UE's subscription data, which increases the control of the network side and the flexibility of the solution.
  • the control network element determines whether to allow the establishment according to the first information and the subscription data of the UE.
  • Multiple 3GPP access sessions include: the control network element determines that the UE requests to establish multiple 3GPP access sessions based on the multiple 3GPP access request indication information; the control network element determines whether to allow the UE to establish multiple 3GPP access sessions based on the UE's subscription data.
  • the control network element learns that the UE requests to establish multiple 3GPP access sessions, it determines whether to allow the UE to establish multiple 3GPP access sessions based on the UE's subscription data, avoiding the situation where the UE does not request to establish multiple 3GPP access sessions. In this case, it is still necessary to determine whether to allow the UE to establish multiple 3GPP access sessions, which will cause a waste of resources.
  • the control network element determines whether to allow the establishment of the UE based on the first information and the subscription data of the UE.
  • Multiple 3GPP access sessions include: the control network element determines that the UE is allowed to establish multiple 3GPP access sessions based on the conversion indication information; the control network element determines whether multiple 3GPP access sessions can be established for the UE based on the UE's subscription data.
  • the control network element determines whether to allow the UE to establish multiple 3GPP access sessions based on the UE's subscription data, avoiding the situation where the UE is not allowed to establish multiple 3GPP access sessions. In this case, it is still necessary to determine whether to allow the UE to establish multiple 3GPP access sessions, which will cause a waste of resources.
  • the method when the control network element allows the UE to establish multiple 3GPP access sessions, the method includes: the control network element sends a multiple 3GPP access establishment indication to the policy control network element PCF. , the multi-3GPP access establishment indication is used to indicate the determination of the offload mode; the control network element receives the offload mode from the PCF, and the offload mode is used to indicate the order of transmitting service flows in the multi-3GPP access session; the control network element sends the offload mode to the UE Diversion mode.
  • control network element when the control network element allows the UE to establish multiple 3GPP access sessions, it requests the PCF to determine the offload mode used to indicate the order of transmitting service flows in the multiple 3GPP access sessions, thereby realizing service flow selection controlled by the network side. Route and divert traffic to avoid damage to service quality or waste of resources caused by inappropriate access.
  • the offload mode includes at least one of the following: a secondary offload mode based on the active and backup modes, a secondary offload mode based on the priority mode, and a secondary offload mode based on the load balancing mode.
  • Level offloading mode and multi-3GPP access offloading mode among which, the multi-3GPP access offloading mode is used to indicate the priority order of multiple 3GPP accesses.
  • the offload mode includes multiple possible modes, which increases the flexibility of the UE transmission service flow solution.
  • the secondary offload mode based on the active and backup mode includes the active and backup offload mode and the secondary offload mode; wherein the active and backup offload mode is used to indicate 3GPP access or non -3GPP access is the activated access technology, and the secondary offload mode is used to indicate that LTE access or NR access is the activated access technology.
  • the UE can determine the active and standby conditions of 3GPP access and non-3GPP access and the active and standby conditions of LTE access and NR access. Determining the activated access technology increases the flexibility of the access solution and avoids additional waste of resources.
  • the secondary offload mode based on the priority mode includes Priority offload mode and secondary offload mode; among them, the priority offload mode is used to indicate the priority of 3GPP access and non-3GPP access, and the secondary offload mode is used to indicate the priority order of LTE access and NR access. .
  • the UE can determine priority access based on the priorities of 3GPP access and non-3GPP access and the priorities of LTE access and NR access. sequence, which increases the flexibility of the access solution and avoids additional waste of resources.
  • the secondary offload mode based on the load balancing mode includes the load balancing offload mode and the secondary offload mode; wherein the load balancing offload mode is used to indicate 3GPP access and non -The offload ratio between 3GPP access, the secondary offload mode is used to indicate the offload ratio between LTE access and NR access.
  • the UE when the offload mode is the secondary offload mode based on the load balancing mode, the UE can use the offload ratio between 3GPP access and non-3GPP access and the offload ratio between LTE access and NR access. Determining the proportion of service flows transmitted by different access technologies increases the flexibility of the access solution and avoids additional waste of resources.
  • the second aspect provides a communication method.
  • the method may be executed by the terminal device UE, or may be executed by a component of the UE (such as a chip or circuit), which is not limited.
  • a component of the UE such as a chip or circuit
  • the method will be described below by taking execution by the UE as an example.
  • the method may include: the terminal equipment UE sends first information to the control network element, the first information is used to determine whether to allow the UE to establish multiple 3GPP access sessions, the first information includes multiple 3GPP access request indication information or conversion indication information ; Wherein, the multiple 3GPP access request indication information is used to instruct the UE to request the establishment of multiple 3GPP access sessions, and the conversion indication information is used to instruct the UE to allow the control network element to change from establishing a dual access session or a single access session to establishing a multiple access session. 3GPP access session.
  • the UE can send the first information to the control network element, so that the control network element can determine whether the UE can support multiple 3GPP connections at the same time based on the first information, so that the UE can establish multiple 3GPP access sessions of NR and LTE.
  • the UE obtains a dual registration capability indication, where the dual registration capability indication is used to instruct the UE to allow registration with the first network and the second network.
  • the UE can request the control network element to establish multiple 3GPP access sessions.
  • the multiple 3GPP access sessions include a protocol data unit PDU session and/or a public data network PDN session.
  • the method when the control network element allows the UE to establish multiple 3GPP access sessions, the method further includes: the UE receives an offload mode from the control network element, and the offload mode is used to Indicates the order of transmitting service flows in multiple 3GPP access sessions; the UE transmits service flows according to the offload mode.
  • the UE can transmit the service flow according to the offload mode determined by the PCF, avoiding damage to the service quality or waste of resources caused by inappropriate access.
  • the offload mode includes at least one of the following: a secondary offload mode based on the active and backup modes, a secondary offload mode based on the priority mode, and a secondary offload mode based on the load balancing mode.
  • Level offloading mode multi-3GPP access offloading mode; wherein, the multi-3GPP access offloading mode is used to indicate the priority order of multiple 3GPP accesses.
  • the offload mode includes multiple possible modes, which increases the flexibility of the UE transmission service flow solution.
  • the secondary offload mode based on the active and backup mode includes the active and backup offload mode and the secondary offload mode; wherein the active and backup offload mode is used to indicate 3GPP access or non -3GPP access is the activated access technology, and the secondary offload mode is used to indicate that LTE access and NR access are the activated access technologies.
  • the UE can determine the active and standby conditions of 3GPP access and non-3GPP access and the active and standby conditions of LTE access and NR access. Determining the activated access technology increases the flexibility of the access solution and avoids additional waste of resources.
  • the secondary offload mode based on the priority mode includes the priority offload mode and the secondary offload mode; wherein the priority offload mode is used to indicate 3GPP access and non -The priority of 3GPP access, the secondary offload mode is used to indicate the priority order of LTE access and NR access.
  • the UE can determine priority access based on the priorities of 3GPP access and non-3GPP access and the priorities of LTE access and NR access. sequence, which increases the flexibility of the access solution and avoids additional waste of resources.
  • the secondary offload mode based on the load balancing mode includes the load balancing offload mode and the secondary offload mode; wherein the load balancing offload mode is used to indicate 3GPP access and non -The offload ratio between 3GPP access, the secondary offload mode is used to indicate the offload ratio between LTE access and NR access.
  • the UE when the offload mode is the secondary offload mode based on the load balancing mode, the UE can use the offload ratio between 3GPP access and non-3GPP access and the offload ratio between LTE access and NR access. Determining the proportion of service flows transmitted by different access technologies increases the flexibility of the access solution and avoids additional waste of resources.
  • a communication device including a unit for executing the method shown in the first aspect.
  • the communication device may be a control network element, or may be a chip or chip provided in the control network element. circuit execution, this application does not limit this.
  • the communication device includes:
  • a transceiver unit configured to receive first information from the terminal equipment UE, where the first information includes multiple 3GPP access request indication information or conversion indication information; a processing unit, configured to determine whether to allow the UE to establish multiple 3GPP connections based on the first information. session; wherein, the multiple 3GPP access request indication information is used to instruct the UE to request the establishment of multiple 3GPP access sessions, and the conversion indication information is used to instruct the UE to allow the control network element to change from establishing a dual access session or a single access session to establishing a multiple access session. 3GPP access session.
  • the multiple 3GPP access sessions include a protocol data unit PDU session and/or a public data network PDN session.
  • the processing unit is further configured to determine whether to allow establishment of multiple 3GPP access sessions based on the first information and the subscription data of the UE.
  • the processing unit is also configured to determine that the UE requests to establish a multiple 3GPP access session based on the multiple 3GPP access request indication information; the processing unit is also configured to determine based on the UE's subscription Data determines whether the UE is allowed to establish multiple 3GPP access sessions.
  • the processing unit is also configured to determine based on the conversion indication information that the UE is allowed to establish multiple 3GPP access sessions; the processing unit is also configured to determine whether it is possible based on the UE's subscription data. Establish multiple 3GPP access sessions for UE.
  • the transceiver unit is also used to provide the policy control network element with The PCF sends a multi-3GPP access establishment indication.
  • the multi-3GPP access establishment indication is used to indicate the determination of the offload mode; the transceiver unit is also used to receive the offload mode from the PCF.
  • the offload mode is used to indicate the transmission of services in the multi-3GPP access session. The sequence of flows; the control network element sends the offload mode to the UE.
  • the offloading mode includes at least one of the following: a secondary offloading mode based on the active and backup mode, a secondary offloading mode based on the priority mode, and a secondary offloading mode based on the load balancing mode.
  • Level offloading mode and multi-3GPP access offloading mode among which, the multi-3GPP access offloading mode is used to indicate the priority order of multiple 3GPP accesses.
  • the secondary offload mode based on the active and backup modes includes the active and backup offload modes and the secondary offload mode; wherein the active and backup offload modes are used to indicate 3GPP access or non -3GPP access is the activated access technology, and the secondary offload mode is used to indicate that LTE access or NR access is the activated access technology.
  • the secondary offload mode based on the priority mode includes the priority offload mode and the secondary offload mode; wherein the priority offload mode is used to indicate 3GPP access and non -The priority of 3GPP access, the secondary offload mode is used to indicate the priority order of LTE access and NR access.
  • the secondary offload mode based on the load balancing mode includes the load balancing offload mode and the secondary offload mode; wherein the load balancing offload mode is used to indicate 3GPP access and non -The offload ratio between 3GPP access, the secondary offload mode is used to indicate the offload ratio between LTE access and NR access.
  • a fourth aspect provides a communication device, including a unit for executing the method shown in the second aspect.
  • the communication device may be a UE, or may be executed by a chip or circuit provided in the UE. This invention There are no restrictions on this application.
  • the communication device includes:
  • a transceiver unit configured to send first information to the control network element.
  • the first information is used to determine whether the UE is allowed to establish multiple 3GPP access sessions.
  • the first information includes multiple 3GPP access request indication information or conversion indication information; wherein,
  • the multi-3GPP access request indication information is used to instruct the UE to request to establish a multi-3GPP access session, and the conversion indication information is used to instruct the UE to allow the control network element to change from establishing a dual access session or a single access session to establishing a multi-3GPP access session. session.
  • the processing unit is configured to obtain a dual registration capability indication, where the dual registration capability indication is used to indicate that the UE is allowed to register with the first network and the second network.
  • the multiple 3GPP access sessions include a protocol data unit PDU session and/or a public data network PDN session.
  • the transceiver unit is also used to receive a offload mode from the control network element, where the offload mode is used to indicate the order of transmitting service flows in multiple 3GPP access sessions; processing The unit is also used to transmit service flows according to the offload mode.
  • the offload mode includes at least one of the following: a secondary offload mode based on the active and backup modes, a secondary offload mode based on the priority mode, and a secondary offload mode based on the load balancing mode.
  • Level offloading mode multi-3GPP access offloading mode; wherein, the multi-3GPP access offloading mode is used to indicate the priority order of multiple 3GPP accesses.
  • the secondary offload mode based on the active and backup modes includes the active and backup modes.
  • Backup offload mode and secondary offload mode are used to indicate that 3GPP access or non-3GPP access is the activated access technology, and the secondary offload mode is used to indicate that LTE access or NR access is activated. access technology.
  • the secondary offload mode based on the priority mode includes the priority offload mode and the secondary offload mode; wherein the priority offload mode is used to indicate 3GPP access and non -The priority of 3GPP access, the secondary offload mode is used to indicate the priority order of LTE access and NR access.
  • the secondary offload mode based on the load balancing mode includes the load balancing offload mode and the secondary offload mode; wherein the load balancing offload mode is used to indicate 3GPP access and non -The offload ratio between 3GPP access, the secondary offload mode is used to indicate the offload ratio between LTE access and NR access.
  • a communication device in a fifth aspect, includes: a memory for storing a program; and at least one processor for executing the computer program or instructions stored in the memory to perform the possible implementation of the first aspect or the second aspect. Methods.
  • the device is a control network element.
  • the device is a chip, chip system or circuit used to control the network element.
  • this application provides a processor for executing the methods provided in the above aspects.
  • processor output, reception, input and other operations can be understood as processor output, reception, input and other operations.
  • transmitting and receiving operations performed by the radio frequency circuit and the antenna, which is not limited in this application.
  • a computer-readable storage medium stores program code for device execution.
  • the program code includes a method for executing the possible implementation manner of the first aspect or the second aspect.
  • An eighth aspect provides a computer program product containing instructions, which when the computer program product is run on a computer, causes the computer to execute the method of the possible implementation of the first aspect or the second aspect.
  • a ninth aspect provides a chip.
  • the chip includes a processor and a communication interface.
  • the processor reads instructions stored in the memory through the communication interface and executes the method of the possible implementation of the first aspect or the second aspect.
  • the chip also includes a memory, in which computer programs or instructions are stored.
  • the processor is used to execute the computer programs or instructions stored in the memory.
  • the processor is used to execute Methods for possible implementation of the above first aspect or second aspect.
  • a communication system including one or more of the above control network element and UE.
  • Figure 1 shows a schematic diagram of a network architecture suitable for embodiments of the present application.
  • Figure 2 shows a schematic diagram of a network architecture suitable for another example of the embodiment of the present application.
  • Figure 3 shows a schematic flow chart of a communication method 300 provided by the embodiment of the present application.
  • Figure 4 shows a schematic flow chart of a communication method 400 provided by the embodiment of the present application.
  • Figure 5 shows a schematic flow chart of a communication method 500 provided by the embodiment of the present application.
  • FIG. 6 shows a schematic block diagram of a communication device 600 provided by an embodiment of the present application.
  • Figure 7 shows a schematic block diagram of another communication device 700 provided by an embodiment of the present application.
  • FIG. 8 shows a schematic diagram of a chip system 800 provided by an embodiment of the present application.
  • the technical solutions provided by this application can be applied to various communication systems, such as fifth generation (5th generation, 5G) or new radio (NR) systems, long term evolution (LTE) systems, LTE frequency division Duplex (frequency division duplex, FDD) system, LTE time division duplex (TDD) system, etc.
  • the technical solution provided by this application can also be applied to future communication systems, such as the sixth generation mobile communication system.
  • the technical solution provided by this application can also be applied to device-to-device (D2D) communication, vehicle-to-everything (V2X) communication, machine-to-machine (M2M) communication, machine type Communication (machine type communication, MTC), and Internet of Things (Internet of things, IoT) communication systems or other communication systems.
  • D2D device-to-device
  • V2X vehicle-to-everything
  • M2M machine-to-machine
  • MTC machine type Communication
  • Internet of Things Internet of things, IoT
  • Figure 1 shows a schematic diagram of a network architecture.
  • the network architecture takes the 5th generation system (5GS) as an example.
  • the network architecture may include three parts, namely the UE part, the data network (DN) part and the operator network part.
  • the operator network may include one or more of the following network elements: (radio) access network (R)AN) equipment, user plane function (UPF) network element, Authentication server function (AUSF) network element, unified data repository (UDR) network element, access and mobility management function (AMF) network element, SMF network element, network opening Network exposure function (NEF) network element, network repository function (NRF) network element, policy control function (PCF) network element, unified data management (UDM) network element and application function (AF) network elements.
  • R radio access network
  • UPF user plane function
  • AUSF Authentication server function
  • UDF unified data repository
  • AMF access and mobility management function
  • SMF network element
  • NEF network opening Network exposure function
  • NRF network repository function
  • PCF policy control function
  • UDM unified data management
  • the part other than the RAN part can be called the core network part.
  • user equipment, (wireless) access network equipment, UPF network element, AUSF network element, UDR network element, AMF network element, SMF network element, NEF network element, NRF network element, PCF network element, UDM Network elements and AF network elements are referred to as UE, (R)AN equipment, UPF, AUSF, UDR, AMF, SMF, NEF, NRF, PCF, UDM, and AF respectively.
  • the UE mainly accesses the 5G network and obtains services through the wireless air interface.
  • the UE interacts with the RAN through the air interface and interacts with the AMF of the core network through non-access stratum signaling (NAS).
  • NAS non-access stratum signaling
  • the UE in the embodiment of this application may also be called terminal equipment, user, access terminal, user unit, user station, mobile station, mobile station, remote station, remote terminal, mobile device, user terminal, terminal, wireless communication equipment, User agent or user device.
  • a UE may be a cellular phone, a smart watch, a wireless data card, a mobile phone, a tablet, a personal digital assistant (PDA) computer, a wireless modem, a handheld device, a laptop, or a machine type communication (MTC) ) terminals, computers with wireless transceiver functions, Internet of Things terminals, virtual reality terminal equipment, augmented reality terminal equipment, wearable devices, vehicles, terminals in device-to-device (D2D) communication, vehicles and things ( Terminals in vehicle to everything (V2X) communication, terminals in machine-type communication (MTC), the Internet of things, Terminals in IoT), terminals in smart offices, terminals in industrial control, terminals in driverless driving, terminals in remote surgery, terminals in smart grids, terminals in
  • RAN equipment can provide authorized users in a specific area with the function of accessing communication networks. Specifically, it can include wireless network equipment in the 3rd generation partnership project (3GPP) network and can also include non-3GPP (non- Access point in 3GPP) network. The following uses AN equipment representation for convenience of description.
  • 3GPP 3rd generation partnership project
  • non-3GPP non- Access point in 3GPP
  • AN equipment can adopt different wireless access technologies.
  • 3GPP access technologies for example, wireless access technologies used in third generation (3G), fourth generation (4G) or 5G systems
  • non-3GPP non- 3GPP (non-3GPP) access technology.
  • 3GPP access technology refers to access technology that complies with 3GPP standard specifications.
  • the access network equipment in the 5G system is called next generation Node Base station (gNB) or RAN equipment.
  • Non-3GPP access technologies can include air interface technology represented by access point (AP) in wireless fidelity (WiFi), global interoperability for microwave access (WiMAX), code Code division multiple access (CDMA), etc.
  • AP access point
  • WiFi wireless fidelity
  • WiMAX global interoperability for microwave access
  • CDMA code Code division multiple access
