WO2015165153A1 - 钙化-碳化法处理拜耳法赤泥过程中碱与铝的回收方法 - Google Patents

钙化-碳化法处理拜耳法赤泥过程中碱与铝的回收方法 Download PDF

Info

Publication number
WO2015165153A1
WO2015165153A1 PCT/CN2014/082676 CN2014082676W WO2015165153A1 WO 2015165153 A1 WO2015165153 A1 WO 2015165153A1 CN 2014082676 W CN2014082676 W CN 2014082676W WO 2015165153 A1 WO2015165153 A1 WO 2015165153A1
Authority
WO
WIPO (PCT)
Prior art keywords
aluminum
reaction
red mud
calcification
calcium
Prior art date
Application number
PCT/CN2014/082676
Other languages
English (en)
French (fr)
Inventor
张廷安
吕国志
刘燕
张子木
朱小峰
豆志河
Original Assignee
东北大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 东北大学 filed Critical 东北大学
Priority to US15/303,408 priority Critical patent/US9963353B2/en
Priority to AU2014392419A priority patent/AU2014392419B2/en
Priority to RU2016133029A priority patent/RU2644169C1/ru
Priority to EP14891022.7A priority patent/EP3138637B1/en
Publication of WO2015165153A1 publication Critical patent/WO2015165153A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F7/00Compounds of aluminium
    • C01F7/02Aluminium oxide; Aluminium hydroxide; Aluminates
    • C01F7/46Purification of aluminium oxide, aluminium hydroxide or aluminates
    • C01F7/47Purification of aluminium oxide, aluminium hydroxide or aluminates of aluminates, e.g. removal of compounds of Si, Fe, Ga or of organic compounds from Bayer process liquors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B09DISPOSAL OF SOLID WASTE; RECLAMATION OF CONTAMINATED SOIL
    • B09BDISPOSAL OF SOLID WASTE NOT OTHERWISE PROVIDED FOR
    • B09B3/00Destroying solid waste or transforming solid waste into something useful or harmless
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B09DISPOSAL OF SOLID WASTE; RECLAMATION OF CONTAMINATED SOIL
    • B09CRECLAMATION OF CONTAMINATED SOIL
    • B09C1/00Reclamation of contaminated soil
    • B09C1/08Reclamation of contaminated soil chemically
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01DCOMPOUNDS OF ALKALI METALS, i.e. LITHIUM, SODIUM, POTASSIUM, RUBIDIUM, CAESIUM, OR FRANCIUM
    • C01D1/00Oxides or hydroxides of sodium, potassium or alkali metals in general
    • C01D1/04Hydroxides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F7/00Compounds of aluminium
    • C01F7/02Aluminium oxide; Aluminium hydroxide; Aluminates
    • C01F7/16Preparation of alkaline-earth metal aluminates or magnesium aluminates; Aluminium oxide or hydroxide therefrom
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F7/00Compounds of aluminium
    • C01F7/02Aluminium oxide; Aluminium hydroxide; Aluminates
    • C01F7/20Preparation of aluminium oxide or hydroxide from aluminous ores using acids or salts

