WO2023051427A1 - 通信的方法和装置 - Google Patents

通信的方法和装置 Download PDF

Info

Publication number
WO2023051427A1
WO2023051427A1 PCT/CN2022/121185 CN2022121185W WO2023051427A1 WO 2023051427 A1 WO2023051427 A1 WO 2023051427A1 CN 2022121185 W CN2022121185 W CN 2022121185W WO 2023051427 A1 WO2023051427 A1 WO 2023051427A1
Authority
WO
WIPO (PCT)
Prior art keywords
network element
information
session management
smf
management network
Prior art date
Application number
PCT/CN2022/121185
Other languages
English (en)
French (fr)
Inventor
李永翠
陈泽昊
倪慧
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to CA3233516A priority Critical patent/CA3233516A1/en
Priority to AU2022353768A priority patent/AU2022353768A1/en
Publication of WO2023051427A1 publication Critical patent/WO2023051427A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L61/00Network arrangements, protocols or services for addressing or naming
    • H04L61/45Network directories; Name-to-address mapping
    • H04L61/4505Network directories; Name-to-address mapping using standardised directories; using standardised directory access protocols
    • H04L61/4511Network directories; Name-to-address mapping using standardised directories; using standardised directory access protocols using domain name system [DNS]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W12/00Security arrangements; Authentication; Protecting privacy or anonymity
    • H04W12/06Authentication
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/16Discovering, processing access restriction or access information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/12Setup of transport tunnels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W8/00Network data management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W8/00Network data management
    • H04W8/02Processing of mobility data, e.g. registration information at HLR [Home Location Register] or VLR [Visitor Location Register]; Transfer of mobility data, e.g. between HLR, VLR or external networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W8/00Network data management
    • H04W8/26Network addressing or numbering for mobility support

