WO2015161352A1 - Veiculo aéreo não tripulado (vant), usado para atividade agrícola e aplicação de pesticidas e fertilizantes - Google Patents
Veiculo aéreo não tripulado (vant), usado para atividade agrícola e aplicação de pesticidas e fertilizantes Download PDFInfo
- Publication number
- WO2015161352A1 WO2015161352A1 PCT/BR2015/000056 BR2015000056W WO2015161352A1 WO 2015161352 A1 WO2015161352 A1 WO 2015161352A1 BR 2015000056 W BR2015000056 W BR 2015000056W WO 2015161352 A1 WO2015161352 A1 WO 2015161352A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- agricultural
- uav
- crewed
- aircraft
- air vehicle
- Prior art date
Links
- 230000000694 effects Effects 0.000 title claims description 17
- 239000003337 fertilizer Substances 0.000 title abstract description 10
- 239000000575 pesticide Substances 0.000 title abstract description 10
- 238000005507 spraying Methods 0.000 claims description 24
- 239000007921 spray Substances 0.000 claims description 19
- 239000000126 substance Substances 0.000 claims description 10
- 238000012423 maintenance Methods 0.000 claims description 6
- 238000012937 correction Methods 0.000 claims description 3
- 239000011521 glass Substances 0.000 claims description 3
- 241000607479 Yersinia pestis Species 0.000 abstract description 4
- 238000007689 inspection Methods 0.000 abstract description 2
- 238000009331 sowing Methods 0.000 abstract description 2
- 238000009332 manuring Methods 0.000 abstract 1
- 238000001454 recorded image Methods 0.000 abstract 1
- 230000005070 ripening Effects 0.000 abstract 1
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 8
- 239000000446 fuel Substances 0.000 description 5
- 239000002699 waste material Substances 0.000 description 5
- 238000000034 method Methods 0.000 description 4
- 101001023151 Arabidopsis thaliana NAC domain-containing protein 19 Proteins 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 230000035800 maturation Effects 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 206010000369 Accident Diseases 0.000 description 2
- 230000000712 assembly Effects 0.000 description 2
- 238000000429 assembly Methods 0.000 description 2
- 238000005452 bending Methods 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 230000008021 deposition Effects 0.000 description 2
- 230000005611 electricity Effects 0.000 description 2
- 230000037406 food intake Effects 0.000 description 2
- 238000011835 investigation Methods 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 230000002265 prevention Effects 0.000 description 2
- 230000003449 preventive effect Effects 0.000 description 2
- 230000000007 visual effect Effects 0.000 description 2
- 238000012800 visualization Methods 0.000 description 2
- 240000008790 Musa x paradisiaca Species 0.000 description 1
- 235000018290 Musa x paradisiaca Nutrition 0.000 description 1
- 240000000111 Saccharum officinarum Species 0.000 description 1
- 235000007201 Saccharum officinarum Nutrition 0.000 description 1
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 230000007123 defense Effects 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 239000003344 environmental pollutant Substances 0.000 description 1
- 238000004880 explosion Methods 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 230000004720 fertilization Effects 0.000 description 1
- 230000010006 flight Effects 0.000 description 1
- 239000002803 fossil fuel Substances 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 239000002917 insecticide Substances 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 238000005461 lubrication Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 231100000719 pollutant Toxicity 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- -1 seeds Substances 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 239000011593 sulfur Substances 0.000 description 1
- 238000012549 training Methods 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64D—EQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
- B64D1/00—Dropping, ejecting, releasing, or receiving articles, liquids, or the like, in flight
- B64D1/16—Dropping or releasing powdered, liquid, or gaseous matter, e.g. for fire-fighting
- B64D1/18—Dropping or releasing powdered, liquid, or gaseous matter, e.g. for fire-fighting by spraying, e.g. insecticides
Definitions
- UAV Unmanned Aerial Vehicle
- the present invention relates to a novel solution for agriculture, more specifically to the application of pesticides, fertilizers, fertilization, sowing, inspection, pest control and maturation.
- the invention creates and enables the concept of spraying with UAV.
- the plane flies from its hangar to an airstrip near the area to be sprayed.
- the landowner chooses which products to apply depending on what is affecting his crop.
- the product is inserted into a reservoir, commonly called Hopper.
- Hopper a reservoir
- the plane After taking off and navigating to the chosen area, the plane passes over the plantation at a low height, making spray lines. Since 1990, these lines have been more accurate through a DGPS (Differential Global Positioning System) system. This system allows the flight in pre-established geographic coordinates, reducing the spraying errors - the known "bands" in the fields, which are areas not reached by the spraying - that cause damages to the rural producer by the non uniformity of its planted area.
- DGPS Different Global Positioning System
- the aircraft After passing at low altitude, the aircraft makes a rapid upward maneuver, bending during the climb 180 degrees, to restart spraying on another line established by the DGPS.
- the sprayer opening control is done by the pilot and often generates losses to the farmer, because after the upward curve and the aircraft configuration change, the pilot must manually check the line change in the DGPS and at the beginning of the area. control the sprayer opening.
- the pilot starts spraying based on his flying experience, understanding the concept of inertia as he knows he cannot start either before or after his area, risking spraying the wrong field or leaving an unpowdered lane at the beginning of planting. for which he was hired. Even the most capable pilot suffers from the effects of drifting the product to the ground.
- the pilot may ingest the cloud of pesticide expelled on the last pass.
- Allied with low-altitude flight are high-voltage wires that are often overtaken from below. If the pilot chooses to leave this wire below the aircraft, he risks losing the beginning of the sprayed area. If you walk under this wire, you run the risk of finding a property dividing fence and seeing its available vertical distance reduced in a few seconds, making it difficult to make the evasive decision to maneuver.
- Normally a flight strategy is defined for a given area before takeoff, but this is only possible when the given area has sufficient ground access or visual field, thus generating the above risk.
- the operating companies of the agricultural aircraft are responsible for the correct completion of the flight log, as to the hours flown and the proper maintenance on the aircraft.
- the National Civil Aviation Agency (ANAG) is responsible for verifying this filling, but it is spoken among operators and experts of the Specialized Air Service - Agricultural Aviation that due to the distances between farms and ANAC headquarters this supervision is below ideal , subjecting the process to irregularities in the filling of flight hours and consequently in the preventive and corrective maintenance of the aircraft.
- the same 2012 FCA58-1 document provides safety workshops for maintenance workshops to improve oversight of aircraft maintenance requirements.
- the landing capacity for recharging and refueling at any obstacle-free location allows for simpler planning operation. Unlike the airplane, a large airstrip (minimum 500 meters) is not required for the helicopter.