Definitions

  • the invention relates to the field of environmental protection, and particularly relates to a method for recovering alkali and aluminum in the process of treating red mud in Bayer process.
  • Aluminum is a pillar industry in China's non-ferrous metallurgy industry. As of 2013, China's primary aluminum production capacity reached 18 million tons, and alumina production capacity was close to 40 million tons, ranking first in the world. At present, more than 80% of China's alumina is produced by the Bayer process.
  • the silicon-containing phase in bauxite is converted to hydrated sodium aluminosilicate (Na 2 OAl 2 (V1.7Si (VnH 2 ) during the Bayer process for alumina production. 0), that is, 1 kg of silica in the mineral will cause 1 kg of alumina to be removed from the red mud and cause 0.608 kg of alkali loss.
  • the alkali and aluminum in the red mud cause two problems: First, the alkali content Too high, the red mud can not be used in large industries such as cement; Second, when dealing with low-grade bauxite, the loss of alumina is too large and the overall yield is low.
  • red mud utilization technology can be generally divided into two types: one is used as a general industrial raw material, such as Zhang Kaiyuan et al.
  • the other is to extract the valuable metal elements separately, the most typical of which is to treat the Bayer red mud by sintering, or to extract the valuable metal elements by acid leaching.
  • Dong Yafei et al. "A process and equipment for removing red mud, aluminum silicon slag and alkali metal, application number: 201010561605" is to uniformly mix red mud, pulverized coal, lime and binder, and Pressed into a ball, dried, transferred to the bottom furnace, smelted and reduced, pulverized, magnetically separated to separate iron and aluminum silicon slag, and the separated iron is used for electricity.
  • Furnace steel or cast steel, etc., aluminum silicon slag is used to produce high-grade high-quality cement or raw materials for refractory materials.
  • red mud In the existing methods of utilizing red mud, there are generally problems such as low product prices and poor returns. Most of the methods for extracting valuable elements have high energy consumption and high equipment requirements. Therefore, the current industrialized red mud is still treated by direct stockpiling. Although some alumina producers have applied the red mud to the cement industry after de-alkali removal, there are still two problems in the direct de-alkali process: First, the lime is de-alkali treated with lime, which can only be recovered.
  • the invention provides a method for recovering alkali and aluminum in the process of treating Bayer red mud by calcification-carbonization method, that is, using Bayer red mud as raw material, calcification and alkali transformation under high alkali concentration, carbonization transformation, low temperature melting aluminum and sinking
  • the process of aluminum and the like realizes the recovery of alkali and aluminum in the red mud and the harmless treatment of the Bayer red mud.
  • a calcification-carbonization method for recovering alkali and aluminum in the red mud process of Bayer process according to the following steps: (1) Calcification and alkali removal
  • the Bayer process red mud is mixed with calcium aluminate or lime and calcium aluminate, and the calcification and de-alkali transformation reaction is carried out in the mother liquor of the high concentration caustic solution.
  • the reaction temperature is 80-180 ° C
  • the reaction time is 10-60 min
  • the slurry is obtained.
  • the solid phase is calcified slag
  • the silicon-containing phase in the red mud is converted into hydrated garnet as the main component of the solid phase calcification slag
  • the liquid phase is a high concentration caustic solution; calcification and alkali removal
  • the main reaction is as follows:
  • the mother liquor of the high concentration caustic solution is a sodium hydroxide solution having a sodium oxide concentration of 100 to 300 g/L or a sodium aluminate solution having a sodium oxide concentration of 100 to 300 g/L;
  • the liquid-solid ratio of the mixture of red mud and calcium aluminate or lime and calcium aluminate to the mother liquor of the high concentration caustic solution is (3 ⁇ 10): lmL/g;
  • the caustic solution is a Bayer process and the low-temperature aluminum-dissolving reaction of the present invention, and the alumina dissolved in the liquid phase in the calcification and de-alkali conversion reaction is taken out in a corresponding ratio, and enters Bayer with the extracted caustic solution.
  • the unextracted caustic solution can be directly used as the mother liquor of the high concentration caustic solution diluted or used in the process of the present invention to be recycled in the calcification and de-alkali transformation reaction of the present step;
  • the volume (v) of the extractable caustic solution and the ratio of the caustic solution volume ( ⁇ ⁇ ) obtained after the calcification and de-alkali conversion reaction are ⁇ / ⁇ ⁇ and the alkali concentration of the caustic solution before and after the calcification and alkali removal conversion reaction Relevant, the specific calculation relationship is as follows:
  • is the volume of the lye that can be taken out
  • V ⁇ is the total volume of the high concentration caustic solution after the calcification and alkali removal conversion reaction, m
  • is the alkali concentration of the high concentration caustic solution after the calcification and alkali removal conversion reaction
  • m ffi is The alkali concentration of the mother liquor of the high concentration caustic solution before the calcification and alkali removal conversion reaction
  • the calcium source used in the calcification process is a mixture of calcium aluminate or calcium aluminate and lime, and the degree of crystallization of the calcification product is different from that of the lime calcification process alone;
  • the sodium oxide content in the calcified slag is reduced to less than 1%;
  • the main reaction of the carbonation transformation reaction is:
  • the step (2) is obtained.
  • the carbonization transition slag reacts with the low temperature molten aluminum mother liquor with a sodium hydroxide concentration of 50-150g/L for aluminum dissolution, and extracts the aluminum hydroxide in the carbonization transition slag.
  • the liquid-solid ratio of the low-temperature molten aluminum mother liquor and the carbonized transition slag is (4 ⁇ ) 15): lmL/g, the reaction obtains the slurry; the slurry is separated by liquid-solid separation, the solid phase is the new structure red mud with the main components of calcium silicate and calcium carbonate, and the liquid phase is sodium aluminate solution; the main reaction of dissolved aluminum is as follows:
  • step (2) calcification transformation reaction and the step (3) low-temperature aluminum dissolution reaction may be carried out 1 to 5 times; wherein, the sodium hydroxide reacted at a low temperature Step (1) calcification transformation of the high concentration caustic solution obtained by the dissolution reaction;
  • the novel structure red mud can be used as a raw material of the cement industry after being washed by water, and the washing liquid produced by washing can be returned to the step (1) calcification and alkali removal conversion reaction supplemented by the high concentration caustic solution to the Bayer method and the steps described in this step
  • the low temperature aluminum dissolution reaction compensates for the water loss caused by the lye
  • the sodium aluminate solution produced in the step (3) is reacted with the calcium-containing mineral, wherein the mass ratio of the calcium oxide in the calcium-containing mineral to the alumina in the solution is (1.3 to 2.5): 1, at a precipitation temperature of 20 to 90 ° C and precipitation Calcium aluminate precipitation and sodium hydroxide solution were obtained under the reaction conditions of l ⁇ 60 min;
  • the calcium-containing mineral is a raw material containing calcium oxide, including lime, calcium aluminate, calcium carbide slag, etc.; the calcium aluminate precipitation returning step (1) is used as a calcium source for calcification and alkali removal conversion reaction;
  • the sodium hydroxide solution returning step (3) is used as a low-temperature molten aluminum mother liquor for recycling.
  • the principle of the invention is as follows: a. After the traditional red mud produced by the Bayer process is transformed with the calcium aluminate or calcium aluminate and lime in the mother liquor of the high concentration caustic solution by calcification and alkali removal, the sodium alkali in the red mud enters.
  • a calcified slag and a higher concentration of a high concentration caustic solution are obtained; therefore, in order to fully utilize the sodium alkali in the red mud in the process of the present invention, a portion of the caustic solution can be taken out from the high concentration caustic solution.
  • the Bayer process or the low-temperature aluminum-dissolving reaction of the step (3) of the present invention the remaining high-concentration caustic solution can be directly diluted as a high-concentration caustic mother liquor or as a washing liquid of the new structure red mud by the step (3)
  • the high concentration caustic mother liquor is recycled in the step (1) calcification and de-alkali transformation reaction.
  • Carbonization transformation slag reacts with lye for low-temperature aluminum dissolution to obtain tailings and eluent.
  • the alkali solution used for the reaction comes from step (1) removal of lye after calcification and alkali removal transformation reaction and step (4) The alkali solution obtained from aluminum; the tail residue obtained by the reaction is washed by water to be used as a cement material, and the washing water can be returned to the step (1).
  • the calcification and alkali removal conversion reaction is supplemented to the high concentration caustic solution due to the water loss caused by the removal of the alkali solution. d.
  • the eluate reacts with the calcium-containing mineral to obtain a calcium aluminate precipitate and a sodium hydroxide solution.
  • the calcium aluminate returns to the step (1) as a calcium source for the calcification and alkali removal reaction, and the sodium hydroxide solution returns to the step (3) to participate in the low temperature.
  • Aluminized aluminum reaction is provided.
  • the red mud is fully utilized by the entire process of the present invention, that is, the alkali and alumina in the red mud are mostly utilized, and the high-concentration caustic mother liquor and water are recycled throughout the process, and only the tailings are finally discharged.
  • Its main components are calcium silicate and calcium carbonate, which can be directly used in the cement industry, and the entire process consumes low energy.
  • This method can fully utilize the red mud, no waste is generated during the process, and many raw materials in the process can be recycled.
  • the red mud treated by the method can not only recover the sodium oxide but also recover the alumina therein, and the overall income is good;
  • the method utilizes a high concentration alkali solution to transform the red mud calcification and de-alkali treatment, and the alkali solution produced after red mud de-alkali has a high concentration, and can be directly used in the Bayer process and the low-temperature aluminum-dissolving reaction of the present invention. It does not need to be concentrated by evaporation, and the energy consumption is very low.
  • the main component of the tailings obtained by the production method described in the present invention is calcium silicate and calcium carbonate, which can be directly used in the cement industry to realize the harmless utilization of red mud in the alumina production process;
  • the whole process of the production method of the invention is mainly based on a wet process, and the production energy consumption is low;
  • the red mud is treated by the production method of the present invention, and the total yield of alumina in the mineral can reach 85% to 100%, the aluminum to silicon ratio of the dissolution slag can be reduced to 0.4 or less, and the sodium alkali content can also be lowered. Below 0.5%, the alumina extraction rate of minerals can be increased by more than 15% compared with the Bayer process, and the mineral consumption of one ton of alumina can be reduced by about 20%.
  • the red mud component used in the examples of the present invention is by mass percentage: Al 2 0 3 -18.15%, Si0 2 -17.17%, Na 2 0-6.73%, Fe 2 0 3 -25.14%, and the balance is Decreasing water, Ti 2 2 and other impurities; in the embodiment of the present invention, 100 tons (t) of red mud is treated each time;
  • the lime added in the embodiment of the present invention is based on the calcium oxide content of 75% of the total mass
  • the CO 2 gas used in the embodiment of the present invention is a CO 2 exhaust gas produced by a lime burning process, but the production process described in the present invention is not limited to the use of such a gas, and any gas containing CO 2 can be transformed as a carbonization.
  • the lime described in the present invention is calcined by quicklime, but the calcified raw material used in the aluminizing process is not limited to the calcined lime, and the raw material used may include any material mainly composed of calcium oxide.