Definitions

  • the present application relates to the communication field, and more specifically, to a communication method and device.
  • edge computing edge computing
  • EC edge computing
  • certain services may be served by multiple edge application servers (edge application server, EAS) deployed at the edge of the network.
  • EAS edge application server
  • the multiple EASs can provide the same service and content, and most of them have different Internet protocol (internet protocol, IP) addresses.
  • IP Internet protocol
  • the UE may leave the coverage area of the home public land mobile network (PLMN) (home PLMN, HPLMN) and access the public land mobile network (PLMN) through home routed (HR) roaming.
  • PLMN home public land mobile network
  • HPLMN home PLMN
  • HR home routed
  • a land mobile network visited PLMN, VPLMN
  • the VPLMN provides services for the UE.
  • the present application provides a communication method and device to realize access to services in the VPLMN through the IP address of the VPLMN (such as the information used to determine the ECS option, such as the ECS option or the L-DNS server, etc.) Local EAS discovery in HR roaming scenarios.
  • a communication method is provided, and the method may be executed by a core network element, or may also be executed by a component (such as a chip or a circuit) of the core network element, which is not limited, for the convenience of description , the following takes the implementation by the first session management network element as an example for description.
  • the method may include: the first session management network element obtains the IP address information of the visited network; the first session management network element sends the IP address information to the edge application server discovery network element, and the first session management network element and the edge application server discovery network element It is the network element deployed in the home network.
  • the first session management network element deployed in the home network can obtain the IP address information of the visited network (such as information used to determine the ECS option, such as the ECS option or L-DNS server, etc.), and Sent to the edge application server to discover network elements.
  • the edge application server can discover the network element through the edge application server because it has obtained the IP address information of the visited network. Enable terminal devices to access services in the visited network.
  • the edge application server can add the ECS option determined based on the IP address information to the DNS query message, or forward the DNS query message to the DNS query message based on the IP address.
  • the L-DNS server determined by the information for example, the IP address information is the address information of the L-DNS server, so that the discovery of the local EAS in the HR roaming scenario can be realized.
  • the IP address information is information used to determine the domain name system DNS extension mechanism client subnet option (ECS option), or the IP address information is the ECS option or local DNS server address.
  • ECS option domain name system DNS extension mechanism client subnet option
  • obtaining the IP address information of the visited network by the first session management network element includes: obtaining the IP address information of the visited network by the first session management network element according to the instruction information, Wherein, the indication information indicates that offloading of the visited network is allowed.
  • the first session management network element obtains the IP address of the visited network, so as to avoid the occurrence of being unusable because the visited network distribution is not allowed after obtaining the IP address information of the visited network .
  • the sending of the IP address information by the first session management network element to the edge application server discovery network element includes: the first session management network element sends the IP address information to the edge application server according to the instruction information The discovery network element sends IP address information, wherein the indication information indicates that offloading of the visited network is allowed.
  • the first session management network element sends the IP address information to the edge application server discovery network element.
  • the indication information includes an identifier of the first service, and the indication information indicates that offloading of the first service in the visited network is allowed.
  • the identifier of the first service may be: a full domain name (or a full domain name range (range)), an application identifier, an IP address of an application server, and a port number.
  • obtaining the IP address information of the visited network by the first session management network element includes: receiving the IP address information by the first session management network element from the second session management network element,
  • the second session management network element is a network element deployed in the visited network.
  • the first session management network element may receive the IP address information from the second session management network element.
  • the method further includes: the first session management network element sends first request information to the second session management network element, where the first request information is used to request IP address information.
  • the first session management network element may first send a request to the second session management network element to request the IP address information, and then receive the IP address information from the second session management network element.
  • the method further includes: the first session management network element sends second request information to the network storage network element, the second request information includes the identifier of the visited network, and the second request The information is used to request IP address information, and the network storage network element is a network element deployed in the home network; the first session management network element obtains the IP address information of the visited network, including: the first session management network element receives the visit from the network storage network element Network IP address information.
  • the first session management network element may send a request to the network storage network element to request the IP address information, and then receive the IP address information from the network storage network element.
  • the method further includes: the first session management network element locally configures the indication information; or, the first session management network element receives the indication information.
  • the indication information includes first indication information and/or second indication information
  • the first indication information is locally configured by the first session management network element
  • the obtaining of the IP address information of the visited network by the first session management network element includes: the first session management network element determines according to the first corresponding relationship and the identifier of the visited network For the IP address information of the visited network, the first correspondence is used to indicate the relationship between the visited network and the IP address information of the visited network.
  • the visited network may be associated with the IP address information of the visited network, so that the IP address information of the visited network may be determined based on the identifier of the visited network and the corresponding relationship. IP address information.
  • the method further includes: the first session management network element determines indication information according to the second correspondence and the identifier of the visited network, and the second correspondence is used to indicate that the visited network The relationship with the indication information, the indication information is used to indicate whether to allow offloading of the visited network.
  • the visited network may be associated with the indication information, so that the indication information corresponding to the visited network may be determined based on the identifier of the visited network and the corresponding relationship, and then it may also be known Whether the visited network allows offloading.
  • a communication method is provided, and the method may be executed by a network element of the core network, or may also be executed by a component (such as a chip or a circuit) of the network element of the core network, which is not limited, for the convenience of description , the following takes the implementation by the second session management network element as an example for description.
  • the method may include: the second session management network element obtains the IP address information of the visited network; the second session management network element sends the IP address information to the first session management network element, wherein the second session management network element is deployed in the visited network network elements, the first session management network element is a network element deployed in the home network.
  • the second session management network element deployed in the visited network can obtain the IP address information of the visited network (such as the information used to determine the domain name system DNS extension mechanism client subnet option, and the DNS extension mechanism client subnet option network option or local DNS server address), and send it to the first session management network element deployed in the home network.
  • the terminal device accesses the visited network through HR roaming, the terminal device can access services in the visited network through the IP address information.
  • obtaining the IP address information of the visited network by the second session management network element includes: obtaining the IP address information of the visited network by the second session management network element according to the instruction information, Wherein, the indication information indicates that offloading of the visited network is allowed.
  • the second session management network element obtains the IP address of the visited network, so as to avoid the occurrence of being unusable because the visited network distribution is not allowed after obtaining the IP address information of the visited network .
  • the sending of the IP address information by the second session management network element to the first session management network element includes: sending the IP address information to the first session management network element by the second session management network element according to the instruction information
  • the management network element sends IP address information, wherein the indication information indicates that offloading of the visited network is allowed.
  • the second session management network element sends the IP address information to the first session management network element.
  • the indication information includes an identifier of the first service, and the indication information indicates that offloading of the first service in the visited network is allowed.
  • the identifier of the first service may be: a full domain name (or a full domain name range (range)), an application identifier, an IP address of an application server, and a port number.
  • the method further includes: the second session management network element receives first request information from the first session management network element, and the first request information is used to request IP address information ;
  • the second session management network element sends the IP address information to the first session management network element, including: in response to the first request information, the second session management network element sends the IP address information to the first session management network element.
  • the second session management network element may receive a request sent from the first session management network element, the request is used to request IP address information, and in response to the request, the second session management network element sends a request to the first session management network element Yuan sends the IP address information.
  • the method further includes: locally configuring the indication information by the second session management network element; or, receiving the indication information by the second session management network element.
  • the IP address information is information used to determine the domain name system DNS extension mechanism client subnet option, or the IP address information is the domain name system extension mechanism client subnet option or Local DNS server address.
  • a communication method is provided, and the method may be executed by a network element of the core network, or may also be executed by a component (such as a chip or a circuit) of the network element of the core network, which is not limited, for the convenience of description , the following takes the implementation by the second session management network element as an example for description.
  • the method may include: the second session management network element acquires indication information, and the indication information indicates that the visited network offload is allowed; the second session management network element sends the IP address information of the visited network to the user plane network element according to the indication information, wherein, the second The session management network element and the user plane network element are network elements deployed in the visited network.
  • the user plane network element may be a user plane function (user plane function, UPF), and the edge application server discovers the network element, or may also be: a module jointly established by the UPF and the edge application server to discover the network element.
  • UPF user plane function
  • the second session management network element deployed in the visited network can send the IP address information of the visited network to the user plane network element according to the instruction information (such as the information used to determine the ECS option, such as ECS option or L -DNS server address).
  • the terminal device can access services in the visited network through the IP address information.
  • the user plane network element can add the ECS option determined based on the IP address information to the DNS query message, or the user plane network element sends the ECS option or IP address information to the edge application server to discover the network element, and the edge application server discovers the network element.
  • the ECS option determined based on the IP address information can be added to the DNS query message, or the DNS query message can be forwarded to the L-DNS server determined based on the IP address information, so that the local EAS in the HR roaming scenario can be realized.
  • the second session management network element acquires the indication information, including: the second session management network element locally configures the indication information; or, the second session management network element receives the indication information .
  • the indication information includes an identifier of the second service, and the indication information indicates that offloading of the second service in the visited network is allowed.
  • the identifier of the second service may be: a full domain name (or a full domain name range), an application identifier, an IP address of an application server, and a port number.
  • the indication information includes first indication information and/or second indication information, the first indication information is locally configured by the second session management network element, and the second indication information Received by the second session management network element.
  • the IP address information is the information used to determine the client subnet option of the DNS extension mechanism of the domain name system, or the IP address information is the client subnet option of the DNS extension mechanism or the local DNS server address.
  • a communication method is provided.
  • the method may be executed by a network element of the core network, or may also be executed by a component (such as a chip or a circuit) of the network element of the core network.
  • a component such as a chip or a circuit
  • the method may include: the policy control network element acquires indication information, and the indication information indicates whether to allow offloading of the visited network; the policy control network element sends indication information to the first session management network element, wherein the first session management network element is deployed in the home network network element.
  • the method further includes: the policy control network element sends the identifier of the first service to the first session management network element, and the first service is a service that is allowed to be offloaded in the visited network.
  • the indication information includes an identifier of the first service, and the indication information indicates that offloading of the first service in the visited network is allowed.
  • a communication method is provided, and the method may be executed by a network element of the core network, or may also be executed by a component (such as a chip or a circuit) of the network element of the core network, which is not limited thereto.
  • the method may include: the first session management network element obtains the IP address information of the visited network; the first session management network element sends the IP address information to the edge application server discovery network element, and the first session management network element and the edge application server discovery network element It is a network element deployed in the home network; the edge application server discovers that the network element receives IP address information.
  • the edge application server discovers that the network element receives the DNS query message; the edge application server discovers that the network element adds the domain name system extension mechanism client subnet option to the DNS query message, the The domain name system extension mechanism client subnet option is determined based on the IP address information.
  • the edge application server discovers that the network element receives the DNS query message; the edge application server discovers that the network element forwards the DNS query message to a local DNS server address, and the local DNS server address It is determined based on the IP address information.
  • the IP address information is information used to determine the domain name system DNS extension mechanism client subnet option, or the IP address information is the domain name system extension mechanism client subnet option or Local DNS server address.
  • a communication method is provided, and the method may be executed by a network element of the core network, or may also be executed by a component (such as a chip or a circuit) of the network element of the core network, which is not limited thereto.
  • the method may include: the second session management network element acquires indication information, and the indication information indicates that the visited network offload is allowed; the second session management network element sends the IP address information of the visited network to the user plane network element according to the indication information, wherein, the second The session management network element and the user plane network element are network elements deployed in the visited network; the user plane network element receives IP address information.
  • the user plane network element receives a DNS query message; the user plane network element adds a domain name system extension mechanism client subnet option to the DNS query message, and the domain name system extension mechanism Client subnet options are determined based on IP address information.
  • the user plane network element receives the DNS query message; the user plane network element forwards the DNS query message to a local DNS server address, and the local DNS server address is based on the IP address Information is determined.
  • the user plane network element sends the IP address information to the edge application server discovering the network element, and the edge application server discovers that the network element is a network element deployed in the home network.
  • the IP address information is information used to determine the domain name system DNS extension mechanism client subnet option, or the IP address information is the domain name system extension mechanism client subnet option or Local DNS server address.
  • a communication device is provided, and the device is configured to execute the method in any possible implementation manner of the foregoing first aspect to the sixth aspect.
  • the apparatus may include a unit and/or module, such as a processing unit and/or a communication unit, for executing the method in any possible implementation manner of the first aspect to the sixth aspect.
  • the device is a core network element.
  • the communication unit may be a transceiver, or an input/output interface;
  • the processing unit may be at least one processor.
  • the transceiver may be a transceiver circuit.
  • the input/output interface may be an input/output circuit.
  • the device is a chip, a chip system or a circuit for a core network element.
  • the communication unit may be an input/output interface, interface circuit, output circuit, input circuit, pin or related circuits, etc.
  • the processing unit may be at least one processor, processing circuit, or logic circuit, etc.
  • a communication device which includes: at least one processor, configured to execute a computer program or instruction stored in a memory, so as to perform the method in any possible implementation manner of the first aspect to the sixth aspect above .
  • the apparatus further includes a memory for storing computer programs or instructions.
  • the device further includes a communication interface, through which the processor reads the computer program or instructions stored in the memory.
  • the device is a core network element.
  • the device is a chip, a chip system or a circuit for a core network element.
  • the present application provides a processor configured to execute the methods provided in the foregoing aspects.
  • the processor's output and reception, input and other operations can also be understood as the sending and receiving operations performed by the radio frequency circuit and the antenna, which is not limited in this application.
  • a computer-readable storage medium where the computer-readable medium stores program code for execution by a device, and the program code includes a method for executing any one of the possible implementation manners of the first aspect to the sixth aspect above. method.
  • a computer program product containing instructions is provided, and when the computer program product is run on a computer, the computer executes the method in any possible implementation manner of the first aspect to the sixth aspect above.
  • a communication system including one or more of the aforementioned first session management network element, second session management network element, edge application server discovery network element, and user plane network element.
  • Fig. 1 shows a schematic diagram of a network architecture.
  • Fig. 2 shows a schematic diagram of another network architecture.
  • FIG. 3 is a schematic diagram of a communication method 300 provided by an embodiment of the present application.
  • FIG. 4 is a schematic diagram of another communication method 400 provided by an embodiment of the present application.
  • FIG. 5 is a schematic flowchart of a communication method 500 provided by an embodiment of the present application.
  • FIG. 6 is a schematic flowchart of another communication method 600 provided by an embodiment of the present application.
  • FIG. 7 is a schematic flowchart of another communication method 700 provided by an embodiment of the present application.
  • FIG. 8 is a schematic flowchart of another communication method 800 provided by an embodiment of the present application.
  • FIG. 9 is a schematic flowchart of another communication method 900 provided by an embodiment of the present application.
  • FIG. 10 is a schematic flowchart of another communication method 1000 provided by an embodiment of the present application.
  • FIG. 11 is a schematic flowchart of another communication method 1100 provided by an embodiment of the present application.
  • FIG. 12 shows a schematic block diagram of a communication device 1200 provided by an embodiment of the present application.
  • FIG. 13 shows a schematic block diagram of another communication device 1300 provided by an embodiment of the present application.
  • the technical solution provided by this application can be applied to various communication systems, such as: the fifth generation (5th generation, 5G) or new radio (new radio, NR) system, long term evolution (long term evolution, LTE) system, LTE frequency division Duplex (frequency division duplex, FDD) system, LTE time division duplex (time division duplex, TDD) system, etc.
  • 5G fifth generation
  • NR new radio
  • long term evolution long term evolution
  • LTE long term evolution
  • LTE frequency division Duplex frequency division duplex
  • FDD frequency division duplex
  • TDD time division duplex
  • the technical solution provided by this application can also be applied to device to device (device to device, D2D) communication, vehicle to everything (vehicle-to-everything, V2X) communication, machine to machine (machine to machine, M2M) communication, machine type Communication (machine type communication, MTC), and Internet of things (internet of things, IoT) communication system or other communication systems.
  • D2D device to device
  • V2X vehicle-to-everything
  • M2M machine to machine
  • M2M machine type Communication
  • MTC machine type communication
  • IoT Internet of things
  • Fig. 1 shows a schematic diagram of a network architecture.
  • the network architecture takes home routed (HR) roaming as an example.
  • a cellular mobile communication network of a certain standard of an operator may be called a public land mobile network (PLMN).
  • PLMN public land mobile network
  • the PLMN to which the user equipment (user equipment, UE) subscribes may be called a home public land mobile network (public land mobile network, PLMN) (home PLMN, HPLMN), representing the home operator of the subscriber.
  • PLMN public land mobile network
  • HPLMN home public land mobile network
  • a roaming agreement refers to a certain agreement between operators.
  • the content may include, but is not limited to: services and billing methods provided for subscribers of the other operator's network, and there are no restrictions on this), then the UE The PLMN can be accessed, and the PLMN can be called a visited public land mobile network (visited PLMN, VPLMN).
  • the behavior of the UE accessing the VPLMN may be called roaming.
  • Roaming scenarios can be divided into local breakout (LBO) roaming and home routed (HR) roaming. The difference between the two mainly lies in whether the session is connected to the UPF of the home network.
  • the session eg called HR session
  • the HR session refers to the session established when the user is located in the visited network and connected to the UPF of the home network.
  • the traffic carried in the HR session is sent from the UE to the UPF of the home network, and then sent to the receiving end .
  • the network architecture may include but not limited to: network slice specific authentication and authorization function (NSSAAF), network slice selection function (NSSF), authentication server Function (authentication server function, AUSF), unified data management (unified data management, UDM), policy control function (policy control function, PCF), application function (application function, AF), access and mobility management function (access and mobility management function (AMF), session management function (session management function, SMF), user equipment (user equipment, UE), wireless access network equipment, user plane function (user plane function, UPF), data network (data network, DN) etc.
  • NSSAAF network slice specific authentication and authorization function
  • NSSF network slice selection function
  • authentication server Function authentication server function, AUSF
  • UDM unified data management
  • policy control function policy control function
  • application function application function, AF
  • access and mobility management function access and mobility management function
  • session management function session management function
  • SMF session management function
  • user equipment user equipment
  • UE user plane function
  • UPF user plane function
  • data network data network
  • Each network element shown in FIG. 1 is briefly introduced below.
  • UE can be called terminal equipment, access terminal, subscriber unit, subscriber station, mobile station, mobile station, remote station, remote terminal, mobile device, user terminal, terminal, wireless communication device, user agent or user device.
  • a terminal device may be a device that provides voice/data to a user, for example, a handheld device with a wireless connection function, a vehicle-mounted device, and the like.
  • some terminals are: mobile phone (mobile phone), tablet computer, notebook computer, palmtop computer, mobile internet device (mobile internet device, MID), wearable device, virtual reality (virtual reality, VR) device, augmented reality (augmented reality, AR) equipment, wireless terminals in industrial control, wireless terminals in self driving, wireless terminals in remote medical surgery, smart grid Wireless terminals in transportation safety, wireless terminals in smart city, wireless terminals in smart home, cellular phones, cordless phones, session initiation protocol , SIP) phones, wireless local loop (wireless local loop, WLL) stations, personal digital assistants (personal digital assistant, PDA), handheld devices with wireless communication capabilities, computing devices or other processing devices connected to wireless modems, Wearable devices, terminal devices in a 5G network, or terminal devices in a future evolving public land mobile network (PLMN), etc., are not limited in this
  • the terminal device may also be a wearable device.
  • Wearable devices can also be called wearable smart devices, which is a general term for the application of wearable technology to intelligently design daily wear and develop wearable devices, such as glasses, gloves, watches, clothing and shoes.
  • a wearable device is a portable device that is worn directly on the body or integrated into the user's clothing or accessories. Wearable devices are not only a hardware device, but also achieve powerful functions through software support, data interaction, and cloud interaction.
  • Generalized wearable smart devices include full-featured, large-sized, complete or partial functions without relying on smart phones, such as smart watches or smart glasses, etc., and only focus on a certain type of application functions, and need to cooperate with other devices such as smart phones Use, such as various smart bracelets and smart jewelry for physical sign monitoring.
  • the terminal device can also be the terminal device in the IoT system.
  • IoT is an important part of the development of information technology in the future. Its main technical feature is to connect items to the network through communication technology, so as to realize Interconnection, an intelligent network that interconnects things.
  • a certain air interface technology such as NR or LTE technology
  • a certain air interface technology may also be used to communicate with each other between terminal devices.
  • the device for realizing the function of the terminal device may be the terminal device, or may be a device capable of supporting the terminal device to realize the function, such as a chip system or a chip, and the device may be installed in the terminal device.
  • the system-on-a-chip may be composed of chips, or may include chips and other discrete devices.
  • (wireless) access network ((radio) access network, (R) AN) equipment it can provide authorized users in a specific area with the function of accessing the communication network, specifically including the third generation partnership project (3rd generation partnership)
  • the wireless network device in the project, 3GPP) network may also include an access point in a non-3GPP (non-3GPP) network.
  • non-3GPP non-3GPP
  • AN devices may use different wireless access technologies.
  • 3GPP access technologies for example, wireless access technologies used in third generation (3rd generation, 3G), fourth generation (4th generation, 4G) or 5G systems
  • non- 3GPP (non-3GPP) access technology refers to the access technology that complies with the 3GPP standard specifications.
  • the access network equipment in the 5G system is called the next generation Node Base station (gNB) or RAN equipment.
  • Non-3GPP access technologies may include air interface technology represented by access point (AP) in wireless fidelity (WiFi), worldwide interoperability for microwave access (WiMAX), code Multiple access (code division multiple access, CDMA), etc.
  • the AN device may allow non-3GPP technology interconnection and intercommunication between the terminal device and the 3GPP core network.
  • the AN device can be responsible for functions such as wireless resource management, quality of service (QoS) management, data compression and encryption on the air interface side.
  • QoS quality of service
  • the AN equipment provides access services for the terminal equipment, and then completes the forwarding of control signals and user data between the terminal equipment and the core network.
  • AN equipment may include, but not limited to, for example: a macro base station, a micro base station (also called a small station), a radio network controller (radio network controller, RNC), a node B (Node B, NB), a base station controller (base station controller) , BSC), base transceiver station (base transceiver station, BTS), home base station (for example, home evolved NodeB, or home Node B, HNB), baseband unit (baseband unit, BBU), AP in WiFi system, wireless relay Node, wireless backhaul node, transmission point (transmission point, TP) or transmission and reception point (transmission and reception point, TRP), etc., can also be gNB or transmission point (TRP or TP) in the 5G (eg, NR) system , one or a group (including multiple antenna panels) antenna panels of the base station in the 5G system, or it can also be a network node that constitutes a gNB or a transmission point, such as a distributed unit
  • AMF mainly used for functions such as access control, mobility management, attachment and detachment.
  • SMF mainly used for user plane network element selection, user plane network element redirection, Internet protocol (internet protocol, IP) address allocation of terminal equipment, and session management in mobile networks, such as session establishment, modification and release And service quality (quality of service, QoS) control.
  • IP Internet protocol
  • the SMF in the HPLMN is recorded as the home SMF (home SMF, H-SMF), and the SMF in the VPLMN is recorded as the visited SMF (visited SMF, V-SMF).
  • UPF mainly used for receiving and forwarding user plane data.
  • the UPF can receive user plane data from the DN, and send the user plane data to the terminal device through the AN device.
  • UPF can also receive user plane data from terminal equipment through AN equipment and forward it to DN.
  • the UPF directly connected to the DN through the N6 interface in the session can be called a protocol data unit (protocol data unit, PDU) session anchor (PDU session anchor, PSA).
  • PDU protocol data unit
  • PSA protocol data unit
  • the UPF in the HPLMN is recorded as the home UPF (home UPF, H-UPF), and the UPF in the VPLMN is recorded as the visited UPF (visited UPF, V-UPF).
  • the PSA in the HPLMN is recorded as the home PSA (home PSA, H-PSA)
  • the PSA in the VPLMN is recorded as the visited PSA (visited PSA, V-PSA) (or recorded as the local PSA (local PSA, L-PSA)).
  • PCF A unified policy framework mainly used to guide network behavior, and provide policy rule information for control plane network elements (such as AMF, SMF, etc.).
  • AF It is mainly used to provide services to the 3GPP network, such as interacting with the PCF for policy control.
  • Network slice selection function (network slice selection function, NSSF): mainly used for network slice selection.
  • UDM mainly used for UE subscription data management, including storage and management of UE ID, UE access authorization, etc.
  • DN It is mainly used for the operator network that provides data services for the UE.
  • the Internet Internet
  • a third-party service network IP multimedia service (IP multi-media service, IMS) network, and the like.
  • IP multimedia service IP multi-media service, IMS
  • AUSF mainly used for user authentication, etc.
  • Fig. 2 shows a schematic diagram of another network architecture.
  • the network architecture can be understood as an enhancement of the HR roaming architecture shown in FIG. 1 .
  • the network architecture may include but not limited to: SMF (such as V-SMF and H-SMF), UE, UPF (such as V-UPF and H-UPF), PSA (such as L-PSA), domain name system (domain name system, DNS), PCF (such as H-PCF), and edge application server discovery function (EASDF).
  • SMF such as V-SMF and H-SMF
  • UPF such as V-UPF and H-UPF
  • PSA such as L-PSA
  • domain name system domain name system
  • DNS domain name system
  • H-PCF edge application server discovery function
  • EASDF edge application server discovery function
  • the DNS message can be terminated at the EASDF of the HPLMN, which can indicate that the EASDF of the HPLMN processes the DNS message, or can indicate that the destination address of the DNS message is the EASDF of the HPLMN, or can indicate that the EASDF of the HPLMN receives the DNS message.
  • the edge application server discovers network elements, for example, may also be called edge application (service) discovery function, application instance discovery function, edge application instance discovery function, MEC application (server) discovery function, etc., without limitation.
  • EASDF is mainly used to assist edge application server (edge application server, EAS) discovery, and its main functions include: processing DNS messages according to the instructions of SMF.
  • processing DNS messages may include but not limited to: reporting DNS messages to SMF, adding EDNS client subnet option (Edns-client-subnet option, ECS option) to DNS query (DNS query), forwarding DNS query to DNS server , and forward the DNS response (DNS response) to the UE.
  • EDNS is a DNS extension mechanism (extended mechanisms for DNS, EDNS).
  • the DNS in HPLMN is marked as C-DNS
  • the UPF in VPLMN is marked as L-DNS.
  • the UE is connected to the AN device through the radio resource control (radio resource control, RRC) protocol, and Uu is used between the UE and the AN device. interface for communication.
  • RRC radio resource control
  • the network architecture shown above is only an example, and the network architecture applicable to the embodiment of the present application is not limited thereto, and any network architecture capable of realizing the functions of the foregoing network elements is applicable to the embodiment of the present application.
  • the network architecture shown above may also include other more network elements, such as network storage function (network function (NF) repository function, NRF), which is not limited.
  • NF network function repository function
  • the NRF in the HPLMN is recorded as the home NRF (home NRF, H-NRF)
  • the NRF in the VPLMN is recorded as the visited NRF (visited NRF, V-NRF).
  • the functions or network elements such as AMF, SMF, UPF, PCF, UDM, NSSF, and AUSF shown in Figure 1 or Figure 2 can be understood as network elements for implementing different functions, for example, they can be combined into Network slicing.
  • These network elements can be independent devices, or can be integrated in the same device to achieve different functions, or can be network elements in hardware devices, or software functions running on dedicated hardware, or platforms (for example, cloud The virtualization function instantiated on the platform), this application does not limit the specific form of the above network elements.
  • an edge computing (EC) deployment scenario certain services may be served by multiple EASs deployed at the edge of the network.
  • the multiple EASs can provide the same service and content, and most of them have different IP addresses.
  • the UE accesses the service, it can request it to access an available EAS that is close to the UE. Therefore, it is more important to obtain a suitable IP address of EAS.
  • the UE may access the VPLMN through HR roaming, and the VPLMN provides services for the UE. If roaming access is required through HR, for these services, since the session anchor point is in HPLMN, the distance between the application server (application server, AS) IP returned by the remote DNS server (server) and the H-UPF is close, but may be different from that of the H-UPF. The UE is far away, resulting in a long path for the UE to access the AS, resulting in poor user experience. Therefore, existing edge service discovery mechanisms cannot be used in HR roaming scenarios.
  • This application proposes a solution, through the IP address of VPLMN (such as the information used to determine the ECS option, such as ECS option or L-DNS server, etc.) to achieve access to services in the VPLMN, to achieve local HR roaming scenarios Discovery of EAS.
  • IP address of VPLMN such as the information used to determine the ECS option, such as ECS option or L-DNS server, etc.
  • the session management network element of the HPLMN fetches the IP address information of the visited network (such as the information used to determine the ECS option, such as the ECS option or the L-DNS server, etc.), and sends it to the edge application server of the HPLMN to discover the network element.
  • the edge application server can discover the network element based on the obtained IP address information.
  • the edge application server of HPLMN after the edge application server of HPLMN discovers that the network element receives the DNS query message from the terminal device, it can add the ECS option determined based on the IP address information in the DNS query or forward the DNS query message to the DNS query message based on the IP address information.
  • the determined L-DNS server for example, the IP address information is the address information of the L-DNS server), etc., so as to realize the discovery of the local EAS in the HR roaming scenario.
  • the session management network element of the VPLMN obtains information #B, and the information #B indicates that the visited network offload is allowed, and the session management network element of the VPLMN may send the IP address information of the visited network to the user plane network element of the VPLMN according to the information #B (such as the information used to determine the ECS option, such as ECS option or L-DNS server address).
  • the terminal device accesses the visited network through HR roaming, the terminal device can access services in the visited network through the IP address information.
  • the user plane network element of the VPLMN can add the ECS option to the DNS query message, or the user plane network element of the VPLMN sends the ECS option or the information used to determine the ECS option to the edge application server discovery network element, and the edge application server
  • the discovery network element can add the ECS option to the DNS query message, etc., so as to realize the discovery of the local EAS in the HR roaming scenario.
  • FIG. 3 is a schematic diagram of a communication method 300 provided by an embodiment of the present application.
  • Method 300 may include the following steps.
  • the first session management network element acquires IP address information of the visited network, where the first session management network element is a network element deployed in the home network.
  • the visited network refers to the network that the terminal equipment accesses after leaving the home network, such as VPLMN.
  • VPLMN the network that the terminal equipment accesses after leaving the home network.
  • the home network refers to the network signed by the terminal equipment, such as HPLMN.
  • HPLMN terminal equipment
  • the first session management network element is a network element deployed in the HPLMN.
  • the first session management network element is an H-SMF.
  • the IP address information refers to the information (information) used to determine the ECS option, or the IP address information is the ECS option, or the IP address information is the IP address of the subnet or prefix.
  • the H-SMF obtains information #A, and the information #A is used to determine the ECS option (that is, the ECS option of the VPLMN).
  • the information #A is information for determining the ECS option
  • the information #A may also be the ECS option.
  • the ECS option mentioned below refers to the ECS option of VPLMN.
  • information #A refers to a local DNS (local DNS, L-DNS) server address.
  • the H-SMF acquires information #A, where the information #A is the address of the L-DNS server.
  • IP address information can also be described as a media access control (media access control, MAC) address of the subnet. This application does not limit the representation form of the IP address information.
  • media access control media access control
  • the ECS option is taken as an example, and this application is not limited thereto.
  • the ECS option can also be replaced with the L-DNS server address.
  • the action of adding the ECS option to the DNS query can also be replaced Complete the action of forwarding the DNS query to the L-DNS server.
  • the first session management network element sends IP address information to the edge application server discovering the network element, and the edge application server discovers that the network element is a network element deployed in the home network.
  • the edge application server discovers that the network element is a network element deployed in the HPLMN.
  • the edge application server discovers that the network element is H-EASDF.
  • the first session management network element deployed in the home network can obtain the IP address information of the visited network (such as the information used to determine the ECS option, such as the ECS option or L-DNS server), and send it to The edge application server discovers network elements.
  • the edge application server can discover the network element through the edge application server because it has obtained the IP address information of the visited network. Enable terminal devices to access services in the visited network.
  • the edge application server can add the ECS option determined based on the IP address information to the DNS query message, or forward the DNS query message to the DNS query message based on the IP address.
  • the L-DNS server determined by the information for example, the IP address information is the address information of the L-DNS server, so that the discovery of the local EAS in the HR roaming scenario can be realized.
  • the first session management network element obtains the IP address information of the visited network, including: the first session management network element obtains the IP address information of the visited network according to the indication information (for distinction, recorded as information #B), Information #B indicates that offloading of the visited network is allowed.
  • the indication information for distinction, recorded as information #B
  • Information #B indicates that offloading of the visited network is allowed.
  • the H-SMF obtains the IP address information of the VPLMN (that is, information #A).
  • the first session management network element sends information #A to the edge application server discovery network element, including: the first session management network element sends information #A to the edge application server discovery network element according to information #B, Information #B indicates that the offloading of the visited network is allowed (or information #B indicates that offloading is allowed).
  • the H-SMF sends the information #A to the H-EASDF.
  • the information #B indicates that the offloading of the visited network is allowed, and the information #B can also be described as indicating (or representing, or indicating) allowing (or authorizing, or expecting) the offloading. Wherein, "permit" may indicate authorization, or may also indicate expectation.
  • offloading allowed means offloading is allowed on the VPLMN.
  • the information #B indicates that offloading is allowed in the visited network, and may be replaced by information #B indicating that offloading is allowed in the VPLMN.
  • offloading is allowed, indicating whether the HPLMN allows local offloading of the VPLMN.
  • the information #B indicates that the offloading of the visited network is allowed, and information #B may also be replaced by indicating whether the HPLMN allows the local offloading of the VPLMN.
  • allowing splitting means that it is allowed to add (or use, or obtain) the ECS option (or allow the L-DNS server address to be obtained, or allow the DNS query to be forwarded to the L-DNS server).
  • information #B indicates that access network distribution is allowed, and it can also be replaced by information #B indicating that it is allowed to add (or use, or obtain) ECS option (or allow to obtain L-DNS server address, or allow DNS query to be forwarded to L- DNS server).
  • allowing splitting means adding (or using, or obtaining) the ECS option (or obtaining the address of the L-DNS server, or forwarding the DNS query to the L-DNS server).
  • information #B indicates that access network distribution is allowed, and can also be replaced by information #B indicating to add (or use, or obtain) ECS option (or obtain the address of the L-DNS server, or forward the DNS query to the L-DNS server) .
  • This application does not limit the specific content of "information #B".
  • the following is a unified description, mainly taking "Information #B" indicating whether offloading is allowed in the VPLMN as an example for illustration.
  • VPLMN offload may not be allowed (or not supported) , in this case, local distribution may not be performed on the VPLMN.
  • information #B in this application may be replaced with "authorization policy”, or may be replaced with “distribution policy”, or may be replaced with “roaming policy”, and so on.
  • information #B may be a cell, or may be a parameter, or may be in the form of a table, or the like.
  • the information #B indicates that the first service is allowed to be offloaded in the visited network.
  • the information #B includes the identifier of the first service, for example, the first session management network element may also send the identifier of the first service to the edge application server discovery network element.
  • the identifier of the first service and information #B may be carried in the same signaling, or may be sent separately, without limitation.
  • the first service may indicate that it is allowed to add (or use) the ECS option in the DNS query corresponding to the first service, or it may indicate that it is allowed to forward the message corresponding to the first service to L-DNS
  • the server or it can indicate that the ECS option is added in the uplink message, and the way to add it in the uplink message is not limited, such as adding a general packet radio service (general packet radio service, GPRS) tunneling protocol (GPRS Tunneling Protocol) at the user level for the user plane, GTP-U) header.
  • GPRS general packet radio service
  • GTP-U General packet radio service
  • the identifier of the first service can be any of the following: full qualified domain name (full qualified domain name, FQDN) (or FQDN range (range)), application identifier (application ID, AppID), IP address, port number . That is to say, information #B may include one or more of the following: FQDN (or FQDN range), application identifier, and IP address.
  • FQDN full qualified domain name
  • FQDN range range
  • application identifier IP address
  • port number IP address
  • information #B may include one or more of the following: FQDN (or FQDN range), application identifier, and IP address.
  • FQDN or FQDN range
  • IP address IP address
  • information #B includes one or more FQDNs, and the one or more FQDNs represent FQDNs corresponding to services that are allowed to be offloaded in the visited network (or represent FQDNs corresponding to services that are allowed to use the VPLMN ECS option).
  • the information #B includes two information elements, one information element is used to indicate that offloading is allowed in the visited network, and the other information element includes the one or more FQDNs, and the H-SMF can Knowing the services corresponding to the one or more FQDNs allows offloading in the visited network.
  • the information #B includes one or more FQDNs, and the H-SMF determines according to internal logic that the services corresponding to the one or more FQDNs are allowed to be offloaded in the visited network.
  • the information #B includes one or more FQDNs, and the one or more FQDNs represent the FQDNs corresponding to the services that are not allowed to be offloaded in the visited network (or the FQDNs corresponding to the services that are not allowed to use the VPLMN ECS option).
  • the information #B includes two information elements, one information element is used to indicate that offloading in the visited network is not allowed, and the other information element includes the one or more FQDNs, and the H-SMF according to the information #B It can be learned that the services corresponding to the one or more FQDNs are not allowed to be offloaded on the visited network.
  • the information #B includes one or more FQDNs
  • the H-SMF determines according to internal logic that services corresponding to the one or more FQDNs are not allowed to be offloaded in the visited network.
  • the H-SMF may learn that services corresponding to other FQDNs (that is, FQDNs other than the one or more FQDNs) are allowed to offload in the visited network.
  • the information #B includes one or more FQDN#1, and one or more FQDN#2, the one or more FQDN#1 represents the FQDN corresponding to the service that is allowed to be offloaded in the visited network, and the one or more FQDN #2 indicates the FQDN corresponding to the service that is not allowed to be offloaded on the visited network.
  • information #B includes three information elements, one information element is used to indicate that the service corresponding to FQDN #1 is allowed to be offloaded in the visited network, and the other information element includes the one or more FQDN #1, Another information element includes the one or more FQDN#2, and the H-SMF can learn from the information #B that the service corresponding to the one or more FQDN#1 is allowed to be offloaded in the visited network, and the one or more FQDN#2 corresponding to Services are not allowed to be distributed on the visiting network.
  • information #B includes three information elements, one information element is used to indicate that the service corresponding to FQDN #2 is not allowed to be offloaded in the visited network, and the other information element includes the one or more FQDN# 1.
  • Another information element includes the one or more FQDN#2.
  • the H-SMF can learn that the service corresponding to the one or more FQDN#1 is allowed to be offloaded in the visited network.
  • the one or more FQDN#2 Corresponding services are not allowed to be offloaded on the visited network.
  • information #B includes two information elements, one information element includes the one or more FQDN#1, and the other information element includes the one or more FQDN#2, and the H-SMF according to The internal logic determines that the services corresponding to the one or more FQDN#1 are allowed to be offloaded in the visited network, and the services corresponding to the one or more FQDN#2 are not allowed to be offloaded in the visited network.
  • the information #B has a corresponding relationship with the PLMN.
  • information #B may be associated with a PLMN, and by determining the PLMN, information #B corresponding to (or associated with) the PLMN may be determined.
  • information #B may exist in the form of Table 1.
  • the PLMN ID in Table 1 may be the ID of the VPLMN. For example, if it is determined that the VPLMN is PLMN #2, it can be known that the information #B corresponding to the VPLMN is information #B2. If the information #B2 is used to indicate that PLMN#2 allows local offloading, then local offloading can be performed on the VPLMN.
  • the PLMN ID in Table 1 may be the ID of the HPLMN. For example, if it is determined that the HPLMN is PLMN#1, it can be known that the information #B corresponding to the HPLMN is information #B1. If the information #B1 is used to indicate that PLMN#1 allows VPLMN local offloading, local offloading can be performed on the VPLMN.
  • Table 1 is only an illustration and is not limited thereto, and any modification belonging to Table 1 is applicable to this application.
  • the PLMN ID in the above table 1 can also be replaced with an SMF ID, such as PLMN#1 can be replaced with one or more SMF IDs (i.e. the IDs of one or more SMFs corresponding to the PLMN#1).
  • the corresponding relationship #A there is a corresponding relationship between the PLMN and the information #A, such as denoted as the corresponding relationship #A. That is to say, based on the PLMN and the corresponding relationship #A, the information #A of the PLMN can be determined. Through this information #A, the ECS option can be determined.
  • the corresponding relationship #A can exist in the form of Table 2.
  • the H-SMF determines that the PLMN is PLMN#2, and determines that the information #A corresponding to the PLMN is information #A2, then the H-SMF can send the information #A2 to the H-EASDF, so that the H-EASDF can Message #A2 determines the ECS option.
  • Table 2 is only an illustration and is not limited thereto, and any modification belonging to Table 2 is applicable to this application.
  • the PLMN ID in the above table 2 can also be replaced by an SMF ID, such as PLMN#2 can be replaced by one or more SMF IDs (that is, the IDs of one or more SMFs corresponding to the PLMN#2).
  • the information #A in the above Table 2 can be replaced with ECS option or L-DNS server address.
  • the PLMN, information #B and information #A have a corresponding relationship, for example, it is denoted as corresponding relationship #B. That is to say, based on the PLMN and the corresponding relationship #B, information #B and information #A corresponding to the PLMN can be determined. Through this information #A, the ECS option can be determined.
  • Table 1 and Table 2 above are used in combination. For example, if it is determined that the PLMN is PLMN#1, it can be learned that the information #B corresponding to the PLMN is information #B1 based on Table 1, and the information #A corresponding to the PLMN can be learned based on Table 2 as information #A1. The ECS option can be determined through this information #A1.
  • the corresponding relationship #B may exist in the form of Table 3.
  • PLMN ID Message #B Information#A PLMN#1 Message #B1 Message #A1 PLMN#2 Message #B2 Message #A2 PLMN#3 Message #B3 Message #A3
  • the PLMN is determined to be PLMN#2
  • the information #B corresponding to the PLMN is information #B2
  • the information #A corresponding to the PLMN is information #A2.
  • the ECS option can be determined through this information #A2.
  • the H-SMF determines that the PLMN is PLMN#2, and determines that the information #A corresponding to the PLMN is information #A2, then the H-SMF can send the information #A2 to the H-EASDF, so that the H-EASDF can Message #A2 determines the ECS option.
  • Table 3 is only an illustration and not limiting, and any modification belonging to Table 3 is applicable to this application.
  • the PLMN ID in the above table 3 can also be replaced by an SMF ID, such as PLMN#1 can be replaced by one or more SMF IDs (i.e. the IDs of one or more SMFs corresponding to the PLMN#1).
  • the information #A in the above Table 3 can be replaced with ECS option or L-DNS server address.
  • the method 300 further includes: the first session management network element acquires information #B.
  • the H-SMF can at least obtain information #B through any of the following methods.
  • H-SMF receives information #B.
  • H-SMF receives message #B from H-PCF or AF.
  • H-PCF or AF sends information #B to H-SMF
  • H-SMF receives information #B from H-PCF or AF accordingly.
  • the trigger condition may be that the H-SMF sends the VPLMN identifier to the H-PCF or the AF. Examples will be given later in conjunction with FIGS. 5 to 11 .
  • the H-SMF receives information #B from the H-NRF.
  • H-NRF sends information #B to H-SMF
  • H-SMF receives information #B from H-NRF accordingly.
  • the trigger condition may be that the H-SMF sends the VPLMN identifier to the H-NRF. Examples will be given later in conjunction with FIGS. 5 to 11 .
  • the H-SMF receives information #B from the V-SMF.
  • the V-SMF sends information #B to the H-SMF, and accordingly, the H-SMF receives information #B from the V-SMF.
  • the locally configured roaming protocol includes information #B corresponding to the VPLMN, and the H-SMF directly obtains the information #B corresponding to the VPLMN according to the locally configured roaming protocol.
  • the locally configured roaming agreement includes one or more pieces of information #B, and the H-SMF acquires the information #B according to the locally configured roaming agreement.
  • the one or more pieces of information #B may be information #B corresponding to one or more PLMNs, and the H-SMF may first determine the VPLMN, and then obtain the corresponding information #B according to the VPLMN.
  • the H-SMF may determine the information #B according to the message received from the V-SMF and the local configuration.
  • the message may be Nsmf_PDUSession_Create Request or Nsmf_PDUSession_Update Request message, etc., which are not limited in this application.
  • information #B may exist in the form of Table 1 in the H-SMF. Taking Table 1 as an example, for example, if the H-SMF determines that the VPLMN is PLMN#2, it can learn that the information #B corresponding to the VPLMN is information #B2. If the information #B2 is used to indicate that PLMN#2 allows local offloading, then local offloading can be performed on the VPLMN.
  • the VPLMN ID in Table 2 may be the ID of the VPLMN.
  • the H-SMF determines that the VPLMN is PLMN#2, it can learn that the information #A corresponding to the VPLMN is information #A2.
  • the H-SMF may identify the VPLMN according to the identifier of the network element deployed in the VPLMN (such as the identifier of the V-SMF or the identifier of other network elements).
  • the H-SMF receives the identification of the V-SMF (such as the V-SMF ID, which is not limited in the present application), and the H-SMF determines the identification of the VPLMN according to the identification of the V-SMF, that is, determines the VPLMN.
  • the H-SMF receives the VPLMN identifier from the V-SMF.
  • the H-SMF receives the message of the V-SMF, and determines the identity of the VPLMN according to the message.
  • the message may be Nsmf_PDUSession_Create Request or Nsmf_PDUSession_Update Request message, etc., which are not limited in this application.
  • obtaining the information #A by the first session management network element in step 310 includes: the first session management network element itself determines the information #A, or the first session management network element receives the information #A.
  • the first session management network element is an H-SMF as an example for description.
  • H-SMF receives information #A from V-SMF.
  • the V-SMF may actively deliver information #A.
  • the V-SMF sends the Nsmf_PDUSession_Create Request message to the H-SMF, and the message includes information #A.
  • the V-SMF may send information #A to the H-SMF based on the request of the H-SMF.
  • the method 300 further includes: the H-SMF sends request information #1 (that is, an example of the first request information) to the V-SMF, and the request information #1 is used to request the above information #A.
  • the implementation manner of request information #1 is not limited.
  • the request information #1 may be information #B, that is, the H-SMF sends the information #B to the V-SMF, and the information #B is used to request the above information #A.
  • the request information #1 may be implemented by using one or more bits, for example, requesting the above-mentioned information #A by using the one or more bit fields.
  • the request information #1 itself has the function of requesting the above information #A, that is, the V-SMF sends the information #A to the H-SMF after receiving the request information #1.
  • H-SMF receives information #A from H-NRF.
  • the H-NRF may send information #A to the H-SMF based on the request of the H-SMF.
  • the method 300 further includes: the H-SMF sends request information #2 (that is, an example of the second request information) to the H-NRF, and the request information #2 is used to request the above information #A.
  • the H-NRF can determine the information #A according to the local configuration.
  • the H-NRF directly sends a response requesting information #2 to the H-SMF, and the response carries information #A.
  • the H-NRF receives the request message #2, it can receive the message #A from the V-NRF.
  • the implementation manner of request information #2 is not limited.
  • the request information #2 may be information #B, that is, the H-SMF sends the information #B to the H-NRF, and the information #B is used to request the above information #A.
  • the request information #2 may be implemented through one or more bits, such as requesting the above information #A through the one or more bit fields.
  • the request information #2 itself has the function of requesting the above information #A, that is, the H-NRF sends the information #A to the H-SMF after receiving the request information #2.
  • the request message #2 may also include an identifier of the VPLMN, such as a VPLMN ID.
  • H-SMF itself determines information #A.
  • VPLMN may correspond to one or more information #A.
  • the H-SMF may first determine the VPLMN, and then determine the information #A corresponding to the VPLMN according to the corresponding relationship between the VPLMN and the information #A (such as the corresponding relationship #A).
  • the H-SMF may identify the VPLMN according to the identifier of the network element deployed in the VPLMN (such as the identifier of the V-SMF or the identifier of other network elements).
  • the H-SMF receives the identification of the V-SMF (such as the V-SMF ID, which is not limited in the present application), and the H-SMF determines the identification of the VPLMN according to the identification of the V-SMF, that is, determines the VPLMN.
  • the H-SMF receives the VPLMN identifier from the V-SMF.
  • the H-SMF receives the message of the V-SMF, and determines the identity of the VPLMN according to the message.
  • the message may be Nsmf_PDUSession_Create Request or Nsmf_PDUSession_Update Request message, etc., which are not limited in this application.
  • a V-SMF may correspond to one or more pieces of information #A.
  • the H-SMF may first determine the V-SMF, and then determine the information #A corresponding to the V-SMF according to the correspondence between the V-SMF and the information #A. For example, the H-SMF receives the identification of the V-SMF (such as the V-SMF ID, which is not limited in this application), and the H-SMF determines the information #A corresponding to the V-SMF according to the identification of the V-SMF.
  • the identification of the V-SMF such as the V-SMF ID, which is not limited in this application
  • information #B may include the identification of the first service, such as FQDN (or FQDN range), application identification, IP address, port number, if H-SMF configures information #B locally and receives information #B , the H-SMF can determine information #A according to locally configured information #B and/or received information #B.
  • FQDN or FQDN range
  • application identification IP address
  • port number if H-SMF configures information #B locally and receives information #B , the H-SMF can determine information #A according to locally configured information #B and/or received information #B.
  • FQDN or FQDN range
  • the information #B locally configured by the H-SMF is recorded as the first information #B (that is, an example of the first indication information), and the information #B received by the H-SMF is recorded as the second information #B (that is, an example of the second indication information)
  • the FQDN is represented by FQDN#3
  • the FQDN is represented by FQDN#4.
  • FQDN#3 may include one or more FQDNs.
  • FQDN#3 includes: the FQDN corresponding to the business that is allowed to be offloaded in VPLMN (or the FQDN corresponding to the business that is allowed to use the VPLMN ECS option), and/or the FQDN corresponding to the business that is not allowed to be offloaded on the VPLMN (or not allowed to use the VPLMN ECS option the FQDN corresponding to the service).
  • FQDN#4 may include one or more FQDNs.
  • FQDN#4 includes: the FQDN corresponding to the service that is allowed to be offloaded in VPLMN (or the FQDN corresponding to the service that is allowed to use the VPLMN ECS option), and/or the FQDN corresponding to the service that is not allowed to be offloaded on the VPLMN (or not allowed to use the VPLMN ECS option the FQDN corresponding to the service).
  • the first information #B includes FQDN #3
  • the second information #B includes FQDN #4.
  • the H-SMF determines that the target FQDN is FQDN#4, for example, information #A can be used to determine and/or add ECS option for the DNS query corresponding to FQDN#4.
  • information #A can be used to determine and/or add ECS option for the DNS query corresponding to FQDN#4.
  • the service is allowed to use the VPLMN ECS option.
  • the UE sends a DNS query message to request the edge service (or to request the address of the edge server); if the FQDN contained in the DNS query message matches FQDN#4, the ECS option can be added to the DNS query message.
  • H-SMF determines that the target FQDN is the intersection of FQDN#3 and FQDN#4 (for example, it is recorded as FQDN#5), for example, information #A can be used for DNS query corresponding to FQDN#5 Determine and/or add ECS option.
  • FQDN of a certain service matches the target FQDN (namely FQDN#5)
  • the service is allowed to use the VPLMN ECS option.
  • the UE sends a DNS query message to request the edge service (or to request the address of the edge server); if the FQDN contained in the DNS query message matches the FQDN#5, the ECS option can be added to the DNS query message .
  • the H-SMF determines that the target FQDN is FQDN#3, for example, information #A can be used to determine and/or add ECS option for the DNS query corresponding to FQDN#3.
  • information #A can be used to determine and/or add ECS option for the DNS query corresponding to FQDN#3.
  • the service is allowed to use the VPLMN ECS option.
  • the UE sends a DNS query message to request the edge service (or to request the address of the edge server); if the FQDN contained in the DNS query message matches FQDN#3, the ECS option can be added to the DNS query message.
  • the H-SMF determines that the target FQDN is the union of FQDN#3 and FQDN#4 (for example, it is recorded as FQDN#6), for example, information #A can be used for DNS corresponding to FQDN#6 query to determine and/or add ECS option.
  • the target FQDN namely FQDN#6
  • the service is allowed to use the VPLMN ECS option.
  • the UE sends a DNS query message to request the edge service (or to request the address of the edge server); if the FQDN contained in the DNS query message matches the FQDN#6, the ECS option can be added to the DNS query message .
  • the H-SMF determines that the target FQDN is FQDN#7, and the FQDN#7 is determined by the H-SMF according to FQDN#3 and FQDN#4, and is not limited to 4. Any one of FQDN#5 and FQDN#6.
  • information #A can be used to determine and/or add ECS option for DNS query corresponding to FQDN#7.
  • the FQDN of a certain service matches the target FQDN (ie FQDN#7)
  • the service is allowed to use the VPLMN ECS option.
  • the UE sends a DNS query message to request the edge service (or to request the address of the edge server); if the FQDN contained in the DNS query message matches the FQDN#7, the ECS option can be added to the DNS query message .
  • the first information #B does not include FQDN #3, and the second information #B includes FQDN #4.
  • the H-SMF determines that the target FQDN is FQDN#4, for example, the information #A can be used to determine and/or add the ECS option for the DNS query corresponding to FQDN#4.
  • the FQDN of a certain service matches the target FQDN (namely FQDN#4)
  • the service is allowed to use the VPLMN ECS option.
  • the UE sends a DNS query message to request the edge service (or to request the address of the edge server); if the FQDN contained in the DNS query message matches FQDN#4, the ECS option can be added to the DNS query message.
  • Case 3 the first information #B includes FQDN #3, and the second information #B does not include FQDN #4.
  • the H-SMF determines that the target FQDN is FQDN#3, for example, information #A can be used to determine and/or add ECS option for the DNS query corresponding to FQDN#3.
  • information #A can be used to determine and/or add ECS option for the DNS query corresponding to FQDN#3.
  • the FQDN of a certain service matches the target FQDN (namely FQDN#3)
  • the service is allowed to use the VPLMN ECS option.
  • the UE sends a DNS query message to request the edge service (or to request the address of the edge server); if the FQDN contained in the DNS query message matches FQDN#3, the ECS option can be added to the DNS query message.
  • the H-SMF determines that the target FQDN includes FQDNs of services not deployed at the edge of the HPLMN, or the H-SMF determines that the target FQDN is all FQDNs. It should be noted that this determining action is optional.
  • information #A can be used to determine and/or add the ECS option for the DNS query corresponding to the target FQDN (such as the FQDN of the service not deployed at the edge of the HPLMN). For example, based on this method, when the FQDN of a certain service matches the target FQDN, the service is allowed to use the VPLMN ECS option.
  • the UE sends a DNS query message to request the edge service (or to request the address of the edge server); if the FQDN target FQDN contained in the DNS query message matches, the ECS option can be added to the DNS query message. It can be understood that in this case, the H-SMF may not send the FQDN to the H-EASDF.
  • the H-SMF determines that the target FQDN includes FQDNs of services not deployed at the edge of the HPLMN, or the H-SMF determines that the target FQDN is all FQDNs. It should be noted that this determining action is optional.
  • information #A can be used to determine and/or add the ECS option for the DNS query corresponding to the target FQDN (such as the FQDN of the service not deployed at the edge of the HPLMN). For example, based on this method, when the FQDN of a certain service matches the target FQDN, the service is allowed to use the VPLMN ECS option.
  • the UE sends a DNS query message to request the edge service (or to request the address of the edge server); if the FQDN target FQDN contained in the DNS query message matches, the ECS option can be added to the DNS query message. It can be understood that in this case, the H-SMF may not send the FQDN to the EASDF.
  • determining the ECS option means determining the ECS option based on information #A, and adding it means that the DNS query message (or it can also be the upstream message) to add the ECS option.
  • the above main information #A uses the ECS option as an example for illustration, and this application is not limited thereto.
  • the ECS option can also be replaced with the address of the L-DNS server, and the action of adding the ECS option can also be replaced with the action of forwarding the DNS query to the L-DNS server.
  • FIG. 4 is a schematic diagram of another communication method 400 provided by an embodiment of the present application.
  • Method 400 may include the following steps.
  • the second session management network element acquires information #B, where the information #B indicates that offloading of the visited network is allowed.
  • the second session management network element is a network element deployed in the VPLMN.
  • the second session management network element is a V-SMF.
  • the second session management network element sends the IP address information of the visited network to the user plane network element according to the information #B.
  • the user plane network element is a network element deployed in the VPLMN.
  • the user plane network element is V-UPF, V-EASDF, or may also be: a module jointly established by UPF and EASDF network elements.
  • the IP address information (that is, information #A) refers to the information used to determine the ECS option, or the IP address information is the ECS option, or the IP address information is the IP address or prefix of the subnet; or, the information #A, Can refer to the L-DNS server address.
  • information #A reference may be made to the description in the method 300, which will not be repeated here.
  • the second session management network element deployed in the visited network can send the IP address information of the visited network to the user plane network element according to the instruction information (such as the information used to determine the ECS option, such as ECS option or L -DNS server address).
  • the terminal device accesses the visited network through HR roaming, the terminal device can access services in the visited network through the IP address information.
  • the user plane network element can add the ECS option determined based on the IP address information to the DNS query message, or the user plane network element can send the ECS option or the information used to determine the ECS option to the edge application server discovery network element, and the edge
