WO2023185772A1 - 一种通信方法及装置 - Google Patents

一种通信方法及装置 Download PDF

Info

Publication number
WO2023185772A1
WO2023185772A1 PCT/CN2023/084185 CN2023084185W WO2023185772A1 WO 2023185772 A1 WO2023185772 A1 WO 2023185772A1 CN 2023084185 W CN2023084185 W CN 2023084185W WO 2023185772 A1 WO2023185772 A1 WO 2023185772A1
Authority
WO
WIPO (PCT)
Prior art keywords
access
information
transmission path
access network
management device
Prior art date
Application number
PCT/CN2023/084185
Other languages
English (en)
French (fr)
Inventor
徐艺珊
诸华林
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2023185772A1 publication Critical patent/WO2023185772A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/12Setup of transport tunnels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/20Manipulation of established connections
    • H04W76/22Manipulation of transport tunnels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W8/00Network data management
    • H04W8/02Processing of mobility data, e.g. registration information at HLR [Home Location Register] or VLR [Visitor Location Register]; Transfer of mobility data, e.g. between HLR, VLR or external networks
    • H04W8/08Mobility data transfer
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W80/00Wireless network protocols or protocol adaptations to wireless operation
    • H04W80/08Upper layer protocols
    • H04W80/10Upper layer protocols adapted for application session management, e.g. SIP [Session Initiation Protocol]

