WO2015163299A1 - 電磁波測定装置、測定方法、プログラム、記録媒体 - Google Patents

電磁波測定装置、測定方法、プログラム、記録媒体 Download PDF

Info

Publication number
WO2015163299A1
WO2015163299A1 PCT/JP2015/062042 JP2015062042W WO2015163299A1 WO 2015163299 A1 WO2015163299 A1 WO 2015163299A1 JP 2015062042 W JP2015062042 W JP 2015062042W WO 2015163299 A1 WO2015163299 A1 WO 2015163299A1
Authority
WO
WIPO (PCT)
Prior art keywords
electromagnetic wave
glue
sample
reflected
thz
Prior art date
Application number
PCT/JP2015/062042
Other languages
English (en)
French (fr)
Inventor
高柳 史一
昭好 入澤
Original Assignee
株式会社アドバンテスト
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社アドバンテスト filed Critical 株式会社アドバンテスト
Priority to JP2016514935A priority Critical patent/JP6246909B2/ja
Priority to US15/122,689 priority patent/US20170074804A1/en
Priority to DE112015001955.3T priority patent/DE112015001955T5/de
Publication of WO2015163299A1 publication Critical patent/WO2015163299A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N21/3581Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light using far infrared light; using Terahertz radiation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/55Specular reflectivity
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/59Transmissivity
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/8422Investigating thin films, e.g. matrix isolation method
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/8806Specially adapted optical and illumination features
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2201/00Features of devices classified in G01N21/00
    • G01N2201/06Illumination; Optics
    • G01N2201/069Supply of sources
    • G01N2201/0696Pulsed
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2201/00Features of devices classified in G01N21/00
    • G01N2201/12Circuits of general importance; Signal processing