  • AN equipment can allow interconnection and interworking between terminal equipment and the 3GPP core network using non-3GPP technologies.
  • AN equipment can be responsible for wireless resource management, quality of service (QoS) management, data compression and encryption on the air interface side.
  • AN equipment provides access services to terminal equipment, thereby completing the forwarding of control signals and user data between the terminal equipment and the core network.
  • QoS quality of service
  • AN equipment may include, for example, but is not limited to: macro base station, micro base station (also known as small station), radio network controller (radio network controller, RNC), Node B (Node B, NB), base station controller (base station controller) , BSC), base transceiver station (BTS), home base station (for example, home evolved NodeB, or home Node B, HNB), baseband unit (baseband unit, BBU), AP in WiFi system, WiMAX in (base station, BS), wireless relay node, wireless backhaul node, transmission point (transmission point, TP) or transmission and reception point (transmission and reception point, TRP), etc., and can also be used in 5G (such as NR) systems
  • a gNB or transmission point (TRP or TP) one or a group (including multiple antenna panels) of a base station in a 5G system, or a network node that constitutes a gNB or transmission point, such as a distributed unit ( distributed unit (DU), or base stations in the
  • UPF mainly provides user plane functions such as forwarding and processing of user packets, connection with DN, session anchor point, and quality of service (QoS) policy execution.
  • the UPF can receive user plane data from the DN and send the user plane data to the terminal device through the AN device.
  • UPF can also receive user plane data from the terminal device through the AN device and forward it to the DN.
  • DN is mainly used in operator networks that provide data services to UEs.
  • the Internet for example, the Internet, third parties business network, IP multimedia service (IP multi-media service, IMS) network, etc.
  • IP multimedia service IP multi-media service, IMS
  • AUSF is mainly used for user authentication, etc.
  • UDR mainly provides storage capabilities for contract data, policy data and data related to capability opening.
  • AMF is mainly used for functions such as access control, mobility management, attachment and detachment.
  • SMF is mainly responsible for session management (such as session establishment, modification, release), Internet protocol (internet protocol, IP) address allocation and management, UPF selection and control, etc.
  • NEF is mainly used to securely open services and capabilities provided by 3GPP network functions to the outside world.
  • NRF is mainly used to store network functional entities and description information of the services they provide.
  • PCF is mainly used to guide the unified policy framework of network behavior and provide policy rule information for control plane network elements (such as AMF, SMF, etc.).
  • UDM is mainly used for UE subscription data management, including storage and management of UE identification, UE access authorization, etc.
  • AF is mainly used to provide services to 3GPP networks, such as interacting with PCF for policy control.
  • network elements can communicate with each other through the interfaces shown in the figure, and some interfaces can be implemented in the form of service-oriented interfaces.
  • communication between UE and AMF can be carried out through the N1 interface.
  • RAN and AMF can communicate through the N2 interface.
  • the relationship between other interfaces and each network element is shown in Figure 1. For the sake of simplicity, they will not be described in detail here.
  • network architecture shown above is only an illustrative description, and the network architecture applicable to the embodiments of the present application is not limited thereto. Any network architecture that can realize the functions of each of the above network elements is applicable to the embodiments of the present application.
  • functions or network elements such as AMF, SMF, UPF, PCF, UDM, AUSF, UDR, NEF, NRF, and AF shown in Figure 1 can be understood as network elements used to implement different functions. For example, they can be Need to be combined into network slices. These network elements can be independent devices, or they can be integrated into the same device to implement different functions, or they can be network elements in hardware devices, software functions running on dedicated hardware, or platforms (for example, cloud The virtualization function instantiated on the platform), this application does not limit the specific form of the above network elements.
  • the above network elements or functions can be divided into one or more services, and further, there may also be services that exist independently of network functions.
  • instances of the above functions, or instances of services included in the above functions, or service instances that exist independently of network functions can be called service instances.
  • network elements with different functions can be co-located.
  • the access and mobility management network element can be co-located with the session management network element; the session management network element can be co-located with the user plane network element.
  • Multi-access protocol data unit session For protocol data unit (PDU) session, one or more of the following access technologies can be supported, 3GPP access, non-3GPP access, LTE access, 5GRAN access, trusted non-3GPP access, untrusted non-3GPP access, trusted WLAN access, untrusted WLAN access, fixed network access, etc., This enables the movement of service flows between different access technologies or the simultaneous use of multiple access technologies to transmit the above service flows. For example, service flow 1 is transmitted through access technology 1, and subsequent service flow 1 is moved to transmission through access technology 2. Or service flow 1 is transmitted through access technology 1 and access technology 2 at the same time.
  • PDU protocol data unit
  • the network architecture shown in Figure 1 not only supports wireless technologies defined by the 3GPP standards group (such as LTE, 5G(R)AN, etc.) to access the core network side, but also supports non-3GPP access technologies through the non-3GPP conversion function (non- 3GPP interworking function, N3IWF) or next generation packet data gateway (next generation packet data gateway, ngPDG) access the core network side.
  • 3GPP standards group such as LTE, 5G(R)AN, etc.
  • N3IWF non- 3GPP interworking function
  • ngPDG next generation packet data gateway
  • N3G untrusted non-3GPP
  • the network architecture is shown in Figure 2.
  • N3IWF is an untrusted non-3GPP access gateway, and the untrusted non-3GPP access network can be an untrusted WLAN access network, etc., without restrictions.
  • the UE and N3IWF can communicate through the NWu interface
  • the N3IWF and UPF can communicate through the N3 interface
  • the UE and the untrusted non-3GPP access network can communicate through the Y1 interface
  • the N3IWF and Untrusted non-3GPP access networks can communicate with each other through the Y2 interface.
  • the relationship between other interfaces and each network element is shown in Figure 2. For the sake of simplicity, they will not be described in detail here.
  • the core network can be a point-to-point interface protocol as shown in Figure 2, or it can be consistent with the 3GPP access core network architecture shown in Figure 1 Use service-oriented interfaces.
  • the existing multi-access PDU session includes 3GPP access (such as LTE access, NR access, etc.), and non-3GPP access (such as WiFi access, wired access, etc.) access, etc.), and there are at most two connections, namely a 3GPP connection and a non-3GPP connection.
  • 3GPP access such as LTE access, NR access, etc.
  • non-3GPP access such as WiFi access, wired access, etc.
  • This application provides a communication method that can simultaneously support NR and LTE access under the network architecture integrating 5GC and EPC.
  • Figure 3 is a schematic diagram of a communication method 300 provided by an embodiment of the present application.
  • Method 300 may include the following steps.
  • S310 The UE obtains dual registration capability indication.
  • the dual registration capability indication is used to indicate that the UE is allowed to register with the first network and the second network.
  • the first network may be a 5G core network (5GC)
  • the second network may be an evolved packet core (EPC), that is, a 4G core network, which is not limited by this application.
  • EPC evolved packet core
  • the UE currently supports dual registration, that is, the UE can register with the first network and the second network at the same time.
  • the UE receives a dual registration capability indication from the network side.
  • the dual registration capability indication may be a Network support of Interworking without N26 indication.
  • the Network support of Interworking without N26 indication is used to indicate that the network side supports the interaction process between EPC and 5GC using non-N26 interfaces, and is not limited.
  • the UE sends the first information to the control network element to request the establishment of multiple 3GPP access sessions.
  • S320 The UE sends the first information to the control network element.
  • control network element receives the first information from the UE.
  • the UE after obtaining the dual registration capability indication, the UE sends the first information to the control network element.
  • the UE can carry the first information in the PDU session establishment request message, PDU session update request message, uplink non-independent networking transmission message and other information, and send it to the control network element, which is not limited by this application.
  • the UE may carry the first information in the request message and send it to the control network element.
  • the first information is used to determine whether the UE is allowed to establish multiple 3GPP access sessions.
  • multi-3GPP access includes two 3GPP links, namely LTE access and NR access, in the multi-access PDU session.
  • the first information includes multiple 3GPP access request indication information or conversion indication information.
  • the multiple 3GPP access request indication information is used to instruct the UE to request to establish multiple 3GPP access sessions.
  • the conversion indication information is used to instruct the UE to allow the control network element to change from establishing a dual access session or a single access session to establishing multiple 3GPP access sessions.
  • the conversion indication information is used to indicate that when the UE requests to establish a dual access session or a single access session, the UE supports the establishment of multiple 3GPP access sessions.
  • the first information also includes capability indication information, where the capability indication information is used to indicate that the UE has the ability to support multiple 3GPP access sessions.
  • the control network element determines whether to allow the UE to establish multiple 3GPP access sessions based on the first information.
  • the control network element determines whether to allow the UE to establish multiple 3GPP access sessions based on the first information and the UE's subscription data.
  • control network element determines whether to allow the UE to establish multiple 3GPP access sessions based on the content of the first information in the following ways.
  • the control network element controls the network element according to The multi-3GPP access request indication information and the UE's subscription data determine whether the UE is allowed to establish a multi-3GPP access session.
  • the control network element learns that the UE requests to establish a multi-3GPP access session according to the multi-3GPP access request indication information. In other words, when the PDU session establishment request message and other information sent by the UE carries multiple 3GPP access request indication information, the control network element learns that the UE is currently requesting to establish multiple 3GPP access sessions. Further, the control network element determines whether to allow the UE to establish multiple 3GPP access sessions based on the subscription data of the UE.
  • the control network element when the Core Network type restriction parameter in the UE's subscription data indicates that the UE's EPC and 5GC dual registration is supported, the control network element allows the UE to establish multiple 3GPP access sessions; when the Core Network type restriction parameter indicates that it does not When the UE's EPC and 5GC dual registration is supported, the control network element does not allow the UE to establish multiple 3GPP access sessions.
  • the control network element when the slice information in the UE's subscription data indicates that the UE can support LTE and NR access, the control network element allows the UE to establish multiple 3GPP access sessions; when the slice information in the UE's subscription data indicates If the UE does not support LTE and NR access, the control network element does not allow the UE to establish multiple 3GPP access sessions.
  • the control network element determines whether to allow the UE to establish multiple 3GPP access sessions based on the conversion indication information and the UE's subscription data.
  • the control network element learns that the UE is allowed to establish multiple 3GPP access sessions based on the conversion indication information.
  • the control network element learns that the UE is currently allowed to establish multiple 3GPP access sessions, that is, the UE is currently capable of requesting the establishment of dual access. session or single access session, switching to the ability to establish multiple 3GPP access sessions. Further, the control network element determines whether to allow the UE to establish multiple 3GPP access sessions based on the subscription data of the UE.
  • control network element determines whether to allow the UE to establish multiple 3GPP access sessions.
  • the conversations are similar, so to avoid redundancy, they will not be described in detail here.
  • the control network element determines whether to allow the UE to establish multiple 3GPP access sessions based on the conversion indication information and the UE's subscription data.
  • the control network element learns based on the capability indication information that the UE has the ability to establish multiple 3GPP access sessions. In other words, when the PDU session establishment request message and other information sent by the UE carries capability indication information, the control network element learns that the UE is currently capable of establishing multiple 3GPP access sessions. Further, the control network element determines whether to allow the UE to establish multiple 3GPP access sessions based on the subscription data of the UE.
  • control network element determines whether to allow the UE to establish multiple 3GPP access sessions.
  • the conversations are similar, so to avoid redundancy, they will not be described in detail here.
  • control network element determines whether to allow the UE to establish dual access PDU sessions (that is, supporting both 3GPP and non-3GPP access). PDU session), or single access PDU session.
  • control network element can determine whether the UE can support both Multiple 3GPP connections, or the control network element can determine whether the UE requests to establish multiple 3GPP connections or whether the UE allows the establishment of multiple 3GPP connections based on the first information.
  • the method flow shown in Figure 3 may also include:
  • control network element when the control network element allows the UE to establish multiple 3GPP access sessions, the control network element requests the policy control network element PCF for the offload mode used for the UE's transmission service flow.
  • control network element sends a multi-3GPP access establishment instruction to the PCF.
  • the multi-3GPP access establishment instruction is used to instruct the PCF to determine the offload mode.
  • the PCF determines the offload mode used by the UE to transmit the service flow based on the multi-3GPP access establishment instruction. And send the offload mode to the control network element.
  • the offload mode is used to indicate the order of transmitting service flows in multiple 3GPP access sessions.
  • the offload mode includes at least one of the following: a secondary offload mode based on active and backup modes, a secondary offload mode based on priority mode, a secondary offload mode based on load balancing mode, and a multi-3GPP access offload mode.
  • the secondary offload mode based on the active-standby mode is first based on the active-standby offload mode.
  • 3GPP access or non-3GPP access is determined as the activated access technology.
  • determine whether LTE access or NR access is the activated access technology according to the instructions of the secondary offload mode.
  • the activated access technology is the access technology through which the service flow is first transmitted. When the currently activated access technology is unavailable, the service flow is transmitted through another access technology.
  • the active-backup offload mode in the secondary offload mode based on the active-backup mode indicates that the 3GPP access is an active access technology and the non-3GPP access is a standby access technology
  • select 3GPP access and then select NR access according to the activated access technology indicated in the secondary offload mode
  • when LTE access is unavailable, select Standby non-3GPP access the access sequence indicated by the secondary offload mode based on the active and backup modes is NR access, LTE access, and non-3GPP access.
  • the active-backup based offload mode in the secondary offload mode indicates that the non-3GPP access is the active access technology and the 3GPP access is the standby access technology, select the non-3GPP access. ;
  • LTE access is selected based on the LTE access indicated in the secondary offload mode as the activated access technology; when LTE access is unavailable, NR access is selected. That is, at this time, the access sequence indicated by the secondary offload mode based on the active and backup modes is non-3GPP access, LTE access, and NR access.
  • the secondary offload mode based on the priority mode first determines the priority access order based on the priorities of 3GPP access and non-3GPP access indicated in the priority-based offload mode.
  • the priority is determined based on the two priorities.
  • the priority of LTE access and NR access indicated by the level offload mode determines the priority access sequence.
  • the priority-based offload mode in the secondary offload mode indicates that 3GPP access is high priority and non-3GPP access is low priority
  • 3GPP access is preferred.
  • NR access is selected first; when the NR link is congested, additional traffic flow (offload traffic) is selected to LTE access.
  • additional traffic flow (offload traffic) is selected to LTE access.
  • additional service flows will be selected for low-priority non-3GPP access. That is, at this time, the access sequence indicated by the secondary offload mode based on the priority mode is NR access, LTE access, and non-3GPP access.
  • the priority-based offload mode indication in the secondary offload mode based on the priority mode Non-3GPP access has high priority and 3GPP access has low priority, so non-3GPP access is given priority; when non-3GPP links are congested, LTE access is prioritized according to the priority indicated in the secondary offload mode.
  • the level is higher than the priority of NR access, and LTE access is preferred; when the LTE link is congested, additional service flows are selected for NR access. That is, at this time, the access sequence indicated by the secondary offload mode based on the priority mode is non-3GPP access, LTE access, and NR access.
  • the secondary offload mode based on the load balancing mode is first based on the offload ratio between 3GPP access and non-3GPP access indicated in the load-balanced offload mode and the NR access indicated in the secondary offload mode.
  • the traffic distribution ratio between incoming and LTE access is determined, and the service flows are transmitted through non-3GPP access links, LTE links and NR links respectively.
  • the offload ratio between non-3GPP access and 3GPP access in the two-level offload mode based on the load balancing mode is 2:8, and the offload ratio between the LTE access and NR access in the two-level offload mode is 1:1, then the UE transmits 20% of the service flow through the non-3GPP link, 40% of the service flow through the LTE link, and 40% of the service flow through the NR link.
  • the multi-3GPP access offload mode is used to indicate the access priority sequence of multi-3GPP access, where multi-3GPP access includes but is not limited to LTE access, NR access, trusted WLAN access, and untrusted WLAN Access, wired technology access, etc. are not restricted.
  • the access priority order indicated in the multi-3GPP access offload mode is NR access, LTE access, trusted WLAN access, or NR access, trusted WLAN access, LTE access, Or untrusted WLAN access, LTE access, NR relay access, etc., are not restricted.
  • S350 control the network element to send the offload mode to the UE.
  • the UE receives the offload mode from the control network element.
  • control network element obtains the offload mode, it sends the offload mode to the UE.
  • control network element can carry the offload mode in the first response information and send it to the UE.
  • the control network element can also carry the offload mode in other information and send it to the UE, which is not limited by this application.
  • S360 The UE transmits the service flow.
  • the UE after receiving the offload mode from the control network element, the UE transmits the service flow according to the offload mode.
  • the offload mode is a secondary offload mode based on the active and backup modes.
  • the access sequence indicated by the offload mode is NR access, LTE access, and non-3GPP access, and the UE preferentially selects NR access; When NR access is unavailable, LTE access is selected; when LTE access is unavailable, non-3GPP access is selected.
  • the offload mode is a two-level offload mode based on a priority mode.
  • the access sequence indicated by the offload mode is non-3GPP access, LTE access, and NR access. Then the UE preferentially selects non-3GPP access.
  • LTE access is selected for the additional service flow; when the LTE link is congested, NR access is selected for the additional service flow.
  • the offload mode is a two-level offload mode based on load balancing mode.
  • the offload ratio indicated by the offload mode is 4:6 between non-3GPP access and 3GPP access.
  • the ratio between LTE access and NR access is The offloading ratio between UEs is 1:2, then the UE transmits 40% of the service flow through the non-3GPP link, 20% of the service flow through the LTE link, and 40% of the service flow through the NR link.
  • the offload mode is a multi-3GPP access offload mode, and the access priority order indicated by the offload mode
  • the order is NR access, LTE access, and trusted WLAN access.
  • the UE prefers NR access; when NR access is unavailable, LTE access is selected; when LTE access is unavailable, trusted WLAN access is selected. enter.
  • the control network element can determine whether the UE can support multiple 3GPP connections at the same time based on the first information of the terminal device.
  • the UE transmits the service flow according to the offload mode determined by the PCF. , avoiding the waste of resources caused by inappropriate access.
  • Figure 4 is a schematic diagram of a communication method 400 provided by an embodiment of the present application.
  • Method 400 may include the following steps.
  • the UE registers with the 5GC through the NR connection.
  • the UE registers with 5GC and receives the Network support of Interworking without N26 indication sent from the network side during the registration process. This indication is used to indicate that the network side supports the EPC and 5GC interaction process using non-N26 interfaces.
  • S420 The UE sends the first information to the AMF.
  • the AMF receives the first information from the UE.
  • the UE when the UE supports dual registration of EPC and 5GC, and the network side supports Network support of Interworking without N26, the UE sends the first information to the AMF.
  • the first information includes multiple 3GPP access request indication information or conversion indication information.
  • the first information also includes capability indication information.
  • the AMF can be the control network element in S320.
  • the process of the UE sending the first information to the AMF in the above S420 is similar to the process of the UE sending the first information to the control network element in S320.
  • no description will be given. Explain in detail.
  • the AMF determines whether to allow the UE to establish multiple 3GPP access sessions based on the first information.
  • the AMF determines whether to allow the UE to establish multiple 3GPP access sessions based on the first information and the UE's subscription data.
  • the process of the AMF determining whether to allow the UE to establish multiple 3GPP access sessions based on the first information in S430 is similar to the process of the control network element determining whether to allow the UE to establish multiple 3GPP access sessions based on the first information in S330.