  • the application server discovers that the network element can add the ECS option to the DNS query message, and there is no restriction on the way that the user plane network element sends the ECS option or the information used to determine the ECS option to the edge application server discovery network element. It can also send the DNS query message to the L-DNS server, so as to realize the discovery of the local EAS in the HR roaming scenario.
  • the method 400 further includes: acquiring the information #B by the second session management network element.
  • the V-SMF can at least obtain information #B through any of the following methods.
  • V-SMF receives message #B.
  • V-SMF receives message #B from H-SMF.
  • H-SMF sends information #B to V-SMF, and V-SMF receives information #B from H-SMF accordingly.
  • information #B can be sent through Nsmf_PDUSession_Create Response or Nsmf_PDUSession_Update Response, etc., which is not limited in this application.
  • V-SMF receives information #B from V-PCF or AF.
  • V-PCF or AF sends information #B to V-SMF, and correspondingly, V-SMF receives information #B from V-PCF or AF.
  • the locally configured roaming agreement includes the information #B corresponding to the HPLMN, and the V-SMF directly obtains the information #B corresponding to the HPLMN according to the locally configured roaming agreement.
  • the locally configured roaming agreement includes one or more pieces of information #B, and the V-SMF acquires the information #B according to the locally configured roaming agreement.
  • the one or more pieces of information #B may be information #B corresponding to one or more PLMNs, and the V-SMF may first determine the HPLMN, and then obtain the corresponding information #B according to the HPLMN.
  • information #B may exist in the form of Table 1 in the V-SMF. Taking Table 1 as an example, for example, if the V-SMF determines that the HPLMN is PLMN#2, it can learn that the information #B corresponding to the HPLMN is information #B2. If the information #B2 is used to indicate that the PLMN#2 allows the local offloading of the VPLMN, then the local offloading can be performed on the VPLMN.
  • the V-SMF may identify the HPLMN according to the identifier of the network element deployed in the HPLMN (such as the identifier of the H-SMF or the identifier of other network elements).
  • a possible manner V-SMF receives the identification of H-SMF from AMF (such as H-SMF ID, this application does not limit), V-SMF determines the identification of HPLMN according to the identification of this H-SMF, promptly determines HPLMN .
  • the V-SMF receives the identity of the HPLMN from the AMF.
  • the method 400 further includes: acquiring the information #A by the second session management network element.
  • the second session management network element obtains the IP address information of the visited network according to the information #B, and the information #B indicates that the visited network is allowed to offload.
  • the information #B can also be described as indicating (or representing, or indicating) that offloading is allowed.
  • the second session management network element may also acquire the IP address information of the visited network based on the request.
  • the V-SMF may determine information #A based on the request of the H-SMF.
  • the method 400 further includes: the second session management network element determines information #A.
  • the second session management network element is a V-SMF as an example.
  • V-SMF receives information #A from V-NRF.
  • the V-NRF may send information #A to the V-SMF based on the V-SMF's request.
  • the method 400 further includes: the V-SMF sends request information #3 to the V-NRF, where the request information #3 is used to request the above information #A.
  • the V-NRF can determine the information #3 according to the local configuration. In this case, the V-NRF directly sends a response requesting information #3 to the V-SMF, and the response carries information #A.
  • the implementation manner of request information #2 is not limited.
  • the request information #2 may be information #B, that is, the H-SMF sends the information #B to the H-NRF, and the information #B is used to request the above information #A.
  • the request information #2 may be implemented by using one or more bits, for example, requesting the above-mentioned information #A by using the one or more bit fields.
  • the request information #2 itself has the function of requesting the above information #A, that is, the H-NRF sends the information #A to the H-SMF after receiving the request information #2.
  • the request message #2 may also include an identifier of the VPLMN, such as a VPLMN ID.
  • V-SMF itself determines information #A.
  • HPLMN may correspond to one or more information #A.
  • the V-SMF may first determine the HPLMN, and then determine the information #A corresponding to the HPLMN according to the correspondence between the HPLMN and the information #A (such as the correspondence #A).
  • the V-SMF may identify the HPLMN according to the identifier of the network element deployed in the HPLMN (such as the identifier of the H-SMF or the identifier of other network elements).
  • the V-SMF receives the identification of the H-SMF (such as the H-SMF ID, which is not limited in the present application), and the V-SMF determines the identification of the HPLMN according to the identification of the H-SMF, that is, determines the HPLMN.
  • the V-SMF receives the identity of the HPLMN.
  • the H-SMF may correspond to one or more pieces of information #A.
  • the V-SMF may first determine the H-SMF, and then determine the information #A corresponding to the H-SMF according to the correspondence between the H-SMF and the information #A. For example, the V-SMF receives the identification of the H-SMF (such as the H-SMF ID, which is not limited in this application), and the V-SMF determines the information #A corresponding to the H-SMF according to the identification of the H-SMF.
  • the identification of the H-SMF such as the H-SMF ID, which is not limited in this application
  • V-SMF determines the information #A, it is applicable to this application.
  • the information #B includes the identifier of the second service, and the information #B indicates that the second service is allowed to be offloaded in the visited network.
  • the second session management network element may also send the identifier of the second service to the user plane network element.
  • the identifier of the second service and information #A may be carried in the same signaling, or may be sent separately, without limitation.
  • the identifier of the second service may be any of the following: FQDN (or FQDN range), application identifier, IP address, port number. For details, reference may be made to related descriptions in the method 300, which will not be repeated here.
  • the V-SMF can determine the information #A according to the locally configured information #B and/or the received information #B. Specifically, reference may be made to the description of Case 1 to Case 4 in the method 300, which will not be repeated here.
  • the method 400 further includes: after the user plane network element receives the information #A, it may have the following processing manner.
  • the user plane network element after receiving the DNS query, adds the ECS option determined based on information #A to the DNS query. For example, after the user plane network element receives the DNS query, if it determines that the DNS query is the DNS query corresponding to the packet of the second service, it adds the ECS option determined based on the information #A to the DNS query.
  • the user plane network element after receiving the DNS query, forwards the DNS query to the L-DNS server.
  • information #A is the address of the L-DNS server.
  • the user plane network element After receiving the DNS query, if the user plane network element determines that the DNS query is the DNS query corresponding to the message of the second service, it forwards the DNS query to L-DNS server.
  • the user plane network element after receiving the DNS query, the user plane network element requests the EASDF to add the ECS option determined based on information #A to the DNS query. Or, after receiving the information #A, the user plane network element sends the information #A to the EASDF, so that the EASDF can process it.
  • the user plane network element sends information #A to EASDF, and the EASDF may be H-EASDF.
  • the user plane network element adds the information #A to the GTP-U message header, and sends the information #A to the EASDF through the user plane message.
  • the user plane network element determines the ECS option according to the information #A, and then sends the ECS option to the EASDF, and the EASDF may be an H-EASDF.
  • the user plane network element adds the ECS option to the GTP-U message header, and sends information #A to EASDF through the user plane message.
  • the following mainly takes information #A as information for determining the ECS option as an example, and exemplifies the embodiment of the present application with reference to FIG. 5 to FIG. 11 .
  • the information #B can also be described as an authorization policy, and the following example assumes that the authorization policy is used for illustration. It can be understood that the authorization policy is the information #B mentioned above.
  • the authorization policy is the information #B mentioned above.
  • FIG. 5 is a schematic flowchart of a communication method 500 provided by an embodiment of the present application.
  • the method 500 can be used to implement a solution like the method 300, for example, the method 500 can be used in a scenario where the H-SMF determines information #A according to the local configuration and is added to the DNS query by the H-EASDF.
  • Method 500 may include the following steps.
  • the H-SMF acquires authorization policy #1.
  • the authorization policy #1 is used to indicate (or represent, or indicate) whether offloading is allowed in the VPLMN (or the authorization policy #1 is used to indicate whether offloading is allowed).
  • the authorization policy #1 refer to the description about the information #B in the method 300 above, which will not be repeated here.
  • H-SMF obtains authorization strategy #1, which can be implemented in at least one of the following ways:
  • H-SMF configures authorization policy #1 locally.
  • the H-SMF receives the authorization policy #1.
  • the authorization policy #1 is received from the V-SMF through other processes (such as a session establishment process).
  • the H-SMF may also obtain a correspondence relationship #A, and the correspondence relationship #A may be used to indicate the correspondence relationship between the VPLMN and the information #A.
  • authorization policy #1 includes this correspondence #A.
  • authorization policy #1 further includes target FQDN #1 (or FQDN range), and target FQDN #1 may include one or more FQDNs.
  • the target FQDN#1 includes: the FQDN corresponding to the service that is allowed to be offloaded in VPLMN (or the FQDN corresponding to the service that is allowed to use VPLMN ECS option), and/or the FQDN corresponding to the service that is not allowed to be offloaded in VPLMN (or not allowed to use FQDN corresponding to the service of VPLMN ECS option).
  • the target FQDN#1 includes the FQDN corresponding to the service that is allowed to be offloaded in the VPLMN.
  • the service is allowed to use the VPLMN ECS option.
  • the UE sends a DNS query message to request the edge service (or to request the address of the edge server); if the FQDN contained in the DNS query message matches the target FQDN#1, ECS can be added to the DNS query message option.
  • the UE initiates a session establishment process.
  • the UE can initiate the HR session establishment process.
  • This application does not limit the specific session establishment process.
  • the following method can be followed: after receiving the session establishment request from the UE, the AMF selects the V-SMF and H-SMF serving the HR session; the V-SMF and H-SMF receive the session establishment request After that, select the V-UPF and H-UPF serving the HR session respectively, create an N4 session, and send user plane tunnel information. If the session is established successfully, the network side returns a session establishment response to the UE, and then packets can be transmitted through the HR session.
  • step 502 does not limit the execution of a complete HR session establishment process, and multiple steps after step 502 may reuse (or reuse) the HR session establishment process, or in other words, multiple steps after step 502 may be performed during HR session establishment executed in the process.
  • the AMF sends the H-SMF ID to the V-SMF.
  • V-SMF can determine H-SMF according to H-SMF ID.
  • a possible implementation mode is to reuse the HR session establishment process, and the AMF sends the Nsmf interface PDU session establishment session management context request (Nsmf_PDUSession_CreateSMContext Request) message to the V-SMF, and the message carries the H-SMF ID.
  • Nsmf_PDUSession_CreateSMContext Request Nsmf interface PDU session establishment session management context request
  • Nsmf_PDUSession_CreateSMContext Request message is only an exemplary description and is not limited thereto.
  • the V-SMF sends the V-SMF ID to the H-SMF.
  • the H-SMF can determine the VPLMN ID according to the V-SMF ID, that is, determine the VPLMN.
  • the HR session establishment process is reused, and the V-SMF sends an Nsmf interface PDU session establishment request (Nsmf_PDUSession_Create Request) message to the H-SMF, which carries the V-SMF ID.
  • Nsmf_PDUSession_Create Request Nsmf interface PDU session establishment request
  • this step can also be described as the V-SMF sending the V-SMF ID and/or VPLMN ID to the H-SMF.
  • the H-SMF can directly determine the VPLMN ID.
  • the H-SMF may determine the VPLMN ID according to the message itself sent by the V-SMF.
  • Nsmf_PDUSession_Create Request message is only an exemplary description and is not limited thereto.
  • the H-SMF determines information #A according to the V-SMF ID and the corresponding relationship #A.
  • the authorization strategy #1 includes the corresponding relationship #A
  • the H-SMF determines the VPLMN ID according to the V-SMF ID, and then determines the information of the VPLMN according to the corresponding relationship #A included in the authorization strategy #1# a.
  • the H-PCF sends authorization policy #2 to the H-SMF.
  • authorization policy #2 is used to indicate (or characterize, or indicate) whether to allow offloading in the VPLMN (or authorization policy #1 is used to indicate whether to allow offloading).
  • the authorization policy #2 sent by the H-PCF can be configured locally by the H-PCF, or can also be provided by the AF, for example, the AF can provide the authorization policy #2 to the H-PCF through the AF request.
  • the authorization policy #2 refer to the description about the information #B in the method 300 above, which will not be repeated here.
  • the authorization policy #2 further includes a target FQDN #2 (or FQDN range), and the target FQDN #2 may include one or more FQDNs.
  • the target FQDN#2 includes: the FQDN corresponding to the service that is allowed to be offloaded in VPLMN (or the FQDN corresponding to the service that is allowed to use VPLMN ECS option), and/or the FQDN corresponding to the service that is not allowed to be offloaded in VPLMN (or not allowed to use FQDN corresponding to the service of VPLMN ECS option).
  • the target FQDN#2 includes the FQDN corresponding to the service that is allowed to be offloaded in the VPLMN.
  • the service is allowed to use the VPLMN ECS option.
  • the target FQDN#2 here may be the same as or different from the target FQDN#1 in step 501, without limitation.
  • a possible implementation manner is to reuse the HR session establishment process and realize it through the session management (session management, SM) policy association process.
  • the PDU session can be established or modified through SM signaling.
  • H-PCF sends authorization policy #2 to H-SMF.
  • a possible implementation manner is that after the H-SMF receives the Nsmf_PDUSession_Create Request message from the V-SMF in step 504, it triggers H-PCF selection. After the H-PCF selection is completed, the SM policy association establishment process (SM policy association establishment) or the SM policy association modification process (SM policy association modification) is triggered.
  • the SM policy association establishment process SM policy association establishment
  • the SM policy association modification process SM policy association modification
  • H-SMF sends an Npcf interface SM policy control establishment request (Npcf_SMPolicyControl_Create Request) message to H-PCF, which may contain one or more of the following: UE's subscriber permanent identifier (subscription permanent identifier) , SUPI) or permanent equipment identifier (PEI), PDU session identifier, data network name (data network name, DNN), single network slice selection assistance information (single network slice selection assistance information, S-NSSAI), wireless Access type (radio access technology, RAT) type, etc.
  • the H-PCF determines the authorization policy #2 according to the local configuration or obtains the subscription information of the UE and/or the subscription information of the session from the UDR, and establishes a response (Npcf_SMPolicyControl_Create Response) through the Npcf interface SM policy control
  • the message is sent to H-SMF.
  • the H-SMF may locally configure the authorization policy. If the H-SMF locally configures the authorization policy #1 in step 501, in this case, the H-PCF may not send the authorization policy #2 to the H-SMF, That is, step 506 does not need to be performed.
  • the H-SMF selects the H-EASDF.
  • This application does not limit the specific method for the H-SMF to select the H-EASDF.
  • the H-SMF when the H-SMF selects the H-EASDF, it may refer to one or more of the following information: S-NSSAI, location of the EASDF, IP address of the EASDF, IP address of the PSA, and DNAI. It can be understood that when the H-SMF selects the V-EASDF, it may refer to one or more pieces of information above, or may also refer to other unlisted information, which is not limited by this application.
  • the H-SMF selects the H-EASDF, at least through any of the following methods.
  • the H-SMF can select the H-EASDF according to the local configuration.
  • the H-SMF obtains the H-EASDF from the H-NRF.
  • the H-SMF sends a request message to the H-NRF, and the H-NRF returns the information of one or more H-EASDFs (such as including address, identification, etc.) to the H-SMF. If the H-NRF returns multiple H-EASDFs to the H-SMF, the H-SMF may select one of them.
  • the H-SMF determines DNS processing rules.
  • the H-SMF may determine (or formulate) DNS processing rules according to the information #A determined in step 505 .
  • the DNS processing rule may include the information #A determined in step 505, which is used by the H-EASDF to determine the ECS option, and then may be used to add the ECS option to the DNS query.
  • the H-SMF determines DNS processing rules according to the authorization policy. For example, if the authorization policy is used to indicate that offloading in the VPLMN is allowed, the H-SMF can determine the DNS processing rule according to information #A.
  • the authorization policy can be the authorization policy #2 received by the H-SMF in step 506, or it can also be the authorization policy locally configured by the H-SMF (such as the authorization policy #1 obtained in step 501), or it can also be It is authorization policy #3 determined by the H-SMF according to authorization policy #1 and/or authorization policy #2, without limitation.
  • the H-SMF determines DNS processing rules according to authorization policy #1 in step 501 .
  • the authorization policy #1 includes the target FQDN #1.
  • the DNS processing rule can also include the target FQDN #1, which is used to instruct the H-EASDF to detect the DNS query message.
  • the included FQDN is the same as When the target FQDN#1 in the DNS processing rule matches, add the ECS option to the DNS query message.
  • the authorization policy #1 does not include the target FQDN#1.
  • the DNS processing rule can be used to indicate to add the ECS option to the DNS query message of the FQDN range of the service not deployed on the edge of the HPLMN.
  • the H-SMF determines DNS processing rules according to authorization policy #2 in step 506 .
  • the authorization policy #2 includes the target FQDN #2.
  • the DNS processing rule can also include the target FQDN #2, which is used to instruct the H-EASDF to detect the DNS query message.
  • the included FQDN is the same as When the target FQDN#2 in the DNS processing rule matches, add the ECS option to the DNS query message.
  • the authorization policy #2 does not include the target FQDN#2.
  • the DNS processing rule can be used to indicate to add the ECS option to the DNS query message of the FQDN range of the service not deployed at the edge of the HPLMN.
  • the H-SMF sends the DNS processing rule to the H-EASDF.
  • the H-SMF sends the address of the H-EASDF to the UE.
  • the H-SMF sends the address of the H-EASDF to the UE through the AMF.
  • the H-SMF sends an N1 message (N1 Message) to the UE through the AMF, the N1 message includes an N1 SM container (container), and the N1 SM container carries the address of the H-EASDF.
  • the H-SMF sends the address of the H-EASDF to the AMF through a Namf_Communication_N1N2MessageTransfer message, and then the AMF sends the address of the H-EASDF to the UE through a non-access stratum (non-access stratum, NAS) message.
  • NAS non-access stratum
  • the UE and the AMF may interact through the N1 interface, and the interaction messages may be called NAS messages, for example.
  • UE sends DNS query to H-EASDF.
  • the UE sends the DNS query message to the H-EASDF via the RAN and UPF through the user plane.
  • H-EASDF adds ECS option to DNS query.
  • the H-EASDF can determine the ECS option according to the information #A, and then add the ECS option to the DNS query according to the DNS processing rule received in step 509.
  • H-EASDF can directly determine the ECS option based on the information #A received from H-SMF, and then add the ECS option in the DNS query.
  • the H-EASDF can request the ECS option or the information used to determine the ECS option from the H-SMF; after receiving the ECS option or the information used to determine the ECS option from the H-SMF, the H-EASDF determines and Add ECS option to DNS query.
  • H-EASDF requests ECS option from H-SMF, it can carry the FQDN included in the DNS query.
  • H-EASDF sends a Neasdf_DNSContext_Notify Request message to H-SMF, which may contain the FQDN contained in the DNS query, and receives a Neasdf_DNSContext_Notify Response message from H-SMF.
  • H-SMF sends Neasdf_DNSContext_Update Request message to H-EASDF, including ECS option or information used to determine ECS option, and receives Neasdf_DNSContext_Update Response message from H-EASDF.
  • the H-EASDF sends the DNS query including the ECS option to the DNS server.
  • H-EASDF After H-EASDF adds the ECS option in the DNS query, it sends a DNS query message (that is, the DNS query message with the ECS option added) to the DNS server.
  • the DNS server sends a DNS response (response) to the H-EASDF.
  • the DNS server can send a DNS response message to V-EASDF, and the DNS response message can contain address information, such as EAS IP address or FQDN.
  • the H-EASDF sends a DNS response to the UE.
  • the H-EASDF can forward the DNS response message to the UE.
  • the H-SMF determines the information #A according to the local configuration, and then determines the ECS option, which is added to the DNS query by the H-EASDF, and then receives the address of the local EAS from the DNS server, thereby realizing the discovery of the local EAS.
  • FIG. 6 is a schematic flowchart of another communication method 600 provided by an embodiment of the present application.
  • the method 600 can be used to implement a solution like the method 300.
  • the method 600 can be used in a scenario where the H-SMF passively receives information #A from the V-SMF and instructs the H-EASDF to add the ECS option according to the authorization policy.
  • Method 600 may include the following steps.
  • the UE initiates a session establishment procedure.
  • step 601 is similar to step 502 and will not be repeated here.
  • the V-SMF sends information #A to the H-SMF.
  • the HR session establishment process is reused, and the V-SMF sends the Nsmf_PDUSession_Create Request message to the H-SMF.
  • the message includes information #A, and the information #A can be used to determine the ECS option.
  • Nsmf_PDUSession_Create Request message is only an exemplary description and is not limited thereto.
  • the V-SMF sends the target FQDN#3 (or FQDN range) to the H-SMF, and the target FQDN#3 may include one or more FQDNs.
  • the target FQDN#3 includes the FQDN corresponding to the business allowed to be offloaded in VPLMN (or the FQDN corresponding to the business allowed to use VPLMN ECS option), or the FQDN corresponding to the business expected to be offloaded in VPLMN (or expected to use VPLMN ECS option corresponding FQDN of the service).
  • the FQDN of a service matches the target FQDN#3, the service is allowed to use the VPLMN ECS option.
  • the H-PCF sends the authorization policy to the H-SMF.
  • the authorization policy is used to indicate (or represent, or indicate) whether offloading is allowed in the VPLMN (or the authorization policy is used to indicate whether offloading is allowed).
  • the authorization policy refer to the description about the information #B in the method 300 above, which will not be repeated here.
  • the authorization policy also includes target FQDN#4 (or FQDN range), and one or more FQDNs can be included in the target FQDN#4.
  • the target FQDN#4 includes: the FQDN corresponding to the service that is allowed to be offloaded in VPLMN (or the FQDN corresponding to the service that is allowed to use VPLMN ECS option), and/or the FQDN corresponding to the service that is not allowed to be offloaded in VPLMN (or not allowed to use FQDN corresponding to the business of VPLMN ECS option).
  • the following mainly takes the target FQDN#4 including the FQDN corresponding to the service that is allowed to be offloaded in the VPLMN as an example for illustration.
  • step 603 is similar to step 506 and will not be repeated here.
  • step 603 may not be executed.
  • the H-SMF selects the H-EASDF.
  • step 604 is similar to step 507 and will not be repeated here.
  • the H-SMF determines DNS processing rules.
  • the H-SMF may determine (or formulate) DNS processing rules according to the information #A determined in step 602 .
  • the DNS processing rule may include the information #A determined in step 602, which is used by the H-EASDF to determine the ECS option, and then may be used to add the ECS option to the DNS query.
  • the H-SMF determines DNS processing rules according to the authorization policy. For example, if the authorization policy is used to indicate that traffic distribution is allowed in the VPLMN, the H-SMF can determine the DNS processing rules according to the ECS option.
  • the authorization policy may be the authorization policy received by the H-SMF in step 603, or the authorization policy locally configured by the H-SMF, without limitation.
  • the authorization policy includes target FQDN#4, and the H-SMF does not receive FQDN#3 in step 602.
  • the DNS processing rule may also include target FQDN#4, which is used to instruct H-EASDF to detect the DNS query message, when the included FQDN matches the target FQDN#4 in the DNS processing rule , add the ECS option to the DNS query message.
  • the authorization policy contains target FQDN#4, and the H-SMF receives FQDN#3 in step 602 .
  • the DNS processing rule may also include target FQDN#4, which is used to instruct H-EASDF to detect the DNS query message, when the included FQDN matches the target FQDN#4 in the DNS processing rule , add the ECS option to the DNS query message.
  • the DNS processing rule may also include the intersection of the target FQDN#3 and the target FQDN#4 (such as denoted as the target FQDN#34), which is used to instruct the H-EASDF to detect the DNS query message, when the FQDN contained When matching the target FQDN#34 in the DNS processing rule, add the ECS option to the DNS query message.
  • the DNS processing rule may also include target FQDN#3, which is used to instruct H-EASDF to detect the DNS query message. When the FQDN contained matches the target FQDN#3 in the DNS processing rule, the DNS Add ECS option to query message.
  • the authorization policy does not contain the target FQDN #4, and the H-SMF receives FQDN #3 in step 602 .
  • the DNS processing rule can also include the target FQDN#3, which is used to instruct H-EASDF to detect the DNS query message.
  • the DNS query Add ECS option to the message.
  • the authorization policy does not contain the target FQDN #4, and the H-SMF does not receive FQDN #3 in step 602 .
  • the DNS processing rule is used to indicate that the ECS option is added to the DNS query message of the FQDN range of the service not deployed on the edge of the HPLMN.
  • the H-SMF sends the DNS processing rule to the H-EASDF.
  • the H-SMF sends the address of the H-EASDF to the V-SMF.
  • the HR session establishment process is reused, and the H-SMF sends an Nsmf interface PDU session establishment response (Nsmf_PDUSession_Create Response) message to the V-SMF, which includes the address of the H-EASDF.
  • Nsmf_PDUSession_Create Response Nsmf interface PDU session establishment response
  • Nsmf_PDUSession_Create Response message is only an exemplary description and is not limited thereto.
  • the V-SMF sends the address of the H-EASDF to the UE.
  • the V-SMF sends the address of the V-EASDF to the UE through the AMF.
  • V-SMF sends N1 Message to UE through AMF, the N1 message includes N1 SM container, and the N1 SM container carries the address of H-EASDF.
  • the V-SMF sends the address of the H-EASDF to the AMF through a Namf_Communication_N1N2MessageTransfer message, and then the AMF sends the address of the H-EASDF to the UE through a NAS message.
  • UE sends DNS query to H-EASDF.
  • the H-EASDF adds the ECS option to the DNS query.
  • the H-EASDF sends a DNS query containing the ECS option to the DNS server.
  • the DNS server sends a DNS response to the H-EASDF.
  • the H-EASDF sends a DNS response to the UE.
  • steps 609-613 are similar to steps 511-515, and will not be repeated here.
  • V-SMF sends information #A to H-SMF
  • H-SMF passively receives information #A from V-SMF
  • H-EASDF to add ECS option in DNS query according to authorization policy
  • DNS server Receive the address of the local EAS, so as to realize the discovery of the local EAS.
  • FIG. 7 is a schematic flowchart of another communication method 700 provided by an embodiment of the present application.
  • the method 700 can be used to implement a solution like the method 300.
  • the method 700 can be used in a scenario where the H-SMF actively requests the above information #A from the V-SMF, and instructs the H-EASDF to add the ECS option in the DNS query according to the authorization policy.
  • Method 700 may include the following steps.
  • the UE initiates a session establishment process.
  • step 701 is similar to step 502 and will not be repeated here.
  • the H-PCF sends the authorization policy to the H-SMF.
  • the authorization policy is used to indicate (or represent, or indicate) whether offloading is allowed in the VPLMN (or the authorization policy is used to indicate whether offloading is allowed).
  • the authorization policy refer to the description about the information #B in the method 300 above, which will not be repeated here.
  • step 702 is similar to step 506 and will not be repeated here.
  • the H-SMF sends the authorization policy to the V-SMF.
  • a possible implementation manner is to reuse the HR session establishment process.
  • the H-SMF receives a session establishment request message from the V-SMF, and sends a session establishment response message to the V-SMF, and the session establishment response message carries an authorization policy.
  • the authorization policy may be received from the H-PCF in step 702, or may also be configured locally.
  • the authorization policy includes target FQDN#5 (or FQDN range), and one or more FQDNs can be included in the target FQDN#5.
  • the target FQDN#5 includes: the FQDN corresponding to the service that is allowed to be offloaded in VPLMN (or the FQDN corresponding to the service that is allowed to use VPLMN ECS option), and/or the FQDN corresponding to the service that is not allowed to be offloaded in VPLMN (or not allowed to use FQDN corresponding to the service of VPLMN ECS option).
  • the H-SMF sends the V-SMF the Authorization policies may include target FQDN#5.
  • the authorization policy can also be used to indicate the acquisition of information #A, and the information #A can be used to determine the ECS option.
  • the authorization policy includes request information #1, and the request information #1 is used to request the above information #A, and the information #A can be used to determine the ECS option.
  • the H-SMF sends request information #1 to the V-SMF, and the request information #1 is used to request the above information #A, and the information #A can be used to determine the ECS option.
  • the V-SMF sends information #A to the H-SMF.
  • step 703 taking the first possible situation in step 703 as an example, after the V-SMF receives the authorization policy, it learns that traffic distribution in the VPLMN is allowed according to the authorization policy, then in response to the authorization policy, the V-SMF sends the H- SMF sends information #A, which can be used to determine the ECS option.
  • V-SMF learns that offloading in the VPLMN is allowed according to the authorization policy, and then responds to request information #1 in the authorization policy , V-SMF sends information #A to H-SMF, and this information #A can be used to determine the ECS option.
  • V-SMF after the V-SMF receives the authorization policy and request information #1, it learns that offloading in VPLMN is allowed according to the authorization policy, and then responds to the request information # 1. V-SMF sends information #A to H-SMF, and this information #A can be used to determine the ECS option.
  • the V-SMF may send information #A to the H-SMF according to the internal logic or local configuration of the V-SMF, and the information #A may be used to determine the ECS option.
  • the V-SMF sends the target FQDN#6 (or FQDN range) to the H-SMF, and the target FQDN#6 may include one or more FQDNs.
  • the target FQDN#6 includes the FQDN corresponding to the business that is allowed to be offloaded in VPLMN (or the FQDN corresponding to the business that is allowed to use the VPLMN ECS option), or the FQDN that is expected to be offloaded on the VPLMN (or the business that is expected to use the VPLMN ECS option) FQDN).
  • the FQDN of a service matches the target FQDN#6, the service is allowed to use the VPLMN ECS option.
  • the V-SMF may consider the target FQDN #5 included in the authorization policy when determining the target FQDN #6 expected (or allowed) in the VPLMN offload.
  • the H-SMF selects the H-EASDF.
  • the H-SMF determines DNS processing rules.
  • the H-SMF sends the DNS processing rule to the H-EASDF.
  • steps 705-707 are similar to steps 604-606, and will not be repeated here.
  • the H-SMF sends the address of the H-EASDF to the UE.
  • UE sends DNS query to H-EASDF.
  • H-EASDF adds ECS option to DNS query.
  • the H-EASDF sends the DNS query including the ECS option to the DNS server.
  • the DNS server sends a DNS response to the H-EASDF.
  • the H-EASDF sends the DNS response to the UE.
  • steps 708-713 are similar to steps 510-515, and will not be repeated here.
  • the H-SMF actively requests the above information #A from the V-SMF, and instructs the H-EASDF to add the ECS option according to the authorization policy, so as to realize the discovery of the local EAS.
  • FIG. 8 is a schematic flowchart of another communication method 800 provided by an embodiment of the present application.
  • the method 800 can be used to implement the solution like the method 300.
  • the method 800 can be used in the scenario where the H-SMF requests the above information #A from the H-NRF, and instructs the H-EASDF to add the ECS option in the DNS query according to the authorization policy.
  • Method 800 may include the following steps.
  • the UE initiates a session establishment process.
  • step 801 is similar to step 502 and will not be repeated here.
  • the H-PCF sends the authorization policy to the H-SMF.
  • the authorization policy is used to indicate (or represent, or indicate) whether offloading is allowed in the VPLMN (or the authorization policy is used to indicate whether offloading is allowed).
  • the authorization policy refer to the description about the information #B in the method 300 above, which will not be repeated here.
  • step 802 is similar to step 506 and will not be repeated here.
  • the H-SMF sends request information #2 to the H-NRF.
  • request information #2 is used to request (or acquire) information #A.
  • request information #2 includes VPLMN ID.
  • the request information #2 may be implemented by one or more bits, and the one or more bits field is used to request the above information #A.
  • request information #2 reference may be made to the description in method 300, which will not be repeated here.
  • the H-SMF sends the Nnrf_NFManagement_NFStatus Subscribe message to the H-NRF, and the message carries request information #2.
  • the H-NRF can determine the information #A according to the local configuration. In this case, the H-NRF directly sends a response requesting information #2 to the H-SMF, and the response carries information #A. That is, steps 804-805 may not be executed.
  • method 800 may include steps 804-805.
  • the H-NRF sends request information #3 to the V-NRF.
  • request information #3 is used to request (or obtain) information #A.
  • request information #3 includes VPLMN ID.
  • the request information #3 may be implemented by one or more bits, and the one or more bits field is used to request the above information #A.
  • the H-NRF sends the Nnrf_NFManagement_NFStatus Subscribe message to the V-NRF, and the message carries request information #3.
  • the V-NRF sends information #A to the H-NRF.
  • V-NRF determines and sends message #A to H-NRF based on request message #3 received from H-NRF.
  • the V-NRF sends the Nnrf_NFManagement_NFStatus Notify message to the H-NRF, and the message carries information #A.
  • the H-NRF sends information #A to the H-SMF.
  • the H-NRF sends the Nnrf_NFManagement_NFStatus Notify message to the H-SMF, and the message includes information #A.
  • the H-NRF determines information #A according to the local configuration
  • the information #A sent by the H-NRF to the H-SMF in step 806 may be: Information #A determined by the local configuration.
  • the information #A sent by the H-NRF to the H-SMF in step 806 may be: the information #A received by the H-NRF from the V-NRF in step 805.
  • step 803 H-NRF is locally configured with information #A, and steps 804-805 are executed, that is, H-NRF receives information #A from V-NRF, then in step 806, H -
  • the information #A sent by the NRF to the H-SMF can be locally configured or received.
  • the information #A sent by the H-NRF to the H-SMF in step 806 may be: the information #A received by the H-NRF from the V-NRF.
  • the H-SMF selects the H-EASDF.
  • the H-SMF determines DNS processing rules.
  • the H-SMF sends the DNS processing rule to the H-EASDF.
  • the H-SMF sends the address of the H-EASDF to the UE.
  • UE sends DNS query to H-EASDF.
  • H-EASDF adds ECS option to DNS query.
  • the H-EASDF sends the DNS query including the ECS option to the DNS server.
  • the DNS server sends a DNS response to the H-EASDF.
  • the H-EASDF sends the DNS response to the UE.
  • steps 807-815 are similar to steps 705-713, and will not be repeated here.
  • the H-SMF requests the above information #A from the H-NRF, and instructs the H-EASDF to add the ECS option according to the authorization policy, so as to realize the discovery of the local EAS.
  • FIG. 9 is a schematic flowchart of another communication method 900 provided by an embodiment of the present application.
  • the method 900 can be used to implement a solution such as the method 400.
  • the method 900 can be used in a scenario where the V-SMF obtains the authorization policy from the H-SMF and inserts the ECS option.
  • Method 900 may include the following steps.
  • the UE initiates a session establishment procedure.
  • step 901 is similar to step 502 and will not be repeated here.
  • the V-SMF sends a session establishment request message to the H-SMF.
  • a possible implementation method is to reuse the HR session establishment process, and the V-SMF sends the Nsmf_PDUSession_Create Request message to the H-SMF.
  • the session establishment request message includes the target FQDN#7 (or FQDN range), and the target FQDN#7 may include one or more FQDNs corresponding to the business that allows offloading in the VPLMN (or allows the use of the business corresponding to the VPLMN ECS option FQDN), or the FQDN corresponding to the service expected to be offloaded in VPLMN (or the FQDN corresponding to the service expected to use VPLMN ECS option).
  • the target FQDN#7 includes one or more FQDNs corresponding to services that are allowed to be offloaded in the VPLMN. When the FQDN of a service matches the target FQDN#7, the service is allowed to use the VPLMN ECS option.
  • the H-PCF sends the authorization policy to the H-SMF.
  • the authorization policy is used to indicate (or represent, or indicate) whether offloading is allowed in the VPLMN (or the authorization policy is used to indicate whether offloading is allowed).
  • the authorization policy refer to the description about the information #B in the method 300 above, which will not be repeated here.
  • the authorization policy further includes a target FQDN#8 (or FQDN range), and the target FQDN#8 may include one or more FQDNs.
  • the target FQDN#8 includes: the FQDN corresponding to the service that is allowed to be offloaded in VPLMN (or the FQDN corresponding to the service that is allowed to use VPLMN ECS option), and/or the FQDN corresponding to the service that is not allowed to be offloaded in VPLMN (or not allowed to use FQDN corresponding to the service of VPLMN ECS option).
  • the following mainly takes the target FQDN#8 including the FQDN corresponding to the service that allows the use of VPLMN ECS option as an example to illustrate.
  • the H-SMF selects the H-EASDF.
  • steps 903-904 are similar to steps 603-604 and will not be repeated here.
  • the H-SMF sends the authorization policy to the V-SMF.
  • the H-SMF after receiving the session establishment request message from the V-SMF, the H-SMF sends a session establishment response message to the V-SMF, and the session establishment response message carries the authorization policy received in step 903 .
  • the session establishment response message may also include the address of the H-EASDF.
  • One possible implementation mode is to reuse the HR session establishment process, and the H-SMF sends the Nsmf_PDUSession_Create Response message to the V-SMF, which includes the address and authorization policy of the H-EASDF.
  • the V-SMF sends the N4 rule to the V-UPF.
  • This N4 rule is used to instruct V-UPF to add ECS option to DNS query.
  • the V-SMF may determine to send the N4 rule to the V-UPF according to the authorization policy received in step 905 . Specifically, if the V-SMF knows that offloading in the VPLMN is allowed according to the authorization policy received in step 905, the V-SMF sends the N4 rule to the V-UPF.
  • the N4 rule is used to instruct the V-UPF to add ECS option to the DNS query whose FQDN matches the target FQDN#8 included in the authorization policy.
  • the V-SMF sends an N4 session creation request message to the V-UPF, and the message carries the N4 rule.
  • the V-UPF may send an N4 session creation response message to the V-SMF.
  • the V-SMF sends the address of the H-EASDF to the UE.
  • the V-SMF sends the address of the V-EASDF to the UE through the AMF.
  • V-SMF sends N1 Message to UE through AMF, the N1 message includes N1 SM container, and the N1 SM container carries the address of H-EASDF.
  • the V-SMF sends the address of the H-EASDF to the AMF through a Namf_Communication_N1N2MessageTransfer message, and then the AMF sends the address of the H-EASDF to the UE through a NAS message.
  • the UE sends a DNS query to the V-UPF.
  • the UE sends the DNS query message to the V-UPF through the RAN through the user plane.
  • V-UPF adds ECS option to DNS query.
  • V-UPF adds the ECS option in the DNS query according to the N4 rule received in step 906.
  • the V-UPF can detect the DNS query. For example, when V-UPF receives a DNS Query, if the FQDN contained in the DNS Query matches the target FQDN#8 of the N4 rule, then the V-UPF adds the ECS option to the DNS query.
  • ECS option can be added in the DNS query, or in the GTP-U header of the UP message, or in other ways, and there is no restriction on this.
  • This application mainly uses an example for illustration.
  • the V-UPF actually processes the DNS message, which is equivalent to executing the function of the V-EASDF. Therefore, the V-UPF here can be understood as a UPF with a DNS message processing function, or it can also be understood as a combined UPF and EASDF. It should be understood that this application does not limit the specific network element that performs this function, and any network element that can implement this function is applicable to this embodiment of this application.
  • the V-UPF sends the DNS query including the ECS option to the H-EASDF.
  • V-UPF After V-UPF adds the ECS option in the DNS query, it sends a DNS query message (that is, the DNS query with the ECS option added) to the H-EASDF through the user.
  • a DNS query message that is, the DNS query with the ECS option added
  • the H-EASDF sends a DNS query containing the ECS option to the DNS server.
  • the DNS server sends a DNS response to the H-EASDF.
  • the H-EASDF sends a DNS response to the UE.
  • steps 911-913 are similar to steps 513-515, and will not be repeated here.
  • the V-SMF obtains the authorization policy from the H-SMF, and the V-UPF inserts the ECS option in the DNS query, so that the EASDF receives the address of the local EAS from the DNS server, thereby realizing the local EAS in the HR roaming scenario Discover.
  • FIG. 10 is a schematic flowchart of another communication method 1000 provided by an embodiment of the present application.
  • the method 1000 can be used to implement a solution such as the method 400.
  • the method 1000 can be used in a scenario where the V-SMF instructs the V-UPF to insert the ECS option into the DNS query according to the local configuration.
  • Method 1000 may include the following steps.
  • the V-SMF obtains authorization policy #3.
  • the authorization policy #3 is used to indicate (or represent, or indicate) whether offloading is allowed in the VPLMN (or authorization policy #3 is used to indicate whether offloading is allowed).
  • authorization policy #3 refer to the description about the information #B in the method 300 above, which will not be repeated here.
  • the V-SMF locally configures authorization policy #3.
  • the V-SMF receives the authorization policy #3.
  • the authorization policy #3 is received from the H-SMF through other processes (such as a session establishment process).
  • the V-SMF may also obtain the corresponding relationship #A, and the corresponding relationship #A is used to indicate the corresponding relationship between the VPLMN and the information #A.
  • authorization policy #3 includes this correspondence #A.
  • the authorization policy #3 also includes a target FQDN #9 (or FQDN range), and the target FQDN #9 may include one or more FQDNs.
  • the target FQDN#9 includes: the FQDN corresponding to the service that is allowed to be offloaded in VPLMN (or the FQDN corresponding to the service that is allowed to use VPLMN ECS option), and/or the FQDN corresponding to the service that is not allowed to be offloaded in VPLMN (or not allowed to use FQDN corresponding to the service of VPLMN ECS option).
  • the target FQDN#9 includes the FQDN corresponding to the service that is allowed to be offloaded in the VPLMN. When the FQDN of a certain service matches the target FQDN#9, the service is allowed to use the VPLMN ECS option.
  • the UE initiates a session establishment process.
  • step 1002 is similar to step 502 and will not be repeated here.
  • the V-SMF sends the N4 rule to the V-UPF.
  • This N4 rule is used to instruct V-UPF to add ECS option to DNS query.
  • the V-SMF may determine to send the N4 rule to the V-UPF according to the authorization policy #3 obtained in step 1001 . Specifically, if the V-SMF learns that traffic is offloaded in the VPLMN according to the authorization policy #3 obtained in step 1001, the V-SMF sends the N4 rule to the V-UPF.
  • V-SMF can determine the HPLMN ID according to the H-SMF ID, and then based on the table 1. Obtain the authorization policy #3 corresponding to the HPLMN.
  • the H-SMF ID may be sent to the V-SMF by the AMF.
  • the AMF sends the Nsmf_PDUSession_CreateSMContext Request message to the V-SMF, which carries the H-SMF ID.
  • the N4 rule is used to instruct the V-UPF to add ECS option to the DNS query whose FQDN matches the target FQDN#9 included in the authorization policy #3.
  • the V-SMF sends an N4 session creation request message to the V-UPF, and the message carries the N4 rule.
  • the V-UPF may send an N4 session creation response message to the V-SMF.
  • the H-SMF sends the address of the H-EASDF to the V-SMF.
  • a possible implementation mode is to reuse the HR session establishment process, and the H-SMF sends the Nsmf_PDUSession_Create Response message to the V-SMF, and the message includes the address of the H-EASDF.
  • the message may also include an authorization policy (referred to as authorization policy #4 for distinction), and the authorization policy #4 is used to indicate whether offloading is allowed on the VPLMN (or whether offloading is allowed). Further, the authorization policy #4 may also include the target FQDN #10.
  • the V-SMF sends the updated N4 rule to the V-UPF.
  • the V-SMF may send the updated N4 rule to the V-UPF.
  • the V-SMF sends an N4 session creation request message to the V-UPF, and the N4 session creation request message includes the updated N4 rule.
  • authorization policy #4 is used to indicate that offloading in the VPLMN is not allowed.
  • V-SMF sends an updated N4 rule to V-UPF, and the updated N4 rule is used to instruct V-UPF to: delete the instruction to add ECS option for DNS query in the previous N4 rule; or the updated N4 rule
  • the rule is used to indicate V-UPF: the instruction to add ECS option to DNS query in the previous N4 rule is invalid.
  • authorization policy #4 is used to indicate that offloading in the VPLMN is allowed. The following is a combination of several situations.
  • the authorization policy #4 contains the target FQDN #10, and the V-SMF obtains the target FQDN #9 in step 1001 .
  • the V-SMF sends an updated N4 rule to the V-UPF
  • the updated N4 rule is used to instruct the V-UPF to add the ECS option to the target FQDN#10.
  • the V-SMF sends an updated N4 rule to the V-UPF.
  • the updated N4 rule is used to instruct the V-UPF to add the ECS option to the target FQDN#11, where the target FQDN#11 is the target FQDN#9 and the target The intersection of FQDN#10, or the target FQDN#11 is, for example, the union of target FQDN#9 and target FQDN#10.
  • the authorization policy #4 contains the target FQDN #10, and the V-SMF does not acquire the target FQDN #9 in step 1001 .
  • the V-SMF sends an updated N4 rule to the V-UPF, and the updated N4 rule is used to instruct the V-UPF to add the ECS option to the target FQDN#10.
  • the V-SMF may not need to send the updated N4 rule to the V-UPF.
  • the V-SMF sends the address of the H-EASDF to the UE.
  • UE sends DNS query to V-UPF.
  • the V-UPF adds the ECS option to the DNS query.
  • V-UPF sends DNS query including ECS option to H-EASDF.
  • H-EASDF sends DNS query including ECS option to the DNS server.
  • the DNS server sends a DNS response to the H-EASDF.
  • the H-EASDF sends a DNS response to the UE.
  • steps 1006-1012 are similar to steps 907-913, and will not be repeated here.
  • the V-SMF instructs the V-UPF to insert the ECS option into the DNS query according to the local configuration, and then receives the address of the local EAS from the DNS server, thereby realizing local EAS discovery in the HR roaming scenario.
  • FIG. 11 is a schematic flowchart of another communication method 1100 provided by an embodiment of the present application.
  • the method 1100 can be used for the H-SMF to receive the authorization policy, instruct the EASDF to report the DNS query, and instruct the EASDF to add the ECS option.
  • Method 1100 may include the following steps.
  • the UE initiates a session establishment procedure.
  • step 1101 is similar to step 502 and will not be repeated here.
  • the V-SMF sends a session establishment request message to the H-SMF.
  • a possible implementation method is to reuse the HR session establishment process, and the V-SMF sends the Nsmf_PDUSession_Create Request message to the H-SMF.
  • the session establishment request message includes a target FQDN#12 (or FQDN range), and the target FQDN#12 may include one or more FQDNs.
  • the target FQDN#12 includes the FQDN corresponding to the business allowed to be offloaded in VPLMN (or the FQDN corresponding to the business allowed to use VPLMN ECS option), or the FQDN corresponding to the business expected to be offloaded in VPLMN (or expected to use VPLMN ECS option the FQDN corresponding to the service).
  • the FQDN of a service matches the target FQDN#12, the service is allowed to use the VPLMN ECS option.
  • the session establishment request message includes information #A.
  • the H-PCF sends the authorization policy to the H-SMF.
  • the H-SMF selects the H-EASDF.
  • the H-SMF determines DNS processing rules.
  • the H-SMF sends the DNS processing rule to the H-EASDF.
  • steps 1103-1106 are similar to steps 603-606, the difference is that the DNS processing rules in steps 1105-1106 can also be used to instruct H-EASDF to report the received DNS query or the FQDN contained in the DNS query H-SMF, specifically, if the DNS processing rule contains FQDN (such as target FQDN#12), then instruct H-EASDF to report the received DNS query matching target FQDN#12 or the FQDN contained in the DNS query to H- SMF.
  • FQDN such as target FQDN#12
  • the H-SMF sends the address of the H-EASDF to the V-SMF.
  • the V-SMF sends the address of the H-EASDF to the UE.
  • steps 1107-1108 are similar to steps 607-608, and will not be repeated here.
  • steps 1104-1106 and steps 1107-1108 do not limit the execution time sequence or logical relationship, and only need to be before step 1109.
  • UE sends DNS query to H-EASDF.
  • the UE sends the DNS query message to the H-EASDF via the RAN and UPF through the user plane.
  • the H-EASDF reports the FQDN included in the DNS query to the H-SMF.
  • the H-EASDF After the H-EASDF receives the DNS query, it reports the FQDN contained in the DNS query to the H-SMF according to the DNS processing rules received in step 1106.
  • the DNS processing rule contains FQDN (such as target FQDN#12)
  • FQDN such as target FQDN#12
  • the FQDN contained in the DNS query can be matched with the FQDN of the DNS processing rule. Assume that the FQDN contained in the DNS query matches the FQDN of the DNS processing rule.
  • the H-SMF sends request information #1 to the V-SMF.
  • This request information #1 is used to request the above-mentioned information #A.
  • the H-SMF After receiving the FQDN reported by the EASDF, the H-SMF requests the above information #A from the V-SMF.
  • the request information #1 may include the FQDN received by the H-SMF in step 1110 .
  • the V-SMF sends information #A to the H-SMF.
  • the V-SMF determines and returns information #A to the H-SMF according to the UE location and the reported FQDN.
  • the sending of message #A can be triggered by request message #1, or by the logic/local configuration of the V-SMF, without limitation.
  • the H-SMF sends information #A to the H-EASDF.
  • H-SMF sends received message #A to H-EASDF.
  • steps 1110-1113 can be omitted.
  • H-EASDF adds ECS option to DNS query.
  • the H-EASDF sends the DNS query containing the ECS option to the DNS server.
  • the DNS server sends a DNS response to the H-EASDF.
  • the H-EASDF sends a DNS response to the UE.
  • Steps 1114-1117 are similar to steps 512-515 and will not be repeated here.
  • H-SMF instructs EASDF to report DNS query, obtains information #A from V-SMF, and instructs EASDF to add ECS option, and then receives the address of local EAS from DNS server, thereby realizing local EAS in HR roaming scenarios Discover.
  • FIG. 5 to FIG. 11 in the embodiment of the present application are only for those skilled in the art to understand the embodiment of the present application, and are not intended to limit the embodiment of the present application to the illustrated specific scenarios.
  • Those skilled in the art can obviously make various equivalent modifications or changes based on the examples in FIGS. 5 to 11 , and such modifications or changes also fall within the scope of the embodiments of the present application.
  • the above-mentioned session establishment process in FIG. 5 to FIG. 11 may also be replaced with a session modification process.
  • the ECS option in the above-mentioned Figures 5 to 11 can also be replaced with the address of the L-DNS server.
  • the action of adding the ECS option to the DNS query can also be replaced with the action of forwarding the DNS query to the L-DNS server.
  • the methods and operations implemented by the device may also be implemented by components of the device (such as chips or circuits).
  • the embodiments of the present application further provide corresponding devices, and the device includes corresponding modules for executing the foregoing method embodiments.
  • the module can be software, or hardware, or a combination of software and hardware. It can be understood that the technical features described in the above method embodiments are also applicable to the following device embodiments.
  • Fig. 12 is a schematic block diagram of a communication device provided by an embodiment of the present application.
  • the apparatus 1200 includes a transceiver unit 1210 and a processing unit 1220 .
  • the transceiver unit 1210 may be used to implement corresponding communication functions.
  • the transceiver unit 1210 may also be called a communication interface or a communication unit.
  • the processing unit 1220 may be configured to implement corresponding processing functions, such as determining a diversion point.
  • the device 1200 further includes a storage unit, which can be used to store instructions and/or data, and the processing unit 1220 can read the instructions and/or data in the storage unit, so that the device implements the foregoing method embodiments Actions of devices or network elements in the network.
  • a storage unit which can be used to store instructions and/or data
  • the processing unit 1220 can read the instructions and/or data in the storage unit, so that the device implements the foregoing method embodiments Actions of devices or network elements in the network.
  • the apparatus 1200 may be the first session management network element in the foregoing embodiments, or may be a component (such as a chip) of the first session management network element.
  • the apparatus 1200 can implement the steps or processes corresponding to the execution of the first session management network element in the above method embodiment, wherein the transceiver unit 1210 can be used to perform the sending and receiving related tasks of the first session management network element in the above method embodiment Operation, the processing unit 1220 may be configured to perform operations related to the processing of the first session management network element in the above method embodiment.
  • the transceiver unit 1210 is used to obtain the IP address information of the visited network; the transceiver unit 1210 is used to send the IP address information to the edge application server discovery network element, the first session management network element and the edge application server discovery
  • the network element is a network element deployed in the home network.
  • the processing unit 1220 is configured to determine the IP address information of the visited network.
  • the transceiving unit 1210 is configured to acquire the IP address information of the visited network, including: the transceiving unit 1210 is configured to acquire the IP address information of the visited network according to indication information, wherein the indication information indicates that offloading of the visited network is allowed.
  • the transceiving unit 1210 is configured to send the IP address information to the network element discovered by the edge application server, including: the transceiver unit 1210 is configured to send the IP address information to the network element discovered by the edge application server according to the indication information, wherein the indication information indicates Allow access to the network offload.
  • the indication information includes an identifier of the first service, and the indication information indicates that the first service is allowed to be offloaded in the visited network.
  • the transceiver unit 1210 is configured to acquire the IP address information of the visited network, including: the transceiver unit 1210 is configured to receive the IP address information from the second session management network element, and the second session management network element is a network deployed in the visited network. Yuan.
  • the transceiving unit 1210 is further configured to send first request information to the second session management network element, where the first request information is used to request IP address information.
  • the transceiver unit 1210 is further configured to send second request information to the network storage network element, the second request information includes the identifier of the visited network, the second request information is used to request IP address information, and the network storage network element is the home network
  • the network element deployed in the network element; the transceiver unit 1210, configured to obtain the IP address information of the visited network includes: the transceiver unit 1210, configured to receive the IP address information of the visited network from the network storage network element.
  • the first session management network element locally configures the indication information; or, the transceiving unit 1210 is further configured to receive the indication information.
  • the indication information includes first indication information and/or second indication information, the first indication information is locally configured by the first session management network element, and the second indication information is received by the first session management network element.
  • the IP address information is information used to determine the subnet option of the DNS extension mechanism client, or the IP address information is the domain name system extension mechanism client subnet option or a local DNS server address.
  • the apparatus 1200 may be the second session management network element in the foregoing embodiments, or may be a component (such as a chip) of the second session management network element.
  • the device 1200 can implement the steps or processes corresponding to the execution of the second session management network element in the above method embodiment, wherein the transceiver unit 1210 can be used to perform the sending and receiving related tasks of the second session management network element in the above method embodiment Operation, the processing unit 1220 may be configured to perform operations related to the processing of the second session management network element in the above method embodiment.
  • the transceiver unit 1210 is configured to acquire the IP address information of the visited network; the transceiver unit 1210 is configured to send the IP address information to the first session management network element, wherein the second session management network element is the visited network element.
  • the network elements deployed in the network, the first session management network element is the network element deployed in the home network.
  • the transceiving unit 1210 is configured to acquire the IP address information of the visited network, including: the transceiving unit 1210 is configured to acquire the IP address information of the visited network according to indication information, wherein the indication information indicates that offloading of the visited network is allowed.
  • the transceiver unit 1210 is configured to send the IP address information to the first session management network element, including: the transceiver unit 1210 is configured to send the IP address information to the first session management network element according to the indication information, wherein the indication information indicates Allow access to the network offload.
  • the indication information includes an identifier of the first service, and the indication information indicates that the first service is allowed to be offloaded in the visited network.
  • the transceiver unit 1210 is further configured to receive first request information from the first session management network element, where the first request information is used to request IP address information; the transceiver unit 1210 is configured to send the IP address information to the first session management network element
  • the address information includes: in response to the first request information, the transceiver unit 1210 is configured to send the IP address information to the first session management network element.
  • the second session management network element locally configures the indication information; or, the transceiver unit 1210 is configured to receive the indication information.
  • the IP address information is information used to determine the subnet option of the DNS extension mechanism client, or the IP address information is the domain name system extension mechanism client subnet option or a local DNS server address.
  • the transceiver unit 1210 is configured to obtain indication information, and the indication information indicates that the offloading of the visited network is allowed; the transceiver unit 1210 is configured to send the IP address information of the visited network to the user plane network element according to the indication information, wherein , the second session management network element and the user plane network element are network elements deployed in the visited network.
  • the transceiving unit 1210 is configured to acquire indication information, including: the second session management network element locally configures indication information; or, the transceiving unit 1210 is configured to receive indication information.
  • the indication information includes an identifier of the second service, and the indication information indicates that the second service is allowed to be offloaded in the visited network.
  • the indication information includes first indication information and/or second indication information, the first indication information is locally configured by the second session management network element, and the second indication information is received by the second session management network element.
  • the IP address information is information used to determine the subnet option of the DNS extension mechanism client, or the IP address information is the domain name system extension mechanism client subnet option or a local DNS server address.
  • the apparatus 1200 here is embodied in the form of functional units.
  • the term "unit” here may refer to an application specific integrated circuit (ASIC), an electronic circuit, a processor for executing one or more software or firmware programs (such as a shared processor, a dedicated processor, or a group processor, etc.) and memory, incorporated logic, and/or other suitable components to support the described functionality.
  • ASIC application specific integrated circuit
  • processor for executing one or more software or firmware programs (such as a shared processor, a dedicated processor, or a group processor, etc.) and memory, incorporated logic, and/or other suitable components to support the described functionality.
  • the device 1200 may specifically be the user plane network element in the above-mentioned embodiments, and may be used to execute each process corresponding to the user plane network element in the above-mentioned method embodiments and/or or step; or, the device 1200 may specifically be the session management network element (such as the first session management network element, or the second session management network element) in the foregoing embodiments, and may be used to execute the session Each flow and/or step corresponding to the management network element is not repeated here to avoid repetition.
  • the device 1200 of each of the above-mentioned solutions has the function of implementing the corresponding steps performed by the network element (such as the user plane network element, or the session management network element (such as the first session management network element, or the second session management network element)) in the above-mentioned method.
  • the network element such as the user plane network element, or the session management network element (such as the first session management network element, or the second session management network element)
  • Function The functions described above may be implemented by hardware, or may be implemented by executing corresponding software on the hardware.
  • the hardware or software includes one or more modules corresponding to the above functions; for example, the transceiver unit can be replaced by a transceiver (for example, the sending unit in the transceiver unit can be replaced by a transmitter, and the receiving unit in the transceiver unit can be replaced by a receiver computer), and other units, such as a processing unit, may be replaced by a processor to respectively perform the sending and receiving operations and related processing operations in each method embodiment.
  • a transceiver for example, the sending unit in the transceiver unit can be replaced by a transmitter, and the receiving unit in the transceiver unit can be replaced by a receiver computer
  • other units such as a processing unit, may be replaced by a processor to respectively perform the sending and receiving operations and related processing operations in each method embodiment.
  • transceiver unit 1210 may also be a transceiver circuit (for example, may include a receiving circuit and a sending circuit), and the processing unit may be a processing circuit.
  • the apparatus in FIG. 12 may be the network element or device in the foregoing embodiments, or may be a chip or a chip system, for example, a system on chip (system on chip, SoC).
  • the transceiver unit may be an input-output circuit or a communication interface;
  • the processing unit is a processor or a microprocessor or an integrated circuit integrated on the chip. It is not limited here.
  • this embodiment of the present application provides another communication device 1300 .
  • the apparatus 1300 includes a processor 1310, and the processor 1310 is configured to execute computer programs or instructions stored in the memory 1320, or read data/signaling stored in the memory 1320, so as to execute the methods in the above method embodiments.
  • processors 1310 there are one or more processors 1310 .
  • the apparatus 1300 further includes a memory 1320 for storing computer programs or instructions and/or data.
  • the memory 1320 can be integrated with the processor 1310, or can also be set separately.
  • the device 1300 further includes a transceiver 1330, and the transceiver 1330 is used for receiving and/or sending signals.
  • the processor 1310 is configured to control the transceiver 1330 to receive and/or send signals.
  • the apparatus 1300 is used to implement the operations performed by the network element in the foregoing method embodiments.
  • the processor 1310 is configured to execute the computer programs or instructions stored in the memory 1320, so as to implement related operations of the user plane network elements in the various method embodiments above. For example, the method performed by the user plane network element in the embodiment shown in FIG. 4 , or the method performed by the V-UPF in any one of the embodiments shown in FIG. 5 to FIG. 11 .
  • the processor 1310 is configured to execute the computer programs or instructions stored in the memory 1320, so as to implement related operations of the first session management network element in each method embodiment above. For example, the method performed by the first session management network element in the embodiment shown in FIG. 3 , or the method performed by the H-SMF in any one of the embodiments shown in FIG. 5 to FIG. 11 .
  • the processor 1310 is configured to execute the computer programs or instructions stored in the memory 1320, so as to implement related operations of the second session management network element in the above method embodiments. For example, the method performed by the second session management network element in the embodiment shown in FIG. 3 or FIG. 4 , or the method performed by the V-SMF in any one of the embodiments shown in FIG. 5 to FIG. 11 .
  • processors mentioned in the embodiment of the present application may be a central processing unit (central processing unit, CPU), and may also be other general processors, digital signal processors (digital signal processor, DSP), application specific integrated circuits ( application specific integrated circuit (ASIC), off-the-shelf programmable gate array (field programmable gate array, FPGA) or other programmable logic devices, discrete gate or transistor logic devices, discrete hardware components, etc.
  • a general-purpose processor may be a microprocessor, or the processor may be any conventional processor, or the like.
  • the memory mentioned in the embodiments of the present application may be a volatile memory and/or a nonvolatile memory.
  • the non-volatile memory can be read-only memory (read-only memory, ROM), programmable read-only memory (programmable ROM, PROM), erasable programmable read-only memory (erasable PROM, EPROM), electrically programmable Erases programmable read-only memory (electrically EPROM, EEPROM) or flash memory.
  • the volatile memory may be random access memory (RAM).
  • RAM random access memory
  • RAM can be used as an external cache.
  • RAM includes the following multiple forms: static random access memory (static RAM, SRAM), dynamic random access memory (dynamic RAM, DRAM), synchronous dynamic random access memory (synchronous DRAM, SDRAM), Double data rate synchronous dynamic random access memory (double data rate SDRAM, DDR SDRAM), enhanced synchronous dynamic random access memory (enhanced SDRAM, ESDRAM), synchronous connection dynamic random access memory (synchlink DRAM, SLDRAM) and direct Memory bus random access memory (direct rambus RAM, DR RAM).
  • the processor is a general-purpose processor, DSP, ASIC, FPGA or other programmable logic devices, discrete gate or transistor logic devices, or discrete hardware components
  • the memory storage module may be integrated in the processor.
  • memories described herein are intended to include, but are not limited to, these and any other suitable types of memories.
  • the embodiments of the present application further provide a computer-readable storage medium, on which computer instructions for implementing the methods executed by the network element in the foregoing method embodiments are stored.
  • the computer when the computer program is executed by a computer, the computer can implement the methods performed by the user plane network element in each embodiment of the foregoing method.
  • the computer when the computer program is executed by a computer, the computer can implement the methods performed by the session management network element (such as the first session management network element, or the second session management network element) in the above method embodiments.
  • the session management network element such as the first session management network element, or the second session management network element
  • the embodiments of the present application further provide a computer program product, including instructions, and when the instructions are executed by a computer, the methods performed by the network elements in the foregoing method embodiments are implemented.
  • the embodiment of the present application also provides a communication system, including one or more of the aforementioned user plane network element, first session management network element, second session management network element, and edge application server discovery network element.
  • the disclosed devices and methods may be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components can be combined or May be integrated into another system, or some features may be ignored, or not implemented.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be through some interfaces, and the indirect coupling or communication connection of devices or units may be in electrical, mechanical or other forms.
  • the computer can be a general purpose computer, a special purpose computer, a computer network, or other programmable devices.
  • the computer may be a personal computer, a server, or a network device.
  • the computer instructions may be stored in or transmitted from one computer-readable storage medium to another computer-readable storage medium, for example, the computer instructions may be transmitted from a website, computer, server or data center Transmission to another website site, computer, server, or data center by wired (eg, coaxial cable, optical fiber, digital subscriber line (DSL)) or wireless (eg, infrared, wireless, microwave, etc.).
  • the computer-readable storage medium may be any available medium that can be accessed by a computer, or a data storage device such as a server or a data center integrated with one or more available media.
  • the available medium may be a magnetic medium (for example, a floppy disk, a hard disk, a magnetic tape), an optical medium (for example, DVD), or a semiconductor medium (for example, a solid state disk (SSD), etc.
  • the aforementioned available medium includes but Not limited to: U disk, mobile hard disk, read-only memory (read-only memory, ROM), random access memory (random access memory, RAM), magnetic disk or optical disk and other media that can store program codes.