Definitions

  • the present invention uses electromagnetic waves (frequency is 0.01 [THz] or more and 100 [THz] or less) (for example, terahertz wave (for example, frequency is 0.03 [THz] or more and 10 [THz] or less)) for a sample having a layer structure. And measuring two or more layers of samples (eg, paper, film, etc.).
  • electromagnetic waves frequency is 0.01 [THz] or more and 100 [THz] or less
  • terahertz wave for example, frequency is 0.03 [THz] or more and 10 [THz] or less
  • JP 2004-028618 A International Publication No. 2009/050830 JP 2008-076159 A
  • an object of the present invention is to make the decrease in transmission intensity due to the thickness or type of the specimen or glue lower than that in the case of using near infrared rays.
  • the electromagnetic wave measuring apparatus transmits a transmitted wave or a reflected wave with respect to an electromagnetic wave (for example, terahertz wave) having a frequency of 0.01 [THz] or more and 100 [THz] or less incident on a sample (a specimen bonded with glue).
  • the electromagnetic wave measuring apparatus may be able to perform mapping measurement of bonding failure by scanning a specimen or a sensor (electromagnetic wave generator and electromagnetic wave detector).
  • an electromagnetic wave generator and an electromagnetic wave detector are opposed to each other, and a transmitted wave in which an electromagnetic wave generated from the electromagnetic wave generator passes through a specimen is measured and transmitted.
  • a bonding failure may be detected by monitoring the spectrum change of the wave due to glue, the amplitude attenuation of the transmitted pulse, or the delay time change.
  • the second electromagnetic wave measuring apparatus measures the reflected wave from the specimen and the transmitted reflected wave that has passed through the specimen and then reflected from the back reflecting mirror or the metal plate. Further, it may be possible to detect the bonding failure by monitoring the amplitude attenuation by the paste of the transmitted reflected wave from the back surface reflecting mirror or the metal plate, the delay time change, or the spectrum change.
  • the second electromagnetic wave measuring apparatus monitors the intensity of the transmitted reflected wave from the back reflecting mirror or metal plate normalized in consideration of the surface reflectance and interface reflectance of the specimen. Therefore, the bonding failure may be inspected.
  • the second electromagnetic wave measuring apparatus may perform an inspection for detecting a bonding failure by monitoring the interface reflection intensity normalized in consideration of the surface reflectance of the specimen.
  • An electromagnetic wave measuring apparatus is directed to an electromagnetic wave output device that outputs an electromagnetic wave having a frequency of 0.01 [THz] or more and 100 [THz] or less toward a sample in which a plurality of specimens are bonded with glue, and transmits the sample.
  • an electromagnetic wave detector that detects a transmitted electromagnetic wave, which is a transmitted electromagnetic wave, and is configured to determine whether or not the bonding by the glue is good based on the detected transmitted electromagnetic wave.
  • the electromagnetic wave output device outputs an electromagnetic wave having a frequency of 0.01 [THz] or more and 100 [THz] or less toward a sample in which a plurality of specimens are bonded with glue.
  • An electromagnetic wave detector detects a transmitted electromagnetic wave that is an electromagnetic wave transmitted through the sample. Furthermore, the electromagnetic wave measuring device determines whether or not the bonding with the glue is good based on the detected transmitted electromagnetic wave.
  • the transmitted electromagnetic wave may be a pulse.
  • the electromagnetic wave measuring apparatus may determine whether or not the bonding by the glue is good based on the detected time waveform of the transmitted electromagnetic wave.
  • the electromagnetic wave measuring apparatus may determine whether or not the bonding by the glue is good based on the peak of the detected time waveform of the transmitted electromagnetic wave.
  • the electromagnetic wave measuring apparatus may determine that the bonding with the glue is good when the peak of the detected time waveform of the transmitted electromagnetic wave is less than a threshold value.
  • the threshold value is set to be less than the peak of the time waveform of the electromagnetic wave that is transmitted without overlapping the plurality of specimens with the glue. May be.
  • the electromagnetic wave measuring apparatus may determine whether or not the bonding by the glue is good based on the time when the detected time waveform of the transmitted electromagnetic wave takes a peak.
  • the electromagnetic wave measuring apparatus may determine that the bonding with the glue is good when the time waveform of the detected transmitted electromagnetic wave takes a peak time later than a threshold value.
  • the threshold value is set after the time when the time waveform of the electromagnetic wave transmitted through the superposition of the plurality of specimens not bonded with the glue is peaked. You may be allowed to.
  • the electromagnetic wave measuring apparatus may determine whether or not the bonding by the paste is good based on the detected frequency spectrum of the transmitted electromagnetic wave.
  • the electromagnetic wave measuring apparatus may determine whether or not the bonding with the glue is good based on a frequency component value corresponding to a predetermined frequency in the detected frequency spectrum of the transmitted electromagnetic wave. .
  • the electromagnetic wave measurement device may determine that the bonding with the glue is good when the frequency component value is absorbance and the frequency component value is equal to or greater than a threshold value.
  • the threshold value is a value corresponding to the predetermined frequency in the frequency spectrum of the electromagnetic wave transmitted through the superposition of the plurality of specimens without being pasted with the glue. Also, it may be set largely.
  • the electromagnetic wave measurement device may determine that the bonding with the glue is good when the frequency component value is a phase delay and the frequency component value is equal to or greater than a threshold value.
  • the threshold value is a value corresponding to the predetermined frequency in the frequency spectrum of the electromagnetic wave transmitted through the superposition of the plurality of specimens without being pasted with the glue. Also, it may be set largely.
  • the electromagnetic wave measurement device may determine that the bonding by the glue is good when the frequency component value is a group delay and the frequency component value is less than a threshold value.
  • the threshold value is a value corresponding to the predetermined frequency in the frequency spectrum of the electromagnetic wave transmitted through the superposition of the plurality of specimens without being pasted with the glue. May be set smaller.
  • the electromagnetic wave measuring apparatus is directed to an electromagnetic wave having a frequency of 0.01 [THz] or more and 100 [THz] or less toward a sample in which a plurality of specimens are bonded with glue and a reflector disposed behind the sample.
  • An electromagnetic wave output device for output and an electromagnetic wave detector for detecting a reflected electromagnetic wave that is an electromagnetic wave reflected by the sample or the reflector, and based on the detected reflected electromagnetic wave, whether or not the bonding by the glue is good Is configured to determine.
  • the electromagnetic wave output device has a thickness of 0.01 [THz] or more toward a sample in which a plurality of specimens are bonded with glue and a reflector disposed behind the sample. [THz] Outputs an electromagnetic wave having the following frequency.
  • the electromagnetic wave detector detects a reflected electromagnetic wave that is an electromagnetic wave reflected by the sample or the reflector. Further, the electromagnetic wave measuring device determines whether or not the bonding with the glue is good based on the detected reflected electromagnetic wave.
  • the electromagnetic wave measuring apparatus is based on the transmittance of the specimen, the intensity of the reflected electromagnetic wave detected, and the transmittance of the glue obtained based on the intensity of the electromagnetic wave. It may be determined whether or not is good.
  • the electromagnetic wave measuring apparatus is based on the strength of the electromagnetic wave reflected by the interface between one or more of the specimens and the glue and the transmittance of the glue. It may be determined whether or not.
  • the electromagnetic wave measuring apparatus may determine that the bonding with the glue is good when the transmittance of the glue is less than a threshold value.
  • the electromagnetic wave measuring device may determine whether or not the bonding by the glue is good based on a difference in time when the reflected electromagnetic wave is detected.
  • the present invention provides an electromagnetic wave output step of outputting an electromagnetic wave having a frequency of 0.01 [THz] or more and 100 [THz] or less toward a sample in which a plurality of specimens are bonded with glue, and a transmission that is an electromagnetic wave transmitted through the sample. It is an electromagnetic wave measuring method provided with the electromagnetic wave detection process which detects electromagnetic waves, and the determination process which determines whether the joining by the said glue is favorable based on the detected said transmitted electromagnetic waves.
  • the present invention provides an electromagnetic wave output step of outputting an electromagnetic wave having a frequency of 0.01 [THz] or more and 100 [THz] or less toward a sample in which a plurality of specimens are bonded with glue and a reflector disposed behind the sample. And an electromagnetic wave detection step of detecting a reflected electromagnetic wave that is an electromagnetic wave reflected by the sample or the reflector, and a determination step of determining whether or not the bonding by the glue is good based on the detected reflected electromagnetic wave.
  • An electromagnetic wave measuring method provided.
  • the present invention is directed to an electromagnetic wave output device that outputs an electromagnetic wave having a frequency of 0.01 [THz] or more and 100 [THz] or less toward a sample in which a plurality of specimens are bonded with glue, and a transmission that is an electromagnetic wave transmitted through the sample.
  • the present invention relates to an electromagnetic wave output device that outputs an electromagnetic wave having a frequency of 0.01 [THz] or more and 100 [THz] or less toward a sample in which a plurality of specimens are bonded with glue and a reflector disposed behind the sample.
  • a program for causing a computer to execute a measurement process using an electromagnetic wave measurement device including an electromagnetic wave detector that detects a reflected electromagnetic wave that is an electromagnetic wave reflected by the sample or the reflector, the measurement process Is a program comprising a determination step for determining whether or not the bonding by the glue is good based on the detected reflected electromagnetic wave.
  • the present invention is directed to an electromagnetic wave output device that outputs an electromagnetic wave having a frequency of 0.01 [THz] or more and 100 [THz] or less toward a sample in which a plurality of specimens are bonded with glue, and a transmission that is an electromagnetic wave transmitted through the sample.
  • a computer-readable recording medium recording a program for causing a computer to execute a measurement process using an electromagnetic wave measuring device including an electromagnetic wave detector that detects an electromagnetic wave, wherein the measurement process is detected