  • the control network element determining whether to allow the UE to establish multiple 3GPP access sessions based on the first information in S330.
  • the AMF when the AMF does not allow the UE to establish multiple 3GPP access sessions, the AMF further determines whether the UE is allowed to establish a dual access PDU session or a single access PDU session.
  • the AMF allows the UE to establish a dual access PDU session or a single access PDU session, it sends a PDU session establishment request message to the converged network element.
  • the PDU session establishment request message includes conversion indication information.
  • the converged network element is a node with multiple control network element capabilities, such as a node with SMF and PGW-C capabilities, which is not limited by this application.
  • the method flow shown in Figure 4 may also include:
  • the AMF sends the first information to the converged network element.
  • the converged network element receives the first information from the AMF.
  • the AMF can carry the first information in the PDU session establishment request message, PDU session update request message, uplink non-independent networking transmission message and other information, and send it to the converged network element, which is not limited by this application.
  • the converged network element determines whether to allow the UE to establish multiple 3GPP access sessions based on the first information.
  • the converged network element determines whether to allow the UE to establish multiple 3GPP access sessions based on the first information and the UE's subscription data.
  • the converged network element may be the control network element in S330.
  • the process in which the converged network element determines whether to allow the UE to establish multiple 3GPP access sessions based on the first information in S450 is the same as the process in which the control network element determines in S330 based on the first information.
  • the process of whether to allow the UE to establish multiple 3GPP access sessions is similar, and will not be explained in detail here to avoid redundancy.
  • a PDU session establishment failure message is sent to the UE.
  • the converged network element When the converged network element allows the UE to establish multiple 3GPP access sessions, the converged network element requests the PCF to determine the offload mode for the UE to transmit the service flow.
  • the method flow shown in Figure 4 may also include:
  • S460 The converged network element sends a multi-3GPP access establishment instruction to the PCF.
  • the PCF receives the multi-3GPP access establishment indication from the converged network element.
  • the multiple 3GPP access establishment indication is used to instruct the PCF to determine the offload mode.
  • the PCF determines the offload mode.
  • the PCF determines the offload mode according to the multi-3GPP access establishment instruction.
  • the PCF can generate the offload mode based on the UE's subscription data or/and local policy, which is not limited by this application.
  • the offload mode includes at least one of the following: a secondary offload mode based on active and backup modes, a secondary offload mode based on priority mode, a secondary offload mode based on load balancing mode, and a multi-3GPP access offload mode.
  • the method flow shown in Figure 4 may also include:
  • S480 The PCF sends the offload mode to the UE.
  • the UE receives the offload pattern from the PCF.
  • the PCF sends the offload mode to the converged network element, and the converged network element carries the offload mode in the PDU session reply message and other information, and forwards it to the UE through the AMF.
  • the converged network element carries the multi-3GPP access establishment success indication in the PDU session reply message and other information, and forwards it to the UE through AMF.
  • the converged network element when the converged network element allows the UE to establish a dual access PDU session or a single access PDU session, the converged network element sends the dual access PDU session establishment success indication or the single access PDU session establishment success indication through the AMF. Forwarded to UE.
  • the converged network element when the converged network element allows the UE to establish multiple 3GPP access sessions, the converged network element does not instruct the AMF to allocate an EPC bearer identity.
  • the converged network element can also send a PFCP session creation request message or a PFCP session update request message to the UPF, and the message carries the offload mode, so that the UPF offloads the downlink service flow based on the offload mode.
  • the converged network element initiates a call to the non-3GPP side. Access gateway connection establishment process.
  • the method flow shown in Figure 4 may also include:
  • the UE transmits the service flow.
  • the UE after receiving the offload mode, stores the offload mode and offloads the uplink service flow according to the offload mode.
  • the UE determines that the current session is a multi-3GPP access session.
  • the UE determines that the current session is a dual access PDU session that supports LTE and NR.
  • the UE connects to LTE, initiates the PDN session establishment process to the EPC, and selects the same converged network element as the NR connection through the key control node (mobility management entity, MME) to establish the PDN connection.
  • MME mobility management entity
  • the UE completes the dual connection establishment process from NR to 5GC and LTE to EPC. If the UE also establishes a connection with non-3GPP, the UE completes the multi-3GPP access connection establishment process. Further, the UE performs uplink service offloading on the user plane through offloading mode.
  • the control network element can determine whether the UE can support multiple 3GPP connections at the same time based on the first information of the terminal device.
  • the UE completes NR according to the offload mode determined by the PCF. Multi-3GPP access establishment process to 5GC, LTE to EPC.
  • Figure 5 is a schematic diagram of a communication method 500 provided by an embodiment of the present application.
  • Method 500 may include the following steps.
  • S510 The UE registers with the EPC through the LTE connection.
  • the UE performs EPC registration and receives the Network support of Interworking without N26 indication sent from the network side during the registration process. This indication is used to indicate that the network side supports the EPC and 5GC interaction process using non-N26 interfaces.
  • S520 The UE sends the first information to the converged network element.
  • the converged network element receives the first information from the UE.
  • the UE when the UE supports dual registration of EPC and 5GC, and the network side supports Network support of Interworking without N26, the UE sends the first information to the MME, and the MME forwards the first information to the converged network element.
  • the first information includes multiple 3GPP access request indication information or conversion indication information.
  • the first information also includes capability indication information.
  • the UE can carry the first information in protocol configuration option (PCO) parameters and other information and send it to the converged network element through forwarding by the MME, which is not limited by this application.
  • PCO protocol configuration option
  • the fusion node may be the control network element in S320.
  • the process of the UE sending the first information to the fusion node in S520 is similar to the process of the UE sending the first information to the control network element in S320.
  • no further details will be given.
  • the converged network element determines whether to allow the UE to establish multiple 3GPP access sessions based on the first information.
  • the converged network element determines whether to allow the UE to establish multiple 3GPP access sessions based on the first information and the UE's subscription data.
  • the converged network element determines whether to allow the UE to establish multiple 3GPP
  • the process of accessing the session is similar to the process in S450 in which the converged network element determines whether to allow the UE to establish multiple 3GPP access sessions based on the first information.
  • the process in S450 in which the converged network element determines whether to allow the UE to establish multiple 3GPP access sessions based on the first information.
  • a PDU session establishment failure message is sent to the UE.
  • the converged network element determines whether to allow the UE to establish a dual access PDU session, or a single access session. Enter the PDU session.
  • the converged network element sends a PDU session establishment request message to the converged network element.
  • the PDU session establishment request message includes conversion indication information.
  • the converged network element When the converged network element allows the UE to establish multiple 3GPP access sessions, the converged network element requests the PCF to determine the offload mode for the UE to transmit the service flow.
  • the method flow shown in Figure 5 may also include:
  • S540 The converged network element sends a multi-3GPP access establishment instruction to the PCF.
  • the PCF receives the multi-3GPP access establishment indication from the converged network element.
  • the multiple 3GPP access establishment indication is used to instruct the PCF to determine the offload mode.
  • the PCF determines the shunt mode.
  • the PCF determines the offload mode according to the multi-3GPP access establishment instruction.
  • the PCF can generate the offload mode based on the UE's subscription data or/and local policy, which is not limited by this application.
  • the offload mode includes at least one of the following: a secondary offload mode based on active and backup modes, a secondary offload mode based on priority mode, a secondary offload mode based on load balancing mode, and a multi-3GPP access offload mode.
  • the method flow shown in Figure 5 may also include:
  • S560 The PCF sends the offload mode to the UE.
  • the UE receives the offload pattern from the PCF.
  • the PCF sends the offload mode to the converged network element, and the converged network element carries the offload mode in the PDU session reply message and other information, and forwards it to the UE through the MME.
  • the converged network element carries the multi-3GPP access establishment success indication in the PDN session reply message and other information, and forwards it to the UE through the MME.
  • the converged network element when the converged network element allows the UE to establish a dual access PDU session or a single access PDU session, the converged network element carries the dual access PDU session establishment success indication or the single access PDU session establishment success indication in the The PCO parameters are forwarded to the UE through the MME.
  • the method flow shown in Figure 5 may also include:
  • the UE after receiving the offload mode, stores the offload mode and offloads the uplink service flow according to the offload mode.
  • the UE determines that the current session is a multi-3GPP access session.
  • the UE determines that the current session is a dual access PDU session that supports LTE and NR.
  • the UE After the UE completes LTE to EPC, the UE connects to the 5GC and initiates a PDU session establishment process to the 5GC. The specific process is shown in Figure 4.
  • the UE completes the dual connection establishment process from NR to 5GC and LTE to EPC. If the UE also establishes a connection with non-3GPP, the UE completes the multi-3GPP access connection establishment process. Further, the UE performs uplink service offloading on the user plane through offloading mode.
  • the control network element can determine whether the UE can support multiple 3GPP connections at the same time based on the first information of the terminal device.
  • the UE completes NR according to the offload mode determined by the PCF. Multi-3GPP access establishment process to 5GC, LTE to EPC.
  • each embodiment of the present application involves some message names, such as first information or multiple 3GPP access request indication information, etc. It should be understood that the naming does not limit the protection scope of the embodiments of the present application.
  • the methods and operations implemented by the terminal device can also be implemented by components (such as chips or circuits) of the terminal device; in addition, the methods and operations implemented by the control network element, It can also be implemented by components (such as chips or circuits) that can control network elements, without limitation.
  • embodiments of the present application also provide corresponding devices, and the devices include modules for executing corresponding modules in each of the above method embodiments.
  • the module can be software, hardware, or a combination of software and hardware. It can be understood that the technical features described in the above method embodiments are also applicable to the following device embodiments.
  • control network element or terminal device can perform some or all of the steps in the above embodiments. These steps or operations are only examples. The embodiments of the present application can also perform other operations or variations of various operations. In addition, various steps may be performed in a different order than presented in the above-described embodiments, and it is possible that not all operations in the above-described embodiments are performed.
  • the communication method provided by the embodiment of the present application is introduced in detail above with reference to Figures 3 to 5.
  • the communication device provided by the embodiment of the present application is introduced in detail below with reference to Figures 6 to 8. It should be understood that the description of the device embodiments corresponds to the description of the method embodiments. Therefore, for content that is not described in detail, please refer to the above method embodiments. For the sake of brevity, some content will not be described again.
  • FIG. 6 is a schematic block diagram of a communication device provided by an embodiment of the present application.
  • the device 600 includes a transceiver unit 610, which can be used to implement corresponding communication functions.
  • the transceiver unit 610 may also be called a communication interface or a communication unit.
  • the device 600 may also include a processing unit 620, which may be used for data processing.
  • a processing unit 620 which may be used for data processing.
  • the device 600 also includes a storage unit, which can be used to store instructions and/or data, and the processing unit 620 can read the instructions and/or data in the storage unit, so that the device implements each of the foregoing method embodiments.
  • the actions of different terminal devices in the network for example, controlling the actions of network elements or terminal devices.
  • the device 600 can be used to perform the actions performed by the control network element or terminal equipment in each of the above method embodiments.
  • the device 600 can be a control network element or terminal equipment, or a component of the control network element or terminal equipment.
  • the transceiver unit 610 is configured to perform operations related to the transceiver of the control network element or terminal equipment in the above method embodiment
  • the processing unit 720 is used to perform operations related to the processing of the control network element or terminal equipment in the above method embodiment.
  • the device 600 here is embodied in the form of a functional unit.
  • the term "unit” as used herein may refer to an application specific integrated circuit (ASIC), an electronic circuit, a processor (such as a shared processor, a proprietary processor, or a group of processors) used to execute one or more software or firmware programs. processor, etc.) and memory, merged logic circuitry, and/or other suitable components to support the described functionality.
  • ASIC application specific integrated circuit
  • the device 600 can be specifically a control network element or terminal device in the above embodiments, and can be used to perform the steps corresponding to the control network element or terminal device in the above method embodiments.
  • Each process and/or step, or the device 600 can be specifically a control network element or terminal device in the above embodiments, and can be used to execute each process and/or corresponding to the control network element or terminal device in the above method embodiments. To avoid repetition, the steps will not be repeated here.
  • the device 600 of each of the above solutions has the function of realizing the corresponding steps performed by controlling the network element or terminal equipment in the above method, or the device 600 of each of the above solutions has the function of realizing the corresponding steps of controlling the network element or terminal equipment of the above method.
  • the functions described can be implemented by hardware, or can be implemented by hardware executing corresponding software.
  • the hardware or software includes one or more modules corresponding to the above functions; for example, the transceiver unit can be replaced by a transceiver (for example, the sending unit in the transceiver unit can be replaced by a transmitter, and the receiving unit in the transceiver unit can be replaced by a receiving unit. (machine replacement), other units, such as processing units, etc., can be replaced by processors to respectively perform the sending and receiving operations and related processing operations in each method embodiment.
  • transceiver unit 610 may also be a transceiver circuit (for example, it may include a receiving circuit and a transmitting circuit), and the processing unit may be a processing circuit.
  • the device in Figure 6 can be the network element or device in the aforementioned embodiment, or it can be a chip or chip system, such as a system on chip (SoC).
  • the transceiver unit may be an input-output circuit or a communication interface; the processing unit may be a processor, microprocessor, or integrated circuit integrated on the chip. No limitation is made here.
  • an embodiment of the present application provides another communication device 700.
  • the device 700 includes a processor 710 coupled to a memory 720 for storing computer programs or instructions and/or data.
  • the processor 710 is used for executing computer programs or instructions stored in the memory 720, or reading the memory 720.
  • the stored data is used to execute the methods in the above method embodiments.
  • processors 710 there are one or more processors 710 .
  • the memory 720 is integrated with the processor 710, or is provided separately.
  • the device 700 also includes a transceiver 730, which is used for receiving and/or transmitting signals.
  • the processor 710 is used to control the transceiver 730 to receive and/or transmit signals.
  • the device 700 is used to implement the control network element or terminal equipment in each of the above method embodiments. OK operation.
  • the processor 710 is used to execute computer programs or instructions stored in the memory 720 to implement related operations of the terminal device in each of the above method embodiments.
  • the terminal device in any one of the embodiments shown in Figures 2 to 5, or the method of the terminal device in any one of the embodiments shown in Figures 2 to 5.
  • processors mentioned in the embodiments of this application may be a central processing unit (CPU), or other general-purpose processor, digital signal processor (DSP), or application-specific integrated circuit (ASIC).
  • ASIC application specific integrated circuit
  • FPGA field programmable gate array
  • a general-purpose processor may be a microprocessor or the processor may be any conventional processor, etc.
  • non-volatile memory can be read-only memory (ROM), programmable ROM (PROM), erasable programmable read-only memory (erasable PROM, EPROM), electrically removable memory. Erase electrically programmable read-only memory (EPROM, EEPROM) or flash memory. Volatile memory can be random access memory (RAM). For example, RAM can be used as an external cache.
  • RAM includes the following forms: static random access memory (static RAM, SRAM), dynamic random access memory (dynamic RAM, DRAM), synchronous dynamic random access memory (synchronous DRAM, SDRAM), Double data rate synchronous dynamic random access memory (double data rate SDRAM, DDR SDRAM), enhanced synchronous dynamic random access memory (enhanced SDRAM, ESDRAM), synchronous link dynamic random access memory (synchlink DRAM, SLDRAM) and direct Memory bus random access memory (direct rambus RAM, DR RAM).
  • the processor is a general-purpose processor, DSP, ASIC, FPGA or other programmable logic device, discrete gate or transistor logic device, or discrete hardware component
  • the memory storage module
  • memories described herein are intended to include, but are not limited to, these and any other suitable types of memories.
  • an embodiment of the present application provides a chip system 800.
  • the chip system 800 (or can also be called a processing system) includes a logic circuit 810 and an input/output interface 820.
  • the logic circuit 810 may be a processing circuit in the chip system 800 .
  • the logic circuit 810 can be coupled to the storage unit and call instructions in the storage unit, so that the chip system 800 can implement the methods and functions of various embodiments of the present application.
  • the input/output interface 820 can be an input/output circuit in the chip system 800, which outputs information processed by the chip system 800, or inputs data or signaling information to be processed into the chip system 800 for processing.
  • the chip system 800 is used to implement the operations performed by the control network element or terminal device in each of the above method embodiments.
  • the logic circuit 810 is used to implement the processing-related operations of the control network element in the above method embodiment, such as the processing-related operations of the terminal device in any of the embodiments shown in Figures 2 to 5; input/output
  • the interface 820 is used to implement the sending and/or receiving related operations performed by the terminal device in the above method embodiments, such as the sending and/or receiving related operations performed by the terminal device in any of the embodiments shown in Figures 2 to 5. operate.
  • Embodiments of the present application also provide a computer-readable storage medium on which are stored computer instructions for implementing the methods executed by the control network element or the terminal device in each of the above method embodiments.
  • the computer program when executed by a computer, the computer can implement the method executed by the control network element or terminal device in each embodiment of the above method.
  • Embodiments of the present application also provide a computer program product, which includes instructions.
  • the instructions are executed by a computer, the methods executed by the control network element or the terminal device in each of the above method embodiments are implemented.
  • the disclosed devices and methods can be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components may be combined or can be integrated into another system, or some features can be ignored, or not implemented.
  • the coupling or direct coupling or communication connection between each other shown or discussed may be through some interfaces, and the indirect coupling or communication connection of the devices or units may be in electrical, mechanical or other forms.
  • the computer may be a general-purpose computer, a special-purpose computer, a computer network, or other programmable device.
  • the computer may be a personal computer, a server, or a network device.
  • the computer instructions may be stored in or transmitted from one computer-readable storage medium to another, e.g., the computer instructions may be transferred from a website, computer, server, or data center Transmission to another website, computer, server or data center by wired (such as coaxial cable, optical fiber, digital subscriber line (DSL)) or wireless (such as infrared, wireless, microwave, etc.) means.
  • the computer-readable storage medium may be any available medium that can be accessed by a computer or a data storage device such as a server, data center, etc. that contains one or more available media integrated.
  • the available media may be magnetic media (such as floppy disks, hard disks, magnetic tapes), optical media (such as DVDs), or semiconductor media (such as solid state disks (SSD)), etc.
  • the aforementioned available media include but Not limited to: U disk, mobile hard disk, read-only memory (ROM), random access memory (RAM), magnetic disk or optical disk and other media that can store program code.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Computer Security & Cryptography (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例提供了一种通信方法和通信装置,该通信方法包括:控制网元接收来自UE的第一信息,该第一信息包括多3GPP三接入请求指示信息或转化指示信息;控制网元根据第一信息确定是否允许UE建立多3GPP接入会话;其中,多3GPP接入请求指示信息用于指示UE请求建立多3GPP接入会话,转化指示信息用于指示UE允许控制网元从建立双接入会话或单接入会话改为建立多3GPP接入会话。从而,通过控制网元确定UE是否能够同时支持多条3GPP连接,使得UE能够建立NR和LTE的多3GPP接入会话。