- the fossil fuels used - gasoline and oil - are pollutants of the atmosphere, emitting CO2, sulfur, and various other wastes with their use. In addition, they generate waste in oil extraction and transformation into gasoline. This fuel is not renewable and will continue to pollute for as long as it is used.
- An Air Tractor AT 802 aircraft consumes from 280 to 320 liters of AVGAS in one hour, plus 1 liter of oil every 25 hours of flight.
- the present invention aims to enable the necessary spraying of agricultural fields more safely, more efficiently, cheaper and less environmentally aggressive.
- this invention enables spraying of seeds, fertilizers and fertilizer.
- the invention allows the visualization of aerial images of the field, so that the producer can have knowledge of its entire area and the maturation of its planting.
- the invention causes the pilot to exit the cockpit and control the equipment from a distance.
- the UAV will be controlled by a remote station away from the area to be sprayed.
- the pilot is no longer in danger of accident or risk of ingestion of the pulverized input.
- High voltage wires and fences will not be a significant obstacle as the UAV will take off VTOL (Vertical Take-off and Landing) and fly straight to the first selected geographic coordinate.
- the UAV will not have in its composition combustible material (Gasoline or Ethanol), this means that in the event of a fall, there will be no explosion and, consequently, there will be no risk to people and installations near the winged area.
- the use of UAV in agricultural application also allows to spray extremely remote areas, such as hillsides and other hard to reach places.
- the UAV uses electric motors and will therefore use utility power to supply the batteries.
- the engines will not consume aviation gasoline or ethanol.
- With the accuracy achieved by the UAV and its GPS system that navigates between previously established geographic coordinates, mistaken spraying of rivers and lakes, as well as application in wrong areas and consequent damage to sensitive crops, will be rare and possible only with misguided programming. geographical coordinates.
- the UAV in your operation will have no engine fuel costs.
- the UAV owner will charge their batteries with electricity from the utilities. If the owner opts for energy from a solar or wind power system, the fuel running cost will be reset.
- the ratio of electricity to fuel (gasoline) is estimated at 1/3. 66% reduction in engine fuel cost.
- the invention will use oil in preventive overhauls for lubrication of parts, but will not use oil for its operation inside the motor, as it is an electric motor.
- the initial investment will also be reduced, as it is estimated a lower price than the aircraft presented in this description.
- the cost of pilots training will also be reduced as the operation of the UAV will be simple and easily learned. With the accuracy achieved by the UAV, the costs of chemicals will be reduced as waste is lower than the alternatives presented today.
- VANT Agr ⁇ cola brings as a novelty the precision spraying through mathematical system of incident wind drift correction. Precision is also given by a GPS (Global Positioning System) system that navigates pre-established coordinates. Through FPV (First Person View) glasses, the pilot can navigate the UAV through virtual corridors on the plantation. Takeoff is VTOL (Vertical Take-off and Landing). Spraying takes place through a spray bar and pressurized spray tips and connected to a chemical reservoir below the UAV's center frame and serves agricultural inputs such as pesticides, fertilizers, seeds, fertilizer. It also allows the control of planting and maturation through a high precision camera installed!
- GPS Global Positioning System
- FPV First Person View
- VTOL Very Take-off and Landing
- Figure 1 presents a front left side view of the Agricultural UAV.
- Figure 2 shows a right side rear view of the Agricultural UAV
- the invention consists of an unmanned aerial vehicle (UAV) of varying weight, number of engine and propeller assemblies, and frame rigidity, depending on the amount of product for which the UAV chemical reservoir is designed.
- UAV unmanned aerial vehicle
- VTOL vertical take-off
- This pilot will or may not have visual access to the invention during operation, depending on the intended range of the task performed.
- the pilot will view the path through a First Person View (FPV) system, which allows real-time viewing from inside the UAV by a camera attached to the underside of the UAV. next to a transmitter.
- FMV First Person View
- the rider On the ground, the rider will have an image receiver as well as glasses or a screen installed on his workstation for real time viewing.
- the pilot will navigate through geographic coordinates previously established on the ground, using satellite visualization tools or by images captured by the UAV himself, by the camera that he owns, which may be by ground contact or autopilot navigation, being the pilot responsible. supervising this system.
- the pilot will be responsible for the operation and shall assume control whenever the automatic navigation system does not respond as expected.
- a virtual tunnel system may be used; in which the pilot follows the route traced by virtual tunnels and, if the automatic system leaves the plan, the pilot takes over and resumes the flight.
- the chemical reservoir will be variable in size and will determine the size of the spray bar.
- the spray bar will be connected to the tank through the pressurizing system, which sends the pressurized product to the spray tips or atomizers, remotely driven by the pilot.
- the flow rate of the spray tip or atomizer is variable and depends on the request of the person responsible for the application area. Having the UAV incident wind component calculated by the controller board by varying the GPS position, the spray system calculates the application direction to allow for greater accuracy even though the UAV is capable of spraying very close to the ground. This last observation is valid because spraying too close to the ground is not always more effective.
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Pest Control & Pesticides (AREA)
- Engineering & Computer Science (AREA)
- Aviation & Aerospace Engineering (AREA)
- Catching Or Destruction (AREA)
Abstract
A presente inovação se refere a um Veículo Aereo Não Tripulado (VANT) com autopropulsão, decolagem vertical (VTOL), acionado e controlado remotamente, para apIicação de pesticidas, fertilizantes, adubação, semeadura, inspeção e controle de pragas e maturação. O VANT em questão possui um reservatório conectado a um pulverizador com vazão regulável para uso agrícola e com acionamento remoto; possui um módulo de controle vetorial da direção do elemento pulverizado em razão do vento incidente no momento da aplicacão; uma câmera de alta resolucão acoplada a um sistema de GPS capaz de informar a coordenada da imagem capturada e gravada; um sistema de piloto automático capaz de manter sua posição horizontal e vertical e navegar através de coordenadas geográficas previamente estabelecidas.
Description
RELATÓRIO DESCRITIVO
[1]. Veículo Aéreo Não Tripulado (VANT), usado para âtividade agrícola e aplicação de pesticidas e fertilizantes.
[2]. A presente invenção se refere a uma nova solução para a agricultura, mais especificamente à aplicação de pesticidas, fertilizantes, adubação, semeadura, inspeçâo, controle de pragas e maturação. A invenção cria e possibilita o conceito de pulverização com VANT.
DESCRIÇÃO DA TÉCNICA RELACIONADA
[3]. A âtividade agrícola existe desde o começo da humanidade. Junto com a agricultura, veio a necessidade de manejar o campo, além de pragas e pestes. Tenta-se desde então combater estes malefícios através de fertilizantes e pesticidas.