  • the recording medium includes a determination step for determining whether or not the bonding with the glue is good based on the transmitted electromagnetic wave.
  • the present invention relates to an electromagnetic wave output device that outputs an electromagnetic wave having a frequency of 0.01 [THz] or more and 100 [THz] or less toward a sample in which a plurality of specimens are bonded with glue and a reflector disposed behind the sample.
  • a computer recording a program for causing the computer to execute a measurement process using an electromagnetic wave measuring device including an electromagnetic wave detector that detects a reflected electromagnetic wave reflected by the sample or the reflector.
  • the measurement process is a recording medium including a determination step of determining whether or not the bonding by the glue is good based on the detected reflected electromagnetic wave.
  • Group delay of the terahertz pulse that has passed through the sample 1 and sample 2 simply superimposed (not glued) (denoted as “no glue”) and the group delay of the terahertz pulse that has penetrated through the sample (denoted as “with glue”) It is the graph which illustrated. It is a figure which shows an example of the determination of joining by the transmittance
  • FIG. 3 is a diagram showing a configuration of an electromagnetic wave measuring apparatus according to a first embodiment of the present invention.
  • FIG. 4 is a graph showing a measurement result obtained by the electromagnetic wave measuring apparatus according to the first embodiment of the present invention.
  • the frequency of the electromagnetic wave output toward the specimen includes a terahertz wave band (for example, 0.03 [THz] or more and 10 [THz] or less). Therefore, in all embodiments of the present invention, terahertz waves are assumed as an example of electromagnetic waves.
  • the electromagnetic wave measuring apparatus includes a terahertz wave generator and a terahertz wave detector.
  • the terahertz wave generator and the detector are arranged to face each other, and a sample (sample 1 and sample 2 bonded with glue) is arranged between the generator and the detector. Measurement is performed by detecting the transmitted terahertz wave with a detector.
  • mapping a sample or sensor electromagnétique wave generator and electromagnetic wave detector
  • FIG. 4B is a time waveform of the terahertz pulse that has passed through the sample.
  • FIG. 7 shows a time waveform of a terahertz pulse (denoted as “no glue”) that has passed through a simple superposition of specimen 1 and specimen 2 (not glued) and a time waveform of a terahertz pulse that has passed through the specimen (“with glue” It is a graph illustrating "
  • the peak of the time waveform of the terahertz pulse that has passed through the sample is less than the threshold value of the pulse amplitude, it is determined that bonding with glue is good. If the peak of the time waveform of the terahertz pulse that has passed through the sample is slower than the pulse delay threshold, it is determined that the bonding with glue is good.
  • the peak of the time waveform of the terahertz pulse that has passed through the sample and the like is lower when the glue is present than when there is no glue because the pulse amplitude is attenuated by glue. Therefore, the threshold value of the pulse amplitude is determined to be less than the peak of the time waveform when there is no glue (see FIG. 7).
  • the peak of the time waveform of the terahertz pulse that has passed through the sample or the like is delayed in the presence of glue compared to the case without glue because of the delay of the pulse due to glue. Therefore, the threshold value of the pulse delay is determined after the time for taking the peak of the time waveform when there is no glue (see FIG. 7).
  • FIG. 4A is an absorbance spectrum of a terahertz pulse transmitted through the sample.
  • FIG. 8 shows an absorption spectrum of a terahertz pulse that has passed through a simple superposition of specimen 1 and specimen 2 (not glued) (noted as “no glue”) and an absorbance spectrum of a terahertz pulse that has passed through the specimen (“with glue” It is a graph illustrating "
  • the absorbance of “no glue” at a predetermined frequency (for example, 1.5 THz) of the terahertz pulse transmitted through the sample is taken into account by taking into account the absorption of the terahertz pulse by the glue.
  • the added value is set as a threshold value. If “with glue” has an absorbance equal to or greater than this threshold value at a predetermined frequency (for example, 1.5 THz), it is determined that bonding with glue is good.
  • the pulse peak delay time depends on the amount of glue applied, but does not depend on the change in the intensity of the sample entering the sample due to surface reflection. For this reason, even when there are patterns with different surface reflectivities due to printing or the like on the specimen surface, it is possible to detect a bonding failure without error.
  • FIG. 9 shows a phase delay of a terahertz pulse that has passed through a simple superposition of specimen 1 and specimen 2 (not glued) (denoted as “no glue”) and a phase delay of a terahertz pulse that has passed through the specimen (“with glue”
  • FIG. 10 shows a group delay of a terahertz pulse that has passed through a simple superposition of specimen 1 and specimen 2 (not glued) (denoted as “no glue”) and a group delay of a terahertz pulse that has passed through the specimen (“with glue”
  • FIG. 10 shows a group delay of a terahertz pulse that has passed through a simple superposition of specimen 1 and specimen 2 (not glued) (denoted as “no glue”) and a group delay of a terahertz pulse that has passed through the specimen (“with glue”
  • the terahertz pulse delay due to glue is considered in the phase delay (phase shift) of “no glue” at a predetermined frequency (for example, about 0.96 THz) of the terahertz pulse transmitted through the sample.
  • a predetermined frequency for example, about 0.96 THz
  • a value obtained by adding a predetermined amount of phase delay is set as a threshold value. If “with glue” has a phase delay equal to or greater than this threshold at a predetermined frequency (for example, about 0.96 THz), it is determined that the joining with glue is good.
  • a predetermined amount is considered in consideration of the group delay of the terahertz pulse due to glue from the group delay of “no glue” at a predetermined frequency (for example, about 0.95 THz) of the terahertz pulse transmitted through the sample.
  • a value obtained by subtracting the group delay is set as a threshold value. If “with glue” has a group delay less than this threshold at a predetermined frequency (for example, about 0.95 THz), it is determined that the joining with glue is good.
  • terahertz waves are more transmissive than near infrared rays, and a wide range of inspections are possible for the thickness and type of specimens and glue.
  • the terahertz wave generated in a pulse shape can be evaluated based on the pulse delay time in addition to the pulse amplitude, and can be inspected with high accuracy in consideration of the structure information of the sample.
  • the pulse delay time does not depend on the surface reflectance and the interface reflectance and changes depending on the bonding failure, it is possible to inspect the bonding failure without depending on the surface reflectance of the specimen.
  • An electromagnetic wave measuring apparatus includes a terahertz wave generator and a terahertz wave detector.
  • FIG. 5 is a diagram showing the configuration of the electromagnetic wave measuring apparatus according to the second embodiment of the present invention.
  • FIG. 6 is a graph showing a measurement result by the electromagnetic wave measurement device according to the second embodiment of the present invention.
  • FIG. 5 for convenience of illustration, since the glue is extremely thin compared to the samples 1 and 2, the refraction of the terahertz pulse by the glue is ignored.
  • the reflection from the sample of the terahertz pulse incident from the generator and the reflection from the back surface reflection mirror or metal plate (reflector) arranged on the back surface of the sample are achieved.
  • a detector is disposed at a detectable position.
  • mapping a sample or sensor electromagnétique wave generator and electromagnetic wave detector
  • a terahertz pulse When a terahertz pulse is incident on a sample (sample 1 and sample 2 bonded together with glue), referring to FIG. 6, the pulse (1) reflected by the surface of the sample and sample 1 are transmitted. Pulse (2) reflected by the interface between specimen 1 and glue (2), pulse (3) transmitted through specimen 1 and glue and reflected by the interface between specimen 2 and glue, specimen 2 through specimen 1 and glue. The detector detects the pulse (4) that travels inward and is reflected by the back surface of the specimen 2, and the pulse (5) that is reflected by the back surface reflecting mirror or metal plate.
  • the detection intensity I1 of the pulse (5) reflected by the back reflecting mirror or metal plate (reflector) is expressed by the following equation using the following parameters with reference to FIG.
  • Incident light intensity on the sample surface I0 Sample surface reflectance: r1 Interface reflectance between specimen 1 and glue: r2 Interface reflectance between glue and specimen 2: r3 Specimen 2 back surface reflectance: r4 Reflectivity of reflection mirror or metal plate (reflector): R ⁇ 1 Specimen 1 transmittance: ⁇ 1 Specimen 2 transmittance: ⁇ 2 Glue transmittance: ⁇
  • the surface reflectances r1, r2, r3, and r4 should be calculated using the intensity of the reflected pulses (1), (2), (3), and (4) from the surface and interface observed in the reflected waveform. Is possible. Therefore, r1 ⁇ , r2, r3, and r4 can be derived at the same time as I1 is observed.
  • I0 can be obtained by detecting the intensity of a terahertz pulse from a generator reflected by a reference mirror (not shown) by a detector.
  • the paste transmittance ⁇ can be obtained by processing the following equation for I1.
  • ⁇ 1 is a constant value if the specimen 1 is the same material and has the same thickness.
  • ⁇ 2 is a constant value if the specimen 2 is the same material and has the same thickness.
  • Equation (1) It is possible to detect a bonding failure by monitoring the value of ⁇ obtained based on Equation (1). That is, calculation is based on the transmittances ⁇ 1 and ⁇ 2 of the specimens 1 and 2, the intensity I1 of the detected reflected electromagnetic wave, and the intensity of the reflected pulses (1), (2), (3) and (4) (reflected electromagnetic wave) Based on the surface transmittances r1, r2, r3, r4 and the electromagnetic wave intensity I0, it is possible to determine whether or not the bonding by the adhesive is good.
  • FIG. 11 is a diagram showing an example of determination of joining based on the paste transmittance ⁇ .
  • a threshold for example, 15%
  • the bonding is poor, and when it is less than the threshold, it is determined that the bonding is good.
  • each reflected pulse for example, the time when the other pulse (2), (3), (4) or (5) is delayed with respect to the pulse (1)
  • information for example, bonding failure due to glue
  • the time difference (delay time) between pulse (1) and pulse (5) increases according to the amount of glue applied between sample 1 and sample 2. By monitoring this delay time, poor bonding can be achieved. Detection is possible.
  • the terahertz pulse passes through the glue twice, the pulse amplitude attenuation and the pulse delay time change are twice as large as those in the simple transmission measurement with respect to the simple transmission measurement. Therefore, it is possible to detect a bonding failure with high sensitivity even when the amplitude attenuation or delay time change of the glue or specimen is small.
  • the above embodiment can be realized as follows.
  • a computer having a CPU, a hard disk, and a medium (floppy (registered trademark) disk, CD-ROM, etc.) reader is read and the medium that records the program that realizes each of the above parts is read and installed on the hard disk.
  • a medium floppy (registered trademark) disk, CD-ROM, etc.