Description

通信方法和通信装置
本申请要求于2022年04月13日提交中国专利局、申请号为202210383185.3、申请名称为“通信方法和通信装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请实施例涉及通信领域,并且,更具体地,涉及通信方法和通信装置。
背景技术
多接入协议数据单元会话(multi-access protocol data unit session,MA PDU session)能够同时进行第三代合作伙伴计划(3rd generation partnership project,3GPP)接入(如长期演进技术(long term evolution,LTE)接入,新空口(new radio,NR)接入等)与非3GPP(non-3GPP)接入(如无线保真(wireless fidelity,Wi-Fi)接入,有线接入等),但对于多接入PDU会话,至多有两条连接,即一条3GPP连接和一条non-3GPP连接。当5G核心网(the 5th generation core network,5GC)与分组核心网(evolved packet core,EPC)融合部署时,融合网络(5GC与EPC融合部署)既支持5G NR接入,也支持4G LTE接入,此时存在终端侧同时具有两条3GPP链路的可能。对于多接入PDU会话无法同时支持NR与LTE双连接,即两条3GPP连接。
因此,在5GC与EPC融合的网络架构下,如何同时支持NR和LTE的接入,成为业界亟需解决的问题。
发明内容
本申请实施例提供一种通信方法和通信装置,通过控制网元确定UE是否能够同时支持多条3GPP连接,使得UE能够建立NR和LTE的多3GPP接入会话。
第一方面,提供了一种通信方法。该方法可以由控制网元执行,或者,也可以由控制网元的组成部件(例如芯片或者电路)执行,对此不作限定,为了便于描述,下面以由控制网元执行为例进行说明。
该方法可以包括:控制网元接收来自终端设备UE的第一信息,该第一信息包括多3GPP接入请求指示信息或转化指示信息;控制网元根据该第一信息确定是否允许UE建立多3GPP接入会话;其中,多3GPP接入请求指示信息用于指示UE请求建立多3GPP接入会话,转化指示信息用于指示UE允许控制网元从建立双接入会话或单接入会话改为建立多3GPP接入会话。
基于上述方案,控制网元根据终端设备的第一信息,确定UE是否能够同时支持多条3GPP连接。
结合第一方面,在第一方面的某些实现方式中,多3GPP接入会话包括协议数据单元 PDU会话和/或公用数据网PDN会话。
结合第一方面,在第一方面的某些实现方式中,控制网元根据第一信息确定是否允许UE建立多3GPP接入会话,包括:控制网元根据第一信息和UE的签约数据确定是否允许建立多3GPP接入会话。
基于上述方案,控制网元能够根据第一信息和UE的签约数据中的多种信息确定是否允许建立多3GPP接入会话,增加了网络侧的控制,及方案的灵活性。
结合第一方面,在第一方面的某些实现方式中,当所述第一信息包括所述多3GPP接入请求指示信息时,控制网元根据第一信息和UE的签约数据确定是否允许建立多3GPP接入会话,包括:控制网元根据多3GPP接入请求指示信息确定UE请求建立多3GPP接入会话;控制网元根据UE的签约数据确定是否允许UE建立多3GPP接入会话。
基于上述方案,控制网元在获知UE请求建立多3GPP接入会话之后,再根据UE的签约数据确定是否允许UE建立多3GPP接入会话,避免了对于UE不请求建立多3GPP接入会话的情况下,仍需判断是否允许UE建立多3GPP接入会话而造成的资源浪费。
结合第一方面,在第一方面的某些实现方式中,当所述第一信息包括所述转化指示信息时,所述控制网元根据所述第一信息和UE的签约数据确定是否允许建立多3GPP接入会话,包括:控制网元根据转化指示信息确定UE允许建立多3GPP接入会话;控制网元根据UE的签约数据确定是否可以为UE建立多3GPP接入会话。
基于上述方案,控制网元在获知UE允许建立多3GPP接入会话之后,再根据UE的签约数据确定是否允许UE建立多3GPP接入会话,避免了对于UE不允许建立多3GPP接入会话的情况下,仍需判断是否允许UE建立多3GPP接入会话而造成的资源浪费。
结合第一方面,在第一方面的某些实现方式中,当控制网元允许UE建立多3GPP接入会话时,该方法包括:控制网元向策略控制网元PCF发送多3GPP接入建立指示,该多3GPP接入建立指示用于指示确定分流模式;控制网元接收来自PCF的分流模式,该分流模式用于指示多3GPP接入会话中传输业务流的顺序;控制网元向UE发送该分流模式。
基于上述方案,控制网元在允许UE建立多3GPP接入会话的情况下,请求PCF确定用于指示多3GPP接入会话中传输业务流的顺序的分流模式,从而实现网络侧控制的业务流选路、分流,避免了进行不合适的接入而造成的业务质量受损,或资源浪费。
结合第一方面,在第一方面的某些实现方式中,分流模式包括以下至少一项:基于主备模式的二级分流模式、基于优先级模式的二级分流模式、基于负载均衡模式的二级分流模式、多3GPP接入分流模式;其中,多3GPP接入分流模式用于指示多3GPP接入的优先级顺序。
基于上述方案,分流模式包含多种可能的模式,增加了UE传输业务流方案的灵活性。
结合第一方面,在第一方面的某些实现方式中,基于主备模式的二级分流模式包括主备分流模式和二级分流模式;其中,主备分流模式用于指示3GPP接入或non-3GPP接入为激活的接入技术,二级分流模式用于指示LTE接入或NR接入为激活的接入技术。
基于上述方案,当分流模式为基于主备模式的二级分流模式时,UE能够根据3GPP接入和non-3GPP接入的active和standby情况和LTE接入和NR接入的active和standby情况,确定激活的接入技术,增加了接入方案的灵活性,避免了额外的资源浪费。
结合第一方面,在第一方面的某些实现方式中,基于优先级模式的二级分流模式包括 优先级分流模式和二级分流模式;其中,优先级分流模式用于指示3GPP接入和non-3GPP接入的优先级,二级分流模式用于指示LTE接入和NR接入的优先级顺序。
基于上述方案,当分流模式为基于优先级模式的二级分流模式时,UE能够根据3GPP接入和non-3GPP接入的优先级和LTE接入和NR接入的优先级,确定优先接入顺序,增加了接入方案的灵活性,避免了额外的资源浪费。
结合第一方面,在第一方面的某些实现方式中,基于负载均衡模式的二级分流模式包括负载均衡分流模式和二级分流模式;其中,负载均衡分流模式用于指示3GPP接入和non-3GPP接入之间的分流比例,二级分流模式用于指示LTE接入和NR接入之间的分流比例。
基于上述方案,当分流模式为基于负载均衡模式的二级分流模式时,UE能够根据3GPP接入和non-3GPP接入之间的分流比例和LTE接入和NR接入之间的分流比例,确定不同接入技术传输业务流的比例,增加了接入方案的灵活性,避免了额外的资源浪费。
第二方面,提供了一种通信方法。该方法可以由终端设备UE执行,或者,也可以由UE的组成部件(例如芯片或者电路)执行,对此不作限定,为了便于描述,下面以由UE执行为例进行说明。
该方法可以包括:终端设备UE向控制网元发送第一信息,该第一信息用于确定是否允许UE建立多3GPP接入会话,该第一信息包括多3GPP接入请求指示信息或转化指示信息;其中,该多3GPP接入请求指示信息用于指示UE请求建立多3GPP接入会话,该转化指示信息用于指示UE允许控制网元从建立双接入会话或单接入会话改为建立多3GPP接入会话。
基于上述方案,UE能够向控制网元发送第一信息,使得控制网元能够根据第一信息确定UE是否能够同时支持多条3GPP连接,从而使得UE能够建立NR和LTE的多3GPP接入会话。
结合第二方面,在第二方面的某些实现方式中,UE获取双注册能力指示,该双注册能力指示用于指示UE允许注册第一网络和第二网络。
基于上述方案,UE在具有支持注册第一网络和第二网络能力的情况下,能够向控制网元请求建立多3GPP接入会话。
结合第二方面,在第二方面的某些实现方式中,多3GPP接入会话包括协议数据单元PDU会话和/或公用数据网PDN会话。
结合第二方面,在第二方面的某些实现方式中,当控制网元允许UE建立多3GPP接入会话时,该方法还包括:UE接收来自控制网元的分流模式,该分流模式用于指示多3GPP接入会话中传输业务流的顺序;该UE根据该分流模式传输业务流。
基于上述方案,UE能够根据PCF确定的分流模式传输业务流,避免了进行不合适的接入而造成的业务质量受损,或资源浪费。
结合第二方面,在第二方面的某些实现方式中,分流模式包括以下至少一项:基于主备模式的二级分流模式、基于优先级模式的二级分流模式、基于负载均衡模式的二级分流模式、多3GPP接入分流模式;其中,该多3GPP接入分流模式用于指示多3GPP接入的优先级顺序。
基于上述方案,分流模式包含多种可能的模式,增加了UE传输业务流方案的灵活性。
结合第一方面,在第二方面的某些实现方式中,基于主备模式的二级分流模式包括主备分流模式和二级分流模式;其中,主备分流模式用于指示3GPP接入或non-3GPP接入为激活的接入技术,二级分流模式用于指示LTE接入和NR接入为激活的接入技术。
基于上述方案,当分流模式为基于主备模式的二级分流模式时,UE能够根据3GPP接入和non-3GPP接入的active和standby情况和LTE接入和NR接入的active和standby情况,确定激活的接入技术,增加了接入方案的灵活性,避免了额外的资源浪费。
结合第一方面,在第二方面的某些实现方式中,基于优先级模式的二级分流模式包括优先级分流模式和二级分流模式;其中,优先级分流模式用于指示3GPP接入和non-3GPP接入的优先级,二级分流模式用于指示LTE接入和NR接入的优先级顺序。
基于上述方案,当分流模式为基于优先级模式的二级分流模式时,UE能够根据3GPP接入和non-3GPP接入的优先级和LTE接入和NR接入的优先级,确定优先接入顺序,增加了接入方案的灵活性,避免了额外的资源浪费。
结合第一方面,在第二方面的某些实现方式中,基于负载均衡模式的二级分流模式包括负载均衡分流模式和二级分流模式;其中,负载均衡分流模式用于指示3GPP接入和non-3GPP接入之间的分流比例,二级分流模式用于指示LTE接入和NR接入之间的分流比例。
基于上述方案,当分流模式为基于负载均衡模式的二级分流模式时,UE能够根据3GPP接入和non-3GPP接入之间的分流比例和LTE接入和NR接入之间的分流比例,确定不同接入技术传输业务流的比例,增加了接入方案的灵活性,避免了额外的资源浪费。
第三方面,提供了一种通信装置,包括用于执行上述第一方面所示的方法的单元,该通信的装置可以是控制网元,或者,也可以是设置于控制网元中的芯片或电路执行,本申请对此不作限定。
该通信装置包括:
收发单元,用于接收来自终端设备UE的第一信息,该第一信息包括多3GPP接入请求指示信息或转化指示信息;处理单元,用于根据该第一信息确定是否允许UE建立多3GPP接入会话;其中,多3GPP接入请求指示信息用于指示UE请求建立多3GPP接入会话,转化指示信息用于指示UE允许控制网元从建立双接入会话或单接入会话改为建立多3GPP接入会话。
结合第三方面,在第三方面的某些实现方式中,多3GPP接入会话包括协议数据单元PDU会话和/或公用数据网PDN会话。
结合第三方面,在第三方面的某些实现方式中,处理单元,还用于根据第一信息和UE的签约数据确定是否允许建立多3GPP接入会话。
结合第三方面,在第三方面的某些实现方式中,处理单元,还用于根据多3GPP接入请求指示信息确定UE请求建立多3GPP接入会话;处理单元,还用于根据UE的签约数据确定是否允许UE建立多3GPP接入会话。
结合第三方面,在第三方面的某些实现方式中,处理单元,还用于根据转化指示信息确定UE允许建立多3GPP接入会话;处理单元,还用于根据UE的签约数据确定是否可以为UE建立多3GPP接入会话。
结合第三方面,在第三方面的某些实现方式中,收发单元,还用于向策略控制网元 PCF发送多3GPP接入建立指示,该多3GPP接入建立指示用于指示确定分流模式;收发单元,还用于接收来自PCF的分流模式,该分流模式用于指示多3GPP接入会话中传输业务流的顺序;控制网元向UE发送该分流模式。
结合第三方面,在第三方面的某些实现方式中,分流模式包括以下至少一项:基于主备模式的二级分流模式、基于优先级模式的二级分流模式、基于负载均衡模式的二级分流模式、多3GPP接入分流模式;其中,多3GPP接入分流模式用于指示多3GPP接入的优先级顺序。
结合第三方面,在第三方面的某些实现方式中,基于主备模式的二级分流模式包括主备分流模式和二级分流模式;其中,主备分流模式用于指示3GPP接入或non-3GPP接入为激活的接入技术,二级分流模式用于指示LTE接入或NR接入为激活的接入技术。
结合第三方面,在第三方面的某些实现方式中,基于优先级模式的二级分流模式包括优先级分流模式和二级分流模式;其中,优先级分流模式用于指示3GPP接入和non-3GPP接入的优先级,二级分流模式用于指示LTE接入和NR接入的优先级顺序。
结合第三方面,在第三方面的某些实现方式中,基于负载均衡模式的二级分流模式包括负载均衡分流模式和二级分流模式;其中,负载均衡分流模式用于指示3GPP接入和non-3GPP接入之间的分流比例,二级分流模式用于指示LTE接入和NR接入之间的分流比例。
第三方面提供的通信的装置相关内容的解释及有益效果均可参考第一方面所示的方法,此处不再赘述。
第四方面,提供了一种通信装置,包括用于执行上述第二方面所示的方法的单元,该通信的装置可以是UE,或者,也可以是设置于UE中的芯片或电路执行,本申请对此不作限定。
该通信装置包括:
收发单元,用于向控制网元发送第一信息,该第一信息用于确定是否允许UE建立多3GPP接入会话,该第一信息包括多3GPP接入请求指示信息或转化指示信息;其中,该多3GPP接入请求指示信息用于指示UE请求建立多3GPP接入会话,该转化指示信息用于指示UE允许控制网元从建立双接入会话或单接入会话改为建立多3GPP接入会话。
结合第四方面,在第四方面的某些实现方式中,处理单元,用于获取双注册能力指示,该双注册能力指示用于指示UE允许注册第一网络和第二网络。
结合第四方面,在第四方面的某些实现方式中,多3GPP接入会话包括协议数据单元PDU会话和/或公用数据网PDN会话。
结合第四方面,在第四方面的某些实现方式中,收发单元,还用于接收来自控制网元的分流模式,该分流模式用于指示多3GPP接入会话中传输业务流的顺序;处理单元,还用于根据该分流模式传输业务流。
结合第四方面,在第四方面的某些实现方式中,分流模式包括以下至少一项:基于主备模式的二级分流模式、基于优先级模式的二级分流模式、基于负载均衡模式的二级分流模式、多3GPP接入分流模式;其中,该多3GPP接入分流模式用于指示多3GPP接入的优先级顺序。
结合第四方面,在第四方面的某些实现方式中,基于主备模式的二级分流模式包括主 备分流模式和二级分流模式;其中,主备分流模式用于指示3GPP接入或non-3GPP接入为激活的接入技术,二级分流模式用于指示LTE接入或NR接入为激活的接入技术。
结合第四方面,在第四方面的某些实现方式中,基于优先级模式的二级分流模式包括优先级分流模式和二级分流模式;其中,优先级分流模式用于指示3GPP接入和non-3GPP接入的优先级,二级分流模式用于指示LTE接入和NR接入的优先级顺序。
结合第四方面,在第四方面的某些实现方式中,基于负载均衡模式的二级分流模式包括负载均衡分流模式和二级分流模式;其中,负载均衡分流模式用于指示3GPP接入和non-3GPP接入之间的分流比例,二级分流模式用于指示LTE接入和NR接入之间的分流比例。
第四方面提供的通信的装置相关内容的解释及有益效果均可参考第二方面所示的方法,此处不再赘述。
第五方面,提供一种通信装置,该装置包括:存储器,用于存储程序;至少一个处理器,用于执行存储器存储的计算机程序或指令,以执行上述第一方面或第二方面可能实现方式的方法。
在一种实现方式中,该装置为控制网元。
在另一种实现方式中,该装置为用于控制网元中的芯片、芯片系统或电路。
第六方面,本申请提供一种处理器,用于执行上述各方面提供的方法。
对于处理器所涉及的发送和获取/接收等操作,如果没有特殊说明,或者,如果未与其在相关描述中的实际作用或者内在逻辑相抵触,则可以理解为处理器输出和接收、输入等操作,也可以理解为由射频电路和天线所进行的发送和接收操作,本申请对此不做限定。
第七方面,提供一种计算机可读存储介质,该计算机可读介质存储用于设备执行的程序代码,该程序代码包括用于执行上述第一方面或第二方面可能实现方式的方法。
第八方面,提供一种包含指令的计算机程序产品,当该计算机程序产品在计算机上运行时,使得计算机执行上述第一方面或第二方面可能实现方式的方法。
第九方面,提供一种芯片,芯片包括处理器与通信接口,处理器通过通信接口读取存储器上存储的指令,执行上述第一方面或第二方面可能实现方式的方法。
可选地,作为一种实现方式,芯片还包括存储器,存储器中存储有计算机程序或指令,处理器用于执行存储器上存储的计算机程序或指令,当计算机程序或指令被执行时,处理器用于执行上述第一方面或第二方面可能实现方式的方法。
第十方面,提供一种通信系统,包括上文的控制网元和UE中的一个或多个。
附图说明
图1示出了适用于本申请实施例的网络架构的示意图。
图2示出了适用于本申请实施例的另一例的网络架构的示意图。
图3示出了本申请实施例的提供的一种通信方法300的示意性流程图。
图4示出了本申请实施例的提供的一种通信方法400的示意性流程图。
图5示出了本申请实施例的提供的一种通信方法500的示意性流程图。
图6示出了本申请实施例提供的一种通信装置600的示意性框图。
图7示出了本申请实施例提供的另一种通信装置700的示意性框图。
图8示出了本申请实施例提供的一种芯片系统800的示意图。
具体实施方式
下面将结合附图,对本申请实施例中的技术方案进行描述。
本申请提供的技术方案可以应用于各种通信系统,例如:第五代(5th generation,5G)或新无线(new radio,NR)系统、长期演进(long term evolution,LTE)系统、LTE频分双工(frequency division duplex,FDD)系统、LTE时分双工(time division duplex,TDD)系统等。本申请提供的技术方案还可以应用于未来的通信系统,如第六代移动通信系统。本申请提供的技术方案还可以应用于设备到设备(device to device,D2D)通信,车到万物(vehicle-to-everything,V2X)通信,机器到机器(machine to machine,M2M)通信,机器类型通信(machine type communication,MTC),以及物联网(internet of things,IoT)通信系统或者其他通信系统。
首先简单介绍适用于本申请的网络架构。
作为示例,图1示出了一种网络架构的示意图。
如图1所示,该网络架构以5G系统(the 5th generation system,5GS)为例。该网络架构中可包括三部分,分别是UE部分、数据网络(data network,DN)部分和运营商网络部分。其中,运营商网络可包括以下网元中的一个或多个:(无线)接入网((radio)access network,(R)AN)设备、用户面功能(user plane function,UPF)网元、认证服务器功能(authentication server function,AUSF)网元、统一数据库(unified data repository,UDR)网元、接入和移动性管理功能(access and mobility management function,AMF)网元、SMF网元、网络开放功能(network exposure function,NEF)网元、网络功能库功能(network repository function,NRF)网元、策略控制功能(policy control function,PCF)网元、统一数据管理(unified data management,UDM)网元和应用功能(application function,AF)网元。上述运营商网络中,除RAN部分之外的部分可以称为核心网部分。在本申请中,将用户设备、(无线)接入网设备、UPF网元、AUSF网元、UDR网元、AMF网元、SMF网元、NEF网元、NRF网元、PCF网元、UDM网元、AF网元分别简称为UE、(R)AN设备、UPF、AUSF、UDR、AMF、SMF、NEF、NRF、PCF、UDM、AF。
下面对图1中涉及的各网元进行简单描述。
1、UE
UE主要通过无线空口接入5G网络并获得服务,UE通过空口和RAN进行交互,通过非接入层信令(non-access stratum,NAS)和核心网的AMF进行交互。
本申请实施例中的UE也可以称为终端设备、用户、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置。UE可以是蜂窝电话、智能手表、无线数据卡、手机、平板电脑、个人数字助理(personal digital assistant,PDA)电脑、无线调制解调器、手持设备、膝上型电脑、机器类型通信(machine type communication,MTC)终端、带无线收发功能的电脑、物联网终端、虚拟现实终端设备、增强现实终端设备、可穿戴设备、车辆、设备到设备(device-to-device,D2D)通信中的终端、车物(vehicle to everything,V2X)通信中的终端、机器类通信(machine-type communication,MTC)中的终端、物联网(internet of things, IOT)中的终端、智能办公中的终端、工业控制中的终端、无人驾驶中的终端、远程手术中的终端、智能电网中的终端、运输安全中的终端、智慧城市中的终端、智慧家庭中的终端、卫星通信中的终端(例如,卫星电话或卫星终端)。UE还可以是客户终端设备(customer-premises equipment,CPE)、电话、路由器、网络交换机、家庭网关(residential gateway,RG)、机顶盒、固定移动融合产品、家庭网络适配器、以及互联网接入网关。