Definitions

  • the embodiments of the present application relate to fields such as communication, and in particular, to a communication method and device.
  • UE and user plane function (UPF) network elements can establish multi-access protocol data unit (Protocol data unit, PDU) session (multi-access PDU Session, MA PDU Session) to The business flow data that needs to be sent is simultaneously transmitted through the third generation partnership project (3GPP) access network and/or non-3GPP access network to improve transmission efficiency.
  • PDU protocol data unit
  • 3GPP third generation partnership project
  • multi-access sessions support transmission through two paths.
  • the two paths are the 3GPP path and the non-3GPP path. That is, the access network device in one path is a 3GPP access type access network device, and the access network device in the other path is a 3GPP access type access network device.
  • the access network equipment is a non-3GPP access type access network equipment.
  • multi-access sessions will support transmission through multiple 3GPP paths or multiple non-3GPP paths.
  • existing multi-access session management methods are not suitable for multi-access sessions that support multiple 3GPP paths or multiple non-3GPP paths.
  • Embodiments of the present application provide a communication method and device to support data transmission of multiple access sessions of multiple 3GPP paths or multiple non-3GPP paths.
  • the first aspect provides a communication method.
  • the execution subject of the method may be a session management device, or may be a component used in the session management device, such as a chip, a processor, etc.
  • the following description takes the execution subject being the session management device as an example.
  • the transmission path in the multi-access session may include but is not limited to a first transmission path and a second transmission path.
  • the access technologies corresponding to the first transmission path and the second transmission path belong to the same access type.
  • the first transmission path The access technology corresponding to the path and the second transmission path belongs to the 3rd Generation Partnership Project 3GPP access type, or the access technology corresponding to the first transmission path and the second transmission path belongs to non-third generation cooperation. Partner program 3GPP access type.
  • the session management device obtains the tunnel information corresponding to the transmission path; then, the session management device sends the tunnel information corresponding to the transmission path and access technology information to the mobility management device, and the access technology is used for the mobility management device The device determines the access network device.
  • At least two of the multiple transmission paths included in the multi-access session correspond to the same access type (such as 3GPP access type or non-3GPP access type).
  • session management The device sends the access type to the mobility management device, and the mobility management device cannot identify which access network device under the access type the tunnel information (which may also include other information) is to be sent. Therefore, this application proposes that the session management device sends access technology information that is more fine-grained than the access type to the mobile management device.
  • the mobile management device can use the access technology information to Accurately identifying the corresponding access network device means accurately identifying each transmission path. In this way, the mobility management device can send the tunnel information (which may also include other information) to the corresponding access network device.
  • This The management method of a multi-access session may be applicable to data transmission of a multi-access session that supports multiple 3GPP paths or multiple non-3GPP paths.
  • the session management device when the session management device sends the tunnel information corresponding to the transmission path and the access technology information corresponding to the transmission path to the mobility management device, the session management device may send the tunnel information corresponding to the transmission path to the mobility management device.
  • the device sends a transmission message, where the transmission message includes first tunnel information and access technology information corresponding to the first transmission path, and second tunnel information and access technology information corresponding to the second transmission path.
  • the session management device sends the tunnel information and access technology information corresponding to all transmission paths included in the multi-access session to the mobility management device in one message, which can save signaling transmission.
  • the session management device when the session management device sends the tunnel information corresponding to the transmission path and the access technology information corresponding to the transmission path to the mobility management device, the session management device may send the tunnel information corresponding to the transmission path to the mobility management device.
  • the device sends a first transmission message, the first transmission message includes first tunnel information corresponding to the first transmission path and corresponding access technology information; and the session management device sends a second transmission to the mobility management device message, the second transmission message includes second tunnel information and access technology information corresponding to the second transmission path.
  • the session management device may also send a transmission message to the mobility management device for each other transmission path, and the transmission message may include tunnel information and access technology information corresponding to the transmission path.
  • the session management device may first receive the first information from the mobility management device, and then the session management device sends the tunnel information and access technology information corresponding to the transmission path to the mobility management device. .
  • the first information may be used to obtain tunnel information corresponding to the transmission path; wherein the first information includes but is not limited to one or more of the following: the first number of transmission paths that the terminal device has registered, one or Multiple access technical information.
  • the session management device may determine the tunnel information or the quantity of tunnel information that needs to be obtained based on the first information.
  • the session management device determines that three tunnel information (such as tunnel endpoint identification or address information) need to be obtained, thereby The number of tunnel information required to establish a multi-access session connection can be accurately known.
  • three tunnel information such as tunnel endpoint identification or address information
  • the session management device sends second information to the policy control device, where the second information is used to obtain offload information. Then, the session management device receives offload information from the policy control device, where the offload information includes offload information on the first transmission path and the second transmission path.
  • the offload information may be determined by the policy control device based on the second information.
  • the offloading information may include but is not limited to one or more of the following: offloading mode, offloading function, and threshold value.
  • the number of transmission paths included in the multi-access session may be greater than or equal to 2, wherein at least 2 transmission paths may correspond to the same access type.
  • the offloading information of this application can be determined based on the access technology (the access technology has a finer granularity than the access type), or based on 3 or more transmission paths, so that the offloading information can be better applied to multiple accesses. There are many possible ways to enter a session.
  • the second information includes but is not limited to one or more of the following: a first number of transmission paths registered by the terminal device, one or more access technologies, and the number of access technologies.
  • the second information is determined based on the first information.
  • the offload information is used to instruct the terminal device to transmit data through a target transmission path; wherein the target transmission path is one or more of the transmission paths that the terminal device has registered.
  • the session management device may itself allocate tunnel information corresponding to the transmission path.
  • the session management device can allocate tunnel information corresponding to the transmission path based on the first information; specifically, the session management device can determine the number of tunnels based on the first information, and then the session management device can allocate the tunnel information corresponding to the number of tunnels. Tunnel information.
  • the session management device can also send tunnel information to the user plane device.
  • the session management device may receive tunnel information corresponding to the transmission path from the user plane device. For example, the session management device sends the first information to the user plane device, and receives tunnel information corresponding to the transmission path from the user plane device. For example, the user plane device determines the number of tunnels based on the first information, and the user plane device can allocate tunnel information corresponding to the number of tunnels.
  • the session management device may also send indication information to the mobility management device, and the indication The information is used to indicate the first transmission path or the second transmission path.
  • the indication information includes one or more of the following: an identifier of a sub-access technology, an identifier of an access network device, an identifier of a path, and IPSec tunnel information.
  • the session management device instructs the mobility management device to use the instruction information to send the transmission path of the tunnel information (which may also include other information), which can enable mobility management
  • the device determines which N2 interface, next generation application protocol (NGAP) interface, or logical N2 channel to send tunnel information (which may also include other information).
  • NGAP next generation application protocol
  • This multi-access session management method can be applied to Supports data transmission for multi-access sessions of multiple 3GPP paths or multiple non-3GPP paths.
  • the session management device instructs the mobile management device through the fifth information the transmission path for sending tunnel information (which may also include other information). Allow the mobility management device to determine which access network device to send tunnel information (which may also include other information).
  • This multi-access session management method may be applicable to multi-access that supports multiple 3GPP paths or multiple non-3GPP paths. Session data transfer.
  • the access network equipment corresponding to the first transmission path is any one of the following: 3GPP access network equipment, trusted non-3GPP access network equipment, untrusted non-3GPP access network equipment, wired Access gateway.
  • the access network equipment corresponding to the second transmission path is any one of the following: 3GPP access network equipment, trusted non-3GPP access network equipment, untrusted non-3GPP access network equipment, or wired access gateway.
  • the 3GPP access network equipment is any of the following: eNodeB, NG-RAN, gNodeB;
  • the trusted non-3GPP access network equipment may be any of the following: trusted non-3GPP gateway function TNGF, trusted WLAN interworking function TWIF, or trusted non-3GPP access point TNAP;
  • the non-trusted non-3GPP access network equipment may be any of the following: non-3GPP interworking function N3IWF;
  • the wired gateway is any one of the following: wired access gateway function W-AGF network element.
  • the execution subject of the method may be a mobile management device, or may be a component used in the mobile management device, such as a chip, a processor, etc.
  • the following description takes the execution subject being a mobile management device as an example.
  • the transmission path in the multi-access session may include but is not limited to a first transmission path and a second transmission path.
  • the access technologies corresponding to the first transmission path and the second transmission path belong to the same access type.
  • the third transmission path The access technology corresponding to the first transmission path and the second transmission path belongs to the 3rd Generation Partnership Project 3GPP access type, or the access technology corresponding to the first transmission path and the second transmission path belongs to a non-third generation partnership project. Generation partner program 3GPP access type.
  • the mobility management device receives tunnel information and access technology information corresponding to the transmission path from the session management device. Then, the mobility management device may determine a first access network device based on the access technology information corresponding to the first transmission path, and send the first access network device corresponding to the first transmission path to the first access network device. tunnel information; The mobility management device may also determine a second access network device based on the access technology information corresponding to the second transmission path, and send the second tunnel corresponding to the second transmission path to the second access network device. information.
  • At least two of the multiple transmission paths included in the multi-access session correspond to the same access type (such as 3GPP access type or non-3GPP access type).
  • session management The device sends the access type to the mobility management device, and the mobility management device cannot identify which access network device under the access type the tunnel information (which may also include other information) is to be sent. Therefore, this application proposes that the session management device sends access technology information that is more granular than the access type to the mobile management device, and the mobile management device can accurately identify the corresponding access network device through the access technology information, that is, Each transmission path is accurately identified, so that the mobility management device can send the tunnel information (which may also include other information) to the corresponding access network device.
  • This multi-access session management method can be applied to support multiple Data transmission for multi-access sessions over 3GPP paths or multiple non-3GPP paths.
  • the mobility management device when the mobility management device receives the tunnel information and access technology information corresponding to the transmission path from the session management device, the mobility management device may receive the transmission message from the session management device, and the The transmission message includes first tunnel information and access technology information corresponding to the first transmission path, and second tunnel information and access technology information corresponding to the second transmission path.
  • the session management device sends the tunnel information and access technology information corresponding to all transmission paths included in the multi-access session to the mobility management device in one message, which can save signaling transmission.
  • the mobility management device when the mobility management device receives the tunnel information and access technology information corresponding to the transmission path from the session management device, the mobility management device may receive the first transmission message from the session management device, The first transmission message includes first tunnel information and access technology information corresponding to the first transmission path; and the mobility management device receives a second transmission message from the session management device, the second transmission message Including second tunnel information and access technology information corresponding to the second transmission path. If other transmission paths are included, the mobility management device may also receive a transmission message from the session management device for each other transmission path, and the transmission message may include tunnel information and access technology information corresponding to the transmission path.
  • the mobility management device first sends the first information to the session management device, and then the mobility management device receives tunnel information and access technology information corresponding to the transmission path from the session management device.
  • the first information is used to obtain tunnel information corresponding to the transmission path; wherein the first information includes one or more of the following: the first number of transmission paths that the terminal device has registered, one or more access Technical Information.
  • the session management device may determine the tunnel information or the quantity of tunnel information that needs to be obtained based on the first information.
  • the session management device determines that three tunnel information (such as tunnel endpoint identification or address information) need to be obtained, thereby The number of tunnel information required to establish a multi-access session connection can be accurately known.
  • three tunnel information such as tunnel endpoint identification or address information
  • the mobility management device may also receive the offload information of the first transmission path and the second transmission path; and then, the mobility management device sends the offload information to the terminal device.
  • the offload information may be obtained based on the first information.
  • the offload information is determined by the policy control device based on the second information, and the second information is determined based on the first information.
  • the offloading information may include but is not limited to one or more of the following: offloading mode, offloading function, and threshold value.
  • the number of transmission paths included in the multi-access session may be greater than or equal to 2, wherein at least 2 paths may correspond to the same access type.
  • the offloading information of this application can be determined based on the access technology (the access technology has a finer granularity than the access type), or based on 3 or more transmission paths, so that the offloading information can be better applied to multiple accesses. There are many possible ways to enter a session.
  • the second information includes but is not limited to one or more of the following: terminal device registration The first number of transmission paths, one or more access technologies, and the number of access technologies.
  • the second information is determined based on the first information.
  • the offload information is used to instruct the terminal device to transmit data through a target transmission path; wherein the target transmission path is one or more of the transmission paths that the terminal device has registered.
  • the mobility management device may also receive indication information from the session management device, and the The indication information is used to indicate the first transmission path or the second transmission path.
  • the mobility management device may determine the first access network device based on the access technology information corresponding to the first transmission path and the indication information; and may also determine the second access network device based on the access technology information corresponding to the second transmission path.
  • the network device includes: the mobility management device determines the second access network device based on the access technology information corresponding to the second transmission path and the instruction information.
  • the indication information includes one or more of the following: an identifier of a sub-access technology, an identifier of an access network device, an identifier of a path, and IPSec tunnel information.
  • the session management device instructs the mobility management device to use the instruction information to send the transmission path of the tunnel information (which may also include other information), which can enable mobility management
  • the device determines which N2 interface, next generation application protocol (NGAP) interface, or logical N2 channel to send tunnel information (which may also include other information).
  • NGAP next generation application protocol
  • This multi-access session management method can be applied to Supports data transmission for multi-access sessions of multiple 3GPP paths or multiple non-3GPP paths.
  • the session management device instructs the mobile management device through the fifth information the transmission path for sending tunnel information (which may also include other information). Allow the mobility management device to determine which access network device to send tunnel information (which may also include other information).
  • This multi-access session management method may be applicable to multi-access that supports multiple 3GPP paths or multiple non-3GPP paths. Session data transfer.
  • the access network equipment corresponding to the first transmission path is any one of the following: 3GPP access network equipment, trusted non-3GPP access network equipment, untrusted non-3GPP access network equipment, wired Access gateway.
  • the access network equipment corresponding to the second transmission path is any one of the following: 3GPP access network equipment, trusted non-3GPP access network equipment, untrusted non-3GPP access network equipment, or wired access gateway.
  • the 3GPP access network equipment is any of the following: eNodeB, NG-RAN, gNodeB;
  • the trusted non-3GPP access network equipment may be any of the following: trusted non-3GPP gateway function TNGF, trusted WLAN interworking function TWIF, or trusted non-3GPP access point TNAP;
  • the non-trusted non-3GPP access network equipment may be any of the following: non-3GPP interworking function N3IWF;
  • the wired gateway is any one of the following: wired access gateway function W-AGF network element.
  • the mobility management device when the access network device corresponding to the first transmission path and the access network device corresponding to the second transmission path are both non-3GPP access network devices, the mobility management device further Third information from the first non-3GPP access network device of the first transmission path may be received, where the third information includes one or more of the following: the first non-3GPP access network device and the terminal device The number of IPSec Child SAs established by the Internet Protocol Security Protocol sub-security association, the differentiated service code point DSCP value corresponding to each IPSec Child SA, the quality of service flow identifier QFI associated with each IPSec Child SA, and the identifier corresponding to each IPSec Child SA. .
  • the mobility management device may send the third information to the second non-3GPP access network device of the second transmission path, where the third information is used for communication between the second non-3GPP access network device and the second non-3GPP access network device.
  • the terminal equipment establishes user plane resources. This information can be used later In order to serve as a reference for the second non-3GPP access network device, the second non-3GPP access network device can establish or adjust or modify the user plane resources with the UE based on this information. Due to referring to this information, the second non-3GPP access network device
  • the user plane resources established with the UE are similar or the same as the user plane resources established with the first non-3GPP access network device and the UE. In this way, the service quality of different transmission paths can be equal or the same.
  • the access network device corresponding to the first transmission path is N3IWF
  • the access network device corresponding to the second transmission path is TNGF
  • the access network equipment corresponding to the first transmission path and the second transmission path is both N3IWF.
  • the access network equipment corresponding to the first transmission path and the second transmission path is both TNGF.
  • the mobility management device may obtain access network information, and the access network information is used to indicate access technology information used by the terminal device. Then, the mobility management device determines the first number of transmission paths registered by the terminal device or the access technology information corresponding to the transmission path based on the access technology information used by the terminal device.
  • the access network information includes one or more of the following: access node type, access technology type, access node name, access node identifier, and Internet Protocol Security Protocol IPSec identifier.
  • the UE accesses the same access network device in different ways (for example, one is that the UE is connected to the N3IWF through a wifi AP, and the other is that the UE is connected to the N3IWF through an independent non-public network.
  • SNPN is connected to the N3IWF
  • from the perspective of the mobile management device there is only one transmission path and one access technology (such as non-3GPP non-trusted access technology).
  • the access technologies corresponding to the two transmission paths are also different.
  • One is a non-3GPP access technology connected through wifi
  • the other is a non-3GPP connected through SNPN. access technology.
  • the mobile management device can obtain the access network information. Subsequently, the mobile management device can accurately determine the third transmission path of the registered transmission path of the terminal device through the access technology information used by the terminal device. A quantity or access technology information corresponding to the transmission path.
  • This multi-access session management method may be applicable to data transmission of multi-access sessions that support multiple 3GPP paths or multiple non-3GPP paths.
  • the differences between the third aspect and the first aspect include: in the first aspect, the session management device sends access technology information to the mobility management device, so that the mobility management device identifies the corresponding access network device through the access technology information; the third aspect The session management device sends the identifier of the transmission path and/or the identifier of the access network device to the mobility management device, so that the mobility management device identifies the corresponding access network device through the access technology information.
  • the remaining technical details are similar or identical to the first aspect and any possible implementation, and the technical effects are also similar or identical, and will not be repeated.
  • the execution subject of the method may be a session management device, or may be a component used in the session management device, such as a chip, a processor, etc.
  • the following description takes the execution subject being the session management device as an example.
  • the transmission path in the multi-access session may include but is not limited to a first transmission path and a second transmission path.
  • the access technologies corresponding to the first transmission path and the second transmission path belong to the same access type.
  • the third transmission path The access technology corresponding to the first transmission path and the second transmission path belongs to the 3rd Generation Partnership Project 3GPP access type, or the access technology corresponding to the first transmission path and the second transmission path belongs to a non-third generation partnership project. Generation partner program 3GPP access type.
  • the session management device obtains the tunnel information corresponding to the transmission path; then, the session management device sends the tunnel information and indication information corresponding to the transmission path to the mobile management device, and the indication information can be used by the mobile management device to determine Access network equipment.
  • the indication information includes the identification of the transmission path and/or the identification of the access network device.
  • the execution subject of the method may be a mobile management device, or may be a component used in the mobile management device, such as a chip, a processor, etc.
  • the following description takes the execution subject being a mobile management device as an example.
  • the transmission path in the multi-access session may include but is not limited to a first transmission path and a second transmission path.
  • the access technologies corresponding to the first transmission path and the second transmission path belong to the same access type.
  • the third transmission path The access technology corresponding to the first transmission path and the second transmission path belongs to the 3rd Generation Partnership Project 3GPP access type, or the access technology corresponding to the first transmission path and the second transmission path belongs to a non-third generation partnership project. Generation partner program 3GPP access type.
  • the mobility management device receives tunnel information and indication information corresponding to the transmission path from the session management device. Then, the mobility management device may determine the first access network device based on the indication information corresponding to the first transmission path, and send the first tunnel information corresponding to the first transmission path to the first access network device; so The mobility management device may also determine a second access network device based on the indication information corresponding to the second transmission path, and send the second tunnel information corresponding to the second transmission path to the second access network device.
  • a communication device which device has the function of implementing any of the above aspects and any possible implementation of any aspect. These functions can be implemented by hardware, or can be implemented by hardware executing corresponding software.
  • the hardware or software includes one or more functional modules corresponding to the above functions.
  • a communication device including a processor and, optionally, a memory; the processor is coupled to the memory; the memory is used to store computer programs or instructions; the processor, For executing part or all of the computer programs or instructions in the memory, when the part or all of the computer programs or instructions are executed, in a method for implementing any of the above aspects and any possible implementation of any aspect. function.
  • the device may further include a transceiver, and the transceiver is configured to send signals processed by the processor, or receive signals input to the processor.
  • the transceiver may perform transmitting actions or receiving actions in any aspect and any possible implementation of any aspect.
  • the present application provides a chip system.
  • the chip system includes one or more processors (which may also be referred to as processing circuits), and the processors are electrically coupled to a memory (which may also be referred to as a storage medium).
  • the memory may be located in the chip system, or may not be located in the chip system; the memory is used to store computer programs or instructions; the processor is used to execute part or all of the memory Computer programs or instructions, when part or all of the computer programs or instructions are executed, are used to implement the functions in any of the above aspects and any possible implementation method of any aspect.
  • the chip system may also include an input-output interface (which may also be called a communication interface).
  • the input-output interface is used to output signals processed by the processor, or to receive input to the processor. signal to the processor.
  • the input and output interface can perform sending actions or receiving actions in any aspect and any possible implementation of any aspect. Specifically, the output interface performs the sending action, and the input interface performs the receiving action.
  • the chip system may be composed of chips, or may include chips and other discrete devices.
  • a computer-readable storage medium for storing a computer program, the computer program including instructions for implementing the functions of any aspect and any possible implementation of any aspect.
  • a computer-readable storage medium for storing a computer program executed by a computer When executed, the computer may be caused to execute any of the above aspects and any possible implementation method of any aspect.
  • a computer program product includes: computer program code.
  • the computer program code When the computer program code is run on a computer, it causes the computer to execute any of the above aspects and any possibility of any aspect. method in the implementation.
  • a communication system which includes a session management device that performs the method in the above first aspect and any possible implementation of the first aspect, and a session management device that performs the above second aspect and any method in the second aspect.
  • a session management device that performs the method in the above first aspect and any possible implementation of the first aspect
  • a session management device that performs the above second aspect and any method in the second aspect.
  • One possible implementation of the method in the mobile management device includes a session management device that performs the method in the above third aspect and any possible implementation of the third aspect, and a mobility management device that performs the method in the above fourth aspect and any possible implementation of the fourth aspect.
  • Figure 1 is a schematic structural diagram of a communication system that supports control, switching, and offloading characteristics of access traffic provided in an embodiment of the present application;
  • Figure 2 is a schematic diagram of the registration process under a non-trusted non-3GPP access technology in the prior art
  • Figures 3a and 3b are schematic diagrams of a multi-access PDU session establishment process in the prior art
  • Figures 4, 5, 6, 7, and 8 are respectively structural schematic diagrams of a communication system to which the communication method in the embodiment of the present application is applicable;
  • Figure 9 is a schematic flowchart of a communication method provided in an embodiment of the present application.
  • Figures 10a and 10b are schematic diagrams of the establishment process of a multi-access PDU session provided in the embodiment of the present application.
  • Figure 11 is a schematic diagram of the registration process under a non-trusted non-3GPP access type provided by the embodiment of the present application.
  • Figure 12 is a structural diagram of a communication device provided by an embodiment of the present application.
  • Figure 13 is a structural diagram of a communication device provided by an embodiment of the present application.
  • the technical solutions of the embodiments of the present application can be applied to various communication systems, such as satellite communication systems and traditional mobile communication systems.
  • the satellite communication system can be integrated with the traditional mobile communication system (ie, terrestrial communication system).
  • Communication systems such as: wireless local area network (WLAN) communication system, wireless fidelity (WiFi) system, long term evolution (LTE) system, LTE frequency division duplex (FDD) ) system, LTE time division duplex (TDD), fifth generation (5th generation, 5G) system or new radio (NR), sixth generation (6th generation, 6G) system, and other future Communication systems, etc., also support communication systems integrating multiple wireless technologies.
  • WLAN wireless local area network
  • WiFi wireless fidelity
  • LTE long term evolution
  • FDD LTE frequency division duplex
  • TDD LTE time division duplex
  • 5th generation, 5G LTE time division duplex
  • NR new radio
  • 6th generation, 6G and other future Communication systems, etc.
  • non-terrestrial networks such as drones, satellite communication systems,
  • ATSSS access traffic steering switching splitting
  • UE User equipment
  • UPF user plane function
  • UE User equipment
  • PDU protocol data unit
  • MA PDU Session multi-access PDU Session
  • 3GPP third generation partnership project
  • non-3GPP access network can also be understood as non-3GPP access path
  • Terminal equipment also known as user equipment (UE), mobile station (MS), mobile terminal (MT), terminal, etc.
  • UE user equipment
  • MS mobile station
  • MT mobile terminal
  • terminal devices include handheld devices with wireless connection functions, vehicle-mounted devices, ship-mounted devices, etc.
  • terminal devices can be: mobile phones, tablets, laptops, PDAs, mobile internet devices (MID), wearable devices, virtual reality (VR) devices, augmented reality (augmented reality (AR) equipment, wireless terminals (such as sensors, etc.) in industrial control, wireless terminals in self-driving, wireless terminals in remote medical surgery, intelligent Wireless terminals in the power grid (smart grid), wireless terminals in transportation safety (transportation safety), wireless terminals in the smart city (smart city), or wireless terminals in the smart home (smart home), or have vehicle-to-vehicle ( Vehicle-to-Vehicle (V2V), or vehicle to everything (V2X), or vehicle-to-vehicle long-term evolution technology (long term evolution vehicle) wireless terminal with LTE-V function, etc.
  • MID mobile internet devices
  • VR virtual reality
  • AR augmented reality
  • wireless terminals such as sensors, etc.
  • wireless terminals such as sensors, etc.
  • wireless terminals in industrial control wireless terminals in the power grid (smart
  • the terminal may include a terminal that supports user plane secure communication ((secure user plane location, SUPL) enabled terminal, SET).
  • SUPL secure user plane location
  • the access management device (also known as mobility management device, mobility management network element, and access management network element) is a control plane network element provided by the operator's network and is responsible for access control and control of terminal devices accessing the operator's network. Mobility management, for example, includes mobility status management, assigning user temporary identities, authentication and user functions.
  • the access management network element may be an access and mobility management function (AMF) network element.
  • AMF access and mobility management function
  • the access management network element can still be an AMF network element, or it can also have other names, which is not limited in this application.
  • the session management device (also called a session management network element) is mainly responsible for session management in mobile networks, such as session establishment, session modification, session release, user plane activation, user plane deactivation, etc. Specific functions include assigning IP addresses to users and selecting user plane network elements that provide packet forwarding functions.
  • the session management network element may be a session management function (session management function, SMF) network element.
  • SMF session management function
  • the session management network element can still be an SMF network element, or it can also have other names, which is not limited in this application.
  • User plane equipment also called user plane network element
  • User plane equipment is responsible for forwarding and receiving user data in terminal equipment. It can receive user data from the data network and transmit it to the terminal device through the access network device; the user plane network element can also receive user data from the terminal device through the access network device and forward it to the data network.
  • the transmission resources and scheduling functions in the user plane network element that provide services for terminal equipment are managed and controlled by the SMF network element.
  • the user plane network element may be a user plane function (UPF) network element.
  • UPF user plane function
  • user plane network elements can still be UPF network elements, or they can have other names, which are not limited in this application.
  • the data management network element is used to generate authentication credentials, user identification processing (such as storing and managing user permanent identities, etc.), access control and contract data management, etc.
  • the data management network element may be a unified data management (UDM) network element.
  • UDM unified data management
  • future communication systems unified data management can still be a UDM network element, or it can also have other names, which is not limited by this application.
  • the policy control device (also called policy control network element) mainly supports providing a unified policy framework to control network behavior, provides policy rules to the control layer network functions, and is also responsible for obtaining user subscription information related to policy decisions.
  • the policy control network element may be a policy and charging rules function (PCRF) network element.
  • the policy control network element may be a policy control function (PCF) network element.
  • PCF policy control function
  • the policy control network element can still be a PCF network element, or it can also have other names, which is not limited in this application.
  • DN Data network
  • DN can deploy a variety of services and provide data and/or voice services to terminal devices.
  • DN is a private network of a smart factory.
  • the sensors installed in the workshop of the smart factory can be terminal devices.
  • Sensors and control servers are deployed in the DN, and the control server can provide services for the sensors.
  • the sensor can communicate with the control server, obtain instructions from the control server, and transmit the collected sensor data to the control server according to the instructions.
  • DN is the internal office network of a company.
  • the mobile phones or computers of employees of the company can be used as terminal devices.
  • the employees' mobile phones or computers can access information and data resources on the company's internal office network.
  • network element involved in this application may be called “device”, “entity”, etc.
  • 3GPP access network means that the access type of the access network is the 3GPP access type (the access type can also be called the access method).
  • 3GPP access types include but are not limited to the following access technologies: LTE access technology (corresponding to 4G cellular network), NR access technology (corresponding to 5G cellular network), satellite access technology defined by 3GPP, or subsequently evolved cellular access Technology; the satellite access technology defined by 3GPP can also be subdivided into low-orbit satellites, medium-orbit satellites, and geostationary satellites.
  • Non-3GPP access network means that the access type of the access network is non-3GPP access type.
  • Non-3GPP access types include but are not limited to the following access technologies: untrusted non-3GPP access (such as access to the core network through individually purchased wireless access nodes), trusted non-3GPP access Trusted non-3GPP access technology (such as access to the core network through wireless access nodes deployed by operators), wired access technology, IEEE802.11 (WiFi) access technology, non-wired access technology connected through SNPN 3GPP access technology, wired-BBF access technology, wired-Cable access technology, etc.
  • the non-3GPP access type may be or include access technologies such as wired, WiFi, Bluetooth, and ZigBee.
  • the differences between multiple access PDU sessions and single access PDU sessions include: the user plane channel of a single access session only passes through one access network device (which can be a 3GPP access network device or a non-access PDU session).
  • 3GPP access network equipment for example, the UE can send uplink data to the UPF through the radio access network (RAN); the UPF can send downlink data to the UE through the RAN.
  • the user plane channel of the current multi-access PDU session can include two access network devices (3GPP access network device and non-3GPP access network device). Two access network devices Network equipment is connected to the same UPF (or connected to the same UPF through another UPF).
  • the UE can send uplink data to the UPF through RAN and/or non-3GPP interworking function (non-3GPP interworking function, N3IWF); UPF through RAN and/or Or N3IWF sends downlink data to the UE.
  • non-3GPP interworking function non-3GPP interworking function, N3IWF
  • UPF through RAN and/or Or N3IWF sends downlink data to the UE.
  • Offload modes include but are not limited to: Active-Standby mode, Smallest Delay mode, Load-Balancing mode, and Priority-based mode. The mechanism of each offload mode is explained below:
  • Active-Standby When there are two transmission paths, specify one of the transmission paths as Active (3GPP access or Non-3GPP access), and the other transmission path as Standby. When the Active transmission path is available, all data of this service flow is transmitted to the opposite end through the Active transmission path. When the Active path is unavailable, all data of the business flow is switched to the Standby transmission path for transmission. When there are more than 2 transmission paths, priorities can be assigned to the paths. When a high-priority transmission path is available, the high-priority transmission path is used to transmit data. When the high-priority path is unavailable, the higher-priority path among the remaining paths is selected. Transmit data (or transmit data via any path).
  • Smallest Delay Select the transmission path with the shortest delay to transmit the data of the business flow.
  • the UE or UPF needs to monitor the transmission delay of the path in real time.
  • the implementation can be accomplished by the transport layer protocol (for example, the multipath transmission control protocol (MPTCP) layer has the function of detecting round-trip time (RTT)), or by performance measurement in UPF Function module (performance measurement function, PMF) to complete.
  • MPTCP multipath transmission control protocol
  • RTT round-trip time
  • PMF performance measurement function
  • Load-Balancing The data of the business flow will be distributed to different transmission paths in proportion.
  • the distribution ratio is determined based on the load conditions of multiple (2, or even more) transmission paths in the network (such as load Heavier paths have a smaller distribution ratio, and lighter-loaded paths have a larger distribution ratio.)
  • Priority-based Specify one of the transmission paths as a high-priority transmission path, and the other transmission path as a second-highest priority (or medium priority, low priority, etc.) transmission path.
  • a high-priority transmission path is congested, part of the data in the service flow will pass through the next-highest priority (or medium priority, low priority, etc.) transmission path, or any one or more of the remaining paths.
  • Path transfer is performed.
  • the high-priority transmission path is unavailable, all data of the service flow will pass through the next-highest priority (or medium priority, low priority, etc.) transmission path, or any one or more of the remaining paths. Transmission for transmission.
  • the UE when the UE performs the registration process, it sends an access network (AN) message to the access network device.
  • AN access network
  • the access network device may be a 3GPP access network device (eg, RAN) or a non-3GPP access network device.
  • non-3GPP access network equipment includes: non-3GPP interworking function (N3IWF) network elements, trusted non-3GPP gateway function (TNGF) network elements, and trusted WLAN interworking functions (trusted WLAN interworking function, TWIF) network element, wired access gateway function (W-AGF) network element, W-AGF can also be called AGF.
  • N3IWF non-3GPP interworking function
  • TNGF trusted non-3GPP gateway function
  • TWIF trusted WLAN interworking function
  • W-AGF wired access gateway function
  • W-AGF can also be called AGF.
  • the AN message includes AN parameters and registration request messages.
  • the registration request message may include the registration type and terminal identification.
  • the terminal identity may include but is not limited to a subscription concealed identifier (SUCI) and/or a 5G globally unique temporary identity (5G-GUTI). wait.
  • the registration type can be initial registration, mobility registration update, or emergency registration, etc.
  • the access network device After receiving the AN message, the access network device can perform AMF selection.
  • the access network device performs AMF selection based on the AN parameters in the AN message, for example: based on the globally unique AMF identifier (GUAMI) or the 5G system temporary mobile subscriber identifier (5G S-temporary mobile subscriber) in the AN parameter. identity, 5G-S-TMSI) performs AMF selection.
  • GUIAMI globally unique AMF identifier
  • 5G S-temporary mobile subscriber 5G system temporary mobile subscriber identifier
  • identity 5G-S-TMSI
  • the access network device sends a registration request message to the AMF.
  • the AMF can determine the access type and access technology used by the UE to register to the core network.
  • the AMF determines the access type adopted by the UE according to the access network equipment. For example: if the registration request message is sent or forwarded by a 3GPP access network device (such as RAN), the AMF may determine that the access type adopted by the UE is the 3GPP access type. For another example, if the registration request message is sent or forwarded by a non-3GPP access network device, such as N3IWF, TNGF, TWIF, W-AGF, etc., the AMF can determine that the access type adopted by the UE is non-3GPP. Access type.
  • a 3GPP access network device such as RAN
  • the AMF may determine that the access type adopted by the UE is the 3GPP access type.
  • a non-3GPP access network device such as N3IWF, TNGF, TWIF, W-AGF, etc.
  • the AMF may further determine the access technology adopted by the UE.
  • AMF can further determine the access technology as LTE-M, NR, NR unlicensed spectrum, satellite access, etc. based on RAN information.
  • RAN information includes but is not limited to: Global RAN Node IDs associated with the N2 interface, tracking areas indicated by radio access network equipment, etc.
  • AMF can further determine the access technology based on the 5G access network node associated with the N2 interface.
  • the access technology is an untrusted non-3GPP access technology.
  • the access technology is a trusted non-3GPP access technology.
  • the access technology is wired (Wireline) access technology. Further, if the W-AGF corresponding to the W-AGF node identification supports the Wireline BBF Access Network, the access technology is Wireline-BBF. If the W-AGF corresponding to the W-AGF node identifier supports wired access network (Wireline Cable Access Network), the access technology is Wireline-Cable. If it is impossible to distinguish between Wireline-BBF and Wireline-Cable, the access technology is Wireline.
  • AMF can also determine more refined access technologies based on user location information (User Location Information). More refined access technologies include IEEE 802.11 access (ie, wireless LAN, WiFi), Wireline -Cable access, Wireline-BBF access.
  • the access type used by the UE to register to the core network may be one or more, and the access technology used by the UE to register to the core network may be one or more.
  • PCC rules are generated by the policy control function (PCF) and mainly involve some policy information and charging information. After PCF generates PCC rules, it will be sent to SMF. SMF can further generate other rules based on the information in the PCC rules. For example, the SMF can generate ATSSS rules (described later) and N4 rules (described later) based on the information in the PCC rules, and send them to the UE and UPF respectively.
  • PCC rules can include Multi-Access PDU (MA PDU) Session Control information, which allows PCF to control one or more of the following: offload mode, offload function, offload mode indication, gate Limit value, billing letter information and usage monitoring information.
  • MA PDU Multi-Access PDU
  • Offload modes such as Active-Standby, Smallest Delay, Load-Balancing, Priority-based.
  • the offloading function can be understood as which function is used for multipath offloading, such as the MPTCP function or the ATSSS-Lower Layer function, which is the offloading function defined by 3GPP.
  • Steering mode indicator can be automatic load-balance or UE-assistance.
  • the former means that UE or UPF can independently determine the offload ratio when the offload mode is load-balancing.
  • the latter is that the UE can independently decide the offload ratio when the offload mode is load-balancing.
  • it can also send the offload ratio to the UPF, so that the UPF sends downlink data according to the offload ratio.
  • Thresholds including but not limited to round-trip delay RTT thresholds and/or packet loss rate thresholds, can be used in combination with load-balancing or priority-based offloading modes to assist in decision-making on how to offload traffic.
  • Charging information depends on the access type path on which the service flow is transmitted.
  • Usage Monitoring information depends on which access type path the business flow is transmitted on.
  • MA PDU session control information can also include Application descriptors, which are used to identify the business flow and determine which offloading function and offloading mode should be used for the business flow.
  • ATSSS rules can include one or more of the following:
  • Rule identifier used to uniquely identify the ATSSS rule.
  • Rule Precedence is used to determine the order of ATSSS rules.
  • Traffic Descriptor is used to define the business flow. It can include one or more of the following information: Application descriptor (application descriptor), IP descriptor (IP descriptor), Non-IP descriptor (non-IP descriptor) ); Among them, the application descriptor (Application descriptor) includes one or more application identifiers, used to identify the application that produces the business flow; the IP descriptor (IP descriptor) includes one or more quintuples, used to identify the IP business flow The destination; Non-IP descriptor (Non-IP descriptor) includes one or more descriptors used to identify the destination of non-IP business flows such as Ethernet packets.
  • Application descriptor application descriptor
  • IP descriptor IP descriptor
  • Non-IP descriptor includes one or more descriptors used to identify the destination of non-IP business flows such as Ethernet packets.
  • Access Selection Descriptor used to define the access selection part. It can include the following information: diversion mode, diversion mode indication, threshold value, diversion function.
  • N4 rules are sent by SMF to UPF to control the functions of UPF and allow UPF to report some event information to SMF.
  • N4 rules can include one or more of the following rules:
  • Packet detection rule Contains information used to classify packets arriving at UPF.
  • Forwarding action rule contains information about whether to forward, discard or cache the business flow identified through PDR.
  • Multi-access rule contains information on how to handle offloading, switching or offloading in the MA PDU session; this rule is only used in the MA PDU session and is also the same as the multi-access rule in the present invention. Entry session related.
  • Usage reporting rule contains information used to define how to count business flows identified through PDR and how to report measurements.
  • QER Quality of service enforcement rules
  • Session reporting rule contains information about events that require user plane function detection and reporting. The event is not related to a specific PDR in the PDU session, nor is it related to usage measurement.
  • Registration process including but not limited to: registration process under 3GPP access type, registration process under untrusted non-3GPP access technology, registration process under trusted non-3GPP access technology, registration process under wired access technology registration process.
  • Step 201a The UE connects to the non-trusted non-3GPP access network and is assigned an IP address.
  • the untrusted non-3GPP access network here is usually an access network deployed by non-operators, and can include access points (access points, APs), routers, switches, gateways and other equipment. Subsequently, the UE can communicate with the N3IWF through the non-trusted non-3GPP access network.
  • Step 201b The UE selects the N3IWF and obtains the address information of the N3IWF.
  • Step 202 The UE and N3IWF establish an Internet protocol security protocol (internet protocol security, IPSec) security association (security association, SA).
  • Internet protocol security Internet protocol security, IPSec
  • SA security association
  • the UE establishes an IPSec SA with the N3IWF by initiating an initial exchange of Internet key exchange protocol (IKE).
  • IKE Internet key exchange protocol
  • Step 203 The UE sends the terminal equipment identification (UE ID) to the N3IWF selected in step 201b.
  • UE ID terminal equipment identification
  • the UE sends a request message to N3IWF.
  • the request message includes the terminal equipment identification (UE ID).
  • UE ID terminal equipment identification
  • the request message does not include the AUTH payload, which indicates that the request message is used for interactive extended authentication protocol (EAP) signaling.
  • EAP interactive extended authentication protocol
  • the request message is a key exchange protocol authentication IKE_AUTH request message.
  • Step 204 N3IWF sends an Extended Authentication Protocol Request (EAP Request) data packet to the UE.
  • EAP Request Extended Authentication Protocol Request
  • N3IWF sends a response message to the UE, which includes an Extended Authentication Protocol Request (EAP Request) packet.
  • EAP Request Extended Authentication Protocol Request
  • the response message is a key exchange protocol authentication IKE_AUTH response message.
  • the EAP Request packet can include the 5G-Start packet.
  • the EAP-Request data packet (such as 5G-Start data packet) is used to notify the UE to initiate an EAP-5G session. It can also be understood that the EAP-Request data packet (such as 5G-Start data packet) is used to notify the UE that it can start sending non- Access layer (non-access stratum, NAS) messages.
  • NAS non-access stratum
  • Step 205 The UE sends an Extended Authentication Protocol Response (EAP-Response) data packet to the N3IWF.
  • EAP-Response Extended Authentication Protocol Response
  • the UE sends a request message to the N3IWF, and the request message includes an Extended Authentication Protocol Response (EAP-Response) data packet.
  • the request message is a key exchange protocol authentication (IKE_AUTH) request message.
  • the EAP-Response data packet may include a 5G-NAS data packet, and the 5G-NAS data packet may include an access network (AN) parameter and a registration request message.
  • the AN parameter contains parameter information used by N3IWF to select AMF.
  • the parameter information can include one or more of the following: globally unique AMF identifier (GUAMI), public land mobile network (PLMN ID) ), network identification (NID), etc.
  • GUIAMI globally unique AMF identifier
  • PLMN ID public land mobile network
  • NID network identification
  • the registration request message is contained in a non-access stratum PDU (NAS-PDU).
  • Step 206a The N3IWF may perform AMF selection based on the AN parameters received in step 205.
  • Step 206b N3IWF sends the registration request message received in step 205 to the AMF selected in step 206a.
  • Step 207 UE, AMF, SMF, authentication server function (AUSF), UDM, etc. perform authentication and security processes.
  • AUSF authentication server function
  • AMF selects AUSF and sends an authentication request message to AUSF.
  • AUSF performs the authentication process on the UE and obtains authentication data or information used for authentication from UDM.
  • Authentication-related data packets are encapsulated through NAS messages.
  • the NAS messages can be encapsulated through 5G-NAS type data packets in EAP.
  • AUSF sends the security anchor functionality (SEAF) key to AMF.
  • SEAF security anchor functionality
  • AMF can derive the NAS security key and N3IWF key based on the SEAF key.
  • the N3IWF key is used by the UE and N3IWF to establish IPSec SA.
  • the AMF indicates to the UE that the authentication is successful. For example, the AMF sends a NAS Security Mode Command (NAS Security Mode Command) to the UE to activate NAS security.
  • the NAS Security Mode Command includes an EAP success indication (EAP-Success), indicating that the EAP-authentication and key agreement (EAP-AKA’) authentication performed by the core network is successful.
  • EAP-Success EAP success indication
  • EAP-AKA EAP-authentication and key agreement
  • N3IWF forwards the NAS Security Mode Command sent by the AMF to the UE, and sends the NAS Security Mode Complete message sent by the UE to the AMF.
  • Step 208a AMF sends the N3IWF key to N3IWF.
  • AMF sends a request message to N3IWF, and the request message includes the N3IWF key.
  • the request message is an initial context setup request (Initial Context Setup Request) message or a next generation application protocol (next generation application protocol, NGAP) initial context setup request (Initial Context Setup Request) message.
  • NGAP next generation application protocol
  • AMF sends the N3IWF key to N3IWF.
  • Step 208b N3IWF sends EAP-Success to the UE, indicating that N3IWF's authentication of the UE is successful, or that the IPSec tunnel authentication is successful, or that N3IWF and the UE complete the EAP-5G session.
  • the N3IWF sends a response message (such as an IKE_AUTH response message) to the UE, and the response message includes EAP-Success.
  • a response message such as an IKE_AUTH response message
  • Step 209a The UE and N3IWF establish an IPSec SA through the N3IWF key obtained previously.
  • the IPSec SA is called "signaling IPSec SA (signalling IPSec SA)".
  • the signaling IPSec SA will be configured to run in tunnel mode, and N3IWF will assign an "inner” IP address and NAS_IP_ADDRESS to the UE. All subsequent NAS messages are transmitted through this signaling IPSec SA.
  • the source address is the "inner” IP address of the UE
  • the destination address is NAS_IP_ADDRESS.
  • the source address is NAS_IP_ADDRESS
  • the destination address is the "inner" IP address of the UE.
  • the IKE_AUTH request message sent by the UE to N3IWF through IPSec SA does not include the AUTH payload
  • the UE sends an IKE_AUTH request message to N3IWF through signaling IPSec SA (signalling IPSec SA).
  • the IKE_AUTH request message can include the AUTH payload.
  • Step 209b After establishing the signaling IPSec SA, N3IWF informs AMF that the UE context has been created. For example, N3IWF notifies AMF that the UE context has been created through the initial context establishment response or the Next Generation Application Protocol Initial Context Setup Response (NGAP Initial Context Setup Response) message.
  • NGAP Initial Context Setup Response Next Generation Application Protocol Initial Context Setup Response
  • step 210 AMF can establish mobility management policy establishment (AM Policy Association Eatablishment) with PCF.
  • AMF can establish mobility management policy establishment (AM Policy Association Eatablishment) with PCF.
  • Step 211a AMF sends a NAS Registration Accept message to N3IWF.
  • the NAS registration accept message may be included in the N2 message.
  • Step 211b N3IWF sends a NAS registration acceptance message to the UE through the signaling IPSec SA established in step 209a.
  • FIG. 3a and Figure 3b a possible MA PDU session establishment process in the current technology is introduced.
  • This example is applicable to the multi-access PDU session established by the UE.
  • One path is a 3GPP access type path
  • the other path is a 3GPP access type path.
  • This is a scenario for non-3GPP access type paths. It can be understood that Figure 3a and Figure 3b can be regarded as a whole process, and they are divided into two parts only for the convenience of drawing.
  • Step 301 The UE sends one or more of the following to the AMF: request type, ATSSS capability information, PDU Session ID, UE requested data network name (UE Requested DNN), Slice information (S-NSSAI), etc.
  • the request type is a multiple access session request (MA PDU Request), indicating that the session establishment request message is used to request the establishment of a multiple access PDU session.
  • ATSSS Capabilities is used to notify the network of the offloading functions supported by the UE, such as MPTCP and/or ATSSS-LL, etc.
  • the UE sends a NAS message to the AMF, including the above information.
  • the NAS message is, for example, a PDU Session Establishment Request message.
  • Step 302 AMF sends one or more of the following to SMF: UE identity (for example, user permanent identifier (subscription permanent identifier, SUPI)), DNN requested by UE, PDU Session ID, MA PDU Request, access type (access type), wireless access technology type (radio access technology type, RAT type), etc.
  • the access type is the access type used by the UE to register to the core network, such as 3GPP access type and non-3GPP access type.
  • Wireless access technology types can include wireless access technologies and wired access technologies.
  • the access technologies that may correspond to 3GPP access types and the access technologies that may correspond to non-3GPP access types have been introduced previously, and will not be repeated. .
  • AMF sends a PDU session creation session context request (Nsmf_PDU Session_GreateSMContext Request) message to SMF, including the above information.
  • Nsmf_PDU Session_GreateSMContext Request PDU session creation session context request
  • step 303 SMF obtains session management subscription data from UDM.
  • the subscription data may include information that allows the establishment of a multi-access PDU session or information that does not allow the establishment of a multi-access PDU session.
  • session management subscription data can be obtained through subscription retrieval or subscription update (Subscription retrieval/subscription for updates).
  • Step 304 SMF sends one or more of the following to AMF: session context identifier, cause.
  • SMF sends a PDU session creation session context response (Nsmf_PDU Session_GreateSMContext Response) message to AMF, including the above information.
  • Nsmf_PDU Session_GreateSMContext Response PDU session creation session context response
  • step 305 Execute PDU session authentication or authorization process.
  • Step 306 The SMF sends one or more of the following to the PCF: UE identity (for example, user permanent identifier (SUPI)), DNN requested by the UE, PDU Session ID, MA PDU Request, radio access technology type ( radio access technology type, RAT type), etc.
  • UE identity for example, user permanent identifier (SUPI)
  • DNN requested by the UE
  • PDU Session ID for example, PDU Session ID
  • MA PDU Request radio access technology type ( radio access technology type, RAT type), etc.
  • SMF selects PCF, and SMF sends this information to PCF to establish session policy association with the PCF.
  • PCC policy control and charging
  • the SMF sends a policy association establishment request message (SM Policy Association Establishment Request) to the PCF, including the above information.
  • SM Policy Association Establishment Request a policy association establishment request message
  • Step 307 PCF sends policy control and charging PCC rules to SMF.
  • PCC rules include multi-access PDU session control information.
  • the multi-access PDU session control information includes but is not limited to one or more of the following: steering mode, steering functionality, threshold value, etc. .
  • PCF sends a policy association establishment response (SM Policy Association Establishment Response) message to SMF, including the above information.
  • SM Policy Association Establishment Response Policy Association Establishment Response
  • Step 308 SMF selects the appropriate UPF.
  • Step 309a SMF sends N4 rules to the UPF selected in step 308.
  • the N4 rules include but are not limited to one or more of the following: packet detection rule (PDR), forwarding action rule (FAR) ), multi access rule (MAR) and other rules.
  • PDR packet detection rule
  • FAR forwarding action rule
  • MAR multi access rule
  • MAR rules include but are not limited to one or more of the following: diversion mode, diversion function and other information.
  • SMF sends an N4 Session Establishment Request message to UPF, including the above information.
  • Step 309b UPF sends tunnel information to SMF, such as tunnel information on the core network side (CN tunnels info).
  • SMF tunnel information on the core network side
  • UPF sends an N4 Session Establishment Response (N4 Session Establishment Response) message to SMF, including the above information.
  • N4 Session Establishment Response N4 Session Establishment Response
  • the SMF establishes an N4 connection with the UPF selected in step 308.
  • Step 310 SMF sends one or more of the following to AMF: N2 interface session management information (N2 SM information), N1 interface session management container (N1 SM Container), access type and other information.
  • N2 SM information N2 interface session management information
  • N1 SM Container N1 interface session management container
  • N2 SM information includes but is not limited to one or more of the following: PDU Session ID (reported by the UE in step 301), tunnel information (CN Tunnel Info) on the core network side (from step 309b) A certain CN Tunnel Info), etc.
  • N1 SM Container includes but is not limited to one or more of the following: PDU Session Establishment Accept message (can be regarded as a reply/response to the PDU session establishment request in step 301), ATSSS rule ) and other session-related information.
  • ATSSS rule includes but is not limited to one or more of the following: offload mode, offload function, threshold value and other information.
  • the information in the N1 SM Container is sent by SMF to the UE through AMF. For example, AMF sends it to the UE through NAS messages.
  • the SMF sends a N1N2 message transfer (Namf_Communication_N1N2MessageTransfer) message to the AMF, including the above information.
  • N1N2 message transfer (Namf_Communication_N1N2MessageTransfer) message to the AMF, including the above information.
  • the AMF device can also send a response to the SMF device to indicate receipt of information from the SMF device.
  • Step 311 AMF sends N2 SM information (from step 310) and NAS message (NAS message needs to be sent to the UE) to the RAN.
  • the NAS message includes PDU Session ID (N2 SM information from step 310) and N1 SM Container (from step 310).
  • the AMF can determine whether the information is sent to the 3GPP access network device or to the non-3GPP access network device based on the access type indicated by the SMF. For example, when the access type in step 310 is the 3GPP access type, this information is sent to the RAN.
  • AMF sends an N2 PDU session request message to the RAN, including the above information.
  • Step 312 RAN and UE establish air interface resources, and the access network performs specific resource setup (AN-specific resource setup) to establish a data radio bearer (DRB).
  • AN-specific resource setup AN-specific resource setup
  • DRB data radio bearer
  • the RAN sends the NAS message to the UE.
  • the NAS message includes but is not limited to one or more of the following: PDU Session ID, PDU Session Establishment Accept message, ATSSS rules (rules) include information such as distribution mode, distribution function, threshold value, etc.
  • Step 313 RAN sends the RAN side access network tunnel information (AN tunnels info) to the AMF.
  • the RAN side access network side tunnel information is used to notify UPF where the downlink data should be sent (it can be understood as the downlink data pass The destination address of the 3GPP transmission path).
  • the AN tunnels info on the RAN side will be sent to UPF via AMF and SMF later. Please refer to step 313, step 314 and step 315.
  • the RAN sends an N2 PDU session response message to the AMF, including the above information.
  • Step 314 The AMF sends the access network tunnel information (AN tunnels info) on the RAN side to the SMF (from step 313).
  • AN tunnels info access network tunnel information
  • the AMF sends an N2 PDU session response message to the SMF.
  • the N2 PDU session response message includes the access network tunnel information (AN tunnels info) on the RAN side.
  • AMF sends a PDU session update session context request (Nsmf_PDU Session_UpdateSMContext Request) message to SMF.
  • the request message includes an N2 PDU session response message.
  • Step 315 The SMF sends the access network side tunnel information (AN tunnels info) on the RAN side to the UPF.
  • AN tunnels info access network side tunnel information
  • SMF sends RAN-side access network-side tunnel information (AN tunnels info) to UPF through the N4 Session Modification process.
  • AN tunnels info RAN-side access network-side tunnel information
