WO2023051431A1 - 通信的方法和装置 - Google Patents

通信的方法和装置 Download PDF

Info

Publication number
WO2023051431A1
WO2023051431A1 PCT/CN2022/121190 CN2022121190W WO2023051431A1 WO 2023051431 A1 WO2023051431 A1 WO 2023051431A1 CN 2022121190 W CN2022121190 W CN 2022121190W WO 2023051431 A1 WO2023051431 A1 WO 2023051431A1
Authority
WO
WIPO (PCT)
Prior art keywords
network element
address
dns
application server
information
Prior art date
Application number
PCT/CN2022/121190
Other languages
English (en)
French (fr)
Inventor
魏鑫鹏
朱奋勤
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2023051431A1 publication Critical patent/WO2023051431A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L61/00Network arrangements, protocols or services for addressing or naming
    • H04L61/45Network directories; Name-to-address mapping
    • H04L61/4505Network directories; Name-to-address mapping using standardised directories; using standardised directory access protocols
    • H04L61/4511Network directories; Name-to-address mapping using standardised directories; using standardised directory access protocols using domain name system [DNS]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/06Reselecting a communication resource in the serving access point
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W8/00Network data management
    • H04W8/02Processing of mobility data, e.g. registration information at HLR [Home Location Register] or VLR [Visitor Location Register]; Transfer of mobility data, e.g. between HLR, VLR or external networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W8/00Network data management
    • H04W8/02Processing of mobility data, e.g. registration information at HLR [Home Location Register] or VLR [Visitor Location Register]; Transfer of mobility data, e.g. between HLR, VLR or external networks
    • H04W8/08Mobility data transfer
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W8/00Network data management
    • H04W8/26Network addressing or numbering for mobility support