  • Example 1
  • the Bayer process red mud is mixed with lime and calcium aluminate and the calcification and de-alkali transformation reaction is carried out in a high concentration sodium hydroxide mother liquor having a sodium oxide concentration of 300 g/L.
  • Lime and calcium aluminate are used as a calcium source, wherein calcium aluminate is added. 38.63t, the amount of lime added is 83.16t, the mass ratio of total calcium oxide to red mud in calcium aluminate and lime is 1: 1, the mixture of sodium hydroxide mother liquor and red mud, lime and calcium aluminate
  • the liquid-solid ratio is 3: lml/g, the reaction temperature is 180 ° C, and the reaction time is 60 min.
  • the slurry after the red mud transformation reaction is separated by liquid-solid separation, and the silicon-containing phase in the red mud is all converted into hydrated garnet into the solid phase.
  • the liquid phase is a high-concentration sodium hydroxide solution containing sodium aluminate, and a 3% solution of the high-concentration sodium hydroxide solution after the transformation reaction is taken out, and the Bayer process is added to replenish the alkali, and the remaining high-concentration sodium hydroxide solution
  • the mother liquor is recycled in the calcification transformation reaction process, the alumina dissolved in the liquid phase during the transformation reaction enters the Bayer process system according to the corresponding proportion of the high concentration sodium hydroxide solution taken out;
  • the partial pressure of the gas reaches 1.8 MPa, and then the carbonization transformation reaction is carried out for 180 min at 120 ° C to obtain the carbonization transition slag and clean water whose main components are calcium silicate, calcium carbonate and aluminum hydroxide; the clear water circulates in the carbonization transformation reaction reaction
  • the carbonized slag is extracted from the low temperature molten aluminum mother liquor with a sodium hydroxide concentration of 150 g/L at a solution temperature of 100 ° C and an aluminum dissolution time of 20 min, and the liquid-solid ratio of the low temperature molten aluminum mother liquor to the carbonized slag 10: lmL / g, a new structure of red mud and sodium aluminate solution with main components of calcium silicate and calcium carbonate;
  • the sodium aluminate solution obtained by the three carbonization transformation reaction and the low temperature aluminum dissolution reaction is treated by using lime-aluminum, wherein the mass ratio of calcium oxide in the lime to the alumina in the solution is 2.5:1 and at the precipitation temperature. 90 ° C and the reaction time lmin conditions to obtain calcium aluminate precipitation 38.63t and sodium hydroxide solution, calcium aluminate returned to the alkali removal process as a calcium source; sodium hydroxide solution returned to low temperature aluminum process as a low temperature aluminum solution .
  • the Bayer process red mud and calcium aluminate were mixed and the calcification and de-alkali transformation reaction was carried out in a sodium hydroxide mother liquor with a sodium oxide concentration of 100 g/L.
  • Calcium aluminate was used as a calcium source, wherein the calcium aluminate addition amount was 83t, and the aluminate was added.
  • the mass ratio of total calcium oxide to red mud in calcium is 0.4: 1.
  • the liquid-solid ratio of the mixture of sodium hydroxide mother liquor and red mud and calcium aluminate is 5: lml/g, reaction temperature 80 ° C, reaction After 10 minutes, the slurry is obtained after the reaction.
  • the liquid phase is a high-concentration sodium hydroxide solution containing sodium aluminate, and the high-concentration sodium hydroxide after the transformation reaction is taken.
  • the solution with a volume of 11.5% is returned to the Bayer process to replenish the alkali, and the remaining high-concentration sodium hydroxide solution is used as a mother liquor for recycling in the calcification transformation reaction process.
  • the alumina dissolved in the liquid phase during the transformation reaction is in accordance with the corresponding concentration.
  • the sodium hydroxide solution enters the Bayer process system;
  • the carbonization transition slag is extracted from the low temperature molten aluminum mother liquor with a sodium hydroxide concentration of 50g/L at a solution temperature of 100 ° C and an aluminum dissolution time of 120 min.
  • the liquid-solid ratio of the low temperature molten aluminum mother liquor to the carbonized slag is 4: lmL / g, the reaction to obtain a new structure of calcium silicate and calcium carbonate, the new structure of red mud and sodium aluminate solution, the new structure of red mud can be used as a raw material in the cement industry after washing with water, the washed washing liquid into calcification The water loss caused by the removal of the alkali solution added to the mother liquor during the alkali removal transformation process;
  • the liquid phase sodium aluminate solution produced by low-temperature aluminum dissolution is treated by lime-aluminum, wherein the mass ratio of calcium oxide in lime to alumina in solution is 1.3:1, and the reaction temperature is 20 ° C and the reaction time is 60 min.
  • the calcium aluminate precipitated 44.35t and sodium hydroxide solution, and the calcium aluminate returned to the alkali removal transformation process as a calcium source; the sodium hydroxide solution returned to the low temperature aluminum dissolution process as a low temperature molten aluminum mother liquor.
  • the Bayer process red mud is mixed with lime and calcium aluminate and the calcification and de-alkali transformation reaction is carried out in a high concentration sodium hydroxide mother liquor having a sodium oxide concentration of 240 g/L, and lime and calcium aluminate are used as a calcium source, wherein calcium aluminate is added.
  • the amount is 39.4t
  • the amount of lime added is 43.3t
  • the mass ratio of total calcium oxide to red mud in calcium aluminate and lime is 0.5: 1, sodium hydroxide mother liquor and red mud, lime and calcium aluminate.
  • the liquid-solid ratio of the mixture is 7: lml/g
  • the transformation temperature is 120 °C
  • the transformation time is 60 min.
  • the silicon-containing phase in the red mud is all converted into hydrated garnet into the solid phase calcification slag, and the liquid phase contains aluminate.
  • Sodium high-concentration sodium hydroxide solution taking a solution of 5% of the total concentration of sodium hydroxide solution after the conversion reaction, returning to the Bayer process to replenish the alkali, and the remaining high-concentration sodium hydroxide solution is recycled in the calcification transformation process, transformation
  • the alumina dissolved in the liquid phase during the reaction enters the Bayer process system according to the corresponding ratio of the high concentration sodium hydroxide solution taken out;
  • Clear water and calcified slag are mixed in a closed container at a liquid to solid ratio of 10: 1 mL/g, and then introduced into a closed container.
  • C0 2 , C0 2 gas is first pressurized during the aeration process, so that the partial pressure of C0 2 gas in the reaction vessel reaches 1.2 MPa, and then the reaction is transformed at 240 ° C for 240 min, and the main component is calcium silicate. Calcium carbonate and aluminum hydroxide carbonization transition slag and clean water; clean water is recycled in the carbonization transformation reaction;
  • the carbonization transition slag is extracted from the low temperature molten aluminum mother liquor with a sodium hydroxide concentration of 100g/L at a solution temperature of 40 ° C and an aluminum dissolution time of 120 min.
  • the liquid-solid ratio of the low temperature molten aluminum mother liquor to the carbonized slag is 15: lmL / g, the reaction to obtain a new structure of calcium silicate and calcium carbonate, the new structure of red mud and sodium aluminate solution, the new structure of red mud can be used as a raw material in the cement industry after washing with water, the washed washing liquid into calcification
  • the alkali removal transformation process supplements the water loss caused by the removal of the sodium hydroxide solution;
  • the liquid phase produced by low-temperature aluminum dissolution is treated by lime-aluminum, wherein the mass ratio of calcium oxide in lime to alumina in solution is 2:1, and calcium aluminate precipitate is obtained at a precipitation temperature of 60 ° C and 25 min. 39.4t and sodium hydroxide solution, calcium aluminate returns to the alkali removal process as a calcium source; sodium hydroxide solution returns to the low temperature aluminum dissolution process as a low temperature molten aluminum mother liquor.
  • the Bayer process red mud is mixed with lime and calcium aluminate and the calcification and de-alkali transformation reaction is carried out in a sodium aluminate solution having a sodium oxide concentration of 200 g/L, and lime and calcium aluminate are used as a calcium source, wherein the amount of calcium aluminate added is 35.44t, the amount of lime added is 5.66t, the mass ratio of total calcium oxide to red mud in calcium aluminate and lime is 0.2: 1, the mixture of sodium hydroxide mother liquor and red mud, lime and calcium aluminate The solid ratio is 10: lml/g, the transformation temperature is 120 °C, and the transformation time is 30min.
  • the carbonization transition slag is extracted from the low temperature molten aluminum mother liquor with a sodium hydroxide concentration of 100g/L at a solution temperature of 60 ° C and an aluminum dissolution time of 90 min.
  • the liquid-solid ratio of the low temperature molten aluminum mother liquor to the carbonized slag is 8: lmL / g, the reaction to obtain a new structure of calcium silicate and calcium carbonate, the new structure of red mud and sodium aluminate solution, new The red mud of the type structure can be used as a raw material of the cement industry after washing with water, and the washed washing liquid enters the calcification and alkali removal transformation process to supplement the water loss caused by the sodium hydroxide solution being taken out;
  • the liquid phase produced by low-temperature aluminum dissolution is treated by lime-aluminum, wherein the mass ratio of calcium oxide in lime to alumina in solution is 1.8:1, and aluminate is obtained at a reaction temperature of 60 ° C and a reaction time of 25 min.
  • the Bayer process red mud was mixed with calcium aluminate and lime and calcified and de-alkali transformed in sodium aluminate solution with a sodium oxide concentration of 260 g/L.
  • Calcium aluminate and lime were used as calcium sources, of which calcium aluminate was 43.71t.
  • the lime is 80.76t, the total mass of calcium oxide and calcium in the calcium aluminate and lime is 0.8: 1.
  • the liquid-solid ratio of the mixture of sodium hydroxide mother liquor and red mud, lime and calcium aluminate is 8: lml /g, transformation temperature 130 ° C, transformation time 30 min, after transformation, the silicon-containing phase in the red mud is converted into hydrated garnet into the solid phase calcification slag, the liquid phase is a high concentration sodium hydroxide solution containing sodium aluminate, A solution with a total volume of 4.5% of the high-concentration sodium hydroxide solution after the conversion reaction is used for the subsequent low-temperature aluminum dissolution reaction, and the remaining high-concentration sodium hydroxide solution is recycled in the calcification transformation reaction process, and dissolved in the liquid phase during the transformation reaction process.
  • the alumina enters the subsequent low-temperature aluminum-dissolving reaction with the corresponding high-concentration sodium hydroxide solution according to the corresponding ratio;
  • the carbonization transition slag is extracted from the low temperature molten aluminum mother liquor with a sodium hydroxide concentration of 100g/L at a solution temperature of 70 ° C and an aluminum dissolution time of 60 min.
  • the liquid-solid ratio of the low temperature molten aluminum mother liquor to the carbonized slag is 12: lmL / g, a new structure of red mud and sodium aluminate solution with main components of calcium silicate and calcium carbonate;
  • the sodium aluminate solution obtained by reacting the carbonization transformation reaction and the low-temperature aluminum dissolution reaction 5 times is treated by using lime-aluminum, wherein the mass ratio of calcium oxide in the lime to the alumina in the solution is 2:1, and the reaction temperature is 60°. C and the reaction time of 5 min, the calcium aluminate precipitated 43.71t and sodium hydroxide solution, the calcium aluminate returned to the alkali removal process as a calcium source; the sodium hydroxide solution returned to the low temperature aluminum dissolution process as a low temperature molten aluminum mother liquor.
  • the mass ratio of alumina to silica in the obtained tailings was 0.37: 1, and the content of sodium oxide was 0.4%.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Geology (AREA)
  • Environmental & Geological Engineering (AREA)
  • Materials Engineering (AREA)
  • Soil Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)
  • Processing Of Solid Wastes (AREA)
  • Treatment Of Sludge (AREA)