  • Step 316 SMF sends success or failure indication information to AMF.
  • SMF sends a PDU Session Update Session Context Response (Nsmf_PDU Session_UpdateSMContext Response) message to AMF.
  • the response message includes indication information of successful update or failed update.
  • SMF can also send a failure reason value to AMF.
  • Step 317 SMF sends one or more of the following to AMF: N2 interface session management information (N2 SM information), N1 interface session management container (N1 SM Container), access type and other information.
  • N2 SM information N2 interface session management information
  • N1 SM Container N1 interface session management container
  • N2 SM information includes but is not limited to one or more of the following: PDU Session ID (reported by the UE in step 301), tunnel endpoint information (CN Tunnel Info) on the core network side.
  • PDU Session ID (reported by the UE in step 301)
  • CN Tunnel Info tunnel endpoint information
  • the SMF sends a N1N2 message transfer (Namf_Communication_N1N2MessageTransfer) message to the AMF, including the above information.
  • N1N2 message transfer (Namf_Communication_N1N2MessageTransfer) message to the AMF, including the above information.
  • the AMF device can also send a response to the SMF device to indicate receipt of information from the SMF device.
  • Step 318 AMF sends N2 SM information (from step 317) to N3IWF.
  • the AMF can determine whether the information is sent to the 3GPP access network device or to the non-3GPP access network device based on the access type indicated by the SMF. For example, when the access type in step 317 is a non-3GPP access type, this information is sent to the non-3GPP access gateway device (for example, N3IWF).
  • the non-3GPP access gateway device for example, N3IWF.
  • AMF sends an N2 PDU session request message to N3IWF, and the request message carries N2 SM information.
  • Step 319 N3IWF and UE establish an Internet Protocol Security Protocol Child Security Association (IPSec Child SA) for transmitting user plane data.
  • IPSec Child SA Internet Protocol Security Protocol Child Security Association
  • N3IWF will allocate the IP address of the IPSec Child SA (such as UP_IP_ADDRESS) to the UE. That is, when the UE sends uplink data, the destination IP address should be set to UP_IP_ADDRESS, and the source IP address should be the "inner" assigned during registration. "IP address.
  • the number of IPSec Child SAs established between the UE and N3IWF and the quality of service flow (QoS Flow) data transmitted by each IPSec Child SA are determined based on the N3IWF policy and configuration.
  • Step 320 N3IWF sends the access network tunnel information (AN tunnels info) on the N3IWF side to the AMF.
  • the access network tunnel information on the N3IWF side is used to inform the UPF where the downlink data should be sent (which can be understood as the destination address of the downlink data through the non-3GPP transmission path).
  • the access network tunnel information on the N3IWF side will be sent to UPF via AMF and SMF later. Please refer to step 320, step 321 and step 322.
  • N3IWF sends an N2 PDU session response message to AMF, including the above information.
  • Step 321 The AMF sends the access network tunnel information on the N3IWF side to the SMF (from step 320).
  • AMF sends an N2 PDU session response message to SMF, and the N2 PDU session response message includes access network tunnel information (AN tunnels info) on the N3IWF side.
  • AMF sends a PDU session update session context request (Nsmf_PDU Session_UpdateSMContext Request) message to SMF.
  • the request message includes an N2 PDU session response message.
  • Step 322 SMF sends the access network side tunnel information (AN tunnels info) on the N3IWF side to the UPF.
  • AN tunnels info access network side tunnel information
  • SMF sends the AN tunnel information on the N3IWF side to UPF through the N4 Session Modification process.
  • Step 323 SMF sends success or failure indication information to AMF.
  • SMF sends a PDU Session Update Session Context Response (Nsmf_PDU Session_UpdateSMContext Response) message to AMF.
  • the response message includes indication information of successful update or failed update.
  • SMF can also send a failure reason value to AMF.
  • Figure 3a and Figure 3b introduce that the session establishment process is first performed on the 3GPP access side (for example, see step 310 to step 316 in Figure 3b), and then the session establishment process is performed on the non-3GPP access side (for example, see step 316 in Figure 3b). (step 317 to step 323).
  • the session establishment process may be performed first on the non-3GPP access side, and then the session establishment process is performed on the 3GPP access side. This process is similar to the above schematic diagram and will not be described in detail.
  • Figure 3a and Figure 3b introduce the UE sending a session establishment request message.
  • the UE may send a session establishment request message on the 3GPP side and the non-3GPP side respectively.
  • step 316 and step 317 it may also perform a process similar to step 301 and step 302, which will not be detailed again. Repeat.
  • the paths of multi-access PDU sessions include but are not limited to: transmission through three or even more paths, or transmission through multiple access types of 3GPP paths, or transmission through multiple access types of 3GPP.
  • Non-3GPP path transmission is not limited to: transmission through three or even more paths, or transmission through multiple access types of 3GPP paths, or transmission through multiple access types of 3GPP.
  • Non-3GPP path transmission is not limited to: transmission through three or even more paths, or transmission through multiple access types of 3GPP paths, or transmission through multiple access types of 3GPP.
  • Figure 4 shows a possible system architecture of a multi-access PDU session: under this system architecture, the path of the multi-access PDU session includes path one and path two.
  • Path one can be that the UE accesses the public land mobile network PLMN through WiFi.
  • the UE establishes an Internet Protocol Security Protocol IPSec tunnel with the N3IWF in the PLMN through the WiFi AP.
  • the two branches in path one correspond to different N3IWFs, and both branches can be exists, or only one of its branches can exist.
  • Path two may be for the UE to establish an IPSec tunnel with the N3IWF in the PLMN through a standalone non-public network (SNPN).
  • SNPN standalone non-public network
  • Path 1 and path 2 can correspond to the same N3IWF or different N3IWFs. Therefore, from the perspective of the PLMN, the UE accesses the PLMN through two paths with non-3GPP access types, that is, the multi-access PDU session established by the UE includes multiple paths with non-3GPP access types.
  • Figure 5 shows a possible system architecture of a multi-access PDU session: under this system architecture, the path of the multi-access PDU session includes path one and path two.
  • Path one is that the UE accesses the public land mobile network PLMN through the 4G air interface (ie, LTE).
  • Path two is for the UE to access the PLMN through 5G air interface technology (ie NR).
  • Path 1 UE passes The connection between the 4G base station and the 4G serving gateway (SGW) supports both the 4G packet data network gateway-user plane (PGW-U) and the 5G user plane function (UPF). equipment (PGW-U+UPF).
  • PGW-U packet data network gateway-user plane
  • UPF 5G user plane function
  • the UE connects to the PGW-U+UPF through the 5G base station. Therefore, from the perspective of the PLMN, the UE accesses the PLMN through two paths with the access type 3GPP, that is, the multi-access PDU session established by the
  • Figure 6 shows a possible system architecture of a multi-access PDU session: under this system architecture, the paths of a multi-access PDU session include path one, path two and path three.
  • Path one is that the UE establishes an IPSec tunnel with the N3IWF in the PLMN through the independent non-public network SNPN.
  • Path two is that the UE accesses the public land mobile network PLMN through WiFi.
  • the UE establishes an Internet Protocol Security Protocol IPSec tunnel through the WiFi AP and the N3IWF in the PLMN.
  • Path three is for the UE to access the PLMN through the NR air interface of the PLMN.
  • the UE accesses the PLMN through two paths with a non-3GPP access type and one path with a 3GPP access type. That is, the multi-access PDU session established by the UE includes three paths.
  • Figure 7 shows a possible system architecture of a multi-access PDU session: under this system architecture, the paths of a multi-access PDU session include path one, path two and path three. The differences from Figure 6 include that one of the non-3GPP paths is a trusted non-3GPP path.
  • Figure 8 shows a possible system architecture of a multi-access PDU session: under this system architecture, the paths of a multi-access PDU session include path one, path two and path three.
  • Path one is that the UE accesses the public land mobile network PLMN through the 4G air interface (ie, LTE).
  • Path two is for the UE to access the PLMN through 5G air interface technology (ie NR).
  • the UE connects to a device that supports both the 4G packet data network gateway user plane (PGW-U) and the 5G user plane function (UPF) (PGW-U+UPF) through the 4G base station and the 4G service gateway SGW. ).
  • PGW-U+UPF 5G user plane function
  • the UE establishes an IPSec tunnel with the N3IWF in the PLMN through WiFi, and the N3IWF is connected to the PGW-U+UPF. Therefore, from the perspective of the PLMN, the UE accesses the PLMN through two paths with a 3GPP access type and one path with a non-3GPP access type. That is, the multi-access PDU session established by the UE includes three paths.
  • multi-access PDU sessions support transmission through two paths.
  • the two paths are a path with an access type of 3GPP and a path with a non-3GPP access type.
  • multi-access PDU session support can be transmitted through multiple paths with 3GPP access type and/or multiple paths with non-3GPP access type.
  • access types eg, 3GPP access types, non-3GPP access types.
  • AMF cannot accurately determine which access network device registered with the UE to send information based only on the Access Type parameter.
  • this application proposes multiple methods that can accurately identify different paths to achieve multi-access session management.
  • the session management process can include session establishment, session update, session release, user plane activation, user plane deactivation, etc. .
  • a multi-access session includes multiple transmission paths.
  • the transmission path may be a path between a terminal device and an access network device, or it may be a path between an access network device and a core network device (such as a user plane). the path between devices)
  • the path may also be the path between the UE and the core network equipment (such as user plane equipment).
  • the plurality of transmission paths include, but are not limited to, a first transmission path and a second transmission path.
  • the access technology corresponding to the first transmission path belongs to (can also be called corresponding to) 3GPP access type or non-3GPP access type; the access technology corresponding to the second transmission path belongs to (can also be called corresponding to) 3GPP access type or non-3GPP access type.
  • the access technology corresponding to the first transmission path and the second transmission path belongs to (or corresponds to) a 3GPP access type; or, the first transmission path and the second transmission path
  • the access technology corresponding to the transmission path belongs to (or corresponds to) a non-3GPP access type.
  • the access technologies corresponding to the other transmission paths may belong to (or correspond to) 3GPP access types, or may belong to (or correspond to) non-3GPP access types. In other words, among the multiple transmission paths included in the multi-access session, the access technologies corresponding to at least two transmission paths may belong to the same access type.
  • the access technologies corresponding to the first transmission path and the second transmission path may be the same or different.
  • the access technology corresponding to the first transmission path is LTE access technology, or NR access technology, or untrusted non-3GPP access technology, or trusted non-3GPP access technology, or wired access technology, etc.
  • the access technology corresponding to the second transmission path is LTE access technology, or NR access technology, or untrusted non-3GPP access technology, or trusted non-3GPP access technology, or wired access technology, etc. If one or more other transmission paths are included, the access technologies corresponding to other transmission paths may be LTE access technology, or NR access technology, or untrusted non-3GPP access technology, or trusted non-3GPP access technology. , or wired access technology, etc.
  • Untrusted non-3GPP access technologies can also be subdivided into: non-3GPP access technologies connected through WiFi, non-3GPP access technologies connected through SNPN, etc.
  • this application can make detailed distinctions between multiple untrusted non-3GPP access technologies, and can add fourth information to the existing access technologies to form new access technology information.
  • the fourth information is, for example, a more fine-grained access technology index/identification (which may be called a sub-access technology index/identification), or an identification/index of a path, or IPSec tunnel information, etc.
  • the fourth information is used to indicate (or distinguish, or identify) a certain transmission path (which can also be understood as indicating a certain N2 interface, a certain NGAP interface, or a certain logical channel).
  • the fourth information is used It is used to indicate (or distinguish or identify) a certain transmission path among the transmission paths corresponding to the same access technology.
  • the non-3GPP access technology connected through WiFi can be called untrusted non-3GPP access technology 1, or untrusted non-3GPP path 1 (untrusted N3GPP path 1).
  • the non-3GPP access technology connected through SNPN It can be called untrusted non-3GPP access technology 2, or it can be called untrusted non-3GPP path 2 (untrusted N3GPP path 2), so that it can be compatible with more paths of untrusted non-3GPP access technology, or it can be used in Save signaling overhead when transmitting technical information.
  • LTE access technology LTE access technology
  • NR access technology trusted non-3GPP access technology
  • wired access technology can all be distinguished from the more fine-grained access technologies they contain to be compatible with more of the same access technology.
  • type of path can also save signaling overhead when transmitting technical information.
  • the access network equipment corresponding to the first transmission path is any of the following: 3GPP access network equipment, trusted non-3GPP access network equipment, untrusted non-3GPP access network equipment, or wired access gateway.
  • the access network equipment corresponding to the second transmission path is any one of the following: 3GPP access network equipment, trusted non-3GPP access network equipment, untrusted non-3GPP access network equipment, or wired access gateway.
  • the 3GPP access network equipment is any of the following: eNodeB, NG-RAN, or gNodeB.
  • the trusted non-3GPP access network device may be any of the following: trusted non-3GPP gateway function TNGF, trusted WLAN interworking function TWIF, or trusted non-3GPP access point TNAP.
  • the non-trusted non-3GPP access network equipment may be any of the following: non-3GPP interworking function N3IWF.
  • the wired gateway is any one of the following: wired access gateway function W-AGF network element.
  • the access technology corresponding to the transmission path may refer to the access technology that the terminal device has registered or may So it refers to the access technology used when terminal equipment is registered in the core network.
  • the access network device corresponding to the transmission path may refer to the access network device to which the terminal device has been registered, or may refer to the access network device to which the terminal device is connected in the transmission path, or may refer to the access network device to which the terminal device is connected. Access network equipment connected to the core network.
  • the UE registers with the core network through multiple different access network devices, and the UE establishes MA PDU sessions through multiple different access network devices (which can be understood as multiple access networks corresponding to multiple transmission paths).
  • the equipment is different access network equipment).
  • the multiple access network devices may be different, and the multiple access network devices include access network devices with the same access type but different access technologies.
  • multiple access network devices include two or more devices among eNodeB, NG-RAN, and gNodeB; or multiple access network devices include two or more devices among N3IWF, TNGF, W-AGF, and TWIF. .
  • access network equipment with different access types can also be included.
  • the multiple access network devices are two access network devices, one of which is a 3GPP access type access network device, and the other is a 3GPP access type access network device. It is a non-3GPP access type access network equipment.
  • the UE is connected to the same access network device through different access methods (access methods such as access types or access technologies), which can be regarded as the UE establishing a MA PDU session through an access network device (can It is understood that multiple transmission paths correspond to one access network device).
  • the access network device may be a non-3GPP access network device, such as N3IWF.
  • N3IWF non-3GPP access network device
  • the UE establishes an IPSec tunnel with the N3IWF through WiFi, and registers with the core network through the N3IWF; at the same time, the UE establishes another IPSec tunnel with the same N3IWF through SNPN, and registers with the core network through the N3IWF.
  • the architecture in Figure 4 includes two transmission paths, and the access types corresponding to the two transmission paths are non-3GPP access types.
  • Combining option 1 in path 1 and path 2 the two transmission paths correspond to one access network device.
  • Combining option 2 in path 1 and path 2 the two transmission paths correspond to different access network equipment.
  • the access technology corresponding to path 1 is a non-3GPP access technology connected through WiFi (for example, it is called untrusted non-3GPP access technology 1, or called untrusted non-3GPP path 1).
  • the access technology corresponding to path 2 The technology is a non-3GPP access technology connected through SNPN (untrusted non-3GPP access technology 2, or called untrusted non-3GPP path 2).
  • the architecture in Figure 5 includes two transmission paths, and the access types corresponding to the two transmission paths are both 3GPP access types.
  • the two transmission paths correspond to different access network equipment.
  • the access technology corresponding to path 1 is LTE access technology
  • the access technology corresponding to path 2 is NR access technology.
  • the architecture in Figure 6 includes three transmission paths. Two of the three transmission paths correspond to non-3GPP access types. These two non-3GPP transmission paths correspond to the same access network device.
  • the access technologies corresponding to these two non-3GPP transmission paths are non-3GPP access technology connected through WiFi (untrusted non-3GPP access technology 1, or called untrusted non-3GPP path 1) and connection through SNPN.
  • Non-3GPP access technology non-trusted non-3GPP access technology 2, also known as non-trusted non-3GPP path 2).
  • Another 3GPP transmission path corresponds to another access network device, and the corresponding access technology is NR access technology.
  • the architecture in Figure 8 includes three transmission paths. Two of the three transmission paths correspond to the 3GPP access type. These two 3GPP transmission paths correspond to the same access network device. These two transmission paths correspond to the same access network device.
  • the access technologies corresponding to the 3GPP transmission paths are LTE access technology and NR access technology respectively.
  • Another non-3GPP transmission path corresponds to another access network device, and the corresponding access technology is a non-3GPP access technology connected through WiFi.
  • Step 901 During the multi-access session management process, the session management device (for example, SMF) obtains tunnel information corresponding to the transmission path.
  • the session management device for example, SMF
  • the multi-access session is a multi-access protocol data unit PDU session.
  • the tunnel information may indicate the destination address and/or port number of the upstream data.
  • the tunnel information may be tunnel endpoint identifier (TEID) information and/or tunnel address information (such as IP address (IP address)),
  • TEID tunnel endpoint identifier
  • IP address IP address
  • the tunnel information may be tunnel information on the core network side, and each transmission path corresponds to one tunnel information.
  • the first transmission path corresponds to the first tunnel information
  • the second transmission path corresponds to the second tunnel information
  • the third transmission path corresponds to the third tunnel. Information etc.
  • the tunnel information will be sent to the access network device to notify the access network device where the uplink data should be sent.
  • the session management device obtains the tunnel information.
  • the session management device may allocate the tunnel information corresponding to the transmission path, or the session management device may obtain the tunnel information corresponding to the transmission path from the user plane device (such as UPF).
  • the session management device allocates tunnel information, the tunnel information can also be sent to the user plane device.
  • the session management device When the session management device obtains the tunnel information corresponding to multiple transmission paths, it can obtain it at once or in multiple batches.
  • Step 902 The session management device (for example, SMF) sends the tunnel information corresponding to the transmission path and the access technology information corresponding to the transmission path (for example, the UE's registered access technology or the UE's registered access technology) to the mobility management device (such as AMF).
  • the access technology used when registering the core network the access technology information is used by the mobility management device to determine the access network device (the access network device that the UE has registered or the access network device that the UE is registered with and connected to the core network). Or the access network equipment that the UE is connected to in the transmission path).
  • the mobility management device receives the tunnel information corresponding to the transmission path and the access technology information corresponding to the transmission path from the session management device (eg, SMF).
  • the session management device eg, SMF
  • the session management device sends a transmission message to the mobile management device, and accordingly, the mobile management device receives the transmission message from the session management device; wherein the transmission message includes the The first tunnel information and access technology information corresponding to the first transmission path, and the second tunnel information and access technology information corresponding to the second transmission path. If one or more other transmission paths are included, the transmission message may also include tunnel information corresponding to the other transmission paths and access technology information corresponding to the other transmission paths. In this example, the session management device sends the tunnel information and access technology information corresponding to all transmission paths included in the multi-access session to the mobility management device in one message, which can save signaling transmission.
  • the session management device sends a first transmission message to the mobility management device, where the first transmission message includes first tunnel information and access technology information corresponding to the first transmission path; and The session management device sends a second transmission message to the mobility management device, where the second transmission message includes second tunnel information and access technology information corresponding to the second transmission path.
  • the mobility management device receives the first transmission message and the second transmission message from the session management device. If other transmission paths are also included, the session management device may also send a transmission message to the mobility management device for each other transmission path, and the transmission message may include tunnel information and access technology information corresponding to the transmission path.
  • the session management device sends a transmission message to the mobile management device for each transmission path, so that the mobile management device can learn which transmission path the information included in the message needs to be transmitted through, or can learn which transmission message needs to be transmitted to.
  • the access network device corresponding to the path sends the information included in the message.
  • the session management device when multiple transmission paths correspond to different access technologies, for each access technology, sends a transmission message to the mobility management device, and the transmission message includes the access technology. Enter technical information and corresponding tunnel information. For example, there are 3 transmission paths in total, all corresponding to non-3GPP access types, the first transmission path and the second transmission path among the 3 paths correspond to non-trusted non-3GPP access technology, and the third transmission path corresponds to trusted non-3GPP access technology.
  • the session management device may send a transmission message to the mobility management device for the non-trusted non-3GPP access technology.
  • the transmission message includes the first tunnel information corresponding to the first transmission path, the second tunnel information corresponding to the second transmission path, Access technology information (i.e., non-trusted non-3GPP access technology); the session management device sends a transmission message to the mobile management device for the trusted non-3GPP access technology, and the transmission message includes the third party of the third transmission path. Tunnel information and access technology information (i.e. trusted non-3GPP access technology).
  • the session management device sends a transmission message to the mobility management device for each access technology, which can save signaling overhead compared to sending transmission messages under each transmission path.
  • non-trusted non-3GPP access technology can also be subdivided into: non-3GPP access technology connected through WiFi, non-3GPP access technology connected through SNPN, etc.
  • this application can make detailed distinctions between multiple untrusted non-3GPP access technologies, and can add fourth information to existing access technologies to form new access technology information.
  • the fourth information is, for example, a more fine-grained access technology index/identifier (which may be called a sub-access technology index/identifier), or a path index/identifier, or IPSec tunnel information, etc.
  • the session management device may send the access technology information and fourth information to the mobility management device, where the fourth information is used to indicate a certain transmission path among multiple transmission paths (or understood as indicating a certain N2 interface, or a certain NGAP interface, or a certain logical N2 channel). Specifically, the fourth information is used to indicate (or distinguish or identify) multiple transmission paths corresponding to the same access technology. a certain transmission path in . For example, when the first transmission path and the second transmission path both correspond to the same access technology, the indication information may indicate the first transmission path or the second transmission path.
  • the access technology information and the fourth information are, for example, untrusted non-3GPP access and index 1 (or index 2, index 3, etc.).
  • IPSec tunnel information may include but is not limited to one or more of the following information: IPSec tunnel identification, IPSec tunnel address information (inner IP address and/or NAS_IP_ADDRESS).
  • the session management device instructs the mobility management device through the fourth information to send the transmission path of the tunnel information (which may also include other information), so that the mobility management device can
  • the device determines which N2 interface, next-generation application protocol NGAP interface, or logical N2 channel to send tunnel information (which may also include other information).
  • This multi-access session management method can be applied to support multiple 3GPP paths or multiple Data transmission for multi-access sessions over non-3GPP paths.
  • the transmission message introduced above may be an N1N2 message transmission message.
  • the order in which the session management device obtains the tunnel information and the session management device sends the transmission messages can be Not limited.
  • the session management device can send a transmission message every time it obtains a piece of tunnel information; it can also be that the session management device obtains all the tunnel information before sending multiple transmission messages; or the session management device can obtain part of the tunnel information. After that, part of the transmission message is sent, and other part of the tunnel information is obtained before sending another part of the transmission message.
  • Step 903 The mobility management device determines an access network device based on the access technology information corresponding to the transmission path.
  • the UE Before executing the multi-access session establishment process, the UE has performed the registration process.
  • the mobility management device knows which access network device or devices the UE is connected to, but the mobility management device does not know which access network device to send the tunnel information to. Therefore, , the mobility management device can determine the corresponding access network device according to the access technology information indicated by the session management device, and then send the tunnel information to the corresponding access network device.
  • the mobility management device can determine the access technology information of each transmission path based on the corresponding access technology information of each transmission path. Corresponding access network equipment. For example, the mobility management device determines the first access network device based on the access technology information corresponding to the first transmission path; the mobility management device determines the second access network device based on the access technology information corresponding to the second transmission path. Network access device; the mobility management device determines a third access network device based on the access technology information corresponding to the third transmission path.
  • the first access network device and the second access network device are the same access network device.
  • Step 904 The mobility management device sends the tunnel information corresponding to the transmission path to the access network device.
  • the mobility management device sends the tunnel information corresponding to each transmission path to the access network device corresponding to the transmission path. For example, the mobility management device sends the first tunnel information corresponding to the first transmission path to the first access network device of the first transmission path; the mobility management device sends the first tunnel information corresponding to the first transmission path to the second access network device of the second transmission path.
  • the access network device sends the second tunnel information corresponding to the second transmission path; the mobility management device sends the third tunnel information corresponding to the third transmission path to the third access network device of the third transmission path. .
  • the mobility management device may be The tunnel information corresponding to multiple transmission paths is sent to the access network device in one message, or the tunnel information corresponding to the transmission path can be sent separately for each transmission path.
  • the mobility management device can It functions as a forwarder and does not modify the format of the tunnel information.
  • tunnel information can be included in N2 SM information, and the mobility management device can forward the N2 SM information.
  • the N2 SM information can be included in the N1N2 message transmission message.
  • At least two of the multiple transmission paths included in the multi-access session correspond to the same access type (such as 3GPP access type or non-3GPP access type).
  • session management The device sends the access type to the mobility management device, and the mobility management device cannot identify which access network device under the access type the tunnel information (which may also include other information) is to be sent. Therefore, this application proposes that the session management device sends access technology information that is more granular than the access type to the mobile management device, and the mobile management device can accurately identify the corresponding access network device through the access technology information, that is, Each transmission path is accurately identified, so that the mobility management device can send the tunnel information (which may also include other information) to the corresponding access network device.
  • This multi-access session management method can be applied to support multiple Data transmission for multi-access sessions over 3GPP paths or multiple non-3GPP paths.
  • multiple access network devices include access network devices with the same access technology but different devices themselves (that is, the access technologies corresponding to the first transmission path and the second transmission path are the same, but the access technologies are the same.
  • the network access equipment is different).
  • multiple access network devices include multiple eNodeBs, or multiple NG-RANs, or multiple gNodeBs, or multiple N3IWFs, or multiple TNGFs, or multiple W-AGFs, or multiple TWIFs.
  • the multiple access network devices may also include access network devices with different access types.
  • the access technology information of this application needs to be able to determine the access network equipment corresponding to each transmission path.
  • the current technology The access technology information defined in cannot distinguish access network equipment with the same access technology but different equipment itself.
  • This application can use additional parameters (hereinafter referred to as fifth information) to distinguish access network devices with the same access technology but different devices themselves. That is to say, the session management device (such as SMF) needs to send the access technology information and fifth information to the mobility management device (such as AMF).
  • the fifth information is used to indicate (or distinguish or identify) multiple transmission paths.
  • a certain transmission path path can also be understood as indicating a certain access network device among multiple access network devices).
  • the fifth information is used to indicate (or distinguish ⁇ or identify) multiple transmissions corresponding to the same access technology.
  • a certain transmission path (or a certain access network device) among the paths, for example, the fifth information indicates the first transmission path or the second transmission path.
  • the fifth information is, for example, the identification of the access network device (the identification can be any logical identification, as long as different transmission paths can be identified), or the identification of the path.
  • the mobility management device may combine the access technology information and the fifth information to determine the corresponding access network device.
  • the correspondence between the access network device and the path may be determined when the UE registers (the AMF device knows the correspondence between the path identifier and the access network device). For example, when the UE registers, access network devices with the same access technology but different devices themselves are numbered as path 1, path 2, etc. For example, when the UE registers through N3IWF1, the access technology is non-trusted non-3GPP path 1 (or non-trusted non-3GPP access technology + the identifier of N3IWF1); when the UE registers through N3IWF2, the access technology is non-trusted. Trusted non-3GPP path 2 (or non-trusted non-3GPP access technology + identification of N3IWF2). In this way, during the multi-access session management process, the AMF device can find the corresponding access network device after receiving the fifth information.
  • the session management device may send the fifth information to the mobility management device without sending the access technology information.
  • the mobility management device can still determine the corresponding access network device according to the fifth information.
  • the session management device instructs the mobile management device through the fifth information the transmission path for sending tunnel information (which may also include other information). Allow the mobility management device to determine which access network device to send tunnel information (which may also include other information).
  • This multi-access session management method may be applicable to multi-access that supports multiple 3GPP paths or multiple non-3GPP paths. Session data transfer.
  • the mobile management device may also send first information to the session management device, where the first information is used to obtain the Tunnel information corresponding to the transmission path; for example, the first information includes but is not limited to one or more of the following: the first number of transmission paths that the terminal device has registered, and one or more access technology information.
  • the first information is used to obtain tunnel information corresponding to the transmission path. It can be understood that the first information can be used to determine the number of transmission paths, thereby determining the number of tunnel information.
  • the session management device may also receive first information from the mobility management device, and the session management device may obtain tunnel information corresponding to the transmission path based on the first information. Through the first information, the session management device can more accurately know the amount of tunnel information that needs to be obtained for multi-access session connection establishment.
  • the first number of transmission paths that the terminal device has registered may be the same as the number of paths included in the multi-access session; or, the first number of transmission paths that the terminal device has registered is for each access technology, and multiple The sum of the first number of registered transmission paths respectively corresponding to the access technologies is the same as the number of paths included in the multi-access session.
  • the access technology information included in the first information may be one or multiple.
  • the first information includes only one access technology information
  • usually the first information also needs to include the first number of transmission paths that the terminal device has registered. Because one access technology information cannot determine how many paths there are, one access technology information needs to be used in combination with the first number of registered transmission paths to determine the number of transmission paths included in the multi-access session. At this time, the first number of registered transmission paths is the number of paths included in the multi-access session.
  • the number of access technologies can be used independently to determine the number of access technologies.
  • the number of paths included in the access session for example, the number of access technologies is the number of paths included in the multi-access session.
  • the number of access technologies may also be used in conjunction with the first number of registered transmission paths to determine the number of paths included in the multi-access session.
  • the first number of registered transmission paths may be the number of paths included in the multi-access session; or the first number of registered transmission paths may also be the number of registered transmission paths for each access technology.
  • a number, then the sum of the first number of registered intersections respectively corresponding to the multiple access technologies is the number of paths included in the multi-access session.
  • the mobile management device sends a PDU session creation session context request (Namf_PDU Session_GreateSMContext Request) or a PDU session update session context request (Namf_PDU Session_UpdateSMContext Request) message to the session management device, and the request message includes the first information.
  • a PDU session creation session context request (Namf_PDU Session_GreateSMContext Request) or a PDU session update session context request (Namf_PDU Session_UpdateSMContext Request) message to the session management device, and the request message includes the first information.
  • the mobility management device may obtain access network information, and the access network information is used to indicate access technology information used by the terminal device.
  • the access network information includes but is not limited to one or more of the following: access node type, access technology type, access node name, access node identifier, and IPSec identifier.
  • the access node type can be WiFi AP, eNodeB, gNodeB, RAN, NG-RAN, untrusted WiFi AP, trusted WiFi AP, etc.
  • the access technology type can be WiFi, cellular network, LTE, LTE-M, NR, frequency band information, etc.
  • the access node identifier may be the identification information of the node to which the UE is connected, such as cell identifier, SSID, Global RAN Node ID, etc.
  • the mobility management device may determine the first information based on the access technology information used by the terminal device.
  • the first information includes but is not limited to: the first number of transmission paths registered by the terminal device or the access technology information corresponding to the transmission paths.
  • the UE accesses the same access network device in different ways (for example, one is that the UE is connected to the N3IWF through a wifi AP, and the other is that the UE is connected to the N3IWF through an independent non-public network.
  • SNPN is connected to the N3IWF
  • from the perspective of the mobile management device there is only one transmission path and one access technology (such as non-3GPP non-trusted access technology).
  • the access technologies corresponding to the two transmission paths are also different.
  • One is a non-3GPP access technology connected through wifi
  • the other is a non-3GPP connected through SNPN. access technology.
  • the mobile management device can obtain the access network information. Subsequently, the mobile management device can accurately determine the third transmission path of the registered transmission path of the terminal device through the access technology information used by the terminal device. A quantity or access technology information corresponding to the transmission path.
  • This multi-access session management method may be applicable to data transmission of multi-access sessions that support multiple 3GPP paths or multiple non-3GPP paths.
  • the UE first sends the access network information to the access network device corresponding to the transmission path (such as N3IWF), and then the access network device corresponding to the transmission path (such as N3IWF) sends it to the mobility management device.
  • the access network device corresponding to the transmission path such as N3IWF
  • the UE sends the access network information to the access network equipment corresponding to the transmission path (such as N3IWF), and the access network equipment corresponding to the transmission path (such as N3IWF) has changed the format, or through other equipment (such as user plane equipment) ) is sent to the mobile management device.
  • the access network equipment corresponding to the transmission path such as N3IWF
  • the UE includes the access network information in the NAS message and transparently transmits it to the mobility management device through the access network device corresponding to the transmission path (for example, N3IWF).
  • the transmission path for example, N3IWF.
  • the process of the mobile management device obtaining access network information can also refer to Figure 11 introduced later.
  • the session management device may also send second information to the policy control function PCF, where the second information is based on the first information.
  • the second information is the first information or part of the first information, or the second information may be one or more of the number of transmission paths, the first number of transmission paths registered by the terminal device, the number of access technologies, etc. item.
  • the second information is used to obtain multiple transmission paths included in the multi-access session (such as the first transmission path and the second transmission path, and of course other transmission paths may also be included) diversion information.
  • the offloading information may include one or more of offloading mode, offloading function, and threshold value.
  • the session management device sends a policy association establishment request message (SM Policy Association Establishment Request) to the policy control device (such as PCF or PCRF), and the request message includes the second information.
  • SM Policy Association Establishment Request policy association Establishment Request
  • the policy control device may determine the offload information of the multiple transmission paths based on the second information, and send the offload information to the session management device.
  • the offloading information may include one or more of offloading mode, offloading function, and threshold value.
  • the offload mode is Active-Standby mode, or Smallest Delay mode, or Load-Balancing mode, or Priority-based mode.
  • the offload information may instruct the terminal device to transmit data through a target transmission path; where the target transmission path is one or more of the transmission paths registered by the terminal device.
  • the target transmission path may include a transmission path corresponding to the same access type or a transmission path corresponding to the same access technology.
  • the policy control device sends a policy association establishment response (SM Policy Association Establishment Response) message to the session management device, and the response message includes the offload information.
  • SM Policy Association Establishment Response Policy Association Establishment Response
  • the policy control device sends policy control and charging PCC rules to the session management device, and the PCC rules include the offloading information.
  • the PCC rule may be included in the policy association establishment response message.
  • the session management device may send the offload information to a user plane device (eg, UPF).
  • a user plane device eg, UPF
  • the session management device sends an N4 Session Establishment Request message to the user plane device, and the request message includes the offload information.
  • the session management device sends a multi-access rule (MAR) to the user plane device, and the MAR rule includes offload information.
  • MAR rules can be determined based on PCC rules.
  • PCC rules are for the entire PDU session.
  • MAR rules are mainly used by user plane devices.
  • MAR rules can be part of PCC rules.
  • MAR rules are included in the N4 session establishment request message.
  • the session management device may also send the offload information to the UE.
  • the session management device may send the offload information to the mobile management device, and the mobile management device receives the offload information from the session management device (the offload information is determined based on the first information , specifically, the offload information is determined by the policy control device based on the second information (the second information is determined based on the first information), and the offload information is sent to the UE.
  • the session management device sends an ATSSS rule to the mobility management device, and the ATSSS rule includes offload information.
  • the session management device sends the N1 SM Container to the mobile management device, and the N1 SM Container includes the offload information.
  • the ATSSS rule is included in the N1 SM Container.
  • the mobility management device includes the offloading information in the NAS message and sends it to the UE.
  • the offload information sent by the session management device to the user plane device or UE may be the same as the offload information obtained by the session management device from the policy control device, or may be different. It can be understood that the session management device can determine the offload information 2 sent to the user plane device or the offload information 3 sent by the UE according to the offload information 1 sent by the policy control device. Among them, the offload information 1, offload information 2, and offload information 3 may be the same or different. For example, the session management device may convert the format of offload information 1 and obtain offload information 2 and/or offload information 3.
  • the number of paths for multi-access sessions may be greater than or equal to 2, where at least 2 paths may to correspond to the same access type.
  • the offloading information of this application can be determined based on the access technology (the access technology has a finer granularity than the access type), or based on the access technology and the fourth information, so that the offloading information can be better applied to multiple accesses.
  • Various architectures for sessions are possible.
  • the mobile management device sends first information to the session management device, where the first information includes but is not limited to one or more of the following: the first number of transmission paths that the terminal device has registered , one or more access technology information scenarios, the tunnel information of the transmission path may be determined based on the first information.
  • the session management device can allocate tunnel information corresponding to the transmission path based on the first information; specifically, the session management device can determine the number of tunnels based on the first information, and then the session management device can allocate tunnel information corresponding to the number of tunnels.
  • the session management device can also send tunnel information to the user plane device.
  • the session management device sends the first information to the user plane device, and receives the tunnel information corresponding to the transmission path from the user plane device; specifically, the session management device sends the first information to the user plane device, The user plane device determines the number of tunnels based on the first information, and the user plane device can allocate tunnel information corresponding to the number of tunnels.
  • the access network equipment corresponding to the multiple transmission paths includes non-3GPP access network equipment (the multiple transmission paths can correspond to different non-3GPP access network equipment, or the multiple transmission paths can correspond to the same non-3GPP access network equipment).
  • the first non-3GPP access network device on the first transmission path sends the third information to the mobility management device.
  • the mobility management device receives the third information from the first non-3GPP access network device on the first transmission path. information.
  • the third information includes one or more of the following: the number of Internet Protocol Security Protocol Security Alliance IPSec Child SAs established by the first non-3GPP access network device and the terminal device, the number of IPSec Child SAs corresponding to each IPSec Child SA The differentiated services code point DSCP value, the quality of service flow identifier QFI associated with each IPSec Child SA, and the tunnel identifier corresponding to each IPSec Child SA.
  • the third information may indicate the information in the form of a correspondence relationship or a mapping relationship.
  • the third information may be included in a PDU session response message (such as an N2 PDU session response message) sent by the access network device to the mobility management device.
  • the mobility management device sends the third information to the second non-3GPP access network device of the second transmission path, where the third information is used between the second non-3GPP access network device and the The terminal device establishes user plane resources.
  • This information can be subsequently used as a reference for the second non-3GPP access network device.
  • the second non-3GPP access network device can establish or adjust or modify user plane resources with the UE based on this information.
  • the second non-3GPP access network device can The user plane resources established by the 3GPP access network device and the UE are similar or identical to the user plane resources established by the first non-3GPP access network device and the UE.
  • the number of IPSec Child SAs established between the second non-3GPP access network device and the UE may be the same as the number of IPSec Child SAs established between the second non-3GPP access network device and the UE.
  • one or more quality of service flow identifiers QFI associated with the IPSec Child SA established by the second non-3GPP access network device and the UE may be associated with the IPSec Child SA established by the first non-3GPP access network device and the UE.
  • the differentiated services code point (DSCP) value associated with the IPSec Child SA established by the second non-3GPP access network device and the UE can be the same as the first The DSCP value associated with the IPSec Child SA established by the non-3GPP access network equipment and the UE is the same.
  • the third information may be included in a PDU session response message (such as an N2 PDU session response message) or a PDU session update session context request (Nsmf_PDU Session_UpdateSMContext Request) message sent by the mobility management device to the SMF device.
  • the second non-3GPP access network device Before the second non-3GPP access network device establishes the IPSec Child SA with the UE, the second non-3GPP access network device determines the number of IPSec Child SAs, for example, based on the user plane resources from the first non-3GPP access network device. Information (such as the third information introduced above) determines the number of IPSec Child SAs, and further determines the mapping relationship between each IPSec Child SA and QoS Flow (the mapping relationship is also called a correspondence relationship).
  • the second non-3GPP access network device establishes an IPSec Child SA with the UE based on the number of IPSec Child SAs and the mapping relationship between each IPSec Child SA and the QoS Flow (the mapping relationship may also be called a correspondence relationship).
  • Different non-3GPP access network devices may include different N3IWFs, for example. Then the first non-3GPP access network device and the second non-3GPP access network device If the network equipment is both N3IWF, but the two N3IWFs are different; or they include different TNGFs, then the first non-3GPP access network equipment and the second non-3GPP access network equipment are both TNGF, but the two TNGFs are different; or they include N3IWF and TNGF, then the first non-3GPP access network device is TNGF and the second non-3GPP access network device is N3IWF, or the first non-3GPP access network device is N3IWF and the second non-3GPP access network device is TNGF.
  • This example can also be applied to different transmission paths corresponding to the same non-3GPP access network device.
  • the first access network device and the second access network device are the same, for example, both are N3IWF.
  • the UE can use wifi and SNPN respectively. Connect to the N3IWF.
  • the UE can register with the core network multiple times through the same or different non-3GPP access network equipment and establish multiple access sessions, which improves the flexibility of multi-access session establishment.
  • Different transmission paths (such as different access network equipment) Or different transmission paths corresponding to the same access network equipment) can refer to each other's user plane resources to establish/adjust/modify the user plane resources established by themselves and the UE to ensure that the user plane resources corresponding to different transmission paths are the same or similar. In this way, the service quality of different transmission paths can be equal or the same.
  • FIG. 10a and Figure 10b a schematic flow chart for establishing an MA PDU session is introduced.
  • the MA PDU session corresponds to two transmission paths, and the two transmission paths correspond to different access network devices (for example, different access types). , or different access technologies).
  • Figure 10a and Figure 10b can be regarded as a whole process, and are divided into two parts only for the convenience of drawing.
  • Step 1001 (please refer to step 301): The UE sends one or more of the following to the AMF: request type (request type), ATSSS capability (Capabilities) information, PDU Session ID (PDU Session ID), and the name of the data network requested by the UE (UE Requested DNN), slice information (S-NSSAI), first capability information, etc.
  • request type request type
  • ATSSS capability Capabilities
  • PDU Session ID PDU Session ID
  • UE Requested DNN UE Requested DNN
  • slice information S-NSSAI
  • first capability information etc.
  • the request type is a multiple access session request (MA PDU Request), indicating that the session establishment request message is used to request the establishment of a multiple access PDU session.
  • MA PDU Request multiple access session request
  • ATSSS Capabilities is used to notify the network of the offloading functions supported by the UE, such as MPTCP and/or ATSSS-LL, etc.
  • the first capability information indicates whether the terminal device supports access to the network through the same access type or the same access technology. In one example, the first capability information indicates that the terminal device supports access to the network through the same access type or the same access technology. In one example, the first capability information indicates that the terminal device does not support access to the network through the same access type or the same access technology. In a specific example, the first capability information indicates that the terminal device supports access to the network through a 3GPP access type but a different access technology.
  • 3GPP access types include but are not limited to the following access technologies: NR, LTE, satellite access, high-orbit satellite access, mid-orbit satellite access, low-orbit satellite access, etc.
  • the UE sends a NAS message to the AMF, including the above information.
  • the NAS message is, for example, a PDU Session Establishment Request message.
  • Step 1002 (please refer to step 302): The AMF sends one or more of the following to the SMF: one or more access technology information (also called radio access technology type (RAT type)), The first number of transmission paths registered by the terminal equipment, the UE identity (for example, user permanent identity (subscription permanent identifier, SUPI)), DNN requested by the UE, PDU Session ID, MA PDU Request, access type (access type), first capability information, etc.
  • access technology information also called radio access technology type (RAT type)
  • RAT type radio access technology type
  • the first number of transmission paths registered by the terminal equipment the UE identity (for example, user permanent identity (subscription permanent identifier, SUPI)), DNN requested by the UE, PDU Session ID, MA PDU Request, access type (access type), first capability information, etc.
  • RAT type radio access technology type
  • the current multi-access PDU session only has two transmission paths.
  • One transmission path corresponds to the 3GPP access type, and the other transmission path corresponds to the non-3GPP access type. Therefore, the steps
  • the access type of 302 includes 3GPP access type and non-3GPP access type.
  • the radio access technology type includes a certain access technology under 3GPP access type and a certain access technology under non-3GPP access type.
  • a certain access technology includes a certain access technology under 3GPP access type and a certain access technology under non-3GPP access type.
  • the transmission paths may include two or even more transmission paths, and at least two of the multiple transmission paths correspond to the same access type (such as non-3GPP access type or 3GPP access type).
  • Multiple transmission paths may also include transmission paths of different access types.
  • the access type in step 1002 may include only non-3GPP access types, only include 3GPP access types, or include both 3GPP access types. type and non-3GPP access type.
  • the radio access technology type (RAT type) in step 1002 may be one or several access technologies under the access type (access type).
  • the first capability information indicates whether the terminal device supports access to the network through the same access type or the same access technology. In one example, the first capability information indicates that the terminal device supports access to the network through the same access type or the same access technology. In one example, the first capability information indicates that the terminal device does not support access to the network through the same access type or the same access technology.
  • the SMF may determine the form of the MA PDU session that the UE is allowed to establish based on the first capability information. For example, the SMF determines the form of the MA PDU session that the UE is allowed to establish based on the first capability information and subscription data. In addition, the SMF may also send the first capability information to the PCF, so that the PCF determines the offloading information based on the first capability information.
  • the first information sent by the AMF to the SMF includes the first number of transmission paths registered by the terminal device and/or the access technology information (ie, RAT type).
  • AMF sends a PDU session creation session context request (Nsmf_PDU Session_GreateSMContext Request) message to SMF, including the above information.
  • Nsmf_PDU Session_GreateSMContext Request PDU session creation session context request
  • step 1003 SMF obtains session management subscription data from UDM.
  • session management subscription data can be obtained through subscription retrieval or subscription update (Subscription retrieval/subscription for updates).
  • the UDM can record the access technology of the current multi-access PDU session, so that the UDM can learn the equipment serving the UE under this access technology, or so that the UDM can determine whether the UE can support the access technology.
  • the number of transmission paths in the multi-access PDU sessions will increase. Since the larger the number of transmission paths, the more network resources are occupied.
  • This application proposes an example of determining the form of the multi-access PDU session that the UE is allowed to establish based on the UE's subscription data.
  • the form of the multi-access PDU session is such as the access technology and/or the number of transmission paths corresponding to the MA PDU, etc. This can make network resource allocation more reasonable and provide differentiated services for multiple users.
  • the SMF can determine the form of the MA PDU session that the UE is allowed to establish based on the UE's subscription data.
  • the SMF obtains the first capability information (for example, the first capability information is obtained in step 1002).
  • the first capability information indicates whether the terminal device supports access to the network through the same access type or the same access technology. In one example, the first capability information indicates that the terminal device supports access to the network through the same access type or the same access technology. In one example, the first capability information indicates that the terminal device does not support access to the network through the same access type or the same access technology.
  • the SMF determines the session form that the terminal device allows to establish based on the first capability information and the subscription data of the terminal device. For example, when the first capability information indicates that the terminal device supports two When one (or more) 3GPP access types access the network, the SMF may determine that the MA PDU session allowed to be established by the UE includes transmission paths of two 3GPP access types (for example, the transmission path on the access network side of the MA PDU session includes Two 3GPP access networks).
  • UDM can determine the MA PDU session format that the UE is allowed to establish based on the UE's subscription data, and UDM feeds back the MA PDU session format that the UE is allowed to establish to the SMF.
  • the SMF sends the access technology information used when the UE registers and/or the first number of transmission paths registered by the UE to the UDM.
  • the UDM determines the MA PDU session form that the UE is allowed to establish based on the UE's subscription data, and indicates to the SMF the permission or Not allowed. Furthermore, if it is not allowed, it can also indicate which access technologies are allowed, and/or the number of allowed paths, etc., so that the access technology information used when the UE registers and/or the transmission path for the UE registration mentioned below
  • the first number is the number of allowed access technology information and/or transmission paths.
  • Step 1004 SMF sends one or more of the following to AMF: session context identifier, cause.
  • SMF sends a PDU session creation session context response (Nsmf_PDU Session_GreateSMContext Response) message to AMF.
  • Nsmf_PDU Session_GreateSMContext Response PDU session creation session context response
  • step 1005 Execute PDU session authentication or authorization process. This application places no restrictions on this process.
  • Step 1006 SMF sends one or more of the following to PCF: UE identity (for example, user permanent identifier (subscription permanent identifier, SUPI)), DNN requested by UE, PDU Session ID, MA PDU Request, Access type (access type), access technology information (or radio access technology type (RAT type)), the first number of transmission paths registered by the terminal device, the first capability information, etc.
  • UE identity for example, user permanent identifier (subscription permanent identifier, SUPI)
  • DNN requested by UE
  • PDU Session ID for example, user permanent identifier (subscription permanent identifier, SUPI)
  • PDU Session ID for example, user permanent identifier (subscription permanent identifier, SUPI)
  • PDU Session ID for example, user permanent identifier (subscription permanent identifier, SUPI)
  • MA PDU Request for example, Access type (access type), access technology information (or radio access technology type (RAT type)
  • RAT type radio access technology type
  • the information sent by the SMF to the PCF in step 1006 can be determined based on the information received by the SMF in step 1002.
  • the information received in step 1002 may be directly sent to the PCF, or the format or content of the information received in step 302 may be converted and then sent to the PCF.
  • SMF sends this information to PCF, which can be used to establish session policy association with the PCF.
  • SMF sends a policy association establishment request (SM Policy Association Establishment Request) message to PCF, including the above information.
  • SM Policy Association Establishment Request SM Policy Association Establishment Request
  • Step 1007 (please refer to step 307): PCF sends offload information to SMF.
  • the steering information includes one or more of steering mode, steering functionality, and threshold value.
  • PCF sends policy control and charging PCC rules to SMF.
  • PCC rules include multi-access PDU session control information.
  • the multi-access PDU session control information includes but is not limited to one or more of the following: steering mode, steering functionality, threshold value, etc. .
  • the PCF determines the offload information based on the first capability information obtained in step 1006.
  • the PCF determines the offloading information based on the UE's subscription data.
  • the PCF determines the offloading information based on the UE's subscription data and first capability information.
  • PCF sends a policy association establishment response (SM Policy Association Establishment Response) message to SMF, including the above information.
  • SM Policy Association Establishment Response Policy Association Establishment Response
  • the number of paths for multi-access sessions can be greater than or equal to 2, and at least 2 paths can correspond to the same access type.
  • the offload information of this application can be based on access technology (access technology (which has a finer granularity than the access type), or based on three or even more paths, so that the diversion determined The information can be better adapted to the multiple possible forms of multi-access PDU sessions.
  • the SMF may send the access technology information used when the UE registers and/or the number of paths the UE has registered to the PCF.
  • the PCF may determine the PCC rule based on the access technology information used when the UE registers and/or the number of paths that the UE has registered. Combining the introduction of steps 1002 and 1003, the access technology information used when the UE registers and/or the number of paths the UE has registered can come from the AMF or the UDM.
  • the existing MA PDU session has at most two transmission paths, and one of the transmission paths is a 3GPP access type, and the other transmission path is a non-3GPP access type, so the transmission is selected in the existing offload mode.
  • Path is equivalent to selecting access type.
  • selecting a transmission path is not equivalent to selecting an access type. It should be enhanced to select a specific transmission path or select an access technology. That is to say, for the offload mode, it is the choice of transmission path or access technology, rather than the choice of access type.
  • PCF sends a policy association establishment response (SM Policy Association Establishment Response) message to SMF, including the above information.
  • SM Policy Association Establishment Response Policy Association Establishment Response
  • Step 1008 SMF selects the appropriate UPF. There are no restrictions on this process.
  • Step 1009a (please refer to step 309a): The SMF sends one or more of the following to the UPF selected in step 1008: offload information, the first number of transmission paths registered by the terminal device, and the number of access technologies.
  • the steering information includes one or more of steering mode, steering functionality, and threshold value.
  • the N4 rules include but are not limited to one or more of the following: packet detection rule (PDR), forwarding action rule (FAR) , multi access rule (MAR) and other rules.
  • the MAR rules include but are not limited to one or more of the following: offload mode, offload function, threshold value (can be determined based on the offload mode, offload function, threshold value in step 1007) and other information.
  • the N4 rule can be determined based on the PCC rule. For example, the PCC rule is for the entire PDU session, the N4 rule is mainly used by UPF, and the N4 rule can be a part of the PCC rule.
  • SMF sends an N4 Session Establishment Request message to UPF, including the above information.
  • the offload information may include forwarding action rules under different transmission paths.
  • the offload information may include forwarding action rules corresponding to the first access technology and/or forwarding action rules corresponding to the second access technology.
  • the offload information may include forwarding action rules corresponding to the first transmission path and/or forwarding action rules corresponding to the second transmission path.
  • the forwarding action rules are based on the access type as the granularity.
  • the forwarding action rules can be based on the access technology as the granularity, without partitioning the access type; or the forwarding action rules can be based on the transmission path as the granularity, No distinction is made between access types or access technologies.
  • Table 1 Forwarding action rules at access technology granularity.
  • Table 2 Forwarding action rules at transmission path granularity.