Definitions

  • the present application relates to the communication field, and more specifically, to a communication method and device.
  • edge computing edge computing
  • EAS edge application server
  • IP Internet protocol
  • the UE may leave the coverage area of the home public land mobile network (PLMN) (home PLMN, HPLMN) and access the public land mobile network (PLMN) through home routed (HR) roaming.
  • PLMN home public land mobile network
  • HPLMN home PLMN
  • HR home routed
  • a land mobile network visited PLMN, VPLMN
  • the VPLMN provides services for the UE.
  • the embodiments of the present application provide a communication method and device, so that the user plane network element of the VPLMN intercepts the DNS query message from the roaming UE, and forwards it to the corresponding edge application service discovery network element of the VPLMN, so that the roaming UE can access Edge application business.
  • a communication method is provided, and the method may be executed by a core network element, or may also be executed by a component (such as a chip or a circuit) of the core network element, which is not limited, for the convenience of description , which is executed by a user plane network element as an example below.
  • a component such as a chip or a circuit
  • the method may include: the user plane network element receives a domain name system DNS query message from the terminal device; based on the first information, the user plane network element sends a DNS query message to the edge application server discovery network element, and the first information is used to assign one or more A DNS message is forwarded to the edge application server to discover network elements, wherein, the user plane network element and the edge application server discover network elements are network elements deployed in the visited network.
  • the user plane network element deployed in the visited network (such as VPLMN) receives the DNS query message used to obtain the address of the edge server from the terminal device, it can forward the DNS query message to the network element in the visited network based on the first information.
  • the deployed edge application server discovers the network element, and then the edge application server deployed in the visited network discovers the network element and processes the DNS query message.
  • the user plane network element deployed in the visited network sends the DNS query message from the terminal device to the edge application server of the VLPMN to discover the network element according to the first information, so that the terminal device can discover the edge application server located in the VPLMN, And provide edge application services for terminal devices. For example, if a terminal device roams to a visited network, through the solution proposed in this application, it may be realized that the terminal device discovers an edge computing service located in the visited network.
  • the DNS query message may be specifically used to acquire an edge server address, such as an address of an EAS.
  • the first information includes one or more of the following: full domain name, application identifier, target device address, DNS protocol port number, and the address of the network element discovered by the edge application server , where the target device is the destination address of one or more DNS messages, and the target device is a device deployed in the home network.
  • the target device address for example, can be a DNS server address (such as the H-DNS server address configured in the PDU session), or an EASDF address (such as the H-EASDF address configured in the PDU session), or it can also be a home
  • Other devices deployed in the network are not limited.
  • the user plane network element can match (or detect) the DNS message based on the above one or more items of information, and/or determine the address of the edge application server to discover the network element.
  • the first information includes a first parameter and a second parameter
  • the first parameter is used to detect one or more DNS messages
  • the second parameter is used to determine the edge application server Discover NEs.
  • the user plane network element can match (or detect) the DNS message based on the first parameter, that is, determine whether to transfer the DNS query message to the edge application server to discover the network element.
  • the user plane network element may also determine the address of the edge application server discovery network element based on the second parameter, that is, determine the address of the edge application server discovery network element to which the DNS query message is forwarded.
  • the first parameter includes one or more of the following: full domain name, application identifier, target device address, DNS protocol port number, and the address of the network element discovered by the edge application server , where the target device address is the destination address of one or more DNS messages; the second parameter includes the address of the network element discovered by the edge application server, and the target device is a device deployed in the home network.
  • the destination address in the DNS query message is the address of the first device, and the first device is a device deployed in the home network.
  • the user plane network element sends a DNS query message to the edge application server discovery network element, including: the user plane network element sends a DNS query message to the edge application server discovery network element through a tunnel message, the address of the receiving end of the tunnel is the address of the network element discovered by the edge application server.
  • the user plane network element does not need to modify the destination address of the DNS query message, and can forward the complete DNS query message to the edge application server to discover the network element through the tunnel.
  • the user plane network element sends a DNS query message to the edge application server discovery network element, including: the user plane network element replaces the destination address in the DNS query message with the edge application After the server discovers the network element address, it sends a DNS query message to the edge application server to discover the network element.
  • the user plane network element can modify the destination address of the DNS query message to the edge application server discovery network element address, and forward the modified DNS query message to the edge application server discovery network element.
  • the method further includes: the user plane network element receives the DNS response message from the network element discovered by the edge application server; the user plane network element replaces the source address in the DNS response message with After the first device address is obtained, a DNS response message is sent to the terminal device, wherein the first device address is a destination address of the DNS query message, and the first device is a device deployed in the home network.
  • the edge application server discovers that the network element can use its own IP to generate a DNS response message, and the user plane network element replaces the edge application server with the saved original destination address of the first device address, and the first device is the home network Devices deployed in .
  • the method further includes: the user plane network element receives second information from the session management network element, and the second information indicates that the source address of the replacement DNS response message is the first device address, the first device is a device deployed in the home network.
  • the method further includes: the user plane network element receives the first information from the session management network element.
  • the destination address of the DNS query message is the address of the first device
  • the method further includes: the user plane network element receives the DNS response message from the network element discovered by the edge application server, and the DNS The source address of the response message is the address of the first device; the user plane network element sends the DNS response message to the terminal device, and the first device is a device deployed in the home network.
  • the method further includes: the user plane network element sends the address of the first device to the session management network element, and the first device is a device deployed in the home network.
  • a communication method is provided, and the method may be executed by a network element of the core network, or may also be executed by a component (such as a chip or a circuit) of the network element of the core network, which is not limited, for the convenience of description , the following takes the execution by the session management network element as an example for description.
  • the method may include: the session management network element determines the first information for the home routing session, and the first information is used to forward one or more domain name system DNS messages to the edge application server discovery network element; the session management network element sends the user plane The network element sends the first information, wherein the user plane network element, the edge application server discovery network element, and the session management network element are network elements deployed in the visited network.
  • the session management network element determines the first information for the home routing session, and sends the first information to the user plane network element, so that the user plane network element receives the DNS query from the terminal device for obtaining the address of the edge server
  • the DNS query message can be forwarded to the edge application server to discover the network element, and then the edge application server can discover the network element to process the DNS query message, and then can provide edge computing service for the terminal device. For example, if a terminal device roams to a visited network, through the solution proposed in this application, it may be realized that the terminal device discovers an edge computing service located in the visited network.
  • the first information includes one or more of the following: full domain name, application identifier, target device address, DNS protocol port number, and the address of the network element discovered by the edge application server , where the target device address is the destination address of one or more DNS messages, and the target device is a device deployed in the home network.
  • the first information includes a first parameter and a second parameter
  • the first parameter is used to detect one or more DNS messages
  • the second parameter is used to determine the edge application server Discover NEs.
  • the first parameter includes one or more of the following: full domain name, application identifier, target device address, DNS protocol port number, and the address of the network element discovered by the edge application server , where the target device address is the destination address of one or more DNS messages; the second parameter includes the address of the network element discovered by the edge application server, and the target device is a device deployed in the home network.
  • the session management network element determining the first information includes: the session management network element determining the first information according to edge server deployment information.
  • the method further includes: the session management network element sends second information to the user plane network element, and the second information indicates that the source address of the replacement DNS response message is the first device address , the address of the first device is the destination address of the DNS query message, and the first device is a device deployed in the home network.
  • the session management network element sends third information to the edge application server discovery network element, and the third information indicates that the source address of the DNS response message is the first device address, and the first The device address is the destination address of the DNS query message, and the first device is the device deployed in the home network.
  • the method further includes: the session management network element receives the first device address from the user plane network element.
  • a communication method is provided, and the method may be executed by a network element, or may also be executed by a component (such as a chip or a circuit) of the network element, and this is not limited.
  • a component such as a chip or a circuit
  • the following is represented by The execution of the discovery of network elements by the edge application server is taken as an example for description.
  • the method may include: the edge application server discovers that the network element receives a domain name system DNS query message from the user plane network element, the DNS query message is used to obtain the edge server address, and the destination address of the DNS query message is the address of the first device; the edge application server discovers The network element sends a DNS response message to the user plane network element.
  • the source address of the DNS response message is the address of the first device.
  • the user plane network element and the edge application server find that the network element is a network element deployed in the visited network.
  • the first device is Devices deployed in the home network.
  • the method further includes: the edge application server discovers that the network element stores the address of the first device.
  • the edge application server finds that the network element can store the first device address of the original destination address of the DNS query message, so that the address can be used when generating the DNS response message.
  • the edge application server discovers that the network element receives the DNS query message from the user plane network element, including: the edge application server discovers that the network element receives the DNS query message from the user plane network element through a tunnel For DNS query messages, the tunnel endpoint is the address of the network element discovered by the edge application server.
  • the method further includes: the edge application server discovers that the network element receives third information from the session management network element, and the third information indicates that the source address of the DNS response message is the first device address.
  • a communication method is provided, and the method may be executed by a network element, or may also be executed by a component (such as a chip or a circuit) of the network element, which is not limited.
  • a component such as a chip or a circuit
  • the edge application server discovers network elements and the execution of user plane network elements is taken as an example for description.
  • the method may include: the user plane network element receives a domain name system DNS query message from the terminal device, and the DNS query message is used to obtain an edge server address; based on the first information, the user plane network element sends a DNS query message to the edge application server discovery network element , the first information is used to forward one or more DNS messages to the edge application server discovery network element; the edge application server discovery network element sends a DNS response message to the user plane network element, wherein the user plane network element and the edge application server discovery network element Elements are network elements deployed in the visited network.
  • the user plane network element may execute the method in any possible implementation manner in the first aspect.
  • the edge application server discovering the network element may execute the method in any possible implementation manner in the third aspect.
  • the source address of the DNS response message is the address of the first device.
  • the source address of the DNS response message is the address of the network element discovered by the edge application server, and the user plane network element replaces the source address in the DNS response message with the address of the first device , and send a DNS response message to the terminal device, where the address of the first device is the destination address of the DNS query message, and the first device is a device deployed in the home network.
  • a communication device configured to execute the method in any possible implementation manner of the foregoing first aspect to the fourth aspect.
  • the apparatus may include a unit and/or module for executing the method in any possible implementation manner of the first aspect to the fourth aspect, such as a processing unit and/or a communication unit.
  • the device is a network element.
  • the communication unit may be a transceiver, or an input/output interface;
  • the processing unit may be at least one processor.
  • the transceiver may be a transceiver circuit.
  • the input/output interface may be an input/output circuit.
  • the device is a chip, a chip system or a circuit for a network element.
  • the communication unit may be an input/output interface, interface circuit, output circuit, input circuit, pin or related circuit on the chip, chip system or circuit, etc.
  • the processing unit may be at least one processor, processing circuit or logic circuit, etc.
  • a communication device which includes: at least one processor, configured to execute a computer program or instruction stored in a memory, so as to execute the method in any possible implementation manner of the first aspect to the fourth aspect above .
  • the apparatus further includes a memory for storing computer programs or instructions.
  • the device further includes a communication interface, through which the processor reads the computer program or instructions stored in the memory.
  • the device is a network element.
  • the device is a chip, a chip system or a circuit for a network element.
  • the present application provides a processor configured to execute the methods provided in the above aspects.
  • the processor's output and reception, input and other operations can also be understood as the sending and receiving operations performed by the radio frequency circuit and the antenna, which is not limited in this application.
  • a computer-readable storage medium where the computer-readable medium stores program code for execution by a device, and the program code includes any one of the possible implementation manners for executing the above-mentioned first aspect to the fourth aspect. method.
  • a computer program product including instructions is provided, and when the computer program product is run on a computer, the computer is made to execute the method in any possible implementation manner of the above first aspect to the fourth aspect.
  • a communication system including one or more of the aforementioned user plane network element, session management network element, and edge application server discovery network element.
  • Fig. 1 shows a schematic diagram of a network architecture.
  • Fig. 2 shows a schematic diagram of another network architecture.
  • Fig. 3 shows a schematic diagram of HR roaming and LBO roaming.
  • Fig. 4 shows a schematic diagram of UE roaming from HPLMN to VPLMN.
  • FIG. 5 is a schematic diagram of a communication method 500 provided by an embodiment of the present application.
  • FIG. 6 is a schematic diagram of a communication method provided by an embodiment of the present application.
  • FIG. 7 is a schematic flowchart of a communication method 700 provided by an embodiment of the present application.
  • FIG. 8 is a schematic flowchart of another communication method 800 provided by an embodiment of the present application.
  • FIG. 9 is a schematic flowchart of another communication method 900 provided by an embodiment of the present application.
  • FIG. 10 is a schematic flowchart of another communication method 1000 provided by an embodiment of the present application.
  • FIG. 11 shows a schematic block diagram of a communication device 1100 provided by an embodiment of the present application.
  • FIG. 12 shows a schematic block diagram of another communication device 1200 provided by an embodiment of the present application.
  • the technical solution provided by this application can be applied to various communication systems, such as: the fifth generation (5th generation, 5G) or new radio (new radio, NR) system, long term evolution (long term evolution, LTE) system, LTE frequency division Duplex (frequency division duplex, FDD) system, LTE time division duplex (time division duplex, TDD) system, etc.
  • 5G fifth generation
  • NR new radio
  • long term evolution long term evolution
  • LTE long term evolution
  • LTE frequency division Duplex frequency division duplex
  • FDD frequency division duplex
  • TDD time division duplex
  • the technical solution provided by this application can also be applied to device to device (device to device, D2D) communication, vehicle to everything (vehicle-to-everything, V2X) communication, machine to machine (machine to machine, M2M) communication, machine type Communication (machine type communication, MTC), and Internet of things (internet of things, IoT) communication system or other communication systems.
  • D2D device to device
  • V2X vehicle-to-everything
  • M2M machine to machine
  • M2M machine type Communication
  • MTC machine type communication
  • IoT Internet of things
  • Fig. 1 shows a schematic diagram of a network architecture.
  • the network architecture takes the 5G system (the 5th generation system, 5GS) as an example.
  • the network architecture may include but not limited to: based on network slice specific authentication and authorization function (network slice specific authentication and authorization function, NSSAAF), network slice selection function (network slice selection function, NSSF), authentication server function (authentication server function, AUSF), unified data management (unified data management, UDM), network exposure function (network exposure function, NEF), network storage function (NF repository function, NRF), policy control function (policy control function, PCF), application function ( application function (AF), access and mobility management function (access and mobility management function, AMF), session management function (session management function, SMF), service communication proxy (service communication proxy, SCP), network slice admission control Function (network slice admission control function, NSACF), user equipment (user equipment, UE), wireless access network equipment, user plane function (user plane function, UPF), data network (data network, DN), etc.
  • network slice specific authentication and authorization function network slice specific authentication and authorization function
  • NSSF network slice
  • Each network element shown in FIG. 1 is briefly introduced below.
  • UE can be called terminal equipment, access terminal, subscriber unit, subscriber station, mobile station, mobile station, remote station, remote terminal, mobile device, user terminal, terminal, wireless communication device, user agent or user device.
  • a terminal device may be a device that provides voice/data to a user, for example, a handheld device with a wireless connection function, a vehicle-mounted device, and the like.
  • some terminals are: mobile phone (mobile phone), tablet computer, notebook computer, palmtop computer, mobile internet device (mobile internet device, MID), wearable device, virtual reality (virtual reality, VR) device, augmented reality (augmented reality, AR) equipment, wireless terminals in industrial control, wireless terminals in self driving, wireless terminals in remote medical surgery, smart grid Wireless terminals in transportation safety, wireless terminals in smart city, wireless terminals in smart home, cellular phones, cordless phones, session initiation protocol , SIP) phones, wireless local loop (wireless local loop, WLL) stations, personal digital assistants (personal digital assistant, PDA), handheld devices with wireless communication capabilities, computing devices or other processing devices connected to wireless modems, Wearable devices, terminal devices in a 5G network, or terminal devices in a future evolving public land mobile network (PLMN), etc., are not limited in this
  • the terminal device may also be a wearable device.
  • Wearable devices can also be called wearable smart devices, which is a general term for the application of wearable technology to intelligently design daily wear and develop wearable devices, such as glasses, gloves, watches, clothing and shoes.
  • a wearable device is a portable device that is worn directly on the body or integrated into the user's clothing or accessories. Wearable devices are not only a hardware device, but also achieve powerful functions through software support, data interaction, and cloud interaction.
  • Generalized wearable smart devices include full-featured, large-sized, complete or partial functions without relying on smart phones, such as smart watches or smart glasses, etc., and only focus on a certain type of application functions, and need to cooperate with other devices such as smart phones Use, such as various smart bracelets and smart jewelry for physical sign monitoring.
  • the terminal device can also be the terminal device in the IoT system.
  • IoT is an important part of the development of information technology in the future. Its main technical feature is to connect items to the network through communication technology, so as to realize Interconnection, an intelligent network that interconnects things.
  • a certain air interface technology such as NR or LTE technology
  • a certain air interface technology may also be used to communicate with each other between terminal devices.
  • the device for realizing the function of the terminal device may be the terminal device, or may be a device capable of supporting the terminal device to realize the function, such as a chip system or a chip, and the device may be installed in the terminal device.
  • the system-on-a-chip may be composed of chips, or may include chips and other discrete devices.
  • (wireless) access network ((radio) access network, (R) AN) equipment it can provide authorized users in a specific area with the function of accessing the communication network, specifically including the third generation partnership project (3rd generation partnership)
  • the wireless network device in the project, 3GPP) network may also include an access point in a non-3GPP (non-3GPP) network.
  • non-3GPP non-3GPP
  • AN devices may use different wireless access technologies.
  • 3GPP access technologies for example, wireless access technologies used in third generation (3rd generation, 3G), fourth generation (4th generation, 4G) or 5G systems
  • non- 3GPP (non-3GPP) access technology refers to the access technology that complies with the 3GPP standard specifications.
  • the access network equipment in the 5G system is called the next generation Node Base station (gNB) or RAN equipment.
  • Non-3GPP access technologies may include air interface technology represented by access point (AP) in wireless fidelity (WiFi), worldwide interoperability for microwave access (WiMAX), code Multiple access (code division multiple access, CDMA), etc.
  • the AN device may allow non-3GPP technology interconnection and intercommunication between the terminal device and the 3GPP core network.
  • the AN device can be responsible for functions such as wireless resource management, quality of service (QoS) management, data compression and encryption on the air interface side.
  • QoS quality of service
  • the AN equipment provides access services for the terminal equipment, and then completes the forwarding of control signals and user data between the terminal equipment and the core network.
  • AN equipment may include, but not limited to, for example: a macro base station, a micro base station (also called a small station), a radio network controller (radio network controller, RNC), a node B (Node B, NB), a base station controller (base station controller) , BSC), base transceiver station (base transceiver station, BTS), home base station (for example, home evolved NodeB, or home Node B, HNB), baseband unit (baseband unit, BBU), AP in WiFi system, wireless relay Node, wireless backhaul node, transmission point (transmission point, TP) or transmission and reception point (transmission and reception point, TRP), etc., can also be gNB or transmission point (TRP or TP) in the 5G (eg, NR) system , one or a group (including multiple antenna panels) antenna panels of the base station in the 5G system, or it can also be a network node that constitutes a gNB or a transmission point, such as a distributed unit
  • AMF mainly used for functions such as access control, mobility management, attachment and detachment.
  • SMF mainly used for user plane network element selection, user plane network element redirection, Internet protocol (internet protocol, IP) address allocation of terminal equipment, and session management in mobile networks, such as session establishment, modification and release And service quality (quality of service, QoS) control.
  • IP Internet protocol
  • UPF mainly used for receiving and forwarding user plane data.
  • the UPF can receive user plane data from the DN, and send the user plane data to the terminal device through the AN device.
  • UPF can also receive user plane data from terminal equipment through AN equipment and forward it to DN.
  • the UPF directly connected to the DN through the N6 interface in the session can be called a protocol data unit (protocol data unit, PDU) session anchor (PDU session anchor, PSA).
  • PDU protocol data unit
  • PSA protocol data unit
  • PCF A unified policy framework mainly used to guide network behavior, and provide policy rule information for control plane network elements (such as AMF, SMF, etc.).
  • AF It is mainly used to provide services to the 3GPP network, such as interacting with the PCF for policy control.
  • Network slice selection function (network slice selection function, NSSF): mainly used for network slice selection.
  • UDM mainly used for UE subscription data management, including storage and management of UE ID, UE access authorization, etc.
  • DN It is mainly used for the operator network that provides data services for the UE.
  • the Internet Internet
  • a third-party service network IP multimedia service (IP multi-media service, IMS) network, and the like.
  • IP multimedia service IP multi-media service, IMS
  • AUSF mainly used for user authentication, etc.
  • NEF It is mainly used to safely open services and capabilities provided by 3GPP network functions to the outside.
  • NRF It is mainly used to save the description information of network functional entities and the services they provide.
  • Fig. 2 shows a schematic diagram of another network architecture.
  • EAS may also be called edge application (server), application instance, edge application instance, multi-access edge computing (multi-access edge computing, MEC) application (server), EAS function, etc.
  • EAS is deployed on the local DN (local DN), and the network selects a UPF that is closer to the local DN to establish a transmission path for the UE to ensure that the UE can normally access edge services.
  • the local DN may be identified by a data network access identifier (DNAI), or the local DN may also be identified by a data network name (DNN).
  • DNAI data network access identifier
  • DNN data network name
  • SMF can control the data routing of PDU so that this PDU session can have multiple N6 interfaces at the same time.
  • the UPF connecting each N6 interface is called PSA.
  • PSA The UPF connecting each N6 interface
  • Each PAS provides a different path to the same DN.
  • SMF can insert an uplink classifier (uplink classifier, UL CL) in the data transmission path of the PDU session.
  • uplink classifier uplink classifier, UL CL
  • the UL CL function is provided by UPF and is used to forward the data packets meeting the service filtering rules to the specified path.
  • this PDU session can have multiple PDU session anchor points, providing multiple different paths to access the same DN. That is to say, the function of UL CL can be to transmit uplink data to different PSAs and combine downlink data to UE. Or, the data corresponding to each PSA can also be aggregated in a common UPF, and this common UPF has a branching point (branching point, BP) function. The branch point forwards uplink data to different PSAs upwards, and merges downlink data from PSAs downwards.
  • branching point branch point
  • UPF (UL CL/BP) can represent a UPF that provides UL CL functions or a public UPF, that is, the UPF can transmit uplink data to different PSAs, for example, UPF (PSA2) and UPF (PSA1), and combine downlink data to UE.
  • PSA2 UPF
  • PSA1 UPF
  • the UE is connected to the AN device through the radio resource control (radio resource control, RRC) protocol, and Uu is used between the UE and the AN device. interface for communication.
  • RRC radio resource control
  • the network architecture shown above is only an example, and the network architecture applicable to the embodiment of the present application is not limited thereto, and any network architecture capable of realizing the functions of the foregoing network elements is applicable to the embodiment of the present application.
  • the network architecture shown above may also include other more network elements, which is not limited.
  • the architecture shown in FIG. 2 also includes an edge application server discovery function (edge application server discovery function, EASDF).
  • the edge application server discovery function for example, may also be called an edge application (service) discovery function, an application instance discovery function, an edge application instance discovery function, an MEC application (server) discovery function, etc., and is not limited.
  • the functions or network elements such as AMF, SMF, UPF, PCF, UDM, NSSF, and AUSF shown in Figure 1 or Figure 2 can be understood as network elements for implementing different functions, for example, they can be combined into Network slicing.
  • These network elements can be independent devices, or can be integrated in the same device to achieve different functions, or can be network elements in hardware devices, or software functions running on dedicated hardware, or platforms (for example, cloud The virtualization function instantiated on the platform), this application does not limit the specific form of the above network elements.
  • roaming refers to the situation that a mobile user belonging to operator A accesses the network of operator B.
  • the network of operator A may be regarded as a home network (or home network), and the network of operator B may be regarded as a visited network.
  • a cellular mobile communication network of a certain standard of an operator may be called a public land mobile network (PLMN).
  • PLMN public land mobile network
  • the PLMN i.e., the home network
  • PLMN home public land mobile network
  • HPLMN home public land mobile network
  • the PLMN i.e., the visited network
  • visited PLMN VPLMN
  • the EASDF in the home network (ie HPLMN) is recorded as home EASDF (home EASDF, H-EASDF), and the EASDF in the visited network (ie VPLMN) is recorded as visited EASDF (visited EASDF, V -EASDF).
  • the SMF in the home network is recorded as the home SMF (home SMF, H-SMF), and the SMF in the visited network is recorded as the visited SMF (visited SMF, V-SMF).
  • the UPF in the home network is recorded as the home UPF (home UPF, H-UPF), and the UPF in the visited network is recorded as the visited UPF (visited UPF, V-UPF).
  • the PSA in the home network is recorded as the home PSA (home PSA, H-PSA)
  • the PSA in the visited network is recorded as the visited PSA (visited PSA, V-PSA) (or local PSA (local PSA) PSA, L-PSA)).
  • Roaming scenarios can be divided into local breakout (LBO) roaming and home routed (HR) roaming.
  • LBO local breakout
  • HR home routed
  • the difference between the two mainly lies in whether the session is connected to the UPF of the home network.
  • the two types of roaming are briefly introduced below.
  • a session (such as a PDU session) is connected to the UPF of the home network (ie, H-UPF).
  • Fig. 3(1) shows a schematic diagram of an HR roaming scene.
  • an HR session (such as an HR PDU session) refers to a session established when the user is in the visited network and connected to the H-UPF.
  • the traffic carried in the HR session is from The UE sends to the H-UPF, and then to the receiving end.
  • This application can be used in HR roaming scenarios.
  • the session eg, PDU session
  • the UPF of the home network ie, H-UPF
  • Fig. 3(2) shows a schematic diagram of an LBO roaming scenario.
  • the LBO session (such as the LBO PDU session) refers to the session established when the user is located in the visited network and connected to the V-UPF.
  • the service flow carried in the LBO session is directly on the visited network. (that is, the VPLMN) sends out locally, and there is no need to go back to the UPF (that is, the H-UPF) of the home network (that is, the HPLMN).
  • some services may be served by multiple edge application servers (EAS) deployed on the edge of the network.
  • EAS edge application servers
  • the multiple EASs can provide the same service and content, and most of them have different IP addresses.
  • the UE accesses the service, it can request it to access an available EAS that is close to the UE. Therefore, it is more important to obtain a suitable IP address of EAS.
  • the IP address of the EAS may be acquired through a service discovery mechanism based on domain name system (domain name system, DNS).
  • DNS domain name system
  • the IP address of the EAS can be realized through an edge service discovery mechanism, such as through the following steps.
  • DNS query DNS query
  • EASDF receives the DNS query message and forwards the DNS query to SMF.
  • the SMF After receiving the DNS query, the SMF will provide EASDF with information that can reflect the location of the UE, such as the EDNS client subnet option (Edns-client-subnet option, ECS option).
  • Edns-client-subnet option ECS option
  • EASDF adds the ECS option to the DNS query message.
  • EASDF forwards the DNS query message with the ECS option added to the DNS server (such as the central DNS server or local DNS server).
  • the DNS server such as the central DNS server or local DNS server.
  • the DNS server determines the current location of the UE according to the ECS option carried in the DNS query, and returns an EAS IP that is close to the UE location to the UE through a DNS response (DNS response).
  • the present application proposes a solution.
  • the user plane network element of the VLPMN receives the DNS query message from the terminal device, and sends the DNS query message to the edge application server discovery network element of the VLPMN based on the first information.
  • the user plane network element of the VLPMN sends the DNS query message from the terminal device to the edge application server of the VLPMN to discover the network element according to the first information, so that the terminal device can discover the edge application server located in the VPLMN, and provide the terminal device Provide edge application services. Therefore, the present application can be used to solve edge service discovery in roaming scenarios (such as HR roaming scenarios). As shown in FIG. 4 , if the UE roams from the HPLMN to the VPLMN, through the solution proposed in this application, the UE can discover the edge computing service located in the VPLMN.
  • roaming scenarios such as HR roaming scenarios
  • FIG. 5 is a schematic diagram of a communication method 500 provided by an embodiment of the present application.
  • Method 500 may include the following steps.
  • a user plane network element receives a DNS query message from a terminal device, where the user plane network element is a network element deployed in a visited network.
  • the DNS query message can be specifically used to obtain the address of the edge server, such as the address of the EAS.
  • the user plane network element sends a DNS query message to the edge application server discovery network element, and the first information is used to forward one or more DNS messages to the edge application server discovery network element, where the edge application server discovery
  • the network element is a network element deployed in the visited network.
  • the user plane network element such as V-UPF
  • the visited network such as VPLMN
  • the user plane network element deployed in the visited network receives the DNS query message for obtaining the address of the edge server from the terminal device, it can base on the first
  • the information transfers the DNS query message to the edge application server discovery network element (such as V-EASDF) deployed in the visited network, and then the edge application server discovery network element deployed in the visited network processes the DNS query message.
  • the user plane network element deployed in the visited network sends the DNS query message from the terminal device to the edge application server of the VLPMN to discover the network element according to the first information, so that the terminal device can discover the edge application server located in the VPLMN, And provide edge application services for terminal devices.
  • a terminal device roams to a visited network, through the solution proposed in this application, it may be realized that the terminal device discovers an edge computing service located in the visited network.
  • the DNS request for the edge service can be intercepted by the V-UPF and forwarded to the V-EASDF for processing.
  • the user plane network element is, for example, a network element deployed in the VPLMN, such as a network element with a user plane function.
  • the user plane network element is a V-UPF.
  • the network element discovered by the edge application server is a network element deployed in the VPLMN, such as a network element used to discover the edge server.
  • the edge application server discovers that the network element is V-EASDF.
  • the first information indicates (or represents, or indicates) to forward one or more DNS messages to the edge application server to discover the network element.
  • the V-UPF learns according to the first information that it needs to forward the DNS query message to the V-EASDF, so it forwards the DNS query message to the V-EASDF, and the V-UPF EASDF for processing.
  • first information in this application may be replaced with “forwarding rules”, or “forwarding policies”, or “processing rules”, or “processing policies”, or “service detection information or rules”, and so on.
  • the first information may be an information element, or may be a parameter, or may be in the form of a table, and so on. The following description will be made in conjunction with the content that may be included in the first information.
  • the first information includes one or more of the following: full qualified domain name (full qualified domain name, FQDN) (or FQDN range (range)) (for distinction, called target FQDN), application identification (application ID, AppID ) (for distinction, called the target application identifier), target device address, DNS protocol port number, V-EASDF address.
  • full qualified domain name full qualified domain name, FQDN
  • FQDN range range
  • application identification application ID, AppID
  • target device address for distinction, called the target application identifier
  • DNS protocol port number for distinction, V-EASDF address.
  • Example 1 the first information includes the target FQDN.
  • the target FQDN may include one or more FQDNs.
  • the target FQDN can be used to match (or detect) DNS messages.
  • the first information includes two information elements, one information element indicates (or represents, or indicates) to forward one or more DNS messages to the edge application server to discover the network element, and the other information element includes The target FQDN.
  • the user plane network element can learn to forward the DNS query message matching the target FQDN to the edge application server to discover the network element.
  • the first information includes the target FQDN
  • the user plane network element determines to forward the DNS query message matching the target FQDN to the edge application server discovery network element according to internal logic.
  • the user plane network element sends the DNS query message to the edge application server discovery network element .
  • Example 2 the first information includes the target application identifier.
  • the target application identifier may include one or more application identifiers.
  • the target application identification can be used to detect (or match, or identify) the DNS message.
  • the first information includes two information elements, one information element indicates (or represents, or indicates) to forward one or more DNS messages to the edge application server to discover the network element, and the other information element includes The target application ID.
  • the user plane network element can learn to forward the DNS query message matching the target application identifier to the edge application server discovery network element.
  • the first information includes the target application identifier
  • the user plane network element determines to forward the DNS query message matching the target application identifier to the edge application server discovery network element according to internal logic.
  • the user plane network element sends the DNS query message to the edge application server discovery network element. Query news.
  • Example 3 the first information includes the address of the target device.
  • the target device address is the destination address of one or more DNS messages, and the target device is a device deployed in the home network.
  • the target device address for example, can be a DNS server address (such as the H-DNS server address configured in the PDU session), or an EASDF address (such as the H-EASDF address configured in the PDU session), or it can also be a home Other devices deployed in the network are not limited.
  • the DNS server address is used as an example for illustration below. It can be understood that the DNS server address below can also be replaced by an EASDF address (ie, an H-EASDF address), which will not be described in detail below.
  • the DNS server address is the destination address of one or more DNS messages, for example, the address of the DNS server is the H-DNS server address.
  • the addresses of DNS servers can be used to match (or detect) DNS messages.
  • the first information includes two information elements, one information element indicates (or represents, or indicates) to forward one or more DNS messages to the edge application server to discover the network element, and the other information element includes The DNS server address.
  • the user plane network element can learn to forward the DNS query message matching the DNS server address to the edge application server discovery network element.
  • the first information includes the DNS server address
  • the user plane network element determines to forward the DNS query message matching the DNS server address to the edge application server discovery network element according to internal logic.
  • the user plane network element sends the DNS query message to the edge application server discovery network element. Query news.
  • Example 4 the first information includes the DNS protocol port number.
  • the DNS protocol port number is a corresponding port number of one or more DNS messages.
  • the DNS protocol port number can be used to match (or detect) DNS messages.
  • the first information includes two information elements, one information element indicates (or represents, or indicates) to forward one or more DNS messages to the edge application server to discover the network element, and the other information element includes The DNS protocol port number.
  • the user plane network element can learn to forward the DNS query message matching the DNS protocol port number to the edge application server discovery network element.
  • the first information includes the DNS protocol port number
  • the user plane network element determines to forward the DNS query message matching the DNS protocol port number to the edge application server discovery network element according to internal logic.
  • the user plane network element sends the discovery network element to the edge application server. DNS query message.
  • Example 5 the first information includes the V-EASDF address.
  • the V-EASDF address can be used to match (or detect) the DNS message, and/or, the V-EASDF address can be used to determine the address of the edge application server discovering the network element sending the DNS query message from the user plane network element.
  • the V-EASDF address can be used to match (or detect) the DNS message, or the V-EASDF address can be used to determine the address of the edge application server discovering the network element sending the DNS query message from the user plane network element.
  • the first information includes two information elements, one information element indicates (or represents, or indicates) to forward one or more DNS messages to the edge application server to discover the network element, and the other information element includes The V-EASDF address.
  • the user plane network element can learn to forward the DNS query message matching the V-EASDF address to the edge application server discovery network element according to the first information, and/or the user plane network element can learn to forward the DNS query message according to the first information Discover network elements for the edge application server corresponding to the V-EASDF address.
  • the first information includes the V-EASDF address
  • the user plane network element determines to forward the DNS query message matching the V-EASDF address to the edge application server discovery network element according to internal logic, and /or, the user plane network element determines to forward the DNS query message to the edge application server discovery network element corresponding to the V-EASDF address according to internal logic.
  • the V-EASDF address can be used to match (or detect) the DNS message, and the V-EASDF address can be used to determine the address of the edge application server discovering the network element sent by the user plane network element to send the DNS query message.
  • the V-EASDF address used to match (or detect) the DNS message is recorded as V-EASDF address #1, and the V-EASDF address used to determine the edge application server that sends the DNS query message to the user plane network element discovers the network element.
  • the EASDF address is denoted as V-EASDF address #2. It can be understood that the V-EASDF address #1 and the V-EASDF address #2 may be the same, or may also be different, without limitation.
  • the first information includes three information elements, one information element indicates (or represents, or indicates) to forward one or more DNS messages to the edge application server to discover the network element, and the other information element includes V-EASDF address #1, there is another cell including V-EASDF address #2.
  • the user plane network element can learn to forward the DNS query message matching the V-EASDF address #1 to the edge application server discovery network element corresponding to the V-EASDF address #2.
  • the first information includes two information elements, one information element includes V-EASDF address #1, and the other information element includes V-EASDF address #2, and the user plane network element according to the internal logic It is determined to forward the DNS query message matching the V-EASDF address #1 to the edge application server discovery network element corresponding to the V-EASDF address #2.
  • the user plane network element applies to the edge corresponding to the V-EASDF address
  • the server discovers that the network element sends the DNS query message.
  • the user plane network element receives the DNS query message in step 510, then in step 520, the user plane network element sends the DNS query message to the edge application server discovery network element corresponding to the V-EASDF address.
  • the first information may include multiple pieces of information.
  • the first information includes the target FQDN and the V-EASDF address, where the target FQDN can be used to match (or detect) the DNS message, and the V-EASDF can be used to determine the edge application server that the user plane network element sends the DNS query message to discover the network element address, etc.
  • the first information includes two types of parameters, which are respectively recorded as the first parameter and the second parameter for distinction.
  • the first parameter may be used to detect (or match, or identify) one or more DNS messages.
  • the home network element can know whether to forward the DNS query message matching the first parameter to the edge application server to discover the network element.
  • the first parameter for example, may be called a service detection (or matching, or identification) parameter (or service detection information), or may be called a message detection (or matching, or identification) parameter (or message detection information), etc., its name This application is not limited.
  • the first parameter may include one or more parameters (information).
  • the first parameter includes one or more of the following: target FQDN, target application identifier, target device address, DNS protocol port number, and V-EASDF address.
  • the second parameter is used to determine that the edge application server discovers the network element.
  • the home network element can learn to forward the DNS query message to the edge application server discovery network element.
  • the second parameter may be called an address parameter (or address information), or may be called an address determination (or matching, or identification) parameter (or address determination information), etc., and its naming does not limit this application.
  • the second parameter may include one or more parameters (or, one or more information).
  • the second parameter includes the V-EASDF address.
  • the first information includes three information elements, one information element indicates (or represents, or indicates) to forward one or more DNS messages to the edge application server to discover the network element, and the other information element includes For the first parameter, another cell includes the second parameter.
  • the user plane network element can learn to forward the DNS query message matching the first parameter to the V-EASDF.
  • the first information includes two information elements, one information element includes the first parameter, and the other information element includes the second parameter.
  • the user plane network element determines to forward the DNS query message matching the first parameter to the V-EASDF according to internal logic.
  • the first information is exemplarily introduced above, and it can be understood that any form that can realize the function of the first information is applicable to this application.
  • the method 500 further includes: the user plane network element acquires the first information.
  • the user plane network element receives the first information from the session management network element.
  • the session management network element is a network element deployed in the VPLMN, such as a session management network element.
  • the session management network element is a V-SMF.
  • the V-SMF sends the first information to the V-UPF, and the V-UPF receives the first information from the V-SMF accordingly .