Abstract

公开了一种钙化-碳化法处理拜耳法赤泥过程中碱与铝的回收方法。其步骤是将拜耳法赤泥与铝酸钙或石灰和铝酸钙混合后,在苛性碱浓度100~300g/L的高浓度碱液中进行钙化脱碱转型,赤泥中的含硅相全部转化为水化石榴石的形式进入脱碱过程产生的钙化渣,钙化渣再经过碳化得到碳化渣,再经低温溶铝、沉铝等工序得到铝酸钙产品,铝酸钙返回赤泥钙化脱碱转型过程循环使用。钙化脱碱转型后的部分含碱和铝的液相可用作拜耳法生产过程的补充碱循环使用。该方法可实现赤泥中碱和铝的回收以及拜耳法赤泥的无害化处理,是一种节能环保的赤泥利用方法。

Description

钙化-碳化法处理拜耳法赤泥过程中碱与铝的回收方法 技术领域
本发明涉及环境保护领域, 具体涉及一种处理拜耳法赤泥过程中碱与铝的回 收方法。
技术背景
铝是我国有色金属冶金行业中的支柱产业, 截止 2013年, 我国原铝产能达到 1800万吨, 氧化铝产能接近 4000万吨, 列世界首位。 目前我国氧化铝 80%以上是 采用拜耳法生产的, 铝土矿中的含硅相在拜耳法生产氧化铝过程中会转化为水合 硅铝酸钠 (Na2OAl2(V1.7Si(VnH20), 即矿物中 1公斤的氧化硅会导致赤泥中带 走 1公斤的氧化铝,并造成 0.608公斤的碱损失。赤泥中含碱和铝造成了两个问题: 第一, 碱含量过高, 导致赤泥无法用于水泥等大宗工业之中; 第二, 在处理低品 位铝土矿时, 氧化铝损失过大, 总体收率较低。
为实现赤泥的高效利用以及有价元素提取, 我国铝工业者进行了大量的研发 工作, 现有的赤泥利用技术一般可分为两种: 一种是作为一般性工业原料整体利 用, 如张开元等人发明的 "大掺量粉煤灰水泥及其制备方法, 申请号: 200910303512"是以煤灰、 赤泥、 石灰、 水泥熟料、 石膏和外加剂为原料, 赤泥 烘干后和水泥熟料混磨; 将石灰和石膏破碎; 将外加剂配制成溶液; 取粉煤灰、 赤泥、 石灰、 水泥熟料、 石膏和外加剂混合均匀后, 细磨即可得到大掺量粉煤灰 水泥; 以及王文举等人发明的 "一种铝工业工艺废渣全部转型为生态建筑材料的 工艺与方法, 申请号: 200710105971 "利用铝工业在生产过程中所产出的固体废 物赤泥 (烧结法、 拜耳法)、 锅炉炉渣、 选矿尾矿、 化灰渣、 煤气发生炉渣、 污泥 六种废渣自身的物质属性, 通过干燥、 粉碎、 合理配比、 加工成型 (碾压、 挤压) 固结或烧结工艺, 转化为新型的路用材料和建筑墙体材料。
另一种是分别提取其中的有价金属元素, 其中最典型的是采用烧结法处理拜 耳法赤泥, 或采用酸浸的方式分别提取其中的有价金属元素。 如董亚飞等发明的 "一种赤泥分离铁、 铝硅渣和碱金属去除的工艺方法及设备, 申请号: 201010561605 "是将赤泥、 煤粉、 石灰、 粘结剂按比例均匀混合, 并压制成球, 经烘干、 转底炉熔融还原、 粉碎后、 磁选分离出铁和铝硅渣, 分离出的铁用于电 炉炼钢或铸钢等, 铝硅渣用于生产高标号优质水泥或用于耐火材料的原料。
在现有的赤泥利用技术中直接利用的方式一般存在产品价格低、 收益差等问 题; 分别提取有价元素的方法又大多存在处理过程能耗高、 设备要求高等问题。 因此目前工业化的赤泥仍多采用直接堆存的方式处理。 虽然也有部分氧化铝生产 企业对赤泥进行脱碱后用于水泥等工业的应用, 但直接脱碱过程仍存在两个问题: 第一, 使用石灰对赤泥进行脱碱处理, 仅能回收其中的氧化钠, 虽然赤泥中的碱 含量可以降至水泥工业的要求, 但由于产品单一, 总体收益较小; 第二, 在低浓 度碱溶液或者清水中脱碱, 赤泥脱碱后产生的低浓度碱溶液无法直接利用, 需采 用蒸发的方式浓缩, 能耗较高。
发明内容
为了更好的实现赤泥中有价元素的综合利用, 并降低处理过程的能耗及成本。 本发明提供一种钙化-碳化法处理拜耳法赤泥过程中碱与铝的回收方法, 即以拜耳 法赤泥为原料, 经高碱浓度下钙化脱碱转型、 碳化转型、 低温溶铝及沉铝等工序 实现赤泥中的碱和铝的回收以及拜耳法赤泥的无害化处理。
为实现上述目的, 本发明的技术方案如下:
一种钙化-碳化法处理拜耳法赤泥过程中碱与铝的回收方法,按以下步骤进行: ( 1 ) 钙化脱碱转型
将拜耳法赤泥与铝酸钙或石灰和铝酸钙混合, 于高浓度苛性碱溶液母液中进 行钙化脱碱转型反应, 反应温度为 80~180°C, 反应时间为 10~60min, 得到矿浆; 矿浆经固液分离后, 固相为钙化渣, 赤泥中的含硅相全部转化成水化石榴石成为 固相钙化渣的主要成分, 液相为高浓度苛性碱溶液; 钙化脱碱转型的主反应如下:
Na2OAl203'1.7Si02'nH20+CaO→3Ca( Al203'xSi02'(6-2x)H20+NaOH ( 1 ) 其中, 所述的铝酸钙或石灰和铝酸钙中氧化钙与赤泥的质量比为 (0.2~1.0):
1;
所述的高浓度苛性碱溶液母液为氧化钠浓度 100~300g/L的氢氧化钠溶液或氧 化钠浓度 100~300g/L的铝酸钠溶液;
所述的赤泥与铝酸钙或石灰和铝酸钙的混合物与高浓度苛性碱溶液母液的液 固比为 (3~10): lmL/g;
由于赤泥中的硅铝酸钠经钙化脱碱转型反应后, 其中的钠碱全部进入液相, 使得反应后的液相高浓度苛性碱溶液中的氧化钠浓度上升, 因此, 可取出部分该 苛性碱溶液为拜耳法以及本发明所述的低温溶铝反应补碱, 同时, 在钙化脱碱转 型反应中溶解于液相的氧化铝按相应比例被取出, 并随取出的苛性碱溶液进入拜 耳法系统或本发明的工艺流程, 未取出的苛性碱溶液可直接作为或经本发明工艺 流程产生的水稀释后作为高浓度苛性碱溶液母液在本步骤的钙化脱碱转型反应中 循环使用;
其中可取出的苛性碱溶液体积 (v ) 和钙化脱碱转型反应后得到的苛性碱溶 液体积 (ν ή) 的比例 ν /ν ή与钙化脱碱转型反应前、 后的苛性碱溶液的碱浓度 有关, 具体的计算关系如下:
V补 m后— m前
其中, ν 为可取出的碱液体积, V ή为钙化脱碱转型反应后的高浓度苛性碱 溶液总体积, m;§为钙化脱碱转型反应后高浓度苛性碱溶液碱浓度, m ffi为钙化脱 碱转型反应前高浓度苛性碱溶液母液碱浓度;
所述的钙化过程使用的钙源为铝酸钙或铝酸钙和石灰的混合物, 钙化产物的 结晶程度不同于单纯使用石灰钙化过程;
经钙化脱碱转型反应, 所述钙化渣中的氧化钠含量降至 1%以下;
(2) 碳化转型
将清水与钙化渣按液固比(3~15 ): l mL/g在密闭容器中混合后, 向密闭容器 内通入 C02, C02气体在通气; 中先将其增压, 使密闭容器内 C02气体的分压达 至 lj 0.6~1.8MPa, 再于 80~160°C的条件下碳化转型反应 10~240min, 得到矿浆; 矿 浆经液固分离, 固相为碳化转型渣, 其主要成分为硅酸钙、 碳酸钙和氢氧化铝, 液相为水;
碳化转型反应的主反应为:
3CaOAl203'xSi02'(6-2x)H20+(3-2x)C02→xCa2Si04+(3-2x)CaC03+2Al(OH)3+(3-2x)H20 (2) 本步骤中的碳化转型反应是以水作为转型介质的, 水在该反应中循环使用; 经碳化转型反应后, 钙化渣中的大部分水化石榴石转化成硅酸钙、 碳酸钙以 及氢氧化铝进入碳化转型渣, 同时碳化转型渣中的氧化钠含量仍在 1%以下;
( 3 ) 低温溶铝
在反应温度 40~100°C以及反应时间 20~120min条件下, 将步骤(2)中得到的 碳化转型渣与氢氧化钠浓度为 50~150g/L的低温溶铝母液进行溶铝反应,提取碳化 转型渣中的氢氧化铝, 低温溶铝母液与碳化转型渣的液固比为 (4~15 ): lmL/g, 反应得到矿浆; 矿浆经液固分离, 固相为主要成分为硅酸钙和碳酸钙的新型结构 赤泥, 液相为铝酸钠溶液; 溶铝主反应如下:
Al(OH)3+NaOH=NaAl(OH)4 ( 3 ) 可将步骤 (2) 钙化转型反应和步骤 (3 ) 低温溶铝反应进行 1~5次; 其中, 低温溶铝反应的氢氧化钠可以来着步骤 (1 ) 钙化转型溶出反应得到的 高浓度苛性碱溶液;
所述的新型结构赤泥经水洗涤后可作为水泥工业的原料, 洗涤所产生的洗液 可以返回步骤 (1 )钙化脱碱转型反应补充由于高浓度苛性碱溶液向拜耳法以及本 步骤所述的低温溶铝反应补充碱液所造成的水损失;
(4) 沉铝
将步骤 (3 ) 产生的铝酸钠溶液与含钙矿物反应, 其中含钙矿物中氧化钙与溶 液中氧化铝质量比为 (1.3~2.5 ): 1, 在沉淀温度 20~90°C以及沉淀时间 l~60min 的反应条件下得到铝酸钙沉淀和氢氧化钠溶液;
其中, 所述含钙矿物为含有氧化钙的原料, 包括石灰、 铝酸钙、 电石渣等; 所述的铝酸钙沉淀返回步骤 (1 ) 作为钙化脱碱转型反应的钙源循环使用; 所 述的氢氧化钠溶液返回步骤 (3 ) 作为低温溶铝母液循环使用。 本发明的原理为: a、 将拜耳法产生的传统赤泥, 与铝酸钙或铝酸钙和石灰在 高浓度苛性碱溶液母液中经钙化脱碱转型反应后, 赤泥中的钠碱进入液相, 得到 钙化渣和更高浓度的高浓度苛性碱溶液; 因此, 为了在本发明的工艺中充分利用 赤泥中的钠碱, 可以从该高浓度苛性碱溶液中取出一部分苛性碱溶液给拜耳法或 本发明步骤 (3 ) 的低温溶铝反应补碱, 剩余的高浓度苛性碱溶液可直接作为高浓 度苛性碱母液、 或经步骤 (3 ) 洗涤新型结构赤泥的洗液稀释后作为高浓度苛性碱 母液, 在步骤 (1 ) 钙化脱碱转型反应中循环使用。 b、 钙化渣与二氧化碳在水中 经碳化转型反应后, 得到碳化转型渣和水; 反应生成的水可以在该碳化转型反应 中循环使用。 c、 碳化转型渣与碱液进行低温溶铝反应, 得到尾渣和溶出液, 用于 反应的碱液来自于步骤 (1 ) 钙化脱碱转型反应后碱液的取出部分以及步骤 (4 ) 沉铝得到的碱液; 反应得到的尾渣经水洗涤外排作为水泥材料, 洗涤水可返回步 骤( 1 )钙化脱碱转型反应补充给高浓度苛性碱溶液由于取出碱液所造成的水损失。 d、溶出液与含钙矿物反应得到铝酸钙沉淀和氢氧化钠溶液,该铝酸钙返回步骤( 1 ) 作为钙化脱碱转型反应的钙源, 氢氧化钠溶液返回步骤 (3 ) 参与低温溶铝反应。 通过本发明的整个工艺流程将赤泥完全利用, 即赤泥中的碱、 氧化铝绝大部分被 提出利用, 高浓度苛性碱母液和水在整个工艺中循环利用, 最终排出的只有尾渣, 其主要成分为硅酸钙及碳酸钙, 可直接用于水泥工业, 且整个工艺流程耗能低。
与现有技术相比, 本发明的特点和有益效果是:
( 1 ) 本方法对赤泥能够全部利用, 工艺过程中不产生废物, 工艺中多项原料 能够循环利用。
(2) 通过本方法处理的赤泥, 不仅能回收其中的氧化钠, 而且能回收其中的 氧化铝, 总体收益较好;
(3 )本方法利用高浓度碱溶液对赤泥钙化转型脱碱处理, 赤泥脱碱后产生的 碱溶液浓度高, 可直接利用于拜耳法以及本发明所述的低温溶铝反应补碱, 无需 采用蒸发的方式浓缩, 能耗很低。
(4)本发明中所述的生产方法得到的尾渣主要成分为硅酸钙及碳酸钙, 可直 接用于水泥工业, 实现氧化铝生产过程赤泥的无害化利用;
( 5 ) 本发明的生产方法全流程以湿法过程为主, 生产能耗较低;
( 6) 通过本发明所述的生产方法处理赤泥, 矿物中氧化铝的总体收率可达 85%~100%, 溶出渣的铝硅比可降至 0.4以下, 且钠碱含量也可降至 0.5%以下, 矿 物的氧化铝提取率可较拜耳法提高 15%以上, 生产一吨氧化铝的矿耗可降低 20% 左右。 具体实施方式
本发明所举实施例中所采用的赤泥成分按质量百分比为: Al203-18.15%, Si02-17.17%, Na20-6.73%, Fe203-25.14%, 余量为酌减水、 Ti02及其他杂质; 本发明所举实施例中按每次处理 100吨 (t) 赤泥进行;
本发明所举实施例中添加的石灰按氧化钙含量占总质量的 75%计;
本发明所举实施例中所采用的 C02气体是石灰烧制过程产生的 C02废气, 但 本发明所述的生产过程不限于使用该类气体, 任何含有 C02的气体均可作为碳化 转型过程的原料;
本发明中所述的石灰是生石灰烧制的, 但沉铝过程使用的钙化原料并非局限 于烧制的石灰, 采用的原料可包括任何以氧化钙为主成分的物料。 实施例 1
将拜耳法赤泥与石灰和铝酸钙混合并于氧化钠浓度 300g/L的高浓度氢氧化钠 母液中进行钙化脱碱转型反应, 石灰与铝酸钙作为钙源, 其中铝酸钙添加量为 38.63t, 石灰量添加量为 83.16t, 铝酸钙与石灰中含有的氧化钙总质量与赤泥的质 量比为 1 : 1, 氢氧化钠母液与赤泥、 石灰和铝酸钙的混合物的液固比为 3 : lml/g, 反应温度 180°C, 反应时间 60min, 赤泥转型反应后的矿浆经液固分离, 赤泥中含 硅相全部转化为水化石榴石进入固相的钙化渣中, 液相为含有铝酸钠的高浓度氢 氧化钠溶液, 取出转型反应后的高浓度氢氧化钠溶液体积的 3%溶液, 返回拜耳法 过程补碱, 其余高浓度氢氧化钠溶液作为母液在钙化转型反应过程循环使用, 转 型反应过程中溶解于液相的氧化铝按相应比例随取出的高浓度氢氧化钠溶液进入 拜耳法系统;
将清水与钙化渣按液固比 5 : l mL/g在密闭容器中混合后, 向密闭容器内通入 C02, C02气体在通气过程中先将其增压, 使反应容器内 C02气体的分压达到 1.8MPa, 再于 120°C的条件下碳化转型反应 180min, 得到主要成分为硅酸钙、 碳 酸钙以及氢氧化铝的碳化转型渣和清水; 清水在本碳化转型反应中循环使用; 碳化渣采用氢氧化钠浓度为 150g/L的低温溶铝母液在溶铝温度 100°C以及溶 铝时间 20min 条件下提取其中的氢氧化铝, 低温溶铝母液与碳化渣的液固比为 10: lmL/g, 得到主要成分为硅酸钙和碳酸钙的新型结构赤泥和铝酸钠溶液;
将上述碳化转型反应和低温溶铝反应重复 3次;
将经 3 次碳化转型反应和低温溶铝反应得到的铝酸钠溶液使用石灰沉铝的方 式处理, 其中石灰中氧化钙的量与溶液中氧化铝的质量比为 2.5 : 1, 并在沉淀温 度 90°C以及反应时间 lmin的条件下得到铝酸钙沉淀 38.63t和氢氧化钠溶液,铝酸 钙返回脱碱转型过程作为钙源使用; 氢氧化钠溶液返回低温溶铝过程作为低温溶 铝母液。
得到的尾渣中的氧化铝与氧化硅质量比为 0.45 : 1, 氧化钠含量为 0.5%。 实施例 2
将拜耳法赤泥与铝酸钙混合并于氧化钠浓度 100g/L的氢氧化钠母液中进行钙 化脱碱转型反应, 采用铝酸钙作为钙源, 其中铝酸钙添加量为 83t, 铝酸钙中含有 的氧化钙总质量与赤泥的质量比为 0.4: 1, 氢氧化钠母液与赤泥和铝酸钙的混合 物的液固比为 5: lml/g, 反应温度 80°C, 反应时间 10min, 反应后得到矿浆, 矿浆 经固液分离, 赤泥中含硅相全部转化为水化石榴石进入固相钙化渣中, 液相为含 有铝酸钠的高浓度氢氧化钠溶液,取转型反应后的高浓度氢氧化钠溶液体积 11.5% 的溶液, 返回拜耳法过程补碱, 其余高浓度氢氧化钠溶液作为母液在钙化转型反 应过程循环使用, 转型反应过程中溶解于液相的氧化铝按相应比例随取出的高浓 度氢氧化钠溶液进入拜耳法系统;