  • Step 1009b (please refer to step 309b): UPF sends multiple (2, 3, or even more) tunnel information to SMF.
  • the tunnel information is tunnel information on the core network side (CN tunnels info).
  • the UPF determines the number of tunnels based on the first number of transmission paths registered by the terminal device and/or the number of access technologies, and the UPF may allocate tunnel information corresponding to the number of tunnels.
  • the number of transmission paths may be greater than 2
  • the first number of transmission paths and/or the number of access technologies registered by the terminal device can be informed to the UPF, so that the UPF can accurately allocate the Tunnel information corresponding to the number of transmission paths accessing the PDU session.
  • UPF sends an N4 Session Establishment Response (N4 Session Establishment Response) message to SMF, including the above information.
  • N4 Session Establishment Response N4 Session Establishment Response
  • the SMF establishes an N4 connection with the UPF selected in step 1008.
  • Step 1010 (please refer to step 310): The SMF sends the first tunnel information corresponding to the first transmission path and the access technology information corresponding to the first transmission path to the AMF.
  • the access technology information can indicate which access technology path the AMF uses to transmit the tunnel information (which may also include other information), so that the AMF can send tunnel information (which may also include other information) to the access network device corresponding to the access technology path. information). For example, if the UE accesses both through the 4G access network equipment (eNodeB) and through the 5G access network equipment (NG-RAN), then at this time, the SMF not only instructs the AMF to send tunnel messages through 3GPP access (it can also Including other information), it can further indicate whether to send the tunnel message (which can also include other information) through LTE access technology or NR access technology, so that the AMF can determine whether to send the tunnel message (which can also include other information). To eNodeB or NG-RAN, or gNodeB.
  • eNodeB 4G access network equipment
  • NG-RAN 5G access network equipment
  • the first tunnel information will be sent to the access network device corresponding to the access technology, for example, it is called the first access network device, and is used to notify the first access network device where the uplink data should be sent (can be understood as uplink data destination address).
  • this application proposes SMF to AMF By sending access technology information that is more granular than the access type, AMF can accurately identify the corresponding access network equipment through the access technology information, that is, accurately identify each transmission path. In this way, AMF can The information (which may also include other information) is sent to the corresponding access network device to realize the management of multiple access PDU sessions.
  • the first tunnel information corresponding to the first transmission path may be included in the N2 interface session management information (N2 SM information).
  • N2 SM information For example, SMF sends N2 interface session management information (N2 SM information) and access technology information to AMF.
  • SMF can also send offload information to AMF (can come from step 1007).
  • the offload information can be included in the N1 SM Container, then SMF can also send N1 interface session management to AMF.
  • Container N1 SM Container
  • N2 SM information includes but is not limited to one or more of the following: PDU Session ID (which can be reported by the UE in step 1001), the first tunnel information on the core network side (CN Tunnel Info ) (can come from a certain CN Tunnel Info in step 1009b), QoS template (QoS profile), associated QoS flow identifier (associated QFI), etc.
  • PDU Session ID which can be reported by the UE in step 1001
  • CN Tunnel Info the first tunnel information on the core network side
  • QoS template QoS profile
  • associated QFI associated QFI
  • the N1 SM Container includes but is not limited to one or more of the following: PDU Session Establishment Accept message (can be regarded as a reply/response to the PDU session establishment request in step 1001), offload information and other session-related information.
  • the offloading information can be included in the ATSSS rule (rule), and the ATSSS rule includes but is not limited to one or more of the following: offloading mode, offloading function, threshold value (can come from step 1007) and other information.
  • the information in the N1 SM Container is sent to the UE by the SMF through the AMF.
  • the AMF sends the N1 SM Container to the UE through the NAS message.
  • ATSSS rules can include the following information:
  • Table 3 Offload information at access technology granularity.
  • Table 4 Offload information at transmission path granularity.
  • the SMF sends a N1N2 message transfer (Namf_Communication_N1N2MessageTransfer) message to the AMF, including the above information.
  • N1N2 message transfer (Namf_Communication_N1N2MessageTransfer) message to the AMF, including the above information.
  • the AMF device can also send a response to the SMF device to indicate receipt of information from the SMF device.
  • Step 1011 (please refer to step 311): The AMF sends the first tunnel information corresponding to the transmission path where the first access network device is located to the first access network device.
  • the AMF sends N2 SM information to the first access network device (which may come from step 1010).
  • the N2 SM information includes but is not limited to the first tunnel information.
  • the AMF may also send the offload information to the first access network device, and the first access network device sends the offload information to the UE.
  • the access network equipment can forward (that is, transparently transmit) the offload information.
  • the AMF sends the N1 SM Container to the first access network device, and the N1 SM Container includes but is not limited to offloading information.
  • the AMF sends a NAS message to the first access network device (the NAS message needs to be sent to the UE), and the NAS message includes but is not limited to offloading information.
  • the NAS message includes but is not limited to N1 SM Container (which may come from step 1010), and the N1 SM Container includes but is not limited to offload information.
  • the NAS message may also include but is not limited to one or more of the following: PDU Session ID (can come from the N2 SM information in step 1010), PDU Session Establishment Accept message , ATSSS rules (rules) and other information.
  • PDU Session ID can come from the N2 SM information in step 1010
  • PDU Session Establishment Accept message PDU Session Establishment Accept message
  • ATSSS rules rules
  • offload information can be included in ATSSS rules.
  • the UE Before executing the multi-access PDU session establishment process, the UE has performed the registration process.
  • the AMF knows which access network devices the UE is registering on.
  • the AMF can determine the corresponding access network device based on the access technology information indicated by the SMF. , and sends this information to the corresponding access network equipment.
  • the AMF sends an N2 PDU session request message to the first access network device, including the above information.
  • Step 1012 (please refer to step 312 or step 319): the first access network device establishes (or adjusts or modifies) user plane resources with the UE.
  • the first access network device is an access network device corresponding to the 3GPP access type
  • the first access network device establishes (or adjusts or modifies) air interface resources with the UE, and the access network performs specific resource settings (AN-specific resource setup) to establish the data radio bearer DRB.
  • the first access network device is an access network device corresponding to a non-3GPP access type (for example, N3IWF)
  • the first access network device and the UE establish (or adjust or modify) Internet Protocol security for transmitting user plane data.
  • Protocol Security Alliance IPSec Child SA
  • the first access network device will allocate the IP address of the IPSec Child SA (for example, UP_IP_ADDRESS) to the UE. That is, when the UE sends uplink data, the destination IP address should be set to UP_IP_ADDRESS, and the source IP address should be The "inner" IP address is assigned during registration.
  • the number of IPSec Child SAs established between the UE and the first access network device corresponding to the non-3GPP access type, and what quality of service flow (QoS Flow) data each IPSec Child SA transmits are based on the first access network device.
  • QoS Flow quality of service flow
  • the first access network device corresponding to the non-3GPP access type can determine the number of IPSec Child SAs based on the number of QoS Flows, and can also determine the mapping relationship between each IPSec Child SA and QoS Flow (the mapping relationship can also be called a correspondence relationship) .
  • the first access network device sends an Internet Key Exchange Protocol Create Child Security Association Request (IKE_Create_Child_SA request) message to the UE.
  • IKE_Create_Child_SA request can Indicates that the requested IPSec Child SA is running in tunnel mode.
  • the request message includes but is not limited to one or more of the following: one or more QFIs associated with the Child SA, the PDU session identifier associated with the Child SA, the DSCP value associated with the Child SA, Default Child SA indication information, other QoS information, IPSec Child SA IP address (such as UP_IP_ADDRESS).
  • the UE may also send an Internet Key Exchange Protocol Create Child Security Association Request (IKE_Create_Child_SA request) message to the first access network device.
  • IKE_Create_Child_SA request Internet Key Exchange Protocol Create Child Security Association Request
  • the first access network device access network device corresponding to a non-3GPP access type (such as N3IWF)
  • the IP addresses such as UP_IP_ADDRESS
  • the first access network device and the UE can repeat the above process of sending requests and responses, and allocate different IP addresses of the IPSec Child SA (for example, UP_IP_ADDRESS).
  • the first access network device may send the offloading information to the UE.
  • the first access network device sends the N1 SM Container to the UE, and the N1 SM Container includes offloading information.
  • the first access network device sends a NAS message to the UE, and the NAS message includes offloading information.
  • the NAS message includes N1 SM Container (which may come from step 1011), and the N1 SM Container includes offloading information.
  • the NAS message may also include but is not limited to one or more of the following: PDU Session ID, PDU Session Establishment Accept message, ATSSS rule, and other information.
  • the offload information can Included in ATSSS rules.
  • the NAS message is sent to the UE by the access network device corresponding to the 3GPP access type.
  • Step 1013 (please refer to step 313): The first access network device sends the access network tunnel information (AN tunnels info) of the first access network device side to the AMF.
  • the access network side of the first access network device side The tunnel information is used to notify UPF where the downlink data should be sent.
  • the AN tunnels info on the first access network device side will be sent to UPF via AMF and SMF later. Please refer to step 1013, step 1014 and step 1015.
  • the first access network device may also send one or more of the following (i.e., the third information mentioned above) to the AMF device: the Internet Protocol security protocol established by the first access network device and the terminal device.
  • the subsequent AMF sends the third information to the second non-3GPP access network device of the second transmission path, and the third information is used to establish a user between the second non-3GPP access network device and the terminal device. resources.
  • This information can be subsequently used as a reference for the second non-3GPP access network device, and the second non-3GPP access network device can establish or adjust or modify user plane resources with the UE based on this information.
  • the first access network device sends an N2 PDU session response message to the AMF, including the above information.
  • Step 1014 (refer to step 314): The AMF sends the access network tunnel information (AN tunnels info) on the first access network device side to the SMF (can come from step 313).
  • AN tunnels info access network tunnel information
  • the AMF sends an N2 PDU session response message to the SMF, and the N2 PDU session response message includes the access network tunnel information (AN tunnels info) on the first access network device side.
  • the access network tunnel information AN tunnels info
  • the AMF sends a PDU session update session context request (Nsmf_PDU Session_UpdateSMContext Request) message to the SMF.
  • the request message includes the access network tunnel information (AN tunnels info) on the first access network device side.
  • the PDU session update session context request message includes an N2 PDU session response message, and the N2 PDU session response message includes access network tunnel information (AN tunnels info) on the first access network device side.
  • Step 1015 (please refer to step 315): The SMF sends the access network side tunnel information (AN tunnels info) on the first access network device side to the UPF.
  • AN tunnels info access network side tunnel information
  • SMF sends access network side tunnel information (AN tunnels info) on the first access network device side to UPF through the N4 Session Modification process.
  • AN tunnels info access network side tunnel information
  • Step 1016 (please refer to step 316): SMF sends success or failure indication information to AMF.
  • SMF sends a PDU Session Update Session Context Response (Nsmf_PDU Session_UpdateSMContext Response) message to AMF.
  • the response message includes indication information of successful update or failed update.
  • SMF can also send a failure reason value to AMF.
  • Step 1017 (please refer to step 317): The SMF sends the second tunnel information corresponding to the second transmission path and the access technology information corresponding to the second transmission path to the AMF.
  • the access technology information can indicate which access technology path the AMF uses to transmit the tunnel information (which may also include other information), so that the AMF can send tunnel information (which may also include other information) to the access network device corresponding to the access technology path. information).
  • the second tunnel information will be sent to the access network device corresponding to the access technology, for example, it is called the second access network device, using Notifying the second access network device where the uplink data should be sent (which can be understood as the destination address of the uplink data).
  • this application proposes SMF Send access technology information that is more granular than the access type to AMF.
  • AMF can use the access technology information to accurately identify the access network device corresponding to when the UE has registered, that is, accurately identify each transmission path, so that , AMF can send tunnel information (which may also include other information) to the corresponding access network device to achieve accurate multi-access PDU session management.
  • the second tunnel information corresponding to the second transmission path may be included in the N2 interface session management information (N2 SM information).
  • N2 SM information For example, SMF sends N2 interface session management information (N2 SM information) and access technology information to AMF.
  • SMF can also send the offload mode to AMF (can come from step 1007).
  • the offload mode can be included in the N1 SM Container, then the SMF can also send the N1 interface session management container (N1 SM Container) to the AMF. . If the N1 interface session management container (N1 SM Container) has been sent through the first access network device in step 1010, there is no need to send it in step 1017. Of course, for reliable transmission, it can also be sent again. The following is an example of not sending the N1 interface session management container (N1 SM Container) in step 1017.
  • N2 SM information includes but is not limited to one or more of the following: PDU Session ID (which can be reported by the UE in step 1001), the second tunnel information (CN Tunnel Info) on the core network side ) (can come from another CN Tunnel Info in step 1009b, the CN Tunnel Info in step 1017 is different from the CN Tunnel Info in step 1010), QoS template (QoS profile), associated QoS flow identification (associated QFI), etc. .
  • the N2 SM information is sent by the SMF to the second access network device through the AMF.
  • the SMF sends a N1N2 message transfer (Namf_Communication_N1N2MessageTransfer) message to the AMF, including the above information.
  • N1N2 message transfer (Namf_Communication_N1N2MessageTransfer) message to the AMF, including the above information.
  • the AMF device can also send a response to the SMF device to indicate receipt of information from the SMF device.
  • Step 1018 (please refer to step 318): The AMF sends the second tunnel information corresponding to the transmission path where the second access network device is located to the second access network device.
  • the AMF sends N2 SM information to the second access network device (which may come from step 1010).
  • the N2 SM information includes but is not limited to the second tunnel information.
  • the UE Before executing the multi-access PDU session establishment process, the UE has performed the registration process.
  • the AMF knows which access network devices the UE is registering on.
  • the AMF can determine the corresponding access network device based on the access technology information indicated by the SMF. , and sends this information to the appropriate access network equipment.
  • the first access network device may also send one or more of the following to the AMF device (i.e., the third information mentioned above): the first non-3GPP access network device establishes a connection with the terminal device The number of Internet Protocol Security Protocol sub-security association IPSec Child SAs, the differentiated services code point DSCP value corresponding to each IPSec Child SA, the quality of service flow identifier QFI associated with each IPSec Child SA, and the identifier corresponding to each IPSec Child SA.
  • the AMF device i.e., the third information mentioned above
  • the subsequent AMF sends the third information to the second non-3GPP access network device of the second transmission path, and the third information is used to establish a user between the second non-3GPP access network device and the terminal device. resources.
  • this information can be sent to the second access network device (non-3GPP access network device) for reference to the second access network device.
  • the second access network device can be based on Establish, adjust or modify user plane resources with the UE based on this information.
  • the AMF sends an N2 PDU session request message to the second access network device, including the above information.
  • Step 1019 the second access network device establishes (or adjusts or modifies) user plane resources with the UE.
  • the second access network device is an access network device corresponding to the 3GPP access type
  • the second access network device establishes (or adjusts or modifies) air interface resources with the UE, and the access network performs specific resource settings (AN-specific resource setup) to establish the data radio bearer DRB.
  • the second access network device is an access network device corresponding to a non-3GPP access type
  • the second access network device and the UE establish (or adjust or modify) an Internet Protocol Security Protocol security association for transmitting user plane data.
  • IPSec Child SA Internet Protocol Security Protocol security association
  • the second access network device will allocate the IP address of the IPSec Child SA (such as UP_IP_ADDRESS) to the UE. That is, when the UE sends uplink data, the destination IP address should be set to UP_IP_ADDRESS, and the source IP address is The "inner" IP address is assigned during registration.
  • the number of IPSec Child SAs established between the UE and the second access network device corresponding to the non-3GPP access type, and what quality of service flow (QoS Flow) data each IPSec Child SA transmits can be based on the second access network device.
  • the second access network device can determine the number of IPSec Child SAs based on the number of QoS Flows, and can also determine the mapping relationship between each IPSec Child SA and QoS Flow (the mapping relationship can also be called a correspondence relationship).
  • the second access network device sends an Internet Key Exchange Protocol Create Child Security Association Request (IKE_Create_Child_SA request) message to the UE.
  • IKE_Create_Child_SA request can Indicates that the requested IPSec Child SA is running in tunnel mode.
  • the request message includes but is not limited to one or more of the following: one or more QFIs associated with the Child SA, the PDU session identifier associated with the Child SA, the DSCP value associated with the Child SA, Default Child SA indication information, other QoS information, IPSec Child SA IP address (such as UP_IP_ADDRESS).
  • the UE may also send an Internet Key Exchange Protocol Create Child Security Association Request (IKE_Create_Child_SA request) message to the second access network device.
  • IKE_Create_Child_SA request Internet Key Exchange Protocol Create Child Security Association Request
  • the second access network device access network device corresponding to a non-3GPP access type (such as N3IWF)
  • the IP addresses such as UP_IP_ADDRESS
  • the second access network device and the UE can repeat the above process of sending requests and responses, and allocate different IP addresses of the IPSec Child SA (for example, UP_IP_ADDRESS).
  • the second access network device may refer to one or more of the following (i.e., the third information mentioned above): the Internet Protocol Security Protocol Security Alliance IPSec Child established by the first non-3GPP access network device and the terminal device.
  • the number of SAs, the differentiated services code point DSCP value corresponding to each IPSec Child SA, the quality of service flow identifier QFI associated with each IPSec Child SA, and the identifier corresponding to each IPSec Child SA are used to establish, adjust or modify users with the UE. resources.
  • the user plane resources established by the second access network device and the UE are similar or identical to the user plane resources established by the first access network device and the UE.
  • the number of IPSec Child SAs established between the second access network device and the UE may be the same as the number of IPSec Child SAs established between the second access network device and the UE.
  • one or more quality of service flow identifiers QFI associated with the IPSec Child SA established by the second access network device and the UE may be associated with one or more IPSec Child SAs established by the first access network device and the UE.
  • the quality of service flow identifier QFI is the same; and/or the differentiated service code point DSCP value corresponding to the IPSec Child SA established by the second access network device and the UE can correspond to the IPSec Child SA established by the first access network device and the UE.
  • the DSCP values are the same.
  • the second access network device Before the second access network device establishes the IPSec Child SA with the UE, when the second access network device determines the number of IPSec Child SAs, for example, it may be based on the user plane resource information from the first access network device (such as the above-mentioned third 3. Information) Determine the number of IPSec Child SAs, and also determine the mapping relationship between each IPSec Child SA and QoS Flow (the mapping relationship can also be called the correspondence relationship). Furthermore, the second access network device establishes an IPSec Child SA with the UE based on the number of IPSec Child SAs and the mapping relationship between each IPSec Child SA and QoS Flow (the mapping relationship can also be called a correspondence relationship).
  • Step 1020 (please refer to step 320):
  • the second access network device sends the access network tunnel information (AN tunnels info) of the second access network device side to the AMF.
  • the access network side of the second access network device side The tunnel information is used to notify UPF where the downlink data should be sent.
  • the AN tunnels info on the second access network device side will be sent to UPF via AMF and SMF later. Please refer to step 1020, step 1021 and step 1022.
  • the second access network device sends an N2 PDU session response message to the AMF, including the above information.
  • Step 1021 (refer to step 321): The AMF sends the access network tunnel information (AN tunnels info) on the second access network device side to the SMF (can come from step 1013).
  • AN tunnels info access network tunnel information
  • the AMF sends an N2 PDU session response message to the SMF, and the N2 PDU session response message includes the access network tunnel information (AN tunnels info) on the second access network device side.
  • the access network tunnel information AN tunnels info
  • the AMF sends a PDU session update session context request (Nsmf_PDU Session_UpdateSMContext Request) message to the SMF.
  • the request message includes the access network tunnel information (AN tunnels info) on the first access network device side.
  • the PDU session update session context request message includes an N2 PDU session response message, and the N2 PDU session response message includes access network tunnel information (AN tunnels info) on the second access network device side.
  • Step 1022 (please refer to step 322): The SMF sends the access network side tunnel information (AN tunnels info) on the second access network device side to the UPF.
  • AN tunnels info access network side tunnel information
  • SMF sends access network side tunnel information (AN tunnels info) on the second access network device side to UPF through the N4 Session Modification process.
  • AN tunnels info access network side tunnel information
  • Step 1023 SMF sends success or failure indication information to AMF.
  • SMF sends a PDU Session Update Session Context Response (Nsmf_PDU Session_UpdateSMContext Response) message to AMF.
  • the response message includes indication information of successful update or failed update.
  • SMF can also send a failure reason value to AMF.
  • the UE also needs to establish a user plane channel through other access network equipment, it can perform a process similar to steps 1017 to 1023 again. It should be noted that the access technology information corresponding to the transmission path sent by the SMF through the AMF needs to meet AMF determines the corresponding access network equipment.
  • the user plane connection established between the access network device and the UE may be established in the same manner as the user plane connection established under the access technology.
  • Figure 10a and Figure 10b can also be applied to the scenario where the access network devices corresponding to the two (or more than two) transmission paths are the same, that is, the first access network device and the second access network device are the same.
  • Access network equipment In this case, the UE is connected to the same access network equipment through different access methods (access methods such as access types or access technologies). It can be regarded as the UE establishing an access network equipment through one access network equipment.
  • MA PDU session can be understood as multiple transmission paths corresponding to one access network device).
  • the access network device may be a non-3GPP access network device, such as N3IWF.
  • N3IWF non-3GPP access network device
  • the UE uses WiFi Establish an IPSec tunnel with the N3IWF and register with the core network through the N3IWF; at the same time, the UE establishes another IPSec tunnel with the same N3IWF through SNPN and register with the core network through the N3IWF.
  • the access technology corresponding to the first transmission path where the first access network device is located may be called a non-3GPP access technology connected through wifi (or an untrusted non-3GPP access technology 1, or an untrusted non-3GPP access technology).
  • untrusted N3GPP path 1 the access technology corresponding to the second transmission path where the first access network device is located can be called a non-3GPP access technology connected through SNPN (or called a non-3GPP access technology).
  • Trusted non-3GPP access technology 2 is called untrusted non-3GPP path 2 (untrusted N3GPP path 2)).
  • the AMF will send multiple tunnel information to the same N3IWF, but through different N2 messages, or N2 interfaces, or logic N2 channel transmission will cause the N3IWF to map the received information to different transmission paths or the N3IWF to send information to the UE in different ways (for example, send it to the UE through the WiFi transmission path or send it to the UE through the SNPN connection). Therefore, the access technology used by the SMF to instruct the AMF to send information (such as N1N2 messages) needs to be able to distinguish which N2 message, or N2 interface, or logical N2 channel.
  • the untrusted non-3GPP access technology can be numbered (for example, untrusted non-3GPP access technology 1, untrusted non-3GPP access technology 2), or the identification of the transmission path can be added to the access technology ( For example, untrusted non-3GPP path 1, untrusted non-3GPP path 2); so that the AMF indication information needs to be able to distinguish different transmission paths.
  • N3IWF can determine the number of IPSec Child SAs in transmission path 2 and the corresponding DSCP value based on the number of IPSec Child SAs determined in transmission path 1, and associate each IPSec Child SA with the same one or more QFI, DSCP value etc.
  • This application proposes an example in which the UE registers to the core network multiple times through the same access network device.
  • the UE accesses the same access network device through different methods (for example, one is that the UE connects to the N3IWF through a wifi AP, The other is that the UE is connected to the N3IWF through an independent non-public network SNPN).
  • the access network devices corresponding to the multiple transmission paths corresponding to the multi-access session management may be the same access network device, and the multiple transmission paths corresponding to the multi-access session management correspond to different access technologies. From the perspective of mobile management equipment, there is only one transmission path and one access technology (such as non-3GPP non-trusted access technology).
  • the access technologies corresponding to the two transmission paths are also different.
  • One is a non-3GPP access technology connected through wifi, and the other is a non-3GPP connected through SNPN. access technology.
  • This example allows the mobility management device to identify the method or access technology used by the UE to connect to the access network device (for example, N3IWF).
  • Step 1101a Please refer to step 201a: The UE connects to the untrusted non-3GPP access network and is assigned an IP address.
  • the untrusted non-3GPP access network here can be an access network deployed by a non-operator, and can include access points (access points, APs), routers, switches, gateways and other equipment. Subsequently, the UE can communicate with the N3IWF through the non-trusted non-3GPP access network.
  • Step 1101b (please refer to step 201b): The UE selects the N3IWF and obtains the address information of the N3IWF.
  • Step 1102 (please refer to step 202): UE and N3IWF establish the Internet Protocol Security Protocol Security Alliance IPSec SA.
  • the UE establishes an IPSec SA with the N3IWF by initiating an initial exchange of Internet key exchange protocol (IKE).
  • IKE Internet key exchange protocol
  • Step 1103 (please refer to step 203): UE sends the terminal device identification to the N3IWF selected in step 1101b (UE ID).
  • the UE sends the access network information to the N3IWF selected in step 1101b.
  • the access network information may be used to indicate access technology information used by the UE.
  • the mobility management device may determine the first number of transmission paths registered by the terminal device or the access technology information corresponding to the transmission paths according to the access technology information used by the terminal device.
  • the access network information includes but is not limited to one or more of the following information: access node type, access technology type, access node name, access node identifier, and IPSec identifier.
  • the access node type can be WiFi AP, eNodeB, gNodeB, RAN, NG-RAN, untrusted WiFi AP, trusted WiFi AP, etc.
  • the access technology type can be WiFi, cellular network, LTE, LTE-M, NR, frequency band information, etc.
  • the access node identification may be the identification information of the node to which the UE is connected, such as cell identification, SSID, Global RAN Node ID, closed access group identification (closed access group, CAG) identification, etc.
  • the UE sends a request message to N3IWF.
  • the request message includes one or more of the following: terminal equipment identification (UE ID), access network information.
  • UE ID terminal equipment identification
  • the request message does not include the AUTH payload, which indicates that the request message is used for interactive extended authentication protocol (EAP) signaling.
  • EAP interactive extended authentication protocol
  • the request message is a key exchange protocol authentication IKE_AUTH request message.
  • Step 1104 (please refer to step 204): N3IWF sends an extended authentication protocol request (EAP Request) data packet to the UE.
  • EAP Request extended authentication protocol request
  • N3IWF sends a response message to the UE, which includes an Extended Authentication Protocol Request (EAP Request) packet.
  • EAP Request Extended Authentication Protocol Request
  • the response message is a key exchange protocol authentication IKE_AUTH response message.
  • the EAP Request packet may include a start (e.g. 5G-Start) packet.
  • the EAP-Request data packet (such as 5G-Start data packet) is used to notify the UE to initiate an EAP (such as EAP-5G) session. It can also be understood that the EAP-Request data packet (such as 5G-Start data packet) is used to notify the UE It is possible to start sending non-access stratum (NAS) messages.
  • NAS non-access stratum
  • the NAS message is usually encapsulated in an EAP (such as EAP-5G) data packet.
  • Step 1105 Please refer to step 205): The UE sends an Extended Authentication Protocol Response (EAP-Response) data packet to the N3IWF.
  • EAP-Response Extended Authentication Protocol Response
  • the UE sends a request message to the N3IWF, and the request message includes an Extended Authentication Protocol Response (EAP-Response) data packet.
  • the request message is a key exchange protocol authentication (IKE_AUTH) request message.
  • the EAP-Response data packet may include a NAS (eg, 5G-NAS) data packet, and the NAS data packet may include an access network (AN) parameter and a registration request message.
  • the AN parameter contains parameter information used by N3IWF to select AMF.
  • the parameter information can include one or more of the following: globally unique AMF identifier (GUAMI), public land mobile network (PLMN ID) ), network identification (NID), etc.
  • GUIAMI globally unique AMF identifier
  • PLMN ID public land mobile network
  • NID network identification
  • the registration request message is contained in a non-access stratum PDU (NAS-PDU).
  • the registration request message includes the first capability information.
  • the first capability information indicates whether the terminal device supports access to the network through the same access type or the same access technology. In one example, the first capability information indicates that the terminal device supports access to the network through the same access type or the same access technology. In one example, the first capability information indicates that the terminal device does not support access to the network through the same access type or the same access technology.
  • the UE sends the access network information to the N3IWF.
  • the access network information may be used to indicate access technology information used by the UE.
  • the mobility management device can use the access technology information of the terminal device to information, and determine the first number of transmission paths registered by the terminal device or the access technology information corresponding to the transmission paths.
  • the access network information includes but is not limited to one or more of the following information: access node type, access technology type, access node name, access node identifier, and IPSec identifier.
  • the access node type can be WiFi AP, eNodeB, gNodeB, RAN, NG-RAN, untrusted WiFi AP, trusted WiFi AP, etc.
  • the access technology type can be WiFi, cellular network, LTE, LTE-M, NR, frequency band information, etc.
  • the access node identifier may be the identification information of the node to which the UE is connected, such as cell identifier, SSID, Global RAN Node ID, etc.
  • the access network information may be included in the AN parameter; or the access network information may be included in the NAS (eg 5G-NAS) data packet.
  • Step 1106a (refer to step 206a):
  • the N3IWF may perform AMF selection based on the AN parameters received in step 1105.
  • Step 1106b (please refer to step 206b): N3IWF sends the registration request message received in step 1105 to the AMF selected in step 1106a.
  • the registration request message may be transmitted through an N2 message.
  • N3IWF transmits the N2 message to AMF, it can carry the RAN UE NGAP ID assigned by N3IWF.
  • N3IWF supports the N2 interface (or NGAP interface)
  • the N2 protocol (or NGAP protocol) was originally used to define the protocol between the access network device and the AMF, so the RAN UE NGAP ID IE can directly inherit the RAN UE NGAP ID, but AMF can know that it is an N2 message sent by N3IWF based on the access network node ID (Global N3IWF Node ID).
  • AMF when AMF sends the N2 message to N3IWF, it will also carry the AMF UE NGAP ID assigned by AMF.
  • the RAN UE NGAP ID and AMF UE NGAP ID can be used to identify the UE's N2 message.
  • the N3IWF sends the access network information to the AMF.
  • the access network information may be included in a NAS (such as 5G-NAS) data packet, an N2 message, or a registration request message.
  • Step 1107 (please refer to step 207): UE, AMF, SMF, authentication service function AUSF, UDM, etc. perform authentication and security procedures.
  • AMF selects AUSF and sends an authentication request message to AUSF.
  • AUSF performs the authentication process on the UE and obtains authentication data or information used for authentication from UDM.
  • Authentication-related data packets are encapsulated through NAS messages.
  • the NAS messages can be encapsulated through 5G-NAS type data packets in EAP.
  • AUSF sends the security anchor function SEAF key to AMF.
  • AMF can derive the NAS security key and N3IWF key based on the SEAF key.
  • the N3IWF key is used by the UE and N3IWF to establish IPSec SA.
  • the AMF indicates to the UE that the authentication is successful. For example, the AMF sends a NAS Security Mode Command (NAS Security Mode Command) to the UE to activate NAS security.
  • the NAS Security Mode Command includes an EAP success indication (EAP-Success), indicating that the EAP-authentication and key agreement (EAP-AKA’) authentication performed by the core network is successful.
  • EAP-Success EAP success indication
  • EAP-AKA EAP-authentication and key agreement
  • N3IWF forwards the NAS Security Mode Command sent by the AMF to the UE, and sends the NAS Security Mode Complete message sent by the UE to the AMF.
  • Step 1108a (please refer to step 208): AMF sends the N3IWF key to N3IWF.
  • AMF sends a request message to N3IWF, and the request message includes the N3IWF key.
  • the request message is an initial context setup request (Initial Context Setup Request) message or a next generation application protocol initial context setup request (NGAP Initial Context Setup Request) message.
  • NGAP Initial Context Setup Request a next generation application protocol initial context setup request
  • AMF sends the N3IWF key to N3IWF.
  • the AMF can send the access network information to the N3IWF through the N2 message (for specific content, please refer to the previous introduction and will not be repeated).
  • the N2 message may be an Initial Context Setup Request or a Next Generation Application Protocol Initial Context Setup Request (NGAP Initial Context Setup Request) message.
  • Step 1108b N3IWF sends EAP-Success to the UE, indicating that N3IWF has successfully authenticated the UE, or that the IPSec tunnel authentication has been successful, or that N3IWF and the UE have completed the EAP-5G session.
  • the N3IWF sends a response message (such as an IKE_AUTH response message) to the UE, and the response message includes EAP-Success.
  • a response message such as an IKE_AUTH response message
  • Step 1109a (please refer to step 209a): UE and N3IWF establish IPSec SA through the N3IWF key obtained previously.
  • This IPSec SA is called “signaling IPSec SA (signalling IPSec SA)”.
  • the signaling IPSec SA will be configured to run in tunnel mode, and N3IWF will assign an "inner” IP address and NAS_IP_ADDRESS to the UE. All subsequent NAS messages are transmitted through this signaling IPSec SA.
  • the source address is the "inner” IP address of the UE
  • the destination address is NAS_IP_ADDRESS.
  • the source address is NAS_IP_ADDRESS
  • the destination address is the "inner" IP address of the UE.
  • N3IWF can allocate the inner IP address and NAS_IP_ADDRESS to the UE based on the access network information (for specific content, please refer to the previous introduction and will not be repeated).
  • the request message (such as IKE_AUTH request message) sent by the UE to N3IWF through IPSec SA does not include the AUTH payload (payload), and in step 1109a, the UE sends to N3IWF through signaling IPSec SA.
  • the request message (eg, IKE_AUTH request message) may include an AUTH payload.
  • Step 1109b After establishing the signaling IPSec SA, N3IWF notifies the AMF that the UE context has been created. For example, N3IWF notifies AMF through N2 message that the UE context has been created.
  • the N2 message can be an Initial Context Setup Request or a Next Generation Application Protocol Initial Context Setup Request (NGAP Initial Context Setup Request) message.
  • N3IWF may include IPSec tunnel information in the N2 message.
  • the IPSec tunnel information can be used by AMF to identify the transmission path.
  • IPSec tunnel information may include but is not limited to one or more of the following information: IPSec tunnel identification, IPSec tunnel address information (inner IP address and/or NAS_IP_ADDRESS).
  • step 1110 (please refer to step 210): AMF can establish a mobility management policy (AM Policy Association Eatablishment) with PCF.
  • AMF can establish a mobility management policy (AM Policy Association Eatablishment) with PCF.
  • the AMF may send the first capability information to the PCF.
  • the PCF obtains the UE route selection policy (UE route selection policy, URSP) according to the first capability information.
  • UE route selection policy UE route selection policy, URSP
  • the access type preference (Access type preference) in the URSP rule sent by the PCF to the UE may include the access type preference of the same access technology.
  • Multi-path (such as multi-path with same access type, multi-path with same RAT type, 3GPP access with multi-path, N3GPP access with multi-path or multipath).
  • the URSP rules sent by the PCF to the UE may be existing URSP rules or multipath that does not include the same access technology, That is, the access type preference is multiple access.
  • Access type preference is used to indicate which access type the MA PDU session uses.
  • this parameter has the following three possible values: 3GPP access, N3GPP access, and multi-access; when the value is multi-access, the UE will establish a MA PDU session.
  • Access type preference also includes multi-access technology (such as multi-RAT type), multi-path (such as multi-path), and multi-path with the same access type (such as multi-path with same access type). ), multi-path with the same access technology (e.g. multi-path with same RAT type), multi-path with 3GPP access type (e.g. 3GPP access with multi-path) or multi-path with non-3GPP access type (e.g. N3GPP access with multi-path).
  • multi-access technology such as multi-RAT type
  • multi-path with the same access technology e.g. multi-path with same RAT type
  • multi-path with 3GPP access type e.g. 3GPP access with multi-path
  • non-3GPP access type e.g. N3GPP access with multi-path
  • the Access type preference value is multi-access technology (such as multi-RAT type)
  • it can further be a combination of several access technologies, such as a combination of NR and NR, or a combination of NR and satellite, or non- The combination of trusted non-3GPP and trusted non-3GPP, etc.
  • the Access type preference value is multi-path (for example, multi-path)
  • it may further include path identification information to indicate which transmission paths the UE can use to establish a MA PDU session.
  • the value of Access type preference is multi-path with the same access type (for example, multi-path with same access type)
  • the value can further be a combination of access technologies under the same access type, such as NR and NR A combination of NR and satellite, or a combination of untrusted non-3GPP and trusted non-3GPP, etc.
  • Access type preference When the value of Access type preference is multi-path with same RAT type, it can further value which access technology, such as NR, satellite access, high-orbit satellite access, medium-orbit satellite access, low-orbit satellite access Access, trusted non-3GPP access, untrusted non-3GPP access, wired access, etc.
  • access technology such as NR, satellite access, high-orbit satellite access, medium-orbit satellite access, low-orbit satellite access Access, trusted non-3GPP access, untrusted non-3GPP access, wired access, etc.
  • the value of Access type preference is multi-path of 3GPP access type (such as 3GPP access with multi-path)
  • the value can further be a combination of access technologies under which 3GPP access type, such as NR, LTE, Any combination of access technologies such as satellites, high-orbit satellites, medium-orbit satellites, and low-orbit satellites.
  • the Access type preference value is multi-path of a non-3GPP access type (such as N3GPP access with multi-path)
  • the value can further be a combination of access technologies under several N3GPP access types, such as trusted non- Any combination of 3GPP access technology, untrusted non-3GPP access technology, wired access technology and other access technologies.
  • the PCF can send the UE route selection policy (UE route selection policy, URSP) to the UE through the AMF.
  • the URSP is usually sent to the UE by the PCF.
  • the UE can determine based on the URSP whether a specific application can be associated with the established PDU session, or whether the specific application data can be offloaded to the PDU through non-3GPP access methods. Outside the session (that is, not transmitted through the core network), or whether a specific application data can be sent through ProSe Layer-3 UE-to-Network Relay, or whether it can trigger the establishment of a new PDU session, etc. .
  • the access type preference may be multi-access (Multi Access); Specifically, the Multi Access may further indicate the number of transmission paths, such as 2, or 3, or even more transmission paths; and/or; the Multi Access may further indicate that the access type corresponding to the transmission path is 3GPP access type and non-3GPP access type, or multiple 3GPP access types, or multiple non-3GPP access types, or mixed multi-access, etc.
  • Step 1111a (please refer to step 211a): AMF sends a NAS Registration Accept message to N3IWF.
  • the NAS registration accept message may be included in the N2 message.
  • the AMF can send access network information (for specific content, please refer to the previous introduction and will not be repeated) or IPSec tunnel information (for specific content, please refer to the previous introduction and will not be repeated) to the UDM to determine the same Different transmission paths under access types.
  • the AMF can send information used to identify different transmission paths to the UDM, such as access technology information and/or identification information.
  • the identification information is used to indicate different transmission paths, or the identification information is used to indicate the same access. Different transmission paths under the technology.
  • the access technology information and/or identification information is used to indicate the first transmission path or the second transmission path.
  • Step 1111b (please refer to step 211b): N3IWF sends a NAS registration acceptance message to the UE through the signaling IPSec SA established in step 1109a.
  • Step 1112a (Please refer to step 1101a): The UE connects to an untrusted non-3GPP access network and is assigned an IP address.
  • Step 1112b (please refer to step 1101b): The UE selects the N3IWF and obtains the address information of the N3IWF.
  • the N3IWF selected by the UE is the same as the N3IWF selected in step 1101b.
  • steps 1102 to 1112a may be performed to register with the core network through the same N3IWF.
  • the N3IWF may allocate the N2 identifier according to the access network information.
  • N3IWF When N3IWF performs the same or similar process as step 1109a, it can allocate different UE inner IP and/or NAS_IP_ADDRESS according to the access network information; or, it can allocate the same UE inner IP according to the UE Id, and allocate different ones according to the access network information.
  • NAS_IP_ADDRESS When N3IWF performs the same or similar process as step 1109a, it can allocate different UE inner IP and/or NAS_IP_ADDRESS according to the access network information; or, it can allocate the same UE inner IP according to the UE Id, and allocate different ones according to the access network information.
  • the AMF may determine the access technology type or determine the information identifying the transmission path based on the access network information, or when performing the same or similar process as step 1109b, determine based on the IPSec tunnel information. Access technology type or determine information identifying the transmission path, thereby distinguishing different transmission paths.
  • the method in the embodiment of the present application is introduced above, and the device in the embodiment of the present application will be introduced below.
  • the method and the device are conceived based on the same technology. Since the principles of the method and the device in solving problems are similar, the implementation of the device and the method can be referred to each other, and the repeated points will not be repeated.
  • Embodiments of the present application can divide the device into functional modules according to the above method examples.
  • the device can be divided into functional modules corresponding to each function, or two or more functions can be integrated into one module.
  • These modules can be implemented in the form of hardware or software function modules. It should be noted that the division of modules in the embodiment of the present application is schematic and is only a logical function division. There may be other division methods during specific implementation.
  • the device 1200 may include: a processing module 1210, and optionally a receiving module 1220a, a sending module 1220b, and a storage module 1230.
  • the processing module 1210 can be connected to the storage module 1230, the receiving module 1220a, and the sending module 1220b respectively.
  • the storage module 1230 can also be connected to the receiving module 1220a and the sending module 1220b.
  • the above-mentioned receiving module 1220a and sending module 1220b can also be integrated together and defined as a transceiving module.
  • the device 1200 may be a session management device, or may be a chip or functional unit applied in the session management device.
  • the device 1200 has any function of the session management device in the above method.
  • the device 1200 can perform various steps performed by the session management device in the methods of FIG. 9, FIG. 10a, FIG. 10b, and FIG. 11.
  • the receiving module 1220a can perform the receiving action performed by the session management device in the above method embodiment.
  • the sending module 1220b can perform the sending action performed by the session management device in the above method embodiment.
  • the processing module 1210 may perform other actions except sending actions and receiving actions among the actions performed by the session management device in the above method embodiment.
  • the processing module 1210 is configured to obtain tunnel information corresponding to a transmission path in a multi-access session; wherein the transmission path includes a first transmission path and a second transmission path, and the first transmission path
  • the access technology corresponding to the second transmission path belongs to the 3rd Generation Partnership Project 3GPP access type, or the access technology corresponding to the first transmission path and the second transmission path belongs to a non-third generation partner Plan the 3GPP access type
  • the sending module 1220b is used to send the tunnel information and access technology information corresponding to the transmission path to the mobility management device, and the access technology is used by the mobility management device to determine the access network device .
  • the sending module 1220b is specifically configured to send a transmission message to the mobility management device.
  • the transmission message includes the first tunnel information and access technology information corresponding to the first transmission path, the third second tunnel information and access technology information corresponding to the two transmission paths; or, send a first transmission message to the mobility management device, where the first transmission message includes the first tunnel information corresponding to the first transmission path and the corresponding access technology information; and sending a second transmission message to the mobility management device, where the second transmission message includes second tunnel information and access technology information corresponding to the second transmission path.
  • the receiving module 1220a is configured to receive first information from the mobility management device, where the first information is used to obtain tunnel information corresponding to the transmission path; wherein the first information includes One or more of the following: the first number of transmission paths registered by the terminal device, and one or more access technology information.
  • the sending module 1220b is also configured to send second information to the policy control device, where the second information is used to obtain offload information; the receiving module 1220a is also configured to receive data from the policy control device.
  • the offload information includes the offload information on the first transmission path and the second transmission path.
  • the processing module 1210 is specifically configured to allocate tunnel information corresponding to the transmission path.
  • the receiving module 1220a is further configured to receive tunnel information corresponding to the transmission path from the user plane device.
  • the sending module 1220b is further configured to send indication information to the mobility management device.
  • the indication information Used to indicate the first transmission path or the second transmission path.
  • the storage module 1230 can store computer execution instructions for the method executed by the session management device, so that the processing module 1210, the receiving module 1220a and the sending module 1220b execute the session management device in the above example. method of execution.
  • the storage module may include one or more memories, and the memories may be devices used to store programs or data in one or more devices or circuits.
  • the storage module can be a register, cache or RAM, etc., and the storage module can be integrated with the processing module.
  • the storage module can be a ROM or other types of static storage devices that can store static information and instructions, and the storage module can be independent from the processing module.
  • the transceiver module may be an input or output interface, a pin or a circuit, etc.
  • the device 1200 may be a mobile management device, or may be a chip or functional unit applied in the mobile management device.
  • the device 1200 has any function of the mobile management device in the above method.
  • the device 1200 can perform various steps performed by the mobile management device in the methods of FIG. 9, FIG. 10a, FIG. 10b, and FIG. 11.
  • the receiving module 1220a can perform the receiving action performed by the mobile management device in the above method embodiment.
  • the sending module 1220b can perform the sending action performed by the mobile management device in the above method embodiment.
  • the processing module 1210 may perform other actions except sending actions and receiving actions among the actions performed by the mobile management device in the above method embodiment.
  • the receiving module 1220a is configured to receive tunnel information and access technology information corresponding to a transmission path in a multi-access session from the session management device; wherein the transmission path includes a first transmission path and a third transmission path.
  • Two transmission paths, the access technologies corresponding to the first transmission path and the second transmission path belong to the 3rd Generation Partnership Project 3GPP access type, or the access technologies corresponding to the first transmission path and the second transmission path
  • the access technology belongs to the non-3rd Generation Partnership Project 3GPP access type;
  • the processing module 1210 is configured to determine a first access network device based on the access technology information corresponding to the first transmission path; and determine a second access network device based on the access technology information corresponding to the second transmission path;
  • the sending module 1220b is configured to send the first tunnel information corresponding to the first transmission path to the first access network device; and send the first tunnel information corresponding to the second transmission path to the second access network device. 2. Tunnel information.
  • the receiving module 1220a is specifically configured to receive a transmission message from the session management device.
  • the transmission message includes the first tunnel information and access technology information corresponding to the first transmission path, the The second tunnel information and access technology information corresponding to the second transmission path; or, receiving a first transmission message from the session management device, the first transmission message including the first tunnel information corresponding to the first transmission path and access technology information; and receiving a second transmission message from the session management device, where the second transmission message includes second tunnel information corresponding to the second transmission path and access technology information.
  • the sending module 1220b is further configured to send first information to the session management device, where the first information is used to obtain tunnel information corresponding to the transmission path; wherein the first information includes One or more of the following: the first number of transmission paths registered by the terminal device, and one or more access technology information.
  • the receiving module 1220a is further configured to receive the offloading information of the first transmission path and the second transmission path; the sending module 1220b is further configured to send the offloading information to the terminal device.
  • the receiving module 1220a is further configured to receive indication information from the session management device, where the indication The information is used to indicate the first transmission path or the second transmission path; the processing module is specifically used to determine the first access network device based on the access technology information corresponding to the first transmission path and the indication information; and The access technology information corresponding to the second transmission path and the indication information determine the second access network device.
  • the receiving module 1220a is also configured to Receive third information from the first non-3GPP access network device on the first transmission path, where the third information includes one or more of the following: the first non-3GPP access network device establishes a connection with a terminal device The number of Internet Protocol Security Protocol sub-security alliance IPSec Child SAs, the differentiated service code point DSCP value corresponding to each IPSec Child SA, the quality of service flow identifier QFI associated with each IPSec Child SA, and the corresponding identifier of each IPSec Child SA;
  • the sending module 1220b is also configured to send the third information to the second non-3GPP access network device of the second transmission path, where the third information is used for the communication between the second non-3GPP access network device and The terminal device establishes user plane resources.
  • the processing module 1210 is also used for the device to obtain access network information, and the access network information is used to indicate the access technology information used by the terminal device; and according to The access technology information used by the terminal device determines the first number of transmission paths registered by the terminal device or the access technology information corresponding to the transmission paths.
  • the storage module 1230 can store computer execution instructions for the method executed by the mobile management device, so that the processing module 1210, the receiving module 1220a and the sending module 1220b execute the method executed by the mobile management device in the above example.
  • the storage module may include one or more memories, and the memories may be devices used to store programs or data in one or more devices or circuits.
  • the storage module can be a register, cache or RAM, etc., and the storage module can be integrated with the processing module.
  • the storage module can be a ROM or other types of static storage devices that can store static information and instructions, and the storage module can be independent from the processing module.
  • the transceiver module may be an input or output interface, a pin or a circuit, etc.
  • the device can be implemented by a general bus architecture.
  • FIG. 13 a schematic block diagram of a communication device 1300 is provided.
  • the device 1300 may include a processor 1310 and, optionally, a transceiver 1320 and a memory 1330.
  • the transceiver 1320 can be used to receive programs or instructions and transmit them to the processor 1310, or the transceiver 1320 can be used to communicate and interact with other communication devices between the device 1300, such as interactive control signaling and/or services. Data etc.
  • the transceiver 1320 may be a code and/or data read and write transceiver, or the transceiver 1320 may be a signal transmission transceiver between a processor and a transceiver.
  • the processor 1310 and the memory 1330 are electrically coupled.
  • the device 1300 may be a session management device, or may be a chip applied in the session management device. It should be understood that the device has any functions of the session management device in the above method. For example, the device 1300 can perform various steps performed by the session management device in the methods of FIG. 9, FIG. 10a, FIG. 10b, and FIG. 11.
  • the memory 1330 is used to store computer programs; the processor 1310 can be used to call the computer program or instructions stored in the memory 1330 to execute the method executed by the session management device in the above example, or through the The transceiver 1320 performs the method performed by the session management device in the above example.
  • the device 1300 may be a mobile management device, or may be a chip applied in the mobile management device. It should be understood that the device has any functions of the mobile management device in the above method. For example, the device 1300 can perform various steps performed by the mobile management device in the methods of FIG. 9, FIG. 10a, FIG. 10b, and FIG. 11.
  • the memory 1330 is used to store computer programs; the processor 1310 can be used to call the computer program or instructions stored in the memory 1330 to execute the method performed by the mobile management device in the above example, or through the The transceiver 1320 performs the method performed by the mobile management device in the above example.
  • the processing module 1210 in Figure 12 can be implemented by the processor 1310.
  • the receiving module 1220a and the sending module 1220b in Figure 12 can be implemented by the transceiver 1320.
  • the transceiver 1320 is divided into a receiver and a transmitter, the receiver performs the function of the receiving module, and the transmitter performs the function of the transmitting module.
  • the storage module 1230 in Figure 12 can be implemented through the memory 1330.
  • the device can be implemented by a general-purpose processor (a general-purpose processor can also be called a chip or a chip system).
  • a general-purpose processor can also be called a chip or a chip system.
  • a general processor that implements a device for a session management device or a device for a mobility management device includes: a processing circuit (the processing circuit may also be called a processor); optionally, it also includes: The processing circuit is internally connected to an input/output interface for communication and a storage medium (the storage medium may also be called a memory). The storage medium is used to store instructions executed by the processing circuit to execute the tasks executed by the session management device or the mobile management device in the above example. method.
  • the processing module 1210 in Figure 12 can be implemented by a processing circuit.
  • the receiving module 1220a and the sending module 1220b in Figure 12 can be implemented through input and output interfaces.
  • the input and output interface is divided into an input interface and an output interface.
  • the input interface performs the function of the receiving module
  • the output interface performs the function of the sending module.
  • the storage module 1230 in Figure 12 can be implemented through a storage medium.
  • the device of the embodiment of the present application can also be implemented using the following: one or more FPGAs (Field Programmable Gate Arrays), PLDs (Programmable Logic Devices), controllers, state machines, gate logic, discrete hardware components, any other suitable circuit, or any combination of circuits capable of performing the various functions described throughout this application.
  • FPGAs Field Programmable Gate Arrays
  • PLDs Programmable Logic Devices
  • controllers state machines, gate logic, discrete hardware components, any other suitable circuit, or any combination of circuits capable of performing the various functions described throughout this application.
  • Embodiments of the present application also provide a computer-readable storage medium that stores a computer program.
  • the computer program When executed by a computer, it can cause the computer to perform the above communication method.
  • the computer program includes instructions for implementing the above communication method.
  • An embodiment of the present application also provides a computer program product, which includes: computer program code.
  • computer program product which includes: computer program code.
  • the computer program code When the computer program code is run on a computer, the computer can execute the communication method provided above.
  • Embodiments of the present application also provide a communication system.
  • the communication system includes: a session management device and a mobility management device that execute the above communication method.
  • it may also include access network equipment and one or more of the various network elements mentioned in this application.
  • the processor mentioned in the embodiments of this application may be a central processing unit (CPU), a baseband processor.
  • the baseband processor and the CPU may be integrated together or separated, or may be a network processor (network processor).
  • processor, NP network processor
  • the processor may further include a hardware chip or other general-purpose processor.
  • the above-mentioned hardware chip can be an application-specific integrated circuit (ASIC), a programmable logic device (PLD) or a combination thereof.
  • the above-mentioned PLD can be a complex programmable logic device (CPLD), a field-programmable gate array (FPGA), a general array logic (GAL) and other programmable logic devices , discrete gate or transistor logic devices, discrete hardware components, etc. or any combination thereof.
  • CPLD complex programmable logic device
  • FPGA field-programmable gate array
  • GAL general array logic
  • a general-purpose processor may be a microprocessor or the processor may be any conventional processor, etc.
  • the memory mentioned in the embodiments of this application may be a volatile memory or a non-volatile memory, or may include volatile memory. Both volatile and non-volatile memory.
  • the non-volatile memory can be read-only memory (Read-Only Memory, ROM), programmable read-only memory (Programmable ROM, PROM), erasable programmable read-only memory (Erasable PROM, EPROM), electrically removable memory. Erase programmable read-only memory (Electrically EPROM, EEPROM) or flash memory.
  • the volatile memory may be random access memory (RAM), which is used as an external cache.
  • RAM static random access memory
  • DRAM dynamic random access memory
  • SDRAM synchronous dynamic random access memory
  • DDR SDRAM double data rate synchronous dynamic random access memory
  • Enhanced SDRAM, ESDRAM enhanced synchronous dynamic random access memory
  • Synchlink DRAM, SLDRAM synchronous link dynamic random access memory
  • Direct Rambus RAM Direct Rambus RAM
  • the transceiver mentioned in the embodiment of this application may include a separate transmitter and/or a separate receiver, or the transmitter and receiver may be integrated.
  • the transceiver can work under the instructions of the corresponding processor.
  • the transmitter can correspond to the transmitter in the physical device
  • the receiver can correspond to the receiver in the physical device.
  • the disclosed systems, devices and methods can be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components may be combined or can be integrated into another system, or some features can be ignored, or not implemented.
  • the coupling or direct coupling or communication connection between each other shown or discussed may be an indirect coupling or communication connection through some interfaces, devices or units, or may be electrical, mechanical or other forms of connection.
  • the units described as separate components may or may not be physically separated.
  • the components displayed as units may or may not be physical units, that is, they may be located in one place, or they may be distributed to multiple mobile management devices. . Some or all of the units may be selected according to actual needs to achieve the purpose of the embodiments of the present application.
  • each functional unit in various embodiments of the present application may be integrated into one processing unit, or each unit may exist physically alone, or two or more units may be integrated into one unit.
  • the above integrated units can be implemented in the form of hardware or software functional units.
  • the integrated unit is implemented in the form of a software functional unit and sold or used as an independent product, it may be stored in a computer-readable storage medium.
  • the technical solution of the present application is essentially or part of the contribution, or all or part of the technical solution can be embodied in the form of a software product.
  • the computer software product is stored in a storage medium and includes several The instructions are used to cause a computer device (which may be a personal computer, a server, or a network device, etc.) to execute all or part of the steps of the methods described in various embodiments of this application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (ROM), random access memory (RAM), magnetic disk or optical disk, etc. that can store program code. medium.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Databases & Information Systems (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请涉及通信技术领域。提供一种通信方法及装置,用以支持多个3GPP路径或者多个非3GPP路径的多接入会话的数据传输。多接入会话的第一传输路径和第二传输路径对应的接入技术属于同一接入类型;会话管理设备向移动管理设备发送传输路径对应的隧道信息和接入技术信息,接入技术用于确定接入网设备。移动管理设备基于接入技术信息确定接入网设备,并向接入网设备发送隧道信息。本申请中,会话管理设备向移动管理设备发送相比接入类型更细粒度的接入技术信息,移动管理设备可以通过接入技术信息来准确地识别出相对应的接入网设备,这种多接入会话的管理方法可以适用于支持多个3GPP路径或者多个非3GPP路径的多接入会话的数据传输。

Description

一种通信方法及装置
相关申请的交叉引用
本申请要求在2022年03月28日提交中国专利局、申请号为202210317093.5、申请名称为“一种通信方法及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请实施例涉及通信等领域,尤其涉及一种通信方法及装置。
背景技术
用户设备(user equipment,UE)和用户面功能(user plane function,UPF)网元可以通过建立多接入协议数据单元(protocol data unit,PDU)会话(multi-access PDU Session,MA PDU Session)将需要发送的业务流数据,同时通过第三代合作伙伴计划(third generation partnership project,3GPP)接入网络和/或非3GPP接入网络进行传输,以提升传输效率。
目前,多接入会话支持通过两个路径传输,两个路径分别是3GPP路径和非3GPP路径,即一条路径中的接入网设备为3GPP接入类型的接入网设备,另一条路径中的接入网设备为非3GPP接入类型的接入网设备。未来,多接入会话将支持通过多个3GPP路径或者多个非3GPP路径传输。然而,现有的多接入会话的管理方法并不适用于支持多个3GPP路径或者多个非3GPP路径的多接入会话。
发明内容
本申请实施例提供一种通信方法及装置,用以支持多个3GPP路径或者多个非3GPP路径的多接入会话的数据传输。
第一方面,提供了一种通信方法,该方法的执行主体可以是会话管理设备,也可以是应用于会话管理设备中的部件,例如芯片、处理器等。下面以执行主体是会话管理设备为例进行描述。多接入会话中的传输路径可以包括但不限于第一传输路径和第二传输路径,第一传输路径和所述第二传输路径对应的接入技术属于同一接入类型,所述第一传输路径和所述第二传输路径对应的接入技术属于第三代合作伙伴计划3GPP接入类型,或所述第一传输路径和所述第二传输路径对应的接入技术属于非第三代合作伙伴计划3GPP接入类型。首先,会话管理设备获取传输路径对应的隧道信息;然后,所述会话管理设备向移动管理设备发送所述传输路径对应的隧道信息和接入技术信息,所述接入技术用于所述移动管理设备确定接入网设备。
在本申请中,多接入会话包括的多条传输路径中有至少两条传输路径对应同一接入类型(例如3GPP接入类型或非3GPP接入类型),如果仍采用目前的技术,会话管理设备向移动管理设备发送接入类型,移动管理设备不能识别出要将隧道信息(还可以包括其它信息)发送给该接入类型下的哪个接入网设备。所以本申请提出了会话管理设备向移动管理设备发送相比接入类型更细粒度的接入技术信息,移动管理设备可以通过接入技术信息来 准确地识别出相对应的接入网设备,即准确识别出了每条传输路径,这样,移动管理设备可以把隧道信息(还可以包括其它信息)发送给相对应的接入网设备,这种多接入会话的管理方法可以适用于支持多个3GPP路径或者多个非3GPP路径的多接入会话的数据传输。
在一种可能的实现中,会话管理设备在向移动管理设备发送所述传输路径对应的隧道信息和所述传输路径对应的接入技术信息时,可以是所述会话管理设备向所述移动管理设备发送传输消息,所述传输消息包括所述第一传输路径对应的第一隧道信息和接入技术信息、所述第二传输路径对应的第二隧道信息和接入技术信息。会话管理设备将多接入会话包括的所有的传输路径对应的隧道信息和接入技术信息通过一条消息发送给移动管理设备,这样可以节省信令传输。
在一种可能的实现中,会话管理设备在向移动管理设备发送所述传输路径对应的隧道信息和所述传输路径对应的接入技术信息时,可以是所述会话管理设备向所述移动管理设备发送第一传输消息,所述第一传输消息包括所述第一传输路径对应的第一隧道信息和对应的接入技术信息;及所述会话管理设备向所述移动管理设备发送第二传输消息,所述第二传输消息包括所述第二传输路径对应的第二隧道信息和接入技术信息。如果还包括其它传输路径,会话管理设备还可以针对每条其它传输路径向移动管理设备发送传输消息,传输消息中可以包括该传输路径对应的隧道信息和接入技术信息。
在一种可能的实现中,所述会话管理设备可以先接收来自所述移动管理设备的第一信息,然后,会话管理设备向移动管理设备发送所述传输路径对应的隧道信息和接入技术信息。所述第一信息可以用于获取所述传输路径对应的隧道信息;其中,所述第一信息包括但不限于以下一项或多项:终端设备已注册的传输路径的第一数量、一个或多个接入技术信息。会话管理设备根据第一信息可以确定需要获取的隧道信息或者隧道信息数量。例如,当第一信息指示终端设备通过三个传输路径或者通过三种不同的接入技术注册于核心网,则会话管理设备确定需要获取三个隧道信息(例如隧道端点标识或者地址信息),从而可以准确地获知需要为多接入会话连接建立获取隧道信息的数量。
在一种可能的实现中,所述会话管理设备向策略控制设备发送第二信息,所述第二信息用于获取分流信息。然后,所述会话管理设备接收来自所述策略控制设备的分流信息,所述分流信息包括所述第一传输路径和所述第二传输路径的分流信息。所述分流信息可以是所述策略控制设备基于所述第二信息确定的。例如,分流信息可以包括但不限于以下的一项或多项:分流模式、分流功能、门限值。在本申请中,多接入会话包括的传输路径的数量可以大于或等于2条,其中,至少2条传输路径可以对应同一接入类型。本申请的分流信息可以基于接入技术(接入技术比接入类型的粒度更细)来确定,或者基于3条甚至更多条传输路径来确定,使得分流信息可以更好地适用于多接入会话的多种可能的形式。
在一种可能的实现中,所述第二信息包括但不限于以下的一项或多项:终端设备注册的传输路径的第一数量、一个或多个接入技术、接入技术的数量。可选的,所述第二信息基于所述第一信息确定。
在一种可能的实现中,所述分流信息用于指示终端设备通过目标传输路径传输数据;其中,所述目标传输路径为终端设备已注册的传输路径中的一个或多个。
在一种可能的实现中,所述会话管理设备可以自身分配所述传输路径对应的隧道信息。例如,会话管理设备可以基于第一信息,分配传输路径对应的隧道信息;具体的,会话管理设备可以根据第一信息确定隧道数量,然后,会话管理设备可以分配该隧道数量对应的 隧道信息。可选的,会话管理设备还可以将隧道信息发送给用户面设备。
在一种可能的实现中,所述会话管理设备可以接收来自用户面设备的所述传输路径对应的隧道信息。例如,所述会话管理设备向用户面设备发送所述第一信息,并接收来自所述用户面设备的所述传输路径对应的隧道信息。例如,用户面设备基于第一信息确定隧道数量,用户面设备可以分配该隧道数量对应的隧道信息。
在一种可能的实现中,当所述第一传输路径和所述第二传输路径对应的接入技术相同时,所述会话管理设备还可以向所述移动管理设备发送指示信息,所述指示信息用于指示第一传输路径或第二传输路径。
在一种可能的实现中,当所述指示信息包括以下的一项或多项:子接入技术的标识、接入网设备的标识、路径的标识、IPSec隧道信息。
在多条传输路径对应接入技术相同、且接入网设备相同的场景下,会话管理设备通过该指示信息指示移动管理设备发送隧道信息(还可以包括其它信息)的传输路径,可以使移动管理设备确定是向哪个N2接口、或下一代应用协议(next generation application Protocol,NGAP)接口、或逻辑N2通道发送隧道信息(还可以包括其它信息),这种多接入会话的管理方法可以适用于支持多个3GPP路径或者多个非3GPP路径的多接入会话的数据传输。
在多条传输路径对应接入技术相同、但设备本身不同的接入网设备的场景下,会话管理设备通过第五信息指示移动管理设备发送隧道信息(还可以包括其它信息)的传输路径,可以使移动管理设备确定是向哪个接入网设备发送隧道信息(还可以包括其它信息),这种多接入会话的管理方法可以适用于支持多个3GPP路径或者多个非3GPP路径的多接入会话的数据传输。
在一种可能的实现中,第一传输路径对应的接入网设备为以下任一项:3GPP接入网设备、可信非3GPP接入网设备、非可信非3GPP接入网设备、有线接入网关。第二传输路径对应的接入网设备为以下任一项:3GPP接入网设备、可信非3GPP接入网设备、非可信非3GPP接入网设备、有线接入网关。
例如所述3GPP接入网设备为以下任一项:eNodeB、NG-RAN、gNodeB;
例如所述可信非3GPP接入网设备以下任一项:可信非3GPP网关功能TNGF、可信WLAN互通功能TWIF、可信非3GPP接入点TNAP;
例如所述非可信非3GPP接入网设备以下任一项:非3GPP互通功能N3IWF;
例如所述有线网关为以下任一项:有线接入网关功能W-AGF网元。
第二方面,提供了一种通信方法,该方法的执行主体可以是移动管理设备,也可以是应用于移动管理设备中的部件,例如芯片、处理器等。下面以执行主体是移动管理设备为例进行描述。多接入会话中的传输路径可以包括但不限于第一传输路径和第二传输路径,第一传输路径和所述第二传输路径对应的接入技术属于同一接入类型,例如,所述第一传输路径和所述第二传输路径对应的接入技术属于第三代合作伙伴计划3GPP接入类型,或所述第一传输路径和所述第二传输路径对应的接入技术属于非第三代合作伙伴计划3GPP接入类型。首先,移动管理设备接收来自会话管理设备的传输路径对应的隧道信息和接入技术信息。然后,所述移动管理设备可以基于所述第一传输路径对应的接入技术信息确定第一接入网设备,及向所述第一接入网设备发送所述第一传输路径对应的第一隧道信息; 所述移动管理设备还可以基于所述第二传输路径对应的接入技术信息确定第二接入网设备,及向所述第二接入网设备发送所述第二传输路径对应的第二隧道信息。
在本申请中,多接入会话包括的多条传输路径中有至少两条传输路径对应同一接入类型(例如3GPP接入类型或非3GPP接入类型),如果仍采用目前的技术,会话管理设备向移动管理设备发送接入类型,移动管理设备不能识别出要将隧道信息(还可以包括其它信息)发送给该接入类型下的哪个接入网设备。所以本申请提出了会话管理设备向移动管理设备发送相比接入类型更细粒度的接入技术信息,移动管理设备可以通过接入技术信息来准确地识别出相对应的接入网设备,即准确识别出了每条传输路径,这样,移动管理设备可以把隧道信息(还可以包括其它信息)发送给相对应的接入网设备,这种多接入会话的管理方法可以适用于支持多个3GPP路径或者多个非3GPP路径的多接入会话的数据传输。
在一种可能的实现中,移动管理设备接收来自会话管理设备的传输路径对应的隧道信息和接入技术信息时,可以是所述移动管理设备接收来自所述会话管理设备的传输消息,所述传输消息包括所述第一传输路径对应的第一隧道信息和接入技术信息、所述第二传输路径对应的第二隧道信息和接入技术信息。会话管理设备将多接入会话包括的所有的传输路径对应的隧道信息和接入技术信息通过一条消息发送给移动管理设备,这样可以节省信令传输。
在一种可能的实现中,移动管理设备接收来自会话管理设备的传输路径对应的隧道信息和接入技术信息时,可以是所述移动管理设备接收来自所述会话管理设备的第一传输消息,所述第一传输消息包括所述第一传输路径对应的第一隧道信息和接入技术信息;及所述移动管理设备接收来自所述会话管理设备的第二传输消息,所述第二传输消息包括所述第二传输路径对应的第二隧道信息和接入技术信息。如果还包括其它传输路径,移动管理设备还可以针对每条其它传输路径接收来自会话管理设备的传输消息,传输消息中可以包括该传输路径对应的隧道信息和接入技术信息。
在一种可能的实现中,所述移动管理设备先向所述会话管理设备发送第一信息,然后移动管理设备接收来自会话管理设备的传输路径对应的隧道信息和接入技术信息。所述第一信息用于获取所述传输路径对应的隧道信息;其中,所述第一信息包括以下一项或多项:终端设备已注册的传输路径的第一数量、一个或多个接入技术信息。会话管理设备根据第一信息可以确定需要获取的隧道信息或者隧道信息数量。例如,当第一信息指示终端设备通过三个传输路径或者通过三种不同的接入技术注册于核心网,则会话管理设备确定需要获取三个隧道信息(例如隧道端点标识或者地址信息),从而可以准确地获知需要为多接入会话连接建立获取隧道信息的数量。
在一种可能的实现中,所述移动管理设备还可以接收所述第一传输路径和所述第二传输路径的分流信息;然后,所述移动管理设备向终端设备发送所述分流信息。可选的,所述分流信息可以基于所述第一信息获取,例如,所述分流信息是策略控制设备基于第二信息确定的,第二信息基于第一信息确定。例如,分流信息可以包括但不限于以下的一项或多项:分流模式、分流功能、门限值。在本申请中,多接入会话包括的传输路径的数量可以大于或等于2条,其中,至少2条路径可以对应同一接入类型。本申请的分流信息可以基于接入技术(接入技术比接入类型的粒度更细)来确定,或者基于3条甚至更多条传输路径来确定,使得分流信息可以更好地适用于多接入会话的多种可能的形式。
在一种可能的实现中,所述第二信息包括但不限于以下的一项或多项:终端设备注册 的传输路径的第一数量、一个或多个接入技术、接入技术的数量。可选的,所述第二信息基于所述第一信息确定。
在一种可能的实现中,所述分流信息用于指示终端设备通过目标传输路径传输数据;其中,所述目标传输路径为终端设备已注册的传输路径中的一个或多个。
在一种可能的实现中,当所述第一传输路径和所述第二传输路径对应的接入技术相同时,所述移动管理设备还可以接收来自所述会话管理设备的指示信息,所述指示信息用于指示第一传输路径或第二传输路径。移动管理设备可以基于所述第一传输路径对应的接入技术信息和所述指示信息确第一接入网设备;还可以基于所述第二传输路径对应的接入技术信息确定第二接入网设备,包括:所述移动管理设备基于所述第二传输路径对应的接入技术信息和所述指示信息确第二接入网设备。
在一种可能的实现中,当所述指示信息包括以下的一项或多项:子接入技术的标识、接入网设备的标识、路径的标识、IPSec隧道信息。
在多条传输路径对应接入技术相同、且接入网设备相同的场景下,会话管理设备通过该指示信息指示移动管理设备发送隧道信息(还可以包括其它信息)的传输路径,可以使移动管理设备确定是向哪个N2接口、或下一代应用协议(next generation application Protocol,NGAP)接口、或逻辑N2通道发送隧道信息(还可以包括其它信息),这种多接入会话的管理方法可以适用于支持多个3GPP路径或者多个非3GPP路径的多接入会话的数据传输。
在多条传输路径对应接入技术相同、但设备本身不同的接入网设备的场景下,会话管理设备通过第五信息指示移动管理设备发送隧道信息(还可以包括其它信息)的传输路径,可以使移动管理设备确定是向哪个接入网设备发送隧道信息(还可以包括其它信息),这种多接入会话的管理方法可以适用于支持多个3GPP路径或者多个非3GPP路径的多接入会话的数据传输。
在一种可能的实现中,第一传输路径对应的接入网设备为以下任一项:3GPP接入网设备、可信非3GPP接入网设备、非可信非3GPP接入网设备、有线接入网关。第二传输路径对应的接入网设备为以下任一项:3GPP接入网设备、可信非3GPP接入网设备、非可信非3GPP接入网设备、有线接入网关。
例如所述3GPP接入网设备为以下任一项:eNodeB、NG-RAN、gNodeB;
例如所述可信非3GPP接入网设备以下任一项:可信非3GPP网关功能TNGF、可信WLAN互通功能TWIF、可信非3GPP接入点TNAP;
例如所述非可信非3GPP接入网设备以下任一项:非3GPP互通功能N3IWF;
例如所述有线网关为以下任一项:有线接入网关功能W-AGF网元。
在一种可能的实现中,当所述第一传输路径对应的接入网设备和所述第二传输路径对应的接入网设备均为非3GPP接入网设备时,所述移动管理设备还可以接收来自所述第一传输路径的第一非3GPP接入网设备的第三信息,所述第三信息包括以下的一项或多项:所述第一非3GPP接入网设备与终端设备建立的因特网协议安全协议子安全联盟IPSec Child SA数量、每个IPSec Child SA对应的区分服务编码点DSCP值、每个IPSec Child SA相关联的服务质量流标识QFI、每个IPSec Child SA对应的标识。然后,所述移动管理设备可以向所述第二传输路径的第二非3GPP接入网设备发送所述第三信息,所述第三信息用于所述第二非3GPP接入网设备与所述终端设备建立用户面资源。这些信息可以后续用 于给第二非3GPP接入网设备做参考,第二非3GPP接入网设备可以根据该信息建立或调整或修改与UE的用户面资源,由于参考这些信息,第二非3GPP接入网设备与UE建立的用户面资源与第一非3GPP接入网设备与UE建立的用户面资源相似或者相同,这样,不同传输路径的服务质量可以对等或相同。
例如,所述第一传输路径对应的接入网设备为N3IWF,所述第二传输路径对应的接入网设备为TNGF。或者,第一传输路径和第二传输路径对应的接入网设备均为N3IWF。或者,第一传输路径和第二传输路径对应的接入网设备均为TNGF。
在一种可能的实现中,在终端设备注册过程中,所述移动管理设备可以获取接入网信息,所述接入网信息用于指示所述终端设备使用的接入技术信息。然后,所述移动管理设备根据所述终端设备使用的接入技术信息,确定所述终端设备注册的传输路径的第一数量或所述传输路径对应的接入技术信息。例如,所述接入网信息包括以下的一项或多项:接入节点类型、接入技术类型、接入节点名称、接入节点标识、因特网协议安全协议IPSec标识。
在多条传输路径对应同一接入网设备,UE通过不同的方式接入到同一接入网设备(例如,一种是UE通过wifi的AP与N3IWF连接,另一种是UE通过独立非公共网络SNPN与该N3IWF连接)的场景下,在移动管理设备角度看,只有一条传输路径,一个接入技术(例如非3GPP非可信接入技术)。但从UE的角度看,有2条传输路径,两条传输路径对应的接入技术也是有差异的,一种是通过wifi连接的非3GPP接入技术,另一种是通过SNPN连接的非3GPP接入技术。该示例中,在终端设备注册过程中,所述移动管理设备可以获取接入网信息,后续移动管理设备通过终端设备使用的接入技术信息,可以准确地确定出终端设备注册的传输路径的第一数量或所述传输路径对应的接入技术信息,这种多接入会话的管理方法可以适用于支持多个3GPP路径或者多个非3GPP路径的多接入会话的数据传输。
第三方面与第一方面的区别包括:第一方面中会话管理设备向移动管理设备发送接入技术信息,以使移动管理设备通过接入技术信息识别相对应的接入网设备;第三方面中会话管理设备向移动管理设备发送传输路径的标识和/或接入网设备的标识,以使移动管理设备通过接入技术信息识别相对应的接入网设备。其余技术细节与第一方面及任一种可能的实现类似或相同,另外技术效果也类似或相同,不再重复赘述。
第三方面,提供了一种通信方法,该方法的执行主体可以是会话管理设备,也可以是应用于会话管理设备中的部件,例如芯片、处理器等。下面以执行主体是会话管理设备为例进行描述。多接入会话中的传输路径可以包括但不限于第一传输路径和第二传输路径,第一传输路径和所述第二传输路径对应的接入技术属于同一接入类型,例如,所述第一传输路径和所述第二传输路径对应的接入技术属于第三代合作伙伴计划3GPP接入类型,或所述第一传输路径和所述第二传输路径对应的接入技术属于非第三代合作伙伴计划3GPP接入类型。首先,会话管理设备获取传输路径对应的隧道信息;然后,所述会话管理设备向移动管理设备发送所述传输路径对应的隧道信息和指示信息,所述指示信息可以用于所述移动管理设备确定接入网设备。例如,所述指示信息包括传输路径的标识和/或接入网设备的标识。
第四方面,提供了一种通信方法,该方法的执行主体可以是移动管理设备,也可以是应用于移动管理设备中的部件,例如芯片、处理器等。下面以执行主体是移动管理设备为例进行描述。多接入会话中的传输路径可以包括但不限于第一传输路径和第二传输路径,第一传输路径和所述第二传输路径对应的接入技术属于同一接入类型,例如,所述第一传输路径和所述第二传输路径对应的接入技术属于第三代合作伙伴计划3GPP接入类型,或所述第一传输路径和所述第二传输路径对应的接入技术属于非第三代合作伙伴计划3GPP接入类型。首先,移动管理设备接收来自会话管理设备的传输路径对应的隧道信息和指示信息。然后,移动管理设备可以基于所述第一传输路径对应的指示信息确定第一接入网设备,及向所述第一接入网设备发送所述第一传输路径对应的第一隧道信息;所述移动管理设备还可以基于所述第二传输路径对应的指示信息确定第二接入网设备,及向所述第二接入网设备发送所述第二传输路径对应的第二隧道信息。
第五方面,提供了一种通信装置,所述装置具有实现上述任一方面及任一方面的任一可能的实现中的功能。这些功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的功能模块。
第六方面,提供了一种通信装置,包括处理器,可选的,还包括存储器;所述处理器和所述存储器耦合;所述存储器,用于存储计算机程序或指令;所述处理器,用于执行所述存储器中的部分或者全部计算机程序或指令,当所述部分或者全部计算机程序或指令被执行时,用于实现上述任一方面及任一方面的任一可能的实现的方法中的功能。
在一种可能的实现中,所述装置还可以包括收发器,所述收发器,用于发送所述处理器处理后的信号,或者接收输入给所述处理器的信号。所述收发器可以执行任一方面及任一方面的任一可能的实现中的发送动作或接收动作。
第七方面,本申请提供了一种芯片系统,该芯片系统包括一个或多个处理器(也可以称为处理电路),所述处理器与存储器(也可以称为存储介质)之间电耦合;所述存储器可以位于所述芯片系统中,也可以不位于所述芯片系统中;所述存储器,用于存储计算机程序或指令;所述处理器,用于执行所述存储器中的部分或者全部计算机程序或指令,当所述部分或者全部计算机程序或指令被执行时,用于实现上述任一方面及任一方面的任一可能的实现的方法中的功能。
在一种可能的实现中,所述芯片系统还可以包括输入输出接口(也可以称为通信接口),所述输入输出接口,用于输出所述处理器处理后的信号,或者接收输入给所述处理器的信号。所述输入输出接口可以执行任一方面及任一方面的任一可能的实现中的发送动作或接收动作。具体的,输出接口执行发送动作,输入接口执行接收动作。
在一种可能的实现中,该芯片系统,可以由芯片构成,也可以包括芯片和其他分立器件。
第八方面,提供了一种计算机可读存储介质,用于存储计算机程序,所述计算机程序包括用于实现任一方面及任一方面的任一可能的实现中的功能的指令。
或者,一种计算机可读存储介质,用于存储计算机程序,所述计算机程序被计算机执 行时,可以使得所述计算机执行上述任一方面及任一方面的任一可能的实现的方法。
第九方面,提供了一种计算机程序产品,所述计算机程序产品包括:计算机程序代码,当所述计算机程序代码在计算机上运行时,使得计算机执行上述任一方面及任一方面的任一可能的实现中的方法。
第十方面,提供了一种通信系统,所述通信系统包括执行上述第一方面及第一方面的任一可能的实现中的方法的会话管理设备和执行上述第二方面及第二方面的任一可能的实现中的方法的移动管理设备。或者,包括执行上述第三方面及第三方面的任一可能的实现中的方法的会话管理设备和执行上述第四方面及第四方面的任一可能的实现中的方法的移动管理设备。
上述第五方面至第十方面的技术效果可以参照第一方面至第四方面中的描述,重复之处不再赘述。
附图说明
图1为本申请实施例中提供的一种支持接入流量的控制、切换、分流特性的通信系统结构示意图;
图2为现有技术中一种非可信非3GPP接入技术下的注册流程示意图;
图3a和图3b为现有技术中一种多接入PDU会话建立流程示意图;
图4、图5、图6、图7、图8分别为本申请实施例中的通信方法适用的通信系统的结构示意图;
图9为本申请实施例中提供的一种通信方法的流程示意图;
图10a和图10b为本申请实施例中提供的一种多接入PDU会话的建立流程示意图;
图11为本申请实施例提供的一种非可信非3GPP接入类型下的注册流程示意图;
图12为本申请实施例提供的一种通信装置结构图;
图13为本申请实施例提供的一种通信装置结构图。
具体实施方式
本申请实施例的技术方案可以应用于各种通信系统,例如:卫星通信系统、传统的移动通信系统。其中,所述卫星通信系统可以与传统的移动通信系统(即地面通信系统)相融合。通信系统例如:无线局域网(wireless local area network,WLAN)通信系统,无线保真(wireless fidelity,WiFi)系统,长期演进(long term evolution,LTE)系统、LTE频分双工(frequency division duplex,FDD)系统、LTE时分双工(time division duplex,TDD)、第五代(5th generation,5G)系统或新无线(new radio,NR),第六代(6th generation,6G)系统,以及其他未来的通信系统等,还支持多种无线技术融合的通信系统,例如,还可以应用于无人机、卫星通信系统、高空平台(high altitude platform station,HAPS)通信等非地面网络(non-terrestrial network,NTN)融合地面移动通信网络的系统。
为便于理解本申请实施例,接下来对本请的应用场景进行介绍,本申请实施例描述的 网络架构以及业务场景是为了更加清楚的说明本申请实施例的技术方案,并不构成对于本申请实施例提供的技术方案的限定,本领域普通技术人员可知,随着新业务场景的出现,本申请实施例提供的技术方案对于类似的技术问题,同样适用。
如图1所示,提供了一种现有的支持接入流量的控制、切换、分流(access traffic steering switching splitting,ATSSS)特性的通信系统的架构图。
用户设备(user equipment,UE)和用户面功能(user plane function,UPF)网元可以通过建立多接入协议数据单元(protocol data unit,PDU)会话(multi-access PDU Session,MA PDU Session)将需要发送的业务流数据,通过第三代合作伙伴计划(third generation partnership project,3GPP)接入网络(也可以理解为3GPP接入路径)和/或非3GPP接入网络(也可以理解为非3GPP接入路径)进行传输,以提升传输效率。
为便于理解本申请实施例,以下对本申请实施例的部分用语进行解释说明,以便于本领域技术人员理解。
1)相关网元的介绍:
终端设备,又称之为用户设备(user equipment,UE)、移动台(mobile station,MS)、移动终端(mobile terminal,MT)、终端等,是一种向用户提供语音和/或数据连通性的设备。例如,终端设备包括具有无线连接功能的手持式设备、车载设备、船载设备等。目前,终端设备可以是:手机(mobile phone)、平板电脑、笔记本电脑、掌上电脑、移动互联网设备(mobile internet device,MID)、可穿戴设备、虚拟现实(virtual reality,VR)设备、增强现实(augmented reality,AR)设备、工业控制(industrial control)中的无线终端(例如,传感器等)、无人驾驶(self-driving)中的无线终端、远程手术(remote medical surgery)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端,或智慧家庭(smart home)中的无线终端,或具有车与车(Vehicle-to-Vehicle,V2V)、或车辆外联(vehicle to everything,V2X)、或车间通信长期演进技术(long term evolution vehicle)LTE-V功能的无线终端等。还可以是用户单元(subscriber unit)、蜂窝电话(cellular phone)、智能电话(smart phone)、无线数据卡、个人数字助理(personal digital assistant,PDA)电脑、无线调制解调器(modem)、手持设备(handset)、膝上型电脑(laptop computer)、机器类型通信(machine type communication,MTC)终端等。在本身中,终端中可以包括支持用户面安全通信的终端((secure user plane location,SUPL)enabled terminal,SET)。
接入管理设备(也可以称为移动管理设备、移动管理网元、接入管理网元),是由运营商网络提供的控制面网元,负责终端设备接入运营商网络的接入控制和移动性管理,例如包括移动状态管理,分配用户临时身份标识,认证和用户等功能。在5G通信系统中,该接入管理网元可以是接入与移动性管理功能(access and mobility management function,AMF)网元。在未来通信系统中,接入管理网元仍可以是AMF网元,或者,还可以有其它的名称,本申请不做限定。
会话管理设备(也可以称为会话管理网元),主要负责移动网络中的会话管理,如会话建立、会话修改、会话释放、用户面激活、用户面去激活等。具体功能如为用户分配IP地址、选择提供报文转发功能的用户面网元等。在5G通信系统中,该会话管理网元可以是会话管理功能(session management function,SMF)网元。在未来通信系统中,会话管理网元仍可以是SMF网元,或者,还可以有其它的名称,本申请不做限定。
用户面设备(也可以称为用户面网元),负责终端设备中用户数据的转发和接收。可以从数据网络接收用户数据,通过接入网设备传输给终端设备;用户面网元还可以通过接入网设备从终端设备接收用户数据,转发到数据网络。用户面网元中为终端设备提供服务的传输资源和调度功能由SMF网元管理控制的。在5G通信系统中,该用户面网元可以是用户面功能(user plane function,UPF)网元。在未来通信系统中,用户面网元仍可以是UPF网元,或者,还可以有其它的名称,本申请不做限定。
数据管理网元,用于生成认证信任状,用户标识处理(如存储和管理用户永久身份等),接入控制和签约数据管理等。在5G通信系统中,该数据管理网元可以是统一数据管理(unified data management,UDM)网元。在未来通信系统中,统一数据管理仍可以是UDM网元,或者,还可以有其它的名称,本申请不做限定。
策略控制设备(也可以称为策略控制网元),主要支持提供统一的策略框架来控制网络行为,提供策略规则给控制层网络功能,同时负责获取与策略决策相关的用户签约信息。在4G通信系统中,该策略控制网元可以是策略和计费规则功能(policy and charging rules function,PCRF)网元。在5G通信系统中,该策略控制网元可以是策略控制功能(policy control function,PCF)网元。在未来通信系统中,策略控制网元仍可以是PCF网元,或者,还可以有其它的名称,本申请不做限定。
数据网络(data network,DN),可部署多种业务,可为终端设备提供数据和/或语音等服务。例如,DN是某智能工厂的私有网络,智能工厂安装在车间的传感器可为终端设备,DN中部署了传感器和控制服务器,控制服务器可为传感器提供服务。传感器可与控制服务器通信,获取控制服务器的指令,根据指令将采集的传感器数据传送给控制服务器等。又例如,DN是某公司的内部办公网络,该公司员工的手机或者电脑可为终端设备,员工的手机或者电脑可以访问公司内部办公网络上的信息、数据资源等。
另外,本申请涉及的“网元”可以称为“设备”、或“实体”等。
2)接入类型和接入技术:
3GPP接入网络,是指接入网的接入类型为3GPP接入类型(接入类型也可以称为接入方式)。3GPP接入类型包括但不限于以下接入技术:LTE接入技术(对应4G蜂窝网络)、NR接入技术(对应5G蜂窝网络),3GPP定义的卫星接入技术,或者后续演进的蜂窝接入技术;其中3GPP定义的卫星接入技术还可以细分为低轨道卫星、中轨道卫星、同步卫星。
非3GPP接入网络,是指接入网的接入类型为非3GPP接入类型。非3GPP接入类型包括但不限于以下接入技术:非可信非3GPP接入(untrusted non-3GPP access)技术(例如通过个人购买的无线接入节点接入核心网)、可信非3GPP接入(trusted non-3GPP access)技术(例如通过运营商部署的无线接入节点接入核心网)、有线接入(wireline access)技术、IEEE802.11(WiFi)接入技术、通过SNPN连接的非3GPP接入技术、有线-BBF接入技术、有线-Cable接入技术等。具体的,非3GPP接入类型可以是或者可以包括有线、WiFi、蓝牙、ZigBee等接入技术。
3)多接入PDU会话与单接入PDU会话(single access PDU Session)的区别包括:单接入会话的用户面通道只通过一个接入网设备(可以是3GPP接入网设备,也可以是非3GPP接入网设备),例如UE可以通过无线接入网(radio access network,RAN)向UPF发送上行数据;UPF可以通过RAN向UE发送下行数据。而目前的多接入PDU会话的用户面通道可以包括两个接入网设备(3GPP接入网设备和非3GPP接入网设备),两个接入 网设备连接同一个UPF(或者通过另一UPF连接同一个UPF),例如UE可以通过RAN和/或非3GPP互通功能(non-3GPP interworking function,N3IWF)向UPF发送上行数据;UPF通过RAN和/或N3IWF向UE发送下行数据。
4)在多接入PDU会话中,待发送数据是通过3GPP接入网络的路径,还是通过非3GPP接入网络的路径,或者两个接入网络的路径一起传输,是由分流模式决定的。
分流模式包括但不限于:主备(Active-Standby)模式、最小延迟(Smallest Delay)模式、负载均衡(Load-Balancing)模式、基于优先级(Priority-based)模式。下面将阐述每种分流模式的机制:
Active-Standby:当传输路径为2条时,指定其中一种传输路径为Active(3GPP access或Non-3GPP access),另外的传输路径则为Standby。当Active传输路径可用时,该业务流的所有数据均通过Active传输路径传输至对端。当Active路径不可用时,该业务流的所有数据则切换至Standby的传输路径进行传输。当传输路径多于2条时,可以给路径分配优先级,当高优先级的传输路径可用时,采用高优先级传输数据,当高优先级不可用时,选择剩余路径中较高优先级的路径传输数据(或者任意一条路径传输数据)。
Smallest Delay:选择最短的时延的传输路径来传输业务流的数据。在该模式下,UE或UPF需要实时监测路径的传输时延。实现的方式可以是由传输层协议完成(如多路径传输控制协议(multi path transmission control protocol,MPTCP)层具有检测往返时间(round-trip time,RTT)的功能),或者由UPF中的性能测量功能模块(performance measurement function,PMF)来完成。
Load-Balancing:业务流的数据将会按比例分发至不同的传输路径中传输,分发的比例则是根据网络中多条(2个、甚至更多)传输路径的负载情况来决定的(比如负载较重的路径则分发比例小些,负载较轻的路径则分发比例大些)。
Priority-based:指定其中一个传输路径为高优先级的传输路径,另外的传输路径为次高优先级(或称为中优先级、低优先级等)的传输路径。当高优先级的传输路径无拥塞时,业务流的所有数据都通过高优先级的传输路径进行传输。当高优先级的传输路径出现拥塞时,业务流的部分数据则会通过次高优先级(或称为中优先级、低优先级等)的传输路径、或剩余路径中的任意一条或多条路径传输进行传输。当高优先级的传输路径不可用时,该业务流的所有数据都会通过次高优先级(或称为中优先级、低优先级等)的传输路径、或剩余路径中的任意一条或多条路径传输进行传输。
5)接入类型和接入技术的确定过程。
首先,UE执行注册流程时,向接入网设备发送接入网(access network,AN)消息。
接入网设备可以是3GPP接入网设备(例如RAN)或者非3GPP接入网设备。例如:非3GPP接入网设备包括:非3GPP互通功能(non-3GPP interworking function,N3IWF)网元、可信非3GPP网关功能(trusted non-3GPP gateway function,TNGF)网元、可信WLAN互通功能(trusted WLAN interworking function,TWIF)网元、有线接入网关功能(wireline access gateway function,W-AGF)网元,W-AGF也可以称为AGF。
AN消息中包括AN参数和注册请求消息。注册请求消息中可以包括注册类型和终端标识。其中,终端标识可以包括但不限于用户隐藏标识(subscription concealed identifier,SUCI)、和/或、5G全球唯一临时标识(5G globally unique temporary identity,5G-GUTI) 等。注册类型可以是初始注册,或是移动性注册更新、或紧急注册等。
接入网设备接收到AN消息后,可以执行AMF选择。
例如,接入网设备根据AN消息中的AN参数执行AMF选择,例如:根据AN参数中的全球唯一AMF标识(globally unique AMF identifier,GUAMI)或者5G系统临时移动用户标识(5G S-temporary mobile subscriber identity,5G-S-TMSI)执行AMF选择。
接下来,接入网设备向AMF发送注册请求消息。AMF接收到注册请求消息后,可以确定UE注册到核心网采用的接入类型和接入技术。
一种示例中,AMF根据接入网设备确定UE采用的接入类型。例如:若是由3GPP接入网设备(例如RAN)发送或转发该注册请求消息,则AMF可以确定UE采用的接入类型为3GPP接入类型。再例如,若是由非3GPP接入网设备发送或转发该注册请求消息,例如由N3IWF、TNGF、TWIF、W-AGF等发送该注册请求消息,则AMF可以确定UE采用的接入类型为非3GPP接入类型。
另一种示例中,AMF还可以进一步确定UE采用的接入技术。
例如:对于3GPP接入类型,AMF可以根据RAN信息进一步确定接入技术为LTE-M、NR、NR非授权频谱、卫星接入等。例如,RAN信息包括但不限于:与N2接口关联的全球无线接入网节点标识(Global RAN Node IDs)、无线接入网设备指示的追踪区域(tracking area)等。
例如:对于非3GPP接入类型,AMF可以根据N2接口关联的5G接入网节点进一步确定接入技术。
当5G接入网节点有全球N3IWF节点标识(Global N3IWF Node ID)时,接入技术为非可信非3GPP接入技术。
当5G接入网节点有全球TNGF节点标识(Global TNGF Node ID)和/或全球TWIF节点标识(Global TWIF Node ID)时,接入技术为可信非3GPP接入技术。
当5G接入网节点有全球W-AGF节点标识(Global W-AGF ID)时,接入技术为有线(Wireline)接入技术。进一步的,若该W-AGF节点标识对应的W-AGF支持有线宽带论坛接入网(Wireline BBF Access Network),则接入技术为Wireline-BBF。若该W-AGF节点标识对应的W-AGF支持有线接入网(Wireline Cable Access Network),则接入技术为Wireline-Cable。若无法区分是Wireline-BBF还是Wireline-Cable,则接入技术为Wireline。
例如,对于非3GPP接入类型,AMF还可以根据用户位置信息(User Location Information)确定更精细的接入技术,更精细的接入技术包括IEEE 802.11接入(即无线局域网WLAN、WiFi)、Wireline-Cable接入、Wireline-BBF接入。
经过一次或多次注册后,UE注册到核心网采用的接入类型可以是一种或多种,UE注册到核心网采用的接入技术可以是一种或多种。
6)策略与计费控制规则(policy and charging control rule,PCC rule)
PCC规则是由策略控制功能(policy control function,PCF)生成的,主要涉及一些策略信息和计费信息。PCF生成PCC规则后,会发给SMF。SMF根据PCC规则中的信息,可以进一步生成其他规则。例如,SMF可以根据PCC规则中的信息,生成ATSSS规则(后续进行介绍)和N4规则(后续进行介绍),分别发给UE和UPF。PCC规则中可以包括多接入会话控制信息(Multi-Access PDU(MA PDU)Session Control information),该信息允许PCF去控制以下的一项或多项:分流模式、分流功能、分流模式指示、门限值、计费信 息、使用量监控信息。
分流模式例如,Active-Standby、Smallest Delay、Load-Balancing、Priority-based。
分流功能可以理解为是采用哪种功能来进行多路径分流,例如MPTCP功能或者ATSSS-Lower Layer功能,是3GPP定义的分流功能。
分流模式指示(steering mode indicator),可以是autonomous load-balance或者UE-assistance,前者是UE或者UPF可以在分流模式为load-balancing时,自主决定分流比例。后者是,UE可以在分流模式为load-balancing时自主决定分流比例,此外,还可以将该分流比例发给UPF,从而让UPF根据该分流比例发送下行数据。
门限值,包括但不限于往返时延RTT门限值和/或丢包率门限值,可以结合load-balancing或者priority-based的分流模式使用,用于辅助决策如何分流。
计费信息(Charging information),取决于业务流传输在哪种接入类型的路径。
使用量监控信息(Usage Monitoring information),取决于业务流传输在哪种接入类型的路径。
此外,MA PDU会话控制信息还可以包括Application descriptors,用来识别业务流,从而判断该业务流应该采用哪种分流功能和分流模式。
7)ATSSS规则
SMF根据PCC规则生成ATSSS规则,并通过AMF向UE发送该ATSSS规则。ATSSS规则可以包括以下一项或多项:
规则标识(Rule identifier),用于唯一标识该ATSSS规则。
规则优先级(Rule Precedence),用于确定ATSSS规则的先后顺序。
业务流描述符(Traffic Descriptor),用于定义业务流,它可以包括以下一个或多个信息:Application descriptor(应用描述符)、IP descriptor(IP描述符)、Non-IP descriptor(非IP描述符);其中,应用描述符(Application descriptor)包括一个或多个应用标识,用于识别生产业务流的应用;IP描述符(IP descriptor)包括一个或多个五元组,用于识别IP业务流的目的地;非IP描述符(Non-IP descriptor)包括一个或多个描述符,用于识别非IP业务流如以太数据包的目的地。
接入选择描述符(Access Selection Descriptor),用于定义接入选择的部分。它可以包括以下信息:分流模式、分流模式指示、门限值、分流功能。
8)N4规则
N4规则是SMF向UPF发送的,用于控制UPF的功能以及让UPF向SMF上报一些事件信息。N4规则可以包括以下一项或多项规则:
包检测规则(packet detection rule,PDR):包含用于分类到达UPF的数据包的信息。
转发动作规则(forwarding action rule,FAR),包含对通过PDR识别的业务流是否进行转发、丢包或者缓存的信息。
多接入规则(multi-access rule,MAR),包含对如何在MA PDU会话中处理分流、切换或者分流等信息;该规则是在MA PDU会话中才会用,也是和本发明中的多接入会话相关的。
使用量报告规则(usage reporting rule,URR),包含用于定义如何统计通过PDR识别的业务流以及如何上报测量的信息。
服务质量执行规则(qoS enforcement rule,QER),包含与通过PDR识别的业务流执 行QoS相关的信息。
会话上报规则(session reporting rule,SRR),包含请求用户面功能检测和上报的事件的信息,该事件不是与PDU会话中特定的PDR相关的,也不是与使用量测量相关的。
9)注册流程,包括但不限于:3GPP接入类型下的注册流程、非可信非3GPP接入技术下的注册流程、可信非3GPP接入技术下的注册流程、有线接入技术下的注册流程。
如图2所述,介绍了目前技术中一种可能的非可信非3GPP接入技术下的注册流程。
步骤201a:UE连接至非可信非3GPP接入网,并被分配了一个IP地址。
此处的非可信非3GPP接入网通常是非运营商部署的接入网,可以包括接入节点(access point,AP)、路由器、交换机、网关等设备。后续,UE可以通过该非可信非3GPP接入网与N3IWF通信。
步骤201b:UE选择N3IWF,并获取该N3IWF的地址信息。
步骤202:UE与N3IWF建立因特网协议安全协议(internet protocol security,IPSec)安全联盟(security association,SA)。
例如,UE通过发起因特网密钥交换协议(internet key exchange,IKE)初始交换,实现UE与N3IWF建立IPSec SA。
步骤203:UE向步骤201b选择的N3IWF发送终端设备标识(UE ID)。
例如,该UE向N3IWF发送请求消息。该请求消息中包括终端设备标识(UE ID)。需要注意的是,该请求消息不包括AUTH有效载荷(payload),这指示了该请求消息是用于交互扩展认证协议(extensible authentication protocol,EAP)信令的。一种可能的实现方式,该请求消息为密钥交换协议鉴权IKE_AUTH请求消息。
步骤204:N3IWF向UE发送扩展认证协议请求(EAP Request)数据包。
例如,N3IWF向UE发送响应消息,该响应消息中包括扩展认证协议请求(EAP Request)数据包。一种可能的实现方式,该响应消息为密钥交换协议鉴权IKE_AUTH响应消息。
EAP Request数据包可以包括5G开始(5G-Start)数据包。该EAP-Request数据包(例如5G-Start数据包)用于通知UE发起EAP-5G会话,也可以理解为该EAP-Request数据包(例如5G-Start数据包)用于通知UE可以开始发送非接入层(non-access stratum,NAS)消息。UE在发送NAS消息时,NAS消息通常封装在EAP-5G数据包中。
步骤205:UE向N3IWF发送扩展认证协议响应(EAP-Response)数据包。
例如,UE向N3IWF发送请求消息,该请求消息中包括扩展认证协议响应(EAP-Response)数据包。一种可能的实现方式,该请求消息为密钥交换协议鉴权(IKE_AUTH)请求消息。
EAP-Response数据包可以包括5G-NAS数据包,5G-NAS数据包可以包括接入网(AN)参数和注册请求消息。AN参数包含了用于N3IWF选择AMF的参数信息,参数信息可以包括以下的一项或多项:全球唯一AMF标识(globally unique AMF identifier,GUAMI)、公共陆地移动网(public land mobile network,PLMN ID)、网络标识(NID)等。该注册请求消息包含在非接入层PDU(NAS-PDU)中。
步骤206a:N3IWF可以基于步骤205中接收到的AN参数,执行AMF选择。
步骤206b:N3IWF将步骤205接收到的注册请求消息发送给步骤206a中选择出的AMF。
步骤207:UE、AMF、SMF、鉴权服务功能(authentication server function,AUSF), UDM等进行鉴权与安全流程。
例如,首先,AMF选择AUSF,并向AUSF发送鉴权请求消息。AUSF对UE执行鉴权流程,并从UDM获取鉴权数据或者用于鉴权的信息。与鉴权相关的数据包均通过NAS消息封装,例如,该NAS消息可以通过EAP中5G-NAS类型的数据包封装。在鉴权完成后,AUSF向AMF发送安全锚点功能(security anchor functionality,SEAF)密钥。AMF可以基于该SEAF密钥推衍获取NAS安全密钥和N3IWF密钥。该N3IWF密钥是用于UE和N3IWF建立IPSec SA的。
然后,AMF向UE指示鉴权成功。例如,AMF向UE发送NAS安全模式命令(NAS Security Mode Command),以激活NAS安全。该NAS Security Mode Command包括EAP成功指示(EAP-Success),表示核心网执行的EAP认证和密钥协商(EAP-authentication and key agreement,EAP-AKA’)鉴权成功。N3IWF将AMF发送的NAS Security Mode Command转发给UE,并将UE发送的NAS安全模式完成(NAS Security Mode Complete)消息发给AMF。
步骤208a:AMF向N3IWF发送N3IWF密钥。
例如,AMF向N3IWF发送请求消息,该请求消息中包括N3IWF密钥。例如,该请求消息为初始上下文建立请求(Initial Context Setup Request)消息或下一代应用协议(next generation application protocol,NGAP)初始上下文建立请求(Initial Context Setup Request)消息。AMF接收到来自UE的NAS Security Mode Complete消息后,AMF才向N3IWF发送N3IWF密钥。
步骤208b:N3IWF向UE发送EAP-Success,表示N3IWF对UE的鉴权成功,或者表示IPSec隧道鉴权成功,或者表示N3IWF和UE完成EAP-5G会话。
例如,N3IWF向UE发送响应消息(例如IKE_AUTH响应消息),该响应消息中包括EAP-Success。
这时,EAP-5G会话完成,后续不存在EAP-5G数据包交互。
步骤209a:UE和N3IWF通过前面获取的N3IWF密钥建立IPSec SA,该IPSec SA称为“信令IPSec SA(signalling IPSec SA)”。
此时,signalling IPSec SA将被配置为:运行在隧道模式,N3IWF将向UE分配一个“inner”IP地址和NAS_IP_ADDRESS。后续所有NAS消息均通过该signalling IPSec SA传输。其中,对于UE向AMF发送的上行NAS消息,源地址为UE的“inner”IP地址,目的地址为NAS_IP_ADDRESS。对于AMF向UE发送的下行NAS消息,源地址为NAS_IP_ADDRESS,而目的地址则为UE的“inner”IP地址。
需要注意的是,步骤203中,该UE通过IPSec SA向N3IWF发送的IKE_AUTH请求消息中不包括AUTH有效载荷(payload),而步骤209a中,UE通过信令IPSec SA(signalling IPSec SA)向N3IWF发送的IKE_AUTH请求消息中可以包括AUTH有效载荷(payload)。
步骤209b:在建立了signalling IPSec SA之后,N3IWF向AMF告知UE上下文已经创建。例如N3IWF通过初始上下文建立响应或下一代应用协议初始上下文建立响应(NGAP Initial Context Setup Response)消息,通知AMF,UE上下文已经创建。
可选的,步骤210:AMF可以与PCF建立移动性管理策略建立(AM Policy Association Eatablishment)。
步骤211a:AMF向N3IWF发送NAS注册接受(NAS Registration Accept)消息。
NAS注册接受消息可以包含在N2消息中。
后续,当AMF向UDM注册时,需向UDM提供Access Type为Non-3GPP access。
步骤211b:N3IWF通过步骤209a中建立的signalling IPSec SA向UE发送NAS注册接受消息。
10)MA PDU会话建立流程:
如图3a和图3b所示,介绍了目前技术中一种可能的MA PDU会话建立流程,该示例适用于UE建立的多接入PDU会话中一条路径是3GPP接入类型的路径,另一条路径是非3GPP接入类型的路径的场景。可以理解的是,图3a与图3b可以看做是一个整体的流程,只是为了画图方便,才将其分为2部分。
步骤301:UE向AMF发送以下的一项或多项:请求类型(request type)、ATSSS能力(Capabilities)信息、PDU会话标识(PDU Session ID)、UE请求的数据网络名称(UE Requested DNN)、切片信息(S-NSSAI)等。其中,request type为多接入会话请求(MA PDU Request),表示该会话建立请求消息是用于请求建立多接入PDU会话的。ATSSS Capabilities用于通知网络该UE支持的分流功能,例如MPTCP和/或ATSSS-LL等。
例如,UE向AMF发送NAS消息,包括上述的这些信息,NAS消息例如为PDU会话建立请求(PDU Session Establishment Request)消息。
步骤302:AMF向SMF发送以下的一项或多项:UE标识(例如,用户永久标识(subscription permanent identifier,SUPI))、UE请求的DNN、PDU Session ID、MA PDU Request、接入类型(access type)、无线接入技术类型(radio access technology type,RAT type)等。接入类型为UE注册到核心网采用的接入类型,例如3GPP接入类型和非3GPP接入类型。无线接入技术类型可以包括无线接入技术、也可以包括有线接入技术,前文已介绍3GPP接入类型可能对应的接入技术和非3GPP接入类型可能对应的接入技术,不再重复赘述。
例如,AMF向SMF发送PDU会话创建会话上下文请求(Nsmf_PDU Session_GreateSMContext Request)消息,包括上述的这些信息。
可选的,步骤303:SMF向UDM获取会话管理签约数据,签约数据可以包括允许建立多接入PDU会话的信息或不允许建立多接入PDU会话的信息。例如,可以采用订阅检索或订阅更新(Subscription retrieval/subscription for updates)的方式获取会话管理签约数据。
步骤304:SMF向AMF发送以下的一项或多项:会话上下文标识、原因(cause)。
例如,SMF向AMF发送PDU会话创建会话上下文响应(Nsmf_PDU Session_GreateSMContext Response)消息,包括上述的这些信息。
可选的,步骤305:执行PDU会话鉴权或授权流程。
步骤306:SMF向PCF发送以下一项或多项:UE标识(例如,用户永久标识(subscription permanent identifier,SUPI))、UE请求的DNN、PDU Session ID、MA PDU Request、无线接入技术类型(radio access technology type,RAT type)等。
若需要动态策略控制和计费(policy control and charging,PCC)规则,则SMF选择PCF,SMF向PCF发送这些信息,用于与该PCF建立会话策略关联。
例如,SMF向PCF发送策略关联建立请求消息(SM Policy Association Establishment Request)消息,包括上述的这些信息。
步骤307:PCF向SMF发送策略控制和计费PCC规则等。PCC规则中包括多接入PDU会话控制信息,该多接入PDU会话控制信息包括但不限于以下的一项或多项:分流模式(steering mode)、分流功能(steering functionality)、门限值等。
例如,PCF向SMF发送策略关联建立响应(SM Policy Association Establishment Response)消息,包括上述的这些信息。
步骤308:SMF选择合适的UPF。
步骤309a:SMF向步骤308中选择的UPF发送N4规则,N4规则包括但不限于以下的一项或多项:数据包检测规则(packet detection rule,PDR)、转发动作规则(forwarding action rule,FAR)、多接入规则(multi access rule,MAR)等规则。其中,MAR规则包括但不限于以下的一项或多项:分流模式、分流功能等信息。
例如,SMF向UPF发送N4会话建立请求(N4 Session Establishment Request)消息,包括上述的这些信息。
步骤309b:UPF向SMF发送隧道信息,例如核心网侧的隧道信息(CN tunnels info)。
例如,UPF向SMF发送N4会话建立响应(N4 Session Establishment Response)消息,包括上述的这些信息。
通过步骤309a和步骤309b,SMF与步骤308选择的UPF建立N4连接。
步骤310:SMF向AMF发送以下的一项或多项:N2接口会话管理信息(N2 SM information)、N1接口会话管理容器(N1 SM Container)、接入类型等信息。
N2 SM information中包括但不限于以下的一项或多项:PDU会话标识(PDU Session ID)(来自步骤301中UE上报上来的)、核心网侧的隧道信息(CN Tunnel Info)(来自步骤309b中的某一个CN Tunnel Info)等。
N1 SM Container中包括但不限于以下的一项或多项:PDU会话建立接受(PDU Session Establishment Accept)消息(可以看作是针对步骤301的PDU会话建立请求的回复/响应)、ATSSS规则(rule)等与会话相关的信息。其中,ATSSS rule包括但不限于以下的一项或多项:分流模式、分流功能、门限值等信息。后续,N1 SM Container中的信息由SMF通过AMF发给UE,例如AMF通过NAS消息发给UE。
例如,SMF向AMF发送N1N2消息传输(Namf_Communication_N1N2MessageTransfer)消息,包括上述的这些信息。
AMF设备还可以向SMF设备发送响应,以表示接收到来自SMF设备的信息。
步骤311:AMF向RAN发送N2 SM information(来自步骤310)、NAS消息(NAS消息是需要发送给UE的)。其中NAS消息中包括PDU会话标识(PDU Session ID)(来自步骤310的N2 SM information)及N1 SM Container(来自步骤310)。