  • the user plane network element may receive one or more of the following from the session management network element through a signaling: target FQDN, target application identifier, target device address , DNS protocol port number, V-EASDF address; or, the user plane network element may also receive the following items from the session management network element through multiple signalings: target FQDN, target application identifier, target device address, DNS protocol port number, V-EASDF address.
  • the user plane network element may receive the first parameter and the second parameter from the session management network element through one signaling; or, the user plane network element may receive the first parameter and the second parameter from the session management network element through two A signaling receives the first parameter and the second parameter from the session management network element, that is, the first parameter is received through one signaling, and the second parameter is received through another signaling.
  • the session management network element determines the first information.
  • the session management network element may determine the first information according to EAS deployment (deployment) information.
  • the EAS deployment information includes information about the deployment of the EAS in the edge network.
  • the EAS deployment information includes: the FQDN (or FQDN range) corresponding to the deployed service in the VPLMN, and the EAS IP address.
  • the session management network element Taking the session management network element determining the first information according to the FQDN corresponding to the service deployed in the VPLMN as an example, the session management network element obtains the FQDN information used by the edge service from the EAS deployment information, and then carries the FQDN information through the first information , that is, the FQDN is carried in the first information, or the first information is associated with the FQDN.
  • the session management network element may determine the first information for the HR session. For example, if the session management network element judges that the session is an HR session, the session management network element determines the first information.
  • the specific manner in which the session management network element determines that the session is an HR session is not limited. For example, during the session establishment process, the session management network element may learn that the established session is an HR session.
  • the user plane network element locally configures the first information.
  • the user plane network element stores the first information locally, and the root user plane network element can directly read the first information after receiving the DNS query message from the terminal device.
  • the user plane network element sends a DNS query message to the edge application server discovery network element, including at least the following solutions.
  • the user plane network element directly forwards the DNS query message to the edge application server discovery network element.
  • Example 1 the UE sends a DNS query message to the V-UPF, and the destination address of the DNS query message is the address of the target device (such as the address of the H-DNS server, or the address of the H-EASDF, etc.); the V-UPF receives the DNS query After the message, the complete DNS query message is forwarded to the V-EASDF through the tunnel (tunnel) for processing by the V-EASDF, and the address of the tunnel receiving end is the address of the V-EASDF.
  • the tunnel tunnel
  • Example 2 the UE sends a DNS query message to the V-UPF, and the destination address of the DNS query message is the address of the V-EASDF; after receiving the DNS query message, the V-UPF directly forwards the DNS query message to the V-EASDF, and the V-EASDF for processing.
  • Solution 2 After the user plane network element modifies (or replaces) the address, it forwards the DNS query message to the edge application server to discover the network element.
  • the UE sends a DNS query message to the V-UPF, and the destination address of the DNS query message is the address of the target device (such as the address of the H-DNS server, or the address of the H-EASDF, etc.); the V-UPF receives the DNS query message After querying the message, replace the destination address of the DNS query message with the V-EASDF address, and forward the DNS query message with the destination address replaced by the V-EASDF address to the V-EASDF for processing by the V-EASDF.
  • the target device such as the address of the H-DNS server, or the address of the H-EASDF, etc.
  • the first information is also used to indicate (or represent, or indicate) that the destination address of the replacement DNS query message is the V-EASDF address, and the user plane network element learns that the destination address of the replacement DNS query message is V-EASDF address: the user plane network element sends a DNS query message to the V-EASDF with the destination address replaced by the V-EASDF address.
  • the first information may use one or more bits to indicate that the destination address of the replacement DNS query message is the V-EASDF address.
  • the first information may indicate that the destination address of the replacement DNS query message is the V-EASDF address by carrying an address (such as a V-EASDF address) or a parameter.
  • the user plane network element receives the first information from the session management network element, and the first information carries a certain address (such as the V-EASDF address) or parameters, and the user plane network element sends the destination address replacement to the V-EASDF DNS query message for V-EASDF address.
  • a certain address such as the V-EASDF address
  • the user plane network element sends the destination address replacement to the V-EASDF DNS query message for V-EASDF address.
  • the user plane network element learns that the destination address of the replacement DNS query message is the V-EASDF address according to the local configuration; the user plane network element sends a DNS query message whose destination address is replaced by the V-EASDF address to the V-EASDF .
  • the user plane network element receives information #1 from the session management network element, and the information #1 is used to notify (or indicate, or represent, or indicate) that the destination address of the replacement DNS query message is V-EASDF address; the user plane network element learns from the information #1 that the destination address of the replacement DNS query message is the V-EASDF address; the user plane network element sends a DNS query message whose destination address is replaced by the V-EASDF address to the V-EASDF.
  • This application does not limit the form of message #1.
  • information #1 may be a cell.
  • information #1 can be realized by one or more bits.
  • information #1 may be an address (such as a V-EASDF address), or a parameter. For example, when the user plane network element receives information #1 from the session management network element, the user plane network element sends to the V-EASDF a DNS query message in which the destination address is replaced (or modified) with the address of the V-EASDF.
  • the method 500 further includes: the user plane network element receives the DNS response message from the edge application server discovery network element, and correspondingly, the edge application server discovery network element sends the DNS response message to the user plane network element.
  • the user plane network element receives the DNS response message from the edge application server discovery network element, and correspondingly, the edge application server discovery network element sends the DNS response message to the user plane network element.
  • the V-EASDF sends a DNS response message to the user plane network element, and the source address of the DNS response message is the H-DNS server address.
  • the V-EASDF saves the destination address H-DNS server address in the DNS query message.
  • V-EASDF receives the DNS query message from V-UPF, and records the destination address H-DNS server address in the DNS query message; V-EASDF uses the H-DNS server address Generate a DNS response message, that is, use the H-DNS server address as the source address of the DNS response message; V-EASDF sends the DNS response message to the UE.
  • V-EASDF receives the DNS query message from V-UPF, and obtains the H-DNS server address from other network elements (such as V-SMF), and uses the H-DNS server address as the DNS response The source address of the message.
  • the V-EASDF sends a DNS response message to the user plane network element, and the source address of the DNS response message is the V-EASDF address; the user plane network element replaces the V-EASDF address with the address of the first device.
  • the address of the first device is the destination address of the DNS query message.
  • the first device is a device deployed in the home network.
  • DNS server or EASDF, etc.
  • the first device address for example, can be a DNS server address (such as the H-DNS server address configured in the PDU session), it can also be an EASDF address (such as the H-EASDF address configured in the PDU session), or it can also be Other devices deployed in the home network are not limited.
  • the target device includes the first device.
  • H-DNS server address ie H-EASDF address
  • the V-EASDF uses its own IP to generate a DNS response message, and sends the DNS response message to the user plane network element; after the user plane network element receives the DNS response message from the V-EASDF, it uses the H- The DNS server address replaces the V-EASDF address.
  • the first information is also used to indicate (or represent, or indicate) that the source address of the replacement DNS response message is an H-DNS server address, and the user plane network element learns the source address of the replacement DNS response message according to the first information is the address of the H-DNS server; the user plane network element sends a DNS response message to the UE in which the source address is replaced with the address of the H-DNS server.
  • the first information may indicate that the source address of the replacement DNS response message is the H-DNS server address through one or more bits.
  • the first information may indicate that the source address of the replacement DNS response message is the H-DNS server address by carrying an address (such as an H-DNS server address) or a parameter.
  • the user plane network element receives the first information from the session management network element, and the first information carries the H-DNS server address, then the user plane network element replaces the DNS response message after receiving the DNS response message from V-EASDF
  • the source address of the message is the H-DNS server address, and a DNS response message in which the source address is replaced with the H-DNS server address is sent to the UE.
  • the user plane network element learns that the source address of the replacement DNS response message is the H-DNS server address according to local configuration; after the user plane network element receives the DNS response message from V-EASDF, replaces the DNS response message
  • the source address is the H-DNS server address, and a DNS response message is sent to the UE in which the source address is replaced by the H-DNS server address.
  • the user plane network element receives information #2 from the session management network element, and the information #2 is used to notify (or indicate, or characterize, or indicate) that the source address of the replacement DNS response message is H-DNS server address; the user plane network element learns from the information #2 that the source address of the replacement DNS response message is the H-DNS server address; the user plane network element sends the DNS response message whose source address is replaced by the H-DNS server address to the UE.
  • This application does not limit the form of message #2.
  • information #2 may be a cell.
  • information #2 can be realized by one or more bits.
  • information #1 may be an address (such as an H-DNS server address), or a parameter.
  • the user plane network element when the user plane network element receives information #1 from the session management network element, after receiving the DNS response message from the V-EASDF, the user plane network element replaces the source address of the DNS response message with the H-DNS server address, And send a DNS response message with the source address replaced by the H-DNS server address to the UE.
  • FIG. 7 is a schematic flowchart of a communication method 700 provided by an embodiment of the present application. Method 700 may include the following steps.
  • the UE sends a session establishment request message to the V-SMF.
  • the UE can initiate the HR session establishment process. For example, the UE sends a session establishment request message to the V-SMF, for example, the UE may send the session establishment request message to the V-SMF through the AMF.
  • the specific session establishment process reference may be made to existing technologies or future session establishment methods, which are not limited.
  • the V-SMF generates a forwarding rule for the DNS query message.
  • the forwarding rule (that is, the first information in method 500), also known as the data plane forwarding rule, can be used to process specific DNS query messages, such as forwarding specific DNS query messages to V-EASDF.
  • the specific DNS query message for example, can be identified by one or more of the target FQDN, target application identifier, H-DNS server IP, and DNS protocol port number, specifically refer to the first possible method in method 300 Example 1 to Example 5 in the case.
  • V-SMF generates forwarding rules for DNS query messages, for example, it may include: V-SMF generates forwarding rules for DNS query messages according to EAS deployment information, or in combination with other policy information.
  • V-SMF There are no restrictions on the conditions that trigger V-SMF to generate forwarding rules for DNS query messages.
  • the V-SMF determines that the session is an HR session, it generates a forwarding rule for the DNS query message.
  • the V-SMF After receiving the session establishment request message (such as the HR session establishment request message), the V-SMF generates forwarding rules for the DNS query message.
  • the V-SMF After receiving the session establishment request message (such as the HR session establishment request message), the V-SMF generates forwarding rules for the DNS query message.
  • the V-SMF receives the session establishment request message, the V-SMF generates a forwarding rule for the DNS query message.
  • the session establishment request message may be, for example, an Nsmf interface PDU session establishment session context request (Nsmf_PDUSession_CreateSMContext Request) message sent by the AMF to the V-SMF, which is not limited in this application.
  • Nsmf_PDUSession_CreateSMContext Request Nsmf interface PDU session establishment session context request
  • the V-SMF sends a forwarding rule for the DNS query message to the V-UPF.
  • V-UPF can be instructed to forward specific DNS query messages to V-EASDF.
  • the forwarding rule for the DNS query message includes one or more of the following information: target FQDN, target application identifier, H-DNS server IP, DNS protocol port number, V-EASDF IP.
  • the target FQDN and the target application identifier are used to match the DNS query message. For example, if the forwarding rule for the DNS query message includes the target FQDN, the V-UPF forwards the DNS query that matches the target FQDN. For another example, if the forwarding rule for the DNS query message includes the target application identifier, the V-UPF forwards the DNS query that matches the target application identifier.
  • the H-DNS server IP is used to identify all DNS query messages sent to the H-DNS server. For example, if the forwarding rule for the DNS query message includes the H-DNS server IP, then after the V-UPF receives the DNS query message, if the destination address of the DNS query message is the H-DNS server IP, the V-UPF sends the EASDF forwards the DNS query message.
  • the DNS protocol port number is used for the V-UPF to identify the DNS protocol message.
  • the V-EASDF IP is the address of the V-EASDF to which the V-UPF forwards the specific DNS query message.
  • the V-SMF sends a DNS message handling rule (DNS message handling rule) #1 to the V-EASDF.
  • DNS message handling rule DNS message handling rule
  • the AF sends EAS deployment information to the V-SMF.
  • the V-SMF may send DNS message processing rule #1 to the V-EASDF based on the EAS deployment information, or in combination with some other policy information.
  • the EAS deployment information includes information about the deployment of the EAS in the edge network.
  • the EAS deployment information includes: the FQDN (or FQDN range (range)) corresponding to the service deployed in the VPLMN, and the EAS IP address.
  • DNS message processing rule #1 can be used to process DNS query messages.
  • DNS message processing rule #1 includes two parts of information: 1) information used to match DNS query messages, such as detection information, if the DNS query message matches the detection information, it is considered that the processing rule applies to the corresponding DNS query message; 2) For the processing action of the DNS query message, when the match is successful, V-EASDF executes the corresponding action, for example, V-EASDF reports the DNS query message to V-SMF.
  • the present application mainly uses the AF sending the EAS deployment information to the V-SMF as an example for illustration, and the present application is not limited thereto.
  • the V-SMF locally configures EAS deployment information.
  • the UE sends a DNS query message to the V-UPF.
  • the source address of the DNS query message is the UE IP, and the destination address is the H-DNS server IP.
  • the V-UPF forwards the DNS query message to the V-EASDF.
  • V-UPF processes the DNS query message according to the forwarding rule received in step 703.
  • the forwarding rule is used to instruct the V-UPF to forward specific DNS query messages (such as DNS query messages sent to the H-DNS server, such as DNS query messages matching the target FQDN, or DNS query messages matching the target application identifier) , etc.) forwarded to V-EASDF.
  • V-UPF forwards the DNS query message to V-EASDF according to the destination address of the DNS query message being the H-DNS server IP.
  • the V-UPF does not need to modify the destination address of the DNS query message, and can forward the complete DNS query message to the V-EASDF.
  • the V-UPF forwards the DNS query message to the V-EASDF through a tunnel (such as an IP-in-IP tunnel), and the destination address of the tunnel is the address of the V-EASDF.
  • the V-EASDF forwards the DNS query message to the V-SMF.
  • the V-EASDF processes the DNS query message according to the DNS message processing rule #1 received in step 702.
  • the DNS message processing rule #1 is used to instruct the V-EASDF to report the DNS query message to the V-SMF, so the V-EASDF forwards the DNS query message to the V-SMF.
  • the V-SMF sends DNS message processing rule #2 to the V-EASDF.
  • the V-SMF may send a new DNS message processing rule to the V-EASDF, which is denoted as DNS message processing rule #2 for distinction.
  • DNS message processing rule #2 is used to instruct V-EASDF to further process the DNS query message.
  • the V-EASDF sends the DNS query message to the DNS server.
  • the DNS server After the DNS server receives the DNS query message, it can start the DNS query process.
  • the V-EASDF records the destination address of the DNS query message.
  • the V-EASDF records the destination address of the DNS query message, that is, the destination address of the DNS query message is the H-DNS server IP.
  • the V-EASDF receives the DNS response message from the DNS server.
  • the V-EASDF sends a DNS response message to the V-SMF.
  • V-EASDF forwards the DNS response message received in step 711 to V-SMF.
  • the V-SMF establishes a local session path connecting the edge service according to the DNS response message.
  • the V-SMF sends DNS message processing rule #3 to the V-EASDF.
  • DNS message processing rule #3 can be used to process DNS response messages.
  • DNS message processing rule #3 is used to indicate that the source address of the DNS response message is set to the H-DNS server IP.
  • the V-SMF sends the H-DNS server IP to the V-EASDF, such as the H-DNS server IP carried in DNS message processing rule #3.
  • the V-EASDF generates a DNS response message, and the source address of the DNS response message is set to the H-DNS server IP.
  • V-EASDF can obtain H-DNS server IP through any of the following methods:
  • V-EASDF receives the H-DNS server IP from V-SMF.
  • the V-SMF sends the H-DNS server IP to the V-EASDF.
  • V-EASDF extracts the destination address of the DNS query message, that is, the H-DNS server IP. For example, after receiving the DNS query message in step 707, the V-EASDF can extract the destination address of the DNS query message.
  • the V-EASDF sends a DNS response message to the UE.
  • the DNS response message is the DNS response message generated by the V-EASDF in step 715.
  • V-EASDF can send DNS response message to UE through V-UPF.
  • the V-UPF does not need to modify the destination address of the DNS query message, and can forward the complete DNS query message to the V-EASDF.
  • V-EASDF can also extract the original destination address of the DNS query message, and use this address when generating the DNS response message.
  • the edge service discovery mechanism for the HR session can be realized, that is, the UE in the HR session can discover the edge service located in the visited network, so that the UE can access the edge service deployed in the VPLMN when establishing the HR session.
  • FIG. 8 is a schematic flowchart of another communication method 800 provided by an embodiment of the present application.
  • Method 800 may include the following steps.
  • the UE sends a session establishment request message to the V-SMF.
  • step 801 is similar to step 701 and will not be repeated here.
  • the V-SMF generates a forwarding rule for the DNS query message.
  • the forwarding rule which may also be called a data plane forwarding rule, can be used to process a specific DNS query message, such as forwarding the specific DNS query message to V-EASDF.
  • the specific DNS query message for example, can be identified by one or more of the target FQDN, target application identifier, DNS protocol port number, and V-EASDF IP, specifically refer to the first possible situation in method 300 Example 1 to Example 5 in .
  • V-SMF generates forwarding rules for DNS query messages, for example, it may include: V-SMF generates forwarding rules for DNS query messages according to EAS deployment information, or in combination with other policy information.
  • V-SMF determines that the session is an HR session, it generates a forwarding rule for the DNS query message. Specifically, reference may be made to related descriptions in step 702, which will not be repeated here.
  • the V-SMF sends a forwarding rule for the DNS query message to the V-UPF.
  • Data plane forwarding rules for DNS query messages can instruct V-UPF to forward specific DNS query messages to V-EASDF.
  • the specific DNS query message for example, may be a DNS query message sent to V-EASDF.
  • the forwarding rule for the DNS query message includes one or more of the following: V-EASDF IP, DNS protocol port number.
  • V-EASDF IP is used to identify the DNS query message sent to V-EASDF IP. For example, if the forwarding rule for DNS query message includes V-EASDF IP, after V-UPF receives the DNS query message, if the destination address of the DNS query message is V-EASDF IP, V-UPF forwards it to V-EASDF The DNS query message.
  • the DNS protocol port number is used for the V-UPF to identify the DNS protocol message.
  • the V-SMF sends DNS message processing rule #1 to the V-EASDF.
  • step 804 is basically similar to step 704, except that, in step 804, DNS message processing rule #1 may also include the address of the H-DNS server. Wherein, the address of the H-DNS server is used to directly send the DNS message that does not match the DNS message processing rule #1 to the H-DNS server for processing.
  • step 801 and step 804 there is no strict sequence.
  • the UE sends a DNS query message to the V-UPF.
  • the source address of the DNS query message is UE IP, and the destination address is V-EASDF IP.
  • the UE can directly use the V-EASDF IP as the destination address of the DNS query message.
  • the V-UPF forwards the DNS query message to the V-EASDF.
  • V-UPF processes the DNS query message according to the forwarding rule received in step 803. For example, forwarding rules are used to instruct V-UPF to forward specific DNS query messages to V-EASDF. According to the destination address of the DNS query message, the V-UPF is the V-EASDF IP, so the V-UPF forwards the DNS query message to the V-EASDF.
  • the V-EASDF processes the DNS query message, for example, steps 807-813 can be performed.
  • step 814 can be performed.
  • the V-EASDF forwards the DNS query message to the V-SMF.
  • the V-SMF sends DNS message processing rule #2 to the V-EASDF.
  • V-EASDF sends the DNS query to the DNS server.
  • steps 807-809 are similar to steps 707-709 and will not be repeated here.
  • the V-EASDF receives the DNS response message from the DNS server.
  • V-EASDF sends a DNS response message to V-SMF.
  • V-EASDF forwards the DNS response message received in step 810 to V-SMF.
  • the V-SMF establishes a local session path connecting the edge service according to the DNS response message.
  • the V-SMF sends DNS message processing rule #3 to the V-EASDF.
  • steps 812-813 are similar to steps 713-714, and will not be repeated here.
  • the V-EASDF forwards the DNS query message to the H-DNS server.
  • the V-EASDF sends a DNS response message to the UE.
  • V-EASDF can send DNS response message to UE through V-UPF.
  • the UE can directly use the V-EASDF as the destination address of the DNS query message.
  • the edge service discovery mechanism for the HR session can be realized, that is, the UE in the HR session can discover the edge service located in the visited network, so that the UE can access the edge service deployed in the VPLMN when establishing the HR session.
  • FIG. 9 is a schematic flowchart of another communication method 900 provided by an embodiment of the present application.
  • Method 900 may include the following steps.
  • the UE sends a session establishment request message to the V-SMF.
  • the V-SMF sends a forwarding rule for the DNS query message to the V-UPF.
  • the V-SMF sends a forwarding rule for the DNS query message to the V-UPF.
  • steps 901-903 are similar to steps 701-703, the difference is that in step 903, optionally, the forwarding rule can also be used to instruct V-UPF to set the destination address of the DNS query message as V-EASDF IP.
  • the forwarding rule can also be used to instruct V-UPF to save the H-DNS server IP as the destination address of the DNS query message for subsequent processing of the DNS response message, such as modifying the source address of the DNS response message to H -DNS server IP.
  • the V-SMF sends DNS message processing rule #1 to the V-EASDF.
  • step 904 is similar to step 704 and will not be repeated here.
  • the UE sends a DNS query message to the V-UPF.
  • the source address of the DNS query message is the UE IP, and the destination address is the H-DNS server IP.
  • the V-UPF forwards the DNS query message to the V-EASDF.
  • V-UPF processes the DNS query message according to the forwarding rule received in step 903.
  • the forwarding rule is used to instruct the V-UPF to forward specific DNS query messages (such as DNS query messages sent to the H-DNS server, such as DNS query messages matching the target FQDN, or DNS query messages matching the target application identifier) , etc.) to V-EASDF, and the destination address of the DNS query message is set to V-EASDF IP, and the V-UPF forwards the DNS query message whose destination address is set to V-EASDF IP to V-EASDF.
  • specific DNS query messages such as DNS query messages sent to the H-DNS server, such as DNS query messages matching the target FQDN, or DNS query messages matching the target application identifier
  • V-UPF forwards the DNS query message whose destination address is set to V-EASDF IP to V-EASDF.
  • V-UPF may set the destination address of the DNS query message as the V-EASDF IP according to the forwarding rule received in step 903, which is an exemplary illustration, and the present application is not limited thereto.
  • V-UPF may also set the destination address of the DNS query message as V-EASDF IP according to local configuration or protocol regulations or information #1 in method 500.
  • the V-UPF may modify the destination address of the DNS query message to the V-EASDF IP, and forward the modified DNS query message to the V-EASDF.
  • the V-UPF saves the original destination address H-DNS server IP of the DNS query message.
  • V-UPF saves the original destination address H-DNS server IP of the DNS query message according to the forwarding rule received in step 1004.
  • V-UPF can also store the original destination address H-DNS server IP of the DNS query message according to local configuration or protocol regulations.
  • the V-EASDF forwards the DNS query message to the V-SMF.
  • the V-SMF sends DNS message processing rule #2 to the V-EASDF.
  • V-EASDF sends the DNS query to the DNS server.
  • steps 1007-1009 are similar to steps 707-709, and will not be repeated here.
  • the V-EASDF receives the DNS response message from the DNS server.
  • V-EASDF sends a DNS response message to V-SMF.
  • the V-SMF establishes a local session path connecting the edge service according to the DNS response message.
  • steps 910-912 are similar to steps 711-713, and will not be repeated here.
  • the V-SMF sends DNS message processing rule #3 to the V-EASDF.
  • DNS message processing rule #3 can be used to process DNS response messages.
  • the V-EASDF sends a DNS response message to the V-UPF.
  • V-EASDF generates DNS response message, and sends DNS response message to V-UPF, the source address of the DNS response message is set to V-EASDF address.
  • the V-UPF replaces the source address of the DNS response message with the H-DNS server IP.
  • the source address in the DNS response message is replaced with the saved H-DNS server IP (that is, the IP address carried in the DNS query message) Destination address).
  • V-UPF can replace the source address in the DNS response message with the saved H-DNS server IP according to the forwarding rule received in step 903.
  • V-UPF may also replace the source address in the DNS response message with the saved H-DNS server IP according to local configuration or protocol regulations or information #2 described in method 500.
  • the V-UPF sends a DNS response message to the UE.
  • the source address of the DNS response message is the H-DNS server IP.
  • V-EASDF can send DNS response message to UE through V-UPF.
  • the V-UPF can modify the destination address of the DNS query message to be the V-EASDF address, and forward the DNS query message with the destination address modified to the V-EASDF address to the V-EASDF.
  • V-EASDF uses its own IP to generate a DNS response message, and V-UPF replaces the V-EASDF address with the saved original destination address H-DNS server address.
  • FIG. 10 is a schematic flowchart of another communication method 1000 provided by an embodiment of the present application.
  • Method 1000 may include the following steps.
  • the UE sends a session establishment request message to the V-SMF.
  • the V-SMF generates a forwarding rule for the DNS query message.
  • the V-SMF sends a forwarding rule for the DNS query message to the V-UPF.
  • steps 1001-1003 are similar to steps 701-703, the difference is that in step 1003, optionally, the forwarding rule can also be used to instruct V-UPF to set the destination address of the DNS query message as V-EASDF IP.
  • the V-SMF sends DNS message processing rule #1 to the V-EASDF.
  • step 1004 is similar to step 704 and will not be repeated here.
  • the UE sends a DNS query message to the V-UPF.
  • the source address of the DNS query message is the UE IP, and the destination address is the H-DNS server IP.
  • the V-UPF forwards the DNS query message to the V-EASDF.
  • V-UPF processes the DNS query message according to the forwarding rule received in step 1003.
  • the forwarding rule is used to instruct the V-UPF to forward specific DNS query messages (such as DNS query messages sent to the H-DNS server, such as DNS query messages matching the target FQDN, or DNS query messages matching the target application identifier) , etc.) to V-EASDF, and the destination address of the DNS query message is set to V-EASDF IP, and the V-UPF forwards the DNS query message whose destination address is set to V-EASDF IP to V-EASDF.
  • specific DNS query messages such as DNS query messages sent to the H-DNS server, such as DNS query messages matching the target FQDN, or DNS query messages matching the target application identifier
  • V-UPF forwards the DNS query message whose destination address is set to V-EASDF IP to V-EASDF.
  • V-UPF may set the destination address of the DNS query message as the V-EASDF IP according to the forwarding rule received in step 1003, which is an exemplary description, and the present application is not limited thereto.
  • V-UPF may also set the destination address of the DNS query message as V-EASDF IP according to local configuration or protocol regulations or information #1 in method 500.
  • the V-UPF may modify the destination address of the DNS query message to the V-EASDF IP, and forward the modified DNS query message to the V-EASDF.
  • method 1000 includes step 1007,
  • the V-UPF sends the H-DNS server IP to the V-SMF.
  • V-UPF can report the original destination address (H-DNS server IP) carried in DNS query to V-SMF.
  • H-DNS server IP original destination address
  • the V-EASDF forwards the DNS query message to the V-SMF.
  • step 1008 is similar to step 707 and will not be repeated here.
  • the V-SMF sends DNS message processing rule #2 to the V-EASDF.
  • the V-SMF may send a new DNS message processing rule #2 to the V-EASDF.
  • the DNS message processing rule #2 is used to instruct the V-EASDF to further process the DNS query.
  • V-SMF can also send H-DNS server IP to V-EASDF.
  • V-SMF can carry H-DNS server IP in DNS message processing rule #2 and send it to V-EASDF.
  • V-EASDF sends the DNS query message to the DNS server.
  • step 1010 is similar to step 709 and will not be repeated here.
  • V-EASDF receives the DNS response message from the DNS server.
  • V-EASDF sends a DNS response message to V-SMF.
  • the V-SMF establishes a local session path connecting the edge service according to the DNS response message.
  • steps 1011-1013 are similar to steps 711-713, and will not be repeated here.
  • the V-SMF sends DNS message processing rule #3 to the V-EASDF.
  • DNS message processing rule #3 can be used to process DNS response messages.
  • DNS message processing rule #3 is used to indicate that the source address of the DNS response message is set to the H-DNS server IP.
  • the V-SMF sends the H-DNS server IP to the V-EASDF, such as the H-DNS server IP carried in DNS message processing rule #3.
  • the V-EASDF generates a DNS response message, and the source address of the DNS response message is set to the H-DNS server IP.
  • V-EASDF receives the H-DNS server IP from V-SMF.
  • V-SMF sends H-DNS server IP to V-EASDF.
  • the V-EASDF sends a DNS response message to the UE.
  • the DNS response message is the DNS response message generated by the V-EASDF in step 1015.
  • V-EASDF can send DNS response message to UE through V-UPF.
  • the V-UPF can modify the destination address of the DNS query message to the V-EASDF address, and forward the DNS query message with the destination address modified to the V-EASDF address to the V-EASDF.
  • V-EASDF can obtain the original destination address H-DNS server IP of DNS query message in some way (for example, V-EASDF receives H-DNS server IP from V-SMF), and use this address when generating DNS response message .
  • the edge service discovery mechanism for the HR session can be realized, that is, the UE in the HR session can discover the edge service located in the visited network, so that the UE can access the edge service deployed in the VPLMN when establishing the HR session.
  • the main DNS server address ie, the H-DNS server address
  • H-DNS server address is used as an example for illustration, and it can be understood that the above H-DNS server address can also be replaced by the H-EASDF address.
  • the methods and operations implemented by the device may also be implemented by components of the device (such as chips or circuits).
  • the embodiments of the present application further provide corresponding devices, and the device includes corresponding modules for executing the foregoing method embodiments.
  • the module can be software, or hardware, or a combination of software and hardware. It can be understood that the technical features described in the above method embodiments are also applicable to the following device embodiments.
  • Fig. 11 is a schematic block diagram of a communication device provided by an embodiment of the present application.
  • the device 1100 includes a transceiver unit 1110 and a processing unit 1120 .
  • the transceiver unit 1110 may be used to implement corresponding communication functions.
  • the transceiver unit 1110 may also be called a communication interface or a communication unit.
  • the processing unit 1120 may be configured to implement corresponding processing functions, such as modifying addresses and the like.
  • the device 1100 further includes a storage unit, which can be used to store instructions and/or data, and the processing unit 1120 can read the instructions and/or data in the storage unit, so that the device implements the foregoing method embodiments Actions of devices or network elements in the network.
  • a storage unit which can be used to store instructions and/or data
  • the processing unit 1120 can read the instructions and/or data in the storage unit, so that the device implements the foregoing method embodiments Actions of devices or network elements in the network.
  • the apparatus 1100 may be the user plane network element in the foregoing embodiments, or may be a component (such as a chip) of the user plane network element.
  • the device 1100 can implement the steps or processes corresponding to the execution of the user plane network element in the above method embodiment, wherein the transceiver unit 1110 can be used to perform operations related to the transmission and reception of the user plane network element in the above method embodiment, and the processing unit Step 1120 may be configured to perform operations related to the processing of the user plane network element in the above method embodiments.
  • the transceiver unit 1110 is configured to receive a domain name system DNS query message from the terminal device, and the DNS query message is used to obtain an edge server address; based on the first information, send a DNS query message to the edge application server to discover the network element , the first information is used to forward one or more DNS messages to the edge application server discovery network element, where the user plane network element and the edge application server discovery network element are network elements deployed in the visited network.
  • the first information includes one or more of the following: full domain name, application identifier, target device address, DNS protocol port number, edge application server discovers the address of the network element, wherein the target device address is one or more DNS messages
  • the destination address of the destination device is the device deployed in the home network.
  • the first information includes a first parameter and a second parameter
  • the first parameter is used to detect one or more DNS messages
  • the second parameter is used to determine that the edge application server discovers the network element.
  • the first parameter includes one or more of the following: full domain name, application identifier, target device address, DNS protocol port number, and the address of the network element discovered by the edge application server, wherein the target device address is one or more DNS messages The destination address; the second parameter includes the address of the network element discovered by the edge application server, and the target device is the device deployed in the home network.
  • the destination address in the DNS query message is the address of the first device, and the first device is a device deployed in the home network.
  • the transceiver unit 1110 is configured to send a DNS query message to the network element discovered by the edge application server, including: the transceiver unit 1110 is configured to send the DNS query message to the network element discovered by the edge application server through a tunnel, and the address of the receiving end of the tunnel is Edge The application server discovers the address of the network element.
  • the transceiver unit 1110 is configured to send the DNS query message to the network element discovered by the edge application server, including: a processing unit 1120 configured to replace the destination address in the DNS query message with the address of the network element discovered by the edge application server, and then send and receive Unit 1110 is configured to send a DNS query message to the network element discovered by the edge application server.
  • the transceiver unit 1110 is further configured to receive a DNS response message from the network element discovered by the edge application server; the processing unit 1120 is configured to replace the source address in the DNS response message with the first device address, and the transceiver unit 1110, It is used to send a DNS response message to the terminal device, wherein the address of the first device is the destination address of the DNS query message, and the first device is a device deployed in the home network.
  • the transceiving unit 1110 is further configured to receive second information from the session management network element, where the second information indicates that the source address of the replacement DNS response message is the address of the first device.
  • the transceiving unit 1110 is further configured to receive the first information from the session management network element.
  • the apparatus 1100 may be the session management network element in the foregoing embodiments, or may be a component (such as a chip) of the session management network element.
  • the device 1100 can implement the steps or processes corresponding to the execution of the session management network element in the above method embodiment, wherein the transceiver unit 1110 is used to perform operations related to the transmission and reception of the session management network element in the above method embodiment, and the processing unit Step 1120 is configured to perform operations related to the processing of the session management network element in the above method embodiments.
  • the processing unit 1120 is configured to determine first information for the home routing session, and the first information is used to forward one or more domain name system DNS messages to the edge application server to discover network elements; the transceiver unit 1110 , for sending the first information to a user plane network element, where the user plane network element, the edge application server discovery network element, and the session management network element are network elements deployed in the visited network.
  • the first information includes one or more of the following: full domain name, application identifier, target device address, DNS protocol port number, and address of the network element discovered by the edge application server, wherein the target device address is one or more DNS messages
  • the destination address of the destination device is the device deployed in the home network.
  • the first information includes a first parameter and a second parameter
  • the first parameter is used to detect one or more DNS messages
  • the second parameter is used to determine that the edge application server discovers the network element.
  • the first parameter includes one or more of the following: full domain name, application identifier, target device address, DNS protocol port number, and the address of the network element discovered by the edge application server, wherein the target device address is one or more DNS messages The destination address; the second parameter includes the address of the network element discovered by the edge application server, and the target device is the device deployed in the home network.
  • the processing unit 1120 configured to determine the first information, includes: the processing unit 1120, configured to determine the first information according to the deployment information of the edge server.
  • the transceiver unit 1110 is further configured to send second information to the user plane network element, the second information indicates that the source address of the replacement DNS response message is the first device address, and the first device address is the destination address of the DNS query message,
  • the first device is a device deployed in the home network.
  • the apparatus 1100 here is embodied in the form of functional units.
  • the term "unit” here may refer to an application specific integrated circuit (ASIC), an electronic circuit, a processor for executing one or more software or firmware programs (such as a shared processor, a dedicated processor, or a group processor, etc.) and memory, incorporated logic, and/or other suitable components to support the described functionality.
  • ASIC application specific integrated circuit
  • processor for executing one or more software or firmware programs (such as a shared processor, a dedicated processor, or a group processor, etc.) and memory, incorporated logic, and/or other suitable components to support the described functionality.
  • the apparatus 1100 may specifically be the user plane network element in the foregoing embodiments, and may be used to execute various procedures corresponding to the user plane network elements in the foregoing method embodiments and/or or steps; or, the apparatus 1100 may specifically be the session management network element in the foregoing embodiments, and may be used to execute various processes and/or steps corresponding to the session management network elements in the foregoing method embodiments; or, the apparatus 1100 may specifically Discovering network elements for the edge application server in the above embodiments may be used to execute various processes and/or steps corresponding to the network element discovery by the edge application server in the above method embodiments. To avoid repetition, details are not repeated here.
  • the device 1100 in each of the above solutions has the function of implementing the corresponding steps performed by the network elements (such as user plane network elements, or session management network elements, or edge application server discovery network elements) in the above methods.
  • the functions described above may be implemented by hardware, or may be implemented by executing corresponding software on the hardware.
  • the hardware or software includes one or more modules corresponding to the above functions; for example, the transceiver unit can be replaced by a transceiver (for example, the sending unit in the transceiver unit can be replaced by a transmitter, and the receiving unit in the transceiver unit can be replaced by a receiver computer), and other units, such as a processing unit, may be replaced by a processor to respectively perform the sending and receiving operations and related processing operations in each method embodiment.
  • transceiver unit 1110 may also be a transceiver circuit (for example, may include a receiving circuit and a sending circuit), and the processing unit may be a processing circuit.
  • the apparatus in FIG. 11 may be the network element or device in the foregoing embodiments, or may be a chip or a chip system, for example, a system on chip (system on chip, SoC).
  • the transceiver unit may be an input-output circuit or a communication interface;
  • the processing unit is a processor or a microprocessor or an integrated circuit integrated on the chip. It is not limited here.
  • this embodiment of the present application provides another communication device 1200 .
  • the apparatus 1200 includes a processor 1210, and the processor 1210 is configured to execute computer programs or instructions stored in the memory 1220, or read data/signaling stored in the memory 1220, so as to execute the methods in the above method embodiments.
  • processors 1210 there are one or more processors 1210 .
  • the apparatus 1200 further includes a memory 1220, and the memory 1220 is used for storing computer programs or instructions and/or data.
  • the memory 1220 can be integrated with the processor 1210, or can also be set separately.
  • the device 1200 further includes a transceiver 1230, and the transceiver 1230 is used for receiving and/or sending signals.
  • the processor 1210 is configured to control the transceiver 1230 to receive and/or send signals.
  • the apparatus 1200 is used to implement the operations performed by the network element in the foregoing method embodiments.
  • the processor 1210 is configured to execute the computer programs or instructions stored in the memory 1220, so as to implement related operations of the user plane network elements in the various method embodiments above. For example, the method performed by the user plane network element in the embodiment shown in FIG. 5 , or the method performed by the V-UPF in any one of the embodiments shown in FIG. 7 to FIG. 10 .
  • the processor 1210 is configured to execute the computer programs or instructions stored in the memory 1220, so as to implement related operations of the session management network element in each method embodiment above. For example, the method performed by the session management network element in the embodiment shown in FIG. 5 , or the method performed by the V-SMF in any one of the embodiments shown in FIG. 7 to FIG. 10 .
  • the processor 1210 is configured to execute the computer programs or instructions stored in the memory 1220, so as to implement related operations of the edge application server discovering the network element in each method embodiment above.
  • the edge application server in the embodiment shown in FIG. 5 discovers the method executed by the network element, or the method executed by the V-EASDF in any one of the embodiments shown in FIG. 7 to FIG. 10 .
  • processors mentioned in the embodiment of the present application may be a central processing unit (central processing unit, CPU), and may also be other general processors, digital signal processors (digital signal processor, DSP), application specific integrated circuits ( application specific integrated circuit (ASIC), off-the-shelf programmable gate array (field programmable gate array, FPGA) or other programmable logic devices, discrete gate or transistor logic devices, discrete hardware components, etc.
  • a general-purpose processor may be a microprocessor, or the processor may be any conventional processor, or the like.
  • the memory mentioned in the embodiments of the present application may be a volatile memory and/or a nonvolatile memory.
  • the non-volatile memory can be read-only memory (read-only memory, ROM), programmable read-only memory (programmable ROM, PROM), erasable programmable read-only memory (erasable PROM, EPROM), electrically programmable Erases programmable read-only memory (electrically EPROM, EEPROM) or flash memory.
  • the volatile memory may be random access memory (RAM).
  • RAM random access memory
  • RAM can be used as an external cache.
  • RAM includes the following multiple forms: static random access memory (static RAM, SRAM), dynamic random access memory (dynamic RAM, DRAM), synchronous dynamic random access memory (synchronous DRAM, SDRAM), Double data rate synchronous dynamic random access memory (double data rate SDRAM, DDR SDRAM), enhanced synchronous dynamic random access memory (enhanced SDRAM, ESDRAM), synchronous connection dynamic random access memory (synchlink DRAM, SLDRAM) and direct Memory bus random access memory (direct rambus RAM, DR RAM).
  • the processor is a general-purpose processor, DSP, ASIC, FPGA or other programmable logic devices, discrete gate or transistor logic devices, or discrete hardware components
  • the memory storage module may be integrated in the processor.
  • memories described herein are intended to include, but are not limited to, these and any other suitable types of memories.
  • the embodiments of the present application further provide a computer-readable storage medium, on which computer instructions for implementing the methods executed by the network element in the foregoing method embodiments are stored.
  • the computer when the computer program is executed by a computer, the computer can implement the methods performed by the user plane network element in each embodiment of the foregoing method.
  • the computer when the computer program is executed by a computer, the computer can implement the method performed by the session management network element in each embodiment of the above method.
  • the computer when the computer program is executed by a computer, the computer can implement the method performed by the edge application server discovering the network element in each embodiment of the above method.
  • the embodiments of the present application further provide a computer program product, including instructions, and when the instructions are executed by a computer, the methods performed by the network elements in the foregoing method embodiments are implemented.
  • the embodiment of the present application also provides a communication system, including one or more of the aforementioned user plane network element, session management network element, and edge application server discovery network element.
  • the disclosed devices and methods may be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components can be combined or May be integrated into another system, or some features may be ignored, or not implemented.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be through some interfaces, and the indirect coupling or communication connection of devices or units may be in electrical, mechanical or other forms.
  • the computer can be a general purpose computer, a special purpose computer, a computer network, or other programmable devices.
  • the computer may be a personal computer, a server, or a network device.
  • the computer instructions may be stored in or transmitted from one computer-readable storage medium to another computer-readable storage medium, for example, the computer instructions may be transmitted from a website, computer, server or data center Transmission to another website site, computer, server, or data center by wired (eg, coaxial cable, optical fiber, digital subscriber line (DSL)) or wireless (eg, infrared, wireless, microwave, etc.).
  • the computer-readable storage medium may be any available medium that can be accessed by a computer, or a data storage device such as a server or a data center integrated with one or more available media.
  • the available medium may be a magnetic medium (for example, a floppy disk, a hard disk, a magnetic tape), an optical medium (for example, DVD), or a semiconductor medium (for example, a solid state disk (SSD), etc.
  • the aforementioned available medium includes but Not limited to: U disk, mobile hard disk, read-only memory (read-only memory, ROM), random access memory (random access memory, RAM), magnetic disk or optical disk and other media that can store program codes.