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Toxicology (AREA)
  • Mathematical Physics (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

本発明にかかる電磁波測定装置は、電磁波出力器と、電磁波検出器とを備える。電磁波出力器は、複数の検体を糊で貼り合せた試料に向けて、0.01[THz]以上100[THz]以下の周波数を有する電磁波を出力する。電磁波検出器は、試料を透過した電磁波である透過電磁波を検出する。さらに、本発明にかかる電磁波測定装置は、検出された透過電磁波に基づき、糊による接合が良好か否かを判定する。

Description

電磁波測定装置、測定方法、プログラム、記録媒体
 本発明は、層構造を有する試料について、電磁波(周波数が0.01[THz]以上100[THz]以下)(例えば、テラヘルツ波(例えば、周波数が0.03[THz]以上10[THz]以下))を使用して、2層以上の試料(例えば、紙、フィルムなど)を測定することに関する。
 従来より、検体間の接合を行う際、糊の塗布不良や、界面への空気の混入により、目視では検査困難な接合不良が生じる。従来の非接触での接合不良の検査法の一例として、近赤外線を用いた透過測定がある。近赤外線ビームを検体に照射し、糊による透過光強度変化をモニタし、接合不良を検出することが出来る。
特開2004-028618号公報 国際公開第2009/050830号 特開2008-076159号公報
 しかしながら、検体または糊の厚さまたは種類によって透過強度が減少すると、接合不良の検出が困難となる。
 そこで、本発明は、検体または糊の厚さまたは種類による透過強度の減少を近赤外線を用いた場合よりも低くすることを課題とする。
 本発明にかかる電磁波測定装置は、試料(検体を糊で貼り合せたもの)へ入射された0.01[THz]以上100[THz]以下の周波数の電磁波(例えば、テラヘルツ波)に対する透過波もしくは反射波の、スペクトル、パルス振幅及びパルス遅延時間のいずれか一つ以上をモニタする装置であって、検体に塗布された糊によるスペクトル変化、パルス振幅減衰及びパルス遅延時間変化のいずれか一つ以上をモニタする装置である。
 なお、本発明にかかる電磁波測定装置は、検体もしくはセンサ(電磁波発生器および電磁波検出器)をスキャンすることにより接合不良のマッピング測定を可能としてもよい。
 なお、本発明にかかる第一の電磁波測定装置(図1参照)は、電磁波発生器と電磁波検出器とが対向し、電磁波発生器から発生した電磁波が検体を透過した透過波を測定し、透過波の、糊によるスペクトル変化、もしくは透過パルスの振幅減衰、もしくは遅延時間変化をモニタし、接合不良を検出してもよい。
 なお、本発明にかかる第二の電磁波測定装置(図2参照)は、検体からの反射波と、検体を透過してからさらに裏面反射ミラーもしくは金属板から反射された透過反射波とを測定し、裏面反射ミラーもしくは金属板からの透過反射波の糊による振幅減衰、もしくは遅延時間変化、もしくはスペクトル変化をモニタし、接合不良を検出してもよい。
 なお、本発明にかかる第二の電磁波測定装置(図2参照)は、検体の表面反射率および界面反射率を考慮して規格化した裏面反射ミラーもしくは金属板からの透過反射波強度をモニタすることにより接合不良を検査してもよい。
 なお、本発明にかかる第二の電磁波測定装置(図2参照)は、検体の表面反射率を考慮して規格化した界面反射強度をモニタすることにより接合不良を検出する検査してもよい。
 本発明にかかる電磁波測定装置は、複数の検体を糊で貼り合せた試料に向けて、0.01[THz]以上100[THz]以下の周波数を有する電磁波を出力する電磁波出力器と、前記試料を透過した電磁波である透過電磁波を検出する電磁波検出器とを備え、検出された前記透過電磁波に基づき、前記糊による接合が良好か否かを判定するように構成される。
 上記のように構成された電磁波測定装置によれば、電磁波出力器が、複数の検体を糊で貼り合せた試料に向けて、0.01[THz]以上100[THz]以下の周波数を有する電磁波を出力する。電磁波検出器が、前記試料を透過した電磁波である透過電磁波を検出する。さらに、電磁波測定装置は、検出された前記透過電磁波に基づき、前記糊による接合が良好か否かを判定する。
 なお、本発明にかかる電磁波測定装置は、前記透過電磁波がパルスであるようにしてもよい。
 なお、本発明にかかる電磁波測定装置は、検出された前記透過電磁波の時間波形に基づき、前記糊による接合が良好か否かを判定するようにしてもよい。
 なお、本発明にかかる電磁波測定装置は、検出された前記透過電磁波の時間波形のピークに基づき、前記糊による接合が良好か否かを判定するようにしてもよい。
 なお、本発明にかかる電磁波測定装置は、検出された前記透過電磁波の時間波形のピークが閾値未満の場合に、前記糊による接合が良好であると判定するようにしてもよい。
 なお、本発明にかかる電磁波測定装置は、前記閾値が、前記複数の検体を前記糊で貼り合せないで重ね合せたものを前記電磁波が透過したものの時間波形のピーク未満に定められているようにしてもよい。
 なお、本発明にかかる電磁波測定装置は、検出された前記透過電磁波の時間波形がピークをとる時間に基づき、前記糊による接合が良好か否かを判定するようにしてもよい。
 なお、本発明にかかる電磁波測定装置は、検出された前記透過電磁波の時間波形がピークをとる時間が閾値よりも遅い場合に、前記糊による接合が良好であると判定するようにしてもよい。
 なお、本発明にかかる電磁波測定装置は、前記閾値が、前記複数の検体を前記糊で貼り合せないで重ね合せたものを前記電磁波が透過したものの時間波形がピークをとる時間よりも後に定められているようにしてもよい。
 なお、本発明にかかる電磁波測定装置は、検出された前記透過電磁波の周波数スペクトルに基づき、前記糊による接合が良好か否かを判定するようにしてもよい。
 なお、本発明にかかる電磁波測定装置は、検出された前記透過電磁波の周波数スペクトルにおける所定の周波数に対応する周波数成分値に基づき、前記糊による接合が良好か否かを判定するようにしてもよい。
 なお、本発明にかかる電磁波測定装置は、前記周波数成分値が吸光度であり、前記周波数成分値が閾値以上の場合に、前記糊による接合が良好であると判定するようにしてもよい。
 なお、本発明にかかる電磁波測定装置は、前記閾値が、前記複数の検体を前記糊で貼り合せないで重ね合せたものを前記電磁波が透過したものの周波数スペクトルにおける前記所定の周波数に対応する値よりも大きく定められているようにしてもよい。
 なお、本発明にかかる電磁波測定装置は、前記周波数成分値が位相遅延であり、前記周波数成分値が閾値以上の場合に、前記糊による接合が良好であると判定するようにしてもよい。
 なお、本発明にかかる電磁波測定装置は、前記閾値が、前記複数の検体を前記糊で貼り合せないで重ね合せたものを前記電磁波が透過したものの周波数スペクトルにおける前記所定の周波数に対応する値よりも大きく定められているようにしてもよい。