Abstract

本申请提供了一种通信的方法和装置。该方法可以包括:第一会话管理网元获取拜访网络的IP地址信息;第一会话管理网元向边缘应用服务器发现网元发送IP地址信息,第一会话管理网元和边缘应用服务器发现网元为归属网络中部署的网元。当终端设备通过HR漫游方式接入拜访网络后,可以通过该IP地址信息,实现终端设备访问拜访网络中的业务。

Description

通信的方法和装置
本申请要求于2021年09月30日提交中国专利局、申请号为202111166464.6、申请名称为“通信的方法和装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信领域,并且更具体地,涉及一种通信的方法和装置。
背景技术
在边缘计算(edge computing,EC)部署场景中,某些业务可能会由多个部署于网络边缘的边缘应用服务器(edge application server,EAS)提供服务。该多个EAS可提供相同的业务和内容,且大部分具有不同的因特网协议(internet protocol,IP)地址。当用户设备(user equipment,UE)请求接入该业务时,EC场景要求其接入距离UE近的可用EAS。因此,合适的EAS的IP地址是比较重要的。
在某些情况下,UE可能会离开归属公共陆地移动网络(public land mobile network,PLMN)(home PLMN,HPLMN)的覆盖范围,通过归属路由(home routed,HR)漫游的方式,接入拜访公共陆地移动网络(visited PLMN,VPLMN),并由VPLMN为UE提供服务。
发明内容
本申请提供一种通信的方法和装置,以实现通过VPLMN的IP地址(如用于确定ECS option的信息,又如ECS option或L-DNS服务器,等等)来实现访问VPLMN中的业务,实现HR漫游场景下的本地EAS的发现。
第一方面,提供了一种通信的方法,该方法可以由核心网网元执行,或者,也可以由核心网网元的组成部件(例如芯片或者电路)执行,对此不作限定,为了便于描述,下面以由第一会话管理网元执行为例进行说明。
该方法可以包括:第一会话管理网元获取拜访网络的IP地址信息;第一会话管理网元向边缘应用服务器发现网元发送IP地址信息,第一会话管理网元和边缘应用服务器发现网元为归属网络中部署的网元。
基于上述技术方案,部署于归属网络中的第一会话管理网元,可以获取拜访网络的IP地址信息(如用于确定ECS option的信息,又如ECS option或L-DNS服务器,等),并发送给边缘应用服务器发现网元。通过获取拜访网络的IP地址信息,这样,当终端设备通过HR漫游方式接入拜访网络后,由于边缘应用服务器发现网元获取了拜访网络的IP地址信息,因此可以通过该边缘应用服务器发现网元实现终端设备访问拜访网络中的业务。举例来说,边缘应用服务器发现网元收到来自终端设备的DNS查询消息后,可以将 基于IP地址信息确定的ECS option添加到DNS查询消息中,或者也可以将DNS查询消息转发到基于IP地址信息确定的L-DNS服务器(如该IP地址信息为L-DNS服务器地址信息),从而可以实现HR漫游场景下的本地EAS的发现。
结合第一方面,在第一方面的某些实现方式中,IP地址信息为用于确定域名系统DNS扩展机制客户端子网选项(ECS option)的信息,或者,IP地址信息为ECS option或本地DNS服务器地址。
结合第一方面,在第一方面的某些实现方式中,第一会话管理网元获取拜访网络的IP地址信息,包括:第一会话管理网元根据指示信息,获取拜访网络的IP地址信息,其中,指示信息指示允许拜访网络分流。
基于上述技术方案,在允许拜访网络分流的情况下,第一会话管理网元获取拜访网络的IP地址,避免获取到拜访网络的IP地址信息后,由于不允许拜访网络分流,进而无法使用的发生。
结合第一方面,在第一方面的某些实现方式中,第一会话管理网元向边缘应用服务器发现网元发送IP地址信息,包括:第一会话管理网元根据指示信息,向边缘应用服务器发现网元发送IP地址信息,其中,指示信息指示允许拜访网络分流。
基于上述技术方案,在允许拜访网络分流的情况下,第一会话管理网元向边缘应用服务器发现网元发送IP地址信息。
结合第一方面,在第一方面的某些实现方式中,指示信息包括第一业务的标识,指示信息指示允许对第一业务在拜访网络分流。
示例地,第一业务的标识例如可以为:全量域名(或者全量域名范围(range)),应用标识,应用服务器的IP地址,端口号。
结合第一方面,在第一方面的某些实现方式中,第一会话管理网元获取拜访网络的IP地址信息,包括:第一会话管理网元从第二会话管理网元接收IP地址信息,第二会话管理网元为拜访网络中部署的网元。
基于上述技术方案,第一会话管理网元可以从第二会话管理网元接收该IP地址信息。
结合第一方面,在第一方面的某些实现方式中,方法还包括:第一会话管理网元向第二会话管理网元发送第一请求信息,第一请求信息用于请求IP地址信息。
基于上述技术方案,第一会话管理网元可以先向第二会话管理网元发送请求,以请求该IP地址信息,进而从该第二会话管理网元接收该IP地址信息。
结合第一方面,在第一方面的某些实现方式中,方法还包括:第一会话管理网元向网络存储网元发送第二请求信息,第二请求信息包含拜访网络的标识,第二请求信息用于请求IP地址信息,网络存储网元为归属网络中部署的网元;第一会话管理网元获取拜访网络的IP地址信息,包括:第一会话管理网元从网络存储网元接收拜访网络的IP地址信息。
基于上述技术方案,第一会话管理网元可以向网络存储网元发送请求,以请求该IP地址信息,进而从该网络存储网元接收该IP地址信息。
结合第一方面,在第一方面的某些实现方式中,方法还包括:第一会话管理网元本地配置指示信息;或者,第一会话管理网元接收指示信息。
结合第一方面,在第一方面的某些实现方式中,指示信息包括第一指示信息和/或第二指示信息,第一指示信息为第一会话管理网元本地配置的,第二指示信息为第一会话管 理网元接收到的。
结合第一方面,在第一方面的某些实现方式中,第一会话管理网元获取拜访网络的IP地址信息,包括:第一会话管理网元根据第一对应关系以及拜访网络的标识,确定拜访网络的IP地址信息,第一对应关系用于指示拜访网络与拜访网络的IP地址信息之间的关系。
基于上述技术方案,拜访网络与拜访网络的IP地址信息之间可以具有对应关系,或者,拜访网络与拜访网络的IP地址信息关联,这样可以基于拜访网络的标识以及该对应关系,确定拜访网络的IP地址信息。
结合第一方面,在第一方面的某些实现方式中,方法还包括:第一会话管理网元根据第二对应关系以及拜访网络的标识,确定指示信息,第二对应关系用于指示拜访网络与指示信息之间的关系,指示信息用于指示是否允许拜访网络分流。
基于上述技术方案,拜访网络与指示信息之间可以具有对应关系,或者,拜访网络与指示信息关联,这样可以基于拜访网络的标识以及该对应关系,确定拜访网络对应的指示信息,进而也可以获知该拜访网络是否允许分流。
第二方面,提供了一种通信的方法,该方法可以由核心网网元执行,或者,也可以由核心网网元的组成部件(例如芯片或者电路)执行,对此不作限定,为了便于描述,下面以由第二会话管理网元执行为例进行说明。
该方法可以包括:第二会话管理网元获取拜访网络的IP地址信息;第二会话管理网元向第一会话管理网元发送IP地址信息,其中,第二会话管理网元为拜访网络中部署的网元,第一会话管理网元为归属网络中部署的网元。
基于上述技术方案,部署于拜访网络中的第二会话管理网元,可以获取拜访网络的IP地址信息(如用于确定域名系统DNS扩展机制客户端子网选项的信息,又如DNS扩展机制客户端子网选项或本地DNS服务器地址),并发送给部署于归属网络中的第一会话管理网元。这样,当终端设备通过HR漫游方式接入拜访网络后,可以通过该IP地址信息,实现终端设备访问拜访网络中的业务。
结合第二方面,在第二方面的某些实现方式中,第二会话管理网元获取拜访网络的IP地址信息,包括:第二会话管理网元根据指示信息,获取拜访网络的IP地址信息,其中,指示信息指示允许拜访网络分流。
基于上述技术方案,在允许拜访网络分流的情况下,第二会话管理网元获取拜访网络的IP地址,避免获取到拜访网络的IP地址信息后,由于不允许拜访网络分流,进而无法使用的发生。
结合第二方面,在第二方面的某些实现方式中,第二会话管理网元向第一会话管理网元发送IP地址信息,包括:第二会话管理网元根据指示信息,向第一会话管理网元发送IP地址信息,其中,指示信息指示允许拜访网络分流。
基于上述技术方案,在允许拜访网络分流的情况下,第二会话管理网元向第一会话管理网元发送IP地址信息。
结合第二方面,在第二方面的某些实现方式中,指示信息包括第一业务的标识,指示信息指示允许对第一业务在拜访网络分流。
示例地,第一业务的标识例如可以为:全量域名(或者全量域名范围(range)),应用标识,应用服务器的IP地址,端口号。
结合第二方面,在第二方面的某些实现方式中,方法还包括:第二会话管理网元接收来自第一会话管理网元的第一请求信息,第一请求信息用于请求IP地址信息;第二会话管理网元向第一会话管理网元发送IP地址信息,包括:响应于第一请求信息,第二会话管理网元向第一会话管理网元发送IP地址信息。
基于上述技术方案,第二会话管理网元可以接收来自第一会话管理网元发送的请求,该请求用于请求IP地址信息,响应于该请求,第二会话管理网元向第一会话管理网元发送该IP地址信息。
结合第二方面,在第二方面的某些实现方式中,方法还包括:第二会话管理网元本地配置指示信息;或者,第二会话管理网元接收指示信息。
结合第二方面,在第二方面的某些实现方式中,IP地址信息为用于确定域名系统DNS扩展机制客户端子网选项的信息,或者,IP地址信息为域名系统扩展机制客户端子网选项或本地DNS服务器地址。
第三方面,提供了一种通信的方法,该方法可以由核心网网元执行,或者,也可以由核心网网元的组成部件(例如芯片或者电路)执行,对此不作限定,为了便于描述,下面以由第二会话管理网元执行为例进行说明。
该方法可以包括:第二会话管理网元获取指示信息,指示信息指示允许拜访网络分流;第二会话管理网元根据指示信息,向用户面网元发送拜访网络的IP地址信息,其中,第二会话管理网元和用户面网元为拜访网络中部署的网元。
示例地,用户面网元可以为用户面功能(user plane function,UPF),边缘应用服务器发现网元,或者也可以为:UPF和边缘应用服务器发现网元合设的模块等。
基于上述技术方案,部署于拜访网络中的第二会话管理网元,可以根据指示信息向用户面网元发送拜访网络的IP地址信息(如用于确定ECS option的信息,又如ECS option或L-DNS服务器地址)。这样,当终端设备通过HR漫游方式接入拜访网络后,可以通过该IP地址信息,实现终端设备访问拜访网络中的业务。举例来说,用户面网元可以将基于IP地址信息确定的ECS option添加到DNS查询消息中,或者用户面网元向边缘应用服务器发现网元发送ECS option或IP地址信息,边缘应用服务器发现网元可以将基于IP地址信息确定的ECS option添加到DNS查询消息中,或者也可以将DNS查询消息可以转发到基于IP地址信息确定的L-DNS服务器,从而可以实现HR漫游场景下的本地EAS的发现。
结合第三方面,在第三方面的某些实现方式中,第二会话管理网元获取指示信息,包括:第二会话管理网元本地配置指示信息;或者,第二会话管理网元接收指示信息。
结合第三方面,在第三方面的某些实现方式中,指示信息包括第二业务的标识,指示信息指示允许对第二业务在拜访网络分流。
示例地,第二业务的标识例如可以为:全量域名(或者全量域名范围),应用标识,应用服务器的IP地址,端口号。
结合第三方面,在第三方面的某些实现方式中,指示信息包括第一指示信息和/或第二指示信息,第一指示信息为第二会话管理网元本地配置的,第二指示信息为第二会话管理网元接收到的。
结合第三方面,在第三方面的某些实现方式中,IP地址信息为用于确定域名系统DNS 扩展机制客户端子网选项的信息,或者,IP地址信息为DNS扩展机制客户端子网选项或本地DNS服务器地址。
第四方面,提供了一种通信的方法,该方法可以由核心网网元执行,或者,也可以由核心网网元的组成部件(例如芯片或者电路)执行,对此不作限定,为了便于描述,下面以由策略控制网元执行为例进行说明。
该方法可以包括:策略控制网元获取指示信息,指示信息指示是否允许拜访网络分流;策略控制网元向第一会话管理网元发送指示信息,其中,第一会话管理网元为归属网络中部署的网元。
结合第四方面,在第四方面的某些实现方式中,方法还包括:策略控制网元向第一会话管理网元发送第一业务的标识,第一业务为允许在拜访网络分流的业务。
结合第四方面,在第四方面的某些实现方式中,指示信息包括第一业务的标识,指示信息指示允许对第一业务在拜访网络分流。
第五方面,提供了一种通信的方法,该方法可以由核心网网元执行,或者,也可以由核心网网元的组成部件(例如芯片或者电路)执行,对此不作限定。
该方法可以包括:第一会话管理网元获取拜访网络的IP地址信息;第一会话管理网元向边缘应用服务器发现网元发送IP地址信息,第一会话管理网元和边缘应用服务器发现网元为归属网络中部署的网元;边缘应用服务器发现网元接收IP地址信息。
结合第五方面,在第五方面的某些实现方式中,边缘应用服务器发现网元接收DNS查询消息;边缘应用服务器发现网元在该DNS查询消息中添加域名系统扩展机制客户端子网选项,该域名系统扩展机制客户端子网选项是根据IP地址信息确定的。
结合第五方面,在第五方面的某些实现方式中,边缘应用服务器发现网元接收DNS查询消息;边缘应用服务器发现网元将该DNS查询消息转发到本地DNS服务器地址,该本地DNS服务器地址是根据IP地址信息确定的。
结合第五方面,在第五方面的某些实现方式中,IP地址信息为用于确定域名系统DNS扩展机制客户端子网选项的信息,或者,IP地址信息为域名系统扩展机制客户端子网选项或本地DNS服务器地址。
第六方面,提供了一种通信的方法,该方法可以由核心网网元执行,或者,也可以由核心网网元的组成部件(例如芯片或者电路)执行,对此不作限定。
该方法可以包括:第二会话管理网元获取指示信息,指示信息指示允许拜访网络分流;第二会话管理网元根据指示信息,向用户面网元发送拜访网络的IP地址信息,其中,第二会话管理网元和用户面网元为拜访网络中部署的网元;用户面网元接收IP地址信息。
结合第六方面,在第六方面的某些实现方式中,用户面网元接收DNS查询消息;用户面网元在该DNS查询消息中添加域名系统扩展机制客户端子网选项,该域名系统扩展机制客户端子网选项是根据IP地址信息确定的。
结合第六方面,在第六方面的某些实现方式中,用户面网元接收DNS查询消息;用户面网元将该DNS查询消息转发到本地DNS服务器地址,该本地DNS服务器地址是根据IP地址信息确定的。
结合第六方面,在第六方面的某些实现方式中,用户面网元向边缘应用服务器发现网元发送该IP地址信息,边缘应用服务器发现网元为归属网络中部署的网元。
结合第六方面,在第六方面的某些实现方式中,IP地址信息为用于确定域名系统DNS扩展机制客户端子网选项的信息,或者,IP地址信息为域名系统扩展机制客户端子网选项或本地DNS服务器地址。
第七方面,提供一种通信的装置,该装置用于执行上述第一方面至第六方面任一种可能实现方式中的方法。具体地,该装置可以包括用于执行第一方面至第六方面任一种可能实现方式中的方法的单元和/或模块,如处理单元和/或通信单元。
在一种实现方式中,该装置为核心网网元。当该装置为核心网网元时,通信单元可以是收发器,或,输入/输出接口;处理单元可以是至少一个处理器。可选地,收发器可以为收发电路。可选地,输入/输出接口可以为输入/输出电路。
在另一种实现方式中,该装置为用于核心网网元的芯片、芯片系统或电路。当该装置为用于核心网网元的芯片、芯片系统或电路时,通信单元可以是该芯片、芯片系统或电路上的输入/输出接口、接口电路、输出电路、输入电路、管脚或相关电路等;处理单元可以是至少一个处理器、处理电路或逻辑电路等。
第八方面,提供一种通信的装置,该装置包括:至少一个处理器,用于执行存储器存储的计算机程序或指令,以执行上述第一方面至第六方面任一种可能实现方式中的方法。可选地,该装置还包括存储器,用于存储的计算机程序或指令。可选地,该装置还包括通信接口,处理器通过通信接口读取存储器存储的计算机程序或指令。
在一种实现方式中,该装置为核心网网元。
在另一种实现方式中,该装置为用于核心网网元的芯片、芯片系统或电路。
第九方面,本申请提供一种处理器,用于执行上述各方面提供的方法。
对于处理器所涉及的发送和获取/接收等操作,如果没有特殊说明,或者,如果未与其在相关描述中的实际作用或者内在逻辑相抵触,则可以理解为处理器输出和接收、输入等操作,也可以理解为由射频电路和天线所进行的发送和接收操作,本申请对此不做限定。
第十方面,提供一种计算机可读存储介质,该计算机可读介质存储用于设备执行的程序代码,该程序代码包括用于执行上述第一方面至第六方面任一种可能实现方式中的方法。
第十一方面,提供一种包含指令的计算机程序产品,当该计算机程序产品在计算机上运行时,使得计算机执行上述第一方面至第六方面任一种可能实现方式中的方法。
第十二方面,提供一种通信系统,包括前述的第一会话管理网元、第二会话管理网元、边缘应用服务器发现网元、用户面网元中的一个或多个。
附图说明
图1示出了一种网络架构的示意图。
图2示出了另一种网络架构的示意图。
图3是本申请实施例提供的一种通信的方法300的示意图。
图4是本申请实施例提供的另一种通信的方法400的示意图。
图5是本申请实施例提供的一种通信的方法500的示意性流程图。
图6是本申请实施例提供的另一种通信的方法600的示意性流程图。
图7是本申请实施例提供的另一种通信的方法700的示意性流程图。
图8是本申请实施例提供的另一种通信的方法800的示意性流程图。
图9是本申请实施例提供的另一种通信的方法900的示意性流程图。
图10是本申请实施例提供的另一种通信的方法1000的示意性流程图。
图11是本申请实施例提供的另一种通信的方法1100的示意性流程图。
图12示出了本申请实施例提供的一种通信的装置1200的示意性框图。
图13示出了本申请实施例提供的另一种通信的装置1300的示意性框图。
具体实施方式
下面将结合附图,对本申请中的技术方案进行描述。
本申请提供的技术方案可以应用于各种通信系统,例如:第五代(5th generation,5G)或新无线(new radio,NR)系统、长期演进(long term evolution,LTE)系统、LTE频分双工(frequency division duplex,FDD)系统、LTE时分双工(time division duplex,TDD)系统等。本申请提供的技术方案还可以应用于未来的通信系统,如第六代移动通信系统。本申请提供的技术方案还可以应用于设备到设备(device to device,D2D)通信,车到万物(vehicle-to-everything,V2X)通信,机器到机器(machine to machine,M2M)通信,机器类型通信(machine type communication,MTC),以及物联网(internet of things,IoT)通信系统或者其他通信系统。
首先结合图1和图2简单介绍适用于本申请的网络架构,如下。
作为示例,图1示出了一种网络架构的示意图。
如图1所示,该网络架构以归属路由(home routed,HR)漫游为例。
某个运营商的某种制式的蜂窝移动通信网络可称为公共陆地移动网络(public land mobile network,PLMN)。用户设备(user equipment,UE)签约的PLMN可称为归属公共陆地移动网络(public land mobile network,PLMN)(home PLMN,HPLMN),表征签约用户的归属运营商。当UE因移动或其他原因离开HPLMN的覆盖范围时,如果存在某个PLMN满足以下条件:1)可以覆盖UE当前所在位置,2)其运营商与该UE的HPLMN的运营商签署了漫游协议(漫游协议,即表示运营商之间的某种协议,内容例如可以包括但不限于:为对方运营商网络的签约用户提供的服务和计费方式等问题,对此不与限制),那么该UE可以接入该PLMN,且该PLMN可称为拜访公共陆地移动网络(visited PLMN,VPLMN)。UE接入VPLMN的行为可称为漫游。漫游场景可以分为本地突破(local breakout,LBO)漫游和归属路由(home routed,HR)漫游,两者的区别主要在于会话是否要连接到归属网络的UPF。在HR漫游场景中,会话(如称为HR会话)连接到归属网络的UPF。HR会话是指用户位于拜访网络时建立的,且连接到归属网络的UPF的会话,该HR会话中所承载的业务流(traffic),从UE发送到归属网络的UPF,之后再发送到接收端。
如图1所示,该网络架构可以包括但不限于:基于网络切片特定认证与授权功能(network slice specific authentication and authorization function,NSSAAF),网络切片选择功能(network slice selection function,NSSF),认证服务器功能(authentication server function,AUSF),统一数据管理(unified data management,UDM),策略控制功能(policy control function,PCF),应用功能(application function,AF),接入和移动性管理功能 (access and mobility management function,AMF),会话管理功能(session management function,SMF),用户设备(user equipment,UE),无线接入网设备,用户面功能(user plane function,UPF),数据网络(data network,DN)等。
下面对图1中示出的各网元做简单介绍。
1、UE:可以称终端设备、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置。
终端设备可以是一种向用户提供语音/数据的设备,例如,具有无线连接功能的手持式设备、车载设备等。目前,一些终端的举例为:手机(mobile phone)、平板电脑、笔记本电脑、掌上电脑、移动互联网设备(mobile internet device,MID)、可穿戴设备,虚拟现实(virtual reality,VR)设备、增强现实(augmented reality,AR)设备、工业控制(industrial control)中的无线终端、无人驾驶(self driving)中的无线终端、远程手术(remote medical surgery)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端、蜂窝电话、无绳电话、会话启动协议(session initiation protocol,SIP)电话、无线本地环路(wireless local loop,WLL)站、个人数字助理(personal digital assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、可穿戴设备,5G网络中的终端设备或者未来演进的公用陆地移动通信网络(public land mobile network,PLMN)中的终端设备等,本申请实施例对此并不限定。
作为示例而非限定,在本申请实施例中,该终端设备还可以是可穿戴设备。可穿戴设备也可以称为穿戴式智能设备,是应用穿戴式技术对日常穿戴进行智能化设计、开发出可以穿戴的设备的总称,如眼镜、手套、手表、服饰及鞋等。可穿戴设备即直接穿在身上,或是整合到用户的衣服或配件的一种便携式设备。可穿戴设备不仅仅是一种硬件设备,更是通过软件支持以及数据交互、云端交互来实现强大的功能。广义穿戴式智能设备包括功能全、尺寸大、可不依赖智能手机实现完整或者部分的功能,例如:智能手表或智能眼镜等,以及只专注于某一类应用功能,需要和其它设备如智能手机配合使用,如各类进行体征监测的智能手环、智能首饰等。
此外,在本申请实施例中,终端设备还可以是IoT系统中的终端设备,IoT是未来信息技术发展的重要组成部分,其主要技术特点是将物品通过通信技术与网络连接,从而实现人机互连,物物互连的智能化网络。
需要指出的是,终端设备与接入网设备之间可以采用某种空口技术(如NR或LTE技术等)相互通信。终端设备与终端设备之间也可以采用某种空口技术(如NR或LTE技术等)相互通信。
本申请实施例中,用于实现终端设备的功能的装置可以是终端设备,也可以是能够支持终端设备实现该功能的装置,例如芯片系统或芯片,该装置可以被安装在终端设备中。本申请实施例中,芯片系统可以由芯片构成,也可以包括芯片和其他分立器件。
2、(无线)接入网((radio)access network,(R)AN)设备:可以为特定区域的授权用户提供接入通信网络的功能,具体可以包括第三代合作伙伴计划(3rd generation partnership project,3GPP)网络中无线网络设备也可以包括非3GPP(non-3GPP)网络中的接入点。下文为方便描述采用AN设备表示。
AN设备可以为采用不同的无线接入技术。目前的无线接入技术有两种类型:3GPP接入技术(例如,第三代(3rd generation,3G)、第四代(4th generation,4G)或5G系统中采用的无线接入技术)和非3GPP(non-3GPP)接入技术。3GPP接入技术是指符合3GPP标准规范的接入技术,例如,5G系统中的接入网设备称为下一代基站节点(next generation Node Base station,gNB)或者RAN设备。非3GPP接入技术可以包括以无线保真(wireless fidelity,WiFi)中的接入点(access point,AP)为代表的空口技术、全球互联微波接入(worldwide interoperability for microwave access,WiMAX)、码分多址(code division multiple access,CDMA)等。AN设备可以允许终端设备和3GPP核心网之间采用非3GPP技术互连互通。
AN设备能够负责空口侧的无线资源管理、服务质量(quality of service,QoS)管理、数据压缩和加密等功能。AN设备为终端设备提供接入服务,进而完成控制信号和用户数据在终端设备和核心网之间的转发。
AN设备例如可以包括但不限于:宏基站、微基站(也称为小站)、无线网络控制器(radio network controller,RNC)、节点B(Node B,NB)、基站控制器(base station controller,BSC)、基站收发台(base transceiver station,BTS)、家庭基站(例如,home evolved NodeB,或home Node B,HNB)、基带单元(baseband unit,BBU),WiFi系统中的AP、无线中继节点、无线回传节点、传输点(transmission point,TP)或者发送接收点(transmission and reception point,TRP)等,还可以为5G(如,NR)系统中的gNB或传输点(TRP或TP),5G系统中的基站的一个或一组(包括多个天线面板)天线面板,或者,还可以为构成gNB或传输点的网络节点,如分布式单元(distributed unit,DU),或者下一代通信6G系统中的基站等。本申请实施例对AN设备所采用的具体技术和具体设备形态不做限定。
3、AMF:主要用于接入控制、移动性管理、附着与去附着等功能。
4、SMF:主要用于用户面网元选择,用户面网元重定向,终端设备的因特网协议(internet protocol,IP)地址分配,以及移动网络中的会话管理,如会话的建立、修改和释放及服务质量(quality of service,QoS)控制。
在本申请中,为区分,将HPLMN中的SMF记为归属SMF(home SMF,H-SMF),将VPLMN中的SMF记为拜访SMF(visited SMF,V-SMF)。
5、UPF:主要用于用户面数据的接收和转发。例如,UPF可以从DN接收用户面数据,并通过AN设备将用户面数据发送给终端设备。UPF还可以通过AN设备从终端设备接收用户面数据,并转发到DN。会话中通过N6接口与DN直接相连的UPF可称为协议数据单元(protocol data unit,PDU)会话锚点(PDU session anchor,PSA)。
在本申请中,为区分,将HPLMN中的UPF记为归属UPF(home UPF,H-UPF),将VPLMN中的UPF记为拜访UPF(visited UPF,V-UPF)。此外,为区分,将HPLMN中的PSA记为归属PSA(home PSA,H-PSA),将VPLMN中的PSA记为拜访PSA(visited PSA,V-PSA)(或者记为本地PSA(local PSA,L-PSA))。
6、PCF:主要用于指导网络行为的统一策略框架,为控制面网元(例如AMF,SMF等)提供策略规则信息等。
7、AF:主要用于向3GPP网络提供业务,如与PCF之间交互以进行策略控制等。
8、网络切片选择功能(network slice selection function,NSSF):主要用于网络切片选择。
9、UDM:主要用于UE的签约数据管理,包括UE标识的存储和管理,UE的接入授权等。
10、DN:主要用于为UE提供数据服务的运营商网络。例如,因特网(Internet)、第三方的业务网络、IP多媒体服务业务(IP multi-media service,IMS)网络等。
11、AUSF:主要用于用户鉴权等。
作为示例,图2示出了另一种网络架构的示意图。
如图2所示,该网络架构可以理解为是图1所示的HR漫游架构的增强。该网络架构可以包括但不限于:SMF(如V-SMF和H-SMF),UE,UPF(如V-UPF和H-UPF),PSA(如L-PSA),域名系统(domain name system,DNS),PCF(如H-PCF),边缘应用服务器发现网元(edge application server discovery function,EASDF)。在该架构中,域名系统(domain name system,DNS)消息可终结于HPLMN的EASDF。其中,DNS消息可终结于HPLMN的EASDF,可以表示由HPLMN的EASDF处理该DNS消息,或者可以表示DNS消息的目的地址为HPLMN的EASDF,或者可以表示HPLMN的EASDF接收该DNS消息。其中,边缘应用服务器发现网元,例如也可以称为边缘应用(服务)发现功能、应用实例发现功能、边缘应用实例发现功能、MEC应用(服务器)发现功能等,不予限制。
EASDF,主要用于辅助边缘应用服务器(edge application server,EAS)发现,其主要作用包括:根据SMF的指示,处理DNS消息。其中,处理DNS消息,可以包括但不限于:向SMF上报DNS消息,在DNS查询(DNS query)中添加EDNS客户端子网选项(Edns-client-subnet option,ECS option),向DNS服务器转发DNS query,向UE转发DNS响应(DNS response)等。其中,EDNS为DNS扩展机制(extended mechanisms for DNS,EDNS)。在本申请中,为区分,将HPLMN中的DNS记为C-DNS,将VPLMN中的UPF记为L-DNS。
关于其他网元的介绍可以参考图1中的描述,此处不再赘述。
在图1或图2所示的网络架构中,各网元之间可以接口通信,例如,UE通过无线资源控制(radio resource control,RRC)协议与AN设备连接,UE和AN设备之间采用Uu接口进行通信。或者也可以参考图1所示的接口,此处不再赘述。
应理解,上述所示的网络架构仅是示例性说明,适用本申请实施例的网络架构并不局限于此,任何能够实现上述各个网元的功能的网络架构都适用于本申请实施例。此外,上述所示的网络架构中还可以包括其他更多的网元,如网络存储功能网元((network function(NF)repository function,NRF),对此不予限制。在本申请中,为区分,将HPLMN中的NRF记为归属NRF(home NRF,H-NRF),将VPLMN中的NRF记为拜访NRF(visited NRF,V-NRF)。
还应理解,图1或图2中所示的AMF、SMF、UPF、PCF、UDM、NSSF、AUSF等功能或者网元,可以理解为用于实现不同功能的网元,例如可以按需组合成网络切片。这些网元可以各自独立的设备,也可以集成于同一设备中实现不同的功能,或者可以是硬件设备中的网络元件,也可以是在专用硬件上运行的软件功能,或者是平台(例如,云平台) 上实例化的虚拟化功能,本申请对于上述网元的具体形态不作限定。
还应理解,上述命名仅为便于区分不同的功能而定义,不应对本申请构成任何限定。本申请并不排除在6G网络以及未来其它的网络中采用其他命名的可能。例如,在6G网络中,上述各个网元中的部分或全部可以沿用5G中的术语,也可能采用其他名称等。
在边缘计算(edge computing,EC)部署场景中,某些业务可能会由多个部署于网络边缘的EAS提供服务。该多个EAS可提供相同的业务和内容,且大部分具有不同的IP地址。EC场景中,当UE接入该业务时,可请求其接入距离UE近的可用EAS。因此,获取合适的EAS的IP地址是比较重要的。
如上文所述,UE可能会通过HR漫游的方式接入VPLMN,并由VPLMN为UE提供服务。如果需要通过HR漫游接入,对于这些业务,由于会话锚点在HPLMN,使用远端DNS服务器(server)返回的应用服务器(application server,AS)IP与H-UPF的距离近,但是有可能与UE的距离较远,造成UE访问AS的路径较长,用户体验不佳。因此,现有的边缘服务发现机制不能用于HR漫游场景。
本申请提出一种方案,通过VPLMN的IP地址(如用于确定ECS option的信息,又如ECS option或L-DNS服务器,等等)来实现访问VPLMN中的业务,实现HR漫游场景下的本地EAS的发现。
例如,HPLMN的会话管理网元取拜访网络的IP地址信息(如用于确定ECS option的信息,又如ECS option或L-DNS服务器,等),并发送给HPLMN的边缘应用服务器发现网元。这样当终端设备访问VPLMN中的业务时,可以由该边缘应用服务器发现网元基于获取到的该IP地址信息实现。举例来说,HPLMN的边缘应用服务器发现网元收到来自终端设备的DNS query消息后,可以通过在DNS query中添加基于IP地址信息确定的ECS option或将该DNS query消息转发到基于IP地址信息确定的L-DNS服务器(如该IP地址信息为L-DNS服务器地址信息)等,从而可以实现HR漫游场景下的本地EAS的发现。
再例如,VPLMN的会话管理网元获取信息#B,信息#B指示允许拜访网络分流,VPLMN的会话管理网元可以根据该信息#B向VPLMN的用户面网元发送拜访网络的IP地址信息(如用于确定ECS option的信息,又如ECS option或L-DNS服务器地址)。这样,当终端设备通过HR漫游方式接入拜访网络后,可以通过该IP地址信息,实现终端设备访问拜访网络中的业务。举例来说,VPLMN的用户面网元可以将ECS option添加到DNS查询消息中,或者VPLMN的用户面网元向边缘应用服务器发现网元发送ECS option或用于确定ECS option的信息,边缘应用服务器发现网元可以将ECS option添加到DNS查询消息中,等,从而可以实现HR漫游场景下的本地EAS的发现。
可以理解,本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
下文将结合附图详细说明本申请实施例提供的通信的方法。本申请提供的实施例可以应用于上述图1或图2所示的网络架构中,不作限定。
图3是本申请实施例提供的一种通信的方法300的示意图。方法300可以包括如下步骤。
310,第一会话管理网元获取拜访网络的IP地址信息,第一会话管理网元为归属网络中部署的网元。
其中,拜访网络,即终端设备离开归属网络后接入的网络,如VPLMN。下文主要以VPLMN为例进行说明。
其中,归属网络,即终端设备签约的网络,如HPLMN。下文主要以HPLMN为例进行说明。
其中,第一会话管理网元为HPLMN中部署的网元。例如,第一会话管理网元为H-SMF。
一示例,IP地址信息(为区分,记为信息#A),指用于确定ECS option的信息(information),或者该IP地址信息为ECS option,或者该IP地址信息为子网的IP地址或前缀。举例来说,在步骤310中,H-SMF获取信息#A,该信息#A用于确定ECS option(即VPLMN的ECS option)。作为示例,信息#A为用于确定ECS option的信息时,该信息#A也可以为ECS option。下文除非特别说明,否则下文提及的ECS option,即指VPLMN的ECS option。
又一示例,信息#A,指本地DNS(local DNS,L-DNS)服务器地址。举例来说,在步骤310中,H-SMF获取信息#A,该信息#A为L-DNS服务器地址。
可以理解的是,IP地址信息还可以描述为子网的媒体接入控制(media access control,MAC)地址。本申请不对IP地址信息的表示形式进行限定。
下文,为便于描述,以ECS option为例进行示例性说明,本申请不限于此,例如,ECS option也可以替换为L-DNS服务器地址,相应地,在DNS query添加ECS option的动作也可以替换成将DNS query转发到L-DNS服务器的动作。
关于信息#A下文不再赘述。
320,第一会话管理网元向边缘应用服务器发现网元发送IP地址信息,边缘应用服务器发现网元为归属网络中部署的网元。
其中,边缘应用服务器发现网元为HPLMN中部署的网元。例如,边缘应用服务器发现网元为H-EASDF。
基于上述技术方案,部署于归属网络中的第一会话管理网元,可以获取拜访网络的IP地址信息(如用于确定ECS option的信息,又如ECS option或L-DNS服务器),并发送给边缘应用服务器发现网元。通过获取拜访网络的IP地址信息,这样,当终端设备通过HR漫游方式接入拜访网络后,由于边缘应用服务器发现网元获取了拜访网络的IP地址信息,因此可以通过该边缘应用服务器发现网元实现终端设备访问拜访网络中的业务。举例来说,边缘应用服务器发现网元收到来自终端设备的DNS查询消息后,可以将基于IP地址信息确定的ECS option添加到DNS查询消息中,或者也可以将DNS查询消息转发到基于IP地址信息确定的L-DNS服务器(如该IP地址信息为L-DNS服务器地址信息),从而可以实现HR漫游场景下的本地EAS的发现。
可选地,步骤310中第一会话管理网元获取拜访网络的IP地址信息,包括:第一会话管理网元根据指示信息(为区分,记为信息#B)获取拜访网络的IP地址信息,信息#B指示允许拜访网络分流。
举例来说,H-SMF获知允许VPLMN分流,则H-SMF获取该VPLMN的IP地址信 息(即信息#A)。
可选地,步骤320中第一会话管理网元向边缘应用服务器发现网元发送信息#A,包括:第一会话管理网元根据信息#B,向边缘应用服务器发现网元发送信息#A,信息#B指示允许拜访网络分流(或者信息#B指示允许分流)。
举例来说,若信息#B指示允许VPLMN分流,H-SMF获知允许VPLMN分流,则H-SMF向H-EASDF发送信息#A。
下面详细介绍信息#B。
信息#B指示允许拜访网络分流,信息#B还可以描述为,指示(或者表征,或者表明)允许(或者授权,或者期望)分流。其中,“允许”,可以表示授权,或者也可以表示期望。
一示例,允许分流,表示允许在VPLMN分流。相应地,信息#B指示允许拜访网络分流,还可替换为信息#B指示允许在VPLMN分流。
又一示例,允许分流,表示HPLMN是否允许VPLMN本地分流。相应地,信息#B指示允许拜访网络分流,还可替换为信息#B指示HPLMN是否允许VPLMN本地分流。
又一示例,允许分流,表示允许添加(或者使用,或者获取)ECS option(或者允许获取L-DNS服务器地址,或者允许将DNS query转发到L-DNS服务器)。相应地,信息#B指示允许拜访网络分流,还可替换为信息#B指示允许添加(或者使用,或者获取)ECS option(或者允许获取L-DNS服务器地址,或者允许将DNS query转发到L-DNS服务器)。
又一示例,允许分流,表示添加(或者使用,或者获取)ECS option(或者获取L-DNS服务器地址,或者将DNS query转发到L-DNS服务器)。相应地,信息#B指示允许拜访网络分流,还可替换为信息#B指示添加(或者使用,或者获取)ECS option(或者获取L-DNS服务器地址,或者将DNS query转发到L-DNS服务器)。
本申请对“信息#B”的具体内容不予限制。下文为统一描述,主要以“信息#B”指示是否允许在VPLMN分流,为例进行示例性说明。
可以理解,本申请主要以允许在VPLMN分流为例进行说明,并不限定所有情况均要允许VPLMN本地分流,换句话说,在某些情况下,也可能不允许(或者不支持)在VPLMN分流,在该情况下,可不在VPLMN进行本地分流。
本申请对信息#B的具体命名不予限制。例如,本申请中的“信息#B”可替换为“授权策略”,或者可替换为“分流策略”,或者可替换为“漫游策略”,等等。
本申请对信息#B的形式不予限制。例如,信息#B可以是信元,或者可以是参数,或者可以是表格的形式,等等。
可选地,该信息#B指示允许对第一业务在拜访网络分流。可选地,该信息#B包括第一业务的标识,例如第一会话管理网元还可以向边缘应用服务器发现网元发送该第一业务的标识。第一业务的标识和信息#B可以携带于同一信令中,或者可以分别发送,不予限制。
其中,允许对第一业务在拜访网络分流,例如可以表示允许在第一业务对应的DNS query中添加(或者使用)ECS option,或者可以表示允许将第一业务对应的报文转发到L-DNS服务器,或者可以表示在上行报文中添加ECS option,在上行报文中添加的方式不予限制,例如添加在用户层面的通用分组无线业务(general packet radio service,GPRS)隧道协议(GPRS Tunnelling Protocol for the user plane,GTP-U)报文头。
作为示例,第一业务的标识,例如可以为以下任一项:全量域名(full qualified domain name,FQDN)(或者FQDN范围(range)),应用标识(application ID,AppID),IP地址,端口号。也就是说,信息#B可以包括以下一项或多项:FQDN(或者FQDN range),应用标识,IP地址。下面主要以FQDN为例进行说明,可以理解,下面例子中的FQDN也可替换为以下任一项:应用标识、IP地址、端口号。
例如,信息#B包括一个或多个FQDN,该一个或多个FQDN表示允许在拜访网络分流的业务对应的FQDN(或者表示允许使用VPLMN ECS option的业务对应的FQDN)。在一种可能的实现中,信息#B中包括两个信元,一个信元用于指示允许在拜访网络分流,另一个信元包括该一个或多个FQDN,H-SMF根据信息#B可获知该一个或多个FQDN对应的业务允许在拜访网络分流。在另一种可能的实现中,信息#B中包含一个或多个FQDN,H-SMF根据内部逻辑确定该一个或多个FQDN对应的业务允许在拜访网络分流。
再例如,信息#B包括一个或多个FQDN,该一个或多个FQDN表示不允许在拜访网络分流的业务对应的FQDN(或者表示不允许使用VPLMN ECS option的业务对应的FQDN)。在一种可能的实现中,信息#B中包括两个信元,一个信元用于指示不允许在拜访网络分流,另一个信元包括该一个或多个FQDN,H-SMF根据信息#B可获知该一个或多个FQDN对应的业务不允许在拜访网络分流。在另一种可能的实现中,信息#B中包含一个或多个FQDN,H-SMF根据内部逻辑确定该一个或多个FQDN对应的业务不允许在拜访网络分流。此外,进一步地,H-SMF根据信息#B可获知其他FQDN(即除该一个或多个FQDN之外的FQDN)对应的业务允许在拜访网络分流。
再例如,信息#B包括一个或多个FQDN#1,以及一个或多个FQDN#2,该一个或多个FQDN#1表示允许在拜访网络分流的业务对应的FQDN,该一个或多个FQDN#2表示不允许在拜访网络分流的业务对应的FQDN。在一种可能的实现中,信息#B中包括三个信元,一个信元用于指示FQDN#1对应的业务允许在拜访网络分流,另一个信元包括该一个或多个FQDN#1,又一个信元包括该一个或多个FQDN#2,H-SMF根据信息#B可获知该一个或多个FQDN#1对应的业务允许在拜访网络分流,该一个或多个FQDN#2对应的业务不允许在拜访网络分流。在另一种可能的实现中,信息#B中包括三个信元,一个信元用于指示FQDN#2对应的业务不允许在拜访网络分流,另一个信元包括该一个或多个FQDN#1,又一个信元包括该一个或多个FQDN#2,H-SMF根据信息#B可获知该一个或多个FQDN#1对应的业务允许在拜访网络分流,该一个或多个FQDN#2对应的业务不允许在拜访网络分流。在另一种可能的实现中,信息#B中包括两个信元,一个信元包括该一个或多个FQDN#1,另一个信元包括该一个或多个FQDN#2,H-SMF根据内部逻辑确定该一个或多个FQDN#1对应的业务允许在拜访网络分流,该一个或多个FQDN#2对应的业务不允许在拜访网络分流。
可选地,信息#B与PLMN具有对应关系。
举例来说,信息#B可以与PLMN关联,通过确定PLMN,可以确定该PLMN对应的(或者关联的)信息#B。作为示例,如信息#B可以以表1的形式存在。
表1
PLMN标识(identity,ID) 信息#B
PLMN#1 信息#B1
PLMN#2 信息#B2
PLMN#3 信息#B3
以表1为例,举例来说,若确定PLMN为PLMN#2,则可以获知该PLMN对应的信息#B为信息#B2。
一种可能的情况,表1中的PLMN ID可以是VPLMN的ID。举例来说,若确定VPLMN为PLMN#2,则可以获知该VPLMN对应的信息#B为信息#B2。若信息#B2用于指示允许PLMN#2本地分流,则可以在VPLMN进行本地分流。
又一种可能的情况,表1中的PLMN ID可以是HPLMN的ID。举例来说,若确定HPLMN为PLMN#1,则可以获知该HPLMN对应的信息#B为信息#B1。若信息#B1用于指示PLMN#1允许VPLMN本地分流,则可以在VPLMN进行本地分流。
应理解,表1仅是示例性说明,对此不予限制,任何属于表1的变形,都适用于本申请。例如,上述表1中的PLMN ID也可以替换为SMF ID,如PLMN#1可以替换为一个或多个SMF ID(即该PLMN#1对应的一个或多个SMF的ID)。
可选地,PLMN与信息#A具有对应关系,如记为对应关系#A。也就是说,基于PLMN以及对应关系#A,可以确定该PLMN的信息#A。通过该信息#A,可以确定ECS option。如对应关系#A可以以表2的形式存在。
表2
PLMN ID 信息#A
PLMN#1 信息#A1
PLMN#2 信息#A2
PLMN#3 信息#A3
以表2为例,举例来说,若确定PLMN为PLMN#2,则可以获知该PLMN对应的信息#A为信息#A2。通过该信息#A2可以确定ECS option。举例来说,H-SMF确定PLMN为PLMN#2,并确定该PLMN对应的信息#A为信息#A2,则H-SMF可以向H-EASDF发送该信息#A2,以使H-EASDF根据该信息#A2确定ECS option。
应理解,表2仅是示例性说明,对此不予限制,任何属于表2的变形,都适用于本申请。例如,上述表2中的PLMN ID也可以替换为SMF ID,如PLMN#2可以替换为一个或多个SMF ID(即该PLMN#2对应的一个或多个SMF的ID)。又如,上述表2中的信息#A可以替换为ECS option或L-DNS服务器地址。
可选地,PLMN、信息#B与信息#A具有对应关系,如记为对应关系#B。也就是说,基于PLMN以及对应关系#B,可以确定该PLMN对应的信息#B与信息#A。通过该信息#A,可以确定ECS option。
例如,上述表1和表2结合使用。举例来说,若确定PLMN为PLMN#1,则可以基于表1获知该PLMN对应的信息#B为信息#B1,基于表2获知该PLMN对应的信息#A为信息#A1。通过该信息#A1可以确定ECS option。
又如,对应关系#B可以以表3的形式存在。
表3
PLMN ID 信息#B 信息#A
PLMN#1 信息#B1 信息#A1
PLMN#2 信息#B2 信息#A2
PLMN#3 信息#B3 信息#A3
以表3为例,举例来说,若确定PLMN为PLMN#2,则可以基于表3获知该PLMN对应的信息#B为信息#B2,该PLMN对应的信息#A为信息#A2。通过该信息#A2可以确定ECS option。举例来说,H-SMF确定PLMN为PLMN#2,并确定该PLMN对应的信息#A为信息#A2,则H-SMF可以向H-EASDF发送该信息#A2,以使H-EASDF根据该信息#A2确定ECS option。
应理解,表3仅是示例性说明,对此不予限制,任何属于表3的变形,都适用于本申请。例如,上述表3中的PLMN ID也可以替换为SMF ID,如PLMN#1可以替换为一个或多个SMF ID(即该PLMN#1对应的一个或多个SMF的ID)。又如,上述表3中的信息#A可以替换为ECS option或L-DNS服务器地址。
可选地,方法300还包括:第一会话管理网元获取信息#B。
举例来说,H-SMF至少可以通过以下任一方式获取信息#B。
方式1,H-SMF接收信息#B。
例如,H-SMF从H-PCF或AF处接收信息#B。举例来说,H-PCF或AF向H-SMF发送信息#B,相应地,H-SMF接收来自H-PCF或AF的信息#B。关于触发H-PCF或AF向H-SMF发送信息#B的条件,不予限制。例如,触发条件可以是H-SMF向H-PCF或AF发送VPLMN的标识。后面结合图5至图11给出示例。
再例如,H-SMF从H-NRF处接收信息#B。举例来说,H-NRF向H-SMF发送信息#B,相应地,H-SMF接收来自H-NRF的信息#B。关于触发H-NRF向H-SMF发送信息#B的条件,不予限制。例如,触发条件可以是H-SMF向H-NRF发送VPLMN的标识。后面结合图5至图11给出示例。
再例如,H-SMF从V-SMF处接收信息#B。举例来说,V-SMF向H-SMF发送信息#B,相应地,H-SMF接收来自V-SMF的信息#B。
方式2,H-SMF本地配置信息#B。
例如,本地配置的漫游协议中包括VPLMN对应的信息#B,H-SMF根据本地配置的漫游协议,直接获取该VPLMN对应的信息#B。
又如,本地配置的漫游协议中包括一个或多个信息#B,H-SMF根据本地配置的漫游协议,获取该信息#B。其中,该一个或多个信息#B,可以是对应一个或多个PLMN的信息#B,H-SMF可以先确定VPLMN,再根据VPLMN获取对应的信息#B。需要说明的是,H-SMF可以根据接收V-SMF的消息,以及本地配置确定信息#B。其中,该消息可以是Nsmf_PDUSession_Create Request或Nsmf_PDUSession_Update Request消息等,本申请不予限制。
可选地,信息#B在H-SMF中可以以表1的形式存在。以表1为例,举例来说,若H-SMF确定VPLMN为PLMN#2,则可以获知该VPLMN对应的信息#B为信息#B2。若信息#B2用于指示允许PLMN#2本地分流,则可以在VPLMN进行本地分流。
可选地,VPLMN与信息#A之间具有对应关系(如对应关系#A)。也就是说,基于VPLMN以及对应关系#A,可以确定该VPLMN的信息#A。以表2为例,一种可能的情况,表2中的PLMN ID可以是VPLMN的ID。举例来说,若H-SMF确定VPLMN为PLMN#2,则可以获知该VPLMN对应的信息#A为信息#A2。
本申请对H-SMF确定VPLMN的方式,不予限制。作为示例,H-SMF可以根据VPLMN中部署的网元的标识(如V-SMF的标识,或者其他网元的标识等),识别VPLMN。一种可能的方式,H-SMF接收V-SMF的标识(例如V-SMF ID,本申请不予限制),H-SMF根据该V-SMF的标识,确定VPLMN的标识,即确定VPLMN。另一种可能的方式,H-SMF从V-SMF接收VPLMN的标识。再一种可能的方式,H-SMF接收V-SMF的消息,根据该消息确定VPLMN的标识。其中,该消息可以是Nsmf_PDUSession_Create Request或Nsmf_PDUSession_Update Request消息等,本申请不予限制。
上述两种方式为示例性说明,任何可以使得H-SMF元获取信息#B的方式,都适用于本申请实施例。
可选地,步骤310中第一会话管理网元获取信息#A,包括:第一会话管理网元自身确定该信息#A,或者,第一会话管理网元接收该信息#A。
下面以第一会话管理网元为H-SMF为例进行说明。
方式1,H-SMF从V-SMF接收信息#A。
例如,V-SMF可以主动下发信息#A。举例来说,重用HR会话建立流程,V-SMF向H-SMF发送Nsmf_PDUSession_Create Request消息,该消息中包括信息#A。
再例如,V-SMF可以基于H-SMF的请求,向H-SMF发送信息#A。进一步,可选地,方法300还包括:H-SMF向V-SMF发送请求信息#1(即第一请求信息的一例),该请求信息#1用于请求上述信息#A。
其中,关于请求信息#1的实现方式不予限制。一可能的方式,该请求信息#1可以为信息#B,即H-SMF向V-SMF发送信息#B,该信息#B用于请求上述信息#A。又一可能的方式,该请求信息#1可以通过一个或多个比特来实现,如通过该一个或多个比特的字段请求上述信息#A。又一可能的方式,该请求信息#1本身具有请求上述信息#A的功能,即V-SMF收到该请求信息#1,则向H-SMF发送信息#A。
方式2,H-SMF从H-NRF接收信息#A。
例如,H-NRF可以基于H-SMF的请求,向H-SMF发送信息#A。进一步,可选地,方法300还包括:H-SMF向H-NRF发送请求信息#2(即第二请求信息的一例),该请求信息#2用于请求上述信息#A。第一种可能的情况,H-NRF收到请求信息#2后,可以根据本地配置确定信息#A。在该情况下,H-NRF直接向H-SMF发送请求信息#2的响应,该响应中携带信息#A。第二种可能的情况,H-NRF收到请求信息#2后,可以从V-NRF接收信息#A。
其中,关于请求信息#2的实现方式不予限制。一可能的方式,该请求信息#2可以为信息#B,即H-SMF向H-NRF发送信息#B,该信息#B用于请求上述信息#A。又一可能的 方式,该请求信息#2可以通过一个或多个比特来实现,如通过该一个或多个比特的字段请求上述信息#A。又一可能的方式,该请求信息#2本身具有请求上述信息#A的功能,即H-NRF收到该请求信息#2,则向H-SMF发送信息#A。在上述各种可能的方式中,请求消息#2还可以包含VPLMN的标识,例如VPLMN ID。
方式3,H-SMF自身确定信息#A。
例如,VPLMN可以对应一个或多个信息#A。
H-SMF可以先确定VPLMN,再根据VPLMN与信息#A之间的对应关系(如对应关系#A),确定该VPLMN对应的信息#A。
本申请对H-SMF确定VPLMN的方式,不予限制。作为示例,H-SMF可以根据VPLMN中部署的网元的标识(如V-SMF的标识,或者其他网元的标识等),识别VPLMN。一种可能的方式,H-SMF接收V-SMF的标识(例如V-SMF ID,本申请不予限制),H-SMF根据该V-SMF的标识,确定VPLMN的标识,即确定VPLMN。另一种可能的方式,H-SMF从V-SMF接收VPLMN的标识。再一种可能的方式,H-SMF接收V-SMF的消息,根据该消息确定VPLMN的标识。其中,该消息可以是Nsmf_PDUSession_Create Request或Nsmf_PDUSession_Update Request消息等,本申请不予限制。
再例如,V-SMF可以对应一个或多个信息#A。
H-SMF可以先确定V-SMF,再根据V-SMF与信息#A之间的对应关系,确定该V-SMF对应的信息#A。举例来说,H-SMF接收V-SMF的标识(例如V-SMF ID,本申请不予限制),H-SMF根据该V-SMF的标识,确定该V-SMF对应的信息#A。
以上几种可能的方式为示例性说明,不限于此。只要可以使得H-SMF确定信息#A的方式,都适用于本申请。
如上所述,信息#B可能包括第一业务的标识,如FQDN(或者FQDN range)、应用标识、IP地址、端口号,若H-SMF本地配置了信息#B,且又接收了信息#B,则H-SMF可以根据本地配置的信息#B和/或接收的信息#B,确定信息#A。下面主要以FQDN为例进行说明,可以理解,FQDN也可替换为以下任一项:应用标识或、IP地址、端口号。
假设H-SMF本地配置的信息#B记为第一信息#B(即第一指示信息的一例),H-SMF接收到的信息#B记为第二信息#B(即第二指示信息的一例),若第一信息#B中包括FQDN,则该FQDN用FQDN#3表示;若第二信息#B中包括FQDN,则该FQDN用FQDN#4表示。
其中,FQDN#3中可以包括一个或多个FQDN。FQDN#3包括:允许在VPLMN分流的业务对应的FQDN(或者允许使用VPLMN ECS option的业务对应的FQDN),和/或,不允许在VPLMN分流的业务对应的FQDN(或者不允许使用VPLMN ECS option的业务对应的FQDN)。
其中,FQDN#4中可以包括一个或多个FQDN。FQDN#4包括:允许在VPLMN分流的业务对应的FQDN(或者允许使用VPLMN ECS option的业务对应的FQDN),和/或,不允许在VPLMN分流的业务对应的FQDN(或者不允许使用VPLMN ECS option的业务对应的FQDN)。
下面结合几种可能的情况分别说明。
情况1,第一信息#B包括FQDN#3,第二信息#B包括FQDN#4。
基于该情况1,一可能的方式,H-SMF确定目标FQDN为FQDN#4,例如信息#A可用于为FQDN#4对应的DNS query确定和/或添加ECS option。举例来说,基于该方式,当某业务的FQDN与该目标FQDN(即FQDN#4)匹配时,允许该业务使用VPLMN ECS option。例如,UE发送DNS query消息,用于请求边缘服务(或者用于请求边缘服务器的地址);如果该DNS query消息包含的FQDN与FQDN#4匹配,则可以在该DNS query消息中添加ECS option。
基于该情况1,又一可能的方式,H-SMF确定目标FQDN为FQDN#3和FQDN#4的交集(如记为FQDN#5),例如信息#A可用于为FQDN#5对应的DNS query确定和/或添加ECS option。举例来说,基于该方式,当某业务的FQDN与该目标FQDN(即FQDN#5)匹配时,允许该业务使用VPLMN ECS option。例如,UE发送DNS query消息,用于请求边缘服务(或者用于请求边缘服务器的地址);如果该DNS query消息包含的FQDN与该FQDN#5匹配,则可以在该DNS query消息中添加ECS option。
基于该情况1,又一可能的方式,H-SMF确定目标FQDN为FQDN#3,例如信息#A可用于为FQDN#3对应的DNS query确定和/或添加ECS option。举例来说,基于该方式,当某业务的FQDN与该目标FQDN(即FQDN#3)匹配时,允许该业务使用VPLMN ECS option。例如,UE发送DNS query消息,用于请求边缘服务(或者用于请求边缘服务器的地址);如果该DNS query消息包含的FQDN与FQDN#3匹配,则可以在该DNS query消息中添加ECS option。
基于该情况1,又一可能的方式,H-SMF确定目标FQDN为FQDN#3和FQDN#4的并集(如记为FQDN#6),例如信息#A可用于为FQDN#6对应的DNS query确定和/或添加ECS option。举例来说,基于该方式,当某业务的FQDN与该目标FQDN(即FQDN#6)匹配时,允许该业务使用VPLMN ECS option。例如,UE发送DNS query消息,用于请求边缘服务(或者用于请求边缘服务器的地址);如果该DNS query消息包含的FQDN与该FQDN#6匹配,则可以在该DNS query消息中添加ECS option。
基于该情况1,又一可能的方式,H-SMF确定目标FQDN为FQDN#7,该FQDN#7是H-SMF根据FQDN#3和FQDN#4确定的,不限于上述FQDN#3、FQDN#4、FQDN#5、FQDN#6中的任一种。例如信息#A可用于为FQDN#7对应的DNS query确定和/或添加ECS option。举例来说,基于该方式,当某业务的FQDN与该目标FQDN(即FQDN#7)匹配时,允许该业务使用VPLMN ECS option。例如,UE发送DNS query消息,用于请求边缘服务(或者用于请求边缘服务器的地址);如果该DNS query消息包含的FQDN与该FQDN#7匹配,则可以在该DNS query消息中添加ECS option。
情况2,第一信息#B不包括FQDN#3,第二信息#B包括FQDN#4。
基于该情况2,一可能的方式,H-SMF确定目标FQDN为FQDN#4,例如信息#A可用于为FQDN#4对应的DNS query确定和/或添加ECS option。举例来说,基于该方式,当某业务的FQDN与该目标FQDN(即FQDN#4)匹配时,允许该业务使用VPLMN ECS option。例如,UE发送DNS query消息,用于请求边缘服务(或者用于请求边缘服务器的地址);如果该DNS query消息包含的FQDN与FQDN#4匹配,则可以在该DNS query消息中添加ECS option。
情况3,第一信息#B包括FQDN#3,第二信息#B不包括FQDN#4。
基于该情况3,一可能的方式,H-SMF确定目标FQDN为FQDN#3,例如信息#A可用于为FQDN#3对应的DNS query确定和/或添加ECS option。举例来说,基于该方式,当某业务的FQDN与该目标FQDN(即FQDN#3)匹配时,允许该业务使用VPLMN ECS option。例如,UE发送DNS query消息,用于请求边缘服务(或者用于请求边缘服务器的地址);如果该DNS query消息包含的FQDN与FQDN#3匹配,则可以在该DNS query消息中添加ECS option。
基于该情况3,又一可能的方式,H-SMF确定目标FQDN包括未部署于HPLMN边缘的业务的FQDN,或H-SMF确定目标FQDN为全部FQDN。需要说明的是,该确定动作是可选的。例如信息#A可用于为目标FQDN(如未部署于HPLMN边缘的业务的FQDN)对应的DNS query确定和/或添加ECS option。举例来说,基于该方式,当某业务的FQDN与该目标FQDN匹配时,允许该业务使用VPLMN ECS option。例如,UE发送DNS query消息,用于请求边缘服务(或者用于请求边缘服务器的地址);如果该DNS query消息包含的FQDN目标FQDN匹配,则可以在该DNS query消息中添加ECS option。可以理解的是,在这种情况下,H-SMF可以不向H-EASDF发送FQDN。
情况4,第一信息#B不包括FQDN#3,第二信息#B不包括FQDN#4。
基于该情况4,一可能的方式,H-SMF确定目标FQDN包括未部署于HPLMN边缘的业务的FQDN,或H-SMF确定目标FQDN为全部FQDN。需要说明的是,该确定动作是可选的。例如信息#A可用于为目标FQDN(如未部署于HPLMN边缘的业务的FQDN)对应的DNS query确定和/或添加ECS option。举例来说,基于该方式,当某业务的FQDN与该目标FQDN匹配时,允许该业务使用VPLMN ECS option。例如,UE发送DNS query消息,用于请求边缘服务(或者用于请求边缘服务器的地址);如果该DNS query消息包含的FQDN目标FQDN匹配,则可以在该DNS query消息中添加ECS option。可以理解的是,在这种情况下,H-SMF可以不向EASDF发送FQDN。
上述四种情况中,提到了FQDN对应的DNS query确定和/或添加ECS option,其中,确定ECS option,即表示基于信息#A确定ECS option,添加即表示在DNS query消息(或者也可以是上行报文)中添加该ECS option。
还可以理解,上述主要信息#A以ECS option为例进行示例性说明,本申请不限于此。例如,ECS option也可以替换成L-DNS服务器地址,添加ECS option的动作也可以替换成将DNS query转发到L-DNS服务器的动作。
图4是本申请实施例提供的另一种通信的方法400的示意图。方法400可以包括如下步骤。
410,第二会话管理网元获取信息#B,信息#B指示允许拜访网络分流。
其中,第二会话管理网元为VPLMN中部署的网元。例如,第二会话管理网元为V-SMF。
关于信息#B,可以参考方法300中的相关描述,此处不再赘述。
420,第二会话管理网元根据信息#B,向用户面网元发送拜访网络的IP地址信息。
其中,用户面网元为VPLMN中部署的网元。例如,用户面网元为V-UPF,V-EASDF,或者也可以为:UPF和EASDF网元合设的模块等。
其中,IP地址信息(即信息#A),指用于确定ECS option的信息,或者该IP地址信 息为ECS option,或者该IP地址信息为子网的IP地址或前缀;或者,信息#A,可以指L-DNS服务器地址。关于信息#A可以参考方法300中的描述,此处不再赘述。
基于上述技术方案,部署于拜访网络中的第二会话管理网元,可以根据指示信息向用户面网元发送拜访网络的IP地址信息(如用于确定ECS option的信息,又如ECS option或L-DNS服务器地址)。这样,当终端设备通过HR漫游方式接入拜访网络后,可以通过该IP地址信息,实现终端设备访问拜访网络中的业务。举例来说,用户面网元可以将基于IP地址信息确定的ECS option添加到DNS查询消息中,或者用户面网元向边缘应用服务器发现网元发送ECS option或用于确定ECS option的信息,边缘应用服务器发现网元可以将ECS option添加到DNS查询消息中,其中用户面网元向边缘应用服务器发现网元发送ECS option或用于确定ECS option的信息的方式不予限制,例如可以通过上行报文发送,或者也可以将DNS查询消息可以转发到L-DNS服务器,从而可以实现HR漫游场景下的本地EAS的发现。
可选地,方法400还包括:第二会话管理网元获取信息#B。
举例来说,V-SMF至少可以通过以下任一方式获取信息#B。
方式1,V-SMF接收信息#B。
例如,V-SMF从H-SMF接收信息#B。举例来说,H-SMF向V-SMF发送信息#B,相应地,V-SMF接收来自H-SMF的信息#B。其中,信息#B可以通过Nsmf_PDUSession_Create Response或Nsmf_PDUSession_Update Response等发送,本申请不予限制。
再例如,V-SMF从V-PCF或AF处接收信息#B。举例来说,V-PCF或AF向V-SMF发送信息#B,相应地,V-SMF接收来自V-PCF或AF的信息#B。
方式2,V-SMF本地配置信息#B。
例如,本地配置的漫游协议中包括HPLMN对应的信息#B,V-SMF根据本地配置的漫游协议,直接获取该HPLMN对应的信息#B。
又如,本地配置的漫游协议中包括一个或多个信息#B,V-SMF根据本地配置的漫游协议,获取该信息#B。其中,该一个或多个信息#B,可以是对应一个或多个PLMN的信息#B,V-SMF可以先确定HPLMN,再根据HPLMN获取对应的信息#B。
可选地,信息#B在V-SMF中可以以表1的形式存在。以表1为例,举例来说,若V-SMF确定HPLMN为PLMN#2,则可以获知该HPLMN对应的信息#B为信息#B2。若信息#B2用于指示PLMN#2允许VPLMN本地分流,则可以在VPLMN进行本地分流。
本申请对V-SMF确定HPLMN的方式,不予限制。作为示例,V-SMF可以根据HPLMN中部署的网元的标识(如H-SMF的标识,或者其他网元的标识等),识别HPLMN。一种可能的方式,V-SMF从AMF接收H-SMF的标识(例如H-SMF ID,本申请不予限制),V-SMF根据该H-SMF的标识,确定HPLMN的标识,即确定HPLMN。另一种可能的方式,V-SMF从AMF接收HPLMN的标识。
上述两种方式为示例性说明,任何可以使得V-SMF获取信息#B的方式,都适用于本申请实施例。
可选地,方法400还包括:第二会话管理网元获取信息#A。
一种可能的方式,第二会话管理网元根据信息#B获取拜访网络的IP地址信息,信息#B指示允许拜访网络分流。举例来说,V-SMF根据信息#B获知允许VPLMN分流,则 V-SMF获取信息#A。其中,信息#B还可以描述为,指示(或者表征,或者表明)允许分流。
可以理解,上述为示例性说明,本申请不限于此。例如,第二会话管理网元也可以基于请求,获取拜访网络的IP地址信息。举例来说,V-SMF可以基于H-SMF的请求,确定信息#A。
可选地,方法400还包括:第二会话管理网元确定信息#A。
下面以第二会话管理网元为V-SMF为例。
方式1,V-SMF从V-NRF接收信息#A。
例如,V-NRF可以基于V-SMF的请求,向V-SMF发送信息#A。进一步,可选地,方法400还包括:V-SMF向V-NRF发送请求信息#3,该请求信息#3用于请求上述信息#A。第一种可能的情况,V-NRF收到请求信息#3后,可以根据本地配置确定信息#3。在该情况下,V-NRF直接向V-SMF发送请求信息#3的响应,该响应中携带信息#A。
其中,关于请求信息#2的实现方式不予限制。一可能的方式,该请求信息#2可以为信息#B,即H-SMF向H-NRF发送信息#B,该信息#B用于请求上述信息#A。又一可能的方式,该请求信息#2可以通过一个或多个比特来实现,如通过该一个或多个比特的字段请求上述信息#A。又一可能的方式,该请求信息#2本身具有请求上述信息#A的功能,即H-NRF收到该请求信息#2,则向H-SMF发送信息#A。在上述各种可能的方式中,请求消息#2还可以包含VPLMN的标识,例如VPLMN ID。
方式2,V-SMF自身确定信息#A。
例如,HPLMN可以对应一个或多个信息#A。
V-SMF可以先确定HPLMN,再根据HPLMN与信息#A之间的对应关系(如对应关系#A),确定该HPLMN对应的信息#A。
本申请对V-SMF确定HPLMN的方式,不予限制。作为示例,V-SMF可以根据HPLMN中部署的网元的标识(如H-SMF的标识,或者其他网元的标识等),识别HPLMN。一种可能的方式,V-SMF接收H-SMF的标识(例如H-SMF ID,本申请不予限制),V-SMF根据该H-SMF的标识,确定HPLMN的标识,即确定HPLMN。另一种可能的方式,V-SMF接收HPLMN的标识。
再例如,H-SMF可以对应一个或多个信息#A。
V-SMF可以先确定H-SMF,再根据H-SMF与信息#A之间的对应关系,确定该H-SMF对应的信息#A。举例来说,V-SMF接收H-SMF的标识(例如H-SMF ID,本申请不予限制),V-SMF根据该H-SMF的标识,确该H-SMF对应的信息#A。
以上几种可能的方式为示例性说明,不限于此。只要可以使得V-SMF确定信息#A的方式,都适用于本申请。
可选地,信息#B包括第二业务的标识,该信息#B指示允许对第二业务在拜访网络分流。可选地,第二会话管理网元还可以向用户面网元发送该第二业务的标识。第二业务的标识和信息#A可以携带于同一信令中,或者可以分别发送,不予限制。作为示例,第二业务的标识,例如可以为以下任一项:FQDN(或者FQDN range)、应用标识、IP地址、端口号。具体地可以参考方法300中的相关描述,此处不再赘述。
若V-SMF本地配置了信息#B,且又接收了信息#B,则V-SMF可以根据本地配置的 信息#B和/或接收的信息#B,确定信息#A。具体的,可以参考方法300中的情况1至情况4的描述,此处不再赘述。
可选地,方法400还包括:用户面网元接收到信息#A后,可能有以下处理方式。
例如,用户面网元在收到DNS query后,在该DNS query添加基于信息#A确定的ECS option。举例来说,用户面网元在收到DNS query后,若确定该DNS query为与第二业务的报文对应的DNS query,则在该DNS query添加基于信息#A确定的ECS option。
再例如,用户面网元在收到DNS query后,将该DNS query转发到L-DNS服务器。举例来说,信息#A为L-DNS服务器地址,用户面网元在收到DNS query后,若确定该DNS query为与第二业务的报文对应的DNS query,则将该DNS query转发到L-DNS服务器。
再例如,用户面网元在收到DNS query后,向EASDF请求在该DNS query添加基于信息#A确定的ECS option。或者,用户面网元在收到信息#A后,向EASDF发送该信息#A,便于EASDF进行处理。
再例如,用户面网元将信息#A发送到EASDF,该EASDF可以是H-EASDF。举例来说,用户面网元将信息#A添加到GTP-U报文头中,通过用户面报文将信息#A发送到EASDF。
再例如,用户面网元根据信息#A确定ECS option,然后将ECS option发送到EASDF,该EASDF可以是H-EASDF。举例来说,用户面网元将ECS option添加到GTP-U报文头中,通过用户面报文将信息#A发送到EASDF。
可以理解,上述为一些示例性说明,对不予限制。
为了便于理解,下面主要以信息#A为用于确定ECS option的信息为例,结合图5至图11对本申请实施例进行示例性说明。如上文所述,信息#B也可描述为授权策略,以下示例中假设用授权策略进行示例性说明。可以理解,授权策略即为上文所述的信息#B。其中涉及到的步骤具体可以可参考上文描述。
图5是本申请实施例提供的一种通信的方法500的示意性流程图。该方法500可以用于实现如方法300的方案,例如方法500可用于H-SMF根据本地配置确定信息#A,由H-EASDF添加到DNS query中的场景。方法500可以包括如下步骤。
501,H-SMF获取授权策略#1。
其中,授权策略#1用于指示(或者表征,或者表明)是否允许在VPLMN分流(或者说授权策略#1用于指示是否允许分流)。关于授权策略#1,参考上文方法300中关于信息#B的描述,此处不再赘述。
H-SMF获取授权策略#1,至少可以通过以下任一方式实现:
第一种可能的方式,H-SMF本地配置授权策略#1。
第二种可能的方式,H-SMF接收该授权策略#1。例如,在设备上电后通过其他流程(如会话建立流程),从V-SMF接收该授权策略#1。
关于H-SMF获取授权策略#1的具体方式,参考上文方法300中第一会话管理网元获取信息#B的方式,此处不再赘述。
可选地,H-SMF还可以获取对应关系#A,对应关系#A可用于指示VPLMN与信息#A的对应关系。作为示例,授权策略#1包括该对应关系#A。
可选地,授权策略#1还包括目标FQDN#1(或者FQDN range),目标FQDN#1中可以包括一个或多个FQDN。其中,目标FQDN#1包括:允许在VPLMN分流的业务对应的FQDN(或者允许使用VPLMN ECS option的业务对应的FQDN),和/或,不允许在VPLMN分流的业务对应的FQDN(或者不允许使用VPLMN ECS option的业务对应的FQDN)。举例来说,目标FQDN#1包括允许在VPLMN分流的业务对应的FQDN,当某业务的FQDN与该目标FQDN#1匹配时,允许该业务使用VPLMN ECS option。例如,UE发送DNS query消息,用于请求边缘服务(或者用于请求边缘服务器的地址);如果该DNS query消息包含的FQDN与该目标FQDN#1匹配,则可以在该DNS query消息中添加ECS option。
502,UE发起会话建立流程。
在HR漫游场景下,UE可以发起HR会话建立流程。本申请不限制具体的会话建立流程,例如可以按照以下方式:AMF接收UE的会话建立请求后,选择为HR会话服务的V-SMF和H-SMF;V-SMF和H-SMF接收会话建立请求后,分别选择为HR会话服务的V-UPF和H-UPF,并创建N4会话,以及发送用户面隧道信息。如果会话建立成功,网络侧向UE返回会话建立响应,之后可以通过该HR会话传输报文。
具体的,可以参照3GPP标准TS 23.502中的4.3.2.2.2等章节,或以后出现的会话建立的方式,本申请不予限制。
应理解,步骤502并不限定执行完整的HR会话建立流程,步骤502之后的多个步骤可以复用(或者重用)HR会话建立流程,或者说,步骤502之后的多个步骤可以在HR会话建立流程中执行。
503,AMF向V-SMF发送H-SMF ID。
V-SMF可以根据H-SMF ID确定H-SMF。
一种可能的实现方式,重用HR会话建立流程,AMF向V-SMF发送Nsmf接口PDU会话建立会话管理上下文请求(Nsmf_PDUSession_CreateSMContext Request)消息,该消息携带H-SMF ID。
应理解,Nsmf_PDUSession_CreateSMContext Request消息,仅是示例性说明,对此不予限制。
504,V-SMF向H-SMF发送V-SMF ID。
H-SMF可以根据V-SMF ID确定VPLMN ID,即确定VPLMN。
一种可能的实现方式,重用HR会话建立流程,V-SMF向H-SMF发送Nsmf接口PDU会话建立请求(Nsmf_PDUSession_Create Request)消息,该消息携带V-SMF ID。
需要说明的是,该步骤还可以描述为V-SMF向H-SMF发送V-SMF ID和/或VPLMN ID,在这种情况下,H-SMF可以直接确定VPLMN ID。
另一种可能的实现方式,H-SMF可以根据V-SMF发送的消息本身确定VPLMN ID。
应理解,Nsmf_PDUSession_Create Request消息,仅是示例性说明,对此不予限制。
505,H-SMF根据V-SMF ID和对应关系#A,确定信息#A。
一种可能的实现方式是,授权策略#1包括对应关系#A,H-SMF根据V-SMF ID确定VPLMN ID,进而根据授权策略#1中包括的对应关系#A,确定该VPLMN的信息#A。
506,H-PCF向H-SMF发送授权策略#2。
其中,授权策略#2用于指示(或者表征,或者表明)是否允许在VPLMN分流(或 者说授权策略#1用于指示是否允许分流)。H-PCF发送的该授权策略#2,可以是H-PCF本地配置的,或者也可以是由AF提供的,如AF可以通过AF request向H-PCF提供该授权策略#2。关于授权策略#2,参考上文方法300中关于信息#B的描述,此处不再赘述。
可选地,授权策略#2还包括目标FQDN#2(或者FQDN range),目标FQDN#2中可以包括一个或多个FQDN。其中,目标FQDN#2包括:允许在VPLMN分流的业务对应的FQDN(或者允许使用VPLMN ECS option的业务对应的FQDN),和/或,不允许在VPLMN分流的业务对应的FQDN(或者不允许使用VPLMN ECS option的业务对应的FQDN)。举例来说,目标FQDN#2包括允许在VPLMN分流的业务对应的FQDN,当某业务的FQDN与该目标FQDN#2匹配时,允许该业务使用VPLMN ECS option。可以理解,此处的目标FQDN#2与步骤501中的目标FQDN#1可以相同,也可以不同,不予限制。
一种可能的实现方式,重用HR会话建立流程,通过会话管理(session management,SM)策略关联流程实现。例如,PDU会话可以通过SM信令进行建立或修改流程,在通过SM策略进行建立或修改的流程中,H-PCF将授权策略#2发送给H-SMF。
具体来说,一种可能的实现方式是,在步骤504中H-SMF接收到来自V-SMF的Nsmf_PDUSession_Create Request消息后,触发H-PCF选择。H-PCF选择完成后,触发SM策略关联建立流程(SM policy association establishment)或SM策略关联修改流程(SM policy association modification)。在SM策略关联建立流程中,H-SMF向H-PCF发送Npcf接口SM策略控制建立请求(Npcf_SMPolicyControl_Create Request)消息,该消息中可能包含以下一项或多项:UE的用户永久标识(subscription permanent identifier,SUPI)或永久设备标识(permanent equipment identifier,PEI),PDU会话标识,数据网络名称(data network name,DNN),单个网络切片选择辅助信息(single network slice selection assistance information,S-NSSAI),无线接入类型(radio access technology,RAT)类型等。H-PCF收到该消息后,根据本地配置或从UDR中获取UE的签约信息和/或会话的签约信息等,确定该授权策略#2,并通过Npcf接口SM策略控制建立响应(Npcf_SMPolicyControl_Create Response)消息发送给H-SMF。可以理解,上述仅是为便于理解给出的示例性说明,对此不予限制。
需要说明的是,H-SMF可以本地配置授权策略,如若步骤501中H-SMF本地配置了授权策略#1,在这种情况下,H-PCF可以不向H-SMF发送授权策略#2,即不需要执行步骤506。
507,H-SMF选择H-EASDF。
本申请对H-SMF选择H-EASDF的具体方式不予限制。
作为示例,H-SMF在选择H-EASDF时,可以参考以下一项或多项信息:S-NSSAI,EASDF的位置,EASDF的IP地址,PSA的IP地址,DNAI。可以理解,H-SMF选择V-EASDF时可以参考上述一项或多项信息,或者也可以参考其他未列出的信息,本申请不予限制。
作为示例,H-SMF选择H-EASDF,至少可以通过以下任一方式实现。
一方式,H-SMF可以根据本地配置选择H-EASDF。
又一方式,H-SMF从H-NRF获取H-EASDF。举例来说,H-SMF向H-NRF发送请求消息,H-NRF向H-SMF返回一个或多个H-EASDF的信息(如包括地址,标识等)。若H-NRF向H-SMF返回多个H-EASDF,则H-SMF可从中选择一个。
508,H-SMF确定DNS处理规则。
H-SMF可以根据步骤505中确定的信息#A,确定(或者制定)DNS处理规则。具体来说,DNS处理规则可以包含步骤505中确定的信息#A,用于H-EASDF确定ECS option,进而可以用于为DNS query添加该ECS option。
可选地,H-SMF根据授权策略确定DNS处理规则。例如,若该授权策略用于指示允许在VPLMN分流,则H-SMF可以根据信息#A确定DNS处理规则。其中,授权策略可以是H-SMF在步骤506中收到的授权策略#2,或者也可以是H-SMF本地配置的授权策略(如步骤501中获取到的授权策略#1),或者也可以是H-SMF根据授权策略#1和/或授权策略#2确定的授权策略#3,不予限制。
一示例,H-SMF根据步骤501的授权策略#1确定DNS处理规则。一种可能的情况,授权策略#1包括目标FQDN#1,在该情况下,该DNS处理规则中还可以包含目标FQDN#1,用于指示H-EASDF检测DNS query消息,当包含的FQDN与DNS处理规则中的目标FQDN#1匹配时,向该DNS query消息添加ECS option。又一种可能的情况,授权策略#1不包括目标FQDN#1,在该情况下,该DNS处理规则可以用于指示为未部署于HPLMN边缘的业务的FQDN range的DNS query消息添加ECS option。
又一示例,H-SMF根据步骤506的授权策略#2确定DNS处理规则。一种可能的情况,授权策略#2包括目标FQDN#2,在该情况下,该DNS处理规则中还可以包含目标FQDN#2,用于指示H-EASDF检测DNS query消息,当包含的FQDN与DNS处理规则中的目标FQDN#2匹配时,向该DNS query消息添加ECS option。又一种可能的情况,授权策略#2不包括目标FQDN#2,在该情况下,该DNS处理规则可以用于指示为未部署于HPLMN边缘的业务的FQDN range的DNS query消息添加ECS option。
可以理解,上述示例为示例性说明,具体可以参考方法300中的情况1至情况4,此处不再赘述。
509,H-SMF向H-EASDF发送DNS处理规则。
510,H-SMF向UE发送H-EASDF的地址。
一种可能的实现方式,H-SMF通过AMF向UE发送H-EASDF的地址。例如,H-SMF通过AMF向UE发送N1消息(N1 Message),该N1消息包括N1 SM容器(container),该N1 SM container中携带H-EASDF的地址。例如,H-SMF通过Namf_Communication_N1N2MessageTransfer消息向AMF发送H-EASDF的地址,然后AMF通过非接入层(non-access stratum,NAS)消息向UE发送H-EASDF的地址。其中,UE和AMF之间可以通过N1接口进行交互,交互消息例如可以称为NAS消息。
511,UE向H-EASDF发送DNS query。
例如,UE通过用户面,经RAN和UPF将DNS query消息发送至H-EASDF。
512,H-EASDF向DNS query添加ECS option。
H-EASDF可以根据信息#A确定ECS option,然后根据步骤509接收的DNS处理规则,在DNS query中添加ECS option。
一种可能的方式,H-EASDF可以直接基于从H-SMF收到的信息#A确定ECS option,进而在DNS query中添加ECS option。
又一种可能的方式,H-EASDF可以向H-SMF请求ECS option或用于确定ECS option 的信息;H-EASDF从H-SMF收到ECS option或用于确定ECS option的信息后,确定并在DNS query中添加ECS option。可选地,H-EASDF向H-SMF请求ECS option时,可以携带DNS query中包括的FQDN。一种可能的实现方式是,H-EASDF向H-SMF发送Neasdf_DNSContext_Notify Request消息,该消息可以包含DNS query中包含的FQDN,并从H-SMF接收Neasdf_DNSContext_Notify Response消息。H-SMF向H-EASDF发送Neasdf_DNSContext_Update Request消息,包含ECS option或用于确定ECS option的信息,并从H-EASDF接收Neasdf_DNSContext_Update Response消息。
513,H-EASDF向DNS服务器发送包含ECS option的DNS query。
H-EASDF在DNS query中添加ECS option后,向DNS服务器发送DNS query消息(即已添加ECS option的DNS query消息)。
514,DNS服务器向H-EASDF发送DNS响应(response)。
DNS服务器可以向V-EASDF发送DNS response消息,该DNS response消息中可以包含地址信息,如EAS IP地址或FQDN等。
515,H-EASDF向UE发送DNS response。
H-EASDF收到DNS response消息后,可以向UE转发该DNS response消息。
基于上述方法500,H-SMF根据本地配置确定信息#A,进而确定ECS option,由H-EASDF添加到DNS query中,进而从DNS服务器接收本地EAS的地址,从而实现本地EAS的发现。
图6是本申请实施例提供的另一种通信的方法600的示意性流程图。该方法600可以用于实现如方法300的方案,例如方法600可用于H-SMF从V-SMF被动接收信息#A,并根据授权策略指示H-EASDF添加ECS option的场景。方法600可以包括如下步骤。
601,UE发起会话建立流程。
其中,步骤601与步骤502类似,此处不再赘述。
602,V-SMF向H-SMF发送信息#A。
一种可能的实现方式,重用HR会话建立流程,V-SMF向H-SMF发送Nsmf_PDUSession_Create Request消息,该消息中包括信息#A,该信息#A可用于确定ECS option。
应理解,Nsmf_PDUSession_Create Request消息,仅是示例性说明,对此不予限制。
可选地,V-SMF向H-SMF发送目标FQDN#3(或者FQDN range),目标FQDN#3中可以包括一个或多个FQDN。作为示例,该目标FQDN#3包括允许在VPLMN分流的业务对应的FQDN(或者允许使用VPLMN ECS option的业务对应的FQDN),或者说期望在VPLMN分流的业务对应的FQDN(或者期望使用VPLMN ECS option的业务对应的FQDN)。当某业务的FQDN与该目标FQDN#3匹配时,允许该业务使用VPLMN ECS option。
603,H-PCF向H-SMF发送授权策略。
其中,授权策略用于指示(或者表征,或者表明)是否允许在VPLMN分流(或者说授权策略用于指示是否允许分流)。关于授权策略,参考上文方法300中关于信息#B的描述,此处不再赘述。