HISTÓRICO
[4]. Em 1921, iniciou-se a pulverização agrícola através de aeronaves, quando, na ocasião, uma segunda pessoa dentro da aeronave, além do piloto, despejava inseticida na lavoura. O primeiro avião exclusivamente agrícola foi desenvolvido na década de 50, nos EUA. Os primeiros ensaios de voos agrícolas com helicópteros foram feitos em 1944 na Inglaterra. A vantagem do helicóptero sobre o avião é que este pode ser utilizado em áreas pequenas, terrenos acidentados e não necessita de pista de pouso e decolagem.
[5]. Em 1988, 10% das aeronaves agrícolas eram helicópteros. Atualmente, a aviação agrícola é em grande parte feita por aviões. No Brasil, não existem helicópteros pulverizando e nos EUA se estima este número em 10%. Os aviões são produzidos em escala para atender a demanda de pulverização de insumos agrícolas no mundo.
AERONAVES USADAS PARA PULVERIZAÇÃO
[6]. O PA-25 Pawnee teve sua fabricação iniciada em 1959 e encerrada em 1981.
Possuía motor de 250HP e reservatório de 568 litros de produtos químicos. Ainda está em uso atualmente e tem o preço mais baixo entre seus concorrentes, por possuir capacidade operacional reduzida, custando hoje USD 50.000,00.
[7], Em 1965, a companhia americana Cessna iniciou a fabricação da família de aeronaves Cessna 188 - AGwagon, AGpickup, AGhusky e, finalmente, AGtruck, modelo ainda encontrado em grande número. Fabricadas até 1988, possuíam um reservatório de produtos químicos (Hopper) de 1.060 litros, motor turbinado de 310HP e eram movidas a gasolina de aviação exclusivamente. Custo aproximado da aeronave: USD 170.000,00
[8]. A aeronave EMB201A - Ipanema é fabricada pela empresa brasileira Embraer desde 1972, que obteve em 2014 a marca de 1400 aeronaves entregues, possuindo cerca de 60% do mercado brasileiro de aeronaves agrícolas. Com motor de 300HP, a aeronave movida a gasolina de aviação (AVGAS) ou etanol, tem peso máximo de decolagem ( TOW) de 1.800 kg e um reservatório para produto químico de 950 litros. Custo aproximado da aeronave: USD: 315.000,00.
[9]. Em 1990, foi criada a empresa Air Tractor, nos Estados Unidos da América, com o objetivo de fabricar aeronaves agrícolas e aeronaves para combate de incêndios. Apresenta atualmente o Air Tractor AT-802, que tem a maior capacidade dentre seus competidores. A aeronave possui um reservatório de 3.104 litros para produtos químicos, motor de 1600HP e peso máximo de decolagem (MTOW) de 7.257kg. Custo aproximado da aeronave: USD 893.900,00.
PROCESSO DE PULVERIZAÇÃO COM AVIÃO
[10]. O avião voa do seu hangar até uma pista de pouso próxima a área que será pulverizada. O proprietário do terreno escolhe os produtos que serão aplicados, dependendo do que estiver afetando sua lavoura. O produto é inserido em um reservatório, chamado comumente de Hopper. Após a decolagem e a navegação até a área escolhida, o avião passa sobre a plantação a baixa altura, fazendo linhas de pulverização. Desde 1990, estas linhas possuem maior precisão através de um sistema DGPS (Differencial Global Positioning System). Este sistema permite o vôo em coordenadas geográficas pré-estabelecidas, diminuindo os erros de pulverização - as conhecidas "faixas" na lavoura, que são áreas não atingidas pela pulverização - que geram prejuízos ao produtor rural peia não uniformidade da sua área plantada. Após a passagem a baixa altura o avião faz uma manobra rápida ascendente, curvando durante a subida 180 graus, para reiniciar a pulverização em outra linha estabelecida pelo DGPS. O controle de abertura do pulverizador é feito pelo piloto e, muitas vezes, gera perdas ao produtor rural, pois após a curva ascendente e a mudança de configuração da aeronave, o piloto deve seiecionar manualmente a mudança de linha no DGPS e no início da área desejada comandar a abertura do pulverizador. O piloto inicia a pulverização baseado na sua experiência de vôo, entendendo o conceito de inércia, pois sabe que não pode iniciar nem antes nem depois da sua área, correndo o risco de pulverizar o campo errado ou deixar uma faixa não pulverizada no começo da plantação pela qual foi contratado. Mesmo o piloto mais capacitado sofre com os efeitos da deriva do produto até o chão.
SEGURANÇA NA AVIAÇÃO AGRÍCOLA
[11]. A pulverização de pesticidas com aviões expõe os pilotos e seus auxiliares a muitos riscos. Dificilmente se considera esta uma atividade segura A aeronave voa próxima ao chão em alta velocidade, liberando sua carqa
mudando seu centro de gravidade em um momento sensível por estar próximo ao solo e veloz. A manobra chamada de Curva de Reversão, também conhecida como "balão", na qual o piloto ascende rapidamente enquanto curva 180 graus, expõe a aeronave a riscos de perda de sustentação e requer do piloto precisão nos comandos de arfagem e tangagem para a retomada do vôo em linha reta horizontal. Outro risco, este não associado à queda, mas sim a um efeito de longo prazo, é a ingestão do elemento pulverizado dependendo das condições atmosféricas presentes. Como a aeronave passa muito próxima a última linha pulverizada, o piloto pode vir a ingerir a nuvem de pesticida expelida na última passagem. Aliados ao vôo em baixa altitude, encontram-se fios de alta tensão, que muitas vezes são ultrapassados por baixo. Se o piloto opta por deixar esse fio abaixo da aeronave, corre o risco de perder o início da área pulverizada. Se passar por baixo deste fio, corre o risco de encontrar uma cerca divisória de propriedade e ver sua distância vertical disponível reduzida em poucos segundos, dificultando a tomada de decisão evasiva da manobra. Normalmente se define uma estratégia de vôo para determinada área antes da decolagem, mas isto só é possível quando a área determinada possui acesso terrestre ou campo visual suficiente, gerando assim o risco supracitado. No documento FCA58-1 de 2012, o CENIPA (Centro de Investigação e Prevenção de Acidentes Aeronáuticos), órgão ligado ao Ministério dà Defesa e ao Comando da Aeronáutica, publica como sugestão para as empresas agrícolas incentivar o planejamento dos pilotos antes das manobras, pois recentemente o planejamento e julgamento dos pilotos foi fator contribuinte presente em grande parte dos acidentes.