Abstract

本申请实施例提供了一种通信的方法和装置。该方法可以包括:用户面网元接收来自终端设备的域名系统DNS查询消息,DNS查询消息用于获取边缘服务器地址;基于第一信息,用户面网元向边缘应用服务器发现网元发送DNS查询消息,第一信息用于将一个或多个DNS消息转发给边缘应用服务器发现网元,其中,用户面网元和边缘应用服务器发现网元为拜访网络中部署的网元。通过本申请,边缘应用服务器发现网元收到DNS查询消息后,可以处理该DNS查询消息,进而可以为终端设备提供边缘计算服务,可以实现为终端设备发现位于拜访网络中的边缘计算服务。

Description

通信的方法和装置
本申请要求于2021年09月30日提交中国专利局、申请号为202111166449.1、申请名称为“通信的方法和装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信领域,并且更具体地,涉及一种通信的方法和装置。
背景技术
在边缘计算(edge computing,EC)部署场景中,某些业务可能会由多个部署于网络边缘的边缘应用服务器(edge application server,EAS)提供服务。该多个EAS可提供相同的业务和内容,且大部分具有不同的因特网协议(internet protocol,IP)地址。EC场景下,当用户设备(user equipment,UE)请求接入该业务时,其接入距离UE较近的可用EAS。因此,合适的EAS的IP地址是比较重要的。
在某些情况下,UE可能会离开归属公共陆地移动网络(public land mobile network,PLMN)(home PLMN,HPLMN)的覆盖范围,通过归属路由(home routed,HR)漫游的方式,接入拜访公共陆地移动网络(visited PLMN,VPLMN),并由VPLMN为UE提供服务。
发明内容
本申请实施例提供一种通信的方法和装置,以实现由VPLMN的用户面网元截获来自漫游UE的DNS查询消息,并转发给相应的VPLMN的边缘应用服务发现网元,进而漫游UE可访问边缘应用业务。
第一方面,提供了一种通信的方法,该方法可以由核心网网元执行,或者,也可以由核心网网元的组成部件(例如芯片或者电路)执行,对此不作限定,为了便于描述,下面以由用户面网元执行为例进行说明。
该方法可以包括:用户面网元接收来自终端设备的域名系统DNS查询消息;基于第一信息,用户面网元向边缘应用服务器发现网元发送DNS查询消息,第一信息用于将一个或多个DNS消息转发给边缘应用服务器发现网元,其中,用户面网元和边缘应用服务器发现网元为拜访网络中部署的网元。
基于上述技术方案,拜访网络(如VPLMN)中部署的用户面网元接收来自终端设备的用于获取边缘服务器地址的DNS查询消息后,可以基于第一信息将该DNS查询消息转给拜访网络中部署的边缘应用服务器发现网元,进而由拜访网络中部署的边缘应用服务器发现网元处理该DNS查询消息。通过由拜访网络中部署的的用户面网元根据第一信息将来自终端设备的DNS查询消息发送到VLPMN的边缘应用服务器发现网元,进而可以实 现为终端设备发现位于VPLMN中的边缘应用服务器,并为终端设备提供边缘应用服务。例如,若终端设备漫游至拜访网络,通过本申请提出的方案,可以实现为终端设备发现位于拜访网络中的边缘计算服务。
其中,DNS查询消息具体可以用于获取边缘服务器地址,例如EAS的地址。
结合第一方面,在第一方面的某些实现方式中,第一信息包括以下一项或多项:全量域名,应用标识,目标设备地址,DNS协议端口号,边缘应用服务器发现网元的地址,其中,目标设备为一个或多个DNS消息的目的地址,目标设备为归属网络中部署的设备。
作为示例,目标设备地址,例如可以为DNS服务器地址(如PDU会话中配置的H-DNS server地址),也可以为EASDF地址(如PDU会话中配置的H-EASDF地址),或者也可以为归属网络中部署的其他设备,不予限制。
基于上述技术方案,用户面网元可基于上述一项或多项信息,对DNS消息进行匹配(或者检测),和/或,确定边缘应用服务器发现网元的地址。
结合第一方面,在第一方面的某些实现方式中,第一信息包括第一参数和第二参数,第一参数用于检测一个或多个DNS消息,第二参数用于确定边缘应用服务器发现网元。
基于上述技术方案,用户面网元可基于第一参数,对DNS消息进行匹配(或者检测),即确定是否要将DNS查询消息转给边缘应用服务器发现网元。用户面网元还可基于第二参数确定边缘应用服务器发现网元的地址,即确定将DNS查询消息转发到的边缘应用服务器发现网元的地址。
结合第一方面,在第一方面的某些实现方式中,第一参数包括以下一项或多项:全量域名,应用标识,目标设备地址,DNS协议端口号,边缘应用服务器发现网元的地址,其中,目标设备地址为一个或多个DNS消息的目的地址;第二参数包括边缘应用服务器发现网元的地址,目标设备为归属网络中部署的设备。
结合第一方面,在第一方面的某些实现方式中,DNS查询消息中的目的地址为第一设备地址,第一设备为归属网络中部署的设备。
结合第一方面,在第一方面的某些实现方式中,用户面网元向边缘应用服务器发现网元发送DNS查询消息,包括:用户面网元通过隧道向边缘应用服务器发现网元发送DNS查询消息,隧道接收端的地址为边缘应用服务器发现网元的地址。
基于上述技术方案,用户面网元不需要修改DNS查询消息的目的地址,可以通过隧道将完整的DNS查询消息转发给边缘应用服务器发现网元。
结合第一方面,在第一方面的某些实现方式中,用户面网元向边缘应用服务器发现网元发送DNS查询消息,包括:用户面网元将DNS查询消息中的目的地址替换为边缘应用服务器发现网元地址后,向边缘应用服务器发现网元发送DNS查询消息。
基于上述技术方案,用户面网元可以修改DNS查询消息的目的地址为边缘应用服务器发现网元地址,并将修改后的DNS查询消息转发给边缘应用服务器发现网元。
结合第一方面,在第一方面的某些实现方式中,方法还包括:用户面网元接收来自边缘应用服务器发现网元的DNS响应消息;用户面网元将DNS响应消息中的源地址替换为第一设备地址后,向终端设备发送DNS响应消息,其中,第一设备地址为DNS查询消息的目的地址,第一设备为归属网络中部署的设备。
基于上述技术方案,边缘应用服务器发现网元可以使用自己的IP生成DNS响应消息, 用户面网元用保存的原目的地址第一设备地址替换边缘应用服务器发现网元地址,第一设备为归属网络中部署的设备。
结合第一方面,在第一方面的某些实现方式中,方法还包括:用户面网元接收来自会话管理网元的第二信息,第二信息指示替换DNS响应消息的源地址为第一设备地址,第一设备为归属网络中部署的设备。
结合第一方面,在第一方面的某些实现方式中,方法还包括:用户面网元接收来自会话管理网元的第一信息。
结合第一方面,在第一方面的某些实现方式中,DNS查询消息的目的地址为第一设备地址,方法还包括:用户面网元接收来自边缘应用服务器发现网元的DNS响应消息,DNS响应消息的源地址为第一设备地址;用户面网元向终端设备发送DNS响应消息,第一设备为归属网络中部署的设备。
结合第一方面,在第一方面的某些实现方式中,方法还包括:用户面网元向会话管理网元发送第一设备地址,第一设备为归属网络中部署的设备。
第二方面,提供了一种通信的方法,该方法可以由核心网网元执行,或者,也可以由核心网网元的组成部件(例如芯片或者电路)执行,对此不作限定,为了便于描述,下面以由会话管理网元执行为例进行说明。
该方法可以包括:会话管理网元为归属地路由会话,确定第一信息,第一信息用于将一个或多个域名系统DNS消息转发给边缘应用服务器发现网元;会话管理网元向用户面网元发送第一信息,其中,用户面网元、边缘应用服务器发现网元、以及会话管理网元,为拜访网络中部署的网元。
基于上述技术方案,会话管理网元为归属地路由会话确定第一信息,并将第一信息发给用户面网元,这样用户面网元接收来自终端设备的用于获取边缘服务器地址的DNS查询消息后,可以基于第一信息将该DNS查询消息转给边缘应用服务器发现网元,进而由边缘应用服务器发现网元处理该DNS查询消息,进而可以为终端设备提供边缘计算服务。例如,若终端设备漫游至拜访网络,通过本申请提出的方案,可以实现为终端设备发现位于拜访网络中的边缘计算服务。
结合第二方面,在第二方面的某些实现方式中,第一信息包括以下一项或多项:全量域名,应用标识,目标设备地址,DNS协议端口号,边缘应用服务器发现网元的地址,其中,目标设备地址为一个或多个DNS消息的目的地址,目标设备为归属网络中部署的设备。
结合第二方面,在第二方面的某些实现方式中,第一信息包括第一参数和第二参数,第一参数用于检测一个或多个DNS消息,第二参数用于确定边缘应用服务器发现网元。
结合第二方面,在第二方面的某些实现方式中,第一参数包括以下一项或多项:全量域名,应用标识,目标设备地址,DNS协议端口号,边缘应用服务器发现网元的地址,其中,目标设备地址为一个或多个DNS消息的目的地址;第二参数包括边缘应用服务器发现网元的地址,目标设备为归属网络中部署的设备。
结合第二方面,在第二方面的某些实现方式中,会话管理网元确定第一信息,包括:会话管理网元根据边缘服务器的部署信息确定第一信息。
结合第二方面,在第二方面的某些实现方式中,方法还包括:会话管理网元向用户面 网元发送第二信息,第二信息指示替换DNS响应消息的源地址为第一设备地址,第一设备地址地址为DNS查询消息的目的地址,第一设备为归属网络中部署的设备。
结合第二方面,在第二方面的某些实现方式中,会话管理网元向边缘应用服务器发现网元发送第三信息,第三信息指示DNS响应消息的源地址为第一设备地址,第一设备地址为DNS查询消息的目的地址,第一设备为归属网络中部署的设备。
结合第二方面,在第二方面的某些实现方式中,方法还包括:会话管理网元接收来自用户面网元的第一设备地址。
第三方面,提供了一种通信的方法,该方法可以由网元执行,或者,也可以由网元的组成部件(例如芯片或者电路)执行,对此不作限定,为了便于描述,下面以由边缘应用服务器发现网元执行为例进行说明。
该方法可以包括:边缘应用服务器发现网元接收来自用户面网元的域名系统DNS查询消息,DNS查询消息用于获取边缘服务器地址,DNS查询消息的目的地址为第一设备地址;边缘应用服务器发现网元向用户面网元发送DNS响应消息,DNS响应消息的源地址为第一设备地址,其中,用户面网元和边缘应用服务器发现网元为拜访网络中部署的网元,第一设备为归属网络中部署的设备。
结合第三方面,在第三方面的某些实现方式中,方法还包括:边缘应用服务器发现网元保存第一设备地址。
基于上述技术方案,边缘应用服务器发现网元可以保存DNS查询消息的原目的地址第一设备地址,从而可以在生成DNS响应消息时使用该地址。
结合第三方面,在第三方面的某些实现方式中,边缘应用服务器发现网元接收来自用户面网元的DNS查询消息,包括:边缘应用服务器发现网元通过隧道接收来自用户面网元的DNS查询消息,隧道端点为边缘应用服务器发现网元的地址。
结合第三方面,在第三方面的某些实现方式中,方法还包括:边缘应用服务器发现网元接收来自会话管理网元的第三信息,第三信息指示DNS响应消息的源地址为第一设备地址。
第四方面,提供了一种通信的方法,该方法可以由网元执行,或者,也可以由网元的组成部件(例如芯片或者电路)执行,对此不作限定,为了便于描述,下面以由边缘应用服务器发现网元和用户面网元执行为例进行说明。
该方法可以包括:用户面网元接收来自终端设备的域名系统DNS查询消息,DNS查询消息用于获取边缘服务器地址;基于第一信息,用户面网元向边缘应用服务器发现网元发送DNS查询消息,第一信息用于将一个或多个DNS消息转发给边缘应用服务器发现网元;边缘应用服务器发现网元向用户面网元发送DNS响应消息,其中,用户面网元和边缘应用服务器发现网元为拜访网络中部署的网元。
示例地,用户面网元可以执行第一方面中任一可能的实现方式中的方法。
示例地,边缘应用服务器发现网元可以执行第三方面中任一可能的实现方式中的方法。
结合第四方面,在第四方面的某些实现方式中,DNS响应消息的源地址为第一设备地址。
结合第四方面,在第四方面的某些实现方式中,DNS响应消息的源地址为边缘应用 服务器发现网元的地址,用户面网元将DNS响应消息中的源地址替换为第一设备地址,并向终端设备发送DNS响应消息,其中,第一设备地址为DNS查询消息的目的地址,第一设备为归属网络中部署的设备。
第五方面,提供一种通信的装置,该装置用于执行上述第一方面至第四方面任一种可能实现方式中的方法。具体地,该装置可以包括用于执行第一方面至第四方面任一种可能实现方式中的方法的单元和/或模块,如处理单元和/或通信单元。
在一种实现方式中,该装置为网元。当该装置为网元时,通信单元可以是收发器,或,输入/输出接口;处理单元可以是至少一个处理器。可选地,收发器可以为收发电路。可选地,输入/输出接口可以为输入/输出电路。
在另一种实现方式中,该装置为用于网元的芯片、芯片系统或电路。当该装置为用于网元的芯片、芯片系统或电路时,通信单元可以是该芯片、芯片系统或电路上的输入/输出接口、接口电路、输出电路、输入电路、管脚或相关电路等;处理单元可以是至少一个处理器、处理电路或逻辑电路等。
第六方面,提供一种通信的装置,该装置包括:至少一个处理器,用于执行存储器存储的计算机程序或指令,以执行上述第一方面至第四方面任一种可能实现方式中的方法。可选地,该装置还包括存储器,用于存储的计算机程序或指令。可选地,该装置还包括通信接口,处理器通过通信接口读取存储器存储的计算机程序或指令。
在一种实现方式中,该装置为网元。
在另一种实现方式中,该装置为用于网元的芯片、芯片系统或电路。
第七方面,本申请提供一种处理器,用于执行上述各方面提供的方法。
对于处理器所涉及的发送和获取/接收等操作,如果没有特殊说明,或者,如果未与其在相关描述中的实际作用或者内在逻辑相抵触,则可以理解为处理器输出和接收、输入等操作,也可以理解为由射频电路和天线所进行的发送和接收操作,本申请对此不做限定。
第八方面,提供一种计算机可读存储介质,该计算机可读介质存储用于设备执行的程序代码,该程序代码包括用于执行上述第一方面至第四方面任一种可能实现方式中的方法。
第九方面,提供一种包含指令的计算机程序产品,当该计算机程序产品在计算机上运行时,使得计算机执行上述第一方面至第四方面任一种可能实现方式中的方法。
第十方面,提供一种通信系统,包括前述的用户面网元、会话管理网元、边缘应用服务器发现网元中的一个或多个。
附图说明
图1示出了一种网络架构的示意图。
图2示出了另一种网络架构的示意图。
图3示出了HR漫游和LBO漫游的示意图。
图4示出了UE从HPLMN漫游至VPLMN的示意图。
图5是本申请实施例提供的一种通信的方法500的示意图。
图6是本申请实施例提供的一种通信的方法的示意图。
图7是本申请实施例提供的一种通信的方法700的示意性流程图。
图8是本申请实施例提供的另一种通信的方法800的示意性流程图。
图9是本申请实施例提供的另一种通信的方法900的示意性流程图。
图10是本申请实施例提供的另一种通信的方法1000的示意性流程图。
图11示出了本申请实施例提供的一种通信的装置1100的示意性框图。
图12示出了本申请实施例提供的另一种通信的装置1200的示意性框图。
具体实施方式
下面将结合附图,对本申请中的技术方案进行描述。
本申请提供的技术方案可以应用于各种通信系统,例如:第五代(5th generation,5G)或新无线(new radio,NR)系统、长期演进(long term evolution,LTE)系统、LTE频分双工(frequency division duplex,FDD)系统、LTE时分双工(time division duplex,TDD)系统等。本申请提供的技术方案还可以应用于未来的通信系统,如第六代移动通信系统。本申请提供的技术方案还可以应用于设备到设备(device to device,D2D)通信,车到万物(vehicle-to-everything,V2X)通信,机器到机器(machine to machine,M2M)通信,机器类型通信(machine type communication,MTC),以及物联网(internet of things,IoT)通信系统或者其他通信系统。
首先结合图1和图2简单介绍适用于本申请的网络架构,如下。
作为示例,图1示出了一种网络架构的示意图。
如图1所示,该网络架构以5G系统(the 5th generation system,5GS)为例。该网络架构可以包括但不限于:基于网络切片特定认证与授权功能(network slice specific authentication and authorization function,NSSAAF),网络切片选择功能(network slice selection function,NSSF),认证服务器功能(authentication server function,AUSF),统一数据管理(unified data management,UDM),网络暴露功能(network exposure function,NEF),网络存储功能(NF repository function,NRF),策略控制功能(policy control function,PCF),应用功能(application function,AF),接入和移动性管理功能(access and mobility management function,AMF),会话管理功能(session management function,SMF),服务通信代理(service communication proxy,SCP),网络切片准入控制功能(network slice admission control function,NSACF),用户设备(user equipment,UE),无线接入网设备,用户面功能(user plane function,UPF),数据网络(data network,DN)等。
下面对图1中示出的各网元做简单介绍。
1、UE:可以称终端设备、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置。
终端设备可以是一种向用户提供语音/数据的设备,例如,具有无线连接功能的手持式设备、车载设备等。目前,一些终端的举例为:手机(mobile phone)、平板电脑、笔记本电脑、掌上电脑、移动互联网设备(mobile internet device,MID)、可穿戴设备,虚拟现实(virtual reality,VR)设备、增强现实(augmented reality,AR)设备、工业控制(industrial control)中的无线终端、无人驾驶(self driving)中的无线终端、远程手术(remote medical surgery)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart  home)中的无线终端、蜂窝电话、无绳电话、会话启动协议(session initiation protocol,SIP)电话、无线本地环路(wireless local loop,WLL)站、个人数字助理(personal digital assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、可穿戴设备,5G网络中的终端设备或者未来演进的公用陆地移动通信网络(public land mobile network,PLMN)中的终端设备等,本申请实施例对此并不限定。
作为示例而非限定,在本申请实施例中,该终端设备还可以是可穿戴设备。可穿戴设备也可以称为穿戴式智能设备,是应用穿戴式技术对日常穿戴进行智能化设计、开发出可以穿戴的设备的总称,如眼镜、手套、手表、服饰及鞋等。可穿戴设备即直接穿在身上,或是整合到用户的衣服或配件的一种便携式设备。可穿戴设备不仅仅是一种硬件设备,更是通过软件支持以及数据交互、云端交互来实现强大的功能。广义穿戴式智能设备包括功能全、尺寸大、可不依赖智能手机实现完整或者部分的功能,例如:智能手表或智能眼镜等,以及只专注于某一类应用功能,需要和其它设备如智能手机配合使用,如各类进行体征监测的智能手环、智能首饰等。
此外,在本申请实施例中,终端设备还可以是IoT系统中的终端设备,IoT是未来信息技术发展的重要组成部分,其主要技术特点是将物品通过通信技术与网络连接,从而实现人机互连,物物互连的智能化网络。
需要指出的是,终端设备与接入网设备之间可以采用某种空口技术(如NR或LTE技术等)相互通信。终端设备与终端设备之间也可以采用某种空口技术(如NR或LTE技术等)相互通信。
本申请实施例中,用于实现终端设备的功能的装置可以是终端设备,也可以是能够支持终端设备实现该功能的装置,例如芯片系统或芯片,该装置可以被安装在终端设备中。本申请实施例中,芯片系统可以由芯片构成,也可以包括芯片和其他分立器件。
2、(无线)接入网((radio)access network,(R)AN)设备:可以为特定区域的授权用户提供接入通信网络的功能,具体可以包括第三代合作伙伴计划(3rd generation partnership project,3GPP)网络中无线网络设备也可以包括非3GPP(non-3GPP)网络中的接入点。下文为方便描述采用AN设备表示。
AN设备可以为采用不同的无线接入技术。目前的无线接入技术有两种类型:3GPP接入技术(例如,第三代(3rd generation,3G)、第四代(4th generation,4G)或5G系统中采用的无线接入技术)和非3GPP(non-3GPP)接入技术。3GPP接入技术是指符合3GPP标准规范的接入技术,例如,5G系统中的接入网设备称为下一代基站节点(next generation Node Base station,gNB)或者RAN设备。非3GPP接入技术可以包括以无线保真(wireless fidelity,WiFi)中的接入点(access point,AP)为代表的空口技术、全球互联微波接入(worldwide interoperability for microwave access,WiMAX)、码分多址(code division multiple access,CDMA)等。AN设备可以允许终端设备和3GPP核心网之间采用非3GPP技术互连互通。
AN设备能够负责空口侧的无线资源管理、服务质量(quality of service,QoS)管理、数据压缩和加密等功能。AN设备为终端设备提供接入服务,进而完成控制信号和用户数据在终端设备和核心网之间的转发。
AN设备例如可以包括但不限于:宏基站、微基站(也称为小站)、无线网络控制器 (radio network controller,RNC)、节点B(Node B,NB)、基站控制器(base station controller,BSC)、基站收发台(base transceiver station,BTS)、家庭基站(例如,home evolved NodeB,或home Node B,HNB)、基带单元(baseband unit,BBU),WiFi系统中的AP、无线中继节点、无线回传节点、传输点(transmission point,TP)或者发送接收点(transmission and reception point,TRP)等,还可以为5G(如,NR)系统中的gNB或传输点(TRP或TP),5G系统中的基站的一个或一组(包括多个天线面板)天线面板,或者,还可以为构成gNB或传输点的网络节点,如分布式单元(distributed unit,DU),或者下一代通信6G系统中的基站等。本申请实施例对AN设备所采用的具体技术和具体设备形态不做限定。
3、AMF:主要用于接入控制、移动性管理、附着与去附着等功能。
4、SMF:主要用于用户面网元选择,用户面网元重定向,终端设备的因特网协议(internet protocol,IP)地址分配,以及移动网络中的会话管理,如会话的建立、修改和释放及服务质量(quality of service,QoS)控制。
5、UPF:主要用于用户面数据的接收和转发。例如,UPF可以从DN接收用户面数据,并通过AN设备将用户面数据发送给终端设备。UPF还可以通过AN设备从终端设备接收用户面数据,并转发到DN。会话中通过N6接口与DN直接相连的UPF可称为协议数据单元(protocol data unit,PDU)会话锚点(PDU session anchor,PSA)。
6、PCF:主要用于指导网络行为的统一策略框架,为控制面网元(例如AMF,SMF等)提供策略规则信息等。
7、AF:主要用于向3GPP网络提供业务,如与PCF之间交互以进行策略控制等。
8、网络切片选择功能(network slice selection function,NSSF):主要用于网络切片选择。
9、UDM:主要用于UE的签约数据管理,包括UE标识的存储和管理,UE的接入授权等。
10、DN:主要用于为UE提供数据服务的运营商网络。例如,因特网(Internet)、第三方的业务网络、IP多媒体服务业务(IP multi-media service,IMS)网络等。
11、AUSF:主要用于用户鉴权等。
12、NEF:主要用于安全地向外部开放由3GPP网络功能提供的业务和能力等。
13、NRF:主要用于保存网络功能实体以及其提供服务的描述信息等。
作为示例,图2示出了另一种网络架构的示意图。
如图2所示,该网络架构可以理解为是5G网络架构中部署边缘计算(edge computing)业务的系统架构或场景。如图2所示,该网络架构可以包括但不限于:NEF,PCF,AF,SMF,AMF,UE,UPF,DN,AN,边缘应用服务器(edge application server,EAS)。
其中,EAS,也可以称为边缘应用(服务器)、应用实例、边缘应用实例、多接入边缘计算(multi-access edge computing,MEC)应用(服务器)、EAS功能等。EAS部署在本地DN(local DN),网络通过选择距离local DN较近的UPF为UE建立传输路径,来确保UE可以正常访问边缘业务。local DN可以由数据网络接入标识符(data network access identifier,DNAI)进行标识,或者,local DN还可以由数据网络名称(data network name, DNN)标识。
当终端设备需要进行业务传输时,可以通过SMF建立多条到同一个DN或不同DN的PDU会话(session)。SMF可以控制PDU的数据路由使得此PDU会话可同时有多个N6接口,连接每个N6接口的UPF称为PSA,每个PAS提供了一条到同一个DN的不同路径。对于不同类型的PDU会话,SMF可以在该PDU会话的数据传输路径中插入一个上行分类器(uplink classifier,UL CL)。该UL CL功能由UPF提供,用于将满足业务过滤规则的数据包转发到指定的路径。当一个UL CL被插入到一个PDU会话数据通道时,这条PDU会话就可以有多个PDU会话锚点,提供接入到同一个DN的多条不同的路径。也就是说,UL CL的功能可以是传输上行数据到不同的PSA,并将下行数据合并到UE。或者,各个PSA对应的数据还可以汇聚于一个公共的UPF,这个公共的UPF具有分支点(branching point,BP)的功能。分支点向上将上行数据转发到不同的PSA,向下将来自PSA的下行数据合并。在图2所述的系统架构中,UPF(UL CL/BP)可以表示提供UL CL功能的UPF或者公共的UPF,即该UPF可以是传输上行数据到不同的PSA,例如,UPF(PSA2)以及UPF(PSA1),并将下行数据合并到UE。
关于图2中其他各网元的介绍,可以参考上文描述,此处不再赘述。
在图1或图2所示的网络架构中,各网元之间可以接口通信,例如,UE通过无线资源控制(radio resource control,RRC)协议与AN设备连接,UE和AN设备之间采用Uu接口进行通信。或者也可以参考图1或图2所示的接口,此处不再赘述。
应理解,上述所示的网络架构仅是示例性说明,适用本申请实施例的网络架构并不局限于此,任何能够实现上述各个网元的功能的网络架构都适用于本申请实施例。此外,上述所示的网络架构中还可以包括其他更多的网元,对此不予限制。例如,图2所示的架构中还包括边缘应用服务器发现功能(edge application server discovery function,EASDF)。其中,边缘应用服务器发现功能,例如也可以称为边缘应用(服务)发现功能、应用实例发现功能、边缘应用实例发现功能、MEC应用(服务器)发现功能等,不予限制。
还应理解,图1或图2中所示的AMF、SMF、UPF、PCF、UDM、NSSF、AUSF等功能或者网元,可以理解为用于实现不同功能的网元,例如可以按需组合成网络切片。这些网元可以各自独立的设备,也可以集成于同一设备中实现不同的功能,或者可以是硬件设备中的网络元件,也可以是在专用硬件上运行的软件功能,或者是平台(例如,云平台)上实例化的虚拟化功能,本申请对于上述网元的具体形态不作限定。
还应理解,上述命名仅为便于区分不同的功能而定义,不应对本申请构成任何限定。本申请并不排除在6G网络以及未来其它的网络中采用其他命名的可能。例如,在6G网络中,上述各个网元中的部分或全部可以沿用5G中的术语,也可能采用其他名称等。
为便于理解本申请实施例,对本申请实施例中涉及的几个基本概念做简单说明。应理解,下文中所介绍的基本概念是以目前协议中规定的基本概念为例进行简单说明,但并不限定本申请实施例只能够应用于目前已有的系统中。因此,以目前已有的系统为例描述时出现的名称,都是功能性描述,具体名称并不限定,仅表示功能,可以对应的扩展到其它系统,比如6G或未来通信系统中。
1、移动网络漫游(roaming)
以运营商A和运营商B为例,漫游是指属于运营商A的移动用户接入到了运营商B 的网络的情况。对于该用户来说,运营商A的网络可以认为是归属网络(或者称家乡网络),运营商B的网络可以认为是拜访网络。
某个运营商的某种制式的蜂窝移动通信网络可称为公共陆地移动网络(public land mobile network,PLMN)。用户签约的PLMN(即归属网络)可称为归属公共陆地移动网络(public land mobile network,PLMN)(home PLMN,HPLMN),用户漫游到的PLMN(即拜访网络)可称为拜访公共陆地移动网络(visited PLMN,VPLMN)。
在本申请中,为区分,将归属网络(即HPLMN)中的EASDF记为归属EASDF(home EASDF,H-EASDF),将拜访网络(即VPLMN)中的EASDF记为拜访EASDF(visited EASDF,V-EASDF)。将归属网络中的SMF记为归属SMF(home SMF,H-SMF),将拜访网络中的SMF记为拜访SMF(visited SMF,V-SMF)。将归属网络中的UPF记为归属UPF(home UPF,H-UPF),将拜访网络中的UPF记为拜访UPF(visited UPF,V-UPF)。此外,为区分,将归属网络中的PSA记为归属PSA(home PSA,H-PSA),将拜访网络中的PSA记为拜访PSA(visited PSA,V-PSA)(或者记为本地PSA(local PSA,L-PSA))。
漫游场景可以分为本地突破(local breakout,LBO)漫游和归属路由(home routed,HR)漫游,两者的区别主要在于会话是否要连接到归属网络的UPF。下面简单介绍一下该两种漫游。
1)HR漫游
在HR漫游场景中,会话(如PDU会话)连接到归属网络的UPF(即H-UPF)。
作为示例,图3(1)示出了HR漫游场景的一示意图。如图3(1)所示,HR会话(如HR PDU会话)是指用户位于拜访网络时建立的,且连接到H-UPF的会话,该HR会话中所承载的业务流(traffic),从UE发送到H-UPF,之后再发送到接收端。
本申请可以用于HR漫游场景中。
2)LBO漫游
在LBO漫游场景中,会话(如PDU会话)不连接到归属网络的UPF(即H-UPF)。
作为示例,图3(2)示出了LBO漫游场景的一示意图。如图3(2)所示,LBO会话(如LBO PDU会话)是指用户位于拜访网络时建立的,且连接到V-UPF的会话,该LBO会话中所承载的业务流,直接在拜访网络(即VPLMN)本地发送出去,不需要绕回到归属网络(即HPLMN)的UPF(即H-UPF)。