AMF可以根据SMF指示的接入类型,确定这些信息是发给3GPP接入网设备,还是发给非3GPP接入网设备。例如当步骤310中的接入类型为3GPP接入类型,这些信息发送给RAN。
例如,AMF向RAN发送N2 PDU会话请求消息,包括上述的这些信息。
步骤312:RAN与UE建立空口资源,接入网进行特定的资源设置(AN-specific resource setup)以建立数据无线承载(data radio bearer,DRB)。
RAN将该NAS消息发给UE,NAS消息中包括但不限于以下的一项或多项:PDU会话标识(PDU Session ID)、PDU会话建立接受(PDU Session Establishment Accept)消息、 ATSSS规则(rule)例如,分流模式、分流功能、门限值等信息。
步骤313:RAN向AMF发送RAN侧的接入网隧道信息(AN tunnels info),该RAN侧的接入网侧的隧道信息用于通知UPF,下行数据应发到哪里(可以理解为下行数据通过3GPP传输路径的目的地址)。RAN侧的AN tunnels info后续会经过AMF、SMF发给UPF,可以参考步骤313、步骤314和步骤315。
例如,RAN向AMF发送N2 PDU会话响应消息,包括上述的这些信息。
步骤314:AMF向SMF发送RAN侧的接入网隧道信息(AN tunnels info)(来自步骤313)。
例如,AMF向SMF发送N2 PDU会话响应消息,N2 PDU会话响应消息包括RAN侧的接入网隧道信息(AN tunnels info)。再例如,AMF向SMF发送PDU会话更新会话上下文请求(Nsmf_PDU Session_UpdateSMContext Request)消息,该请求消息包括N2 PDU会话响应消息。
步骤315:SMF向UPF发送RAN侧的接入网侧的隧道信息(AN tunnels info)。
例如,SMF通过N4会话修改(N4 Session Modification)流程向UPF发送RAN侧的接入网侧的隧道信息(AN tunnels info)。
步骤316:SMF向AMF发送成功或失败的指示信息。
例如,SMF向AMF发送PDU会话更新会话上下文响应(Nsmf_PDU Session_UpdateSMContext Response)消息,该响应消息中包括更新成功或更新失败的指示信息。
如果失败,SMF还可以向AMF发送失败原因值。
步骤317:SMF向AMF发送以下的一项或多项:N2接口会话管理信息(N2 SM information)、N1接口会话管理容器(N1 SM Container)、接入类型等信息。
N2 SM information中包括但不限于以下的一项或多项:PDU会话标识(PDU Session ID)(来自步骤301中UE上报上来的)、核心网侧的隧道端点信息(CN Tunnel Info)。
例如,SMF向AMF发送N1N2消息传输(Namf_Communication_N1N2MessageTransfer)消息,包括上述的这些信息。
AMF设备还可以向SMF设备发送响应,以表示接收到来自SMF设备的信息。
步骤318:AMF向N3IWF发送N2 SM information(来自步骤317)。
AMF可以根据SMF指示的接入类型,确定这些信息是发给3GPP接入网设备,还是发给非3GPP接入网设备。例如当由于步骤317中的接入类型为非3GPP接入类型,这些信息发送给非3GPP接入网关设备(例如N3IWF)。
例如,AMF向N3IWF发送N2 PDU会话请求消息,该请求消息中携带N2 SM information。
步骤319:N3IWF与UE建立用于传输用户面数据的因特网协议安全协议子安全联盟(IPSec Child SA)。
在此过程中,N3IWF会为UE分配该IPSec Child SA的IP地址(例如UP_IP_ADDRESS),即在UE发送上行数据时,目的IP地址应设为该UP_IP_ADDRESS,而源IP地址则为注册时候分配“inner”IP address。UE与N3IWF之间建立IPSec Child SA的数量、及每个IPSec Child SA传输哪些服务质量流(QoS Flow)数据,是基于N3IWF的策略和配置决定的。
步骤320:N3IWF向AMF发送N3IWF侧的接入网隧道信息(AN tunnels info),该 N3IWF侧的接入网隧道信息用于通知UPF,下行数据应发到哪里(可以理解为下行数据通过非3GPP传输路径的目的地址)。N3IWF侧的接入网隧道信息后续会经过AMF、SMF发给UPF,可以参考步骤320、步骤321和步骤322。
例如,N3IWF向AMF发送N2 PDU会话响应消息,包括上述的这些信息。
步骤321:AMF向SMF发送N3IWF侧的接入网隧道信息(来自步骤320)。
例如,AMF向SMF发送N2 PDU会话响应消息,N2 PDU会话响应消息包括N3IWF侧的接入网隧道信息(AN tunnels info)。再例如,AMF向SMF发送PDU会话更新会话上下文请求(Nsmf_PDU Session_UpdateSMContext Request)消息,该请求消息包括N2 PDU会话响应消息。
步骤322:SMF向UPF发送N3IWF侧的接入网侧的隧道信息(AN tunnels info)。
例如,SMF通过N4会话修改(N4 Session Modification)流程向UPF发送N3IWF侧的AN隧道信息。
步骤323:SMF向AMF发送成功或失败的指示信息。
例如,SMF向AMF发送PDU会话更新会话上下文响应(Nsmf_PDU Session_UpdateSMContext Response)消息,该响应消息中包括更新成功或更新失败的指示信息。
如果失败,SMF还可以向AMF发送失败原因值。
图3a和图3b的示例介绍了先在3GPP接入侧执行会话建立流程(例如参见图3b中的步骤310至步骤316),后在非3GPP接入侧执行会话建立流程(例如参见图3b中的步骤317至步骤323)。在另一示例中,也可以先在非3GPP接入侧执行会话建立流程,后在3GPP接入侧执行会话建立流程,这个过程与上述示意图相似,不再详细赘述。
图3a和图3b的示例介绍了UE发送一次会话建立请求消息。在另一示例中,UE可以分别在3GPP侧以及非3GPP侧发送会话建立请求消息,例如,在步骤316和步骤317之间,还可以再执行与步骤301和步骤302类似的过程,不再详细赘述。
11)多接入PDU会话的系统架构:
在该系统架构下,多接入PDU会话的路径包括但不限于:通过3个、甚至更多的路径传输,或通过多个接入类型为3GPP的路径传输,或通过多个接入类型为非3GPP的路径传输。
图4展示了一种可能的多接入PDU会话的系统架构:在该系统架构下,多接入PDU会话的路径包括路径一和路径二。路径一可以是UE通过WiFi接入公共陆地移动网络PLMN,例如UE通过WiFi AP与PLMN中的N3IWF建立因特网协议安全协议IPSec隧道,路径一中的2个分支对应不同的N3IWF,2个分支可以都存在,也可以只存在其中某一分支。路径二可以是UE通过独立非公共网络(standalone non-public network,SNPN)与PLMN中的N3IWF建立IPSec隧道。路径1和路径2可以对应同一N3IWF,也可以对应不同的N3IWF。因此,从PLMN的角度来看,UE通过两个接入类型为非3GPP的路径接入PLMN,即UE建立的多接入PDU会话包括多个接入类型为非3GPP的路径。
图5展示了一种可能的多接入PDU会话的系统架构:在该系统架构下,多接入PDU会话的路径包括路径一和路径二。路径一是UE通过4G空口(即LTE)接入公共陆地移动网络PLMN。路径二是UE通过5G空口技术(即NR)接入PLMN。路径一中,UE通 过4G的基站和4G的服务网关(serving gateway,SGW)连接既支持4G的分组数据网络网关用户面(packet data network gateway-user plane,PGW-U)、也支持5G的用户面功能(UPF)的设备(PGW-U+UPF)。路径二中,UE通过5G的基站连接该PGW-U+UPF。因此,从PLMN的角度来看,UE通过两个接入类型为3GPP的路径接入PLMN,即UE建立的多接入PDU会话包括多个接入类型为3GPP的路径。
图6展示了一种可能的多接入PDU会话的系统架构:在该系统架构下,多接入PDU会话的路径包括路径一、路径二和路径三。路径一是UE通过独立非公共网络SNPN与PLMN中的N3IWF建立IPSec隧道。路径二是UE通过WiFi接入公共陆地移动网络PLMN,例如UE通过WiFi AP与PLMN中的N3IWF建立因特网协议安全协议IPSec隧道。路径三是UE通过PLMN的NR空口接入PLMN。因此,从PLMN的角度来看,UE通过两个接入类型为非3GPP的路径及一个接入类型为3GPP的路径接入PLMN,即UE建立的多接入PDU会话包括3条路径。
图7展示了一种可能的多接入PDU会话的系统架构:在该系统架构下,多接入PDU会话的路径包括路径一、路径二和路径三。与图6的差异包括,其中一条非3GPP路径为可信非3GPP路径。
图8展示了一种可能的多接入PDU会话的系统架构:在该系统架构下,多接入PDU会话的路径包括路径一、路径二和路径三。路径一是UE通过4G空口(即LTE)接入公共陆地移动网络PLMN。路径二是UE通过5G空口技术(即NR)接入PLMN。路径一中,UE通过4G的基站和4G的服务网关SGW连接既支持4G的分组数据网络网关用户面(PGW-U)、也支持5G的用户面功能(UPF)的设备(PGW-U+UPF)。路径二中,UE通过5G的基站连接PGW-U+UPF。路径三中,UE通过WiFi与PLMN中的N3IWF建立IPSec隧道,N3IWF与PGW-U+UPF连接。因此,从PLMN的角度来看,UE通过两个接入类型为3GPP的路径和一个接入类型为非3GPP的路径接入PLMN,即UE建立的多接入PDU会话包括3条路径。
目前,多接入PDU会话支持通过两个路径传输,两个路径分别是接入类型为3GPP的路径和接入类型为非3GPP的路径。结合上文介绍的多接入PDU会话的系统架构,未来多接入PDU会话支持可以通过接入类型为3GPP的多个路径和/或接入类型为非3GPP的多个路径传输。
在这种情况下,仅通过接入类型(例如3GPP接入类型、非3GPP接入类型)已不能准确地识别出不同的路径。例如AMF仅基于接入类型(Access Type)这个参数不能准确地判断出向UE注册的哪个接入网设备发送信息。
基于此,本申请提出了多种方法,可以准确地识别不同的路径,以实现多接入会话管理。
接下来将结合附图对方案进行详细介绍。附图中以虚线标识的特征或内容可理解为本申请实施例的可选操作或者可选结构。
图9所示,提供了一种通信方法的流程示意图;该通信方法适用于多接入会话管理过程,会话管理流程可以包括会话建立、会话更新、会话释放、用户面激活、用户面去激活等。
多接入会话包括多条传输路径,在本申请的实施例中,该传输路径可以是终端设备与接入网设备之间的路径,也可以是接入网设备与核心网设备(例如用户面设备)之间的路 径,也可以是UE与核心网设备(例如用户面设备)之间的路径。
多条传输路径包括但不限于第一传输路径和第二传输路径。第一传输路径对应的接入技术属于(也可以称为对应于)3GPP接入类型或者非3GPP接入类型;第二传输路径对应的接入技术属于(也可以称为对应于)3GPP接入类型或者非3GPP接入类型。一种可能的实现方式中,所述第一传输路径和所述第二传输路径对应的接入技术属于(或者对应于)3GPP接入类型;或者,所述第一传输路径和所述第二传输路径对应的接入技术属于(或者对应于)非3GPP接入类型。如果还包括其它一条或多条传输路径,其它传输路径对应的接入技术可以属于(或者对应于)3GPP接入类型,也可以属于(或者对应于)非3GPP接入类型。换而言之,多接入会话包括的多条传输路径中,可以有至少两条传输路径对应的接入技术属于同一接入类型。
第一传输路径和第二传输路径对应的接入技术可以相同,也可以不同。例如第一传输路径对应的接入技术为LTE接入技术、或NR接入技术、或非可信非3GPP接入技术、或可信非3GPP接入技术、或有线接入技术等。
第二传输路径对应的接入技术为LTE接入技术、或NR接入技术、或非可信非3GPP接入技术、或可信非3GPP接入技术、或有线接入技术等。如果还包括其它一条或多条输路径,其它传输路径对应的接入技术可以是LTE接入技术、或NR接入技术、或非可信非3GPP接入技术、或可信非3GPP接入技术、或有线接入技术等。
非可信非3GPP接入技术还可以细分为:通过wifi连接的非3GPP接入技术、通过SNPN连接的非3GPP接入技术等。一种可选的示例中,本申请可以对多个非可信非3GPP接入技术进行细化区分,可以在现有的接入技术的基础上增加第四信息构成新的接入技术信息。第四信息例如更细粒度的接入技术索引/标识(可以称为子接入技术索引/标识)、或路径的标识/索引、或IPSec隧道信息等。该第四信息用于指示(或者区分、或者识别)某一传输路径(也可以理解为指示某一N2接口、或某一NGAP接口、或某一逻辑通道),具体的,该第四信息用于指示(或者区分、或者识别)同种接入技术对应的传输路径中的某一传输路径。例如,通过wifi连接的非3GPP接入技术可以称为非可信非3GPP接入技术1、或称为非可信非3GPP路径1(untrusted N3GPP path 1),通过SNPN连接的非3GPP接入技术可以称为非可信非3GPP接入技术2、或可以称为非可信非3GPP路径2(untrusted N3GPP path 2),从而可以兼容更多非可信非3GPP接入技术的路径,也可以在传输技术信息时节省信令开销。同理,对于LTE接入技术、NR接入技术、可信非3GPP接入技术、有线接入技术均可以对其包含的更细粒度的接入技术进行区分,以兼容更多同一接入技术类型的路径,也可以在传输技术信息时节省信令开销。
第一传输路径对应的接入网设备为以下任一项:3GPP接入网设备、可信非3GPP接入网设备、非可信非3GPP接入网设备、有线接入网关。第二传输路径对应的接入网设备为以下任一项:3GPP接入网设备、可信非3GPP接入网设备、非可信非3GPP接入网设备、有线接入网关。例如,所述3GPP接入网设备为以下任一项:eNodeB、NG-RAN、gNodeB。例如,所述可信非3GPP接入网设备以下任一项:可信非3GPP网关功能TNGF、可信WLAN互通功能TWIF、可信非3GPP接入点TNAP。例如,所述非可信非3GPP接入网设备以下任一项:非3GPP互通功能N3IWF。例如,所述有线网关为以下任一项:有线接入网关功能W-AGF网元。
可以理解的是,传输路径对应的接入技术可以是指终端设备已注册的接入技术或者可 以是指终端设备注册于核心网时采用的接入技术。同理,传输路径对应的接入网设备可以是指终端设备已注册的接入网设备,或者可以是指终端设备在该传输路径中连接的接入网设备,或者可以是指终端设备接入核心网所连接的接入网设备。
一种示例中,UE通过不同的多个接入网设备注册于核心网,则UE通过不同的多个接入网设备建立MA PDU会话(可以理解为多条传输路径对应的多个接入网设备为不同的接入网设备)。
多个接入网设备不同可以是,多个接入网设备包括接入类型相同、但接入技术不同的接入网设备。例如多个接入网设备包括eNodeB、NG-RAN、gNodeB中的两个或多个设备;或者,多个接入网设备包括N3IWF、TNGF、W-AGF、TWIF中的两个或多个设备。当然,在此基础上,还可以再包括接入类型不同的接入网设备。
可以理解的是,本申请可以兼容目前已有的多接入会话的形式,即多个接入网设备为2个接入网设备,其中一个为3GPP接入类型的接入网设备,另一个为非3GPP接入类型的接入网设备。
一种示例中,UE通过不同的接入方式(接入方式例如接入类型或接入技术)连接到同一接入网设备,可以看做是UE通过一个接入网设备建立MA PDU会话(可以理解为多条传输路径对应一个接入网设备)。该接入网设备可以是非3GPP接入网设备,例如N3IWF。例如,UE通过WiFi的方式与N3IWF建立IPSec隧道,并通过该N3IWF注册到核心网;与此同时,UE通过SNPN与该相同的N3IWF建立另一IPSec隧道,并通过该N3IWF注册到核心网。
例如,在图4的架构中包括2条传输路径,2条传输路径对应的接入类型均为非3GPP接入类型。路径1和路径2中的选项1结合,2条传输路径对应一个接入网设备。路径1和路径2中的选项2结合,2条传输路径对应不同的接入网设备。路径1对应的接入技术为通过wifi连接的非3GPP接入技术(例如,称为非可信非3GPP接入技术1、或称为非可信非3GPP路径1),路径2对应的接入技术为通过SNPN连接的非3GPP接入技术(非可信非3GPP接入技术2、或称为非可信非3GPP路径2)。
例如,在图5的架构中包括2条传输路径,2条传输路径对应的接入类型均为3GPP接入类型。2条传输路径对应不同的接入网设备,路径1对应的接入技术为LTE接入技术,路径2对应的接入技术为NR接入技术。
例如,在图6的架构中包括3条传输路径,3条传输路径中的2条传输路径对应接入类型为非3GPP接入类型,这2条非3GPP的传输路径对应同一接入网设备,这2条非3GPP的传输路径对应的接入技术分别为通过wifi连接的非3GPP接入技术(非可信非3GPP接入技术1、或称为非可信非3GPP路径1)和通过SNPN连接的非3GPP接入技术(非可信非3GPP接入技术2、或称为非可信非3GPP路径2)。另外一条3GPP的传输路径对应另一接入网设备,对应的接入技术为NR接入技术。
例如,在图8的架构中包括3条传输路径,3条传输路径中的2条传输路径对应接入类型为3GPP接入类型,这2条3GPP的传输路径对应同一接入网设备,这2条3GPP的传输路径对应的接入技术分别为LTE接入技术和NR接入技术。另外一条非3GPP的传输路径对应另一接入网设备,对应的接入技术为通过wifi连接的非3GPP接入技术。
步骤901:在多接入会话管理过程中,会话管理设备(例如SMF)获取传输路径对应的隧道信息。
一种可能的实现方式,该多接入会话为多接入协议数据单元PDU会话。
该隧道信息可以指示上行数据的目的地址和/或端口号,例如,该隧道信息可以是隧道端点标识(tunnel endpoint identifier,TEID)信息和/或隧道地址信息(例如IP地址(IP address)),该隧道信息可以是核心网侧的隧道信息,每个传输路径对应一个隧道信息,例如第一传输路径对应第一隧道信息、第二传输路径对应第二隧道信息、第三传输路径对应第三隧道信息等。该隧道信息会发送给接入网设备,用于通知接入网设备,上行数据应发往哪里。
会话管理设备获取隧道信息,可以是会话管理设备分配传输路径对应的隧道信息,还可以是会话管理设备从用户面设备(例如UPF)获取传输路径对应的隧道信息。可选的,如果是会话管理设备分配隧道信息,还可以将隧道信息发送给用户面设备。
会话管理设备获取多条传输路径对应的隧道信息时,可以是一次性获取到的,也可以是分多次获取到的。
步骤902:会话管理设备(例如SMF)向移动管理设备(例如AMF)发送所述传输路径对应的隧道信息和所述传输路径对应的接入技术信息(例如,UE已注册的接入技术或者UE注册核心网时采用的接入技术),所述接入技术信息用于所述移动管理设备确定接入网设备(UE已注册的接入网设备或者UE注册核心网所连接的接入网设备或者UE在该传输路径中连接的接入网设备)。
相应的,移动管理设备(例如AMF)接收来自会话管理设备(例如SMF)的传输路径对应的隧道信息和所述传输路径对应的接入技术信息。
一种可选的示例,所述会话管理设备向所述移动管理设备发送传输消息,相应的,所述移动管理设备接收来自所述会话管理设备的传输消息;其中,所述传输消息包括所述第一传输路径对应的第一隧道信息和接入技术信息、所述第二传输路径对应的第二隧道信息和接入技术信息。如果还包括其它一条或多条传输路径,该传输消息中还可以包括其它传输路径对应的隧道信息和其它传输路径对应的接入技术信息。在该示例中,会话管理设备将多接入会话包括的所有的传输路径对应的隧道信息和接入技术信息通过一条消息发送给移动管理设备,这样可以节省信令传输。
一种可选的示例,所述会话管理设备向所述移动管理设备发送第一传输消息,所述第一传输消息包括所述第一传输路径对应的第一隧道信息和接入技术信息;及所述会话管理设备向所述移动管理设备发送第二传输消息,所述第二传输消息包括所述第二传输路径对应的第二隧道信息和接入技术信息。相应的,所述移动管理设备接收来自所述会话管理设备的第一传输消息及第二传输消息。如果还包括其它传输路径,会话管理设备还可以针对每条其它传输路径向移动管理设备发送传输消息,传输消息中可以包括该传输路径对应的隧道信息和接入技术信息。在该示例中,会话管理设备针对每条传输路径向移动管理设备发送一条传输消息,这样可以使得移动管理设备可以获知该消息中包括的信息需要通过哪个传输路径传输,或者可以获知需要向哪个传输路径对应的接入网设备发送该消息中包括的信息。
一种可选的示例,当多条传输路径对应不同接入技术时,针对每个接入技术,所述会话管理设备向所述移动管理设备发送一个传输消息,所述传输消息中包括该接入技术信息和对应的隧道信息。例如,共3条传输路径,均对应非3GPP接入类型,3条路径中的第一传输路径和第二传输路径对应非可信非3GPP接入技术,第三传输路径对应可信非3GPP 接入技术。会话管理设备可以针对非可信非3GPP接入技术,向移动管理设备发送一条传输消息,该传输消息中包括第一传输路径对应的第一隧道信息、第二传输路径对应的第二隧道信息、接入技术信息(即非可信非3GPP接入技术);会话管理设备针对可信非3GPP接入技术,再向移动管理设备发送一条传输消息,该传输消息中包括第三传输路径的第三隧道信息和接入技术信息(即可信非3GPP接入技术)。在该示例中,会话管理设备针对每个接入技术向移动管理设备发送一条传输消息,相比于在每个传输路径下均发送传输消息,可以节省信令开销。
一种可能的实现方式中,多条接入路径对应同一接入网设备,终端设备通过不同的接入方式连接到该接入网设备。例如,非可信非3GPP接入技术还可以细分为:通过wifi连接的非3GPP接入技术、通过SNPN连接的非3GPP接入技术等。在该场景下,本申请可以对多个非可信非3GPP接入技术进行细化区分,可以在现有的接入技术的基础上增加第四信息,构成新的接入技术信息。第四信息例如更细粒度的接入技术索引/标识(可以称为子接入技术索引/标识)、或路径的索引/标识、或IPSec隧道信息等。如果不对现有接入技术进行重新定义,则会话管理设备可以向移动管理设备发送接入技术信息和第四信息,该第四信息用于指示多条传输路径中的某一条传输路径(也可以理解为指示某一N2接口、或某一NGAP接口、或某一逻辑N2通道),具体的,该第四信息用于指示(或者区分\或者识别)同种接入技术对应的多条传输路径中的某一传输路径。例如,当第一传输路径和第二传输路径均对应于同一种接入技术时,该指示信息可以指示第一传输路径或第二传输路径。一种示例中,接入技术信息和第四信息,例如为untrusted non-3GPP access和索引1(或索引2、索引3等)。
IPSec隧道信息可以包括但不限于以下信息中的一项或多项:IPSec隧道标识、IPSec隧道地址信息(inner IP address和/或NAS_IP_ADDRESS)。
在多条传输路径对应接入技术相同、且接入网设备相同的场景下,会话管理设备通过第四信息指示移动管理设备发送隧道信息(还可以包括其它信息)的传输路径,可以使移动管理设备确定是向哪个N2接口、或下一代应用协议NGAP接口、或逻辑N2通道发送隧道信息(还可以包括其它信息),这种多接入会话的管理方法可以适用于支持多个3GPP路径或者多个非3GPP路径的多接入会话的数据传输。
上述介绍的传输消息可以是N1N2消息传输消息。
需要注意的是,在会话管理设备向移动管理设备发送多条传输消息、且会话管理设备分多次获取隧道信息的场景下,会话管理设备获取隧道信息与会话管理设备发送传输消息的先后顺序可以不进行限定。例如可以是会话管理设备每获取到一个隧道信息,就发送一次传输消息;也可以是会话管理设备获取到全部的隧道信息后才发送多条传输消息;还可以是会话管理设备获取到部分隧道信息后,就发送一部分传输消息,再获取另外部分隧道信息后才发送另外部分传输消息。
步骤903:所述移动管理设备基于所述传输路径对应的接入技术信息确定接入网设备。
在执行多接入会话建立过程之前,UE已执行注册流程,移动管理设备知道UE与哪个或哪些接入网设备连接,但是移动管理设备不知道要将隧道信息发送给哪个接入网设备,所以,移动管理设备可以根据会话管理设备指示的接入技术信息,确定出相对应的接入网设备,进而将隧道信息发送给相对应的接入网设备。
移动管理设备可以基于每条传输路径各自对应的接入技术信息,确定每条传输路径各 自对应的接入网设备。例如,所述移动管理设备基于所述第一传输路径对应的接入技术信息确定第一接入网设备;所述移动管理设备基于所述第二传输路径对应的接入技术信息确定第二接入网设备;所述移动管理设备基于所述第三传输路径对应的接入技术信息确定第三接入网设备。
在多个传输路径对应同一接入网设备的场景下,第一接入网设备、第二接入网设备为同一接入网设备。
步骤904:所述移动管理设备向所述接入网设备发送所述传输路径对应的隧道信息。
移动管理设备向每条传输路径对应的接入网设备分别发送该传输路径对应的隧道信息。例如,所述移动管理设备向第一传输路径的所述第一接入网设备发送所述第一传输路径对应的第一隧道信息;所述移动管理设备向第二传输路径的所述第二接入网设备发送所述第二传输路径对应的第二隧道信息;所述移动管理设备向第三传输路径的所述第三接入网设备发送所述第三传输路径对应的第三隧道信息。
当第一接入网设备、第二接入网设备为同一接入网设备时,UE通过不同的接入技术信息多次接入到该接入网设备,这时,移动管理设备可以是在一条消息中将多条传输路径对应的隧道信息发送给该接入网设备,也可以是针对每条传输路径,分别发送该传输路径对应的隧道信息。
需要注意的是,移动管理设备(例如AMF)接收来自会话管理设备(例如SMF)的传输路径对应的隧道信息,并将该隧道信息发送给接入网设备的这个过程中,移动性管理设备可以起到转发的作用,不对隧道信息进行格式的修改。例如,隧道信息可以包含在N2 SM information中,移动管理设备可以转发该N2 SM information。可选的,该N2 SM information可以包含在N1N2消息传输消息中。
在本申请中,多接入会话包括的多条传输路径中有至少两条传输路径对应同一接入类型(例如3GPP接入类型或非3GPP接入类型),如果仍采用目前的技术,会话管理设备向移动管理设备发送接入类型,移动管理设备不能识别出要将隧道信息(还可以包括其它信息)发送给该接入类型下的哪个接入网设备。所以本申请提出了会话管理设备向移动管理设备发送相比接入类型更细粒度的接入技术信息,移动管理设备可以通过接入技术信息来准确地识别出相对应的接入网设备,即准确识别出了每条传输路径,这样,移动管理设备可以把隧道信息(还可以包括其它信息)发送给相对应的接入网设备,这种多接入会话的管理方法可以适用于支持多个3GPP路径或者多个非3GPP路径的多接入会话的数据传输。
本申请也可以适用于多个接入网设备包括接入技术相同、但设备本身不同的接入网设备的场景(即第一传输路径对应和第二传输路径对应的接入技术相同,但接入网设备不同)。例如,多个接入网设备包括多个eNodeB、或多个NG-RAN、或多个gNodeB、或多个N3IWF、或多个TNGF、或多个W-AGF、或多个TWIF。当然,在此基础上,多个接入网设备中还可以再包括接入类型不同的接入网设备。
本申请的接入技术信息需能够确定每条传输路径相对应的接入网设备,在多个接入网设备包括接入技术相同、但设备本身不同的接入网设备的场景下,目前技术中定义的接入技术信息不能区分出接入技术相同、但设备本身不同的接入网设备。本申请可以通过额外的参数(后续称为第五信息)来区分接入技术相同、但设备本身不同的接入网设备。也就是说,会话管理设备(例如SMF)需要向移动管理设备(例如AMF)发送接入技术信息和第五信息,该第五信息用于指示(或者区分\或者识别)多条传输路径中的某一条传输路 径(也可以理解为指示多个接入网设备中的某一接入网设备),具体的,该第五信息用于指示(或者区分\或者识别)同种接入技术对应的多条传输路径中的某一传输路径(或某一接入网设备),例如,第五信息指示第一传输路径或第二传输路径。该第五信息例如接入网设备的标识(该标识可以是任意逻辑标识,只要能识别不同的传输路径即可)、或路径的标识。移动管理设备可以结合接入技术信息和第五信息,来确定相对应的接入网设备。
接入网设备与路径的对应关系可以是UE注册时确定好的(AMF设备知道路径的标识与接入网设备的对应关系)。例如,在UE注册时,将接入技术相同、但设备本身不同的接入网设备编号为路径1、路径2等。例如,UE通过N3IWF1注册的时候,接入技术为非可信非3GPP路径1(或者非可信非3GPP接入技术+N3IWF1的标识);当UE通过N3IWF2注册时,该接入技术为非可信非3GPP路径2(或者非可信非3GPP接入技术+N3IWF2的标识)。这样,在多接入会话管理过程中,AMF设备在接收到第五信息后,就可以找到对应的接入网设备。
一种可选的示例中,会话管理设备可以向移动管理设备发送第五信息,而不发送接入技术信息。移动管理设备仍然可以根据第五信息可以确定出相对应的接入网设备。
在多条传输路径对应接入技术相同、但设备本身不同的接入网设备的场景下,会话管理设备通过第五信息指示移动管理设备发送隧道信息(还可以包括其它信息)的传输路径,可以使移动管理设备确定是向哪个接入网设备发送隧道信息(还可以包括其它信息),这种多接入会话的管理方法可以适用于支持多个3GPP路径或者多个非3GPP路径的多接入会话的数据传输。
一种可选的示例中,在步骤902(即会话管理设备向移动管理设备发送所述传输路径对应的隧道信息和所述传输路径对应的接入技术信息,相应的,移动管理设备接收来自会话管理设备的传输路径对应的隧道信息和所述传输路径对应的接入技术信息)之前,所述移动管理设备还可以向所述会话管理设备发送第一信息,所述第一信息用于获取所述传输路径对应的隧道信息;例如,所述第一信息包括但不限于以下一项或多项:终端设备已注册的传输路径的第一数量、一个或多个接入技术信息。一种可能的实现方式,第一信息用于获取所述传输路径对应的隧道信息,可以理解为第一信息可以用于确定传输路径的数量,从而确定隧道信息的数量。
相应的,所述会话管理设备还可以接收来自所述移动管理设备的第一信息,会话管理设备可以基于第一信息获取传输路径对应的隧道信息。通过第一信息,可以使会话管理设备更加准确地获知需要为多接入会话连接建立获取隧道信息的数量。
终端设备已注册的传输路径的第一数量可以与多接入会话包括的路径的数量相同;或者,终端设备已注册的传输路径的第一数量是针对每个接入技术而言的,多个接入技术分别对应的已注册的传输路径的第一数量的总和与多接入会话包括的路径的数量相同。
当多个传输路径采用同一接入技术时,第一信息中包括的接入技术信息可以是一个,也可以是多个。
当第一信息中包括的接入技术信息只有一个时,通常第一信息还需要包括终端设备已注册的传输路径的第一数量。因为一个接入技术信息无法确定出有几条路径,需要一个接入技术信息与已注册的传输路径的第一数量结合使用,才能确定出多接入会话包括的传输路径的数量。这时,已注册的传输路径的第一数量即为多接入会话包括的路径的数量。
当第一信息中包括的接入技术信息为多个时,接入技术的数量可以单独使用来确定多 接入会话包括的路径的数量,例如接入技术的数量即为多接入会话包括的路径的数量。接入技术的数量也可以与已注册的传输路径的第一数量结合使用来确定多接入会话包括的路径的数量。这时,已注册的传输路径的第一数量可以是多接入会话包括的路径的数量;或者已注册的传输路径的第一数量也可以是针对每个接入技术已注册的传输路径的第一数量,则多个接入技术分别对应的已注册的路口的第一数量的总和为多接入会话包括的路径的数量。
例如,移动管理设备向会话管理设备发送PDU会话创建会话上下文请求(Namf_PDU Session_GreateSMContext Request)或者PDU会话更新会话上下文请求(Namf_PDU Session_UpdateSMContext Request)消息中,该请求消息包括所述第一信息。
一种可选的示例中,在终端设备注册过程中,所述移动管理设备可以获取接入网信息,所述接入网信息用于指示所述终端设备使用的接入技术信息。所述接入网信息包括但不限于以下的一项或多项:接入节点类型、接入技术类型、接入节点名称、接入节点标识、IPSec标识。其中,接入节点类型可以是WiFi AP、eNodeB、gNodeB、RAN、NG-RAN、非可信WiFi AP、可信WiFi AP等。接入技术类型可以是WiFi、蜂窝网络、LTE、LTE-M、NR、频段信息等。接入节点标识可以是UE连接的节点的标识信息,例如小区标识、SSID、Global RAN Node ID等。
移动管理设备可以根据所述终端设备使用的接入技术信息,确定所述第一信息。第一信息包括但不限于:终端设备注册的传输路径的第一数量或所述传输路径对应的接入技术信息。
在多条传输路径对应同一接入网设备,UE通过不同的方式接入到同一接入网设备(例如,一种是UE通过wifi的AP与N3IWF连接,另一种是UE通过独立非公共网络SNPN与该N3IWF连接)的场景下,在移动管理设备角度看,只有一条传输路径,一个接入技术(例如非3GPP非可信接入技术)。但从UE的角度看,有2条传输路径,两条传输路径对应的接入技术也是有差异的,一种是通过wifi连接的非3GPP接入技术,另一种是通过SNPN连接的非3GPP接入技术。该示例中,在终端设备注册过程中,所述移动管理设备可以获取接入网信息,后续移动管理设备通过终端设备使用的接入技术信息,可以准确地确定出终端设备注册的传输路径的第一数量或所述传输路径对应的接入技术信息,这种多接入会话的管理方法可以适用于支持多个3GPP路径或者多个非3GPP路径的多接入会话的数据传输。
例如,UE先将接入网信息发送给传输路径对应的接入网设备(例如N3IWF),传输路径对应的接入网设备(例如N3IWF)再发给移动管理设备。
例如,UE将接入网信息发送给传输路径对应的接入网设备(例如N3IWF),传输路径对应的接入网设备(例如N3IWF)进行了格式的更改,或者通过其它设备(例如用户面设备)发给移动管理设备。
例如,UE将接入网信息包含在NAS消息中,通过传输路径对应的接入网设备(例如N3IWF)透传给移动管理设备。
该移动管理设备获取接入网信息过程也可以参考后续介绍的图11。
一种可选的示例中,所述会话管理设备接收来自所述移动管理设备的第一信息之后,会话管理设备还可以向策略控制功能PCF发送第二信息,所述第二信息基于所述第一信息 确定。例如,第二信息即为第一信息或第一信息中的一部分,或者第二信息可以是传输路径的数量、终端设备注册的传输路径的第一数量、接入技术的数量等一项或多项。一种可选的示例中,所述第二信息用于获取多接入会话包括的多条传输路径(例如所述第一传输路径和所述第二传输路径,当然还可以包括其它传输路径)的分流信息。一种可能的实现方式中,分流信息可以包括分流模式、分流功能、门限值中的一种或多种。例如,会话管理设备向策略控制设备(例如PCF或PCRF)发送策略关联建立请求消息(SM Policy Association Establishment Request)消息,该请求消息包括所述第二信息。
策略控制设备在接收到第二信息后,可以基于第二信息确定多条传输路径的分流信息,并将该分流信息发送给会话管理设备。分流信息可以包括分流模式、分流功能、门限值中的一种或多种。例如,分流模式为主备(Active-Standby)模式、或最小延迟(Smallest Delay)模式、或负载均衡(Load-Balancing)模式、或基于优先级(Priority-based)模式。一种可能的实现方式中,该分流信息可以指示终端设备通过目标传输路径传输数据;其中目标传输路径为终端设备已注册的传输路径中的一个或多个。目标传路径可以包括相同接入类型对应的传输路径,也可以包括相同接入技术对应的传输路径。例如,策略控制设备向会话管理设备发送策略关联建立响应(SM Policy Association Establishment Response)消息,该响应消息包括该分流信息。例如,策略控制设备向会话管理设备发送策略控制和计费PCC规则,该PCC规则中包括所述分流信息。例如,该PCC规则可以包含在所述策略关联建立响应消息中。
所述会话管理设备接收来自所述策略控制设备的所述分流信息后,所述会话管理设备可以将所述分流信息发送给用户面设备(例如UPF)。例如,会话管理设备向用户面设备发送N4会话建立请求(N4 Session Establishment Request)消息,该请求消息包括所述分流信息。例如会话管理设备向用户面设备发送多接入规则(multi access rule,MAR),MAR规则包括分流信息。MAR规则可以基于PCC规则确定,例如PCC规则是针对整个PDU会话的,MAR规则主要是由用户面设备来使用,MAR规则可以为PCC规则中的一部分。例如,MAR规则包含在所述N4会话建立请求消息中。
所述会话管理设备接收来自所述策略控制设备的所述分流信息后,所述会话管理设备还可以将所述分流信息发送UE。例如,所述会话管理设备可以将所述分流信息发送给所述移动管理设备,所述移动管理设备接收来自所述会话管理设备的所述分流信息(所述分流信息基于所述第一信息确定,具体的,所述分流信息是策略控制设备基于第二信息确定的,第二信息基于第一信息确定),并将该分流信息发送给UE。例如,会话管理设备向移动管理设备发送ATSSS rule,该ATSSS rule包括分流信息。例如会话管理设备向移动管理设备发送N1 SM Container,N1 SM Container中包括所述分流信息,例如ATSSS rule包含在所述N1 SM Container中。例如,移动管理设备将分流信息包含在NAS消息中发送给UE。
一种可能的实现方式中,会话管理设备向用户面设备或者UE发送的分流信息与会话管理设备从策略控制设备获取的分流信息可以相同,也可以不同。可以理解为,会话管理设备可以根据策略控制设备发送的分流信息1确定向用户面设备发送的分流信息2或者UE发送的分流信息3。其中,分流信息1、分流信息2、分流信息3可以相同,也可以不同。例如,会话管理设备可以将分流信息1做格式转换后获得分流信息2和/或分流信息3。
在本申请中,多接入会话的路径的数量可以大于或等于2条,其中,至少2条路径可 以对应同一接入类型。本申请的分流信息可以基于接入技术(接入技术比接入类型的粒度更细)来确定,或者基于接入技术和第四信息来确定,使得分流信息可以更好地适用于多接入会话的多种架构。
一种可选的示例中,在移动管理设备向所述会话管理设备发送第一信息,所述第一信息包括但不限于以下一项或多项:终端设备已注册的传输路径的第一数量、一个或多个接入技术信息的场景下,传输路径的隧道信息可以基于该第一信息确定。例如,会话管理设备可以基于第一信息,分配传输路径对应的隧道信息;具体的,会话管理设备可以根据第一信息确定隧道数量,然后,会话管理设备可以分配该隧道数量对应的隧道信息。可选的,会话管理设备还可以将隧道信息发送给用户面设备。再例如,会话管理设备向用户面设备发送所述第一信息,并接收来自所述用户面设备的所述传输路径对应的隧道信息;具体的,会话管理设备向用户面设备发送第一信息,用户面设备基于第一信息确定隧道数量,用户面设备可以分配该隧道数量对应的隧道信息。
在多条传输路径对应的接入网设备包括非3GPP接入网设备(可以是多条传输路径对应不同的非3GPP接入网设备,也可以是多条传输路径对应同一非3GPP接入网设备)的场景下,以所述第一传输路径对应的接入网设备和所述第二传输路径对应的接入网设备均为非3GPP接入网设备为例,一种可选的示例中,第一传输路径的第一非3GPP接入网设备向移动管理设备发送第三信息,相应的,所述移动管理设备接收来自所述第一传输路径的第一非3GPP接入网设备的第三信息。其中,所述第三信息包括以下的一项或多项:所述第一非3GPP接入网设备与终端设备建立的因特网协议安全协议子安全联盟IPSec Child SA数量、每个IPSec Child SA对应的区分服务编码点DSCP值、每个IPSec Child SA相关联的服务质量流标识QFI、每个IPSec Child SA对应的隧道标识。所述第三信息可以通过对应关系或者映射关系的方式指示这些信息。一种可选的示例中,第三信息可以包含在接入网设备向移动管理设备发送的PDU会话响应消息(例如N2 PDU会话响应消息)中。
然后,所述移动管理设备向所述第二传输路径的第二非3GPP接入网设备发送所述第三信息,所述第三信息用于所述第二非3GPP接入网设备与所述终端设备建立用户面资源。这些信息可以后续用于给第二非3GPP接入网设备做参考,第二非3GPP接入网设备可以根据该信息建立或调整或修改与UE的用户面资源,由于参考这些信息,第二非3GPP接入网设备与UE建立的用户面资源与第一非3GPP接入网设备与UE建立的用户面资源相似或者相同。例如第二非3GPP接入网设备与UE建立的IPSec Child SA的数量可以和第二非3GPP接入网设备与UE建立的IPSec Child SA的数量相同。进一步地,第二非3GPP接入网设备与UE建立的IPSec Child SA所关联的一个或多个服务质量流标识QFI可以和第一非3GPP接入网设备与UE建立的IPSec Child SA所关联的一个或多个服务质量流标识QFI相同;和/或,第二非3GPP接入网设备与UE建立的IPSec Child SA所关联的区分服务编码点(differentiated services code point,DSCP)值可以和第一非3GPP接入网设备与UE建立的IPSec Child SA所关联的DSCP值相同。一种可选的示例中,第三信息可以包含在移动管理设备向SMF设备发送的PDU会话响应消息(例如N2 PDU会话响应消息)或PDU会话更新会话上下文请求(Nsmf_PDU Session_UpdateSMContext Request)消息中。
第二非3GPP接入网设备与UE建立IPSec Child SA之前,第二非3GPP接入网设备在确定IPSec Child SA数量时,例如,可以根据来自第一非3GPP接入网设备的用户面资源 信息(例如上述介绍的第三信息)确定IPSec Child SA数量,进一步还可以确定每个IPSec Child SA与QoS Flow的映射关系(映射关系也称为对应关系)。进而,第二非3GPP接入网设备基于IPSec Child SA数量及每个IPSec Child SA与QoS Flow的映射关系(映射关系也可以称为对应关系),与UE建立IPSec Child SA。
该示例可以适用于不同的传输路径对应不同的非3GPP接入网设备,不同的非3GPP接入网设备例如可以包括不同的N3IWF,则第一非3GPP接入网设备和第二非3GPP接入网设备均为N3IWF,但2个N3IWF不同;或包括不同的TNGF,则第一非3GPP接入网设备和第二非3GPP接入网设备均为TNGF,但2个TNGF不同;或包括N3IWF和TNGF,则第一非3GPP接入网设备为TNGF及第二非3GPP接入网设备为N3IWF,或第一非3GPP接入网设备为N3IWF及第二非3GPP接入网设备为TNGF。该示例也可以适用于不同的传输路径对应同一非3GPP接入网设备,则第一接入网设备与第二接入网设备相同,例如均为N3IWF,例如UE可以通过wifi和SNPN的方式分别连接到该N3IWF。
该示例中,UE可以通过相同或者不同的非3GPP接入网设备多次注册到核心网并建立多接入会话,提高多接入会话建立的灵活性,不同传输路径(例如不同接入网设备或同一接入网设备对应的不同传输路径)之间可以相互参考用户面资源,来建立/调整/修改自己与UE建立的用户面资源,以保证不同传输路径对应的用户面资源相同或相似,这样,不同传输路径的服务质量可以对等或相同。
如图10a和图10b所示,介绍一种建立MA PDU会话的流程示意图,该示例中,MA PDU会话对应两条传输路径,两条传输路径对应的接入网设备不同(例如接入类型不同、或接入技术不同)。可以理解的是,图10a与图10b可以看做是一个整体的流程,只是为了画图方便,才将其分为2部分。
步骤1001(可以参考步骤301):UE向AMF发送以下的一项或多项:请求类型(request type)、ATSSS能力(Capabilities)信息、PDU会话标识(PDU Session ID)、UE请求的数据网络名称(UE Requested DNN)、切片信息(S-NSSAI)、第一能力信息等。
其中,request type为多接入会话请求(MA PDU Request),表示该会话建立请求消息是用于请求建立多接入PDU会话的。
ATSSS Capabilities用于通知网络该UE支持的分流功能,例如MPTCP和/或ATSSS-LL等。
第一能力信息指示终端设备是否支持通过相同接入类型或者相同接入技术接入网络。一种示例中,第一能力信息指示终端设备支持通过相同接入类型或者相同接入技术接入网络。一种示例中,第一能力信息指示终端设备不支持通过相同接入类型或者相同接入技术接入网络。在一种具体的示例中,第一能力信息指示终端设备支持通过3GPP接入类型但不同的接入技术接入网络。3GPP接入类型包括但不限于以下接入技术:NR、LTE、卫星接入、高轨卫星接入、中轨卫星接入、低轨卫星接入等。
例如,UE向AMF发送NAS消息,包括上述的这些信息,NAS消息例如为PDU会话建立请求(PDU Session Establishment Request)消息。
步骤1002(可以参考步骤302):AMF向SMF发送以下的一项或多项:一个或多个接入技术信息(也可以称为无线接入技术类型(radio access technology type,RAT type))、终端设备注册的传输路径的第一数量、UE标识(例如,用户永久标识(subscription permanent  identifier,SUPI))、UE请求的DNN、PDU Session ID、MA PDU Request、接入类型(access type)、第一能力信息等。
需要注意的是,目前的多接入PDU会话只有两条传输路径,一个传输路径对应的接入类型为3GPP接入类型,另一条传输路径对应的接入类型为非3GPP接入类型,所以步骤302的接入类型(access type)包括3GPP接入类型和非3GPP接入类型,无线接入技术类型(RAT type)包括3GPP接入类型下的某一接入技术和非3GPP接入类型下的某一接入技术。而在本申请中,传输路径可以包括2条、甚至更多条,多条传输路径中有至少两条传输路径对应同一接入类型(例如非3GPP接入类型或3GPP接入类型),当然,多条传输路径中也可以包括不同接入类型的传输路径,则步骤1002的接入类型(access type)可以只包括非3GPP接入类型,或只包括3GPP接入类型,或同时包括3GPP接入类型和非3GPP接入类型。该步骤1002的无线接入技术类型(RAT type)可以是该接入类型(access type)下的某一种或某几种接入技术。
第一能力信息指示终端设备是否支持通过相同接入类型或者相同接入技术接入网络。一种示例中,第一能力信息指示终端设备支持通过相同接入类型或者相同接入技术接入网络。一种示例中,第一能力信息指示终端设备不支持通过相同接入类型或者相同接入技术接入网络。SMF可以根据该第一能力信息来确定UE允许建立的MA PDU会话的形式。例如,SMF根据该第一能力信息和签约数据来确定UE允许建立的MA PDU会话的形式。另外,SMF还可以向PCF发送该第一能力信息,使得PCF根据该第一能力信息确定分流信息。
结合前文的介绍,AMF向SMF发送的第一信息中包括终端设备注册的传输路径的第一数量和/或接入技术信息(即RAT type)。
例如,AMF向SMF发送PDU会话创建会话上下文请求(Nsmf_PDU Session_GreateSMContext Request)消息,包括上述的这些信息。
可选的,步骤1003(可以参考步骤303):SMF向UDM获取会话管理签约数据。例如,可以采用订阅检索或订阅更新(Subscription retrieval/subscription for updates)的方式获取会话管理签约数据。
目前的技术中,UDM可以记录当前的多接入PDU会话的接入技术,以使UDM获知在该接入技术下服务该UE的设备,或者以使UDM判断UE是否能在该接入技术对应的传输路径上建立会话或者建立用户面资源。而在本申请中,随着多接入PDU会话的多种架构的出现,多接入PDU会话中传输路径的数量会增多。由于传输路径数量越大,占用的网络资源越多,本申请提出了根据UE的签约数据来确定UE允许建立的多接入PDU会话的形式的示例。多接入PDU会话的形式例如MA PDU对应的接入技术和/或传输路径的数量等。这样可以使网络资源分配更合理,也可以为多个用户提供差异化的服务。
例如,SMF向UDM获取UE的签约数据后,SMF可以根据UE的签约数据,确定UE允许建立的MA PDU会话的形式。一种可能的实现方式中,SMF获取第一能力信息(例如在步骤1002中获取到第一能力信息)。第一能力信息指示终端设备是否支持通过相同接入类型或者相同接入技术接入网络。一种示例中,第一能力信息指示终端设备支持通过相同接入类型或者相同接入技术接入网络。一种示例中,第一能力信息指示终端设备不支持通过相同接入类型或者相同接入技术接入网络。SMF根据第一能力信息和终端设备的签约数据,确定终端设备允许建立的会话形式。例如当第一能力信息指示终端设备支持通过两 个(或多个)3GPP接入类型接入网络时,SMF可以确定UE允许建立的MA PDU会话包括两个3GPP接入类型的传输路径(例如该MA PDU会话的接入网侧的传输路径包括两个3GPP接入网)。
例如,UDM可以根据UE的签约数据,确定UE允许建立的MA PDU会话形式,UDM将UE允许建立的MA PDU的形式反馈给SMF。
例如,SMF将UE注册时采用的接入技术信息和/或UE注册的传输路径的第一数量发送给UDM,UDM基于UE的签约数据确定UE允许建立的MA PDU会话形式,向SMF指示允许或不允许。进一步,在不允许的情况下,还可以指示允许哪些接入技术,和/或允许的路径的数量等,这样下文提及的UE注册时采用的接入技术信息和/或UE注册的传输路径的第一数量均为被允许的接入技术信息和/或传输路径的数量。
步骤1004(可以参考步骤304):SMF向AMF发送以下的一项或多项:会话上下文标识、原因(cause)。
例如,SMF向AMF发送PDU会话创建会话上下文响应(Nsmf_PDU Session_GreateSMContext Response)消息。
可选的,步骤1005:执行PDU会话鉴权或授权流程。本申请对于该过程不进行限制。
步骤1006(可以参考步骤306):SMF向PCF发送以下一项或多项:UE标识(例如,用户永久标识(subscription permanent identifier,SUPI))、UE请求的DNN、PDU Session ID、MA PDU Request、接入类型(access type)、接入技术信息(或称为无线接入技术类型(radio access technology type,RAT type))、终端设备注册的传输路径的第一数量、第一能力信息等。
可以理解的是,步骤1006中SMF向PCF发送的这些信息可以基于步骤1002中SMF收到的信息确定。例如直接将步骤1002中接收到的信息发送给PCF,也可以是对步骤302中接收到的信息进行格式或内容的转换后发送给PCF。
SMF向PCF发送这些信息,可以用于与该PCF建立会话策略关联。
例如,SMF向PCF发送策略关联建立请求消息(SM Policy Association Establishment Request)消息,包括上述的这些信息。
步骤1007(可以参考步骤307):PCF向SMF发送分流信息。
一种可能的实现方式,分流信息包括分流模式(steering mode)、分流功能(steering functionality)、门限值(threshold value)中的一项或多项。
例如,PCF向SMF发送策略控制和计费PCC规则等。PCC规则中包括多接入PDU会话控制信息,该多接入PDU会话控制信息包括但不限于以下的一项或多项:分流模式(steering mode)、分流功能(steering functionality)、门限值等。
一种可能的实现方式中,PCF根据步骤1006中获取的第一能力信息确定分流信息。
一种可能的实现方式中,PCF根据UE的签约数据确定分流信息。
一种可能的实现方式中,PCF根据UE的签约数据和第一能力信息确定分流信息。
例如,PCF向SMF发送策略关联建立响应(SM Policy Association Establishment Response)消息,包括上述的这些信息。
需要注意的是,在本申请中,多接入会话的路径的数量可以大于或等于2条,并且可以至少2条路径对应同一接入类型,本申请的分流信息可以基于接入技术(接入技术比接入类型的粒度更细)来确定,或者基于3条、甚至更多条路径来确定,这样确定出的分流 信息可以更好地适用于多接入PDU会话的多种可能的形式。
SMF可以向PCF发送UE注册时采用的接入技术信息和/或UE已注册的路径的数量。PCF可以根据UE注册时采用的接入技术信息和/或UE已注册的路径的数量,确定PCC规则。结合步骤1002和步骤1003的介绍,UE注册时采用的接入技术信息和/或UE已注册的路径的数量可以来自AMF,也可以来自UDM。
需要注意的是,由于现有的MA PDU会话最多为两个传输路径,且其中一个传输路径为3GPP接入类型,另一个传输路径为非3GPP接入类型,因此现有的分流模式下选择传输路径等同于选择接入类型。但在新的MA PDU会话模式下,选择传输路径不等同于选择接入类型,应该增强为选择具体一条传输路径或者选择接入技术。即对于分流模式而言,是传输路径的选择或者接入技术的选择,而不再是接入类型的选择。
例如,PCF向SMF发送策略关联建立响应(SM Policy Association Establishment Response)消息,包括上述的这些信息。
步骤1008:SMF选择合适的UPF。对于该过程不进行限定。
步骤1009a(可以参考步骤309a):SMF向步骤1008中选择的UPF发送以下一项或多项:分流信息、终端设备注册的传输路径的第一数量、接入技术的数量。
一种可能的实现方式,分流信息包括分流模式(steering mode)、分流功能(steering functionality)、门限值(threshold value)中的一项或多项。
例如,SMF向步骤308中选择的UPF发送N4规则,N4规则包括但不限于以下的一项或多项:数据包检测规则(packet detection rule,PDR)、转发动作规则(forwarding action rule,FAR)、多接入规则(multi access rule,MAR)等规则。其中,MAR规则包括但不限于以下的一项或多项:分流模式、分流功能、门限值(可以基于步骤1007中的分流模式、分流功能、门限值确定)等信息。N4规则可以基于PCC规则确定,例如PCC规则是针对整个PDU会话的,N4规则主要是由UPF来使用,N4规则可以为PCC规则中的一部分。
例如,SMF向UPF发送N4会话建立请求(N4 Session Establishment Request)消息,包括上述的这些信息。
一种可能的实现方式中,分流信息可以包括不同传输路径下的转发动作规则。例如,分流信息可以包含第一接入技术对应的转发动作规则和/或第二接入技术对应的转发动作规则。又例如,分流信息可以包含第一传输路径对应的转发动作规则和/或第二传输路径对应的转发动作规则。在目前的技术中,转发动作规则是以接入类型为粒度的,本申请中,转发动作规则可以以接入技术为粒度,不分区接入类型;或者转发动作规则可以以传输路径为粒度,不区分接入类型或者接入技术。
如表1所示,介绍了接入技术粒度的转发动作规则。
表1:接入技术粒度的转发动作规则。
如表2所示,介绍了传输路径粒度的转发动作规则。
表2:传输路径粒度的转发动作规则。
步骤1009b(可以参考步骤309b):UPF向SMF发送多个(2个、3个、甚至更多个)隧道信息。
例如,隧道信息为核心网侧的隧道信息(CN tunnels info)。
例如,UPF基于终端设备注册的传输路径的第一数量和/或接入技术的数量确定隧道数量,UPF可以分配该隧道数量对应的隧道信息。
需要注意的是,本申请中,由于传输路径的数量可能大于2个,可以将终端设备注册的传输路径的第一数量和/或接入技术的数量告知给UPF,以使UPF准确分配与多接入PDU会话的传输路径的数量相对应的隧道信息。
例如,UPF向SMF发送N4会话建立响应(N4 Session Establishment Response)消息,包括上述的这些信息。
通过步骤1009a和步骤1009b,SMF与步骤1008选择的UPF建立N4连接。
步骤1010(可以参考步骤310):SMF向AMF发送第一传输路径对应的第一隧道信息和第一传输路径对应的接入技术信息。
接入技术信息可以指示AMF通过哪个接入技术的路径传输隧道信息(还可以包括其它信息),从而使得AMF可以向该接入技术的路径对应的接入网设备发送隧道信息(还可以包括其它信息)。例如,UE既通过4G的接入网设备(eNodeB)接入,又通过5G的接入网设备(NG-RAN)接入,则此时,SMF不仅指示AMF通过3GPP access发送隧道消息(还可以包括其它信息),还可以进一步指明是通过LTE接入技术、还是通过NR接入技术来发送隧道消息(还可以包括其它信息),从而使得AMF可以确定将隧道消息(还可以包括其它信息)发给eNodeB或NG-RAN、或gNodeB。
第一隧道信息会发送给该接入技术对应的接入网设备,例如称为第一接入网设备,用于通知第一接入网设备,上行数据应发往哪里(可以理解为上行数据的目的地址)。
由于在本申请中,多接入PDU会话对应的多条传输路径中有至少两条传输路径对应同一接入类型(例如3GPP接入类型或非3GPP接入类型),本申请提出了SMF向AMF发送比接入类型更细粒度的接入技术信息,AMF可以通过接入技术信息来准确地识别出相对应的接入网设备,即准确识别出了每条传输路径,这样,AMF可以把隧道信息(还可以包括其它信息)发送给相对应的接入网设备,以实现多接入PDU会话的管理。
例如,第一传输路径对应的第一隧道信息可以包含在N2接口会话管理信息(N2 SM information)中。例如,SMF向AMF发送N2接口会话管理信息(N2 SM information)和接入技术信息。
进一步可选地,SMF还可以向AMF发送分流信息(可以来自步骤1007),例如,该分流信息可以包含在N1 SM Container中,则SMF还可以向AMF发送N1接口会话管理 容器(N1 SM Container)。
例如,N2 SM information中包括但不限于以下的一项或多项:PDU会话标识(PDU Session ID)(可以来自步骤1001中UE上报上来的)、核心网侧的第一隧道信息(CN Tunnel Info)(可以来自步骤1009b中的某一个CN Tunnel Info)、QoS模板(QoS profile)、相关联的QoS流标识(associated QFI)等。后续,N2 SM information由SMF通过AMF发给第一接入网设备。
例如,N1 SM Container中包括但不限于以下的一项或多项:PDU会话建立接受(PDU Session Establishment Accept)消息(可以看作是针对步骤1001的PDU会话建立请求的回复/响应)、分流信息等与会话相关的信息。其中,分流信息可以包含在ATSSS规则(rule)中,则ATSSS rule包括但不限于以下的一项或多项:分流模式、分流功能、门限值(可以来自步骤1007)等信息。后续,N1 SM Container中的信息由SMF通过AMF发给UE,例如AMF通过NAS消息将N1 SM Container发给UE。
一种可能的实现方式中,ATSSS规则可以包括以下信息:
如表3所示,介绍了接入技术粒度的分流信息。
表3:接入技术粒度的分流信息。
如表4所示,介绍了传输路径粒度的分流信息。
表4:传输路径粒度的分流信息。
例如,SMF向AMF发送N1N2消息传输(Namf_Communication_N1N2MessageTransfer)消息,包括上述的这些信息。
AMF设备还可以向SMF设备发送响应,以表示接收到来自SMF设备的信息。
步骤1011(可以参考步骤311):AMF向第一接入网设备发送该第一接入网设备所在的传输路径对应的第一隧道信息。
例如,AMF向第一接入网设备发送N2 SM information(可以来自步骤1010),N2 SM information中包括但不限于所述第一隧道信息。
可选的,AMF还可以向第一接入网设备发送分流信息,由第一接入网设备将该分流信息发送给UE。接入网设备可以对分流信息起到转发(即透传)的作用。例如,AMF向第一接入网设备发送N1 SM Container,N1 SM Container中包括但不限于分流信息。例如,AMF向第一接入网设备发送NAS消息(NAS消息是需要发送给UE的),NAS消息中包括但不限于分流信息。例如,NAS消息中包括但不限于N1 SM Container(可以来自步骤1010),N1 SM Container中包括但不限于分流信息。
进一步地,NAS消息中还可以包括但不限于以下的一项或多项:PDU会话标识(PDU Session ID)(可以来自步骤1010的N2 SM information)、PDU会话建立接受(PDU Session Establishment Accept)消息、ATSSS规则(rule)等信息。可选的,分流信息可以包含在ATSSS规则(rule)中。
在执行多接入PDU会话建立过程之前,UE已执行注册流程,AMF知道UE在哪些接入网设备上进行注册,AMF可以根据SMF指示的接入技术信息,确定出相对应的接入网设备,并将这些信息发送给相对应的接入网设备。
例如,AMF向第一接入网设备发送N2 PDU会话请求消息,包括上述的这些信息。
步骤1012(可以参考步骤312或步骤319):第一接入网设备建立(或调整或修改)与UE的用户面资源。
如果第一接入网设备为3GPP接入类型对应的接入网设备,则第一接入网设备与UE建立(或调整或修改)空口资源,接入网进行特定的资源设置(AN-specific resource setup)以建立数据无线承载DRB。
如果第一接入网设备为非3GPP接入类型对应的接入网设备(例如N3IWF),则第一接入网设备与UE建立(或调整或修改)用于传输用户面数据的因特网协议安全协议子安全联盟(IPSec Child SA)。在此过程中,第一接入网设备会为UE分配该IPSec Child SA的IP地址(例如UP_IP_ADDRESS),即在UE发送上行数据时,目的IP地址应设为该UP_IP_ADDRESS,而源IP地址则为注册时候分配“inner”IP address。
UE与非3GPP接入类型对应的第一接入网设备之间建立IPSec Child SA的数量、及每个IPSec Child SA传输哪些服务质量流(QoS Flow)数据,是基于第一接入网设备的策略和配置决定的。例如非3GPP接入类型对应的第一接入网设备可以根据QoS Flow的数量确定IPSec Child SA数量,还可以确定每个IPSec Child SA与QoS Flow的映射关系(映射关系也可以称为对应关系)。
例如,第一接入网设备(非3GPP接入类型对应的接入网设备(例如N3IWF))向UE发送因特网密钥交换协议创建子安全联盟请求(IKE_Create_Child_SA request)消息,例如,该请求消息可以指示请求的IPSec Child SA是运行在隧道模式的(tunnel mode)。例如,该请求消息包括但不限于以下的一项或多项:与该Child SA相关联的一个或多个QFI、与该Child SA相关联的PDU会话标识、该Child SA相关联的DSCP值、默认Child SA指示信息、其他QoS信息、IPSec Child SA的IP地址(例如UP_IP_ADDRESS)。可选的,UE还可以向第一接入网设备发送因特网密钥交换协议创建子安全联盟请求(IKE_Create_Child_SA request)消息。若第一接入网设备(非3GPP接入类型对应的接入网设备(例如N3IWF))需要与UE建立多个IPSec Child SA,多个IPSec Child SA的IP地址(例如UP_IP_ADDRESS)不同。第一接入网设备与UE可以重复上述发送请求与响应的过程,并分配不同的IPSec Child SA的IP地址(例如UP_IP_ADDRESS)。
可选的,第一接入网设备可以将分流信息发送给UE。例如,第一接入网设备向UE发送N1 SM Container,N1 SM Container中包括分流信息。例如,第一接入网设备向UE发送NAS消息,NAS消息中包括分流信息。例如,NAS消息中包括N1 SM Container(可以来自步骤1011),N1 SM Container中包括分流信息。进一步地,NAS消息中还可以包括但不限于以下的一项或多项:PDU会话标识(PDU Session ID)、PDU会话建立接受(PDU Session Establishment Accept)消息、ATSSS规则(rule)等信息。可选的,分流信息可以 包含在ATSSS规则(rule)中。通常情况下,NAS消息由3GPP接入类型对应的接入网设备发送给UE。
步骤1013(可以参考步骤313):第一接入网设备向AMF发送第一接入网设备侧的接入网隧道信息(AN tunnels info),该第一接入网设备侧的接入网侧的隧道信息用于通知UPF,下行数据应发到哪里。第一接入网设备侧的AN tunnels info后续会经过AMF、SMF发给UPF,可以参考步骤1013、步骤1014和步骤1015。
在一种可选的示例中,在所述第一传输路径对应的第一接入网设备和所述第二传输路径对应的第二接入网设备均为非3GPP接入网设备的场景下,该第一接入网设备还可以向AMF设备发送以下的一项或多项(即前文提及的第三信息):所述第一接入网设备与终端设备建立的因特网协议安全协议子安全联盟IPSec Child SA数量、每个IPSec Child SA对应的区分服务编码点DSCP值、每个IPSec Child SA相关联的服务质量流标识QFI、每个IPSec Child SA对应的隧道标识。以便后续AMF向所述第二传输路径的第二非3GPP接入网设备发送所述第三信息,所述第三信息用于所述第二非3GPP接入网设备与所述终端设备建立用户面资源。这些信息可以后续用于给第二非3GPP接入网设备做参考,第二非3GPP接入网设备可以根据该信息建立或调整或修改与UE的用户面资源。
例如,第一接入网设备向AMF发送N2 PDU会话响应消息,包括上述的这些信息。
步骤1014(可以参考步骤314):AMF向SMF发送第一接入网设备侧的接入网隧道信息(AN tunnels info)(可以来自步骤313)。
例如,AMF向SMF发送N2 PDU会话响应消息,N2 PDU会话响应消息包括第一接入网设备侧的接入网隧道信息(AN tunnels info)。
再例如,AMF向SMF发送PDU会话更新会话上下文请求(Nsmf_PDU Session_UpdateSMContext Request)消息,该请求消息中包括第一接入网设备侧的接入网隧道信息(AN tunnels info)。再例如,该PDU会话更新会话上下文请求消息包括N2 PDU会话响应消息,N2 PDU会话响应消息包括第一接入网设备侧的接入网隧道信息(AN tunnels info)。
步骤1015(可以参考步骤315):SMF向UPF发送第一接入网设备侧的接入网侧的隧道信息(AN tunnels info)。
例如,SMF通过N4会话修改(N4 Session Modification)流程向UPF发送第一接入网设备侧的接入网侧的隧道信息(AN tunnels info)。
步骤1016(可以参考步骤316):SMF向AMF发送成功或失败的指示信息。
例如,SMF向AMF发送PDU会话更新会话上下文响应(Nsmf_PDU Session_UpdateSMContext Response)消息,该响应消息中包括更新成功或更新失败的指示信息。
如果失败,SMF还可以向AMF发送失败原因值。
步骤1017(可以参考步骤317):SMF向AMF发送第二传输路径对应的第二隧道信息和第二传输路径对应的接入技术信息。
接入技术信息可以指示AMF通过哪个接入技术的路径传输隧道信息(还可以包括其它信息),从而使得AMF可以向该接入技术的路径对应的接入网设备发送隧道信息(还可以包括其它信息)。
第二隧道信息会发送给该接入技术对应的接入网设备,例如称为第二接入网设备,用 于通知第二接入网设备,上行数据应发往哪里(可以理解为上行数据的目的地址)。
由于在本申请中,多接入PDU会话对应的多条传输路径中可以有至少两条传输路径对应同一接入类型(例如3GPP接入类型或非3GPP接入类型),所以本申请提出了SMF向AMF发送比接入类型更细粒度的接入技术信息,AMF可以通过接入技术信息来准确地识别出UE已注册时对应的接入网设备,即准确识别出了每条传输路径,这样,AMF可以把隧道信息(还可以包括其它信息)发送给相对应的接入网设备,以实现准确地多接入PDU会话管理。
例如,第二传输路径对应的第二隧道信息可以包含在N2接口会话管理信息(N2 SM information)中。例如,SMF向AMF发送N2接口会话管理信息(N2 SM information)和接入技术信息。
进一步可选的,SMF还可以向AMF发送分流模式(可以来自步骤1007),例如,该分流模式可以包含在N1 SM Container中,则SMF还可以向AMF发送N1接口会话管理容器(N1 SM Container)。如果在步骤1010中已经通过第一接入网设备发送N1接口会话管理容器(N1 SM Container),该步骤1017中可以无需发送,当然为了传输可靠,也可以再次发送。以下以步骤1017中不发送N1接口会话管理容器(N1 SM Container)为例进行介绍。
例如,N2 SM information中包括但不限于以下的一项或多项:PDU会话标识(PDU Session ID)(可以来自步骤1001中UE上报上来的)、核心网侧的第二隧道信息(CN Tunnel Info)(可以来自步骤1009b中的另一个CN Tunnel Info,步骤1017中的CN Tunnel Info与步骤1010中的CN Tunnel Info不同)、QoS模板(QoS profile)、相关联的QoS流标识(associated QFI)等。后续,N2 SM information由SMF通过AMF发给第二接入网设备。
例如,SMF向AMF发送N1N2消息传输(Namf_Communication_N1N2MessageTransfer)消息,包括上述的这些信息。
AMF设备还可以向SMF设备发送响应,以表示接收到来自SMF设备的信息。
步骤1018(可以参考步骤318):AMF向第二接入网设备发送该第二接入网设备所在的传输路径对应的第二隧道信息。
例如,AMF向第二接入网设备发送N2 SM information(可以来自步骤1010),N2 SM information中包括但不限于所述第二隧道信息。
在执行多接入PDU会话建立过程之前,UE已执行注册流程,AMF知道UE在哪些接入网设备上进行注册,AMF可以根据SMF指示的接入技术信息,确定出相对应的接入网设备,并将这些信息发送给合适的接入网设备。
在一种可选的示例中,在所述第一传输路径对应的第一接入网设备和所述第二传输路径对应的第二接入网设备均为非3GPP接入网设备的场景下,步骤1013中已介绍第一接入网设备还可以向AMF设备发送以下的一项或多项(即前文提及的第三信息):所述第一非3GPP接入网设备与终端设备建立的因特网协议安全协议子安全联盟IPSec Child SA数量、每个IPSec Child SA对应的区分服务编码点DSCP值、每个IPSec Child SA相关联的服务质量流标识QFI、每个IPSec Child SA对应的标识。以便后续AMF向所述第二传输路径的第二非3GPP接入网设备发送所述第三信息,所述第三信息用于所述第二非3GPP接入网设备与所述终端设备建立用户面资源。在该步骤1018中,可以把这些信息发送给第二接入网设备(非3GPP接入网设备),用于给第二接入网设备做参考,第二接入网设备可以根 据该信息建立或调整或修改与UE的用户面资源。
例如,AMF向第二接入网设备发送N2 PDU会话请求消息,包括上述的这些信息。
步骤1019(可以参考骤312或步骤319):第二接入网设备建立(或调整或修改)与UE的用户面资源。
如果第二接入网设备为3GPP接入类型对应的接入网设备,则第二接入网设备与UE建立(或调整或修改)空口资源,接入网进行特定的资源设置(AN-specific resource setup)以建立数据无线承载DRB。
如果第二接入网设备为非3GPP接入类型对应的接入网设备,则第二接入网设备与UE建立(或调整或修改)用于传输用户面数据的因特网协议安全协议子安全联盟(IPSec Child SA)。在此过程中,第二接入网设备会为UE分配该IPSec Child SA的IP地址(例如UP_IP_ADDRESS),即在UE发送上行数据时,目的IP地址应设为该UP_IP_ADDRESS,而源IP地址则为注册时候分配“inner”IP address。
UE与非3GPP接入类型对应的第二接入网设备之间建立IPSec Child SA的数量、每个IPSec Child SA传输哪些服务质量流(QoS Flow)数据,可以是基于第二接入网设备的策略和配置决定的。例如第二接入网设备可以根据QoS Flow的数量确定IPSec Child SA数量,还可以确定每个IPSec Child SA与QoS Flow的映射关系(映射关系也可以称为对应关系)。
例如,第二接入网设备(非3GPP接入类型对应的接入网设备(例如N3IWF))向UE发送因特网密钥交换协议创建子安全联盟请求(IKE_Create_Child_SA request)消息,例如,该请求消息可以指示请求的IPSec Child SA是运行在隧道模式的(tunnel mode)。例如,该请求消息包括但不限于以下的一项或多项:与该Child SA相关联的一个或多个QFI、与该Child SA相关联的PDU会话标识、该Child SA相关联的DSCP值、默认Child SA指示信息、其他QoS信息、IPSec Child SA的IP地址(例如UP_IP_ADDRESS)。可选的,UE还可以向第二接入网设备发送因特网密钥交换协议创建子安全联盟请求(IKE_Create_Child_SA request)消息。若第二接入网设备(非3GPP接入类型对应的接入网设备(例如N3IWF))需要与UE建立多个IPSec Child SA,多个IPSec Child SA的IP地址(例如UP_IP_ADDRESS)不同。第二接入网设备与UE可以重复上述发送请求与响应的过程,并分配不同的IPSec Child SA的IP地址(例如UP_IP_ADDRESS)。
一种可选的示例中,在所述第一传输路径对应的第一接入网设备和所述第二传输路径对应的第二接入网设备均为非3GPP接入网设备的场景下,第二接入网设备可以参考以下的一项或多项(即前文提及的第三信息):所述第一非3GPP接入网设备与终端设备建立的因特网协议安全协议子安全联盟IPSec Child SA数量、每个IPSec Child SA对应的区分服务编码点DSCP值、每个IPSec Child SA相关联的服务质量流标识QFI、每个IPSec Child SA对应的标识,来建立或调整或修改与UE的用户面资源。
例如,第二接入网设备与UE建立的用户面资源与第一接入网设备与UE建立的用户面资源相似或者相同。例如,第二接入网设备与UE建立的IPSec Child SA的数量可以和第二接入网设备与UE建立的IPSec Child SA的数量相同。进一步地,第二接入网设备与UE建立的IPSec Child SA所关联的一个或多个服务质量流标识QFI可以和第一接入网设备与UE建立的IPSec Child SA所关联的一个或多个服务质量流标识QFI相同;和/或,第二接入网设备与UE建立的IPSec Child SA所对应的区分服务编码点DSCP值可以和第一接入网设备与UE建立的IPSec Child SA所对应的DSCP值相同。
第二接入网设备与UE建立IPSec Child SA之前,第二接入网设备在确定IPSec Child SA数量时,例如,可以根据来自第一接入网设备的用户面资源信息(例如上述介绍的第三信息)确定IPSec Child SA数量,也可以确定每个IPSec Child SA与QoS Flow的映射关系(映射关系也可以称为对应关系)。进而,第二接入网设备基于IPSec Child SA数量及每个IPSec Child SA与QoS Flow的映射关系(映射关系也可以称为对应关系)与UE建立IPSec Child SA。
步骤1020(可以参考步骤320):第二接入网设备向AMF发送第二接入网设备侧的接入网隧道信息(AN tunnels info),该第二接入网设备侧的接入网侧的隧道信息用于通知UPF,下行数据应发到哪里。第二接入网设备侧的AN tunnels info后续会经过AMF、SMF发给UPF,可以参考步骤1020、步骤1021和步骤1022。
例如,第二接入网设备向AMF发送N2 PDU会话响应消息,包括上述的这些信息。
步骤1021(可以参考步骤321):AMF向SMF发送第二接入网设备侧的接入网隧道信息(AN tunnels info)(可以来自步骤1013)。
例如,AMF向SMF发送N2 PDU会话响应消息,N2 PDU会话响应消息包括第二接入网设备侧的接入网隧道信息(AN tunnels info)。
再例如,AMF向SMF发送PDU会话更新会话上下文请求(Nsmf_PDU Session_UpdateSMContext Request)消息,该请求消息中包括第一接入网设备侧的接入网隧道信息(AN tunnels info)。再例如,该PDU会话更新会话上下文请求消息包括N2 PDU会话响应消息,N2 PDU会话响应消息包括第二接入网设备侧的接入网隧道信息(AN tunnels info)。
步骤1022(可以参考步骤322):SMF向UPF发送第二接入网设备侧的接入网侧的隧道信息(AN tunnels info)。
例如,SMF通过N4会话修改(N4 Session Modification)流程向UPF发送第二接入网设备侧的接入网侧的隧道信息(AN tunnels info)。
步骤1023(可以参考步骤323):SMF向AMF发送成功或失败的指示信息。
例如,SMF向AMF发送PDU会话更新会话上下文响应(Nsmf_PDU Session_UpdateSMContext Response)消息,该响应消息中包括更新成功或更新失败的指示信息。
如果失败,SMF还可以向AMF发送失败原因值。
若UE还需要通过其他接入网设备建立用户面通道时,则可以再次执行与步骤1017至步骤1023类似的过程,需要注意的是,SMF通过AMF发送的传输路径对应的接入技术信息需要满足AMF确定相对应的接入网设备。此外,该接入网设备与UE建立的用户面连接可以按照该接入技术下的用户面连接建立的方式来建立。
另外,图10a和图10b的示例也可以适用于两条(或两条以上)传输路径对应的接入网设备相同的场景,即第一接入网设备和第二接入网设备是相同的接入网设备,这种情况下,UE通过不同的接入方式(接入方式例如接入类型或接入技术)连接到同一接入网设备,可以看做是UE通过一个接入网设备建立MA PDU会话(可以理解为多条传输路径对应一个接入网设备)。
该接入网设备可以是非3GPP接入网设备,例如N3IWF。例如,UE通过WiFi的方式 与N3IWF建立IPSec隧道,并通过该N3IWF注册到核心网;与此同时,UE通过SNPN与该相同的N3IWF建立另一IPSec隧道,并通过该N3IWF注册到核心网。这种示例下,第一接入网设备所在的第一传输路径对应的接入技术可以称为通过wifi连接的非3GPP接入技术(或称为非可信非3GPP接入技术1、或称为非可信非3GPP路径1(untrusted N3GPP path 1));第一接入网设备所在的第二传输路径对应的接入技术可以称为通过SNPN连接的非3GPP接入技术(或称为非可信非3GPP接入技术2、称为非可信非3GPP路径2(untrusted N3GPP path 2))。
由于本实施例中,UE通过同一N3IWF多次注册于该核心网,从设备粒度来看,AMF会将多个隧道信息均发给同一N3IWF,但是通过不同的N2消息,或者N2接口,或者逻辑N2通道发送,会导致该N3IWF将接收到的信息对应至不同的传输路径或者该N3IWF向UE发送信息的方式不同(例如通过WiFi的传输路径发送给UE,还是通过SNPN的连接发给UE)。因此,SMF指示AMF发送信息(例如N1N2消息)的接入技术,需要能够区分是哪一个N2消息,或者N2接口,或者逻辑N2通道。所以,可以对非可信非3GPP接入技术进行编号(例如,非可信非3GPP接入技术1、非可信非3GPP接入技术2),或者在接入技术中添加传输路径的标识(例如,非可信非3GPP路径1、非可信非3GPP路径2);以便AMF的指示信息需要能区分不同的传输路径。另外,N3IWF可以根据在传输路径1中确定的IPSec Child SA数量,确定在传输路径2的IPSec Child SA数量,以及相对应的DSCP值,并将各IPSec Child SA关联相同的一个或多个QFI、DSCP值等。
本申请提出了UE通过同一接入网设备多次注册到核心网的示例,例如,UE通过不同的方式接入到同一接入网设备(例如,一种是UE通过wifi的AP与N3IWF连接,另一种是UE通过独立非公共网络SNPN与该N3IWF连接)。这样,多接入会话管理对应的多条传输路径对应的接入网设备可以是同一接入网设备,且多接入会话管理对应的多条传输路径对应的接入技术不同。在移动管理设备角度看,只有一条传输路径,一个接入技术(例如非3GPP非可信接入技术)。但从UE的角度看,有2条传输路径,两条传输路径对应的接入技术也是有差异的,一种是通过wifi连接的非3GPP接入技术,另一种是通过SNPN连接的非3GPP接入技术。该示例可以让移动管理设备识别出UE采用怎样的方式或者接入技术连接到该接入网设备(例如N3IWF)。
如图11所示,提供了一种适用于本申请的非可信非3GPP接入技术下的注册流程。
步骤1101a(可以参考步骤201a):UE连接至非可信非3GPP接入网,并被分配了一个IP地址。
此处的非可信非3GPP接入网可以是非运营商部署的接入网,可以包括接入节点(access point,AP)、路由器、交换机、网关等设备。后续,UE可以通过该非可信非3GPP接入网与N3IWF通信。
步骤1101b(可以参考步骤201b):UE选择N3IWF,并获取该N3IWF的地址信息。
步骤1102(可以参考步骤202):UE与N3IWF建立因特网协议安全协议安全联盟IPSec SA。
例如,UE通过发起因特网密钥交换协议(internet key exchange,IKE)初始交换,实现UE与N3IWF建立IPSec SA。
步骤1103(可以参考步骤203):UE向步骤1101b选择的N3IWF发送终端设备标识 (UE ID)。
一种可选的示例中,UE向步骤1101b选择的N3IWF发送接入网信息。所述接入网信息可以用于指示所UE使用的接入技术信息。后续,移动管理设备可以根据所述终端设备使用的接入技术信息,确定所述终端设备注册的传输路径的第一数量或所述传输路径对应的接入技术信息。
该接入网信息包括但不限于以下信息中的一项或多项:接入节点类型、接入技术类型、接入节点名称、接入节点标识、IPSec标识。其中,接入节点类型可以是WiFi AP、eNodeB、gNodeB、RAN、NG-RAN、非可信WiFi AP、可信WiFi AP等。接入技术类型可以是WiFi、蜂窝网络、LTE、LTE-M、NR、频段信息等。接入节点标识可以是UE连接的节点的标识信息,例如小区标识、SSID、Global RAN Node ID、封闭接入组标识(closed access group,CAG)标识等。
例如,该UE向N3IWF发送请求消息。该请求消息中包括以下的一项或多项:终端设备标识(UE ID)、接入网信息。需要注意的是,该请求消息不包括AUTH有效载荷(payload),这指示了该请求消息是用于交互扩展认证协议(extensible authentication protocol,EAP)信令的。一种可能的实现方式,该请求消息为密钥交换协议鉴权IKE_AUTH请求消息。
步骤1104(可以参考步骤204):N3IWF向UE发送扩展认证协议请求(EAP Request)数据包。
例如,N3IWF向UE发送响应消息,该响应消息中包括扩展认证协议请求(EAP Request)数据包。一种可能的实现方式,该响应消息为密钥交换协议鉴权IKE_AUTH响应消息。
EAP Request数据包可以包括开始(例如5G-Start)数据包。该EAP-Request数据包(例如5G-Start数据包)用于通知UE发起EAP(例如EAP-5G)会话,也可以理解为该EAP-Request数据包(例如5G-Start数据包)用于通知UE可以开始发送非接入层(non-access stratum,NAS)消息。UE在发送NAS消息时,NAS消息通常封装在EAP(例如EAP-5G)数据包中。
步骤1105(可以参考步骤205):UE向N3IWF发送扩展认证协议响应(EAP-Response)数据包。
例如,UE向N3IWF发送请求消息,该请求消息中包括扩展认证协议响应(EAP-Response)数据包。一种可能的实现方式,该请求消息为密钥交换协议鉴权(IKE_AUTH)请求消息。
EAP-Response数据包可以包括NAS(例如5G-NAS)数据包,NAS数据包可以包括接入网(AN)参数和注册请求消息。AN参数包含了用于N3IWF选择AMF的参数信息,参数信息可以包括以下的一项或多项:全球唯一AMF标识(globally unique AMF identifier,GUAMI)、公共陆地移动网(public land mobile network,PLMN ID)、网络标识(NID)等。该注册请求消息包含在非接入层PDU(NAS-PDU)中。
一种可能的实现方式中,注册请求消息中包括第一能力信息。第一能力信息指示终端设备是否支持通过相同接入类型或者相同接入技术接入网络。一种示例中,第一能力信息指示终端设备支持通过相同接入类型或者相同接入技术接入网络。一种示例中,第一能力信息指示终端设备不支持通过相同接入类型或者相同接入技术接入网络。
一种可选的示例中,UE向N3IWF发送接入网信息。所述接入网信息可以用于指示所UE使用的接入技术信息。后续,移动管理设备可以根据所述终端设备使用的接入技术信 息,确定所述终端设备注册的传输路径的第一数量或所述传输路径对应的接入技术信息。
该接入网信息包括但不限于以下信息中的一项或多项:接入节点类型、接入技术类型、接入节点名称、接入节点标识、IPSec标识。其中,接入节点类型可以是WiFi AP、eNodeB、gNodeB、RAN、NG-RAN、非可信WiFi AP、可信WiFi AP等。接入技术类型可以是WiFi、蜂窝网络、LTE、LTE-M、NR、频段信息等。接入节点标识可以是UE连接的节点的标识信息,例如小区标识、SSID、Global RAN Node ID等。
该接入网信息可以包含在AN参数中;或者,该接入网信息可以包含在NAS(例如5G-NAS)数据包中。
步骤1106a(可以参考步骤206a):N3IWF可以基于步骤1105中接收到的AN参数,执行AMF选择。
步骤1106b(可以参考步骤206b):N3IWF将步骤1105接收到的注册请求消息发送给步骤1106a中选择出的AMF。
该注册请求消息可以是通过N2消息传输的。N3IWF向AMF传输N2消息时,可以携带N3IWF分配的RAN UE NGAP ID。因为N3IWF支持N2接口(或者称为NGAP接口),N2协议(或者称为NGAP协议)原来是用于定义接入网设备和AMF之间的协议,因此RAN UE NGAP ID这个IE可以直接继承了RAN UE NGAP ID,但AMF可以根据接入网节点标识(Global N3IWF Node ID)知道它是N3IWF发过来的N2消息。后续,AMF向N3IWF发送N2消息时,也会携带AMF分配的AMF UE NGAP ID。该RAN UE NGAP ID和AMF UE NGAP ID可以用于标识该UE的N2消息。
一种可选的示例中,N3IWF将接入网信息发送给AMF。该接入网信息可以包含在NAS(例如5G-NAS)数据包中,也可以包含在N2消息中,也可以包含在注册请求消息中。
步骤1107(可以参考步骤207):UE、AMF、SMF、鉴权服务功能AUSF,UDM等进行鉴权与安全流程。
例如,首先,AMF选择AUSF,并向AUSF发送鉴权请求消息。AUSF对UE执行鉴权流程,并从UDM获取鉴权数据或者用于鉴权的信息。与鉴权相关的数据包均通过NAS消息封装,例如该NAS消息可以通过EAP中5G-NAS类型的数据包封装。在鉴权完成后,AUSF向AMF发送安全锚点功能SEAF密钥。AMF可以基于该SEAF密钥推衍获取NAS安全密钥和N3IWF密钥。该N3IWF密钥是用于UE和N3IWF建立IPSec SA的。
然后,AMF向UE指示鉴权成功。例如,AMF向UE发送NAS安全模式命令(NAS Security Mode Command),以激活NAS安全。该NAS Security Mode Command包括EAP成功指示(EAP-Success),表示核心网执行的EAP认证和密钥协商(EAP-authentication and key agreement,EAP-AKA’)鉴权成功。N3IWF将AMF发送的NAS Security Mode Command转发给UE,并将UE发送的NAS安全模式完成(NAS Security Mode Complete)消息发给AMF。
步骤1108a(可以参考步骤208):AMF向N3IWF发送N3IWF密钥。
例如,AMF向N3IWF发送请求消息,该请求消息中包括N3IWF密钥。例如,该请求消息为初始上下文建立请求(Initial Context Setup Request)消息或下一代应用协议初始上下文建立请求(NGAP Initial Context Setup Request)消息。AMF接收到来自UE的NAS Security Mode Complete消息后,AMF才向N3IWF发送N3IWF密钥。
一种可选的示例中,若UE在步骤1103或者步骤1105中,N3IWF未获取到接入网信 息(例如,接入网信息可以包含在NAS数据包中),则AMF可以通过N2消息向N3IWF发送接入网信息(具体内容参考前文介绍,不再重复赘述)。N2消息可以是初始上下文建立请求Initial Context Setup Request、或下一代应用协议初始上下文建立请求(NGAP Initial Context Setup Request)消息。
步骤1108b:N3IWF向UE发送EAP-Success,表示N3IWF对UE的鉴权成功,或者表示IPSec隧道鉴权成功,或者表示N3IWF和UE完成EAP-5G会话。
例如,N3IWF向UE发送响应消息(例如IKE_AUTH响应消息),该响应消息中包括EAP-Success。
这时,EAP-5G会话完成,后续不存在EAP-5G数据包交互。
步骤1109a(可以参考步骤209a):UE和N3IWF通过前面获取的N3IWF密钥建立IPSec SA,该IPSec SA称为“信令IPSec SA(signalling IPSec SA)”。
此时,signalling IPSec SA将被配置为:运行在隧道模式,N3IWF将向UE分配一个“inner”IP地址和NAS_IP_ADDRESS。后续所有NAS消息均通过该signalling IPSec SA传输。其中,对于UE向AMF发送的上行NAS消息,源地址为UE的“inner”IP地址,目的地址为NAS_IP_ADDRESS。对于AMF向UE发送的下行NAS消息,源地址为NAS_IP_ADDRESS,而目的地址则为UE的“inner”IP地址。
一种可能的实现方式中,N3IWF可以根据接入网信息(具体内容参考前文介绍,不再重复赘述)为UE分配inner IP地址和NAS_IP_ADDRESS。
需要注意的是,步骤1103中,该UE通过IPSec SA向N3IWF发送的请求消息(例如IKE_AUTH请求消息)中不包括AUTH有效载荷(payload),而步骤1109a中,UE通过signalling IPSec SA向N3IWF发送的请求消息(例如IKE_AUTH请求消息)中可以包括AUTH有效载荷(payload)。
步骤1109b(可以参考步骤209b):在建立了signalling IPSec SA之后,N3IWF向AMF告知UE上下文已经创建。例如N3IWF通过N2消息,通知AMF,UE上下文已经创建。N2消息可以是初始上下文建立请求Initial Context Setup Request、或下一代应用协议初始上下文建立请求(NGAP Initial Context Setup Request)消息。
一种可选的示例,N3IWF可以在N2消息中包括IPSec隧道信息。该IPSec隧道信息可以用于AMF识别该传输路径。IPSec隧道信息可以包括但不限于以下信息中的一项或多项:IPSec隧道标识、IPSec隧道地址信息(inner IP address和/或NAS_IP_ADDRESS)。
可选的,步骤1110(可以参考步骤210):AMF可以与PCF建立移动性管理策略(AM Policy Association Eatablishment)。
一种可能的实现方式中,若AMF获取第一能力信息,AMF可以向PCF发送第一能力信息。PCF根据第一能力信息获取UE路由选择策略(UE route selection policy,URSP)。例如,第一能力信息指示终端设备支持通过相同接入类型或者相同接入技术接入网络时,PCF向UE发送的URSP规则中的接入类型偏好(Access type preference)可以包括相同接入技术的多路径(例如multi-path with same access type、multi-path with same RAT type、3GPP access with multi-path、N3GPP access with multi-path或者multipath)。当第一能力信息指示终端设备不支持通过相同接入类型或者相同接入技术接入网络时,PCF向UE发送的URSP规则可以是现有的URSP规则或者不包括相同接入技术的多路径,即接入类型偏好(Access type preference)为多接入。
Access type preference是用来指示MA PDU会话是采用哪种接入类型。当前,这个参数有以下三种可能取值:3GPP access、N3GPP access、multi-access;当取值为multi-access时,UE会建立MA PDU会话。
在本申请的场景中,MA PDU虽然是多路径,但是未必是多种接入类型,例如一种接入类型下的不同接入技术,或则相同接入技术下不同的传输路径。在本申请中,Access type preference还包括取值为多接入技术(例如multi-RAT type)、多路径(例如multi-path)、相同接入类型的多路径(例如multi-path with same access type)、相同接入技术的多路径(例如multi-path with same RAT type)、3GPP接入类型的多路径(例如3GPP access with multi-path)或者非3GPP接入类型的多路径(例如N3GPP access with multi-path)。
当Access type preference取值为多接入技术(例如multi-RAT type)时,可以进一步取值为哪几种接入技术的组合,例如NR和NR的组合,或者NR和卫星的组合,或者非可信非3GPP和可信非3GPP的组合等。
当Access type preference取值为多路径(例如multi-path)时,可以进一步包含路径的标识的信息,用于指示UE可以通过哪些传输路径建立MA PDU会话。
当Access type preference取值为相同接入类型的多路径(例如multi-path with same access type)时,可以进一步取值为哪几种相同接入类型下的接入技术的组合,例如NR和NR的组合,或者NR和卫星的组合,或者非可信非3GPP和可信非3GPP的组合等。
当Access type preference取值为multi-path with same RAT type时,可以进一步取值为哪种接入技术,例如NR、卫星接入、高轨卫星接入、中轨卫星接入、低轨卫星接入、可信非3GPP接入、非可信非3GPP接入、有线接入等。
当Access type preference取值为3GPP接入类型的多路径(例如3GPP access with multi-path)时,可以进一步取值为哪几种3GPP接入类型下的接入技术的组合,例如NR、LTE、卫星、高轨卫星、中轨卫星、低轨卫星等接入技术中的任意组合。
当Access type preference取值为非3GPP接入类型的多路径(例如N3GPP access with multi-path)时,可以进一步取值为哪几种N3GPP接入类型下的接入技术的组合,例如可信非3GPP接入技术、非可信非3GPP接入技术、有线接入技术等接入技术中的任意组合。
以下介绍一种可能的URSP规则的结构。
如表5所示,介绍了一种可能的路由选择描述符(Route Selection Descriptor)。
表5:路由选择描述符(Route Selection Descriptor)。
PCF可以通过AMF向UE发送UE路由选择策略(UE route selection policy,URSP)。URSP通常是由PCF发给UE的,UE可以根据该URSP确定能否将一个特定的应用关联至已建立的PDU会话,或者,能否将该特定的应用数据通过非3GPP接入方式分流至PDU会话之外(即不通过核心网进行传输),或者,能否将一个特定的应用数据通过ProSe Layer-3 UE-to-Network Relay的方式发送,或者,能否触发建立一个新的PDU会话等。
在本申请中,该URSP中,接入类型偏好(Access Type preference)可以是多接入(Multi  Access);具体地,该Multi Access可以进一步指示传输路径的数量,例如是2条、或3条、甚至更多条传输路径;和/或;Multi Access可以进一步指示传输路径对应的接入类型是3GPP接入类型和非3GPP接入类型,或多个3GPP接入类型,或多个非3GPP接入类型,或混合的多接入等等。
步骤1111a(可以参考步骤211a):AMF向N3IWF发送NAS注册接受(NAS Registration Accept)消息。
NAS注册接受消息可以包含在N2消息中。
后续,当AMF向UDM注册时,需向UDM提供Access Type为Non-3GPP access。一种可选的示例中,AMF可以向UDM发送接入网信息(具体内容参考前文介绍,不再重复赘述)或者IPSec隧道信息(具体内容参考前文介绍,不再重复赘述),用于确定同一接入类型下的不同传输路径。可选的,AMF可以向UDM发送用于识别不同传输路径的信息,例如接入技术信息和/或标识信息,该标识信息用于指示不同传输路径,或者该标识信息用于指示同一种接入技术下的不同传输路径。例如,该接入技术信息和/或标识信息用于指示第一传输路径或者第二传输路径。
步骤1111b(可以参考步骤211b):N3IWF通过步骤1109a中建立的signalling IPSec SA向UE发送NAS注册接受消息。
步骤1112a:(可以参考步骤1101a):UE连接至非可信非3GPP接入网,并被分配了一个IP地址。
步骤1112b(可以参考步骤1101b):UE选择N3IWF,并获取该N3IWF的地址信息。在示例中,UE选择的N3IWF与步骤1101b中选择的N3IWF相同。
接下来可以执行与步骤1102至步骤1112a相似的过程,通过同一N3IWF注册至核心网。
N3IWF在执行与步骤1103或者步骤1105相同或相似的过程中,可以根据接入网信息分配N2标识。
N3IWF在执行与步骤1109a相同或相似的过程中,可以根据接入网信息分配不同的UE inner IP和/或NAS_IP_ADDRESS;或者,可以根据UE Id分配相同的UE inner IP,根据接入网信息分配不同的NAS_IP_ADDRESS。
AMF在执行与步骤1106b相同或相似的过程中,可以根据接入网信息确定接入技术类型或者确定标识该传输路径的信息,或者在执行与1109b相同或相似的过程中,根据IPSec隧道信息确定接入技术类型或者确定标识该传输路径的信息,从而区分不同的传输路径。
前文介绍了本申请实施例的方法,下文中将介绍本申请实施例中的装置。方法、装置是基于同一技术构思的,由于方法、装置解决问题的原理相似,因此装置与方法的实施可以相互参见,重复之处不再赘述。
本申请实施例可以根据上述方法示例,对装置进行功能模块的划分,例如,可以对应各个功能划分为各个功能模块,也可以将两个或两个以上的功能集成在一个模块中。这些模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。需要说明的是,本申请实施例中对模块的划分是示意性的,仅仅为一种逻辑功能划分,具体实现时可以有另外的划分方式。
基于与上述方法的同一技术构思,参见图12,提供了一种通信装置1200结构示意图, 该装置1200可以包括:处理模块1210,可选的,还包括接收模块1220a、发送模块1220b、存储模块1230。处理模块1210可以分别与存储模块1230和接收模块1220a和发送模块1220b相连,所述存储模块1230也可以与接收模块1220a和发送模块1220b相连。
在一种示例中,上述的接收模块1220a和发送模块1220b也可以集成在一起,定义为收发模块。
在一种示例中,该装置1200可以为会话管理设备,也可以为应用于会话管理设备中的芯片或功能单元。该装置1200具有上述方法中会话管理设备的任意功能,例如,该装置1200能够执行上述图9、图10a、图10b、图11的方法中由会话管理设备执行的各个步骤。
所述接收模块1220a,可以执行上述方法实施例中会话管理设备执行的接收动作。
所述发送模块1220b,可以执行上述方法实施例中会话管理设备执行的发送动作。
所述处理模块1210,可以执行上述方法实施例中会话管理设备执行的动作中,除发送动作和接收动作外的其它动作。
一种示例中,所述处理模块1210,用于获取多接入会话中的传输路径对应的隧道信息;其中,所述传输路径包括第一传输路径和第二传输路径,所述第一传输路径和所述第二传输路径对应的接入技术属于第三代合作伙伴计划3GPP接入类型,或所述第一传输路径和所述第二传输路径对应的接入技术属于非第三代合作伙伴计划3GPP接入类型;所述发送模块1220b,用于向移动管理设备发送所述传输路径对应的隧道信息和接入技术信息,所述接入技术用于所述移动管理设备确定接入网设备。
一种示例中,所述发送模块1220b,具体用于向所述移动管理设备发送传输消息,所述传输消息包括所述第一传输路径对应的第一隧道信息和接入技术信息、所述第二传输路径对应的第二隧道信息和接入技术信息;或者,向所述移动管理设备发送第一传输消息,所述第一传输消息包括所述第一传输路径对应的第一隧道信息和对应的接入技术信息;及向所述移动管理设备发送第二传输消息,所述第二传输消息包括所述第二传输路径对应的第二隧道信息和接入技术信息。
一种示例中,所述接收模块1220a,用于接收来自所述移动管理设备的第一信息,所述第一信息用于获取所述传输路径对应的隧道信息;其中,所述第一信息包括以下一项或多项:终端设备已注册的传输路径的第一数量、一个或多个接入技术信息。
一种示例中,所述发送模块1220b,还用于向策略控制设备发送第二信息,所述第二信息用于获取分流信息;所述接收模块1220a,还用于接收来自所述策略控制设备的分流信息,所述分流信息包括所述第一传输路径和所述第二传输路径的分流信息。
一种示例中,所述处理模块1210,具体用于分配所述传输路径对应的隧道信息。
一种示例中,所述接收模块1220a,还用于接收来自所述用户面设备的所述传输路径对应的隧道信息。
一种示例中,当所述第一传输路径和所述第二传输路径对应的接入技术相同时,所述发送模块1220b,还用于向所述移动管理设备发送指示信息,所述指示信息用于指示第一传输路径或第二传输路径。
在一种示例中,所述存储模块1230,可以存储会话管理设备执行的方法的计算机执行指令,以使处理模块1210和接收模块1220a和发送模块1220b执行上述示例中会话管理设 备执行的方法。
示例的,存储模块可以包括一个或者多个存储器,存储器可以是一个或者多个设备、电路中用于存储程序或者数据的器件。存储模块可以是寄存器、缓存或者RAM等,存储模块可以和处理模块集成在一起。存储模块可以是ROM或者可存储静态信息和指令的其他类型的静态存储设备,存储模块可以与处理模块相独立。
所述收发模块可以是输入或者输出接口、管脚或者电路等。
在一种示例中,该装置1200可以为移动管理设备,也可以为应用于移动管理设备中的芯片或功能单元。该装置1200具有上述方法中移动管理设备的任意功能,例如,该装置1200能够执行上述图9、图10a、图10b、图11的方法中由移动管理设备执行的各个步骤。
所述接收模块1220a,可以执行上述方法实施例中移动管理设备执行的接收动作。
所述发送模块1220b,可以执行上述方法实施例中移动管理设备执行的发送动作。
所述处理模块1210,可以执行上述方法实施例中移动管理设备执行的动作中,除发送动作和接收动作外的其它动作。
一种示例中,所述接收模块1220a,用于接收来自会话管理设备的多接入会话中的传输路径对应的隧道信息和接入技术信息;其中,所述传输路径包括第一传输路径和第二传输路径,所述第一传输路径和所述第二传输路径对应的接入技术属于第三代合作伙伴计划3GPP接入类型,或所述第一传输路径和所述第二传输路径对应的接入技术属于非第三代合作伙伴计划3GPP接入类型;
所述处理模块1210,用于基于所述第一传输路径对应的接入技术信息确定第一接入网设备;基于所述第二传输路径对应的接入技术信息确定第二接入网设备;
所述发送模块1220b,用于向所述第一接入网设备发送所述第一传输路径对应的第一隧道信息;向所述第二接入网设备发送所述第二传输路径对应的第二隧道信息。
一种示例中,所述接收模块1220a,具体用于接收来自所述会话管理设备的传输消息,所述传输消息包括所述第一传输路径对应的第一隧道信息和接入技术信息、所述第二传输路径对应的第二隧道信息和接入技术信息;或者,接收来自所述会话管理设备的第一传输消息,所述第一传输消息包括所述第一传输路径对应的第一隧道信息和接入技术信息;及接收来自所述会话管理设备的第二传输消息,所述第二传输消息包括所述第二传输路径对应的第二隧道信息和接入技术信息。
一种示例中,所述发送模块1220b,还用于向所述会话管理设备发送第一信息,所述第一信息用于获取所述传输路径对应的隧道信息;其中,所述第一信息包括以下一项或多项:终端设备已注册的传输路径的第一数量、一个或多个接入技术信息。
一种示例中,所述接收模块1220a,还用于接收所述第一传输路径和所述第二传输路径的分流信息;所述发送模块1220b,还用于向终端设备发送所述分流信息。
一种示例中,当所述第一传输路径和所述第二传输路径对应的接入技术相同时,所述接收模块1220a,还用于接收来自所述会话管理设备的指示信息,所述指示信息用于指示第一传输路径或第二传输路径;所述处理模块,具体用于基于所述第一传输路径对应的接入技术信息和所述指示信息确第一接入网设备;及基于所述第二传输路径对应的接入技术信息和所述指示信息确第二接入网设备。
一种示例中,当所述第一传输路径对应的接入网设备和所述第二传输路径对应的接入网设备均为非3GPP接入网设备时,所述接收模块1220a,还用于接收来自所述第一传输路径的第一非3GPP接入网设备的第三信息,所述第三信息包括以下的一项或多项:所述第一非3GPP接入网设备与终端设备建立的因特网协议安全协议子安全联盟IPSec Child SA数量、每个IPSec Child SA对应的区分服务编码点DSCP值、每个IPSec Child SA相关联的服务质量流标识QFI、每个IPSec Child SA对应的标识;所述发送模块1220b,还用于向所述第二传输路径的第二非3GPP接入网设备发送所述第三信息,所述第三信息用于所述第二非3GPP接入网设备与所述终端设备建立用户面资源。
一种示例中,在终端设备注册过程中,所述处理模块1210,还用于设备获取接入网信息,所述接入网信息用于指示所述终端设备使用的接入技术信息;及根据所述终端设备使用的接入技术信息,确定所述终端设备注册的传输路径的第一数量或所述传输路径对应的接入技术信息。
在一种示例中,所述存储模块1230,可以存储移动管理设备执行的方法的计算机执行指令,以使处理模块1210和接收模块1220a和发送模块1220b执行上述示例中移动管理设备执行的方法。
示例的,存储模块可以包括一个或者多个存储器,存储器可以是一个或者多个设备、电路中用于存储程序或者数据的器件。存储模块可以是寄存器、缓存或者RAM等,存储模块可以和处理模块集成在一起。存储模块可以是ROM或者可存储静态信息和指令的其他类型的静态存储设备,存储模块可以与处理模块相独立。
所述收发模块可以是输入或者输出接口、管脚或者电路等。
作为一种可能的产品形态,装置可以由一般性的总线体系结构来实现。
如图13所示,提供了一种通信装置1300的示意性框图。
该装置1300可以包括:处理器1310,可选的,还包括收发器1320、存储器1330。该收发器1320,可以用于接收程序或指令并传输至所述处理器1310,或者,该收发器1320可以用于该装置1300与其他通信设备进行通信交互,比如交互控制信令和/或业务数据等。该收发器1320可以为代码和/或数据读写收发器,或者,该收发器1320可以为处理器与收发机之间的信号传输收发器。所述处理器1310和所述存储器1330之间电耦合。
一种示例中,该装置1300可以为会话管理设备,也可以为应用于会话管理设备中的芯片。应理解,该装置具有上述方法中会话管理设备的任意功能,例如,所述装置1300能够执行上述图9、图10a、图10b、图11的方法中由会话管理设备执行的各个步骤。示例的,所述存储器1330,用于存储计算机程序;所述处理器1310,可以用于调用所述存储器1330中存储的计算机程序或指令,执行上述示例中会话管理设备执行的方法,或者通过所述收发器1320执行上述示例中会话管理设备执行的方法。
一种示例中,该装置1300可以为移动管理设备,也可以为应用于移动管理设备中的芯片。应理解,该装置具有上述方法中移动管理设备的任意功能,例如,所述装置1300能够执行上述图9、图10a、图10b、图11的方法中由移动管理设备执行的各个步骤。示例的,所述存储器1330,用于存储计算机程序;所述处理器1310,可以用于调用所述存储器1330中存储的计算机程序或指令,执行上述示例中移动管理设备执行的方法,或者通过所述收发器1320执行上述示例中移动管理设备执行的方法。
图12中的处理模块1210可以通过所述处理器1310来实现。
图12中的接收模块1220a和发送模块1220b可以通过所述收发器1320来实现。或者,收发器1320分为接收器和发送器,接收器执行接收模块的功能,发送器执行发送模块的功能。
图12中的存储模块1230可以通过所述存储器1330来实现。
作为一种可能的产品形态,装置可以由通用处理器(通用处理器也可以称为芯片或芯片系统)来实现。
一种可能的实现方式中,实现应用于会话管理设备的装置或移动管理设备的装置的通用处理器包括:处理电路(处理电路也可以称为处理器);可选的,还包括:与所述处理电路内部连接通信的输入输出接口、存储介质(存储介质也可以称为存储器),所述存储介质用于存储处理电路执行的指令,以执行上述示例中会话管理设备或移动管理设备执行的方法。
图12中的处理模块1210可以通过处理电路来实现。
图12中的接收模块1220a和发送模块1220b可以通过输入输出接口来实现。或者,输入输出接口分为输入接口和输出接口,输入接口执行接收模块的功能,输出接口执行发送模块的功能。
图12中的存储模块1230可以通过存储介质来实现。
作为一种可能的产品形态,本申请实施例的装置,还可以使用下述来实现:一个或多个FPGA(现场可编程门阵列)、PLD(可编程逻辑器件)、控制器、状态机、门逻辑、分立硬件部件、任何其它适合的电路、或者能够执行本申请通篇所描述的各种功能的电路的任意组合。
本申请实施例还提供了一种计算机可读存储介质,存储有计算机程序,该计算机程序被计算机执行时,可以使得所述计算机用于执行上述通信方法。或者说:所述计算机程序包括用于实现上述通信方法的指令。
本申请实施例还提供了一种计算机程序产品,包括:计算机程序代码,当所述计算机程序代码在计算机上运行时,使得计算机可以执行上述提供的通信方法。
本申请实施例还提供了一种通信的系统,所述通信系统包括:执行上述通信方法的会话管理设备、移动管理设备。可选的,还可以包括接入网设备、及本申请提及的各个网元中的一个或多个。
另外,本申请实施例中提及的处理器可以是中央处理器(central processing unit,CPU),基带处理器,基带处理器和CPU可以集成在一起,或者分开,还可以是网络处理器(network processor,NP)或者CPU和NP的组合。处理器还可以进一步包括硬件芯片或其他通用处理器。上述硬件芯片可以是专用集成电路(application-specific integrated circuit,ASIC),可编程逻辑器件(programmable logic device,PLD)或其组合。上述PLD可以是复杂可编程逻辑器件(complex programmable logic device,CPLD),现场可编程逻辑门阵列(field-programmable gate array,FPGA),通用阵列逻辑(generic array logic,GAL)及其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等或其任意组合。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
本申请实施例中提及的存储器可以是易失性存储器或非易失性存储器,或可包括易失 性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(Random Access Memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(Static RAM,SRAM)、动态随机存取存储器(Dynamic RAM,DRAM)、同步动态随机存取存储器(Synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(Double Data Rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(Enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(Synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)。应注意,本申请描述的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
本申请实施例中提及的收发器中可以包括单独的发送器,和/或,单独的接收器,也可以是发送器和接收器集成一体。收发器可以在相应的处理器的指示下工作。可选的,发送器可以对应物理设备中发射机,接收器可以对应物理设备中的接收机。
本领域普通技术人员可以意识到,结合本文中所公开的实施例中描述的各方法步骤和单元,能够以电子硬件、计算机软件或者二者的结合来实现,为了清楚地说明硬件和软件的可互换性,在上述说明中已经按照功能一般性地描述了各实施例的步骤及组成。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。本领域普通技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另外,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口、装置或单元的间接耦合或通信连接,也可以是电的,机械的或其它的形式连接。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个移动管理设备上。可以根据实际的需要选择其中的部分或者全部单元来实现本申请实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以是两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说做出贡献的部分,或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(read-only memory,ROM)、随机存取存储器(random access memory,RAM)、磁碟或者光盘等各种可以存储程序代码的 介质。
本申请中的“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。字符“/”一般表示前后关联对象是一种“或”的关系。本申请中所涉及的多个,是指两个或两个以上。另外,需要理解的是,在本申请的描述中,“第一”、“第二”等词汇,仅用于区分描述的目的,而不能理解为指示或暗示相对重要性,也不能理解为指示或暗示顺序。

Claims (30)

  1. 一种通信方法,其特征在于,包括:
    会话管理设备获取多接入会话中的传输路径对应的隧道信息;其中,所述传输路径包括第一传输路径和第二传输路径,所述第一传输路径和所述第二传输路径对应的接入技术属于第三代合作伙伴计划3GPP接入类型,或所述第一传输路径和所述第二传输路径对应的接入技术属于非第三代合作伙伴计划3GPP接入类型;
    所述会话管理设备向移动管理设备发送所述传输路径对应的隧道信息和接入技术信息,所述接入技术用于所述移动管理设备确定接入网设备。
  2. 如权利要求1所述的方法,其特征在于,会话管理设备向移动管理设备发送所述传输路径对应的隧道信息和所述传输路径对应的接入技术信息,包括:
    所述会话管理设备向所述移动管理设备发送传输消息,所述传输消息包括所述第一传输路径对应的第一隧道信息和接入技术信息、所述第二传输路径对应的第二隧道信息和接入技术信息;或者,
    所述会话管理设备向所述移动管理设备发送第一传输消息,所述第一传输消息包括所述第一传输路径对应的第一隧道信息和对应的接入技术信息;及所述会话管理设备向所述移动管理设备发送第二传输消息,所述第二传输消息包括所述第二传输路径对应的第二隧道信息和接入技术信息。
  3. 如权利要求1或2所述的方法,其特征在于,会话管理设备向移动管理设备发送所述传输路径对应的隧道信息和接入技术信息之前,还包括:
    所述会话管理设备接收来自所述移动管理设备的第一信息,所述第一信息用于获取所述传输路径对应的隧道信息;其中,所述第一信息包括以下一项或多项:终端设备已注册的传输路径的第一数量、一个或多个接入技术。
  4. 如权利要求1-3任一项所述的方法,其特征在于,还包括:
    所述会话管理设备向策略控制设备发送第二信息,所述第二信息用于获取分流信息;
    所述会话管理设备接收来自所述策略控制设备的分流信息,所述分流信息包括所述第一传输路径和所述第二传输路径的分流信息。
  5. 如权利要求4所述的方法,其特征在于,所述第二信息包括以下的一项或多项:
    终端设备注册的传输路径的第一数量、一个或多个接入技术、接入技术的数量。
  6. 如权利要求4或5所述的方法,其特征在于,所述分流信息用于指示终端设备通过目标传输路径传输数据;其中,所述目标传输路径为终端设备已注册的传输路径中的一个或多个。
  7. 如权利要求1-6任一项所述的方法,其特征在于,会话管理设备获取传输路径对应的隧道信息,包括:
    所述会话管理设备分配所述传输路径对应的隧道信息;或者,
    所述会话管理设备接收来自用户面设备的所述传输路径对应的隧道信息。
  8. 如权利要求1-7任一项所述的方法,其特征在于,还包括:
    当所述第一传输路径和所述第二传输路径对应的接入技术相同时,所述会话管理设备向所述移动管理设备发送指示信息,所述指示信息用于指示所述第一传输路径或所述第二传输路径。
  9. 如权利要求8所述的方法,其特征在于,所述指示信息包括以下的一项或多项:子接入技术的标识、接入网设备的标识、路径的标识、IPSec隧道信息。
  10. 如权利要求1-9任一项所述的方法,其特征在于,第一传输路径对应的接入网设备为以下任一项:
    3GPP接入网设备、可信非3GPP接入网设备、非可信非3GPP接入网设备、有线接入网关;
    第二传输路径对应的接入网设备为以下任一项:
    3GPP接入网设备、可信非3GPP接入网设备、非可信非3GPP接入网设备、有线接入网关。
  11. 如权利要求10所述的方法,其特征在于,所述3GPP接入网设备为以下任一项:eNodeB、NG-RAN、gNodeB;
    所述可信非3GPP接入网设备以下任一项:可信非3GPP网关功能TNGF、可信WLAN互通功能TWIF、可信非3GPP接入点TNAP;
    所述非可信非3GPP接入网设备以下任一项:非3GPP互通功能N3IWF;
    所述有线网关为以下任一项:有线接入网关功能W-AGF网元。
  12. 一种通信方法,其特征在于,包括:
    移动管理设备接收来自会话管理设备的多接入会话中的传输路径对应的隧道信息和接入技术信息;其中,所述传输路径包括第一传输路径和第二传输路径,所述第一传输路径和所述第二传输路径对应的接入技术属于第三代合作伙伴计划3GPP接入类型,或所述第一传输路径和所述第二传输路径对应的接入技术属于非第三代合作伙伴计划3GPP接入类型;
    所述移动管理设备基于所述第一传输路径对应的接入技术信息确定第一接入网设备;所述移动管理设备向所述第一接入网设备发送所述第一传输路径对应的第一隧道信息;
    所述移动管理设备基于所述第二传输路径对应的接入技术信息确定第二接入网设备;所述移动管理设备向所述第二接入网设备发送所述第二传输路径对应的第二隧道信息。
  13. 如权利要求12所述的方法,其特征在于,移动管理设备接收来自会话管理设备的传输路径对应的隧道信息和接入技术信息,包括:
    所述移动管理设备接收来自所述会话管理设备的传输消息,所述传输消息包括所述第一传输路径对应的第一隧道信息和接入技术信息、所述第二传输路径对应的第二隧道信息和接入技术信息;或者,
    所述移动管理设备接收来自所述会话管理设备的第一传输消息,所述第一传输消息包括所述第一传输路径对应的第一隧道信息和接入技术信息;及所述移动管理设备接收来自所述会话管理设备的第二传输消息,所述第二传输消息包括所述第二传输路径对应的第二隧道信息和接入技术信息。
  14. 如权利要求12或13所述的方法,其特征在于,移动管理设备接收来自会话管理设备的传输路径对应的隧道信息和接入技术信息之前,还包括:
    所述移动管理设备向所述会话管理设备发送第一信息,所述第一信息用于获取所述传输路径对应的隧道信息;其中,所述第一信息包括以下一项或多项:终端设备已注册的传输路径的第一数量、一个或多个接入技术信息。
  15. 如权利要求12-14任一项所述的方法,其特征在于,还包括:
    所述移动管理设备接收所述第一传输路径和所述第二传输路径的分流信息;
    所述移动管理设备向终端设备发送所述分流信息。
  16. 如权利要求12-15任一项所述的方法,其特征在于,还包括:
    当所述第一传输路径和所述第二传输路径对应的接入技术相同时,所述移动管理设备接收来自所述会话管理设备的指示信息,所述指示信息用于指示所述第一传输路径或所述第二传输路径;
    所述移动管理设备基于所述第一传输路径对应的接入技术信息确定第一接入网设备,包括:所述移动管理设备基于所述第一传输路径对应的接入技术信息和所述指示信息确第一接入网设备;
    所述移动管理设备基于所述第二传输路径对应的接入技术信息确定第二接入网设备,包括:所述移动管理设备基于所述第二传输路径对应的接入技术信息和所述指示信息确第二接入网设备。
  17. 如权利要求16所述的方法,其特征在于,所述指示信息包括以下的一项或多项:子接入技术的标识、接入网设备的标识、路径的标识、IPSec隧道信息。
  18. 如权利要求12-17任一项所述的方法,其特征在于,第一传输路径对应的接入网设备为以下任一项:
    3GPP接入网设备、可信非3GPP接入网设备、非可信非3GPP接入网设备、有线接入网关;
    第二传输路径对应的接入网设备为以下任一项:
    3GPP接入网设备、可信非3GPP接入网设备、非可信非3GPP接入网设备、有线接入网关。
  19. 如权利要求18所述的方法,其特征在于,所述3GPP接入网设备为以下任一项:eNodeB、NG-RAN、gNodeB;
    所述可信非3GPP接入网设备以下任一项:可信非3GPP网关功能TNGF、可信WLAN互通功能TWIF、可信非3GPP接入点TNAP;
    所述非可信非3GPP接入网设备以下任一项:非3GPP互通功能N3IWF;
    所述有线网关为以下任一项:有线接入网关功能W-AGF网元。
  20. 如权利要求12-19任一项所述的方法,其特征在于,还包括:
    当所述第一传输路径对应的接入网设备和所述第二传输路径对应的接入网设备均为非3GPP接入网设备时,所述移动管理设备接收来自所述第一传输路径的第一非3GPP接入网设备的第三信息,所述第三信息包括以下的一项或多项:所述第一非3GPP接入网设备与终端设备建立的因特网协议安全协议子安全联盟IPSec Child SA数量、每个IPSec Child SA对应的区分服务编码点DSCP值、每个IPSec Child SA相关联的服务质量流标识QFI、每个IPSec Child SA对应的标识;
    所述移动管理设备向所述第二传输路径的第二非3GPP接入网设备发送所述第三信息,所述第三信息用于所述第二非3GPP接入网设备与所述终端设备建立用户面资源。
  21. 如权利要求20所述的方法,其特征在于,所述第一传输路径对应的接入网设备为N3IWF,所述第二传输路径对应的接入网设备为TNGF。
  22. 如权利要求12-21任一项所述的方法,其特征在于,还包括:
    在终端设备注册过程中,所述移动管理设备获取接入网信息,所述接入网信息用于指 示所述终端设备使用的接入技术信息;
    所述移动管理设备根据所述终端设备使用的接入技术信息,确定所述终端设备注册的传输路径的第一数量或所述传输路径对应的接入技术信息。
  23. 如权利要求22所述的方法,其特征在于,所述接入网信息包括以下的一项或多项:
    接入节点类型、接入技术类型、接入节点名称、接入节点标识、因特网协议安全协议IPSec标识。
  24. 一种通信装置,其特征在于,包括:实现如权利要求1-11任一项所述的方法的模块,或实现如权利要求12-23任一项所述的方法的模块。
  25. 一种通信装置,其特征在于,包括处理器,所述处理器与存储器耦合;
    所述存储器,用于存储计算机程序或指令;
    所述处理器,用于执行所述存储器中的部分或者全部计算机程序或指令,当所述部分或者全部计算机程序或指令被执行时,用于实现如权利要求1-11任一项所述的方法,或实现如权利要求12-23任一项所述的方法。
  26. 一种通信装置,其特征在于,包括处理器和存储器;
    所述存储器,用于存储计算机程序或指令;
    所述处理器,用于执行所述存储器中的部分或者全部计算机程序或指令,当所述部分或者全部计算机程序或指令被执行时,用于实现如权利要求1-11任一项所述的方法,或实现如权利要求12-23任一项所述的方法。
  27. 一种芯片系统,其特征在于,所述芯片系统包括:处理电路;所述处理电路与存储介质耦合;
    所述处理电路,用于执行所述存储介质中的部分或者全部计算机程序或指令,当所述部分或者全部计算机程序或指令被执行时,用于实现如权利要求1-11任一项所述的方法,或实现如权利要求12-23任一项所述的方法。
  28. 一种计算机可读存储介质,其特征在于,用于存储计算机程序,所述计算机程序包括用于实现权利要求1-11任一项所述的方法的指令,或者实现权利要求12-23任一项所述的方法的指令。
  29. 一种计算机程序产品,其特征在于,所述计算机程序产品包括:计算机程序代码,当所述计算机程序代码在计算机上运行时,使得计算机执行如权利要求1-11任一项所述的方法或执行如权利要求12-23任一项所述的方法。
  30. 一种通信系统,其特征在于,包括执行如权利要求1-11任一项所述方法的会话管理设备,和执行如权利要求12-23任一项所述方法的移动管理设备。
PCT/CN2023/084185 2022-03-28 2023-03-27 一种通信方法及装置 WO2023185772A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210317093.5 2022-03-28
CN202210317093.5A CN116866881A (zh) 2022-03-28 2022-03-28 一种通信方法及装置

Publications (1)

Publication Number Publication Date
WO2023185772A1 true WO2023185772A1 (zh) 2023-10-05

Family

ID=88199168

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/084185 WO2023185772A1 (zh) 2022-03-28 2023-03-27 一种通信方法及装置

Country Status (2)

Country Link
CN (1) CN116866881A (zh)
WO (1) WO2023185772A1 (zh)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190394833A1 (en) * 2018-06-21 2019-12-26 Peyman TALEBI FARD Multi Access Packet/Protocol Data Unit Session
WO2021035206A1 (en) * 2019-08-22 2021-02-25 Weihua Qiao Policy control for multiple accesses

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190394833A1 (en) * 2018-06-21 2019-12-26 Peyman TALEBI FARD Multi Access Packet/Protocol Data Unit Session
WO2021035206A1 (en) * 2019-08-22 2021-02-25 Weihua Qiao Policy control for multiple accesses

Also Published As

Publication number Publication date
CN116866881A (zh) 2023-10-10

Similar Documents

Publication Publication Date Title
US20230397145A1 (en) Mobility in Non-Public Networks
WO2022033558A1 (zh) 一种中继管理方法及通信装置
US20230354463A1 (en) State Transition of Wireless Device
US11570739B2 (en) Uplink data indication
US20230328821A1 (en) Modifying PDU Sessions In Underlay Networks
US20240022952A1 (en) Resource Allocation in Non-Public Network
US20240015630A1 (en) Routing Between Networks Based on Identifiers
WO2024026028A2 (en) Configuration and reporting for deterministic networks
WO2022012361A1 (zh) 一种通信方法及装置
US20240129794A1 (en) Network Congestion Control
US20240073848A1 (en) Network Slice in a Wireless Network
WO2023185772A1 (zh) 一种通信方法及装置
WO2023197737A1 (zh) 报文发送方法、pin管理方法、通信装置及通信系统
WO2023179331A1 (zh) 一种发送数据包的方法、通信装置及通信系统
US20240031929A1 (en) Connection Establishment
US20230422293A1 (en) Network Slice Based Priority Access
US20240064626A1 (en) Support For Network Service
US20240155418A1 (en) Method and apparatus for connecting qos flow based terminal in wireless communication system
US20240073996A1 (en) Network Slice Management based on Inactivity
WO2023197789A1 (zh) 通信方法和通信装置
US20240129793A1 (en) Network Overload Control
US20230114188A1 (en) Support for Tunneling
CN115915196A (zh) 一种链路状态检测方法、通信装置及通信系统
WO2023215499A1 (en) Emergency service
WO2023081276A1 (en) Network slice for access of wireless device to a network

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23778137

Country of ref document: EP

Kind code of ref document: A1