 なお、本発明にかかる電磁波測定装置は、前記周波数成分値が群遅延であり、前記周波数成分値が閾値未満場合に、前記糊による接合が良好であると判定するようにしてもよい。
 なお、本発明にかかる電磁波測定装置は、前記閾値が、前記複数の検体を前記糊で貼り合せないで重ね合せたものを前記電磁波が透過したものの周波数スペクトルにおける前記所定の周波数に対応する値よりも小さく定められているようにしてもよい。
 本発明にかかる電磁波測定装置は、複数の検体を糊で貼り合せた試料および該試料の背後に配置された反射体に向けて、0.01[THz]以上100[THz]以下の周波数を有する電磁波を出力する電磁波出力器と、前記試料または前記反射体によって反射された電磁波である反射電磁波を検出する電磁波検出器とを備え、検出された前記反射電磁波に基づき、前記糊による接合が良好か否かを判定するように構成される。
 上記のように構成された電磁波測定装置によれば、電磁波出力器が、複数の検体を糊で貼り合せた試料および該試料の背後に配置された反射体に向けて、0.01[THz]以上100[THz]以下の周波数を有する電磁波を出力する。電磁波検出器が、前記試料または前記反射体によって反射された電磁波である反射電磁波を検出する。さらに、電磁波測定装置は、検出された前記反射電磁波に基づき、前記糊による接合が良好か否かを判定する。
 なお、本発明にかかる電磁波測定装置は、前記検体の透過率と、検出された前記反射電磁波の強度と、前記電磁波の強度とに基づき得られた前記糊の透過率に基づき、前記糊による接合が良好か否かを判定するようにしてもよい。
 なお、本発明にかかる電磁波測定装置は、前記検体のいずれか一つ以上と前記糊との界面により反射された電磁波の強度と、前記糊の透過率とに基づき、前記糊による接合が良好か否かを判定するようにしてもよい。
 なお、本発明にかかる電磁波測定装置は、前記糊の透過率が閾値未満の場合に、前記糊による接合が良好であると判定するようにしてもよい。
 なお、本発明にかかる電磁波測定装置は、前記反射電磁波が検出された時間の差分に基づき、前記糊による接合が良好か否かを判定するようにしてもよい。
 本発明は、複数の検体を糊で貼り合せた試料に向けて、0.01[THz]以上100[THz]以下の周波数を有する電磁波を出力する電磁波出力工程と、前記試料を透過した電磁波である透過電磁波を検出する電磁波検出工程と、検出された前記透過電磁波に基づき、前記糊による接合が良好か否かを判定する判定工程とを備えた電磁波測定方法である。
 本発明は、複数の検体を糊で貼り合せた試料および該試料の背後に配置された反射体に向けて、0.01[THz]以上100[THz]以下の周波数を有する電磁波を出力する電磁波出力工程と、前記試料または前記反射体によって反射された電磁波である反射電磁波を検出する電磁波検出工程と、検出された前記反射電磁波に基づき、前記糊による接合が良好か否かを判定する判定工程とを備えた電磁波測定方法である。
 本発明は、複数の検体を糊で貼り合せた試料に向けて、0.01[THz]以上100[THz]以下の周波数を有する電磁波を出力する電磁波出力器と、前記試料を透過した電磁波である透過電磁波を検出する電磁波検出器とを備えた電磁波測定装置を用いた測定処理をコンピュータに実行させるためのプログラムであって、前記測定処理は、検出された前記透過電磁波に基づき、前記糊による接合が良好か否かを判定する判定工程を備えたプログラムである。
 本発明は、複数の検体を糊で貼り合せた試料および該試料の背後に配置された反射体に向けて、0.01[THz]以上100[THz]以下の周波数を有する電磁波を出力する電磁波出力器と、前記試料または前記反射体によって反射された電磁波である反射電磁波を検出する電磁波検出器とを備えた電磁波測定装置を用いた測定処理をコンピュータに実行させるためのプログラムであって、前記測定処理は、検出された前記反射電磁波に基づき、前記糊による接合が良好か否かを判定する判定工程を備えたプログラムである。
 本発明は、複数の検体を糊で貼り合せた試料に向けて、0.01[THz]以上100[THz]以下の周波数を有する電磁波を出力する電磁波出力器と、前記試料を透過した電磁波である透過電磁波を検出する電磁波検出器とを備えた電磁波測定装置を用いた測定処理をコンピュータに実行させるためのプログラムを記録したコンピュータによって読み取り可能な記録媒体であって、前記測定処理は、検出された前記透過電磁波に基づき、前記糊による接合が良好か否かを判定する判定工程を備えた記録媒体である。
 本発明は、複数の検体を糊で貼り合せた試料および該試料の背後に配置された反射体に向けて、0.01[THz]以上100[THz]以下の周波数を有する電磁波を出力する電磁波出力器と、前記試料または前記反射体によって反射された電磁波である反射電磁波を検出する電磁波検出器とを備えた電磁波測定装置を用いた測定処理をコンピュータに実行させるためのプログラムを記録したコンピュータによって読み取り可能な記録媒体であって、前記測定処理は、検出された前記反射電磁波に基づき、前記糊による接合が良好か否かを判定する判定工程を備えた記録媒体である。
本発明の第一の電磁波測定装置の構成を示す図である。 本発明の第二の電磁波測定装置の構成を示す図である。 本発明の第一の実施形態にかかる電磁波測定装置の構成を示す図である。 本発明の第一の実施形態にかかる電磁波測定装置による測定結果を示すグラフである。 本発明の第二の実施形態にかかる電磁波測定装置の構成を示す図である。 本発明の第二の実施形態にかかる電磁波測定装置による測定結果を示すグラフである。 検体1および検体2を単に重ね合せたもの(糊付けしない)を透過したテラヘルツパルスの時間波形(「糊無し」と表記)と、試料を透過したテラヘルツパルスの時間波形(「糊有り」と表記)とを図示したグラフである。 検体1および検体2を単に重ね合せたもの(糊付けしない)を透過したテラヘルツパルスの吸光度スペクトル(「糊無し」と表記)と、試料を透過したテラヘルツパルスの吸光度スペクトル(「糊有り」と表記)とを図示したグラフである。 検体1および検体2を単に重ね合せたもの(糊付けしない)を透過したテラヘルツパルスの位相遅延(「糊無し」と表記)と、試料を透過したテラヘルツパルスの位相遅延(「糊有り」と表記)とを図示したグラフである。 検体1および検体2を単に重ね合せたもの(糊付けしない)を透過したテラヘルツパルスの群遅延(「糊無し」と表記)と、試料を透過したテラヘルツパルスの群遅延(「糊有り」と表記)とを図示したグラフである。 糊の透過率βによる接合の判定の一例を示す図である。
 以下、本発明の実施形態を図面を参照しながら説明する。
 第一の実施形態
 図3は、本発明の第一の実施形態にかかる電磁波測定装置の構成を示す図である。図4は、本発明の第一の実施形態にかかる電磁波測定装置による測定結果を示すグラフである。
 なお、検体に向けて出力される電磁波の周波数は、テラヘルツ波帯(例えば、0.03[THz]以上10[THz]以下)を含むものである。そこで、本発明の全ての実施形態においては、電磁波の一例として、テラヘルツ波を想定している。
 本発明の第一の実施形態にかかる電磁波測定装置は、テラヘルツ波発生器とテラヘルツ波検出器とを有する。
 テラヘルツ波の発生器と検出器が対向する配置となっており、発生器と検出器との間に試料(検体1および検体2を糊で貼り合わせたものである)を配置して、試料を透過したテラヘルツ波を検出器により検出して測定を行う。
 試料もしくはセンサ(電磁波発生器および電磁波検出器)をスキャンして連続的に測定することにより、接合不良が生じている部位を解析するマッピング解析を行うことが可能である。
 発生器から発生したテラヘルツパルスが試料を透過する際、検体及び糊によるパルス振幅の減衰及びパルスの遅延が発生する。
 パルス振幅減衰量及びパルス遅延時間(例えば、パルスピーク遅延時間)は糊の塗布量に従って増加するため、これらをモニタして接合不良検出を行う。なお、図4(b)は、試料を透過したテラヘルツパルスの時間波形である。図7は、検体1および検体2を単に重ね合せたもの(糊付けしない)を透過したテラヘルツパルスの時間波形(「糊無し」と表記)と、試料を透過したテラヘルツパルスの時間波形(「糊有り」と表記)とを図示したグラフである。
 例えば、図7を参照して、試料を透過したテラヘルツパルスの時間波形のピークが、パルス振幅の閾値未満であれば、糊による接合は良好と判定する。また、試料を透過したテラヘルツパルスの時間波形のピークが、パルス遅延の閾値よりも遅いのであれば、糊による接合は良好と判定する。
 試料などを透過したテラヘルツパルスの時間波形のピークは、糊によるパルス振幅の減衰のため、糊有りの方が糊無しと比べて低くなる。よって、パルス振幅の閾値は、糊無しの場合の時間波形のピーク未満に定められている(図7参照)。また、試料などを透過したテラヘルツパルスの時間波形のピークは、糊によるパルスの遅延のため、糊有りの方が糊無しと比べて遅くなる。よって、パルス遅延の閾値は、糊無しの場合の時間波形のピークをとる時間よりも後に定められている(図7参照)。
 また、試料を透過したテラヘルツパルスをFFTしたスペクトルのベースラインの変化や吸収ピークをモニタすることにより接合不良の検出が可能である。図4(a)は、試料を透過したテラヘルツパルスの吸光度スペクトルである。図8は、検体1および検体2を単に重ね合せたもの(糊付けしない)を透過したテラヘルツパルスの吸光度スペクトル(「糊無し」と表記)と、試料を透過したテラヘルツパルスの吸光度スペクトル(「糊有り」と表記)とを図示したグラフである。
 例えば、図8を参照して、試料を透過したテラヘルツパルスの所定の周波数(例えば、1.5THz)における「糊無し」の吸光度に、糊によるテラヘルツパルスの吸収を考慮して、所定量の吸光度を加えた値を閾値とする。この閾値以上の吸光度を、「糊有り」が所定の周波数(例えば、1.5THz)において有していれば、糊による接合は良好と判定する。
 パルスピーク遅延時間は、糊の塗布量には依存するが、表面反射による試料内部への進入強度変化には依存しない。このため、検体表面に印刷等で表面反射率の異なるパターンが存在する場合でも、誤差なく接合不良検出が可能である。
 なお、パルスピーク遅延時間を、位相遅延及び群遅延で評価することも可能である。図9は、検体1および検体2を単に重ね合せたもの(糊付けしない)を透過したテラヘルツパルスの位相遅延(「糊無し」と表記)と、試料を透過したテラヘルツパルスの位相遅延(「糊有り」と表記)とを図示したグラフである。図10は、検体1および検体2を単に重ね合せたもの(糊付けしない)を透過したテラヘルツパルスの群遅延(「糊無し」と表記)と、試料を透過したテラヘルツパルスの群遅延(「糊有り」と表記)とを図示したグラフである。
 例えば、図9を参照して、試料を透過したテラヘルツパルスの所定の周波数(例えば、0.96THz程度)における「糊無し」の位相遅延(位相シフト)に、糊によるテラヘルツパルスの遅延を考慮して、所定量の位相遅延を加えた値を閾値とする。この閾値以上の位相遅延を、「糊有り」が所定の周波数(例えば、0.96THz程度)において有していれば、糊による接合は良好と判定する。
 例えば、図10を参照して、試料を透過したテラヘルツパルスの所定の周波数(例えば、0.95THz程度)における「糊無し」の群遅延から、糊によるテラヘルツパルスの群遅延を考慮して、所定量の群遅延を減じた値を閾値とする。この閾値未満の群遅延を、「糊有り」が所定の周波数(例えば、0.95THz程度)において有していれば、糊による接合は良好と判定する。
 また、テラヘルツ波は近赤外線に比べて透過性が高く、検体や糊の厚さ、種類に対して広範囲な検査が可能である。また、パルス状に発生させたテラヘルツ波は、パルス振幅に加えてパルス遅延時間による評価が可能で、試料の構造情報を考慮した高精度での検査が可能である。
 さらに、非接触にて、検体または糊の厚さまたは種類に対して広範囲に、高精度な接合不良の検査が可能である。
 しかも、パルス遅延時間は、表面反射率および界面反射率に依存せず、接合不良に依存して変化するため、検体の表面反射率に依存せず接合不良の検査が可能である。
 第二の実施形態
 本発明の第二の実施形態にかかる電磁波測定装置は、テラヘルツ波発生器とテラヘルツ波検出器とを有する。
 図5は、本発明の第二の実施形態にかかる電磁波測定装置の構成を示す図である。図6は、本発明の第二の実施形態にかかる電磁波測定装置による測定結果を示すグラフである。なお、図5において、図示の便宜上、糊は検体1、2に比べて極めて薄いため、糊によるテラヘルツパルスの屈折を無視して図示している。
 本発明の第二の実施形態にかかる電磁波測定装置によれば、発生器から入射したテラヘルツパルスの試料からの反射、及び試料背面に配置した裏面反射ミラーもしくは金属板(反射体)からの反射が検出可能な位置に検出器が配置されている。
 試料もしくはセンサ(電磁波発生器および電磁波検出器)をスキャンして連続的に測定することにより、接合不良が生じている部位を解析するマッピング解析を行うことが可能である。
 試料(検体1および検体2を糊で貼り合わせたものである)にテラヘルツパルスが入射されると、図6を参照して、試料の表面により反射されたパルス(1)、検体1を透過して検体1と糊との界面により反射されたパルス(2)、検体1および糊を透過し検体2と糊との界面により反射されたパルス(3)、検体1及び糊を透過して検体2中に進行し検体2裏面により反射されたパルス(4)、裏面反射ミラーもしくは金属板により反射されたパルス(5)が検出器により検出される。
 裏面反射ミラーもしくは金属板(反射体)により反射されたパルス(5)の検出強度I1は図5を参照して以下のパラメータを用いて下式の様になる。
 試料表面への入射光強度:I0
 試料表面反射率:r1
 検体1と糊との界面反射率:r2
 糊と検体2との界面反射率:r3
 検体2の裏面反射率:r4
 反射ミラーもしくは金属板(反射体)の反射率:R≒1
 検体1の透過率:α1
 検体2の透過率:α2
 糊の透過率:β
Figure JPOXMLDOC01-appb-M000001
 
 検体中の糊の塗布量が変化した場合、上式中のβが変化する。しかし、I1の値はr1 、 r2 、 r3 、 r4にも依存する。このため、例えば試料表面に表面反射率r1の異なるパターンが存在する場合、I1の変化要因が、糊か表面反射率かを判別することが困難である。
 しかし、表面反射率r1 、 r2 、 r3 、 r4 は反射波形中に観測される表面、界面からの反射パルス(1)、(2)、(3)および(4)の強度を用いて計算することが可能である。従って、I1を観測すると同時にr1 、 r2 、 r3 、 r4は同時に導出することが可能である。
 また、I0は、発生器からのテラヘルツパルスをリファレンスミラー(図示省略)により反射させたもの強度を、検出器により検出して求めることが出来る。
 このため、I1に対して、下式の処理をすることにより、糊の透過率βを求めることが可能である。ここでα1は検体1が同一素材かつ同一厚さであれば一定値となる。同様にα2も検体2が同一素材かつ同一厚さであれば一定値となる。
Figure JPOXMLDOC01-appb-M000002
 
 式(1)に基づき求めたβの値をモニタすることにより接合不良を検出することが可能である。すなわち、検体1、2の透過率α1、α2と、検出された反射電磁波の強度I1と、反射パルス(1)、(2)、(3)および(4)(反射電磁波)の強度に基づき計算された表面反射率r1 、 r2 、 r3 、 r4と、電磁波の強度I0とに基づき得られた糊の透過率βに基づき、糊による接合が良好か否かを判定することができる。
 図11は、糊の透過率βによる接合の判定の一例を示す図である。図11を参照して、糊の透過率βが閾値(例えば、15%)を超えると接合が不良であり、閾値未満の場合は接合が良好と判定する。
 なお、α1またはα2が1に近似できるのであれば、式(1)において、α1またはα2を乗じる処理を省略してもよい。r1 、 r2 、 r3 または r4が1よりも十分に小さいのであれば、式(1)において、1- r1、1- r2、1- r3または1- r4を乗じる処理を省略してもよい。
 また、測定中のβの変動が分かれば十分なので、α1またはα2が、測定中に変化することが無いのであれば、式(1)において、α1またはα2を乗じる処理を省略してもよい。同様に、r1 、 r2 、 r3 または r4が、測定中に変化することが無いのであれば、式(1)において、1- r1、1- r2、1- r3または1- r4を乗じる処理を省略してもよい。
 また、糊と検体1との界面または糊と検体2との界面に空気が混入した場合、前述の(2)及び(3)の一方または双方の強度が増大する。従って、式(1)に基づき求めたβと同時に(2)及び(3)の強度(ひいては、糊と検体1との界面の反射率または糊と検体2との界面反射率)をモニタすることによって、接合不良を検出することも可能である。
 さらに、各反射パルスの遅延時間(例えば、パルス(1)に対して、他のパルス(2)、(3)、(4)または(5)が遅延する時間)をモニタすることによっても糊の情報(例えば、糊による接合不良)を抽出することが可能である。
 検体1と検体2との間への糊の塗布量に従って、パルス(1)とパルス(5)との間の時間差(遅延時間)が増加するため、この遅延時間をモニタすることにより接合不良の検出が可能である。
 第二の実施形態によれば、第一の実施形態と同様な効果を奏する。
 さらに、第二の実施形態によれば、テラヘルツパルスが糊を2回透過するため、単純な透過測定に対して、パルス振幅減衰とパルス遅延時間変化が単純な透過測定に比べて2倍となるため、糊や検体の振幅減衰、遅延時間変化が小さい場合でも、高感度な接合不良検出を行うことが可能である。
 なお、異なる表面反射率パターンを有する検体内部の異物検査を行うことも考えられる。
 また、上記の実施形態は、以下のようにして実現できる。CPU、ハードディスク、メディア(フロッピー(登録商標)ディスク、CD-ROMなど)読み取り装置を備えたコンピュータに、上記の各部分を実現するプログラムを記録したメディアを読み取らせて、ハードディスクにインストールする。このような方法でも、上記の機能を実現できる。

Claims (8)