As empresas operadoras das aeronaves agrícolas são responsáveis pelo correto preenchimento das cadernetas de vôo, quanto a horas voadas e quanto à manutenção devida nas aeronaves. A Agência Nacional de Aviação Civil (ANAG) é a responsável pela verificação deste preenchimento, mas é falado entre os operadores e conhecedores do Serviço Aéreo Especializado - Aviação Agrícola que devido às distâncias entre as fazendas e as sedes da ANAC esta fiscalização está aquém do ideal, sujeitando o processo a irregularidades nos preenchimentos das horas de vôo e consequentemente na manutenção preventiva e corretiva das aeronaves. O mesmo documento FCA58-1 de 2012 trás como recomendação de segurança para as oficinas de manutenção aperfeiçoar a supervisão sobre os requisitos de manutenção para aeronaves.
Ainda de acordo com o Centro de Investigação e Prevenção de Acidentes Aeronáuticos no Brasil, o CENIPA, de 2003 a 2012, a Aviação Agrícola foi responsável por 14% dos acidentes aeronáuticos investigados no país.
[14]. A ANAC foi informada de 124 acidentes com aeronaves agrícolas entre 2002 e 2011. Destes acidentes registrados, 35 tiverem vítimas, totalizando 41 pilotos mortos. Aproximadamente 46% dos acidentes tiverem como causas diretas manobras e perda de controle em vôo. Outros 17% tiveram falha de motor como causador.
[15]. No último XXV Simpósio Regional de Aviação Civil, promovido em setembro de 2013 pelo Sexto Serviço Regional de Aviação Civil (Serac6), órgão ligado à ANAC, foi explicitado por um coronel da reserva que apenas 30% dos acidentes com aeronaves agrícolas chegam ao conhecimento da Agência Nacional de Aviação Civil.
EFICIÊNCIA NA AVIAÇÃO AGRÍCOLA
[16]. A aplicação de fertilizantes e pesticidas para ser eficaz não pode ter erros de volume ou desperdícios de produto. Como o avião precisa de velocidade para se manter voando, o cálculo de vazão se torna difícil, pois se deve prever o quanto de produto será desperdiçado no processo pela deriva e vórtice. Os efeitos aerodinâmicos da aeronave, os responsáveis pela sustentação, geram alguns efeitos indesejados para aplicação, que são somados ao efeito da deriva da gota no caminho até o solo. Devido à diferença de pressões e direcionamento dos filetes de ar nas partes de cima e de baixo da asa, temos um efeito de "dobramento" da esteira de vento provocada pelo avião e denominada de vórtices de pontas de asas, intrínseco ao vôo de qualquer avião e que poderá influir na distribuição, perda e deposição das gotas na faixa de deposição e do alvo desejado. Tal efeito faz com que as gotas pequenas (<150pm) pulverizadas sejam perdidas, gerando desperdício.
O USO DE HELICÓPTEROS AGRÍCOLAS
[17]. A área agriculturável no Brasil é hoje de 70 milhões de hectares, correspondendo a menos de 8% do território nacional. Existem aproximadamente 500 milhões de hectares de áreas disponíveis para receber plantio. A dificuldade de se plantar em um terreno acidentado existe e se deve em parte ao avião ter características de vôo que impossibilitam esta pulverização, semeadura, irrigação e controle da área plantada.
[18]. Levantamentos do setor de helicópteros agrícolas - ainda inexistente no Brasil - mostram um potencial de até 500 aeronaves nos próximos 10 anos neste país. Em países como Estados Unidos da América, Canadá, Nova Zelândia e Japão, existe há mais de 40 anos o mercado de helicópteros agrícolas. O principal motivo é a eficiência da pulverização realizada.
[19]. A eficiência do helicóptero se inicia pela deriva reduzida. As gotas, quando saem da barra de pulverização, são empurradas para baixo devido ao efeito conhecido como downwash, que é produzido pelas hélices do rotor. Também o efeito de vórtice é praticamente inexistente devido â baixa velocidade na
aplicação. Somando o efeito downwash a pontas de pulverização com tecnologia para redução de deriva, dificilmente o helicóptero vai pulverizar campos errados ou provocar danos em plantações vizinhas e culturas diferentes.
[20]. A possibilidade de pairar e manobrar dentro dos limites da área pulverizada confere vantagem à aplicação com helicópteros. Estima-se ganho de 22 segundos por passagem, por não se ter de executar a curva de reversão. Evita-se também o sobrevoo de casas, lagos, estradas e outros ambientes sensíveis ao produto. Ganha-se, também, a possibilidade de operação em terrenos acidentados, como encostas de montanhas, por exemplo.
[21]. Além disto, a capacidade de pouso para recarga e reabastecimento em qualquer localidade livre de obstáculos permite uma operação de planejamento mais simples. Diferentemente do avião, para o helicóptero não se faz necessário uma pista de pouso de dimensões elevadas (mínimo 500 metros).
[22]. Possivelmente o helicóptero não tem mais uso na agricultura do Brasil pelos seus elevados custos. A aquisição de um helicóptero e sua adaptação para agricultura tem um custo superior ao da aviação agrícola, dada a capacidade do seu reservatório de produtos químicos. O Bell 206B III tem preço estimado em USD 750.000,00 e capacidade de aplicação de 800 litros. Nos anos 80, o governo brasileiro tentou incentivar o uso destes equipamentos em plantações de cana-de-açúcar e bananais, mas devido ao custo de manutenção e consumo de gasolina de aviação (AVGAS) em poucos anos o projeto foi suspenso.
MEIO AMBIENTE
[23]. Qualquer uma das alternativas vistas neste descritivo tem como fonte de propulsão motores recíprocos - a pistão - que usam AVGAS (Gasolina de Aviação) ou Etanol, mais recentemente como o Embraer Ipanema 201 A;
[24]. Os combustíveis fósseis utilizados - gasolina e óleo - são poluidores da atmosfera, emitindo C02, Enxofre, e diversos outros resíduos com sua utilização. Além disto, geram resíduos na extração de petróleo e na transformação em gasolina. Este combustível não é renovável e continuará poluindo pelo tempo que for usado. Uma aeronave Air Tractor AT 802 consome de 280 a 320 litros de AVGAS em uma hora, mais 1 litro de óleo a cada 25 horas de vôo.
[25]. Corre-se o risco também com a aviação agrícola, seja ela com avião ou helicóptero, de se pulverizar áreas sensíveis aos produtos, ou seja, durante a
aplicação pulverizar rios, lagos, ou até mesmo campos que não estejam preparados para receber o material pulverizado.
[26]. OBJETIVOS DA INVENÇÃO
[27]. A presente invenção tem como objetivo possibilitar a necessária pulverização de campos agrícolas com mais segurança, mais eficiência, de forma mais barata e menos agressiva ambientalmente. Além da pulverização de pesticidas, esta invenção possibilita a pulverização de sementes, fertilizantes e adubo. Aliado a isto, a invenção permite a visualização de imagens aéreas do campo, para que o produtor possa ter conhecimento de toda sua área e da maturação do seu plantio.