2、边缘计算的服务发现
在边缘计算部署场景中,某些业务可能会由多个部署于网络边缘的边缘应用服务器EAS提供服务。该多个EAS可提供相同的业务和内容,且大部分具有不同的IP地址。EC场景中,当UE接入该业务时,可请求其接入距离UE近的可用EAS。因此,获取合适的EAS的IP地址是比较重要的。
作为示例,可以通过基于域名系统(domain name system,DNS)的服务发现机制来获取EAS的IP地址。具体地,EAS的IP地址可以通过边缘服务发现机制实现,如通过以下步骤实现。
1)UE要访问边缘业务时,发起DNS查询(DNS query)消息。
2)EASDF接收到该DNS query消息,向SMF转发DNS query。
3)SMF收到该DNS query,会向EASDF提供一个能够反映UE位置的信息,如EDNS 客户端子网选项(Edns-client-subnet option,ECS option)。
4)EASDF将ECS option添加到DNS query消息中。
5)EASDF将添加了ECS option的DNS query消息转发给DNS服务器(如中心DNS服务器或者本地DNS服务器)。
6)DNS服务器根据DNS query中携带的ECS option,判断出UE当前所处位置,从而通过DNS响应(DNS response)向UE返回一个距离UE位置近的EAS IP。
可以理解,上述步骤仅是示例性说明,对此不予限制。
目前,对于HR漫游的UE,PDU会话建立阶段,仅向UE提供HPLMN的相关信息(例如HLPMN的边缘应用服务器发现网元的地址信息),UE所发送的DNS查询消息不能到达给VPLMN中的边缘服务发现网元,导致了无法为UE发现位于VPLMN中的边缘应用服务器。此外,按照现有方式,若UE所发送的DNS查询消息携带V-EASDF地址,DNS查询消息还是会被H-UPF和V-UPF间的隧道直接发送给H-UPF,再从H-UPF到V-EASDF,传输距离很大,时延很大。因此,现有的边缘服务发现机制不能用于HR漫游场景。
有鉴于此,本申请提出一种方案,VLPMN的用户面网元接收来自终端设备的DNS查询消息,基于第一信息向VLPMN的边缘应用服务器发现网元发送该DNS查询消息。通过由VLPMN的用户面网元根据第一信息将来自终端设备的DNS查询消息发送到VLPMN的边缘应用服务器发现网元,进而可以实现为终端设备发现位于VPLMN中的边缘应用服务器,并为终端设备提供边缘应用服务。因而本申请可以用于解决漫游场景下(如HR漫游场景下)的边缘服务发现。如图4所示,若UE从HPLMN漫游至VPLMN,通过本申请提出的方案,可以实现为UE发现位于VPLMN中的边缘计算服务。
可以理解,本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
下文将结合附图详细说明本申请实施例提供的通信的方法。本申请提供的实施例可以应用于上述图1或图2所示的网络架构中,不作限定。
图5是本申请实施例提供的一种通信的方法500的示意图。方法500可以包括如下步骤。
510,用户面网元接收来自终端设备的DNS查询消息,其中,用户面网元为拜访网络中部署的网元。
DNS查询消息具体可用于获取边缘服务器地址,例如EAS的地址。
520,根据第一信息,用户面网元向边缘应用服务器发现网元发送DNS查询消息,第一信息用于将一个或多个DNS消息转发给边缘应用服务器发现网元,其中,边缘应用服务器发现网元为拜访网络中部署的网元。
基于上述技术方案,基于上述技术方案,拜访网络(如VPLMN)中部署的用户面网元(如V-UPF)接收来自终端设备的用于获取边缘服务器地址的DNS查询消息后,可以基于第一信息将该DNS查询消息转给拜访网络中部署的边缘应用服务器发现网元(如V-EASDF),进而由拜访网络中部署的边缘应用服务器发现网元处理该DNS查询消息。通过由拜访网络中部署的的用户面网元根据第一信息将来自终端设备的DNS查询消息发 送到VLPMN的边缘应用服务器发现网元,进而可以实现为终端设备发现位于VPLMN中的边缘应用服务器,并为终端设备提供边缘应用服务。例如,若终端设备漫游至拜访网络,通过本申请提出的方案,可以实现为终端设备发现位于拜访网络中的边缘计算服务。如图6所示,UE位于VPLMN时,可以由V-UPF截获针对边缘服务的DNS请求,并转发给V-EASDF进行处理。
其中,用户面网元如为VPLMN中部署的网元,如用户面功能的网元。例如,用户面网元为V-UPF。
其中,边缘应用服务器发现网元为VPLMN中部署的网元,如用于发现边缘服务器的网元。例如,边缘应用服务器发现网元为V-EASDF。
其中,第一信息指示(或者表征,或者表明)将一个或多个DNS消息转发给边缘应用服务器发现网元。举例来说,V-UPF收到来自终端设备的DNS查询消息后,根据第一信息获知要将该DNS查询消息转发给V-EASDF,因此将该DNS查询消息转发给V-EASDF,由V-EASDF进行处理。
本申请对第一信息的具体命名不予限制。例如,本申请中的“第一信息”可替换为“转发规则”,或者“转发策略”,或者“处理规则”,或者“处理策略”,或者“业务检测信息或规则”,等等。
本申请对第一信息的形式不予限制。例如,第一信息可以是信元,或者可以是参数,或者可以是表格的形式,等等。下面结合第一信息可能包含的内容进行说明。
可选地,第一信息包括以下一项或多项:全量域名(full qualified domain name,FQDN)(或者FQDN范围(range))(为区分,称为目标FQDN),应用标识(application ID,AppID)(为区分,称为目标应用标识),目标设备地址,DNS协议端口号,V-EASDF地址。
下面主要以FQDN为例进行说明,可以理解,下面例子中的FQDN也可替换为应用标识或IP地址。
示例1,第一信息包括目标FQDN。
其中,目标FQDN可以包括一个或多个FQDN。目标FQDN可用于对DNS消息进行匹配(或者检测)。
在一种可能的实现方式,第一信息中包括两个信元,一个信元指示(或者表征,或者表明)将一个或多个DNS消息转发给边缘应用服务器发现网元,另一个信元包括该目标FQDN。用户面网元根据第一信息可获知将与该目标FQDN匹配的DNS查询消息转发给边缘应用服务器发现网元。
在另一种可能的实现中,第一信息中包括该目标FQDN,用户面网元根据内部逻辑确定将与该目标FQDN匹配的DNS查询消息转发给边缘应用服务器发现网元。
举例来说,基于示例1,若步骤510中用户面网元接收的DNS查询消息中包括的FQDN属于目标FQDN,则在步骤520中用户面网元向边缘应用服务器发现网元发送该DNS查询消息。
示例2,第一信息包括目标应用标识。
其中,目标应用标识可以包括一个或多个应用标识。目标应用标识可用于对DNS消息进行检测(或者匹配,或者识别)。
在一种可能的实现方式,第一信息中包括两个信元,一个信元指示(或者表征,或者表明)将一个或多个DNS消息转发给边缘应用服务器发现网元,另一个信元包括该目标应用标识。用户面网元根据第一信息可获知将与该目标应用标识匹配的DNS查询消息转发给边缘应用服务器发现网元。
在另一种可能的实现中,第一信息中包括该目标应用标识,用户面网元根据内部逻辑确定将与该目标应用标识匹配的DNS查询消息转发给边缘应用服务器发现网元。
举例来说,基于示例2,若步骤510中用户面网元接收的DNS查询消息中包括的应用标识属于目标应用标识,则在步骤520中用户面网元向边缘应用服务器发现网元发送该DNS查询消息。
示例3,第一信息包括目标设备地址。
其中,目标设备地址为一个或多个DNS消息的目的地址,目标设备为归属网络中部署的设备。作为示例,目标设备地址,例如可以为DNS服务器地址(如PDU会话中配置的H-DNS server地址),也可以为EASDF地址(如PDU会话中配置的H-EASDF地址),或者也可以为归属网络中部署的其他设备,不予限制。
下文以DNS服务器地址为例进行示例性说明,可以理解,下文的DNS服务器地址也可以替换为EASDF地址(即H-EASDF地址),对此下文不再赘述。
其中,DNS服务器地址为一个或多个DNS消息的目的地址,例如DNS服务器的地址为H-DNS server地址。DNS服务器的地址可用于对DNS消息进行匹配(或者检测)。
在一种可能的实现方式,第一信息中包括两个信元,一个信元指示(或者表征,或者表明)将一个或多个DNS消息转发给边缘应用服务器发现网元,另一个信元包括该DNS服务器地址。用户面网元根据第一信息可获知将与该DNS服务器地址匹配的DNS查询消息转发给边缘应用服务器发现网元。
在另一种可能的实现中,第一信息中包括该DNS服务器地址,用户面网元根据内部逻辑确定将与该DNS服务器地址匹配的DNS查询消息转发给边缘应用服务器发现网元。
举例来说,基于示例3,若步骤510中用户面网元接收的DNS查询消息的目的地址为上述DNS服务器的地址,则在步骤520中用户面网元向边缘应用服务器发现网元发送该DNS查询消息。
示例4,第一信息包括DNS协议端口号。
其中,DNS协议端口号为一个或多个DNS消息的对应的端口号。DNS协议端口号可用于对DNS消息进行匹配(或者检测)。
在一种可能的实现方式,第一信息中包括两个信元,一个信元指示(或者表征,或者表明)将一个或多个DNS消息转发给边缘应用服务器发现网元,另一个信元包括该DNS协议端口号。用户面网元根据第一信息可获知将与该DNS协议端口号匹配的DNS查询消息转发给边缘应用服务器发现网元。
在另一种可能的实现中,第一信息中包括该DNS协议端口号,用户面网元根据内部逻辑确定将与该DNS协议端口号匹配的DNS查询消息转发给边缘应用服务器发现网元。
举例来说,基于示例4,若步骤510中用户面网元接收的DNS查询消息对应的端口号为上述DNS协议端口号,则在步骤520中用户面网元向边缘应用服务器发现网元发送该DNS查询消息。
示例5,第一信息包括V-EASDF地址。
其中,V-EASDF地址可用于对DNS消息进行匹配(或者检测),和/或,V-EASDF地址可用于确定用户面网元发送DNS查询消息的边缘应用服务器发现网元的地址。
例如,V-EASDF地址可用于对DNS消息进行匹配(或者检测),或,V-EASDF地址可用于确定用户面网元发送DNS查询消息的边缘应用服务器发现网元的地址。
在一种可能的实现方式,第一信息中包括两个信元,一个信元指示(或者表征,或者表明)将一个或多个DNS消息转发给边缘应用服务器发现网元,另一个信元包括该V-EASDF地址。用户面网元根据第一信息可获知将与该V-EASDF地址匹配的DNS查询消息转发给边缘应用服务器发现网元,和/或,用户面网元根据第一信息可获知将DNS查询消息转发给该V-EASDF地址对应的边缘应用服务器发现网元。
在另一种可能的实现中,第一信息中包括该V-EASDF地址,用户面网元根据内部逻辑确定将与该V-EASDF地址匹配的DNS查询消息转发给边缘应用服务器发现网元,和/或,用户面网元根据内部逻辑确定将DNS查询消息转发给该V-EASDF地址对应的边缘应用服务器发现网元。
再例如,V-EASDF地址可用于对DNS消息进行匹配(或者检测),和,V-EASDF地址可用于确定用户面网元发送DNS查询消息的边缘应用服务器发现网元的地址。为区分,将用于对DNS消息进行匹配(或者检测)V-EASDF地址记为V-EASDF地址#1,将用于确定用户面网元发送DNS查询消息的边缘应用服务器发现网元的V-EASDF地址记为V-EASDF地址#2。可以理解,V-EASDF地址#1和V-EASDF地址#2可以相同,或者也可以不同,不予限制。
在一种可能的实现方式,第一信息中包括三个信元,一个信元指示(或者表征,或者表明)将一个或多个DNS消息转发给边缘应用服务器发现网元,另一个信元包括V-EASDF地址#1,还有一个信元包括V-EASDF地址#2。用户面网元根据第一信息可获知将与该V-EASDF地址#1匹配的DNS查询消息转发给V-EASDF地址#2对应的边缘应用服务器发现网元。
在另一种可能的实现中,第一信息中包括两个信元,一个信元包括V-EASDF地址#1,还有一个信元包括V-EASDF地址#2,用户面网元根据内部逻辑确定将与该V-EASDF地址#1匹配的DNS查询消息转发给V-EASDF地址#2对应的边缘应用服务器发现网元。
举例来说,基于示例5,若步骤510中用户面网元接收的DNS查询消息的目的地址为上述V-EASDF地址,则在步骤520中用户面网元向该V-EASDF地址对应的边缘应用服务器发现网元发送该DNS查询消息。或者,基于示例5,若步骤510中用户面网元接收到DNS查询消息,则在步骤520中用户面网元向该V-EASDF地址对应的边缘应用服务器发现网元发送该DNS查询消息。
可以理解,上述示例仅是示例性说明,本申请不限于此。此外,上述分别描述了各个信息,可以理解,第一信息中可以包括多个信息。例如,第一信息包括目标FQDN和V-EASDF地址,其中目标FQDN可用于对DNS消息进行匹配(或者检测),V-EASDF可用于确定用户面网元发送DNS查询消息的边缘应用服务器发现网元的地址,等等。
在一种可能的设计中,第一信息包括两类参数,为区分,分别记为第一参数和第二参数。
其中,第一参数可用于检测(或者匹配,或者识别)一个或多个DNS消息。户面网元根据该第一参数可获知是否将与该第一参数匹配的DNS查询消息转发给边缘应用服务器发现网元。第一参数例如可以称为业务检测(或者匹配,或者识别)参数(或者业务检测信息),或者可以称为消息检测(或者匹配,或者识别)参数(或者消息检测信息),等等,其命名不对本申请造成限定。
第一参数,可以包括一项或多项参数(信息)。作为示例,第一参数包括以下一项或多项:目标FQDN、目标应用标识、目标设备地址、DNS协议端口号,V-EASDF地址。关于各个参数的使用,可以参考上文的描述,区别之处在于,在该设计中,V-EASDF地址用于对DNS消息进行匹配(或者检测),此处不再赘述。
其中,第二参数用于确定边缘应用服务器发现网元。户面网元根据该第二参数可获知将DNS查询消息转发到该边缘应用服务器发现网元。第二参数例如可以称为地址参数(或者地址信息),或者可以称为地址确定(或者匹配,或者识别)参数(或者地址确定信息),等等,其命名不对本申请造成限定。
第二参数,可以包括一项或多项参数(或者,一项或多项信息)。作为示例,第二参数包括V-EASDF地址。
在一种可能的实现方式,第一信息中包括三个信元,一个信元指示(或者表征,或者表明)将一个或多个DNS消息转发给边缘应用服务器发现网元,另一个信元包括该第一参数,又一个信元包括该第二参数。用户面网元根据第一信息可获知将与该第一参数匹配的DNS查询消息转发给V-EASDF。
在另一种可能的实现中,第一信息中包括两个信元,一个信元包括该第一参数,又一个信元包括该第二参数。用户面网元根据内部逻辑确定将与该第一参数匹配的DNS查询消息转发给V-EASDF。
上文示例性地介绍了第一信息,可以理解任何可以实现第一信息功能的形式,都适用于本申请。
可选地,方法500还包括:用户面网元获取第一信息。
一种可能的实现方式,用户面网元接收来自会话管理网元的第一信息。
其中,会话管理网元为VPLMN中部署的网元,如会话管理网元。例如,会话管理网元为V-SMF。例如,以用户面网元为V-UPF,会话管理网元为V-SMF为例,V-SMF向V-UPF发送第一信息,相应地,V-UPF接收来自V-SMF的第一信息。
以上述第一种可能的情况为例,在该情况下,用户面网元可能通过一个信令接收到来自会话管理网元的以下一项或多项:目标FQDN、目标应用标识、目标设备地址、DNS协议端口号、V-EASDF地址;或者,用户面网元也可能通过多个信令接收到来自会话管理网元的以下多项:目标FQDN、目标应用标识、目标设备地址、DNS协议端口号、V-EASDF地址。
以上述第二种可能的情况为例,在该情况下,用户面网元可能通过一个信令接收到来自会话管理网元的第一参数和第二参数;或者,用户面网元可能通过两个信令接收到来自会话管理网元的第一参数和第二参数,即通过一信令接收第一参数,通过另一信令接收第二参数。
可选地,会话管理网元确定第一信息。例如,会话管理网元可以根据EAS部署 (deployment)信息确定第一信息。其中,该EAS部署信息包括关于EAS在边缘网络中的部署信息。作为示例,EAS部署信息包括:在VPLMN有部署的业务对应的FQDN(或者FQDN范围),EAS IP地址。以会话管理网元根据在VPLMN有部署的业务对应的FQDN确定第一信息为例,会话管理网元从EAS部署信息中获取边缘业务所使用的FQDN信息,然后将FQDN信息通过第一信息进行携带,即第一信息中携带该FQDN,或者将第一信息与该FQDN进行关联。
可选地,会话管理网元可以为HR会话确定第一信息。举例来说,若会话管理网元判断会话为HR会话,则会话管理网元确定第一信息。会话管理网元判断会话为HR会话的具体方式不作限定。例如,在会话建立流程中,会话管理网元可以获知该所建立的会话为HR会话。
应理解,上述为示例性说明,本申请不限于此。示例地,用户面网元本地配置第一信息。例如,用户面网元本地保存有第一信息,用户面网元根收到来自终端设备的DNS查询消息后,可以直接读取该第一信息。
可选地,步骤520中用户面网元向边缘应用服务器发现网元发送DNS查询消息,至少包括以下几种方案。
方案1,用户面网元直接向边缘应用服务器发现网元转发DNS查询消息。
示例1,UE向V-UPF发送DNS查询消息,该DNS查询消息的目的地址为目标设备地址(如H-DNS服务器地址,又如H-EASDF地址,等);V-UPF收到该DNS查询消息后,将完整的DNS查询消息通过隧道(tunnel)转发给V-EASDF,由V-EASDF进行处理,隧道接收端的地址为V-EASDF地址。
示例2,UE向V-UPF发送DNS查询消息,该DNS查询消息的目的地址为V-EASDF地址;V-UPF收到该DNS查询消息后,直接将该DNS查询消息转发给V-EASDF,由V-EASDF进行处理。
方案2,用户面网元修改(或者替换)地址后,向边缘应用服务器发现网元转发DNS查询消息。
举例来说,UE向V-UPF发送DNS查询消息,该DNS查询消息的目的地址为目标设备地址(如H-DNS服务器地址,又如H-EASDF地址,等);V-UPF收到该DNS查询消息后,将DNS查询消息的目的地址替换为V-EASDF地址,并且将目的地址替换为V-EASDF地址的DNS查询消息转发给V-EASDF,由V-EASDF进行处理。
一种可能的方式,第一信息还用于指示(或者表征,或者表明)替换DNS查询消息的目的地址为V-EASDF地址,用户面网元根据第一信息获知替换DNS查询消息的目的地址为V-EASDF地址;用户面网元向V-EASDF发送目的地址替换为V-EASDF地址的DNS查询消息。举例来说,第一信息可通过一个或多个比特来实现指示替换DNS查询消息的目的地址为V-EASDF地址。例如,假设通过1比特来指示是否替换DNS查询消息的目的地址为V-EASDF地址,若该比特设置为“0”,则表示第一信息指示替换DNS查询消息的目的地址为V-EASDF地址;若该比特设置为“1”,则表示第一信息没有指示替换DNS查询消息的目的地址为V-EASDF地址。或者,第一信息可通过携带地址(如V-EASDF地址)或参数来实现指示替换DNS查询消息的目的地址为V-EASDF地址。举例来说,用户面网元接收来自会话管理网元的第一信息,该第一信息携带某个地址(如V-EASDF地 址)或参数,则用户面网元向V-EASDF发送目的地址替换为V-EASDF地址的DNS查询消息。
又一种可能的方式,用户面网元根据本地配置,获知替换DNS查询消息的目的地址为V-EASDF地址;用户面网元向V-EASDF发送目的地址替换为V-EASDF地址的DNS查询消息。
又一种可能的方式,用户面网元接收来自会话管理网元的信息#1,该信息#1用于通知(或者指示,或者表征,或者表明)替换DNS查询消息的目的地址为V-EASDF地址;用户面网元根据该信息#1获知替换DNS查询消息的目的地址为V-EASDF地址;用户面网元向V-EASDF发送目的地址替换为V-EASDF地址的DNS查询消息。本申请对信息#1的形式不予限制。例如,信息#1可以是信元。举例来说,信息#1可通过一个或多个比特来实现。例如,假设通过1比特来指示是否替换DNS查询消息的目的地址为V-EASDF地址,若该比特设置为“0”,则表示替换DNS查询消息的目的地址为V-EASDF地址;若该比特设置为“1”,则表示不需要替换DNS查询消息的目的地址为V-EASDF地址。又如,信息#1可以是地址(如V-EASDF地址),或者参数。举例来说,用户面网元接收来自会话管理网元的信息#1,则用户面网元向V-EASDF发送目的地址替换(或者修改)为V-EASDF地址的DNS查询消息。
上述几种方式为示例性说明,本申请不限于此。
可选地,方法500还包括:用户面网元接收来自边缘应用服务器发现网元的DNS响应消息,相应地,边缘应用服务器发现网元向用户面网元发送DNS响应消息。下面介绍两种可能的情况。
情况1,V-EASDF向用户面网元发送DNS响应消息,该DNS响应消息的源地址为H-DNS server地址。
可选地,V-EASDF保存DNS查询消息中的目的地址H-DNS server地址。
以上述方案1中的示例1为例,V-EASDF收到来自V-UPF的DNS查询消息,记录该DNS查询消息中的目的地址H-DNS server地址;V-EASDF使用该H-DNS server地址生成DNS响应消息,即使用该H-DNS server地址作为DNS响应消息的源地址;V-EASDF向UE发送该DNS响应消息。
以上述方案2为例,V-EASDF收到来自V-UPF的DNS查询消息,并且从其他网元(如V-SMF)获取H-DNS server地址,并使用该H-DNS server地址作为DNS响应消息的源地址。
情况2,V-EASDF向用户面网元发送DNS响应消息,该DNS响应消息的源地址为V-EASDF地址;用户面网元用第一设备的地址替换V-EASDF地址。
第一设备的地址为DNS查询消息的目的地址。第一设备为归属网络中部署的设备。例如DNS服务器、或者EASDF等。作为示例,第一设备地址,例如可以为DNS服务器地址(如PDU会话中配置的H-DNS server地址),也可以为EASDF地址(如PDU会话中配置的H-EASDF地址),或者也可以为归属网络中部署的其他设备,不予限制。目标设备包括该第一设备。
下面以第一设备的地址为H-DNS server地址进行示例性说明。可以理解,下文的H-DNS server地址也可以替换为EASDF地址(即H-EASDF地址),对此下文不再赘述。
以上述方案2为例,V-EASDF使用自己的IP生成DNS响应消息,并向用户面网元发送该DNS响应消息;用户面网元收到来自V-EASDF的DNS响应消息后,用H-DNS server地址替换V-EASDF地址。
一种可能的方式,第一信息还用于指示(或者表征,或者表明)替换DNS响应消息的源地址为H-DNS server地址,用户面网元根据第一信息获知替换DNS响应消息的源地址为H-DNS server地址;用户面网元向UE发送源地址替换为H-DNS server地址的DNS响应消息。举例来说,第一信息可通过一个或多个比特来实现指示替换DNS响应消息的源地址为H-DNS server地址。例如,假设通过1比特来指示是否替换DNS响应消息的源地址为H-DNS server地址,若该比特设置为“0”,则表示第一信息指示替换DNS响应消息的源地址为H-DNS server地址;若该比特设置为“1”,则表示第一信息没有指示替换DNS响应消息的源地址为H-DNS server地址。或者,第一信息可通过携带地址(如H-DNS server地址)或参数来实现指示替换DNS响应消息的源地址为H-DNS server地址。举例来说,用户面网元接收来自会话管理网元的第一信息,该第一信息携带H-DNS server地址,则用户面网元收到来自V-EASDF的DNS响应消息后,替换DNS响应消息的源地址为H-DNS server地址,并向UE发送源地址替换为H-DNS server地址的DNS响应消息。
又一种可能的方式,用户面网元根据本地配置,获知替换DNS响应消息的源地址为H-DNS server地址;用户面网元收到来自V-EASDF的DNS响应消息后,替换DNS响应消息的源地址为H-DNS server地址,并向UE发送源地址替换为H-DNS server地址的DNS响应消息。
又一种可能的方式,用户面网元接收来自会话管理网元的信息#2,该信息#2用于通知(或者指示,或者表征,或者表明)替换DNS响应消息的源地址为H-DNS server地址;用户面网元根据该信息#2获知替换DNS响应消息的源地址为H-DNS server地址;用户面网元向UE发送源地址替换为H-DNS server地址的DNS响应消息。本申请对信息#2的形式不予限制。例如,信息#2可以是信元。举例来说,信息#2可通过一个或多个比特来实现。例如,假设通过1比特来指示是否替换替换DNS响应消息的源地址为H-DNS server地址,若该比特设置为“0”,则表示替换DNS响应消息的源地址为H-DNS server地址;若该比特设置为“1”,则表示不需要替换DNS响应消息的源地址为H-DNS server地址。又如,信息#1可以是地址(如H-DNS server地址),或者参数。举例来说,用户面网元接收来自会话管理网元的信息#1,则用户面网元收到来自V-EASDF的DNS响应消息后,替换DNS响应消息的源地址为H-DNS server地址,并向UE发送源地址替换为H-DNS server地址的DNS响应消息。
上述几种方式为示例性说明,本申请不限于此。
可以理解,上述两种情况为示例性说明,本申请不限于此,只要可以实现用户面网元向UE发送的DNS响应消息的源地址为H-DNS server地址的方案,都适用于本申请。
为了便于理解,下面结合图7图10对本申请实施例进行示例性说明,以下示例中假设用户面网元为V-UPF,会话管理网元为V-SMF,第一信息为转发规则,目标设备为H-DNS server。其中涉及到的步骤具体可以可参考上文描述。
图7是本申请实施例提供的一种通信的方法700的示意性流程图。方法700可以包括如下步骤。
701,UE向V-SMF发送会话建立请求消息。
在HR漫游场景下,UE可以发起HR会话建立流程。例如,UE向V-SMF发送会话建立请求消息,如UE可以通过AMF向V-SMF发送会话建立请求消息。具体的会话建立流程可以参考现有技术或以后出现的会话建立的方式,对此不予限制。
702,V-SMF生成针对DNS query消息的转发规则。
其中,该转发规则(即方法500中的第一信息),也可以称为数据面转发规则,可用于对特定的DNS query消息进行处理,如将特定的DNS query消息转发给V-EASDF。作为示例,该特定DNS query消息,例如可以通过目标FQDN、目标应用标识、H-DNS server IP、DNS协议端口号中的一项或多项识别,具体地可以参考方法300中第一种可能的情况中的示例1至示例5。
V-SMF生成针对DNS query消息的转发规则,例如可以包括:V-SMF根据EAS部署信息,或者还可以结合其他一些策略信息,生成针对DNS query消息的转发规则。
关于触发V-SMF生成针对DNS query消息的转发规则的条件不予限制。一种可能的情况,V-SMF判断会话为HR会话的情况下,生成针对DNS query消息的转发规则。作为示例,V-SMF接收到会话建立请求消息(如HR会话建立请求消息)后,生成针对DNS query消息的转发规则。在该示例下,假设UE发起HR会话建立流程,若V-SMF接收到会话建立请求消息,V-SMF生成针对DNS query消息的转发规则。其中,会话建立请求消息例如可以是AMF向V-SMF发送的Nsmf接口PDU会话建立会话上下文请求(Nsmf_PDUSession_CreateSMContext Request)消息,本申请不做限定。
关于转发规则,可以参考上文关于第一信息的描述,此处不再赘述。
703,V-SMF向V-UPF发送针对DNS query消息的转发规则。
针对DNS query消息的转发规则,例如可以指示V-UPF将特定DNS query消息转发给V-EASDF。
可选地,针对DNS query消息的转发规则,包括以下一项或多项信息:目标FQDN、目标应用标识、H-DNS server IP、DNS协议端口号、V-EASDF IP。
其中,目标FQDN和目标应用标识,用于对DNS query消息进行匹配。例如,若针对DNS query消息的转发规则包括目标FQDN,则V-UPF转发与该目标FQDN匹配的DNS query。再例如,若针对DNS query消息的转发规则包括目标应用标识,则V-UPF转发与该目标应用标识匹配的DNS query。
其中,H-DNS server IP,用于识别所有发给H-DNS server的DNS query消息。例如,若针对DNS query消息的转发规则包括H-DNS server IP,则V-UPF收到DNS query消息后,若该DNS query消息的目的地址为H-DNS server IP,则V-UPF向V-EASDF转发该DNS query消息。
其中,DNS协议端口号,用于V-UPF识别DNS协议消息。
其中,V-EASDF IP为V-UPF将特定DNS query消息转发给的V-EASDF的地址。
关于上述各项信息的使用,可以参考上文方法5中关于第一信息的两种可能的情况,此处不再赘述。
704,V-SMF向V-EASDF发送DNS消息处理规则(DNS message handling rule)#1。
可选地,AF向V-SMF发送EAS部署信息。V-SMF收到AF提供的EAS部署信息后, 可以基于该EAS部署信息,或者还可以结合其他一些策略信息,向V-EASDF发送DNS消息处理规则#1。
其中,该EAS部署信息包括关于EAS在边缘网络中的部署信息。作为示例,EAS部署信息包括:在VPLMN有部署的业务对应的FQDN(或者FQDN范围(range)),EAS IP地址。
其中,DNS消息处理规则#1可以用于处理DNS query消息。作为示例,DNS消息处理规则#1包括两部分信息:1)用于对DNS query消息进行匹配的信息,例如称为检测信息,若DNS query消息与检测信息匹配,则认为该处理规则适用于相应DNS query消息;2)针对DNS query消息的处理动作,当匹配成功时,V-EASDF执行相应动作,例如V-EASDF将DNS query消息上报给V-SMF。
可以理解,本申请主要以AF向V-SMF发送EAS部署信息为例进行示例性说明,本申请不限于此。例如,V-SMF本地配置EAS部署信息。
需要说明的是,步骤701-步骤704之间,没有严格的先后顺序。
705,UE向V-UPF发送DNS query消息。
该DNS query消息的源地址为UE IP,目的地址为H-DNS server IP。
706,V-UPF向V-EASDF转发该DNS query消息。
V-UPF根据在步骤703中收到的转发规则对该DNS query消息进行处理。例如,转发规则用于指示V-UPF将特定DNS query消息(如发给H-DNS server的DNS query消息,又如与目标FQDN匹配的DNS query消息,又如与目标应用标识匹配的DNS query消息,等)转发给V-EASDF。举例来说,V-UPF根据该DNS query消息的目的地址为H-DNS server IP,向V-EASDF转发该DNS query消息。
在方法700中,V-UPF不需要修改DNS query消息的目的地址,可以将完整的DNS query消息转发给V-EASDF。作为示例,V-UPF通过隧道(例如IP-in-IP隧道)向V-EASDF转发该DNS query消息,该tunnel的目的地址为V-EASDF地址。
707,V-EASDF向V-SMF转发该DNS query消息。
V-EASDF根据在步骤702中收到的DNS消息处理规则#1对该DNS query消息进行处理。例如,DNS消息处理规则#1用于指示V-EASDF将DNS query消息上报给V-SMF,故V-EASDF向V-SMF转发该DNS query消息。