  1.  複数の検体を糊で貼り合せた試料および該試料の背後に配置された反射体に向けて、0.01[THz]以上100[THz]以下の周波数を有する電磁波を出力する電磁波出力器と、
     前記試料または前記反射体によって反射された電磁波である反射電磁波を検出する電磁波検出器と、
     を備え、
     検出された前記反射電磁波に基づき、前記糊による接合が良好か否かを判定する、
     電磁波測定装置。
  2.  請求項1に記載の電磁波測定装置であって、
     前記検体の透過率と、検出された前記反射電磁波の強度と、前記電磁波の強度とに基づき得られた前記糊の透過率に基づき、前記糊による接合が良好か否かを判定する、
     電磁波測定装置。
  3.  請求項2に記載の電磁波測定装置であって、
     前記検体のいずれか一つ以上と前記糊との界面により反射された電磁波の強度と、前記糊の透過率とに基づき、前記糊による接合が良好か否かを判定する、
     電磁波測定装置。
  4.  請求項2に記載の電磁波測定装置であって、
     前記糊の透過率が閾値未満の場合に、前記糊による接合が良好であると判定する、
     電磁波測定装置。
  5.  請求項1に記載の電磁波測定装置であって、
     前記反射電磁波が検出された時間の差分に基づき、前記糊による接合が良好か否かを判定する、
     電磁波測定装置。
  6.  複数の検体を糊で貼り合せた試料および該試料の背後に配置された反射体に向けて、0.01[THz]以上100[THz]以下の周波数を有する電磁波を出力する電磁波出力工程と、
     前記試料または前記反射体によって反射された電磁波である反射電磁波を検出する電磁波検出工程と、
     検出された前記反射電磁波に基づき、前記糊による接合が良好か否かを判定する判定工程と、
     を備えた電磁波測定方法。
  7.  複数の検体を糊で貼り合せた試料および該試料の背後に配置された反射体に向けて、0.01[THz]以上100[THz]以下の周波数を有する電磁波を出力する電磁波出力器と、前記試料または前記反射体によって反射された電磁波である反射電磁波を検出する電磁波検出器とを備えた電磁波測定装置を用いた測定処理をコンピュータに実行させるためのプログラムであって、
     前記測定処理は、
     検出された前記反射電磁波に基づき、前記糊による接合が良好か否かを判定する判定工程を備えたプログラム。
  8.  複数の検体を糊で貼り合せた試料および該試料の背後に配置された反射体に向けて、0.01[THz]以上100[THz]以下の周波数を有する電磁波を出力する電磁波出力器と、前記試料または前記反射体によって反射された電磁波である反射電磁波を検出する電磁波検出器とを備えた電磁波測定装置を用いた測定処理をコンピュータに実行させるためのプログラムを記録したコンピュータによって読み取り可能な記録媒体であって、
     前記測定処理は、
     検出された前記反射電磁波に基づき、前記糊による接合が良好か否かを判定する判定工程を備えた記録媒体。
PCT/JP2015/062042 2014-04-22 2015-04-21 電磁波測定装置、測定方法、プログラム、記録媒体 WO2015163299A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2016514935A JP6246909B2 (ja) 2014-04-22 2015-04-21 電磁波測定装置、測定方法、プログラム、記録媒体
US15/122,689 US20170074804A1 (en) 2014-04-22 2015-04-21 Electromagnetic wave measurement device, measurement method, program, and recording medium
DE112015001955.3T DE112015001955T5 (de) 2014-04-22 2015-04-21 Messvorrichtung für elektromagnetische Wellen, Messverfahren, Programm und Aufnahmemedium

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201461982463P 2014-04-22 2014-04-22
US61/982,463 2014-04-22

Publications (1)

Publication Number Publication Date
WO2015163299A1 true WO2015163299A1 (ja) 2015-10-29

Family

ID=54332463

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2015/062042 WO2015163299A1 (ja) 2014-04-22 2015-04-21 電磁波測定装置、測定方法、プログラム、記録媒体
PCT/JP2015/062041 WO2015163298A1 (ja) 2014-04-22 2015-04-21 電磁波測定装置、測定方法、プログラム、記録媒体

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/062041 WO2015163298A1 (ja) 2014-04-22 2015-04-21 電磁波測定装置、測定方法、プログラム、記録媒体

Country Status (4)

Country Link
US (2) US20170074803A1 (ja)
JP (2) JP6246909B2 (ja)
DE (2) DE112015001956T5 (ja)
WO (2) WO2015163299A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102015207551A1 (de) * 2015-04-24 2016-10-27 Robert Bosch Gmbh Vorrichtung und Verfahren zur photothermischen Qualitätskontrolle von Korngröße und Schichthaftung eines Bauteils
JP7095648B2 (ja) 2019-04-15 2022-07-05 横河電機株式会社 測定装置及び測定方法
US11431377B1 (en) * 2019-09-10 2022-08-30 The Board of Regents for the Oklahoma Agricultural and Mechanical Colleges Methods and tunable apparatuses for dynamic dispersion compensation of wireless terahertz signals

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02128508U (ja) * 1989-03-27 1990-10-23
JP2003518617A (ja) * 1999-12-28 2003-06-10 ピコメトリックス インコーポレイテッド テラヘルツ放射により物質の状態の変化を監視するためのシステムおよび方法
JP2009145312A (ja) * 2007-12-12 2009-07-02 Terahertz Laboratory Co 検査装置及び検査方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105829866B (zh) * 2013-11-15 2019-07-02 派克米瑞斯有限责任公司 用于使用太赫兹辐射确定片状电介质样本的至少一种性质的系统

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02128508U (ja) * 1989-03-27 1990-10-23
JP2003518617A (ja) * 1999-12-28 2003-06-10 ピコメトリックス インコーポレイテッド テラヘルツ放射により物質の状態の変化を監視するためのシステムおよび方法
JP2009145312A (ja) * 2007-12-12 2009-07-02 Terahertz Laboratory Co 検査装置及び検査方法

Also Published As

Publication number Publication date
JP6246908B2 (ja) 2017-12-13
JPWO2015163299A1 (ja) 2017-04-20
WO2015163298A1 (ja) 2015-10-29
DE112015001955T5 (de) 2017-01-19
DE112015001956T5 (de) 2017-01-12
US20170074804A1 (en) 2017-03-16
US20170074803A1 (en) 2017-03-16
JPWO2015163298A1 (ja) 2017-04-20
JP6246909B2 (ja) 2017-12-13

Similar Documents

Publication Publication Date Title
US9182354B2 (en) Electromagnetic wave measurement device, measurement method, and recording medium
US10605662B2 (en) Material property determination using photothermal speckle detection
JP5360741B2 (ja) テラヘルツ光を用いた紙葉類の検査方法および検査装置
JP2013507640A (ja) 単層物体及び多層物体の界面特性を検出及び測定するシステム及び方法
JP6246909B2 (ja) 電磁波測定装置、測定方法、プログラム、記録媒体
US20140365158A1 (en) Laser ultrasound material testing
KR20140080415A (ko) 전자파 측정 장치, 측정 방법, 및 기록 매체
JP2008076159A (ja) 内部欠陥検査方法及び内部欠陥検査装置
JP5674396B2 (ja) 複層塗膜の非接触非破壊評価方法及びそれを用いた装置
JPS5839931A (ja) 赤外線を使用してプラスチツクフイルムの特性を測定する方法
JP5368578B2 (ja) 固定具
JP6591282B2 (ja) レーザ超音波検査方法、接合方法、レーザ超音波検査装置、および接合装置
CN103336013A (zh) 密封环境中光敏芯片粘接强度的光声检测装置
Bohn et al. Terahertz applications in the aerospace industry
Broberg et al. Improved corner detection by ultrasonic testing using phase analysis
JP6459249B2 (ja) 積層体の検査方法、積層体の製造方法および積層体の検査装置
US20190285561A1 (en) X-ray utilized compound measuring apparatus
JP2011196766A (ja) 光透過性を有する被測定物の形状測定方法
Redo-Sanchez et al. Compact, portable Terahertz systems for on-site inspection applications
JP4268508B2 (ja) 膜厚測定方法及び膜厚測定装置
JP5056738B2 (ja) 赤外分光光度計
CN105973849A (zh) 光学材料损耗的测量装置和测量方法
US10527543B2 (en) Optical characterization of fiber reinforced plastic composites based on optical transmission scanning
JPH10142162A (ja) 塗布層欠陥検査光選択方法、塗布層欠陥検査方法、塗布層欠陥検査装置
Krok Quality Control of Plastic Joints with THz-Imaging Technique

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15783611

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016514935

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15122689

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 112015001955

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15783611

Country of ref document: EP

Kind code of ref document: A1