清水与钙化渣按液固比 15 : 1 mL/g在密闭容器中混合后, 向密闭容器内通入 C02, C02气体在通气过程中先将其增压, 使反应容器内 C02气体的分压达到 0.8MPa, 再于 160°C的条件下转型反应 10min, 得到主要成分为硅酸钙、 碳酸钙以 及氢氧化铝的碳化转型渣和清水; 清水在碳化转型反应中循环使用;
碳化转型渣采用氢氧化钠浓度为 50g/L的低温溶铝母液在溶铝温度 100°C以及 溶铝时间 120min条件下提取其中的氢氧化铝, 低温溶铝母液与碳化渣的液固比为 4: lmL/g, 反应得到主要成分为硅酸钙和碳酸钙的新型结构赤泥和铝酸钠溶液, 新 型结构赤泥经水洗涤后可作为水泥工业的原料, 洗涤后的洗液进入钙化脱碱转型 过程加入母液中补充碱溶液被取出而带来的水损失;
低温溶铝产生的液相铝酸钠溶液使用石灰沉铝的方式处理, 其中石灰中氧化 钙与溶液中氧化铝的质量比为 1.3 : 1, 并在反应温度 20°C以及反应时间 60min的 条件下得到铝酸钙沉淀 44.35t和氢氧化钠溶液, 铝酸钙返回脱碱转型过程作为钙 源使用; 氢氧化钠溶液返回低温溶铝过程作为低温溶铝母液。
得到的尾渣中的氧化铝与氧化硅质量比为 0.36: 1, 氧化钠含量为 0.3%。 实施例 3
将拜耳法赤泥与石灰和铝酸钙混合并于氧化钠浓度 240g/L的高浓度氢氧化钠 母液中进行钙化脱碱转型反应, 采用石灰与铝酸钙作为钙源, 其中铝酸钙添加量 为 39.4t, 石灰量添加量为 43.3t, 铝酸钙与石灰中含有的氧化钙总质量与赤泥的质 量比为 0.5 : 1, 氢氧化钠母液与赤泥、石灰和铝酸钙的混合物的液固比为 7: lml/g, 转型温度 120°C, 转型时间 60min, 转型后赤泥中含硅相全部转化为水化石榴石进 入固相钙化渣中, 液相为含有铝酸钠的高浓度氢氧化钠溶液, 取转型反应后的高 浓度氢氧化钠溶液总体积 5%的溶液, 返回拜耳法过程补碱, 其余高浓度氢氧化钠 溶液在钙化转型反应过程循环使用, 转型反应过程中溶解于液相的氧化铝按相应 比例随取出的高浓度氢氧化钠溶液进入拜耳法系统;
清水与钙化渣按液固比 10: 1 mL/g在密闭容器中混合后, 向密闭容器内通入 C02, C02气体在通气过程中先将其增压, 使反应容器内 C02气体的分压达到 1.2MPa, 再于 80°C的条件下转型反应 240min, 得到主要成分为硅酸钙、 碳酸钙以 及氢氧化铝的碳化转型渣和清水; 清水在碳化转型反应中循环使用;
碳化转型渣采用氢氧化钠浓度为 100g/L的低温溶铝母液在溶铝温度 40°C以及 溶铝时间 120min条件下提取其中的氢氧化铝, 低温溶铝母液与碳化渣的液固比为 15: lmL/g, 反应得到主要成分为硅酸钙和碳酸钙的新型结构赤泥和铝酸钠溶液, 新型结构赤泥经水洗涤后可作为水泥工业的原料, 洗涤后的洗液进入钙化脱碱转 型过程补充氢氧化钠溶液被取出而带来的水损失;
低温溶铝产生的液相使用石灰沉铝的方式处理, 其中石灰中氧化钙与溶液中 氧化铝的质量比为 2: 1, 并在沉淀温度 60°C以及 25min的时间下得到铝酸钙沉淀 39.4t和氢氧化钠溶液, 铝酸钙返回脱碱转型过程作为钙源使用; 氢氧化钠溶液返 回低温溶铝过程作为低温溶铝母液。
得到的尾渣中的氧化铝与氧化硅质量比为 0.438: 1, 氧化钠含量为 0.35%。 实施例 4
将拜耳法赤泥与石灰和铝酸钙混合并于氧化钠浓度 200g/L的铝酸钠溶液中进 行钙化脱碱转型反应, 采用石灰与铝酸钙作为钙源, 其中铝酸钙添加量为 35.44t, 石灰量添加量 5.66t, 铝酸钙与石灰中含有的氧化钙总质量与赤泥的质量比为 0.2: 1, 氢氧化钠母液与赤泥、 石灰和铝酸钙的混合物的液固比为 10: lml/g, 转型温度 120 °C , 转型时间 30min, 转型后赤泥中含硅相全部转化为水化石榴石进入固相钙 化渣中, 液相为含有铝酸钠的高浓度氢氧化钠溶液, 取转型反应后的高浓度氢氧 化钠溶液总体积 6%的溶液, 用于后续的低温溶铝反应, 其余高浓度氢氧化钠溶液 在钙化转型反应过程循环使用, 转型反应过程中溶解于液相的氧化铝按相应比例 随取出的高浓度氢氧化钠溶液进入后续的低温溶铝反应;
钙化渣与清水按液固比 3 : 1 mL/g在密闭容器中混合后, 向密闭容器内通入 C02, C02气体在通气过程中先将其增压, 使反应容器内 C02气体的分压达到 1.2MPa, 再于 100°C的条件下转型反应 60min, 得到主要成分为硅酸钙、 碳酸钙以 及氢氧化铝的碳化转型渣和清水; 清水在碳化转型反应中循环使用;
碳化转型渣采用氢氧化钠浓度为 100g/L的低温溶铝母液在溶铝温度 60°C以及 溶铝时间 90min条件下提取其中的氢氧化铝, 低温溶铝母液与碳化渣的液固比为 8: lmL/g, 反应得到主要成分为硅酸钙和碳酸钙的新型结构赤泥和铝酸钠溶液, 新 型结构赤泥经水洗涤后可作为水泥工业的原料, 洗涤后的洗液进入钙化脱碱转型 过程补充氢氧化钠溶液被取出而带来的水损失;
低温溶铝产生的液相使用石灰沉铝的方式处理, 其中石灰中氧化钙与溶液中 氧化铝的质量比为 1.8: 1, 并在反应温度 60°C以及反应时间 25min的条件下得到 铝酸钙沉淀 35.44t和氢氧化钠溶液, 铝酸钙返回脱碱转型过程作为钙源使用; 氢 氧化钠溶液返回低温溶铝过程作为低温溶铝母液。
得到的尾渣中的氧化铝与氧化硅质量比为 0.50: 1, 氧化钠含量为 0.82%。 实施例 5
将拜耳法赤泥与铝酸钙和石灰混合并于氧化钠浓度 260g/L的铝酸钠溶液中进 行钙化脱碱转型,采用铝酸钙和石灰作为钙源,其中铝酸钙为 43.71t,石灰为 80.76t, 铝酸钙和石灰含有的氧化钙总质量与赤泥的质量比为 0.8: 1, 氢氧化钠母液与赤 泥、石灰和铝酸钙的混合物的液固比为 8: lml/g,转型温度 130°C,转型时间 30min, 转型后赤泥中含硅相全部转化为水化石榴石进入固相钙化渣中, 液相为含有铝酸 钠的高浓度氢氧化钠溶液, 取转型反应后的高浓度氢氧化钠溶液总体积 4.5%的溶 液, 用于后续的低温溶铝反应, 其余高浓度氢氧化钠溶液在钙化转型反应过程循 环使用, 转型反应过程中溶解于液相的氧化铝按相应比例随取出的高浓度氢氧化 钠溶液进入后续的低温溶铝反应;
钙化渣与清水按液固比 5: 1 mL/g在密闭容器中混合后, 向密闭容器内通入 C02, C02气体在通气过程中先将其增压, 使反应容器内 C02气体的分压达到 l.OMPa, 再于 140°C的条件下转型反应 lOOmin, 得到主要成分为硅酸钙、 碳酸钙 以及氢氧化铝的碳化转型渣和清水; 清水在碳化转型反应中循环使用;
碳化转型渣采用氢氧化钠浓度为 100g/L的低温溶铝母液在溶铝温度 70°C以及 溶铝时间 60min条件下提取其中的氢氧化铝, 低温溶铝母液与碳化渣的液固比为 12: lmL/g, 得到主要成分为硅酸钙和碳酸钙的新型结构赤泥和铝酸钠溶液;
将上述碳化转型反应和低温溶铝反应重复 5次;
将碳化转型反应和低温溶铝反应 5 次得到的铝酸钠溶液使用石灰沉铝的方式 处理,其中其中石灰中氧化钙与溶液中氧化铝的质量比为 2: 1,并在反应温度 60°C 以及反应时间 5min的条件下得到铝酸钙沉淀 43.71t和氢氧化钠溶液, 铝酸钙返回 脱碱转型过程作为钙源使用; 氢氧化钠溶液返回低温溶铝过程作为低温溶铝母液。
得到的尾渣中的氧化铝与氧化硅质量比为 0.37: 1, 氧化钠含量为 0.4%。