可选地,授权策略还包括目标FQDN#4(或者FQDN range),目标FQDN#4中可以 包括一个或多个FQDN。其中,目标FQDN#4包括:允许在VPLMN分流的业务对应的FQDN(或者允许使用VPLMN ECS option的业务对应的FQDN),和/或,不允许在VPLMN分流的业务对应的FQDN(或者不允许使用VPLMN ECS option的业务对应的FQDN)。下文主要以目标FQDN#4包括允许在VPLMN分流的业务对应的FQDN为例进行示例性说明。
其中,步骤603与步骤506类似,此处不再赘述。
需要说明的是,H-SMF可以本地配置授权策略。在这种情况下,步骤603可以不执行。
604,H-SMF选择H-EASDF。
其中,步骤604与步骤507类似,此处不再赘述。
605,H-SMF确定DNS处理规则。
H-SMF可以根据步骤602中确定的信息#A,确定(或者制定)DNS处理规则。具体来说,DNS处理规则可以包含步骤602中确定的信息#A,用于H-EASDF确定ECS option,进而可以用于为DNS query添加该ECS option。
可选地,H-SMF根据授权策略确定DNS处理规则。例如,若授权策略用于指示允许在VPLMN分流,则H-SMF可以根据ECS option确定DNS处理规则。其中,授权策略可以是H-SMF在步骤603中收到的授权策略,或者也可以是H-SMF本地配置的授权策略,不予限制。
一种可能的情况,授权策略包含目标FQDN#4,且H-SMF在步骤602中没有接收到FQDN#3。在该情况下,一可能的方式,该DNS处理规则中还可以包含目标FQDN#4,用于指示H-EASDF检测DNS query消息,当包含的FQDN与DNS处理规则中的目标FQDN#4匹配时,向该DNS query消息添加ECS option。
又一可能的情况,授权策略包含目标FQDN#4,且H-SMF在步骤602中接收到FQDN#3。在该情况下,一可能的方式,该DNS处理规则中还可以包含目标FQDN#4,用于指示H-EASDF检测DNS query消息,当包含的FQDN与DNS处理规则中的目标FQDN#4匹配时,向该DNS query消息添加ECS option。又一可能的方式,该DNS处理规则中还可以包含目标FQDN#3和目标FQDN#4的交集(如记为目标FQDN#34),用于指示H-EASDF检测DNS query消息,当包含的FQDN与DNS处理规则中的目标FQDN#34匹配时,向该DNS query消息添加ECS option。又一可能的方式,该DNS处理规则中还可以包含目标FQDN#3,用于指示H-EASDF检测DNS query消息,当包含的FQDN与DNS处理规则中的目标FQDN#3匹配时,向该DNS query消息添加ECS option。
又一可能的情况,授权策略不包含目标FQDN#4,H-SMF在步骤602中接收到FQDN#3。在该情况下,该DNS处理规则中还可以包含目标FQDN#3,用于指示H-EASDF检测DNS query消息,当包含的FQDN与DNS处理规则中的目标FQDN#3匹配时,向该DNS query消息添加ECS option。
又一种可能的情况,授权策略不包含目标FQDN#4,且H-SMF在步骤602中没有接收到FQDN#3。在该情况下,该DNS处理规则用于指示为未部署于HPLMN边缘的业务的FQDN range的DNS query消息添加ECS option。
可以理解,上述示例为示例性说明,具体可以参考方法300中的情况1至情况4,此 处不再赘述。
606,H-SMF向H-EASDF发送DNS处理规则。
607,H-SMF向V-SMF发送H-EASDF的地址。
一种可能的实现方式,重用HR会话建立流程,H-SMF向V-SMF发送Nsmf接口PDU会话建立响应(Nsmf_PDUSession_Create Response)消息,该消息中包括H-EASDF的地址。
应理解,Nsmf_PDUSession_Create Response消息,仅是示例性说明,对此不予限制。
608,V-SMF向UE发送H-EASDF的地址。
一种可能的实现方式,V-SMF通过AMF向UE发送V-EASDF的地址。例如,V-SMF通过AMF向UE发送N1 Message,该N1消息包括N1 SM container,该N1 SM container中携带H-EASDF的地址。例如,V-SMF通过Namf_Communication_N1N2MessageTransfer消息向AMF发送H-EASDF的地址,然后AMF通过NAS消息向UE发送H-EASDF的地址。
609,UE向H-EASDF发送DNS query。
610,H-EASDF向DNS query添加ECS option。
611,H-EASDF向DNS服务器发送包含ECS option的DNS query。
612,DNS服务器向H-EASDF发送DNS response。
613,H-EASDF向UE发送DNS response。
其中,步骤609-613与步骤511-515类似,此处不再赘述。
基于上述方法600,V-SMF向H-SMF发送信息#A,H-SMF从V-SMF被动接收信息#A,并根据授权策略指示H-EASDF在DNS query中添加ECS option,进而从DNS服务器接收本地EAS的地址,从而实现本地EAS的发现。
图7是本申请实施例提供的另一种通信的方法700的示意性流程图。该方法700可以用于实现如方法300的方案,例如方法700可用于H-SMF主动向V-SMF请求上述信息#A,并根据授权策略指示H-EASDF在DNS query中添加ECS option的场景。方法700可以包括如下步骤。
701,UE发起会话建立流程。
其中,步骤701与步骤502类似,此处不再赘述。
702,H-PCF向H-SMF发送授权策略。
其中,授权策略用于指示(或者表征,或者表明)是否允许在VPLMN分流(或者说授权策略用于指示是否允许分流)。关于授权策略,参考上文方法300中关于信息#B的描述,此处不再赘述。
其中,步骤702与步骤506类似,此处不再赘述。
703,H-SMF向V-SMF发送授权策略。
一种可能的实现方式,重用HR会话建立流程。例如,H-SMF接收来自V-SMF的会话建立请求消息,并向V-SMF发送会话建立响应消息,在该会话建立响应消息中携带授权策略。可以理解,该授权策略可以为在步骤702中从H-PCF接收到的,或者也可以是本地配置的。
可选地,授权策略包括目标FQDN#5(或者FQDN range),目标FQDN#5中可以包 括一个或多个FQDN。其中,目标FQDN#5包括:允许在VPLMN分流的业务对应的FQDN(或者允许使用VPLMN ECS option的业务对应的FQDN),和/或,不允许在VPLMN分流的业务对应的FQDN(或者不允许使用VPLMN ECS option的业务对应的FQDN)。例如,若H-SMF在步骤702中从H-PCF接收到的授权策略或者H-SMF本地配置的授权策略中包括目标FQDN#5,则在步骤703中,H-SMF向V-SMF发送的授权策略可以包括目标FQDN#5。
第一种可能的情况,该授权策略还可以用于指示获取信息#A,该信息#A可用于确定ECS option。
第二种可能的情况,该授权策略中包括请求信息#1,该请求信息#1用于请求上述信息#A,该信息#A可用于确定ECS option。
第三种可能的情况,H-SMF向V-SMF发送请求信息#1,该请求信息#1用于请求上述信息#A,该信息#A可用于确定ECS option。
704,V-SMF向H-SMF发送信息#A。
一种可能的实现方式,以步骤703中第一种可能的情况为例,V-SMF收到授权策略后,根据授权策略获知允许在VPLMN分流,则响应于授权策略,V-SMF向H-SMF发送信息#A,该信息#A可用于确定ECS option。
又一种可能的实现方式,以步骤703中第二种可能的情况为例,V-SMF收到授权策略后,根据授权策略获知允许在VPLMN分流,则响应于授权策略中的请求信息#1,V-SMF向H-SMF发送信息#A,该信息#A可用于确定ECS option。
又一种可能的实现方式,以步骤703中第三种可能的情况为例,V-SMF收到授权策略和请求信息#1后,根据授权策略获知允许在VPLMN分流,则响应于请求信息#1,V-SMF向H-SMF发送信息#A,该信息#A可用于确定ECS option。
又一种可能的实现方式,可以根据V-SMF的内部逻辑或本地配置等,V-SMF向H-SMF发送信息#A,该信息#A可用于确定ECS option。
可以理解,上述几种实现方式为示例性说明,本申请不限于此。
可选地,V-SMF向H-SMF发送目标FQDN#6(或者FQDN range),目标FQDN#6中可以包括一个或多个FQDN。作为示例,该目标FQDN#6包括允许在VPLMN分流的业务对应的FQDN(或者允许使用VPLMN ECS option的业务对应的FQDN),或者说期望在VPLMN分流的FQDN(或者期望使用VPLMN ECS option的业务对应的FQDN)。当某业务的FQDN与该目标FQDN#6匹配时,允许该业务使用VPLMN ECS option。
示例地,若步骤703中的授权策略包括目标FQDN#5,则V-SMF确定期望(或者允许)在VPLMN分流的目标FQDN#6时,可以考虑该授权策略包括的目标FQDN#5。
705,H-SMF选择H-EASDF。
706,H-SMF确定DNS处理规则。
707,H-SMF向H-EASDF发送DNS处理规则。
其中,步骤705-707同步骤604-606类似,此处不再赘述。
708,H-SMF向UE发送H-EASDF的地址。
709,UE向H-EASDF发送DNS query。
710,H-EASDF向DNS query添加ECS option。
711,H-EASDF向DNS服务器发送包含ECS option的DNS query。
712,DNS服务器向H-EASDF发送DNS response。
713,H-EASDF向UE发送DNS response。
其中,步骤708-713同步骤510-515类似,此处不再赘述。
基于上述方法700,H-SMF主动向V-SMF请求上述信息#A,并根据授权策略指示H-EASDF添加ECS option,从而实现本地EAS的发现。
图8是本申请实施例提供的另一种通信的方法800的示意性流程图。该方法800可以用于实现如方法300的方案,例如方法800可用于H-SMF向H-NRF请求上述信息#A,并根据授权策略指示H-EASDF在DNS query中添加ECS option的场景。方法800可以包括如下步骤。
801,UE发起会话建立流程。
其中,步骤801与步骤502类似,此处不再赘述。
802,H-PCF向H-SMF发送授权策略。
其中,授权策略用于指示(或者表征,或者表明)是否允许在VPLMN分流(或者说授权策略用于指示是否允许分流)。关于授权策略,参考上文方法300中关于信息#B的描述,此处不再赘述。
其中,步骤802与步骤506类似,此处不再赘述。
803,H-SMF向H-NRF发送请求信息#2。
其中,请求信息#2用于请求(或者获取)信息#A。可选地,请求信息#2包括VPLMN ID。关于请求信息#2的形式不予限制。例如,该请求信息#2可以通过一个或多个比特来实现,通过该一个或多个比特的字段,用于请求上述信息#A。关于请求信息#2的具体实现方式,可以参考方法300中的描述,此处不再赘述。
一种可能的实现方式,H-SMF向H-NRF发送Nnrf_NFManagement_NFStatus Subscribe消息,该消息中携带请求信息#2。
第一种可能的情况,H-NRF收到请求信息#2后,可以根据本地配置确定信息#A。在该情况下,H-NRF直接向H-SMF发送请求信息#2的响应,该响应中携带信息#A。即可以不执行步骤804-805。
第二种可能的情况,H-NRF收到请求信息#2后,可以从V-NRF接收信息#A。在该情况下,方法800可以包括步骤804-805。
804,H-NRF向V-NRF发送请求信息#3。
其中,请求信息#3用于请求(或者获取)信息#A。可选地,请求信息#3包括VPLMN ID。关于请求信息#3的形式不予限制。例如,该请求信息#3可以通过一个或多个比特来实现,通过该一个或多个比特的字段,用于请求上述信息#A。
一种可能的实现方式,H-NRF向V-NRF发送Nnrf_NFManagement_NFStatus Subscribe消息,该消息中携带请求信息#3。
805,V-NRF向H-NRF发送信息#A。
V-NRF根据从H-NRF接收的请求信息#3,确定并向H-NRF发送信息#A。一种可能的实现方式,V-NRF向H-NRF发送Nnrf_NFManagement_NFStatus Notify消息,该消息中携带信息#A。
806,H-NRF向H-SMF发送信息#A。
一种可能的实现方式,H-NRF向H-SMF发送Nnrf_NFManagement_NFStatus Notify消息,该消息包括信息#A。
第一种可能的情况,若在步骤803中,H-NRF根据本地配置确定信息#A,则步骤806中H-NRF向H-SMF发送的信息#A可以为:步骤803中H-NRF根据本地配置确定的信息#A。
第二种可能的情况,若执行步骤804-805,则步骤806中H-NRF向H-SMF发送的信息#A可以为:步骤805中H-NRF从V-NRF接收到的信息#A。
第三种可能的情况,若在步骤803中,H-NRF本地配置有信息#A,且执行了步骤804-805,即H-NRF从V-NRF接收到了信息#A,则步骤806中H-NRF向H-SMF发送的信息#A可以为本地配置的或者接收到的。举例来说,在该情况下,步骤806中H-NRF向H-SMF发送的信息#A可以为:H-NRF从V-NRF接收到的信息#A。
807,H-SMF选择H-EASDF。
808,H-SMF确定DNS处理规则。
809,H-SMF向H-EASDF发送DNS处理规则。
810,H-SMF向UE发送H-EASDF的地址。
811,UE向H-EASDF发送DNS query。
812,H-EASDF向DNS query添加ECS option。
813,H-EASDF向DNS服务器发送包含ECS option的DNS query。
814,DNS服务器向H-EASDF发送DNS response。
815,H-EASDF向UE发送DNS response。
其中,步骤807-815同步骤705-713类似,此处不再赘述。
基于上述方法800,H-SMF向H-NRF请求上述信息#A,并根据授权策略指示H-EASDF添加ECS option,从而实现本地EAS的发现。
图9是本申请实施例提供的另一种通信的方法900的示意性流程图。该方法900可以用于实现如方法400的方案,例如方法900可用于V-SMF从H-SMF获取授权策略,并插入ECS option的场景。方法900可以包括如下步骤。
901,UE发起会话建立流程。
其中,步骤901与步骤502类似,此处不再赘述。
902,V-SMF向H-SMF发送会话建立请求消息。
一种可能的实现方式,重用HR会话建立流程,V-SMF向H-SMF发送Nsmf_PDUSession_Create Request消息。
可选地,该会话建立请求消息包括目标FQDN#7(或者FQDN range),目标FQDN#7中可以包括一个或多个允许在VPLMN分流的业务对应的FQDN(或者允许使用VPLMN ECS option的业务对应的FQDN),或者说期望在VPLMN分流的业务对应的FQDN(或者期望使用VPLMN ECS option的业务对应的FQDN)。作为示例,该目标FQDN#7包括括一个或多个允许在VPLMN分流的业务对应的FQDN。当某业务的FQDN与该目标FQDN#7匹配时,允许该业务使用VPLMN ECS option。
903,H-PCF向H-SMF发送授权策略。
其中,授权策略用于指示(或者表征,或者表明)是否允许在VPLMN分流(或者说授权策略用于指示是否允许分流)。关于授权策略,参考上文方法300中关于信息#B的描述,此处不再赘述。
可选地,授权策略还包括目标FQDN#8(或者FQDN range),目标FQDN#8中可以包括一个或多个FQDN。其中,目标FQDN#8包括:允许在VPLMN分流的业务对应的FQDN(或者允许使用VPLMN ECS option的业务对应的FQDN),和/或,不允许在VPLMN分流的业务对应的FQDN(或者不允许使用VPLMN ECS option的业务对应的FQDN)。下文主要以目标FQDN#8包括允许使用VPLMN ECS option的业务对应的FQDN为例进行示例性说明。
904,H-SMF选择H-EASDF。
其中,步骤903-904同步骤603-604类似,此处不再赘述。
905,H-SMF向V-SMF发送授权策略。
例如,H-SMF接收来自V-SMF的会话建立请求消息后,向V-SMF发送会话建立响应消息,并且在该会话建立响应消息中携带步骤903中收到的授权策略。可选地,该会话建立响应消息中还可以包括H-EASDF的地址。
一种可能的实现方式,重用HR会话建立流程,H-SMF向V-SMF发送Nsmf_PDUSession_Create Response消息,该消息中包括H-EASDF的地址和授权策略。
906,V-SMF向V-UPF发送N4规则。
该N4规则用于指示V-UPF为DNS query添加ECS option。
V-SMF可以根据在步骤905中接收到的授权策略,确定向V-UPF发送N4规则。具体来说,若V-SMF根据在步骤905中接收到的授权策略,获知允许在VPLMN分流,则V-SMF向V-UPF发送N4规则。
可选地,若授权策略中包含目标FQDN#8,则该N4规则用于指示V-UPF为包含的FQDN与授权策略中包含的目标FQDN#8匹配的DNS query添加ECS option。
一种可能的实现方式,V-SMF向V-UPF发送N4会话创建请求消息,该消息中携带N4规则。相应地,V-UPF可以向V-SMF发送N4会话创建响应消息。
907,V-SMF向UE发送H-EASDF的地址。
一种可能的实现方式,V-SMF通过AMF向UE发送V-EASDF的地址。例如,V-SMF通过AMF向UE发送N1 Message,该N1消息包括N1 SM container,该N1 SM container中携带H-EASDF的地址。例如,V-SMF通过Namf_Communication_N1N2MessageTransfer消息向AMF发送H-EASDF的地址,然后AMF通过NAS消息向UE发送H-EASDF的地址。
908,UE向V-UPF发送DNS query。
例如,UE通过用户面,经RAN,将DNS query消息发送至V-UPF。
909,V-UPF向DNS query添加ECS option。
V-UPF根据步骤906接收的N4规则,在DNS query中添加ECS option。
可选地,如果步骤906接收的N4规则包含目标FQDN#8,那么V-UPF收到DNS query后,可以对DNS query进行检测。举例来说,当V-UPF接收到DNS Query时,如果DNS Query包含的FQDN与N4规则的目标FQDN#8匹配,那么V-UPF向DNS query添加ECS  option。
需要说明的是,ECS option可以添加在DNS query中,也可以添加在UP报文的GTP-U头中,或其它方式,对此不予限制。本申请主要以为例进行示例性说明。
可以理解,在步骤909,V-UPF实际上对DNS消息进行了处理,相当于执行了V-EASDF的功能。因此此处的V-UPF可以理解为具备DNS消息处理功能的UPF,或者也可以理解为合设的UPF和EASDF等。应理解,本申请不限定执行该功能的具体网元,任何可以实现该功能的网元都适用于本申请实施例。
910,V-UPF向H-EASDF发送包含ECS option的DNS query。
V-UPF在DNS query中添加ECS option后,通过用户面向H-EASDF发送DNS query消息(即已添加ECS option的DNS query)。
911,H-EASDF向DNS服务器发送包含ECS option的DNS query。
912,DNS服务器向H-EASDF发送DNS response。
913,H-EASDF向UE发送DNS response。
其中,步骤911-913与步骤513-515类似,此处不再赘述。
基于上述方法900,V-SMF从H-SMF获取授权策略,并由V-UPF在DNS query中插入ECS option,进而使得EASDF从DNS服务器接收本地EAS的地址,从而实现HR漫游场景下的本地EAS发现。
图10是本申请实施例提供的另一种通信的方法1000的示意性流程图。该方法1000可以用于实现如方法400的方案,例如方法1000可用于V-SMF根据本地配置,指示V-UPF向DNS query插入ECS option的场景。方法1000可以包括如下步骤。
1001,V-SMF获取授权策略#3。
其中,授权策略#3用于指示(或者表征,或者表明)是否允许在VPLMN分流(或者说授权策略#3用于指示是否允许分流)。关于授权策略#3,参考上文方法300中关于信息#B的描述,此处不再赘述。
一种可能的方式,V-SMF本地配置授权策略#3。
另一种可能的方式,V-SMF接收该授权策略#3。例如,在设备上电后通过其他流程(如会话建立流程),从H-SMF接收该授权策略#3。
关于V-SMF获取授权策略#3的具体方式,参考上文方法400中第二会话管理网元获取信息#B的方式,此处不再赘述。
可选地,V-SMF还可以获取对应关系#A,对应关系#A用于指示VPLMN与信息#A的对应关系。作为示例,授权策略#3包括该对应关系#A。
可选地,授权策略#3还包括目标FQDN#9(或者FQDN range),目标FQDN#9中可以包括一个或多个FQDN。其中,目标FQDN#9包括:允许在VPLMN分流的业务对应的FQDN(或者允许使用VPLMN ECS option的业务对应的FQDN),和/或,不允许在VPLMN分流的业务对应的FQDN(或者不允许使用VPLMN ECS option的业务对应的FQDN)。举例来说,目标FQDN#9包括允许在VPLMN分流的业务对应的FQDN,当某业务的FQDN与该目标FQDN#9匹配时,允许该业务使用VPLMN ECS option。
1002,UE发起会话建立流程。
其中,步骤1002与步骤502类似,此处不再赘述。
1003,V-SMF向V-UPF发送N4规则。
该N4规则用于指示V-UPF为DNS query添加ECS option。
V-SMF可以根据在步骤1001中获取到的授权策略#3,确定向V-UPF发送N4规则。具体来说,若V-SMF根据在步骤1001中获取到的授权策略#3,获知在VPLMN分流,则V-SMF向V-UPF发送N4规则。
如果授权策略#3在V-SMF中的配置结构为{PLMN ID--授权策略}集合的形式,如表1的形式,那么,V-SMF可以根据H-SMF ID确定HPLMN ID,进而基于表1,获取该HPLMN对应的授权策略#3。其中,H-SMF ID可以是由AMF发送给V-SMF的。例如,重用HR会话建立流程,AMF向V-SMF发送Nsmf_PDUSession_CreateSMContext Request消息,该消息携带H-SMF ID。
可选地,若授权策略#3中包含目标FQDN#9,则该N4规则用于指示V-UPF为包含的FQDN与授权策略#3中包含的目标FQDN#9匹配的DNS query添加ECS option。
一种可能的实现方式,V-SMF向V-UPF发送N4会话创建请求消息,该消息中携带N4规则。相应地,V-UPF可以向V-SMF发送N4会话创建响应消息。
1004,H-SMF向V-SMF发送H-EASDF的地址。
一种可能的实现方式,重用HR会话建立流程,H-SMF向V-SMF发送Nsmf_PDUSession_Create Response消息,该消息中包括H-EASDF的地址。
可选地,该消息还可以包括授权策略(为区分,记为授权策略#4),该授权策略#4用于指示是否允许在VPLMN分流(或者说是否允许分流)。进一步地,该授权策略#4还可以包含目标FQDN#10。
1005,V-SMF向V-UPF发送更新的N4规则。
若V-SMF在步骤1004中收到授权策略#4,则V-SMF可以向V-UPF发送更新的N4规则。例如,V-SMF向V-UPF发送N4会话创建请求消息,该N4会话创建请求消息包括更新的N4规则。
一可能的情形,授权策略#4用于指示不允许在VPLMN分流。在该情况下,V-SMF向V-UPF发送更新的N4规则,该更新的N4规则用于指示V-UPF:删除之前的N4规则中为DNS query添加ECS option的指示;或者该更新的N4规则用于指示V-UPF:之前的N4规则中为DNS query添加ECS option的指示无效。
又一种可能的情形,授权策略#4用于指示允许在VPLMN分流。下面结合几种情况说明。
情况1)授权策略#4中包含目标FQDN#10,V-SMF在步骤1001中获得目标FQDN#9。
在该情况下,例如,V-SMF向V-UPF发送更新的N4规则,该更新的N4规则用于指示V-UPF对目标FQDN#10添加ECS option。再例如,V-SMF向V-UPF发送更新的N4规则,该更新的N4规则用于指示V-UPF对目标FQDN#11添加ECS option,其中,目标FQDN#11如为目标FQDN#9和目标FQDN#10的交集,或者,目标FQDN#11如为目标FQDN#9和目标FQDN#10的并集。
情况2)授权策略#4中包含目标FQDN#10,V-SMF在步骤1001中未获取目标FQDN#9。
在该情况下,例如,V-SMF向V-UPF发送更新的N4规则,该更新的N4规则用于指 示V-UPF对目标FQDN#10添加ECS option。
情况3)授权策略#4中不包含目标FQDN#10。
在该情况下,V-SMF可以不需要向V-UPF发送更新的N4规则。
可以理解,上述几种情况为示例性说明,本申请不限于此。
1006,V-SMF向UE发送H-EASDF的地址。
1007,UE向V-UPF发送DNS query。
1008,V-UPF向DNS query添加ECS option。
1009,V-UPF向H-EASDF发送包含ECS option的DNS query。
1010,H-EASDF向DNS服务器发送包含ECS option的DNS query。
1011,DNS服务器向H-EASDF发送DNS response。
1012,H-EASDF向UE发送DNS response。
其中,步骤1006-1012与步骤907-913类似,此处不再赘述。
基于上述方法1000,V-SMF根据本地配置,指示V-UPF向DNS query插入ECS option,进而从DNS服务器接收本地EAS的地址,从而实现HR漫游场景下的本地EAS发现。
图11是本申请实施例提供的另一种通信的方法1100的示意性流程图。该方法1100可以用于H-SMF接收授权策略,指示EASDF上报DNS query,并指示EASDF添加ECS option。方法1100可以包括如下步骤。
1101,UE发起会话建立流程。
其中,步骤1101与步骤502类似,此处不再赘述。
1102,V-SMF向H-SMF发送会话建立请求消息。
一种可能的实现方式,重用HR会话建立流程,V-SMF向H-SMF发送Nsmf_PDUSession_Create Request消息。
可选地,该会话建立请求消息包括目标FQDN#12(或者FQDN range),目标FQDN#12中可以包括一个或多个FQDN。作为示例,该目标FQDN#12包括允许在VPLMN分流的业务对应的FQDN(或者允许使用VPLMN ECS option的业务对应的FQDN),或者说期望在VPLMN分流的业务对应的FQDN(或者期望使用VPLMN ECS option的业务对应的FQDN)。当某业务的FQDN与该目标FQDN#12匹配时,允许该业务使用VPLMN ECS option。
可选地,该会话建立请求消息包括信息#A。
1103,H-PCF向H-SMF发送授权策略。
1104,H-SMF选择H-EASDF。
1105,H-SMF确定DNS处理规则。
1106,H-SMF向H-EASDF发送DNS处理规则。
其中,步骤1103-1106与步骤603-606类似,区别之处在于,步骤1105-1106中的DNS处理规则,也可以用于指示H-EASDF将收到的DNS query或DNS query中包含的FQDN上报H-SMF,具体地,如果DNS处理规则包含了FQDN(如目标FQDN#12),则指示H-EASDF将收到的与目标FQDN#12匹配的DNS query或DNS query中包含的FQDN上报H-SMF。
1107,H-SMF向V-SMF发送H-EASDF的地址。
1108,V-SMF向UE发送H-EASDF的地址。
其中,步骤1107-1108与步骤607-608类似,此处不再赘述。
可以理解,步骤1104-1106与步骤1107-1108不限定执行上的时间顺序或逻辑关系,只需要在步骤1109之前即可。
1109,UE向H-EASDF发送DNS query。
例如,UE通过用户面,经RAN和UPF将DNS query消息发送至H-EASDF。
1110,H-EASDF向H-SMF上报DNS query包含的FQDN。
H-EASDF收到DNS query后,根据步骤1106接收的DNS处理规则向H-SMF上报DNS query包含的FQDN。
如果DNS处理规则包含了FQDN(如目标FQDN#12),那么可以对DNS query包含的FQDN与DNS处理规则的FQDN进行匹配。假设DNS query包含的FQDN与DNS处理规则的FQDN匹配。
1111,H-SMF向V-SMF发送请求信息#1。
该请求信息#1用于请求上述信息#A。
H-SMF收到EASDF上报的FQDN后,向V-SMF请求上述信息#A。该请求信息#1中可以包含H-SMF在步骤1110中收到的FQDN。
1112,V-SMF向H-SMF发送信息#A。
V-SMF根据UE位置和上报的FQDN,确定并向H-SMF返回信息#A。
信息#A的发送可以由请求信息#1触发,或由V-SMF的自身逻辑/本地配置触发,不予限制。
1113,H-SMF向H-EASDF发送信息#A。
H-SMF将收到的信息#A发送给H-EASDF。
需要注意的是,如果步骤1102中包含了信息#A,那么步骤1110-1113可以省略。
1114,H-EASDF向DNS query添加ECS option。
1115,H-EASDF向DNS服务器发送包含ECS option的DNS query。
1116,DNS服务器向H-EASDF发送DNS response。
1117,H-EASDF向UE发送DNS response。
步骤1114-1117与步骤512-515类似,此处不再赘述。
基于上述方法1100,通过H-SMF指示EASDF上报DNS query,从V-SMF获取信息#A,并指示EASDF添加ECS option,进而从DNS服务器接收本地EAS的地址,从而实现HR漫游场景下的本地EAS发现。
可以理解,本申请实施例中的图5至图11中的例子仅仅是为了便于本领域技术人员理解本申请实施例,并非要将本申请实施例限于例示的具体场景。本领域技术人员根据图5至图11的例子,显然可以进行各种等价的修改或变化,这样的修改或变化也落入本申请实施例的范围内。例如,上述图5至图11中的会话建立流程也可以替换为会话修改流程。又如,上述图5至图11中的ECS option也可以替换为L-DNS服务器地址,相应地,在DNS query添加ECS option的动作也可以替换成将DNS query转发到L-DNS服务器的动作。
还可以理解,在上述一些实施例中,涉及到的消息名称,如Nsmf_PDUSession_Update  Request消息、Nsmf_PDUSession_Context Request等,仅是一种示例,不对本申请实施例的保护范围造成限定。
还可以理解,本申请的各实施例中的一些可选的特征,在某些场景下,可以不依赖于其他特征,也可以在某些场景下,与其他特征进行结合,不作限定。
还可以理解,本申请的各实施例中的方案可以进行合理的组合使用,并且实施例中出现的各个术语的解释或说明可以在各个实施例中互相参考或解释,对此不作限定。
还可以理解,在本申请的各实施例中的各种数字序号的大小并不意味着执行顺序的先后,仅为描述方便进行的区分,不应对本申请实施例的实施过程构成任何限定。
还可以理解,上述各个方法实施例中,由设备实现的方法和操作,也可以由可由设备的组成部件(例如芯片或者电路)来实现。
相应于上述各方法实施例给出的方法,本申请实施例还提供了相应的装置,所述装置包括用于执行上述各个方法实施例相应的模块。该模块可以是软件,也可以是硬件,或者是软件和硬件结合。可以理解的是,上述各方法实施例所描述的技术特征同样适用于以下装置实施例。
图12是本申请实施例提供的一种通信的装置的示意性框图。该装置1200包括收发单元1210和处理单元1220。收发单元1210可以用于实现相应的通信功能。收发单元1210还可以称为通信接口或通信单元。处理单元1220可以用于实现相应的处理功能,如确定分流点。
可选地,该装置1200还包括存储单元,该存储单元可以用于存储指令和/或数据,处理单元1220可以读取存储单元中的指令和/或数据,以使得装置实现前述各个方法实施例中设备或网元的动作。
在第一种设计中,该装置1200可以是前述实施例中的第一会话管理网元,也可以是第一会话管理网元的组成部件(如芯片)。该装置1200可实现对应于上文方法实施例中的第一会话管理网元执行的步骤或者流程,其中,收发单元1210可用于执行上文方法实施例中第一会话管理网元的收发相关的操作,处理单元1220可用于执行上文方法实施例中第一会话管理网元的处理相关的操作。
一种可能的实现方式,收发单元1210,用于获取拜访网络的IP地址信息;收发单元1210,用于向边缘应用服务器发现网元发送IP地址信息,第一会话管理网元和边缘应用服务器发现网元为归属网络中部署的网元。可选地,处理单元1220,用于确定拜访网络的IP地址信息。
可选地,收发单元1210用于获取拜访网络的IP地址信息,包括:收发单元1210,用于根据指示信息,获取拜访网络的IP地址信息,其中,指示信息指示允许拜访网络分流。
可选地,收发单元1210用于向边缘应用服务器发现网元发送IP地址信息,包括:收发单元1210,用于根据指示信息,向边缘应用服务器发现网元发送IP地址信息,其中,指示信息指示允许拜访网络分流。
示例地,指示信息包括第一业务的标识,指示信息指示允许对第一业务在拜访网络分流。
可选地,收发单元1210用于获取拜访网络的IP地址信息,包括:收发单元1210,用于从第二会话管理网元接收IP地址信息,第二会话管理网元为拜访网络中部署的网元。
可选地,收发单元1210,还用于向第二会话管理网元发送第一请求信息,第一请求信息用于请求IP地址信息。
可选地,收发单元1210,还用于向网络存储网元发送第二请求信息,第二请求信息包含拜访网络的标识,第二请求信息用于请求IP地址信息,网络存储网元为归属网络中部署的网元;收发单元1210,用于获取拜访网络的IP地址信息包括:收发单元1210,用于从网络存储网元接收拜访网络的IP地址信息。
可选地,第一会话管理网元本地配置指示信息;或者,收发单元1210,还用于接收指示信息。
示例地,指示信息包括第一指示信息和/或第二指示信息,第一指示信息为第一会话管理网元本地配置的,第二指示信息为第一会话管理网元接收到的。
示例地,IP地址信息为用于确定域名系统DNS扩展机制客户端子网选项的信息,或者,IP地址信息为域名系统扩展机制客户端子网选项或本地DNS服务器地址。
在第二种设计中,该装置1200可以是前述实施例中的第二会话管理网元,也可以是第二会话管理网元的组成部件(如芯片)。该装置1200可实现对应于上文方法实施例中的第二会话管理网元执行的步骤或者流程,其中,收发单元1210可用于执行上文方法实施例中第二会话管理网元的收发相关的操作,处理单元1220可用于执行上文方法实施例中第二会话管理网元的处理相关的操作。
第一种可能的实现方式,收发单元1210,用于获取拜访网络的IP地址信息;收发单元1210,用于向第一会话管理网元发送IP地址信息,其中,第二会话管理网元为拜访网络中部署的网元,第一会话管理网元为归属网络中部署的网元。
可选地,收发单元1210用于获取拜访网络的IP地址信息,包括:收发单元1210,用于根据指示信息,获取拜访网络的IP地址信息,其中,指示信息指示允许拜访网络分流。
可选地,收发单元1210用于向第一会话管理网元发送IP地址信息,包括:收发单元1210,用于根据指示信息,向第一会话管理网元发送IP地址信息,其中,指示信息指示允许拜访网络分流。
示例地,指示信息包括第一业务的标识,指示信息指示允许对第一业务在拜访网络分流。
可选地,收发单元1210,还用于接收来自第一会话管理网元的第一请求信息,第一请求信息用于请求IP地址信息;收发单元1210用于向第一会话管理网元发送IP地址信息,包括:响应于第一请求信息,收发单元1210,用于向第一会话管理网元发送IP地址信息。
可选地,第二会话管理网元本地配置指示信息;或者,收发单元1210,用于接收指示信息。
示例地,IP地址信息为用于确定域名系统DNS扩展机制客户端子网选项的信息,或者,IP地址信息为域名系统扩展机制客户端子网选项或本地DNS服务器地址。
第二种可能的实现方式,收发单元1210,用于获取指示信息,指示信息指示允许拜访网络分流;收发单元1210,用于根据指示信息,向用户面网元发送拜访网络的IP地址信息,其中,第二会话管理网元和用户面网元为拜访网络中部署的网元。
可选地,收发单元1210用于获取指示信息,包括:第二会话管理网元本地配置指示 信息;或者,收发单元1210,用于接收指示信息。
示例地,指示信息包括第二业务的标识,指示信息指示允许对第二业务在拜访网络分流。
示例地,指示信息包括第一指示信息和/或第二指示信息,第一指示信息为第二会话管理网元本地配置的,第二指示信息为第二会话管理网元接收到的。
示例地,IP地址信息为用于确定域名系统DNS扩展机制客户端子网选项的信息,或者,IP地址信息为域名系统扩展机制客户端子网选项或本地DNS服务器地址。
应理解,各单元执行上述相应步骤的具体过程在上述各方法实施例中已经详细说明,为了简洁,在此不再赘述。
还应理解,这里的装置1200以功能单元的形式体现。这里的术语“单元”可以指应用特有集成电路(application specific integrated circuit,ASIC)、电子电路、用于执行一个或多个软件或固件程序的处理器(例如共享处理器、专有处理器或组处理器等)和存储器、合并逻辑电路和/或其它支持所描述的功能的合适组件。在一个可选例子中,本领域技术人员可以理解,装置1200可以具体为上述实施例中的用户面网元,可以用于执行上述各方法实施例中与用户面网元对应的各个流程和/或步骤;或者,装置1200可以具体为上述实施例中的会话管理网元(如第一会话管理网元,又如第二会话管理网元),可以用于执行上述各方法实施例中与会话管理网元对应的各个流程和/或步骤,为避免重复,在此不再赘述。
上述各个方案的装置1200具有实现上述方法中网元(如用户面网元,或会话管理网元(如第一会话管理网元,又如第二会话管理网元))所执行的相应步骤的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的模块;例如收发单元可以由收发机替代(例如,收发单元中的发送单元可以由发送机替代,收发单元中的接收单元可以由接收机替代),其它单元,如处理单元等可以由处理器替代,分别执行各个方法实施例中的收发操作以及相关的处理操作。
此外,上述收发单元1210还可以是收发电路(例如可以包括接收电路和发送电路),处理单元可以是处理电路。
需要指出的是,图12中的装置可以是前述实施例中的网元或设备,也可以是芯片或者芯片系统,例如:片上系统(system on chip,SoC)。其中,收发单元可以是输入输出电路、通信接口;处理单元为该芯片上集成的处理器或者微处理器或者集成电路。在此不做限定。
如图13所示,本申请实施例提供另一种通信的装置1300。该装置1300包括处理器1310,处理器1310用于执行存储器1320存储的计算机程序或指令,或读取存储器1320存储的数据/信令,以执行上文各方法实施例中的方法。可选地,处理器1310为一个或多个。
可选地,如图13所示,该装置1300还包括存储器1320,存储器1320用于存储计算机程序或指令和/或数据。该存储器1320可以与处理器1310集成在一起,或者也可以分离设置。可选地,存储器1320为一个或多个。
可选地,如图13所示,该装置1300还包括收发器1330,收发器1330用于信号的接 收和/或发送。例如,处理器1310用于控制收发器1330进行信号的接收和/或发送。
作为一种方案,该装置1300用于实现上文各个方法实施例中由网元执行的操作。
例如,处理器1310用于执行存储器1320存储的计算机程序或指令,以实现上文各个方法实施例中用户面网元的相关操作。例如,图4所示实施例中的用户面网元执行的方法,或图5至图11中任意一个所示实施例中的V-UPF执行的方法。
又如,处理器1310用于执行存储器1320存储的计算机程序或指令,以实现上文各个方法实施例中第一会话管理网元的相关操作。例如,图3所示实施例中的第一会话管理网元执行的方法,或图5至图11中任意一个所示实施例中的H-SMF执行的方法。
又如,处理器1310用于执行存储器1320存储的计算机程序或指令,以实现上文各个方法实施例中第二会话管理网元的相关操作。例如,图3或图4所示实施例中的第二会话管理网元执行的方法,或图5至图11中任意一个所示实施例中的V-SMF执行的方法。
应理解,本申请实施例中提及的处理器可以是中央处理单元(central processing unit,CPU),还可以是其他通用处理器、数字信号处理器(digital signal processor,DSP)、专用集成电路(application specific integrated circuit,ASIC)、现成可编程门阵列(field programmable gate array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
还应理解,本申请实施例中提及的存储器可以是易失性存储器和/或非易失性存储器。其中,非易失性存储器可以是只读存储器(read-only memory,ROM)、可编程只读存储器(programmable ROM,PROM)、可擦除可编程只读存储器(erasable PROM,EPROM)、电可擦除可编程只读存储器(electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(random access memory,RAM)。例如,RAM可以用作外部高速缓存。作为示例而非限定,RAM包括如下多种形式:静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(direct rambus RAM,DR RAM)。
需要说明的是,当处理器为通用处理器、DSP、ASIC、FPGA或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件时,存储器(存储模块)可以集成在处理器中。
还需要说明的是,本文描述的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
本申请实施例还提供一种计算机可读存储介质,其上存储有用于实现上述各方法实施例中由网元执行的方法的计算机指令。
例如,该计算机程序被计算机执行时,使得该计算机可以实现上述方法各实施例中由用户面网元执行的方法。
又如,该计算机程序被计算机执行时,使得该计算机可以实现上述方法各实施例中由会话管理网元(如第一会话管理网元,又如第二会话管理网元)执行的方法。
本申请实施例还提供一种计算机程序产品,包含指令,该指令被计算机执行时以实现上述各方法实施例中由网元执行的方法。
本申请实施例还提供一种通信的系统,包括前述的用户面网元、第一会话管理网元、第二会话管理网元、边缘应用服务器发现网元中的一个或多个。
上述提供的任一种装置中相关内容的解释及有益效果均可参考上文提供的对应的方法实施例,此处不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。此外,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。例如,所述计算机可以是个人计算机,服务器,或者网络设备等。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质(例如固态硬盘(solid state disk,SSD)等。例如,前述的可用介质包括但不限于:U盘、移动硬盘、只读存储器(read-only memory,ROM)、随机存取存储器(random access memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (39)

  1. 一种通信的方法,其特征在于,包括:
    第一会话管理网元获取拜访网络的IP地址信息;
    所述第一会话管理网元向边缘应用服务器发现网元发送所述IP地址信息,所述第一会话管理网元和所述边缘应用服务器发现网元为归属网络中部署的网元。
  2. 根据权利要求1所述的方法,其特征在于,所述第一会话管理网元获取拜访网络的IP地址信息,包括:
    所述第一会话管理网元根据指示信息,获取所述拜访网络的IP地址信息,其中,所述指示信息指示允许所述拜访网络分流。
  3. 根据权利要求1或2所述的方法,其特征在于,
    所述第一会话管理网元向边缘应用服务器发现网元发送所述IP地址信息,包括:
    所述第一会话管理网元根据指示信息,向所述边缘应用服务器发现网元发送所述IP地址信息,其中,所述指示信息指示允许所述拜访网络分流。
  4. 根据权利要求2或3所述的方法,其特征在于,所述指示信息包括第一业务的标识,所述指示信息指示允许对所述第一业务在所述拜访网络分流。
  5. 根据权利要求1至4中任一项所述的方法,其特征在于,所述第一会话管理网元获取拜访网络的IP地址信息,包括:
    所述第一会话管理网元从第二会话管理网元接收所述IP地址信息,所述第二会话管理网元为所述拜访网络中部署的网元。
  6. 根据权利要求5所述的方法,其特征在于,所述方法还包括:
    所述第一会话管理网元向所述第二会话管理网元发送第一请求信息,所述第一请求信息用于请求所述IP地址信息。
  7. 根据权利要求1至4中任一项所述的方法,其特征在于,所述方法还包括:
    所述第一会话管理网元向网络存储网元发送第二请求信息,所述第二请求信息包含所述拜访网络的标识,所述第二请求信息用于请求所述IP地址信息,所述网络存储网元为所述归属网络中部署的网元;
    所述第一会话管理网元获取拜访网络的IP地址信息,包括:
    所述第一会话管理网元从所述网络存储网元接收所述拜访网络的IP地址信息。
  8. 根据权利要求2至4中任一项所述的方法,其特征在于,所述方法还包括:
    所述第一会话管理网元本地配置所述指示信息;或者,
    所述第一会话管理网元接收所述指示信息。
  9. 根据权利要求2或3所述的方法,其特征在于,
    所述指示信息包括第一指示信息和/或第二指示信息,所述第一指示信息为所述第一会话管理网元本地配置的,所述第二指示信息为所述第一会话管理网元接收到的。
  10. 根据权利要求1至9中任一项所述的方法,其特征在于,
    所述IP地址信息为用于确定域名系统DNS扩展机制客户端子网选项的信息,或者,
    所述IP地址信息为所述DNS扩展机制客户端子网选项或本地DNS服务器地址。
  11. 一种通信的方法,其特征在于,包括:
    第二会话管理网元获取拜访网络的IP地址信息;
    所述第二会话管理网元向第一会话管理网元发送所述IP地址信息,
    其中,所述第二会话管理网元为所述拜访网络中部署的网元,所述第一会话管理网元为归属网络中部署的网元。
  12. 根据权利要求11所述的方法,其特征在于,所述第二会话管理网元获取拜访网络的IP地址信息,包括:
    所述第二会话管理网元根据指示信息,获取所述拜访网络的IP地址信息,其中,所述指示信息指示允许所述拜访网络分流。
  13. 根据权利要求11或12所述的方法,其特征在于,所述第二会话管理网元向第一会话管理网元发送所述IP地址信息,包括:
    所述第二会话管理网元根据指示信息,向所述第一会话管理网元发送所述IP地址信息,其中,所述指示信息指示允许所述拜访网络分流。
  14. 根据权利要求12或13所述的方法,其特征在于,所述指示信息包括第一业务的标识,所述指示信息指示允许对所述第一业务在所述拜访网络分流。
  15. 根据权利要求11至14中任一项所述的方法,其特征在于,所述方法还包括:
    所述第二会话管理网元接收来自所述第一会话管理网元的第一请求信息,所述第一请求信息用于请求所述IP地址信息;
    所述第二会话管理网元向第一会话管理网元发送所述IP地址信息,包括:
    响应于所述第一请求信息,所述第二会话管理网元向所述第一会话管理网元发送所述IP地址信息。
  16. 根据权利要求12至14中任一项所述的方法,其特征在于,所述方法还包括:
    所述第二会话管理网元本地配置所述指示信息;或者,
    所述第二会话管理网元接收所述指示信息。
  17. 根据权利要求11至16中任一项所述的方法,其特征在于,
    所述IP地址信息为用于确定域名系统DNS扩展机制客户端子网选项的信息,或者,
    所述IP地址信息为所述DNS扩展机制客户端子网选项或本地DNS服务器地址。
  18. 一种通信的方法,其特征在于,包括:
    第二会话管理网元获取指示信息,所述指示信息指示允许拜访网络分流;
    所述第二会话管理网元根据所述指示信息,向用户面网元发送所述拜访网络的IP地址信息,其中,所述第二会话管理网元和所述用户面网元为所述拜访网络中部署的网元。
  19. 根据权利要求18所述的方法,其特征在于,所述第二会话管理网元获取指示信息,包括:
    所述第二会话管理网元本地配置所述指示信息;或者,
    所述第二会话管理网元接收所述指示信息。
  20. 根据权利要求18或19所述的方法,其特征在于,所述指示信息包括第二业务的标识,所述指示信息指示允许对所述第二业务在所述拜访网络分流。
  21. 根据权利要求18或20所述的方法,其特征在于,
    所述指示信息包括第一指示信息和/或第二指示信息,所述第一指示信息为所述第二 会话管理网元本地配置的,所述第二指示信息为所述第二会话管理网元接收到的。
  22. 根据权利要求18至21中任一项所述的方法,其特征在于,
    所述IP地址信息为用于确定域名系统DNS扩展机制客户端子网选项的信息,或者,
    所述IP地址信息为所述DNS扩展机制客户端子网选项或本地DNS服务器地址。
  23. 一种通信的方法,其特征在于,包括:
    第一会话管理网元获取拜访网络的IP地址信息;
    所述第一会话管理网元向边缘应用服务器发现网元发送所述IP地址信息;
    所述边缘应用服务器发现网元接收所述接收IP地址信息;
    所述第一会话管理网元和所述边缘应用服务器发现网元为归属网络中部署的网元。
  24. 根据权利要求23所述的方法,其特征在于,所述IP地址信息为用于确定域名系统DNS扩展机制客户端子网选项的信息,或者,所述IP地址信息为域名系统扩展机制客户端子网选项或本地DNS服务器地址。
  25. 根据权利要求23或24所述的方法,其特征在于,所述方法还包括:
    所述边缘应用服务器发现网元接收DNS查询消息;
    所述边缘应用服务器发现网元在所述DNS查询消息中添加域名系统扩展机制客户端子网选项,所述域名系统扩展机制客户端子网选项是根据所述IP地址信息确定的。
  26. 根据权利要求23或24所述的方法,其特征在于,所述方法还包括:
    所述边缘应用服务器发现网元接收DNS查询消息;
    所述边缘应用服务器发现网元将所述DNS查询消息转发到本地DNS服务器地址,所述本地DNS服务器地址是根据所述IP地址信息确定的。
  27. 一种通信的方法,其特征在于,包括:
    第二会话管理网元获取指示信息,所述指示信息指示允许拜访网络分流;
    所述第二会话管理网元根据所述指示信息,向用户面网元发送拜访网络的IP地址信息;
    所述用户面网元接收所述IP地址信息;
    其中,所述第二会话管理网元和所述用户面网元为所述拜访网络中部署的网元。
  28. 根据权利要求27所述的方法,其特征在于,所述IP地址信息为用于确定域名系统DNS扩展机制客户端子网选项的信息,或者,所述IP地址信息为域名系统扩展机制客户端子网选项或本地DNS服务器地址。
  29. 根据权利要求27或28所述的方法,其特征在于,所述方法还包括:
    所述用户面网元接收DNS查询消息;
    所述用户面网元在所述DNS查询消息中添加域名系统扩展机制客户端子网选项,所述域名系统扩展机制客户端子网选项是根据所述IP地址信息确定的。
  30. 根据权利要求27或28所述的方法,其特征在于,所述方法还包括:
    所述用户面网元接收DNS查询消息;
    所述用户面网元将所述DNS查询消息转发到本地DNS服务器地址,所述本地DNS服务器地址是根据所述IP地址信息确定的。
  31. 根据权利要求27至30中任一项所述的方法,其特征在于,所述方法还包括:
    所述用户面网元向边缘应用服务器发现网元发送该IP地址信息,所述边缘应用服务 器发现网元为归属网络中部署的网元。
  32. 一种通信的装置,其特征在于,所述装置包括:用于执行如权利要求1至10中任一项所述的方法的单元,或者用于执行如权利要求11至17中任一项所述的方法的单元,或者用于执行如权利要求18至22中任一项所述的方法的单元,或者用于执行如权利要求23至26中任一项所述的方法的单元,或者用于执行如权利要求27至31中任一项所述的方法的单元。
  33. 一种通信的装置,其特征在于,包括:
    处理器,用于执行存储器中存储的计算机程序,以使得所述装置执行如权利要求1至10中任一项所述的方法,或者以使得所述装置执行如权利要求11至17中任一项所述的方法,或者以使得所述装置执行如权利要求18至22中任一项所述的方法,或者以使得所述装置执行如权利要求23至26中任一项所述的方法,或者以使得所述装置执行如权利要求27至31中任一项所述的方法。
  34. 根据权利要求33所述的装置,其特征在于,所述装置还包括所述存储器。
  35. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质上存储有计算机程序,当所述计算机程序在计算机上运行时,使得所述计算机执行如权利要求1至10中任意一项所述的方法,或者以使得所述计算机执行如权利要求11至17中任一项所述的方法,或者以使得所述计算机执行如权利要求18至22中任一项所述的方法,或者以使得所述计算机执行如权利要求23至26中任一项所述的方法,或者以使得所述计算机执行如权利要求27至31中任一项所述的方法。
  36. 一种计算机程序产品,其特征在于,所述计算机程序产品包括用于执行如权利要求1至10中任一项所述的方法的指令,或者,所述计算机程序产品包括用于执行如权利要求11至17中任一项所述的方法的指令,或者,所述计算机程序产品包括用于执行如权利要求18至22中任一项所述的方法的指令,或者,所述计算机程序产品包括用于执行如权利要求23至26中任一项所述的方法的指令,或者,所述计算机程序产品包括用于执行如权利要求27至31中任一项所述的方法的指令。
  37. 一种通信的系统,其特征在于,包括第一会话管理网元和第二会话管理网元;
    所述第一会话管理网元用于执行如权利要求1至10中任一项所述的方法;
    所述第二会话管理网元用于执行如权利要求18至22中任一项所述的方法。
  38. 一种通信的系统,其特征在于,包括第一会话管理网元和边缘应用服务器发现网元,
    所述第一会话管理网元为权利要求23至26中任一项所述的第一会话管理网元;
    所述边缘应用服务器发现网元为权利要求23至26中任一项所述的边缘应用服务器发现网元。
  39. 一种通信的系统,其特征在于,包括第二会话管理网元和用户面网元,
    所述第二会话管理网元为权利要求27至31中任一项所述的第二会话管理网元;
    所述用户面网元为权利要求27至31中任一项所述的用户面网元。
PCT/CN2022/121185 2021-09-30 2022-09-26 通信的方法和装置 WO2023051427A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CA3233516A CA3233516A1 (en) 2021-09-30 2022-09-26 Communication method and apparatus
AU2022353768A AU2022353768A1 (en) 2021-09-30 2022-09-26 Communication method and apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111166464.6 2021-09-30
CN202111166464.6A CN115915091A (zh) 2021-09-30 2021-09-30 通信的方法和装置

Publications (1)

Publication Number Publication Date
WO2023051427A1 true WO2023051427A1 (zh) 2023-04-06

Family

ID=85739483

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/121185 WO2023051427A1 (zh) 2021-09-30 2022-09-26 通信的方法和装置

Country Status (4)

Country Link
CN (1) CN115915091A (zh)
AU (1) AU2022353768A1 (zh)
CA (1) CA3233516A1 (zh)
WO (1) WO2023051427A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102340766A (zh) * 2010-07-23 2012-02-01 中兴通讯股份有限公司 归属网络获取拜访网络中网元信息的方法及系统
CN109981316A (zh) * 2017-12-27 2019-07-05 华为技术有限公司 应用服务器的切换方法及会话管理网元、终端设备
WO2020001440A1 (zh) * 2018-06-26 2020-01-02 华为技术有限公司 一种会话处理方法及装置
WO2021051420A1 (zh) * 2019-09-21 2021-03-25 华为技术有限公司 一种dns缓存记录的确定方法及装置
WO2021168715A1 (zh) * 2020-02-26 2021-09-02 华为技术有限公司 一种发现应用的方法、装置及系统
CN113396574A (zh) * 2019-07-12 2021-09-14 Sk电信有限公司 边缘计算管理装置以及边缘计算管理装置的操作方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102340766A (zh) * 2010-07-23 2012-02-01 中兴通讯股份有限公司 归属网络获取拜访网络中网元信息的方法及系统
CN109981316A (zh) * 2017-12-27 2019-07-05 华为技术有限公司 应用服务器的切换方法及会话管理网元、终端设备
WO2020001440A1 (zh) * 2018-06-26 2020-01-02 华为技术有限公司 一种会话处理方法及装置
CN113396574A (zh) * 2019-07-12 2021-09-14 Sk电信有限公司 边缘计算管理装置以及边缘计算管理装置的操作方法
WO2021051420A1 (zh) * 2019-09-21 2021-03-25 华为技术有限公司 一种dns缓存记录的确定方法及装置
WO2021168715A1 (zh) * 2020-02-26 2021-09-02 华为技术有限公司 一种发现应用的方法、装置及系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
NOKIA, NOKIA SHANGHAI BELL: "KI 1: (new) Solution #22': LDNSR as a (pseudo) DNS Resolver to support low latency applications", SA WG2 MEETING #141E S2-2006935, 2 October 2020 (2020-10-02), XP051938034 *

Also Published As

Publication number Publication date
AU2022353768A1 (en) 2024-04-11
CN115915091A (zh) 2023-04-04
CA3233516A1 (en) 2023-04-06

Similar Documents

Publication Publication Date Title
US20220330361A1 (en) Method for establishing connection and obtaining relay service code and communications apparatus
KR102415681B1 (ko) 통신 방법 및 통신 디바이스
CN110366216B (zh) 通信的方法和通信装置
WO2023280121A1 (zh) 一种获取边缘服务的方法和装置
CN111404814B (zh) 一种数据传输的方法及通信装置
WO2023124457A1 (zh) 选择网络的方法和装置
WO2019196680A1 (zh) 通信方法和通信装置
WO2020217224A1 (en) Amf and scp behavior in delegated discovery of pcf
WO2022199451A1 (zh) 会话切换的方法和装置
WO2021233340A1 (zh) 网络注册的方法和装置
US20240107417A1 (en) Communication method and apparatus
WO2023051430A1 (zh) 通信的方法和装置
US20230337111A1 (en) Terminal device and network device
US20220022023A1 (en) Method and Apparatus for Selecting Session Management Network Element
WO2023051427A1 (zh) 通信的方法和装置
WO2023051428A1 (zh) 信息传输的方法和装置
WO2023051431A1 (zh) 通信的方法和装置
WO2023160394A1 (zh) 通信的方法和装置
WO2023116556A1 (zh) 会话切换的方法和装置
WO2023185620A1 (zh) 通信的方法和装置
WO2023185561A1 (zh) 通信方法和通信装置
WO2023103575A1 (zh) 组播/广播通信的方法与相关装置
WO2023160199A1 (zh) 一种接入通信网络的方法和装置
WO2023142717A1 (zh) 一种确定用户设备路由选择策略的方法和装置
WO2024001631A1 (zh) 接入网络的方法和通信装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22874813

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2022353768

Country of ref document: AU

Ref document number: AU2022353768

Country of ref document: AU

Ref document number: 3233516

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 2022874813

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2022353768

Country of ref document: AU

Date of ref document: 20220926

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2022874813

Country of ref document: EP

Effective date: 20240405