SEGURANÇA
[28]. A invenção faz com que o piloto saia da cabine de comando e controle o equipamento à distância. O VANT será controlado por uma estação remota, longe da área a ser pulverizada. O piloto não corre mais riscos de acidentes nem riscos de ingestão do insumo pulverizado. Fios de alta tensão e cercas não serão obstáculo significativo, dado que o VANT decolará VTOL (Vertical Take-off and Landing) e voará direto para a primeira coordenada geográfica selecionada. O VANT não terá na sua composição material combustível (Gasolina ou Etanol), isto significa dizer que, em caso de queda, não haverá explosão e, consequentemente, não haverá riscos às pessoas e instalações próximas a área voada. O uso de VANT em aplicação agrícola permite também pulverizar áreas extremamente remotas, como encostas de morros e outros locais de difícil acesso.
EFICIÊNCIA
[29]. Tendo em vista que o helicóptero é a forma mais eficiente de pulverizar, dado o efeito downwash da sua hélice, o VANT, que possui diversas hélices, aumenta esta eficiência. Munido de um sistema matemático para corrigir o vento incidente no momento da aplicação, a pulverização com VANT permite precisão. Aliado ao sistema para correção de vento e ao efeito downwash, está a proximidade ao solo propiciada pelo VANT, sem riscos.
MEIO AMBIENTE
[30]. O VANT usa motores elétricos e, portanto, usará energia elétrica das concessionárias para abastecimento das baterias. Os motores não consumirão gasolina de aviação ou etanol. Com a precisão atingida pelo VANT e seu sistema de GPS que navega entre coordenadas geográficas previamente estabelecidas, a pulverização equivocada de rios e lagos, assim como a aplicação em áreas erradas e consequente prejuízo de culturas sensíveis, será rara e possível apenas com programações equivocadas das coordenadas geográficas.
CUSTOS
[31]. O VANT na sua operação não terá custos com combustível para motor. O proprietário do VANT irá carregar suas baterias com energia elétrica proveniente das concessionárias. Caso o proprietário opte por energia proveniente de um sistema de energia solar ou eólica, o custo de operação quanto a combustível será zerado. Estima-se que a relação entre energia elétrica e combustível (gasolina) seja de 1/3. Redução de 66% de custo de combustível para o motor. A invenção vai usar óleo nas revisões preventivas, para lubrificação de peças, mas não usará óleo para seu funcionamento dentro do motor, por se tratar de um motor elétrico. O investimento inicial também será reduzido, pois se estima um preço inferior às aeronaves apresentadas neste descritivo. O custo de treinamento dos pilotos também será reduzido, pois a operação do VANT Agrícola será simples e facilmente aprendida. Com a precisão atingida pelo VANT, os custos de produtos químicos serão reduzidos, pois o desperdício é inferior às alternativas hoje apresentadas.
NOVIDADE E EFEITO TÉCNICO ALCANÇADO
[32]. Ó VANT Agrícola traz como novidade a pulverização de precisão através de sistema matemático de correção de deriva pelo vento incidente. A precisão é dada também por um sistema GPS (Global Positioning System) que navega por coordenadas pré-estabelecidas. Através de óculos FPV (First Person View) o piloto poderá navegar com o VANT por corredores virtuais sobre a plantação. A decolagem é VTOL (Vertical Take-off and Landing). A pulverização se dá através de uma barra pulverizadora e pontas pulverizadoras pressurizadas e conectados a um reservatório dé produtos químicos abaixo do quadro central do VANT e atende a insumos agrícolas como pesticidas, fertilizantes, sementes, adubo. Também permite o controle do plantio e da maturação através de uma câmera de alta precisão instalada!
RELAÇÃO DE FIGURAS APRESENTADAS
[33]. A figura 1 apresenta uma vista dianteira lateral esquerda do VANT Agrícola.
1. Conjunto Hélice / Motor
2. Barra Pulverizadora
3. Pressurizador
4. Câmera
[34]. A figura 2 apresenta uma vista traseira lateral direita do VANT Agrícola
5. Reservatório de Produtos Químicos em forma de aerofólio.
6. Trem de Pouso Retrátil.
7. Placa Controladora
DESCRIÇÃO DA INVENÇÃO
A invenção consiste em um veículo aéreo não tripulado (VANT) de peso, número de conjuntos de motor e hélice e rigidez de estrutura (frame) variáveis, dependendo da quantidade de produto para o qual o reservatório de produtos químicos do VANT for projetado. Com sistema de decolagem vertical (VTOL), autopropulsado por um número variável de conjuntos de motor e hélice, alimentado por um número variável de baterias e controlado remotamente por um piloto. Este piloto terá ou não acesso visual à invenção durante a operação, dependendo do alcance planejado para a tarefa executada. Quando sem contato visual com o VANT ou quando este estiver aplicando, o piloto irá visualizar o caminho através de um sistema de FPV (First Person View), que permite visualização em tempo real de dentro do VANT por uma câmera acoplada na parte de baixo da estrutura, junto a um transmissor. No solo, o piloto possuirá um receptor das imagens, assim como óculos ou tela instalada na sua estação de trabalho para visualização em tempo real. O piloto irá navegar por coordenadas geográficas previamente estabelecidas no solo, usando ferramentas de visualização de satélites ou por imagens capturadas pelo próprio VANT, pela câmera que este possui, podendo ser esta navegação por contato com o solo ou por piloto automático, ficando o piloto responsável pela supervisão deste sistema. O piloto será o responsável pela operação e deverá assumir os controles sempre que o sistema de navegação automático não responder conforme esperado. Para facilitar a navegação, poderá ser usado um sistema de túnel virtual; no qual o piloto acompanha a rota traçada por túneis virtuais e, caso o sistema automático saia do previsto, o piloto assume e retoma o vôo. O reservatório de produtos químicos terá tamanho variável e determinará o tamanho da barra de pulverização. A barra de pulverização será ligada ao tanque através do sistema pressurizador, que envia o produto com pressão para as pontas pulverizadoras ou atomizadores, acionada remotamente pelo piloto. A vazão da ponta pulverizadora ou do atomizador é variável e depende da solicitação do responsável pela área da aplicação. Tendo a componente de vento incidente no VANT calculada pela placa controladora através da variação dé posição do GPS, o sistema de pulverização calcula a direção da aplicação para permitir maior precisão, ainda que o VANT seja capaz de pulverizar muito próximo ao solo. Esta última observação é válida, pois nem sempre a pulverização muito próxima ao solo é mais eficaz.
QUADRO COMPARATIVO ENTRE ESTADO DA TÉCNICA E INVEN ÃO
Claims
1. VEÍCULO AÉREO NÃO TRIPULADO AGRÍCOLA, caracterizado por possuir um reservatório de produtos químicos (5) e usar uma barra pulverizadora (2) interligada com bicos pulverizadores pressurizados (3) de vazão regulável, acionados e controlados remotamente;
2. VEÍCULO AÉREO NÃO TRIPULADO AGRÍCOLA, caracterizado por possuir sistema de autopropulsão e decolagem vertical (VTOL), usar um número variável de motores elétricos e hélices (1) junto a um sistema de manutenção da altitude de vôo (7), que é acionado e controlado remotamente e navega através de um grupo de coordenadas geográficas estabelecido.
3. VEICULO AÉREO NÃO TRIPULADO AGRÍCOLA, caracterizado por possuir uma câmera com um transmissor que permite a visualização e registro das imagens em tempo real por um receptor, permitindo ao piloto navegar com óculos de primeira visão (FPV) pelas coordenadas geográficas que foram estabelecidas.
4. VEICULO AÉREO NÃO TRIPULADO AGRÍCOLA de acordo com a reivindicação 1 , caracterizado por um sistema de correção de deriva dò vento incidente (7) usado para a atividade agrícola de pulverização
5. VEICULO AÉREO NÃO TRIPULADO AGRÍCOLA de acordo com a reivindicação 2, caracterizado por usar como fonte de energia para seus motores elétricos baterias ou elementos de melhor rendimento disponíveis.
6. VEICULO AÉREO NÃO TRIPULADO AGRÍCOLA de acordo com a reivindicação 2, caracterizado por apresentar as coordenadas geográficas em túnel virtual para aplicação de insumos agrícolas ou geração de imagens para acompanhamento da área a ser trabalhada.
7. VEICULO AÉREO NÃO TRIPULADO AGRÍCOLA de acordo com a reivindicação 3, caracterizado por possibilitar traçar o planejamento de vôo pela própria imagem gerada pelo VANT ou por imagens obtidas . de satélites e permitindo também ao dono da área agrícola visualizar a situação da sua plantação em tempo real.
8. VEICULO AÉREO NÃO TRIPULADO AGRÍCOLA de acordo com a reivindicação 3, caracterizado por possuir um sistema autónomo de decolagem, navegação e pouso, dependendo de um piloto sempre que a regulamentação vigente do local de uso do VANT solicitar.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
BR102014009599 | 2014-04-22 | ||
BRBR1020140095993 | 2014-04-22 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2015161352A1 true WO2015161352A1 (pt) | 2015-10-29 |
Family
ID=54331514
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/BR2015/000056 WO2015161352A1 (pt) | 2014-04-22 | 2015-04-22 | Veiculo aéreo não tripulado (vant), usado para atividade agrícola e aplicação de pesticidas e fertilizantes |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2015161352A1 (pt) |
Cited By (29)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105253304A (zh) * | 2015-11-03 | 2016-01-20 | 南京林业大学 | 一种多旋翼无人机可变量喷雾系统 |
CN105467416A (zh) * | 2015-11-23 | 2016-04-06 | 国网河南省电力公司濮阳供电公司 | 一种无人机精确定位系统 |
CN105799924A (zh) * | 2016-05-09 | 2016-07-27 | 四川马可视觉网络科技有限公司 | 自带水箱的简易飞行器 |
CN105903590A (zh) * | 2016-06-12 | 2016-08-31 | 成都多来咪智能科技有限公司 | 一种喷洒流量自动控制系统 |
CN106005416A (zh) * | 2016-07-06 | 2016-10-12 | 陈立 | 一种用于农业播种的采用无线遥控技术的新型无人机 |
CN106125762A (zh) * | 2016-08-01 | 2016-11-16 | 北京艾森博航空科技股份有限公司 | 基于互联网的无人机植保管理系统和方法 |
CN106238242A (zh) * | 2016-08-02 | 2016-12-21 | 安徽朗巴智能科技有限公司 | 一种基于定位模块的无人机智能喷洒系统 |
CN106249758A (zh) * | 2016-09-21 | 2016-12-21 | 江西天祥通用航空股份有限公司 | 一种飞机喷洒路线的确定方法及系统 |
CN106354163A (zh) * | 2016-11-15 | 2017-01-25 | 北京农业智能装备技术研究中心 | 一种采集航空施药雾滴沉积的网络系统 |
CN106417229A (zh) * | 2016-10-10 | 2017-02-22 | 浙江同创无人机科技有限公司 | 一种使用无人机对柑桔进行病虫害防治的方法 |
ITUB20155636A1 (it) * | 2015-11-17 | 2017-05-17 | Attilio Giampieri | Sistema di analisi e trattamento di coltivazioni agricole. |
CN106708105A (zh) * | 2016-11-25 | 2017-05-24 | 内蒙古农业大学 | 无人机喷药控制系统、喷药装置以及无人机 |
CN106791659A (zh) * | 2016-12-26 | 2017-05-31 | 安徽天立泰科技股份有限公司 | 一种基于航拍拼接技术的森林病虫害监测与防护系统 |
CN106719555A (zh) * | 2017-02-15 | 2017-05-31 | 合肥市融宇电子有限公司 | 一种无人机搭载式农药喷洒系统 |
CN106873648A (zh) * | 2017-03-28 | 2017-06-20 | 致导科技(北京)有限公司 | 无人机自动喷洒控制方法、系统及无人机喷洒控制系统 |
CN106997209A (zh) * | 2016-01-25 | 2017-08-01 | 深圳市鼎创旭飞科技有限公司 | 植保无人机喷施作业方法和系统 |
CN107168367A (zh) * | 2017-06-08 | 2017-09-15 | 中科院合肥技术创新工程院 | 基于机器视觉业的精准喷药系统 |
CN107272734A (zh) * | 2017-06-13 | 2017-10-20 | 深圳市易成自动驾驶技术有限公司 | 无人机飞行任务执行方法、无人机及计算机可读存储介质 |
CN107258186A (zh) * | 2017-06-28 | 2017-10-20 | 广东容祺智能科技有限公司 | 一种基于无人机的匀量撒播方法与装置 |
CN108008735A (zh) * | 2017-11-07 | 2018-05-08 | 深圳常锋信息技术有限公司 | 无人机的植保作业控制方法、系统及终端设备 |
EP3378306A1 (de) | 2017-03-24 | 2018-09-26 | Bayer Aktiengesellschaft | Drift-korrektur beim ausbringen von pflanzenschutzmitteln |
CN109154839A (zh) * | 2017-12-15 | 2019-01-04 | 深圳市大疆创新科技有限公司 | 流量控制方法、设备及无人机 |
CN109511630A (zh) * | 2017-09-20 | 2019-03-26 | 南京理工大学 | 具有目标跟踪功能的智能喷头 |
US10273001B2 (en) | 2016-09-09 | 2019-04-30 | Walmart Apollo, Llc | Apparatus and method for unmanned flight |
CN110979683A (zh) * | 2019-12-23 | 2020-04-10 | 潍坊工程职业学院 | 一种农用无人机 |
CN112889784A (zh) * | 2021-01-14 | 2021-06-04 | 安徽江淮重工机械有限公司 | 一种基于5g风送式喷雾机智能喷洒系统 |
US11027294B2 (en) | 2017-06-29 | 2021-06-08 | Conseiller Forestier Roy Inc. | Airborne material spreading assembly and method for spreading material |
WO2021243428A1 (pt) * | 2020-06-02 | 2021-12-09 | Xmobots Aeroespacial E Defesa Ltda | Aeronave remotamente pilotada destinada a atividades de aerolevantamento e pulverização e sistema de aerolevantamento e pulverização |
CN113917947A (zh) * | 2021-12-14 | 2022-01-11 | 山东理工职业学院 | 无人机变量喷药控制方法、控制系统及无人机 |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3936018A (en) * | 1974-08-08 | 1976-02-03 | Transland, Inc. | Jettisonable agricultural sprayer |
BR9105535A (pt) * | 1991-12-19 | 1993-06-22 | Jose Luis De Grande | Pulverizador agricola |
CN202574625U (zh) * | 2012-04-27 | 2012-12-05 | 湖南中航天幕科技有限公司 | 飞防面积结算系统 |
CA2780419A1 (en) * | 2011-06-17 | 2012-12-17 | National Cheng Kung University | Unmanned aerial vehicle image processing system and method |
CN203005749U (zh) * | 2012-12-17 | 2013-06-19 | 山东卫士植保机械有限公司 | 多旋翼超低量无人施药机 |
CN203222114U (zh) * | 2013-04-03 | 2013-10-02 | 无锡汉和航空技术有限公司 | 一种用于喷洒农药的电动小型无人直升机 |
CN203486144U (zh) * | 2013-09-25 | 2014-03-19 | 重庆金泰航空工业有限公司 | 农用无人飞行器 |
CN203528826U (zh) * | 2013-10-31 | 2014-04-09 | 无锡同春新能源科技有限公司 | 一种带彩色水稻虫害图像识别仪消灭稻飞虱的无人机 |
-
2015
- 2015-04-22 WO PCT/BR2015/000056 patent/WO2015161352A1/pt not_active Application Discontinuation
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3936018A (en) * | 1974-08-08 | 1976-02-03 | Transland, Inc. | Jettisonable agricultural sprayer |
BR9105535A (pt) * | 1991-12-19 | 1993-06-22 | Jose Luis De Grande | Pulverizador agricola |
CA2780419A1 (en) * | 2011-06-17 | 2012-12-17 | National Cheng Kung University | Unmanned aerial vehicle image processing system and method |
CN202574625U (zh) * | 2012-04-27 | 2012-12-05 | 湖南中航天幕科技有限公司 | 飞防面积结算系统 |
CN203005749U (zh) * | 2012-12-17 | 2013-06-19 | 山东卫士植保机械有限公司 | 多旋翼超低量无人施药机 |
CN203222114U (zh) * | 2013-04-03 | 2013-10-02 | 无锡汉和航空技术有限公司 | 一种用于喷洒农药的电动小型无人直升机 |
CN203486144U (zh) * | 2013-09-25 | 2014-03-19 | 重庆金泰航空工业有限公司 | 农用无人飞行器 |
CN203528826U (zh) * | 2013-10-31 | 2014-04-09 | 无锡同春新能源科技有限公司 | 一种带彩色水稻虫害图像识别仪消灭稻飞虱的无人机 |
Cited By (42)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105253304A (zh) * | 2015-11-03 | 2016-01-20 | 南京林业大学 | 一种多旋翼无人机可变量喷雾系统 |
ITUB20155636A1 (it) * | 2015-11-17 | 2017-05-17 | Attilio Giampieri | Sistema di analisi e trattamento di coltivazioni agricole. |
CN105467416A (zh) * | 2015-11-23 | 2016-04-06 | 国网河南省电力公司濮阳供电公司 | 一种无人机精确定位系统 |
CN106997209A (zh) * | 2016-01-25 | 2017-08-01 | 深圳市鼎创旭飞科技有限公司 | 植保无人机喷施作业方法和系统 |
CN105799924A (zh) * | 2016-05-09 | 2016-07-27 | 四川马可视觉网络科技有限公司 | 自带水箱的简易飞行器 |
CN105903590A (zh) * | 2016-06-12 | 2016-08-31 | 成都多来咪智能科技有限公司 | 一种喷洒流量自动控制系统 |
CN106005416A (zh) * | 2016-07-06 | 2016-10-12 | 陈立 | 一种用于农业播种的采用无线遥控技术的新型无人机 |
CN106005416B (zh) * | 2016-07-06 | 2019-01-08 | 辽宁壮龙无人机科技有限公司 | 一种用于农业播种的采用无线遥控技术的无人机 |
CN106125762B (zh) * | 2016-08-01 | 2019-11-12 | 北京艾森博航空科技股份有限公司 | 基于互联网的无人机植保管理系统和方法 |
CN106125762A (zh) * | 2016-08-01 | 2016-11-16 | 北京艾森博航空科技股份有限公司 | 基于互联网的无人机植保管理系统和方法 |
CN106238242B (zh) * | 2016-08-02 | 2018-07-31 | 安徽朗巴智能科技有限公司 | 一种基于定位模块的无人机智能喷洒系统 |
CN106238242A (zh) * | 2016-08-02 | 2016-12-21 | 安徽朗巴智能科技有限公司 | 一种基于定位模块的无人机智能喷洒系统 |
US10273001B2 (en) | 2016-09-09 | 2019-04-30 | Walmart Apollo, Llc | Apparatus and method for unmanned flight |
US11117663B2 (en) | 2016-09-09 | 2021-09-14 | Walmart Apollo, Llc | Apparatus and method for unmanned flight |
CN106249758A (zh) * | 2016-09-21 | 2016-12-21 | 江西天祥通用航空股份有限公司 | 一种飞机喷洒路线的确定方法及系统 |
CN106249758B (zh) * | 2016-09-21 | 2019-11-22 | 江西天祥通用航空股份有限公司 | 一种飞机喷洒路线的确定方法及系统 |
CN106417229A (zh) * | 2016-10-10 | 2017-02-22 | 浙江同创无人机科技有限公司 | 一种使用无人机对柑桔进行病虫害防治的方法 |
CN106354163A (zh) * | 2016-11-15 | 2017-01-25 | 北京农业智能装备技术研究中心 | 一种采集航空施药雾滴沉积的网络系统 |
CN106708105A (zh) * | 2016-11-25 | 2017-05-24 | 内蒙古农业大学 | 无人机喷药控制系统、喷药装置以及无人机 |
CN106791659A (zh) * | 2016-12-26 | 2017-05-31 | 安徽天立泰科技股份有限公司 | 一种基于航拍拼接技术的森林病虫害监测与防护系统 |