Claims

权 利 要 求 书
1、钙化-碳化法处理拜耳法赤泥过程中碱与铝的回收方法, 其特征在于, 按以下步 骤进行:
( 1 ) 钙化脱碱转型
将拜耳法赤泥与铝酸钙或石灰和铝酸钙混合, 于高浓度苛性碱溶液母液中进 行钙化脱碱转型反应, 反应温度为 80~180°C, 反应时间为 10~60min, 反应后, 固 相为钙化渣, 其主要成分为水化石榴石, 液相为高浓度苛性碱溶液;
(2) 碳化转型
将清水与钙化渣按液固比(3~15 ): l mL/g在密闭容器中混合后, 向密闭容器 内通入 C02, 使密闭容器内 C02气体的分压达到 0.8~1.8MPa, 再于 80~160°C的条 件下碳化转型反应 10~240min, 得到矿浆; 矿浆经液固分离, 固相为碳化转型渣, 其主要成分为硅酸钙、 碳酸钙以及氢氧化铝, 液相为水;
(3 ) 低温溶铝
在反应温度 40~100°C以及反应时间 20~120min条件下, 将碳化转型渣与氢氧 化钠浓度为 50~150g/L的低温溶铝母液进行溶铝反应,低温溶铝母液与碳化转型渣 的液固比为 (4~15 ): lmL/g, 反应得到矿浆; 矿浆经液固分离, 液相为铝酸钠溶 液, 固相为主要成分为硅酸钙和碳酸钙的新型结构赤泥;
上述碳化转型和低温溶铝反应进行 1~5次;
(4) 沉铝
将步骤 (3 ) 产生的铝酸钠溶液与含钙矿物反应, 得到铝酸钙沉淀和氢氧化钠 溶液。
2、 根据权利要求 1所述的钙化-碳化法处理拜耳法赤泥过程中碱与铝的回收方法, 其特征在于, 步骤 (1 ) 所述的铝酸钙或石灰和铝酸钙中氧化钙与赤泥的质量比为
( 0.2-1.0): 1; 所述的赤泥与铝酸钙或石灰和铝酸钙的混合物与高浓度苛性碱溶 液母液的液固比为 (3~10): lmL/g。
3、 根据权利要求 1所述的钙化-碳化法处理拜耳法赤泥过程中碱与铝的回收方法, 其特征在于, 步骤 (1 ) 所述的高浓度苛性碱溶液母液为氧化钠浓度 100~300g/L 的氢氧化钠溶液或氧化钠浓度 100~300g/L的铝酸钠溶液。
4、 根据权利要求 1所述的钙化-碳化法处理拜耳法赤泥过程中碱与铝的回收方法, 其特征在于, 可取出部分所述步骤 (1 ) 中得到的高浓度苛性碱溶液中的碱液, 为 拜耳法或步骤 (3 ) 低温溶铝反应补碱, 未取出的碱液可在步骤 (1 ) 钙化脱碱转 型反应中作为母液循环使用。
5、 根据权利要求 4所述的钙化-碳化法处理拜耳法赤泥过程中碱与铝的回收方法, 其特征在于, 其可取出高浓度苛性碱溶液的体积为: 可取出的高浓度苛性碱溶液 体积(V )和钙化脱碱转型反应后得到的高浓度苛性碱溶液体积(ν ή)的比例 V /ν ή与钙化脱碱转型反应前、后的苛性碱溶液的浓度有关, 具体的计算关系如下:
V补 ― Hi后— m前
Ί ― m前
其中, v 为可取出的碱液体积, V ή为钙化脱碱转型反应后总的苛性碱溶液 体积, m ; s为钙化脱碱转型反应后液相中苛性碱溶液浓度, m ffi为钙化脱碱转型反 应前液相中苛性碱溶液液浓度。
6、 根据权利要求 1所述的钙化-碳化法处理拜耳法赤泥过程中碱与铝的回收方法, 其特征在于, 所述步骤 (2) 中生成的水在碳化转型反应中循环使用。
7、 根据权利要求 1所述的钙化-碳化法处理拜耳法赤泥过程中碱与铝的回收方法, 其特征在于, 步骤 (3 ) 所述的新型结构赤泥, 经水洗涤后排出, 洗涤所产生的洗 液可以返回步骤 (1 )钙化脱碱转型反应补充由于高浓度苛性碱溶液向拜耳法或向 步骤 (3 ) 低温溶铝反应补充碱液所造成的水损失。
8、 根据权利要求 1所述的钙化-碳化法处理拜耳法赤泥过程中碱与铝的回收方法, 其特征在于, 步骤(4)所述的含钙矿物为含有氧化钙的原料, 包括石灰、铝酸钙、 电石渣; 所述的含钙矿物中氧化钙与铝酸钠溶液中氧化铝质量比为 (1.3 2.5 ): 1。
9、 根据权利要求 1所述的钙化-碳化法处理拜耳法赤泥过程中碱与铝的回收方法, 其特征在于, 步骤 (4) 含钙矿物与铝酸钠溶液的反应条件为: 反应温度 20~90°C 以及反应时间 l~60min。
10、根据权利要求 1所述的钙化-碳化法处理拜耳法赤泥过程中碱与铝的回收方法, 其特征在于, 所述步骤 (4 ) 中, 反应得到的铝酸钙沉淀返回步骤 (1 ) 作为钙化 脱碱转型反应的钙源循环使用; 所述的氢氧化钠溶液返回步骤 (3 ) 作为低温溶铝 母液循环使用。
PCT/CN2014/082676 2014-04-30 2014-07-22 钙化-碳化法处理拜耳法赤泥过程中碱与铝的回收方法 WO2015165153A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US15/303,408 US9963353B2 (en) 2014-04-30 2014-07-22 Method for recovering alkali and aluminum in course of treatment of bayer red mud by using calcification-carbonation method
AU2014392419A AU2014392419B2 (en) 2014-04-30 2014-07-22 Method for recycling alkali and aluminum during treatment of Bayer red mud by using calcification-carbonization process
RU2016133029A RU2644169C1 (ru) 2014-04-30 2014-07-22 Способ рекуперации щелочи и алюминия во время обработки получаемого в процессе байера красного шлама с применением технологии известкования и карбонизации
EP14891022.7A EP3138637B1 (en) 2014-04-30 2014-07-22 Method for recycling alkali and aluminum during treatment of bayer red mud by using calcification-carbonization process

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410182568.X 2014-04-30
CN201410182568.XA CN103934258B (zh) 2014-04-30 2014-04-30 钙化-碳化法处理拜耳法赤泥过程中碱与铝的回收方法

Publications (1)

Publication Number Publication Date
WO2015165153A1 true WO2015165153A1 (zh) 2015-11-05

Family

ID=51182280

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/082676 WO2015165153A1 (zh) 2014-04-30 2014-07-22 钙化-碳化法处理拜耳法赤泥过程中碱与铝的回收方法

Country Status (6)

Country Link
US (1) US9963353B2 (zh)
EP (1) EP3138637B1 (zh)
CN (1) CN103934258B (zh)
AU (1) AU2014392419B2 (zh)
RU (1) RU2644169C1 (zh)
WO (1) WO2015165153A1 (zh)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108569716A (zh) * 2017-03-08 2018-09-25 河南海纳天城科技有限公司 一种铝酸钠粗液精制过滤的方法
CN105713546B (zh) * 2016-04-29 2018-11-20 广西南宁齐顺化工有限公司 一种建筑密封胶及其制备方法
CN111348653A (zh) * 2020-03-16 2020-06-30 昆明理工大学 一种利用含钛渣和低纯硅物料制备高纯硅、钛白和高纯氟化物的方法
CN111634933A (zh) * 2020-05-27 2020-09-08 中铝山东有限公司 一种使用pac酸性废渣制备铝酸钙的方法和铝酸钙
CN112479230A (zh) * 2020-12-16 2021-03-12 中原工学院 高碱性氧化铝赤泥固碳的方法
CN113087481A (zh) * 2021-03-30 2021-07-09 山东理工大学 一种抗泛碱赤泥免烧砖及制备方法
CN115818914A (zh) * 2022-10-20 2023-03-21 中南大学 赤泥生物脱碱的方法
CN115818914B (zh) * 2022-10-20 2024-10-25 中南大学 赤泥生物脱碱的方法

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106006688B (zh) * 2016-05-19 2018-03-13 东北大学 一种钙化‑碳化一步法处理拜耳法赤泥的方法
CN108341423B (zh) * 2017-01-23 2020-08-11 中国科学院过程工程研究所 一种提高赤泥浸出液过滤性能的方法
CN108296267A (zh) * 2018-02-02 2018-07-20 北京华索科技股份有限公司 工业化处理烧结赤泥的方法
CN108314071A (zh) * 2018-05-04 2018-07-24 中国科学院过程工程研究所 一种利用气化渣制备聚合氯化铝的方法
CN108585005A (zh) * 2018-06-06 2018-09-28 山西森泽能源科技集团有限公司 一种拜耳法赤泥的脱碱方法
CN110482821B (zh) * 2019-08-13 2020-12-18 昆明理工大学 一种含硫尾矿对赤泥的循环水式脱碱系统及脱碱方法
CN110436491A (zh) * 2019-08-19 2019-11-12 河北科技大学 一种混联法生产氧化铝联产硅酸钙的方法
CN110465177B (zh) * 2019-09-27 2021-11-09 国家电投集团远达环保工程有限公司重庆科技分公司 赤泥综合利用处理方法
CN111060417B (zh) * 2019-11-25 2023-03-21 中国石油化工股份有限公司 一种气化渣矿相的定量分析方法
CN111841485B (zh) * 2020-05-25 2021-07-06 山东大学 一种碳化改性赤泥陶粒吸附剂的制备方法及其再生方法与应用
CN111842464B (zh) * 2020-06-30 2022-03-11 河南省地质环境规划设计院有限公司 氧化铝赤泥堆场植被重建的方法
CN111924950B (zh) * 2020-09-25 2021-02-09 北京环球中科水务科技有限公司 一种无机高分子除磷剂及其制备方法与应用
CN111925099B (zh) * 2020-09-25 2021-03-23 北京环球中科水务科技有限公司 一种无机高分子污泥调理剂及其制备方法与应用
CN112624538B (zh) * 2020-12-02 2022-11-08 天津水泥工业设计研究院有限公司 一种绿色高效的赤泥二氧化碳碳化脱碱系统及工艺
WO2022125883A1 (en) 2020-12-10 2022-06-16 Worcester Polytechnic Institute Acid wash of red mud (bauxite residue)
CN113105282B (zh) * 2021-04-28 2022-09-27 东北大学 一种利用含钙赤泥制备硅钾钙复合肥的方法
CN113247926B (zh) * 2021-05-21 2023-04-18 云南文山铝业有限公司 一种利用电石渣替代石灰进行溶出的方法
CN114262797B (zh) * 2021-12-22 2023-03-21 中南大学 一种从赤泥钠化焙烧渣中有效分离回收铁和铝的方法
CN114380310B (zh) * 2022-01-13 2022-10-04 武汉理工大学 一种赤泥脱碱方法
CN114380311A (zh) * 2022-01-18 2022-04-22 云南文山铝业有限公司 一种铝灰综合回收利用的方法
CN114477238A (zh) * 2022-02-07 2022-05-13 武汉理工大学 一种赤泥脱碱联产钠盐的方法
CN114920273B (zh) * 2022-07-06 2023-09-26 山东南山铝业股份有限公司 一种脱除铝酸钠溶液中中高分子量有机物的方法
CN115301716B (zh) * 2022-10-08 2023-01-17 淄博益海环保科技有限公司 赤泥、粉煤灰、钢渣、煤矸石固废资源化综合利用工艺