本申请的实施例对UE所采用的具体技术和具体设备形态不做限定。
2、(R)AN设备
(R)AN设备可以为特定区域的授权用户提供接入通信网络的功能,具体可以包括第三代合作伙伴计划(3rd generation partnership project,3GPP)网络中无线网络设备也可以包括非3GPP(non-3GPP)网络中的接入点。下文为方便描述采用AN设备表示。
AN设备可以为采用不同的无线接入技术。目前的无线接入技术有两种类型:3GPP接入技术(例如,第三代(3rd generation,3G)、第四代(4th generation,4G)或5G系统中采用的无线接入技术)和非3GPP(non-3GPP)接入技术。3GPP接入技术是指符合3GPP标准规范的接入技术,例如,5G系统中的接入网设备称为下一代基站节点(next generation Node Base station,gNB)或者RAN设备。非3GPP接入技术可以包括以无线保真(wireless fidelity,WiFi)中的接入点(access point,AP)为代表的空口技术、全球互联微波接入(worldwide interoperability for microwave access,WiMAX)、码分多址(code division multiple access,CDMA)等。AN设备可以允许终端设备和3GPP核心网之间采用非3GPP技术互连互通。
AN设备能够负责空口侧的无线资源管理、服务质量(quality of service,QoS)管理、数据压缩和加密等功能。AN设备为终端设备提供接入服务,进而完成控制信号和用户数据在终端设备和核心网之间的转发。
AN设备例如可以包括但不限于:宏基站、微基站(也称为小站)、无线网络控制器(radio network controller,RNC)、节点B(Node B,NB)、基站控制器(base station controller,BSC)、基站收发台(base transceiver station,BTS)、家庭基站(例如,home evolved NodeB,或home Node B,HNB)、基带单元(baseband unit,BBU),WiFi系统中的AP、WiMAX中的(base station,BS)、无线中继节点、无线回传节点、传输点(transmission point,TP)或者发送接收点(transmission and reception point,TRP)等,还可以为5G(如,NR)系统中的gNB或传输点(TRP或TP),5G系统中的基站的一个或一组(包括多个天线面板)天线面板,或者,还可以为构成gNB或传输点的网络节点,如分布式单元(distributed unit,DU),或者下一代通信6G系统中的基站等。
本申请实施例对AN设备所采用的具体技术和具体设备形态不做限定。
3、UPF
UPF主要提供用户报文的转发、处理、与DN的连接、会话锚点、服务质量(quality of service,QoS)策略执行等用户面功能。例如,UPF可以从DN接收用户面数据,并通过AN设备将用户面数据发送给终端设备。UPF还可以通过AN设备从终端设备接收用户面数据,并转发到DN。
4、DN
DN主要用于为UE提供数据服务的运营商网络。例如,因特网(Internet)、第三方 的业务网络、IP多媒体服务业务(IP multi-media service,IMS)网络等。
5、AUSF
AUSF主要用于用户鉴权等。
6、UDR
UDR主要提供签约数据、策略数据及能力开放相关数据的存储能力。
7、AMF
AMF主要用于接入控制、移动性管理、附着与去附着等功能。
8、SMF
SMF主要负责会话管理(如会话建立、修改、释放)、因特网协议(internet protocol,IP)地址分配和管理、UPF的选择和控制等。
9、NEF
NEF主要用于安全地向外部开放由3GPP网络功能提供的业务和能力等。
10、NRF
NRF主要用于保存网络功能实体以及其提供服务的描述信息等。
11、PCF
PCF主要用于指导网络行为的统一策略框架,为控制面网元(例如AMF,SMF等)提供策略规则信息等。
12、UDM
UDM主要用于UE的签约数据管理,包括UE标识的存储和管理,UE的接入授权等。
13、AF
AF主要用于向3GPP网络提供业务,如与PCF之间交互以进行策略控制等。
在图1所示的网络架构中,各网元之间可以通过图中所示的接口通信,部分接口可以采用服务化接口的方式实现。如图1所示,UE和AMF之间可以通过N1接口进行通信。RAN和AMF之间可以通过N2接口进行通信。其他接口与各网元之间的关系如图1中所示,为了简洁,这里不一一详述。
应理解,上述所示的网络架构仅是示例性说明,适用本申请实施例的网络架构并不局限于此,任何能够实现上述各个网元的功能的网络架构都适用于本申请实施例。
还应理解,图1中所示的AMF、SMF、UPF、PCF、UDM、AUSF、UDR、NEF、NRF、AF等功能或者网元,可以理解为用于实现不同功能的网元,例如可以按需组合成网络切片。这些网元可以各自独立的设备,也可以集成于同一设备中实现不同的功能,或者可以是硬件设备中的网络元件,也可以是在专用硬件上运行的软件功能,或者是平台(例如,云平台)上实例化的虚拟化功能,本申请对于上述网元的具体形态不作限定。
还应理解,上述网元或者功能可划分出一个或多个服务,进一步,还可能会出现独立于网络功能存在的服务。在本申请中,上述功能的实例、或上述功能中包括的服务的实例、或独立于网络功能存在的服务实例均可称为服务实例。此外,在实际部署中,不同功能的网元可以合设。例如,接入与移动性管理网元可以与会话管理网元合设;会话管理网元可以与用户面网元合设。当两个网元合设的时候,本申请实施例提供的这两个网元之间的交互就成为该合设网元的内部操作或者可以省略。
还应理解,上述命名仅为便于区分不同的功能而定义,不应对本申请构成任何限定。 本申请并不排除在6G网络以及未来其它的网络中采用其他命名的可能。例如,在6G网络中,上述各个网元中的部分或全部可以沿用5G中的术语,也可能采用其他名称等。
还应理解,图1中的各个网元之间的接口名称只是一个示例,具体实现中接口的名称可能为其他的名称,本申请对此不作具体限定。此外,上述各个网元之间的所传输的消息(或信令)的名称也仅仅是一个示例,对消息本身的功能不构成任何限定。
为便于理解本申请实施例,对本申请中涉及到的术语或技术进行简单说明。
多接入协议数据单元会话(multi-access protocol data unit session,MA PDU session):对于协议数据单元(protocol data unit,PDU)会话,可以支持以下一项或多项接入技术,3GPP接入,non-3GPP接入,LTE接入,5GRAN接入,可信non-3GPP接入,非可信non-3GPP接入,可信WLAN接入,非可信WLAN接入,固网接入等,从而实现业务流在不同接入技术之间的移动或同时使用多种接入技术传输上述业务流,例如业务流1通过接入技术1传输,后续业务流1移动到通过接入技术2传输,或业务流1同时通过接入技术1与接入技术2传输。
需要指出的是,上面术语或技术均属于现有技术,不予限制。
可以理解,本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
上面对本申请中涉及到的术语做了简单说明,下文实施例中不再赘述。下文将结合附图详细说明本申请实施例提供的通信方法。本申请提供的实施例可以应用于上述图1所示的网络架构中,不作限定。
图1所示的网络架构不但支持3GPP标准组定义的无线技术(如LTE,5G(R)AN等)接入核心网络侧,还支持non-3GPP接入技术通过non-3GPP转换功能(non-3GPP interworking function,N3IWF)或下一代接入网关(next generation packet data gateway,ngPDG)接入核心网络侧。
当5G核心网支持非可信non-3GPP(N3G)接入时,网络架构如图2所示。其中N3IWF为非可信non-3GPP接入网关,非可信non-3GPP接入网可以是非可信WLAN接入网等,不予限制。
图2中,UE与N3IWF之间可以通过NWu接口进行通信,N3IWF与UPF之间可以通过N3接口进行通信,UE与非可信non-3GPP接入网之间可以通过Y1接口进行通信,N3IWF与非可信non-3GPP接入网之间可以通过Y2接口进行通信,其他接口与各网元之间的关系如图2中所示,为了简洁,这里不一一详述。
需要说明的是,对于可信non-3GPP接入和非可信non-3GPP接入,核心网可以如图2所示为点对点接口协议,或者与图1所示的3GPP接入核心网架构一致采用服务化接口。
基于如图1和图2的网络架构下,现有的多接入PDU会话中包括3GPP接入(如LTE接入,NR接入等),与non-3GPP接入(如WiFi接入,有线接入等),且至多有两条连接,即一条3GPP连接和一条non-3GPP连接。当5GC网络与EPC网络融合部署时,融合网络(5GC与EPC融合部署)既支持5G NR接入,也支持4G LTE接入,此时存在终端侧同时具有两条3GPP链路的可能。对于多接入PDU会话无法同时支持NR与LTE双连接,即两条3GPP连接。
本申请提供一种通信方法,在5GC与EPC融合的网络架构下,能够同时支持NR,LTE接入。
图3是本申请实施例提供的一种通信方法300的示意图。方法300可以包括如下步骤。
S310,UE获取双注册能力指示。
其中,双注册能力指示用于指示UE允许注册第一网络和第二网络。
示例性地,第一网络可以为5G核心网(5G core network,5GC),第二网络可以为分组核心网(evolved packet core,EPC),即4G核心网,本申请不予限制。
一种可能的实施方式,UE当前支持进行双注册,即该UE能够同时注册第一网络和第二网络。
另一种可能的实施方式,UE在注册网络过程中,接收来自网络侧的双注册能力指示。
示例性地,该双注册能力指示可以是Network support of Interworking without N26指示,该Network support of Interworking without N26指示用于表示网络侧支持采用非N26接口的EPC与5GC交互过程,不予限制。
应理解,上述S310为可选地。
进一步地,UE向控制网元发送第一信息,以请求建立多3GPP接入会话。
S320,UE向控制网元发送第一信息。
相应地,控制网元接收来自UE的第一信息。
可选地,UE在获取双注册能力指示之后,向控制网元发送第一信息。
应理解,UE可以将该第一信息携带在PDU会话建立请求消息、PDU会话更新请求消息、上行非独立组网传输消息等信息中,发送给控制网元,本申请不予限制。换句话说,当UE向控制网元请求建立或更新PDU会话时,UE可以将该第一信息携带在该请求消息中发送给控制网元。
其中,该第一信息用于确定是否允许UE建立多3GPP接入会话。
应理解,多3GPP接入为在多接入PDU会话中包括两条3GPP链路,即LTE接入和NR接入。
需要说明的是,本申请对于在多接入PDU会话中是否包括non-3GPP链路不予限制。
具体地,该第一信息包括多3GPP接入请求指示信息或转化指示信息。
其中,多3GPP接入请求指示信息用于指示UE请求建立多3GPP接入会话。
其中,转化指示信息用于指示UE允许控制网元从建立双接入会话或单接入会话改为建立多3GPP接入会话。换句话说,转化指示信息用于指示当UE请求建立双接入会话或单接入会话时,UE支持建立多3GPP接入会话。
可选地,该第一信息中还包括能力指示信息,该能力指示信息用于指示UE具备支持多3GPP接入会话的能力。
S330,控制网元根据第一信息确定是否允许UE建立多3GPP接入会话。
应理解,控制网元接收到来自UE的第一信息之后,根据该第一信息和UE的签约数据确定是否允许UE建立多3GPP接入会话。
应理解,控制网元根据第一信息的内容的不同,确定是否允许UE建立多3GPP接入会话具有以下几种方式。
一种可能的实施方式,当第一信息包括多3GPP接入请求指示信息时,控制网元根据 该多3GPP接入请求指示信息和UE的签约数据确定是否允许UE建立多3GPP接入会话。
具体地,控制网元接收到多3GPP接入请求指示信息之后,根据该多3GPP接入请求指示信息获知该UE请求建立多3GPP接入会话。换句话说,当在UE发送的PDU会话建立请求消息等信息中携带了多3GPP接入请求指示信息时,控制网元获知当前该UE请求建立多3GPP接入会话。进一步地,控制网元根据该UE的签约数据确定是否允许该UE建立多3GPP接入会话。
示例性地,当该UE的签约数据中的Core Network type restriction参数表示支持UE的EPC与5GC双注册时,则控制网元允许该UE建立多3GPP接入会话;当Core Network type restriction参数表示不支持UE的EPC与5GC双注册时,则控制网元不允许该UE建立多3GPP接入会话。
示例性地,当该UE的签约数据中的切片信息指示该UE能够支持LTE和NR接入,则控制网元允许该UE建立多3GPP接入会话;当该UE的签约数据中的切片信息指示该UE不支持LTE和NR接入,则控制网元不允许该UE建立多3GPP接入会话。
另一种可能的实施方式,当第一信息包括转化指示信息时,控制网元根据该转化指示信息和UE的签约数据确定是否允许UE建立多3GPP接入会话。
具体地,控制网元接收到转化指示信息之后,根据该转化指示信息获知该UE允许建立多3GPP接入会话。换句话说,当在UE发送的PDU会话建立请求消息等信息中携带了转化指示信息时,控制网元获知当前该UE允许建立多3GPP接入会话,即当前该UE具备在请求建立双接入会话或单接入会话时,转为建立多3GPP接入会话的能力。进一步地,控制网元根据该UE的签约数据确定是否允许该UE建立多3GPP接入会话。
需要说明的是,上述控制网元确定是否允许该UE建立多3GPP接入会话的具体确定方式与第一信息包括多3GPP接入请求指示信息时,控制网元确定是否允许UE建立多3GPP接入会话相似,这里,为了避免赘述,不再详细说明。
另一种可能的实施方式,当第一信息包括能力指示信息时,控制网元根据该转化指示信息和UE的签约数据确定是否允许UE建立多3GPP接入会话。
具体地,控制网元接收到能力指示信息之后,根据该能力指示信息获知该UE具备建立多3GPP接入会话的能力。换句话说,当在UE发送的PDU会话建立请求消息等信息中携带了能力指示信息时,控制网元获知当前该UE能够建立多3GPP接入会话的能力。进一步地,控制网元根据该UE的签约数据确定是否允许该UE建立多3GPP接入会话。
需要说明的是,上述控制网元确定是否允许该UE建立多3GPP接入会话的具体确定方式与第一信息包括多3GPP接入请求指示信息时,控制网元确定是否允许UE建立多3GPP接入会话相似,这里,为了避免赘述,不再详细说明。
需要说明的是,当控制网元不允许该UE建立多3GPP接入会话时,进一步地,控制网元判断是否允许该UE建立双接入PDU会话(即同时支持3GPP与non-3GPP接入的PDU会话),或单接入PDU会话。
需要说明的是,本申请实施例中对于上述的控制网元是否允许判断该UE建立双接入PDU会话或单接入PDU会话的具体方式不做限制,可以参考目前关于建立PDU会话的相关描述。
基于上述方案,控制网元能够根据终端设备的第一信息,确定UE是否能够同时支持 多条3GPP连接,或者控制网元能够根据第一信息确定UE是否请求建立多条3GPP连接或UE是否允许建立多条3GPP连接。
当控制网元允许该UE建立多3GPP接入会话时,图3所示的方法流程还可以包括:
S340,控制网元获取分流模式。
应理解,当控制网元允许该UE建立多3GPP接入会话时,控制网元向策略控制网元PCF请求用于UE传输业务流的分流模式。
具体地,控制网元向PCF发送多3GPP接入建立指示,该多3GPP接入建立指示用于指示PCF确定分流模式,PCF根据该多3GPP接入建立指示确定UE传输业务流所用的分流模式,并将该分流模式发送给控制网元。
其中,该分流模式用于指示多3GPP接入会话中传输业务流的顺序。
具体地,该分流模式包括以下至少一项:基于主备模式的二级分流模式、基于优先级模式的二级分流模式、基于负载均衡模式的二级分流模式、多3GPP接入分流模式。
其中,基于主备模式的二级分流模式为先基于主备(active-standby)分流模式,根据接入技术的active和standby确定3GPP接入或non-3GPP接入为激活的接入技术,对于选择3GPP接入时,再根据二级分流模式的指示,确定LTE接入或NR接入为激活的接入技术。
应理解,激活的接入技术为传输业务流首先通过的接入技术,当当前激活的接入技术不可用时,将业务流通过另一接入技术进行传输。
示例性地,基于主备模式的二级分流模式中的主备分流模式指示3GPP接入为active(活跃)的接入技术,non-3GPP接入为standby(待机)的接入技术,则选择3GPP接入,再根据二级分流模式中指示的NR接入为激活的接入技术,选择NR接入;当NR接入不可用时,再选择LTE接入;当LTE接入不可用时,再选择standby的non-3GPP接入。即此时基于主备模式的二级分流模式指示的接入顺序依次为NR接入、LTE接入、non-3GPP接入。
示例性地,基于主备模式的二级分流模式中的基于主备分流模式指示non-3GPP接入为active的接入技术,3GPP接入为standby的接入技术,则选择non-3GPP接入;当non-3GPP接入不可用时,再根据二级分流模式中指示的LTE接入为激活的接入技术,选择LTE接入;当LTE接入不可用时,再选择NR接入。即此时基于主备模式的二级分流模式指示的接入顺序依次为non-3GPP接入、LTE接入、NR接入。
其中,基于优先级模式的二级分流模式为先基于priority-based分流模式中指示的3GPP接入和non-3GPP接入的优先级确定优先接入顺序,对于选择3GPP接入时,再根据二级分流模式指示的LTE接入和NR接入的优先级确定优先接入顺序。
示例性地,基于优先级模式的二级分流模式中的优先级(priority-based)分流模式指示3GPP接入为高优先级,non-3GPP接入为低优先级,则优先选择3GPP接入,再根据二级分流模式中指示的NR接入的优先级高于LTE接入的优先级,优先选择NR接入;当NR链路拥塞时,再将额外的业务流(offload traffic)选择LTE接入;当LTE链路拥塞时,再将额外的业务流选择低优先级的non-3GPP接入。即此时基于优先级模式的二级分流模式指示的接入顺序依次为NR接入、LTE接入、non-3GPP接入。
示例性地,基于优先级模式的二级分流模式中的priority-based分流模式指示 non-3GPP接入为高优先级,3GPP接入为低优先级,则优先选择non-3GPP接入;当non-3GPP链路拥塞时,再根据二级分流模式中指示的LTE接入的优先级高于NR接入的优先级,优先选择LTE接入;当LTE链路拥塞时,再将额外的业务流选择NR接入。即此时基于优先级模式的二级分流模式指示的接入顺序依次为non-3GPP接入、LTE接入、NR接入。
其中,基于负载均衡模式的二级分流模式为先基于负载均衡(load-balance)分流模式中指示的3GPP接入与non-3GPP接入之间的分流比例和二级分流模式中指示的NR接入与LTE接入之间的分流比例,将业务流分别通过non-3GPP接链路、LTE链路和NR链路传输。
示例性地,基于负载均衡模式的二级分流模式中non-3GPP接入与3GPP接入之间的分流比例为2:8,二级分流模式中LTE接入与NR接入之间的分流比例为1:1,则UE将业务流的20%通过non-3GPP链路传输,业务流的40%通过LTE链路传输,业务流的40%通过NR链路传输。
其中,多3GPP接入分流模式用于指示多3GPP接入的接入优先级顺序,其中,多3GPP接入包括但不限于LTE接入、NR接入、可信WLAN接入、非可信WLAN接入,有线技术接入等,不予限制。
示例性地,多3GPP接入分流模式中指示的接入优先级顺序依次为NR接入、LTE接入、可信WLAN接入,或者为NR接入、可信WLAN接入、LTE接入,或者为非可信WLAN接入、LTE接入、NR继接入等,不予限制。
需要说明的是,本申请对上述四种分流模式的具体顺序不予限制。
可选地,S350,控制网元向UE发送分流模式。
相应地,UE接收来自控制网元的分流模式。
应理解,控制网元获取分流模式之后,向UE发送该分流模式。
可选地,控制网元可以将分流模式携带在第一响应信息中发送给UE,控制网元还可以将分流模式携带在其他信息中发送给UE,本申请不予限制。
S360,UE传输业务流。
应理解,UE接收到来自控制网元的分流模式之后,根据该分流模式传输业务流。
示例性地,该分流模式为基于主备模式的二级分流模式,该分流模式指示的接入顺序依次为NR接入、LTE接入、non-3GPP接入,则UE优先选择NR接入;当NR接入不可用时,再选择LTE接入;当LTE接入不可用时,再选择non-3GPP接入。
示例性地,该分流模式为基于优先级模式的二级分流模式,该分流模式指示的接入顺序依次为non-3GPP接入、LTE接入、NR接入,则UE优先选择non-3GPP接入,当non-3GPP链路拥塞时,则将额外的业务流选择LTE接入;当LTE链路拥塞时,再将额外的业务流选择NR接入。
示例性地,该分流模式为基于负载均衡模式的二级分流模式,该分流模式指示的non-3GPP接入与3GPP接入之间的分流比例为4:6,LTE接入与NR接入之间的分流比例为1:2,则UE将业务流的40%通过non-3GPP链路传输,业务流的20%通过LTE链路传输,业务流的40%通过NR链路传输。
示例性地,该分流模式为多3GPP接入分流模式,该分流模式指示的接入优先级顺序 依次为NR接入、LTE接入、可信WLAN接入,则UE优先选择NR接入;当NR接入不可用时,再选择LTE接入;当LTE接入不可用时,再选择可信WLAN接入。
基于上述方案,控制网元能够根据终端设备的第一信息,确定UE是否能够同时支持多条3GPP连接,在UE能够同时支持多条3GPP连接的情况下,UE根据PCF确定的分流模式传输业务流,避免了不合适的接入造成的资源浪费。
上述结合图3对控制网元如何确定是否允许该UE建立多3GPP接入会话的具体方式进行了介绍,下面分别结合图4和图5,对于UE先注册到5GC后注册到EPC和UE先注册到EPC后注册到5GC的情况下,控制网元如何确定是否允许该UE建立多3GPP接入会话的方式进行详细说明。
图4是本申请实施例提供的一种通信方法400的示意图。方法400可以包括如下步骤。
S410,UE通过NR连接注册到5GC。
应理解,UE进行5GC注册,并在注册过程中接收到来自网络侧发送的Network support of Interworking without N26指示,该指示用于表示网络侧支持采用非N26接口的EPC与5GC交互过程。
S420,UE向AMF发送第一信息。
相应地,AMF接收来自UE的第一信息。
应理解,当UE支持EPC与5GC双注册,且网络侧支持Network support of Interworking without N26时,UE向AMF发送第一信息。
其中,该第一信息包括多3GPP接入请求指示信息或转化指示信息。
可选地,该第一信息中还包括能力指示信息。
需要说明的是,AMF可以为S320中的控制网元,上述S420中UE向AMF发送第一信息的过程与S320中UE向控制网元发送第一信息的过程相似,这里,为了避免赘述,不再详细说明。
S430,AMF根据第一信息确定是否允许UE建立多3GPP接入会话。
应理解,AMF接收来自UE的第一信息之后,根据该第一信息和UE的签约数据确定是否允许UE建立多3GPP接入会话。
需要说明的是,上述S430中AMF根据第一信息确定是否允许UE建立多3GPP接入会话的过程与S330中控制网元根据第一信息确定是否允许UE建立多3GPP接入会话的过程相似,这里,为了避免赘述,不再详细说明。
应理解,当AMF不允许UE建立多3GPP接入会话时,进一步地,AMF判断是否允许该UE建立双接入PDU会话,或单接入PDU会话。当AMF允许该UE建立双接入PDU会话,或单接入PDU会话时,向融合网元发送PDU会话建立请求消息。可选地,该PDU会话建立请求消息中包括转化指示信息。
其中,融合网元为具备多个控制网元能力的节点,例如具备SMF和PGW-C能力的节点,本申请不予限制。
当AMF允许UE建立多3GPP接入会话时,AMF将该第一信息发送给融合网元,图4所示的方法流程还可以包括:
S440,AMF向融合网元发送第一信息。
相应地,融合网元接收来自AMF的第一信息。
应理解,AMF可以将该第一信息携带在PDU会话建立请求消息、PDU会话更新请求消息、上行非独立组网传输消息等信息中,发送给融合网元,本申请不予限制。
可选地,S450,融合网元根据第一信息确定是否允许UE建立多3GPP接入会话。
应理解,融合网元接收到来自AMF的第一信息之后,根据该第一信息和UE的签约数据确定是否允许UE建立多3GPP接入会话。
需要说明的是,融合网元可以为S330中的控制网元,上述S450中融合网元根据第一信息确定是否允许UE建立多3GPP接入会话的过程与S330中控制网元根据第一信息确定是否允许UE建立多3GPP接入会话的过程相似,这里,为了避免赘述,不再详细说明。
应理解,当融合网元不允许UE建立多3GPP接入会话时,向UE发送PDU会话建立失败消息。
当融合网元允许该UE建立多3GPP接入会话时,融合网元请求PCF确定用于UE传输业务流的分流模式,图4所示的方法流程还可以包括:
S460,融合网元向PCF发送多3GPP接入建立指示。
相应地,PCF接收来自融合网元的多3GPP接入建立指示。
其中,该多3GPP接入建立指示用于指示PCF确定分流模式。
可选地,S470,PCF确定分流模式。
应理解,PCF接收到来自融合网元的多3GPP接入建立指示之后,根据该多3GPP接入建立指示确定分流模式。
应理解,PCF可以基于UE的签约数据或/和本地策略生成该分流模式,本申请不予限制。
具体地,该分流模式包括以下至少一项:基于主备模式的二级分流模式、基于优先级模式的二级分流模式、基于负载均衡模式的二级分流模式、多3GPP接入分流模式。
需要说明的是,上述分流模式可以参考S340中的描述,这里,为了避免赘述,不再详细说明。
进一步地,PCF将分流模式发送给UE,图4所示的方法流程还可以包括:
S480,PCF向UE发送分流模式。
相应地,UE接收来自PCF的分流模式。
具体地,PCF向融合网元发送该分流模式,融合网元将该分流模式携带在PDU会话回复消息等信息中,通过AMF转发发送给UE。
可选地,融合网元将多3GPP接入建立成功指示携带在PDU会话回复消息等信息中,通过AMF转发发送给UE。
可选地,当融合网元允许该UE建立双接入PDU会话,或单接入PDU会话时,融合网元将该双接入PDU会话建立成功指示或单接入PDU会话建立成功指示通过AMF转发给UE。
应理解,当融合网元允许该UE建立多3GPP接入会话时,融合网元不指示AMF分配EPC承载标识。
应理解,融合网元还可以向UPF发送PFCP会话新建请求消息或PFCP会话更新请求消息,该消息中携带分流模式,使得UPF基于该分流模式对下行业务流进行分流。
应理解,若UE当前注册到non-3GPP侧,则基于现有技术,融合网元发起到non-3GPP 接入网关的连接建立流程。
进一步地,UE接收到该分流模式之后,传输业务流,图4所示的方法流程还可以包括:
S490,UE传输业务流。
应理解,UE接收到分流模式后,存储该分流模式,并根据该分流模式对上行业务流进行分流。
可选地,当UE接收到来自融合网元的多3GPP接入建立成功指示之后,确定当前会话为多3GPP接入会话。
可选地,当UE接收到来自融合网元的双接入PDU会话建立成功指示之后,确定当前会话为支持LTE与NR的双接入PDU会话。
需要说明的是,UE完成NR到5GC之后,UE与LTE连接,发起到EPC的PDN会话建立流程,通过关键控制节点(mobility management entity,MME)选择与NR连接相同的融合网元建立PDN连接。上述PDN会话建立流程可参考现有技术,这里不再赘述。
此时,UE完成NR到5GC,LTE到EPC的双连接建立流程。若UE也建立了与non-3GPP的连接,则UE完成了多3GPP接入连接建立过程,进一步地,UE在用户面通过分流模式进行上行业务分流。
基于上述方案,控制网元能够根据终端设备的第一信息,确定UE是否能够同时支持多条3GPP连接,在UE能够同时支持多条3GPP连接的情况下,UE根据PCF确定的分流模式,完成NR到5GC,LTE到EPC的多3GPP接入建立流程。
图5是本申请实施例提供的一种通信方法500的示意图。方法500可以包括如下步骤。
S510,UE通过LTE连接注册到EPC。
应理解,UE进行EPC注册,并在注册过程中接收到来自网络侧发送的Network support of Interworking without N26指示,该指示用于表示网络侧支持采用非N26接口的EPC与5GC交互过程。
S520,UE向融合网元发送第一信息。
相应地,融合网元接收来自UE的第一信息。
应理解,当UE支持EPC与5GC双注册,且网络侧支持Network support of Interworking without N26,则UE向MME发送第第一信息,MME将该第一信息转发给融合网元。
其中,该第一信息包括多3GPP接入请求指示信息或转化指示信息。
可选地,该第一信息中还包括能力指示信息。
应理解,UE可以将该第一信息携带在协议配置选项(protocol configuration option,PCO)参数等信息中通过MME的转发发送给融合网元,本申请不予限制。
需要说明的是,融合节点可以为S320中的控制网元,上述S520中UE向融合节点发送第一信息的过程与S320中UE向控制网元发送第一信息的过程相似,这里,为了避免赘述,不再详细说明。
S530,融合网元根据第一信息确定是否允许UE建立多3GPP接入会话。
应理解,融合网元接收到第一信息之后,根据该第一信息和UE的签约数据确定是否允许UE建立多3GPP接入会话。
需要说明的是,上述S530中融合网元根据第一信息确定是否允许UE建立多3GPP 接入会话的过程与S450中融合网元根据第一信息确定是否允许UE建立多3GPP接入会话的过程相似,这里,为了避免赘述,不再详细说明。
可选地,当融合网元不允许UE建立多3GPP接入会话时,向UE发送PDU会话建立失败消息。
可选地,当融合网元不允许UE建立多3GPP接入会话时,若第一信息中包括转化指示信息,进一步地,融合网元判断是否允许该UE建立双接入PDU会话,或单接入PDU会话。当融合网元允许该UE建立双接入PDU会话,或单接入PDU会话时,向融合网元发送PDU会话建立请求消息。可选地,该PDU会话建立请求消息中包括转化指示信息。
当融合网元允许该UE建立多3GPP接入会话时,融合网元请求PCF确定用于UE传输业务流的分流模式,图5所示的方法流程还可以包括:
S540,融合网元向PCF发送多3GPP接入建立指示。
相应地,PCF接收来自融合网元的多3GPP接入建立指示。
其中,该多3GPP接入建立指示用于指示PCF确定分流模式。
可选地,S550,PCF确定分流模式。
应理解,PCF接收到来自融合网元的多3GPP接入建立指示之后,根据该多3GPP接入建立指示确定分流模式。
应理解,PCF可以基于UE的签约数据或/和本地策略生成该分流模式,本申请不予限制。
具体地,该分流模式包括以下至少一项:基于主备模式的二级分流模式、基于优先级模式的二级分流模式、基于负载均衡模式的二级分流模式、多3GPP接入分流模式。
需要说明的是,上述分流模式可以参考S340中的描述,这里,为了避免赘述,不再详细说明。
进一步地,PCF将分流模式发送给UE,图5所示的方法流程还可以包括:
S560,PCF向UE发送分流模式。
相应地,UE接收来自PCF的分流模式。
具体地,PCF向融合网元发送该分流模式,融合网元将该分流模式携带在PDU会话回复消息等信息中,通过MME转发发送给UE。
可选地,融合网元将多3GPP接入建立成功指示携带在PDN会话回复消息等信息中,通过MME转发发送给UE。
可选地,当融合网元允许该UE建立双接入PDU会话,或单接入PDU会话时,融合网元将该双接入PDU会话建立成功指示或单接入PDU会话建立成功指示携带在PCO参数中,通过MME转发给UE。
进一步地,UE接收到该分流模式之后,传输业务流,图5所示的方法流程还可以包括:
S570,UE传输业务流。
应理解,UE接收到分流模式后,存储该分流模式,并根据该分流模式对上行业务流进行分流。
可选地,当UE接收到来自融合网元的多3GPP接入建立成功指示之后,确定当前会话为多3GPP接入会话。
可选地,当UE接收到来自融合网元的双接入PDU会话建立成功指示之后,确定当前会话为支持LTE与NR的双接入PDU会话。
需要说明的是,UE完成LTE到EPC之后,UE与5GC连接,发起到5GC的PDU会话建立流程,具体过程如图4所示方法。
此时,UE完成NR到5GC,LTE到EPC的双连接建立流程。若UE也建立了与non-3GPP的连接,则UE完成了多3GPP接入连接建立过程,进一步地,UE在用户面通过分流模式进行上行业务分流。
基于上述方案,控制网元能够根据终端设备的第一信息,确定UE是否能够同时支持多条3GPP连接,在UE能够同时支持多条3GPP连接的情况下,UE根据PCF确定的分流模式,完成NR到5GC,LTE到EPC的多3GPP接入建立流程。
可以理解,本申请实施例中的图2至图5中的例子仅仅是为了便于本领域技术人员理解本申请实施例,并非要将本申请实施例限于例示的具体场景。本领域技术人员根据图3至图5的例子,显然可以进行各种等价的修改或变化,这样的修改或变化也落入本申请实施例的范围内。
还可以理解,本申请的各实施例中的一些可选的特征,在某些场景下,可以不依赖于其他特征,也可以在某些场景下,与其他特征进行结合,不作限定。
还可以理解,本申请的各实施例中的方案可以进行合理的组合使用,并且实施例中出现的各个术语的解释或说明可以在各个实施例中互相参考或解释,对此不作限定。
还可以理解,在本申请的各实施例中的各种数字序号的大小并不意味着执行顺序的先后,仅为描述方便进行的区分,不应对本申请实施例的实施过程构成任何限定。
还可以理解,在本申请的各实施例中涉及到一些消息名称,如第一信息或多3GPP接入请求指示信息等等,应理解,其命名不对本申请实施例的保护范围造成限定。
还可以理解,上述各个方法实施例中,由终端设备实现的方法和操作,也可以由可由终端设备的组成部件(例如芯片或者电路)来实现;此外,由控制网元实现的方法和操作,也可以由可由控制网元的组成部件(例如芯片或者电路)来实现,不作限定。相应于上述各方法实施例给出的方法,本申请实施例还提供了相应的装置,所述装置包括用于执行上述各个方法实施例相应的模块。该模块可以是软件,也可以是硬件,或者是软件和硬件结合。可以理解的是,上述各方法实施例所描述的技术特征同样适用于以下装置实施例。
应理解,控制网元或终端设备可以执行上述实施例中的部分或全部步骤,这些步骤或操作仅是示例,本申请实施例还可以执行其它操作或者各种操作的变形。此外,各个步骤可以按照上述实施例呈现的不同的顺序来执行,并且有可能并非要执行上述实施例中的全部操作。
上面结合图3-图5详细介绍了本申请实施例提供的通信的方法,下面结合图6-图8详细介绍本申请实施例提供的通信装置。应理解,装置实施例的描述与方法实施例的描述相互对应,因此,未详细描述的内容可以参见上文方法实施例,为了简洁,部分内容不再赘述。
图6是本申请实施例提供的通信装置的示意性框图。该装置600包括收发单元610,收发单元610可以用于实现相应的通信功能。收发单元610还可以称为通信接口或通信单元。
可选地,该装置600还可以包括处理单元620,处理单元620可以用于进行数据处理。
可选地,该装置600还包括存储单元,该存储单元可以用于存储指令和/或数据,处理单元620可以读取存储单元中的指令和/或数据,以使得装置实现前述各个方法实施例中不同的终端设备的动作,例如,控制网元或终端设备的的动作。
该装置600可以用于执行上文各个方法实施例中控制网元或终端设备所执行的动作,这时,该装置600可以为控制网元或终端设备,或者控制网元或终端设备的组成部件,收发单元610用于执行上文方法实施例中控制网元或终端设备的收发相关的操作,处理单元720用于执行上文方法实施例中控制网元或终端设备的处理相关的操作。
还应理解,这里的装置600以功能单元的形式体现。这里的术语“单元”可以指应用特有集成电路(application specific integrated circuit,ASIC)、电子电路、用于执行一个或多个软件或固件程序的处理器(例如共享处理器、专有处理器或组处理器等)和存储器、合并逻辑电路和/或其它支持所描述的功能的合适组件。在一个可选例子中,本领域技术人员可以理解,装置600可以具体为上述实施例中的控制网元或终端设备,可以用于执行上述各方法实施例中与控制网元或终端设备对应的各个流程和/或步骤,或者,装置600可以具体为上述实施例中的控制网元或终端设备,可以用于执行上述各方法实施例中与控制网元或终端设备对应的各个流程和/或步骤,为避免重复,在此不再赘述。
上述各个方案的装置600具有实现上述方法中控制网元或终端设备所执行的相应步骤的功能,或者,上述各个方案的装置600具有实现上述方法中控制网元或终端设备所执行的相应步骤的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的模块;例如收发单元可以由收发机替代(例如,收发单元中的发送单元可以由发送机替代,收发单元中的接收单元可以由接收机替代),其它单元,如处理单元等可以由处理器替代,分别执行各个方法实施例中的收发操作以及相关的处理操作。
此外,上述收发单元610还可以是收发电路(例如可以包括接收电路和发送电路),处理单元可以是处理电路。
需要指出的是,图6中的装置可以是前述实施例中的网元或设备,也可以是芯片或者芯片系统,例如:片上系统(system on chip,SoC)。其中,收发单元可以是输入输出电路、通信接口;处理单元为该芯片上集成的处理器或者微处理器或者集成电路。在此不做限定。
如图7所示,本申请实施例提供另一种通信装置700。该装置700包括处理器710,处理器710与存储器720耦合,存储器720用于存储计算机程序或指令和/或数据,处理器710用于执行存储器720存储的计算机程序或指令,或读取存储器720存储的数据,以执行上文各方法实施例中的方法。
可选地,处理器710为一个或多个。
可选地,存储器720为一个或多个。
可选地,该存储器720与该处理器710集成在一起,或者分离设置。
可选地,如图7所示,该装置700还包括收发器730,收发器730用于信号的接收和/或发送。例如,处理器710用于控制收发器730进行信号的接收和/或发送。
作为一种方案,该装置700用于实现上文各个方法实施例中由控制网元或终端设备执 行的操作。
例如,处理器710用于执行存储器720存储的计算机程序或指令,以实现上文各个方法实施例中终端设备的相关操作。例如,图2至图5中任意一个所示实施例中的终端设备,或图2至图5中任意一个所示实施例中的终端设备的方法。
应理解,本申请实施例中提及的处理器可以是中央处理单元(central processing unit,CPU),还可以是其他通用处理器、数字信号处理器(digital signal processor,DSP)、专用集成电路(application specific integrated circuit,ASIC)、现成可编程门阵列(field programmable gate array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
还应理解,本申请实施例中提及的存储器可以是易失性存储器和/或非易失性存储器。其中,非易失性存储器可以是只读存储器(read-only memory,ROM)、可编程只读存储器(programmable ROM,PROM)、可擦除可编程只读存储器(erasable PROM,EPROM)、电可擦除可编程只读存储器(electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(random access memory,RAM)。例如,RAM可以用作外部高速缓存。作为示例而非限定,RAM包括如下多种形式:静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(direct rambus RAM,DR RAM)。
需要说明的是,当处理器为通用处理器、DSP、ASIC、FPGA或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件时,存储器(存储模块)可以集成在处理器中。
还需要说明的是,本文描述的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
如图8,本申请实施例提供一种芯片系统800。该芯片系统800(或者也可以称为处理系统)包括逻辑电路810以及输入/输出接口(input/output interface)820。
其中,逻辑电路810可以为芯片系统800中的处理电路。逻辑电路810可以耦合连接存储单元,调用存储单元中的指令,使得芯片系统800可以实现本申请各实施例的方法和功能。输入/输出接口820,可以为芯片系统800中的输入输出电路,将芯片系统800处理好的信息输出,或将待处理的数据或信令信息输入芯片系统800进行处理。
作为一种方案,该芯片系统800用于实现上文各个方法实施例中由控制网元或终端设备执行的操作。
例如,逻辑电路810用于实现上文方法实施例中由控制网元的处理相关的操作,如图2至图5中任意一个所示实施例中的终端设备的处理相关的操作;输入/输出接口820用于实现上文方法实施例中由终端设备的发送和/或接收相关的操作,如图2至图5中任意一个所示实施例中的终端设备执行的发送和/或接收相关的操作。
本申请实施例还提供一种计算机可读存储介质,其上存储有用于实现上述各方法实施例中由控制网元或终端设备执行的方法的计算机指令。
例如,该计算机程序被计算机执行时,使得该计算机可以实现上述方法各实施例中由控制网元或终端设备执行的方法。
本申请实施例还提供一种计算机程序产品,包含指令,该指令被计算机执行时以实现上述各方法实施例中由控制网元或终端设备执行的方法。
上述提供的任一种装置中相关内容的解释及有益效果均可参考上文提供的对应的方法实施例,此处不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。此外,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。例如,所述计算机可以是个人计算机,服务器,或者网络设备等。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质(例如固态硬盘(solid state disk,SSD)等。例如,前述的可用介质包括但不限于:U盘、移动硬盘、只读存储器(read-only memory,ROM)、随机存取存储器(random access memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (22)

  1. 一种通信方法,其特征在于,包括:
    控制网元接收来自终端设备UE的第一信息,所述第一信息包括多第三代合作伙伴计划3GPP接入请求指示信息或转化指示信息;
    所述控制网元根据所述第一信息确定是否允许所述UE建立多3GPP接入会话;
    其中,所述多3GPP接入请求指示信息用于指示所述UE请求建立多3GPP接入会话,所述转化指示信息用于指示所述UE允许控制网元从建立双接入会话或单接入会话改为建立多3GPP接入会话。
  2. 根据权利要求1所述的方法,其特征在于,所述多3GPP接入会话包括协议数据单元PDU会话和/或公用数据网PDN会话。
  3. 根据权利要求1或2所述的方法,其特征在于,所述控制网元根据所述第一信息确定是否允许所述UE建立多3GPP接入会话,包括:
    所述控制网元根据所述第一信息和所述UE的签约数据确定是否允许建立多3GPP接入会话。
  4. 根据权利要求3所述的方法,其特征在于,当所述第一信息包括所述多3GPP接入请求指示信息时,所述控制网元根据所述第一信息和所述UE的签约数据确定是否允许建立多3GPP接入会话,包括:
    所述控制网元根据所述多3GPP接入请求指示信息确定所述UE请求建立多3GPP接入会话;
    所述控制网元根据所述UE的签约数据确定是否允许所述UE建立多3GPP接入会话。
  5. 根据权利要求3所述的方法,其特征在于,当所述第一信息包括所述转化指示信息时,所述控制网元根据所述第一信息和所述UE的签约数据确定是否允许建立多3GPP接入会话,包括:
    所述控制网元根据所述转化指示信息确定所述UE允许建立多3GPP接入会话;
    所述控制网元根据所述UE的签约数据确定是否可以为所述UE建立多3GPP接入会话。
  6. 根据权利要求1至5中任一项所述的方法,其特征在于,当所述控制网元允许所述UE建立多3GPP接入会话时,所述方法包括:
    所述控制网元向策略控制网元PCF发送多3GPP接入建立指示,所述多3GPP接入建立指示用于确定分流模式;
    所述控制网元接收来自所述PCF的所述分流模式,所述分流模式用于指示多3GPP接入会话中传输业务流的顺序;
    所述控制网元向所述UE发送所述分流模式。
  7. 根据权利要求6所述的方法,其特征在于,所述分流模式包括以下至少一项:基于主备模式的二级分流模式、基于优先级模式的二级分流模式、基于负载均衡模式的二级分流模式、多3GPP接入分流模式;
    其中,所述多3GPP接入分流模式用于指示多种3GPP接入技术的优先级顺序。
  8. 根据权利要求7所述的方法,其特征在于,所述基于主备模式的二级分流模式包括主备分流模式和二级分流模式;
    其中,所述主备分流模式用于指示3GPP接入或非第三代合作伙伴计划non-3GPP接入为激活的接入技术,所述二级分流模式用于指示LTE接入或NR接入为激活的接入技术。
  9. 根据权利要求7所述的方法,其特征在于,所述基于优先级模式的二级分流模式包括优先级分流模式和二级分流模式;
    其中,所述优先级分流模式用于指示3GPP接入和non-3GPP接入的优先级,所述二级分流模式用于指示LTE接入和NR接入的优先级顺序。
  10. 根据权利要求7所述的方法,其特征在于,所述基于负载均衡模式的二级分流模式包括负载均衡分流模式和二级分流模式;
    其中,所述负载均衡分流模式用于指示3GPP接入和non-3GPP接入之间的分流比例,所述二级分流模式用于指示LTE接入和NR接入之间的分流比例。
  11. 一种通信方法,其特征在于,包括:
    终端设备UE向控制网元发送第一信息,所述第一信息用于确定是否允许所述UE建立多3GPP接入会话,所述第一信息包括多3GPP接入请求指示信息或转化指示信息;
    其中,所述多3GPP接入请求指示信息用于指示所述UE请求建立多3GPP接入会话,所述转化指示信息用于指示所述UE允许控制网元从建立双接入会话或单接入会话改为建立多3GPP接入会话。
  12. 根据权利要求11所述的方法,其特征在于,所述方法还包括:
    所述UE获取双注册能力指示,所述双注册能力指示用于指示所述UE允许注册第一网络和第二网络。
  13. 根据权利要求11所述的方法,其特征在于,所述多3GPP接入会话包括协议数据单元PDU会话和/或公用数据网PDN会话。
  14. 根据权利要求11至13中任一项所述的方法,其特征在于,当所述控制网元允许所述UE建立多3GPP接入会话时,所述方法还包括:
    所述UE接收来自所述控制网元的分流模式,所述分流模式用于指示多3GPP接入会话中传输业务流的顺序;
    所述UE根据所述分流模式传输业务流。
  15. 根据权利要求14所述的方法,其特征在于,所述分流模式包括以下至少一项:基于主备模式的二级分流模式、基于优先级模式的二级分流模式、基于负载均衡模式的二级分流模式、多3GPP接入分流模式;
    其中,所述多3GPP接入分流模式用于指示多种3GPP接入技术的优先级顺序。
  16. 根据权利要求15所述的方法,其特征在于,所述基于主备模式的二级分流模式包括主备分流模式和二级分流模式;
    其中,所述主备分流模式用于指示3GPP接入或non-3GPP接入为激活的接入技术,所述二级分流模式用于指示LTE接入或NR接入为激活的接入技术。
  17. 根据权利要求15所述的方法,其特征在于,所述基于优先级模式的二级分流模式包括优先级分流模式和二级分流模式;
    其中,所述优先级分流模式用于指示3GPP接入和non-3GPP接入的优先级,所述二 级分流模式用于指示LTE接入和NR接入的优先级顺序。
  18. 根据权利要求15所述的方法,其特征在于,所述基于负载均衡模式的二级分流模式包括负载均衡分流模式和二级分流模式;
    其中,所述负载均衡分流模式用于指示3GPP接入和non-3GPP接入之间的分流比例,所述二级分流模式用于指示LTE接入和NR接入之间的分流比例。
  19. 一种通信装置,其特征在于,包括:
    处理器,用于执行存储器中存储的计算机程序,以使得所述通信装置执行权利要求1至18中任一项所述的方法。
  20. 一种计算机可读存储介质,其特征在于,其上存储有计算机程序或指令,其特征在于,该计算机程序或指令被处理器执行时,使得如权利要求1至18中任一项所述方法被执行。
  21. 一种包含指令的计算机程序产品,当其在计算机上运行时,使得如权利要求1至18中任一项所述方法被执行。
  22. 一种芯片系统,其特征在于,包括:处理器,用于从存储器中调用并运行计算机程序或指令,使得安装有所述芯片系统的通信装置实现如权利要求1至18中任一项所述的方法。
PCT/CN2023/080397 2022-04-13 2023-03-09 通信方法和通信装置 WO2023197789A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210383185.3A CN116963231A (zh) 2022-04-13 2022-04-13 通信方法和通信装置
CN202210383185.3 2022-04-13

Publications (1)

Publication Number Publication Date
WO2023197789A1 true WO2023197789A1 (zh) 2023-10-19

Family

ID=88328823

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/080397 WO2023197789A1 (zh) 2022-04-13 2023-03-09 通信方法和通信装置

Country Status (2)

Country Link
CN (1) CN116963231A (zh)
WO (1) WO2023197789A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021155090A1 (en) * 2020-01-29 2021-08-05 Convida Wireless, Llc Traffic steering enhancements for cellular networks
WO2021163665A1 (en) * 2020-02-13 2021-08-19 Idac Holdings, Inc. Methods, apparatus and systems for multi-access protocol data unit sessions
CN113365369A (zh) * 2020-03-06 2021-09-07 华为技术有限公司 通信方法和装置
CN113439486A (zh) * 2019-02-14 2021-09-24 Lg电子株式会社 用于显示用于使用ma pdu会话的信息的方法和终端
CN113950106A (zh) * 2020-07-15 2022-01-18 华为技术有限公司 多接入连接建立的方法、装置和系统
US20220022103A1 (en) * 2020-07-17 2022-01-20 Apple Inc. PDU Session Handover

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113439486A (zh) * 2019-02-14 2021-09-24 Lg电子株式会社 用于显示用于使用ma pdu会话的信息的方法和终端
WO2021155090A1 (en) * 2020-01-29 2021-08-05 Convida Wireless, Llc Traffic steering enhancements for cellular networks
WO2021163665A1 (en) * 2020-02-13 2021-08-19 Idac Holdings, Inc. Methods, apparatus and systems for multi-access protocol data unit sessions
CN113365369A (zh) * 2020-03-06 2021-09-07 华为技术有限公司 通信方法和装置
CN113950106A (zh) * 2020-07-15 2022-01-18 华为技术有限公司 多接入连接建立的方法、装置和系统
US20220022103A1 (en) * 2020-07-17 2022-01-20 Apple Inc. PDU Session Handover

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
NOKIA, NOKIA SHANGHAI BELL, APPLE, HUAWEI, HISILICON, BROADCOM: "QoS parameter handling for PDU session transfer between 3GPP and non-3GPP access", 3GPP DRAFT; SP-201091, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. TSG SA, no. EMeeting; 20201208 - 20201214, 2 December 2020 (2020-12-02), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051964551 *

Also Published As

Publication number Publication date
CN116963231A (zh) 2023-10-27

Similar Documents

Publication Publication Date Title
US20190357082A1 (en) Traffic distribution method through multi-access network in a network and network entity performing the same
US10893574B2 (en) Packet data unit session release method and network entity performing the same
WO2022048394A1 (zh) 网络连接方法、网络去连接方法及通信装置
US20180124857A1 (en) Radio access network device, data processing method, and ip packet processing method
JP7324285B2 (ja) サービス承認の方法、端末機器及びネットワーク機器
US20230254922A1 (en) Multipath transmission method and communication apparatus
US20230112588A1 (en) Communication method and related device
KR20210024160A (ko) 통신 방법 및 장치
WO2022017285A1 (zh) 报文转发方法、装置及系统
US20230371111A1 (en) Communication method, apparatus, and system
WO2019206322A1 (zh) 能力开放方法、相关装置及系统
US20230422016A1 (en) Network access method and apparatus
US11265838B2 (en) User equipment, control device, and communication control method
WO2022199451A1 (zh) 会话切换的方法和装置
WO2023197789A1 (zh) 通信方法和通信装置
KR20230164700A (ko) 제2 데이터 접속의 데이터 트래픽을 지원하기 위한 제1 데이터 접속의 수정
CN115669213A (zh) 中继设备的选择方法、装置、设备及存储介质
WO2023185772A1 (zh) 一种通信方法及装置
WO2022170798A1 (zh) 确定策略的方法和通信装置
WO2024001897A1 (zh) 通信方法和装置
WO2023197737A1 (zh) 报文发送方法、pin管理方法、通信装置及通信系统
WO2023197772A1 (zh) 一种通信方法及相关装置
WO2023179331A1 (zh) 一种发送数据包的方法、通信装置及通信系统
WO2023207958A1 (zh) 策略传输的方法、通信装置和系统
US20220360969A1 (en) Communication method and apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23787437

Country of ref document: EP

Kind code of ref document: A1