CN106719555A (zh) * | 2017-02-15 | 2017-05-31 | 合肥市融宇电子有限公司 | 一种无人机搭载式农药喷洒系统 |
EP3378306A1 (de) | 2017-03-24 | 2018-09-26 | Bayer Aktiengesellschaft | Drift-korrektur beim ausbringen von pflanzenschutzmitteln |
WO2018172248A2 (de) | 2017-03-24 | 2018-09-27 | Bayer Aktiengesellschaft | Drift-korrektur beim ausbringen von pflanzenschutzmitteln |
WO2018172248A3 (de) * | 2017-03-24 | 2018-11-22 | Bayer Aktiengesellschaft | Drift-korrektur beim ausbringen von pflanzenschutzmitteln |
US11608175B2 (en) | 2017-03-24 | 2023-03-21 | Basf Agro Trademarks Gmbh | Drift correction during the application of crop protection agents |
US12103684B2 (en) | 2017-03-24 | 2024-10-01 | Basf Agro Trademarks Gmbh | Drift correction during the application of crop protection agents |
CN106873648A (zh) * | 2017-03-28 | 2017-06-20 | 致导科技(北京)有限公司 | 无人机自动喷洒控制方法、系统及无人机喷洒控制系统 |
CN107168367A (zh) * | 2017-06-08 | 2017-09-15 | 中科院合肥技术创新工程院 | 基于机器视觉业的精准喷药系统 |
CN107272734A (zh) * | 2017-06-13 | 2017-10-20 | 深圳市易成自动驾驶技术有限公司 | 无人机飞行任务执行方法、无人机及计算机可读存储介质 |
CN107258186A (zh) * | 2017-06-28 | 2017-10-20 | 广东容祺智能科技有限公司 | 一种基于无人机的匀量撒播方法与装置 |
CN107258186B (zh) * | 2017-06-28 | 2019-07-16 | 深圳空灵科技有限公司 | 一种基于无人机的匀量撒播方法与装置 |
US11027294B2 (en) | 2017-06-29 | 2021-06-08 | Conseiller Forestier Roy Inc. | Airborne material spreading assembly and method for spreading material |
CN109511630B (zh) * | 2017-09-20 | 2021-09-21 | 南京理工大学 | 具有目标跟踪功能的智能喷头 |
CN109511630A (zh) * | 2017-09-20 | 2019-03-26 | 南京理工大学 | 具有目标跟踪功能的智能喷头 |
CN108008735A (zh) * | 2017-11-07 | 2018-05-08 | 深圳常锋信息技术有限公司 | 无人机的植保作业控制方法、系统及终端设备 |
WO2019113980A1 (zh) * | 2017-12-15 | 2019-06-20 | 深圳市大疆创新科技有限公司 | 流量控制方法、设备及无人机 |
CN109154839A (zh) * | 2017-12-15 | 2019-01-04 | 深圳市大疆创新科技有限公司 | 流量控制方法、设备及无人机 |
CN110979683B (zh) * | 2019-12-23 | 2021-06-08 | 潍坊工程职业学院 | 一种农用无人机 |
CN110979683A (zh) * | 2019-12-23 | 2020-04-10 | 潍坊工程职业学院 | 一种农用无人机 |
WO2021243428A1 (pt) * | 2020-06-02 | 2021-12-09 | Xmobots Aeroespacial E Defesa Ltda | Aeronave remotamente pilotada destinada a atividades de aerolevantamento e pulverização e sistema de aerolevantamento e pulverização |
CN112889784A (zh) * | 2021-01-14 | 2021-06-04 | 安徽江淮重工机械有限公司 | 一种基于5g风送式喷雾机智能喷洒系统 |
CN113917947A (zh) * | 2021-12-14 | 2022-01-11 | 山东理工职业学院 | 无人机变量喷药控制方法、控制系统及无人机 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2015161352A1 (pt) | Veiculo aéreo não tripulado (vant), usado para atividade agrícola e aplicação de pesticidas e fertilizantes | |
US20220211026A1 (en) | System and method for field treatment and monitoring | |
CN103770943B (zh) | 一种智能施药无人直升机 | |
DE202014002338U1 (de) | Weitgehend autonom fliegende UAV-Hubschrauber-Drohne zur Ausbringung von Pflanzenschutzmitteln in der Landwirtschaft, Forstwirtschaft und im Weinanbau (bis zu einem max. Abfluggewicht von 150kg) | |
CN106647795A (zh) | 一种植保无人机飞行控制系统 | |
CN106483978A (zh) | 一种无人机作业语音引导装置及其方法 | |
US20240253828A1 (en) | Hybrid aerial vehicle with adjustable vertical lift for field treatment | |
Giles et al. | Performance results, economic viability and outlook for remotely piloted aircraft for agricultural spraying. | |
CN205239933U (zh) | 具有搅拌和喷洒功能的无人机 | |
Ozkan | Drones for Spraying Pesticides—Opportunities and Challenges | |
CN105292485A (zh) | 一种具有多角度喷洒功能的无人机 | |
CN105366056A (zh) | 一种具有搅拌和喷洒农药功能的无人机 | |
CN105292489A (zh) | 一种具有喷洒农药功能的无人机 | |
CN205233267U (zh) | 具有搅拌功能的无人机喷洒装置 | |
WO2022201031A1 (en) | Method for delivering liquid by ejecting a continuous jet and system for implementing said method | |
Belozerov et al. | Integration of fire protection of farmland, steppe and forest tracts with agrotechnical processes of their treatment with the help of airships | |
CN205239925U (zh) | 多功能无人机的喷洒装置 | |
Kilroy | Aerial Application Equipment Guide, 2003 | |
RU2617163C1 (ru) | Комплекс летательных аппаратов для внесения жидких средств химизации в точном земледелии | |
Mierzejewski et al. | Conventional application equipment: aerial application | |
Ripper et al. | The development of a helicopter spraying machine | |
Southwell | Aircraft in Agriculture | |
CN211766320U (zh) | 一种用于植保无人机的标准施药装置 | |
CN210653653U (zh) | 植保无人机用的定量喷雾装置 | |
Sładkowski et al. | Using Unmanned Aerial Vehicles to Solve Some Civil Problems |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15782742 Country of ref document: EP Kind code of ref document: A1 |
|
WA | Withdrawal of international application | ||
NENP | Non-entry into the national phase |
Ref country code: DE |