708,V-SMF向V-EASDF发送DNS消息处理规则#2。
响应于步骤707,V-SMF可以向V-EASDF发送新的DNS消息处理规则,为区分,记为DNS消息处理规则#2。该DNS消息处理规则#2用于指示V-EASDF对DNS query消息进行进一步处理的方式。
709,V-EASDF将DNS query消息发送给DNS server。
DNS server收到DNS query消息后,可以开始DNS查询过程。
710,V-EASDF记录DNS query消息的目的地址。
可选地,若DNS query消息的目的地址与自己的地址不一致,则V-EASDF记录该DNS query消息的目的地址,即该DNS query消息的目的地址为H-DNS server IP。
711,V-EASDF接收到来自DNS server的DNS response消息。
712,V-EASDF向V-SMF发送DNS response消息。
V-EASDF将在步骤711中收到的DNS response消息转发给V-SMF。
713,V-SMF根据DNS response消息,建立连接边缘服务的本地会话路径。
714,V-SMF向V-EASDF发送DNS消息处理规则#3。
其中,DNS消息处理规则#3可以用于处理DNS response消息。作为示例,DNS消息处理规则#3用于指示设置DNS response消息的源地址为H-DNS server IP。可选地,V-SMF向V-EASDF发送H-DNS server IP,如DNS消息处理规则#3中携带H-DNS server IP。
715,V-EASDF生成DNS response消息,该DNS response消息的源地址设为H-DNS server IP。
V-EASDF可以通过以下任一方式获取H-DNS server IP:
一种可能的实现方式,V-EASDF从V-SMF处接收H-DNS server IP。例如,步骤714中,V-SMF向V-EASDF发送H-DNS server IP。
又一种可能的实现方式,V-EASDF提取DNS query消息的目的地址,即H-DNS server IP。例如,V-EASDF在步骤707中收到DNS query消息后,可以提取该DNS query消息的目的地址。
716,V-EASDF向UE发送DNS response消息。
该DNS response消息为步骤715中V-EASDF生成的DNS response消息。
如图7所示,V-EASDF可以通过V-UPF向UE发送DNS response消息。
基于上述方法700,V-UPF不需要修改DNS query消息的目的地址,可以将完整的DNS query消息转发给V-EASDF。此外V-EASDF还可以提取DNS query消息的原目的地址,并在生成DNS response消息时使用该地址。通过该方法,可以实现针对HR会话的边缘服务发现机制,即为HR会话的UE发现位于拜访网络中的边缘服务,使得UE在建立HR会话的时候可以访问VPLMN中部署的边缘服务。
图8是本申请实施例提供的另一种通信的方法800的示意性流程图。方法800可以包括如下步骤。
801,UE向V-SMF发送会话建立请求消息。
其中,步骤801与步骤701类似,此处不再赘述。
802,V-SMF生成针对DNS query消息的转发规则。
其中,该转发规则,也可以称为数据面转发规则,可用于对特定的DNS query消息进行处理,如将特定的DNS query消息转发给V-EASDF。作为示例,该特定DNS query消息,例如可以通过目标FQDN、目标应用标识、DNS协议端口号、V-EASDF IP中的一项或多项识别,具体地可以参考方法300中第一种可能的情况中的示例1至示例5。
V-SMF生成针对DNS query消息的转发规则,例如可以包括:V-SMF根据EAS部署信息,或者还可以结合其他一些策略信息,生成针对DNS query消息的转发规则。
关于触发V-SMF生成针对DNS query消息的转发规则的条件不予限制。一种可能的情况,V-SMF判断会话为HR会话的情况下,生成针对DNS query消息的转发规则。具体地,可以参考步骤702中的相关描述,此处不再赘述。
803,V-SMF向V-UPF发送针对DNS query消息的转发规则。
针对DNS query消息的数据面转发规则,例如可以指示V-UPF将特定DNS query消息转发给V-EASDF。作为示例,在方法800中,该特定DNS query消息,例如可以为发 给V-EASDF的DNS query消息。
可选地,针对DNS query消息的转发规则,包括以下一项或多项:V-EASDF IP,DNS协议端口号。
其中,V-EASDF IP,用于识别发给V-EASDF IP的DNS query消息。例如,若针对DNS query消息的转发规则包括V-EASDF IP,则V-UPF收到DNS query消息后,若该DNS query消息的目的地址为V-EASDF IP,则V-UPF向V-EASDF转发该DNS query消息。
其中,DNS协议端口号,用于V-UPF识别DNS协议消息。
804,V-SMF向V-EASDF发送DNS消息处理规则#1。
其中,步骤804与步骤704基本类似,不同之处在于,在步骤804中,DNS消息处理规则#1还可以包括H-DNS server的地址。其中,该H-DNS server的地址用于将与DNS消息处理规则#1不匹配的DNS消息直接发给H-DNS server处理。
需要说明的是,步骤801-步骤804之间,没有严格的先后顺序。
805,UE向V-UPF发送DNS query消息。
该DNS query消息的源地址为UE IP,目的地址为V-EASDF IP。
在方法800中,UE可以直接使用V-EASDF IP作为DNS query消息的目的地址。
806,V-UPF向V-EASDF转发该DNS query消息。
V-UPF根据在步骤803中收到的转发规则对该DNS query消息进行处理。例如,转发规则用于指示V-UPF将特定DNS query消息转发给V-EASDF。V-UPF根据该DNS query消息的目的地址为V-EASDF IP,故V-UPF向V-EASDF转发该DNS query消息。
一种可能的情况,若该DNS query消息的目的地址为V-EASDF IP,则由V-EASDF对该DNS query消息进行处理,如可以执行步骤807-813。
又一种可能的情况,若该DNS query消息的目的地址为H-DNS server IP,则由H-DNS server对该DNS query消息进行处理,如可以执行步骤814。
807,V-EASDF向V-SMF转发该DNS query消息。
808,V-SMF向V-EASDF发送DNS消息处理规则#2。
809,V-EASDF将DNS query发送给DNS server。
其中,步骤807-809与步骤707-709类似,此处不再赘述。
810,V-EASDF接收到来自DNS server的DNS response消息。
811,V-EASDF向V-SMF发送DNS response消息。
V-EASDF将在步骤810中收到的DNS response消息转发给V-SMF。
812,V-SMF根据DNS response消息,建立连接边缘服务的本地会话路径。
813,V-SMF向V-EASDF发送DNS消息处理规则#3。
其中,步骤812-813与步骤713-714类似,此处不再赘述。
814,V-EASDF向H-DNS server转发该DNS query消息。
815,V-EASDF向UE发送DNS response消息。
如图8所示,V-EASDF可以通过V-UPF向UE发送DNS response消息。
基于上述方法800,UE可以直接使用V-EASDF作为DNS query消息的目的地址。通过该方法,可以实现针对HR会话的边缘服务发现机制,即为HR会话的UE发现位于拜 访网络中的边缘服务,使得UE在建立HR会话的时候可以访问VPLMN中部署的边缘服务。
图9是本申请实施例提供的另一种通信的方法900的示意性流程图。方法900可以包括如下步骤。
901,UE向V-SMF发送会话建立请求消息。
902,V-SMF向V-UPF发送针对DNS query消息的转发规则。
903,V-SMF向V-UPF发送针对DNS query消息的转发规则。
其中,步骤901-903与步骤701-703类似,不同之处在于,在步骤903中,可选地,该转发规则还可以用于指示V-UPF将DNS query消息的目的地址设置为V-EASDF IP。可选地,该转发规则还可以用于指示V-UPF保存作为DNS query消息目的地址的H-DNS server IP,用于后续对DNS response消息的处理,如将DNS response消息的源地址修改为H-DNS server IP。
904,V-SMF向V-EASDF发送DNS消息处理规则#1。
其中,步骤904与步骤704类似,此处不再赘述。
905,UE向V-UPF发送DNS query消息。
该DNS query消息的源地址为UE IP,目的地址为H-DNS server IP。
906,V-UPF向V-EASDF转发该DNS query消息。
V-UPF根据在步骤903中收到的转发规则对该DNS query消息进行处理。例如,转发规则用于指示V-UPF将特定DNS query消息(如发给H-DNS server的DNS query消息,又如与目标FQDN匹配的DNS query消息,又如与目标应用标识匹配的DNS query消息,等)转发给V-EASDF,且将该DNS query消息的目的地址设置为V-EASDF IP,且V-UPF向V-EASDF转发目的地址设置为V-EASDF IP的该DNS query消息。
可以理解,上述V-UPF可以根据在步骤903中收到的转发规则将该DNS query消息的目的地址设置为V-EASDF IP,为示例性说明,本申请不限于此。例如,V-UPF也可以根据本地配置或者协议规定或者方法500中的信息#1等,将该DNS query消息的目的地址设置为V-EASDF IP。
在方法900中,V-UPF可以修改DNS query消息的目的地址为V-EASDF IP,并将修改后的DNS query消息转发给V-EASDF。
可选地,V-UPF保存DNS query消息的原目的地址H-DNS server IP。例如,V-UPF根据在步骤1004中收到的转发规则,保存DNS query消息的原目的地址H-DNS server IP。又如,V-UPF也可以根据本地配置或者协议规定等,保存DNS query消息的原目的地址H-DNS server IP。
907,V-EASDF向V-SMF转发该DNS query消息。
908,V-SMF向V-EASDF发送DNS消息处理规则#2。
909,V-EASDF将DNS query发送给DNS server。
其中,步骤1007-1009与步骤707-709类似,此处不再赘述。
910,V-EASDF接收到来自DNS server的DNS response消息。
911,V-EASDF向V-SMF发送DNS response消息。
912,V-SMF根据DNS response消息,建立连接边缘服务的本地会话路径。
其中,步骤910-912与步骤711-713类似,此处不再赘述。
913,V-SMF向V-EASDF发送DNS消息处理规则#3。
其中,DNS消息处理规则#3可以用于处理DNS response消息。
914,V-EASDF向V-UPF发送DNS response消息。
V-EASDF生成DNS response消息,并向V-UPF发送DNS response消息,该DNS response消息的源地址设为V-EASDF地址。
915,V-UPF将DNS response消息的源地址替换为H-DNS server IP。
作为示例,V-UPF接收到DNS response消息之后,根据步骤903中收到的转发规则,将DNS response消息中的源地址替换为所保存的H-DNS server IP(即DNS query消息中所携带的目的地址)。
可以理解,上述V-UPF可以根据在步骤903中收到的转发规则将DNS response消息中的源地址替换为所保存的H-DNS server IP,为示例性说明,本申请不限于此。例如,V-UPF也可以根据本地配置或者协议规定或者方法500中所述的信息#2等,将DNS response消息中的源地址替换为所保存的H-DNS server IP。
916,V-UPF向UE发送DNS response消息。
该DNS response消息的源地址为H-DNS server IP。
如图9所示,V-EASDF可以通过V-UPF向UE发送DNS response消息。
基于上述方法900,V-UPF可以修改DNS query消息的目的地址为V-EASDF地址,并将目的地址修改为V-EASDF地址的DNS query消息转发给V-EASDF。此外V-EASDF使用自己的IP生成DNS response消息,V-UPF用保存的原目的地址H-DNS server地址替换V-EASDF地址。通过该方法,可以实现针对HR会话的边缘服务发现机制,即为HR会话的UE发现位于拜访网络中的边缘服务,使得UE在建立HR会话的时候可以访问VPLMN中部署的边缘服务。
图10是本申请实施例提供的另一种通信的方法1000的示意性流程图。方法1000可以包括如下步骤。
1001,UE向V-SMF发送会话建立请求消息。
1002,V-SMF生成针对DNS query消息的转发规则。
1003,V-SMF向V-UPF发送针对DNS query消息的转发规则。
其中,步骤1001-1003与步骤701-703类似,不同之处在于,在步骤1003中,可选地,该转发规则还可以用于指示V-UPF将DNS query消息的目的地址设置为V-EASDF IP。
1004,V-SMF向V-EASDF发送DNS消息处理规则#1。
其中,步骤1004与步骤704类似,此处不再赘述。
1005,UE向V-UPF发送DNS query消息。
该DNS query消息的源地址为UE IP,目的地址为H-DNS server IP。
1006,V-UPF向V-EASDF转发该DNS query消息。
V-UPF根据在步骤1003中收到的转发规则对该DNS query消息进行处理。例如,转发规则用于指示V-UPF将特定DNS query消息(如发给H-DNS server的DNS query消息,又如与目标FQDN匹配的DNS query消息,又如与目标应用标识匹配的DNS query消息,等)转发给V-EASDF,且将该DNS query消息的目的地址设置为V-EASDF IP,且V-UPF 向V-EASDF转发目的地址设置为V-EASDF IP的该DNS query消息。
可以理解,上述V-UPF可以根据在步骤1003中收到的转发规则将该DNS query消息的目的地址设置为V-EASDF IP,为示例性说明,本申请不限于此。例如,V-UPF也可以根据本地配置或者协议规定或者方法500中的信息#1等,将该DNS query消息的目的地址设置为V-EASDF IP。
在方法1000中,V-UPF可以修改DNS query消息的目的地址为V-EASDF IP,并将修改后的DNS query消息转发给V-EASDF。
可选地,方法1000包括步骤1007,
1007,V-UPF向V-SMF发送H-DNS server IP。
V-UPF可以将DNS query中所携带的原目的地址(H-DNS server IP)上报给V-SMF。
1008,V-EASDF向V-SMF转发该DNS query消息。
其中,步骤1008与步骤707类似,此处不再赘述。
1009,V-SMF向V-EASDF发送DNS消息处理规则#2。
响应于步骤1008,V-SMF可以向V-EASDF发送新的DNS消息处理规则#2。该DNS消息处理规则#2用于指示V-EASDF进一步对DNS query进行处理的方式。
可选地,V-SMF还可以向V-EASDF发送H-DNS server IP。例如,V-SMF可以将H-DNS server IP携带在DNS消息处理规则#2中发送给V-EASDF。
1010,V-EASDF将DNS query消息发送给DNS server。
其中,步骤1010与步骤709类似,此处不再赘述。
1011,V-EASDF接收到来自DNS server的DNS response消息。
1012,V-EASDF向V-SMF发送DNS response消息。
1013,V-SMF根据DNS response消息,建立连接边缘服务的本地会话路径。
其中,步骤1011-1013与步骤711-713类似,此处不再赘述。
1014,V-SMF向V-EASDF发送DNS消息处理规则#3。
其中,DNS消息处理规则#3可以用于处理DNS response消息。作为示例,DNS消息处理规则#3用于指示设置DNS response消息的源地址为H-DNS server IP。可选地,V-SMF向V-EASDF发送H-DNS server IP,如DNS消息处理规则#3中携带H-DNS server IP。
1015,V-EASDF生成DNS response消息,该DNS response消息的源地址设为H-DNS server IP。
一种可能的实现方式,V-EASDF从V-SMF处接收H-DNS server IP。例如,步骤1014中或者步骤1009中,V-SMF向V-EASDF发送H-DNS server IP。
1016,V-EASDF向UE发送DNS response消息。
该DNS response消息为步骤1015中V-EASDF生成的DNS response消息。
如图10所示,V-EASDF可以通过V-UPF向UE发送DNS response消息。
基于上述方法1000,V-UPF可以修改DNS query消息的目的地址为V-EASDF地址,并将目的地址修改为V-EASDF地址的DNS query消息转发给V-EASDF。此外V-EASDF可以通过某种方式获得DNS query消息的原目的地址H-DNS server IP(如V-EASDF从V-SMF处接收H-DNS server IP),并在生成DNS response消息时使用该地址。通过该方法,可以实现针对HR会话的边缘服务发现机制,即为HR会话的UE发现位于拜访网络 中的边缘服务,使得UE在建立HR会话的时候可以访问VPLMN中部署的边缘服务。
可以理解,本申请实施例中的图7至图10中的例子仅仅是为了便于本领域技术人员理解本申请实施例,并非要将本申请实施例限于例示的具体场景。本领域技术人员根据图7至图10的例子,显然可以进行各种等价的修改或变化,这样的修改或变化也落入本申请实施例的范围内。
还可以理解,在上述一些实施例中,涉及到的消息名称,如Nsmf_PDUSession_CreateSMContext Request等,仅是一种示例,不对本申请实施例的保护范围造成限定。
还可以理解,在上述一些实施例中,主要DNS服务器地址(即H-DNS server地址)为例进行示例性说明,可以理解,上文的H-DNS server地址也可以替换为H-EASDF地址。
还可以理解,本申请的各实施例中的一些可选的特征,在某些场景下,可以不依赖于其他特征,也可以在某些场景下,与其他特征进行结合,不作限定。
还可以理解,本申请的各实施例中的方案可以进行合理的组合使用,并且实施例中出现的各个术语的解释或说明可以在各个实施例中互相参考或解释,对此不作限定。
还可以理解,在本申请的各实施例中的各种数字序号的大小并不意味着执行顺序的先后,仅为描述方便进行的区分,不应对本申请实施例的实施过程构成任何限定。
还可以理解,上述各个方法实施例中,由设备实现的方法和操作,也可以由可由设备的组成部件(例如芯片或者电路)来实现。
相应于上述各方法实施例给出的方法,本申请实施例还提供了相应的装置,所述装置包括用于执行上述各个方法实施例相应的模块。该模块可以是软件,也可以是硬件,或者是软件和硬件结合。可以理解的是,上述各方法实施例所描述的技术特征同样适用于以下装置实施例。
图11是本申请实施例提供的一种通信的装置的示意性框图。该装置1100包括收发单元1110和处理单元1120。收发单元1110可以用于实现相应的通信功能。收发单元1110还可以称为通信接口或通信单元。处理单元1120可以用于实现相应的处理功能,如修改地址等。
可选地,该装置1100还包括存储单元,该存储单元可以用于存储指令和/或数据,处理单元1120可以读取存储单元中的指令和/或数据,以使得装置实现前述各个方法实施例中设备或网元的动作。
在第一种设计中,该装置1100可以是前述实施例中的用户面网元,也可以是用户面网元的组成部件(如芯片)。该装置1100可实现对应于上文方法实施例中的用户面网元执行的步骤或者流程,其中,收发单元1110可用于执行上文方法实施例中用户面网元的收发相关的操作,处理单元1120可用于执行上文方法实施例中用户面网元的处理相关的操作。
一种可能的实现方式,收发单元1110,用于接收来自终端设备的域名系统DNS查询消息,DNS查询消息用于获取边缘服务器地址;基于第一信息,向边缘应用服务器发现网元发送DNS查询消息,第一信息用于将一个或多个DNS消息转发给边缘应用服务器发现网元,其中,用户面网元和边缘应用服务器发现网元为拜访网络中部署的网元。
示例地,第一信息包括以下一项或多项:全量域名,应用标识,目标设备地址,DNS 协议端口号,边缘应用服务器发现网元的地址,其中,目标设备地址为一个或多个DNS消息的目的地址,目标设备为归属网络中部署的设备。
示例地,第一信息包括第一参数和第二参数,第一参数用于检测一个或多个DNS消息,第二参数用于确定边缘应用服务器发现网元。
示例地,第一参数包括以下一项或多项:全量域名,应用标识,目标设备地址,DNS协议端口号,边缘应用服务器发现网元的地址,其中,目标设备地址为一个或多个DNS消息的目的地址;第二参数包括边缘应用服务器发现网元的地址,目标设备为归属网络中部署的设备。
示例地,DNS查询消息中的目的地址为第一设备地址,第一设备为归属网络中部署的设备。
可选地,收发单元1110,用于向边缘应用服务器发现网元发送DNS查询消息,包括:收发单元1110,用于通过隧道向边缘应用服务器发现网元发送DNS查询消息,隧道接收端的地址为边缘应用服务器发现网元的地址。
可选地,收发单元1110,用于向边缘应用服务器发现网元发送DNS查询消息,包括:处理单元1120,用于将DNS查询消息中的目的地址替换为边缘应用服务器发现网元地址后,收发单元1110,用于向边缘应用服务器发现网元发送DNS查询消息。
可选地,收发单元1110,还用于接收来自边缘应用服务器发现网元的DNS响应消息;处理单元1120,用于将DNS响应消息中的源地址替换为第一设备地址后,收发单元1110,用于向终端设备发送DNS响应消息,其中,第一设备地址为DNS查询消息的目的地址,第一设备为归属网络中部署的设备。
可选地,收发单元1110,还用于接收来自会话管理网元的第二信息,第二信息指示替换DNS响应消息的源地址为第一设备地址。
可选地,收发单元1110,还用于接收来自会话管理网元的第一信息。
在第二种设计中,该装置1100可以是前述实施例中的会话管理网元,也可以是会话管理网元的组成部件(如芯片)。该装置1100可实现对应于上文方法实施例中的会话管理网元执行的步骤或者流程,其中,收发单元1110用于执行上文方法实施例中会话管理网元的收发相关的操作,处理单元1120用于执行上文方法实施例中会话管理网元的处理相关的操作。
一种可能的实现方式,处理单元1120,用于为归属地路由会话,确定第一信息,第一信息用于将一个或多个域名系统DNS消息转发给边缘应用服务器发现网元;收发单元1110,用于向用户面网元发送第一信息,其中,用户面网元、边缘应用服务器发现网元、以及会话管理网元,为拜访网络中部署的网元。
示例地,第一信息包括以下一项或多项:全量域名,应用标识,目标设备地址,DNS协议端口号,边缘应用服务器发现网元的地址,其中,目标设备地址为一个或多个DNS消息的目的地址,目标设备为归属网络中部署的设备。
示例地,第一信息包括第一参数和第二参数,第一参数用于检测一个或多个DNS消息,第二参数用于确定边缘应用服务器发现网元。
示例地,第一参数包括以下一项或多项:全量域名,应用标识,目标设备地址,DNS协议端口号,边缘应用服务器发现网元的地址,其中,目标设备地址为一个或多个DNS 消息的目的地址;第二参数包括边缘应用服务器发现网元的地址,目标设备为归属网络中部署的设备。
可选地,处理单元1120,用于为确定第一信息,包括:处理单元1120,用于为根据边缘服务器的部署信息确定第一信息。
可选地,收发单元1110,还用于向用户面网元发送第二信息,第二信息指示替换DNS响应消息的源地址为第一设备地址,第一设备地址为DNS查询消息的目的地址,第一设备为归属网络中部署的设备。
应理解,各单元执行上述相应步骤的具体过程在上述各方法实施例中已经详细说明,为了简洁,在此不再赘述。
还应理解,这里的装置1100以功能单元的形式体现。这里的术语“单元”可以指应用特有集成电路(application specific integrated circuit,ASIC)、电子电路、用于执行一个或多个软件或固件程序的处理器(例如共享处理器、专有处理器或组处理器等)和存储器、合并逻辑电路和/或其它支持所描述的功能的合适组件。在一个可选例子中,本领域技术人员可以理解,装置1100可以具体为上述实施例中的用户面网元,可以用于执行上述各方法实施例中与用户面网元对应的各个流程和/或步骤;或者,装置1100可以具体为上述实施例中的会话管理网元,可以用于执行上述各方法实施例中与会话管理网元对应的各个流程和/或步骤;或者,装置1100可以具体为上述实施例中的边缘应用服务器发现网元,可以用于执行上述各方法实施例中与边缘应用服务器发现网元对应的各个流程和/或步骤,为避免重复,在此不再赘述。
上述各个方案的装置1100具有实现上述方法中网元(如用户面网元,或会话管理网元,或边缘应用服务器发现网元)所执行的相应步骤的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的模块;例如收发单元可以由收发机替代(例如,收发单元中的发送单元可以由发送机替代,收发单元中的接收单元可以由接收机替代),其它单元,如处理单元等可以由处理器替代,分别执行各个方法实施例中的收发操作以及相关的处理操作。
此外,上述收发单元1110还可以是收发电路(例如可以包括接收电路和发送电路),处理单元可以是处理电路。
需要指出的是,图11中的装置可以是前述实施例中的网元或设备,也可以是芯片或者芯片系统,例如:片上系统(system on chip,SoC)。其中,收发单元可以是输入输出电路、通信接口;处理单元为该芯片上集成的处理器或者微处理器或者集成电路。在此不做限定。
如图12所示,本申请实施例提供另一种通信的装置1200。该装置1200包括处理器1210,处理器1210用于执行存储器1220存储的计算机程序或指令,或读取存储器1220存储的数据/信令,以执行上文各方法实施例中的方法。可选地,处理器1210为一个或多个。
可选地,如图12所示,该装置1200还包括存储器1220,存储器1220用于存储计算机程序或指令和/或数据。该存储器1220可以与处理器1210集成在一起,或者也可以分离设置。可选地,存储器1220为一个或多个。
可选地,如图12所示,该装置1200还包括收发器1230,收发器1230用于信号的接 收和/或发送。例如,处理器1210用于控制收发器1230进行信号的接收和/或发送。
作为一种方案,该装置1200用于实现上文各个方法实施例中由网元执行的操作。
例如,处理器1210用于执行存储器1220存储的计算机程序或指令,以实现上文各个方法实施例中用户面网元的相关操作。例如,图5所示实施例中的用户面网元执行的方法,或图7至图10中任意一个所示实施例中的V-UPF执行的方法。
又如,处理器1210用于执行存储器1220存储的计算机程序或指令,以实现上文各个方法实施例中会话管理网元的相关操作。例如,图5所示实施例中的会话管理网元执行的方法,或图7至图10中任意一个所示实施例中的V-SMF执行的方法。
又如,处理器1210用于执行存储器1220存储的计算机程序或指令,以实现上文各个方法实施例中边缘应用服务器发现网元的相关操作。例如,图5所示实施例中的边缘应用服务器发现网元执行的方法,或图7至图10中任意一个所示实施例中的V-EASDF执行的方法。
应理解,本申请实施例中提及的处理器可以是中央处理单元(central processing unit,CPU),还可以是其他通用处理器、数字信号处理器(digital signal processor,DSP)、专用集成电路(application specific integrated circuit,ASIC)、现成可编程门阵列(field programmable gate array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
还应理解,本申请实施例中提及的存储器可以是易失性存储器和/或非易失性存储器。其中,非易失性存储器可以是只读存储器(read-only memory,ROM)、可编程只读存储器(programmable ROM,PROM)、可擦除可编程只读存储器(erasable PROM,EPROM)、电可擦除可编程只读存储器(electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(random access memory,RAM)。例如,RAM可以用作外部高速缓存。作为示例而非限定,RAM包括如下多种形式:静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(direct rambus RAM,DR RAM)。
需要说明的是,当处理器为通用处理器、DSP、ASIC、FPGA或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件时,存储器(存储模块)可以集成在处理器中。
还需要说明的是,本文描述的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
本申请实施例还提供一种计算机可读存储介质,其上存储有用于实现上述各方法实施例中由网元执行的方法的计算机指令。
例如,该计算机程序被计算机执行时,使得该计算机可以实现上述方法各实施例中由用户面网元执行的方法。
又如,该计算机程序被计算机执行时,使得该计算机可以实现上述方法各实施例中由 会话管理网元执行的方法。
又如,该计算机程序被计算机执行时,使得该计算机可以实现上述方法各实施例中由边缘应用服务器发现网元执行的方法。
本申请实施例还提供一种计算机程序产品,包含指令,该指令被计算机执行时以实现上述各方法实施例中由网元执行的方法。
本申请实施例还提供一种通信的系统,包括前述的用户面网元、会话管理网元、边缘应用服务器发现网元中的一个或多个。
上述提供的任一种装置中相关内容的解释及有益效果均可参考上文提供的对应的方法实施例,此处不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。此外,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。例如,所述计算机可以是个人计算机,服务器,或者网络设备等。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质(例如固态硬盘(solid state disk,SSD)等。例如,前述的可用介质包括但不限于:U盘、移动硬盘、只读存储器(read-only memory,ROM)、随机存取存储器(random access memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (39)

  1. 一种通信的方法,其特征在于,包括:
    用户面网元接收来自终端设备的域名系统DNS查询消息,所述DNS查询消息用于获取边缘服务器地址;
    基于第一信息,所述用户面网元向边缘应用服务器发现网元发送所述DNS查询消息,所述第一信息用于将一个或多个DNS消息转发给边缘应用服务器发现网元,
    其中,所述用户面网元和所述边缘应用服务器发现网元为拜访网络中部署的网元。
  2. 根据权利要求1所述的方法,其特征在于,所述第一信息包括以下一项或多项:全量域名,应用标识,目标设备地址,DNS协议端口号,所述边缘应用服务器发现网元的地址,
    其中,所述目标设备地址为所述一个或多个DNS消息的目的地址,所述目标设备为归属网络中部署的设备。
  3. 根据权利要求1所述的方法,其特征在于,所述第一信息包括第一参数和第二参数,所述第一参数用于检测所述一个或多个DNS消息,所述第二参数用于确定所述边缘应用服务器发现网元。
  4. 根据权利要求3所述的方法,其特征在于,
    所述第一参数包括以下一项或多项:全量域名,应用标识,目标设备地址,DNS协议端口号,所述边缘应用服务器发现网元的地址,其中,所述目标设备地址为所述一个或多个DNS消息的目的地址,所述目标设备为归属网络中部署的设备;
    所述第二参数包括所述边缘应用服务器发现网元的地址。
  5. 根据权利要求1至4中任一项所述的方法,其特征在于,所述DNS查询消息中的目的地址为第一设备地址,所述第一设备为归属网络中部署的设备。
  6. 根据权利要求1至5中任一项所述的方法,其特征在于,所述用户面网元向边缘应用服务器发现网元发送所述DNS查询消息,包括:
    所述用户面网元通过隧道向所述边缘应用服务器发现网元发送所述DNS查询消息,所述隧道接收端的地址为所述边缘应用服务器发现网元的地址。
  7. 根据权利要求1至5中任一项所述的方法,其特征在于,所述用户面网元向边缘应用服务器发现网元发送所述DNS查询消息,包括:
    所述用户面网元将所述DNS查询消息中的目的地址替换为所述边缘应用服务器发现网元地址后,向所述边缘应用服务器发现网元发送所述DNS查询消息。
  8. 根据权利要求7所述的方法,其特征在于,所述方法还包括:
    所述用户面网元接收来自所述边缘应用服务器发现网元的DNS响应消息;
    所述用户面网元将所述DNS响应消息中的源地址替换为第一设备地址后,向所述终端设备发送所述DNS响应消息,
    其中,所述第一设备地址为所述DNS查询消息的目的地址,所述第一设备为归属网络中部署的设备。
  9. 根据权利要求8所述的方法,其特征在于,所述方法还包括:
    所述用户面网元接收来自会话管理网元的第二信息,所述第二信息指示替换所述DNS响应消息的源地址为所述第一设备地址。
  10. 根据权利要求1至9中任一项所述的方法,其特征在于,所述方法还包括:
    所述用户面网元接收来自会话管理网元的所述第一信息。
  11. 一种通信的方法,其特征在于,包括:
    会话管理网元为归属地路由会话,确定第一信息,所述第一信息用于将一个或多个域名系统DNS消息转发给边缘应用服务器发现网元;
    所述会话管理网元向用户面网元发送所述第一信息,
    其中,所述用户面网元、所述边缘应用服务器发现网元、以及所述会话管理网元,为拜访网络中部署的网元。
  12. 根据权利要求11所述的方法,其特征在于,所述第一信息包括以下一项或多项:全量域名,应用标识,目标设备地址,DNS协议端口号,所述边缘应用服务器发现网元的地址,
    其中,所述目标设备地址为所述一个或多个DNS消息的目的地址,所述目标设备为归属网络中部署的设备。
  13. 根据权利要求11所述的方法,其特征在于,所述第一信息包括第一参数和第二参数,所述第一参数用于检测所述一个或多个DNS消息,所述第二参数用于确定所述边缘应用服务器发现网元。
  14. 根据权利要求13所述的方法,其特征在于,
    所述第一参数包括以下一项或多项:全量域名,应用标识,目标设备地址,DNS协议端口号,所述边缘应用服务器发现网元的地址,其中,所述目标设备地址为所述一个或多个DNS消息的目的地址,所述目标设备为归属网络中部署的设备;
    所述第二参数包括所述边缘应用服务器发现网元的地址。
  15. 根据权利要求11至14中任一项所述的方法,其特征在于,所述会话管理网元确定第一信息,包括:
    所述会话管理网元根据边缘服务器的部署信息确定所述第一信息。
  16. 根据权利要求11至15中任一项所述的方法,其特征在于,所述方法还包括:
    所述会话管理网元向所述用户面网元发送第二信息,所述第二信息指示替换所述DNS响应消息的源地址为第一设备地址,所述第一设备地址为DNS查询消息的目的地址,所述第一设备为归属网络中部署的设备。
  17. 一种通信的装置,其特征在于,包括收发单元,
    所述收发单元,用于接收来自终端设备的域名系统DNS查询消息,所述DNS查询消息用于获取边缘服务器地址;
    所述收发单元,还用于基于第一信息,向边缘应用服务器发现网元发送所述DNS查询消息,所述第一信息用于将一个或多个DNS消息转发给边缘应用服务器发现网元,
    其中,所述装置和所述边缘应用服务器发现网元为拜访网络中部署的网元。
  18. 根据权利要求17所述的装置,其特征在于,所述第一信息包括以下一项或多项:全量域名,应用标识,目标设备地址,DNS协议端口号,所述边缘应用服务器发现网元的地址,
    其中,所述目标设备地址为所述一个或多个DNS消息的目的地址,所述目标设备为归属网络中部署的设备。
  19. 根据权利要求17所述的装置,其特征在于,所述第一信息包括第一参数和第二参数,所述第一参数用于检测所述一个或多个DNS消息,所述第二参数用于确定所述边缘应用服务器发现网元。
  20. 根据权利要求19所述的装置,其特征在于,
    所述第一参数包括以下一项或多项:全量域名,应用标识,目标设备地址,DNS协议端口号,所述边缘应用服务器发现网元的地址,其中,所述目标设备地址为所述一个或多个DNS消息的目的地址,所述目标设备为归属网络中部署的设备;
    所述第二参数包括所述边缘应用服务器发现网元的地址。
  21. 根据权利要求17至20中任一项所述的装置,其特征在于,所述DNS查询消息中的目的地址为第一设备地址,所述第一设备为归属网络中部署的设备。
  22. 根据权利要求17至21中任一项所述的装置,其特征在于,
    所述收发单元,具体用于通过隧道向所述边缘应用服务器发现网元发送所述DNS查询消息,所述隧道接收端的地址为所述边缘应用服务器发现网元的地址。
  23. 根据权利要求17至21中任一项所述的装置,其特征在于,所述装置还包括处理单元,
    所述处理单元,用于将所述DNS查询消息中的目的地址替换为所述边缘应用服务器发现网元地址;
    所述收发单元,具体用于在所述DNS查询消息中的目的地址替换为所述边缘应用服务器发现网元地址后,向所述边缘应用服务器发现网元发送所述DNS查询消息。
  24. 根据权利要求23所述的装置,其特征在于,
    所述收发单元,还用于接收来自所述边缘应用服务器发现网元的DNS响应消息;
    所述处理单元,还用于将所述DNS响应消息中的源地址替换为第一设备地址;
    所述收发单元,还用于在所述DNS响应消息中的源地址替换为第一设备地址后,向所述终端设备发送所述DNS响应消息,
    其中,所述第一设备地址为所述DNS查询消息的目的地址,所述第一设备为归属网络中部署的设备。
  25. 根据权利要求24所述的装置,其特征在于,
    所述收发单元,还用于接收来自会话管理网元的第二信息,所述第二信息指示替换所述DNS响应消息的源地址为所述第一设备地址。
  26. 根据权利要求17至25中任一项所述的装置,其特征在于,
    所述收发单元,还用于接收来自会话管理网元的所述第一信息。
  27. 一种通信的装置,其特征在于,包括处理单元和收发单元,
    所述处理单元,用于为归属地路由会话,确定第一信息,所述第一信息用于将一个或多个域名系统DNS消息转发给边缘应用服务器发现网元;
    所述收发单元,用于向用户面网元发送所述第一信息,
    其中,所述用户面网元、所述边缘应用服务器发现网元、以及所述装置,为拜访网络中部署的网元。
  28. 根据权利要求27所述的装置,其特征在于,所述第一信息包括以下一项或多项:全量域名,应用标识,目标设备地址,DNS协议端口号,所述边缘应用服务器发现网元的地址,
    其中,所述目标设备地址为所述一个或多个DNS消息的目的地址,所述目标设备为归属网络中部署的设备。
  29. 根据权利要求27所述的装置,其特征在于,所述第一信息包括第一参数和第二参数,所述第一参数用于检测所述一个或多个DNS消息,所述第二参数用于确定所述边缘应用服务器发现网元。
  30. 根据权利要求29所述的装置,其特征在于,
    所述第一参数包括以下一项或多项:全量域名,应用标识,目标设备地址,DNS协议端口号,所述边缘应用服务器发现网元的地址,其中,所述目标设备地址为所述一个或多个DNS消息的目的地址,所述目标设备为归属网络中部署的设备;
    所述第二参数包括所述边缘应用服务器发现网元的地址。
  31. 根据权利要求27至30中任一项所述的装置,其特征在于,所述处理单元,具体用于根据边缘服务器的部署信息确定所述第一信息。
  32. 根据权利要求27至31中任一项所述的装置,其特征在于,
    所述收发单元,还用于向所述用户面网元发送第二信息,所述第二信息指示替换所述DNS响应消息的源地址为第一设备地址,所述第一设备地址为DNS查询消息的目的地址,所述第一设备为归属网络中部署的设备。
  33. 一种通信的装置,其特征在于,包括:
    处理器,用于执行存储器中存储的计算机程序,以使得所述装置执行如权利要求1至10中任一项所述的方法,或者以使得所述装置执行如权利要求11至16中任一项所述的方法。
  34. 根据权利要求33所述的装置,其特征在于,所述装置还包括所述存储器。
  35. 根据权利要求33或34所述的装置,其特征在于,所述装置还包括通信接口,所述通信接口与所述处理器耦合,
    所述通信接口,用于输入和/或输出信息。
  36. 根据权利要求33至35中任一项所述的装置,其特征在于,所述装置为芯片。
  37. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质上存储有计算机程序,当所述计算机程序在计算机上运行时,使得所述计算机执行如权利要求1至10中任意一项所述的方法,或者以使得所述计算机执行如权利要求11至16中任一项所述的方法。
  38. 一种计算机程序产品,其特征在于,所述计算机程序产品包括用于执行如权利要求1至10中任一项所述的方法的指令,或者,所述计算机程序产品包括用于执行如权利要求11至16中任一项所述的方法的指令。
  39. 一种通信的系统,其特征在于,包括用户面网元和会话管理网元;
    所述用户面网元用于执行如权利要求1至10中任一项所述的方法;
    所述会话管理网元用于执行如权利要求11至16中任一项所述的方法。
PCT/CN2022/121190 2021-09-30 2022-09-26 通信的方法和装置 WO2023051431A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111166449.1 2021-09-30
CN202111166449.1A CN115884152A (zh) 2021-09-30 2021-09-30 通信的方法和装置

Publications (1)

Publication Number Publication Date
WO2023051431A1 true WO2023051431A1 (zh) 2023-04-06

Family

ID=85756769

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/121190 WO2023051431A1 (zh) 2021-09-30 2022-09-26 通信的方法和装置

Country Status (2)

Country Link
CN (1) CN115884152A (zh)
WO (1) WO2023051431A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113115480A (zh) * 2021-04-02 2021-07-13 腾讯科技(深圳)有限公司 地址信息发送方法、获取方法、装置、设备及介质
CN113366816A (zh) * 2019-04-12 2021-09-07 三星电子株式会社 通过域名服务器解析发现边缘服务器或边缘服务的方法和系统
CN113453292A (zh) * 2020-03-25 2021-09-28 华为技术有限公司 一种建立连接的方法和通信装置以及系统

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113366816A (zh) * 2019-04-12 2021-09-07 三星电子株式会社 通过域名服务器解析发现边缘服务器或边缘服务的方法和系统
CN113453292A (zh) * 2020-03-25 2021-09-28 华为技术有限公司 一种建立连接的方法和通信装置以及系统
CN113115480A (zh) * 2021-04-02 2021-07-13 腾讯科技(深圳)有限公司 地址信息发送方法、获取方法、装置、设备及介质

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
HUAWEI, HISILICON: "Clarification on EAS discovery via EASDF", 3GPP TSG-SA WG2 MEETING #145E, S2-2104384, 10 May 2021 (2021-05-10), XP052004694 *
QUALCOMM INCORPORATED, CONVIDA WIRELESS, KPN, VODAFONE, SK TELECOM, DEUTSCHE TELEKOM, BT, ORANGE, ERICSSON, TELECOM ITALIA, TNO, N: "Way Forward for EASDF based EAS discovery", 3GPP TSG-SA #93E E-MEETING, SP-210854, 8 September 2021 (2021-09-08), XP052051954 *

Also Published As

Publication number Publication date
CN115884152A (zh) 2023-03-31

Similar Documents

Publication Publication Date Title
US20220330361A1 (en) Method for establishing connection and obtaining relay service code and communications apparatus
US20230397097A1 (en) Network slicing method and device, and storage medium
WO2023011210A1 (zh) 一种获取边缘服务的方法和装置
WO2023280121A1 (zh) 一种获取边缘服务的方法和装置
WO2019196643A1 (zh) 通信的方法和通信装置
TW202306401A (zh) 通信方法和裝置
WO2022048394A1 (zh) 网络连接方法、网络去连接方法及通信装置
US20230254922A1 (en) Multipath transmission method and communication apparatus
WO2016180113A1 (zh) WiFi语音业务发起的方法、LTE通信设备、终端及通信系统
WO2020151584A1 (zh) 网络配置的方法和通信装置
WO2023124457A1 (zh) 选择网络的方法和装置
WO2022199451A1 (zh) 会话切换的方法和装置
CN113595911B (zh) 数据转发方法、装置、电子设备及存储介质
WO2021233340A1 (zh) 网络注册的方法和装置
WO2023051430A1 (zh) 通信的方法和装置
WO2023024931A1 (zh) 用于设备间通信的方法和装置
US20220022023A1 (en) Method and Apparatus for Selecting Session Management Network Element
WO2023051431A1 (zh) 通信的方法和装置
WO2022160205A1 (zh) 一种数据传输方法、终端设备和网络设备
WO2023051427A1 (zh) 通信的方法和装置
WO2023051428A1 (zh) 信息传输的方法和装置
WO2023160394A1 (zh) 通信的方法和装置
WO2023142717A1 (zh) 一种确定用户设备路由选择策略的方法和装置
WO2023185620A1 (zh) 通信的方法和装置
WO2023116556A1 (zh) 会话切换的方法和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22874817

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2022874817

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2022874817

Country of ref document: EP

Effective date: 20240322