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101456572A (zh) * 2008-12-26 2009-06-17 东北大学 一种利用高硫铝土矿生产氧化铝的方法
CN102757060A (zh) * 2011-09-16 2012-10-31 东北大学 一种消纳拜耳法赤泥的方法

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4910892A (zh) * 1972-05-12 1974-01-30
US4483830A (en) * 1981-09-10 1984-11-20 Comalco Limited Production of alumina
US5043077A (en) * 1989-12-11 1991-08-27 Alcan International Limited Treatment of bayer process red mud slurries
RU2193525C1 (ru) * 2001-08-08 2002-11-27 Общество с ограниченной ответственностью "АЛКОРУС ИНЖИНИРИНГ" Способ гидрохимической переработки алюмосиликатного сырья
RU2257347C1 (ru) * 2004-02-11 2005-07-27 Акционерное общество "Алюминий Казахстана" Способ комплексной переработки бокситов
DE102006020841A1 (de) * 2006-05-04 2007-11-08 Krause-Röhm-Systeme Ag Verfahren zur Wertstoffgewinnung
CN101318787B (zh) 2007-06-04 2012-07-04 王文举 一种铝工业工艺废渣全部转型为生态建筑材料的工艺与方法
CN100532262C (zh) * 2007-07-12 2009-08-26 中国铝业股份有限公司 一种中低品位铝土矿生产氧化铝的方法
CN101157453A (zh) * 2007-09-18 2008-04-09 中国铝业股份有限公司 一种回收拜耳法赤泥中碱的方法
CN101580348B (zh) 2009-06-22 2012-11-07 准格尔旗粉煤灰煤矸石研发中心 大掺量粉煤灰水泥及其制备方法
CN101984080B (zh) 2010-11-29 2012-05-23 董亚飞 一种赤泥分离铁、铝硅渣和碱金属去除的工艺方法及设备
CN102757073B (zh) * 2011-09-16 2014-06-18 东北大学 基于钙化-碳化转型溶出中低品位铝土矿中氧化铝的方法
CN102583477B (zh) * 2012-03-16 2014-05-14 中国铝业股份有限公司 一种高铁低品位铝土矿的综合利用方法
WO2013152796A1 (de) * 2012-04-12 2013-10-17 Krsys Gmbh Verfahren und vorrichtung zur wertstoffgewinnung aus einem bauxitrückstand
CN102730725A (zh) * 2012-06-21 2012-10-17 中国铝业股份有限公司 一种提高拜耳法种分母液苛性比值的方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101456572A (zh) * 2008-12-26 2009-06-17 东北大学 一种利用高硫铝土矿生产氧化铝的方法
CN102757060A (zh) * 2011-09-16 2012-10-31 东北大学 一种消纳拜耳法赤泥的方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
GUO, FANGFANG ET AL.: "Basic research on calcificating to reduce alkaline of gibbsite's red mud in bayer process", ESSAY COLLECTION OF THE 17TH (2013 YEAR) ACADEMIC CONFERENCE OF THE NATIONAL METALLURGICAL REACTION ENGINEERING, 31 December 2013 (2013-12-31), XP008184199 *
See also references of EP3138637A4 *
WANG, YANXIU ET AL.: "Influence of temperature on the reaction behavior of titanium's calcification in the transformation process of Calcificaiton - Carbonization producing alumina", ESSAY COLLECTION OF THE 17TH (2013 YEAR) ACADEMIC CONFERENCE OF THE NATIONAL METALLURGICAL REACTION ENGINEERING, 31 December 2013 (2013-12-31), XP008184052 *

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105713546B (zh) * 2016-04-29 2018-11-20 广西南宁齐顺化工有限公司 一种建筑密封胶及其制备方法
CN108569716A (zh) * 2017-03-08 2018-09-25 河南海纳天城科技有限公司 一种铝酸钠粗液精制过滤的方法
CN111348653A (zh) * 2020-03-16 2020-06-30 昆明理工大学 一种利用含钛渣和低纯硅物料制备高纯硅、钛白和高纯氟化物的方法
CN111348653B (zh) * 2020-03-16 2022-09-06 昆明理工大学 一种利用含钛渣和低纯硅物料制备高纯硅、钛白和高纯氟化物的方法
CN111634933A (zh) * 2020-05-27 2020-09-08 中铝山东有限公司 一种使用pac酸性废渣制备铝酸钙的方法和铝酸钙
CN111634933B (zh) * 2020-05-27 2022-08-30 中铝山东有限公司 一种使用pac酸性废渣制备铝酸钙的方法和铝酸钙
CN112479230A (zh) * 2020-12-16 2021-03-12 中原工学院 高碱性氧化铝赤泥固碳的方法
CN113087481A (zh) * 2021-03-30 2021-07-09 山东理工大学 一种抗泛碱赤泥免烧砖及制备方法
CN115818914A (zh) * 2022-10-20 2023-03-21 中南大学 赤泥生物脱碱的方法
CN115818914B (zh) * 2022-10-20 2024-10-25 中南大学 赤泥生物脱碱的方法

Also Published As

Publication number Publication date
AU2014392419B2 (en) 2018-02-22
EP3138637A4 (en) 2018-07-25
CN103934258A (zh) 2014-07-23
EP3138637A1 (en) 2017-03-08
US20170036920A1 (en) 2017-02-09
RU2644169C1 (ru) 2018-02-08
CN103934258B (zh) 2016-04-06
US9963353B2 (en) 2018-05-08
AU2014392419A1 (en) 2016-09-22
EP3138637B1 (en) 2021-04-14

Similar Documents

Publication Publication Date Title
WO2015165153A1 (zh) 钙化-碳化法处理拜耳法赤泥过程中碱与铝的回收方法
CN102583477B (zh) 一种高铁低品位铝土矿的综合利用方法
RU2567977C2 (ru) Способ экстракции металлов из алюминийсодержащей и титансодержащей руды и остаточной породы
CN104386720B (zh) 一种从高硅含铝矿物原料中酸碱联合提取氧化铝的方法
CN100441708C (zh) 一种一水硬铝石型铝土矿的溶出方法
CN104445313B (zh) 一种从粉煤灰中酸碱联合提取氧化铝的方法
WO2008119212A1 (fr) Procédé d'extraction d'abord de la silice puis de l'alumine de cendres volantes
WO2013040862A1 (zh) 一种氨法处理粉煤灰生产氧化铝的方法
CN106006688B (zh) 一种钙化‑碳化一步法处理拜耳法赤泥的方法
CN112573549B (zh) 一种高效提取锂辉石的方法
CN102757060A (zh) 一种消纳拜耳法赤泥的方法
WO2015165152A1 (zh) 一种基于钙化-碳化法的无蒸发生产氧化铝的方法
WO2018233688A1 (zh) 钙铁榴石一步碱热法处理中低品位铝土矿生产氢氧化铝的方法
CN108892146B (zh) 一种含硅铝物料的脱硅方法
WO2013040861A1 (zh) 一种利用粉煤灰生产氧化铝的方法
CN103936046B (zh) 一种氧化铝生产过程中后加矿钙化转型的方法
Xie et al. Direct calcification–carbonation method for processing of Bayer process red mud
CN112813284A (zh) 一种从含铝矿物中提取铝的方法
CN102115828B (zh) 用拜尔法赤泥制备铁和铝并联产硫酸钠的方法
CN107792870B (zh) 一种铝土矿的综合利用方法
CN112279284B (zh) 一种高硫铝土矿和拜耳法赤泥综合利用的方法
CN104787789B (zh) 利用煤系固体废物生产氧化铝的方法
CN102398913A (zh) 硫酸法处理高铝粉煤灰提取冶金级氧化铝的工艺
CN106517279B (zh) 粉煤灰硫酸铵焙烧熟料还原分解提取氧化铝的方法
CN113604663B (zh) 一种基于低钙还原焙烧分离铁铝共生资源的方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14891022

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016133029

Country of ref document: RU

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2014891022

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014891022

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2014392419

Country of ref document: AU

Date of ref document: 20140722

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15303408

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE