WO2015159676A1 - 光源装置 - Google Patents

光源装置 Download PDF

Info

Publication number
WO2015159676A1
WO2015159676A1 PCT/JP2015/059325 JP2015059325W WO2015159676A1 WO 2015159676 A1 WO2015159676 A1 WO 2015159676A1 JP 2015059325 W JP2015059325 W JP 2015059325W WO 2015159676 A1 WO2015159676 A1 WO 2015159676A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
amount
semiconductor
source device
emitting element
Prior art date
Application number
PCT/JP2015/059325
Other languages
English (en)
French (fr)
Inventor
愛子 坂井
亮 町田
雄亮 矢部
智也 高橋
Original Assignee
オリンパス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オリンパス株式会社 filed Critical オリンパス株式会社
Priority to JP2015541358A priority Critical patent/JP5914770B2/ja
Priority to CN201580003301.2A priority patent/CN105873495B/zh
Priority to EP15779601.2A priority patent/EP3132738A4/en
Publication of WO2015159676A1 publication Critical patent/WO2015159676A1/ja
Priority to US15/196,756 priority patent/US9766447B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/30Driver circuits
    • H05B45/32Pulse-control circuits
    • H05B45/325Pulse-width modulation [PWM]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/06Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with illuminating arrangements
    • A61B1/0638Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with illuminating arrangements providing two or more wavelengths
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/06Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with illuminating arrangements
    • A61B1/0655Control therefor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/06Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with illuminating arrangements
    • A61B1/0661Endoscope light sources
    • A61B1/0684Endoscope light sources using light emitting diodes [LED]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/06Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with illuminating arrangements
    • A61B1/07Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with illuminating arrangements using light-conductive means, e.g. optical fibres
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/02Details
    • G01J1/04Optical or mechanical part supplementary adjustable parts
    • G01J1/0407Optical elements not provided otherwise, e.g. manifolds, windows, holograms, gratings
    • G01J1/0418Optical elements not provided otherwise, e.g. manifolds, windows, holograms, gratings using attenuators
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/02Details
    • G01J1/04Optical or mechanical part supplementary adjustable parts
    • G01J1/0407Optical elements not provided otherwise, e.g. manifolds, windows, holograms, gratings
    • G01J1/0425Optical elements not provided otherwise, e.g. manifolds, windows, holograms, gratings using optical fibers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/02Details
    • G01J1/04Optical or mechanical part supplementary adjustable parts
    • G01J1/0407Optical elements not provided otherwise, e.g. manifolds, windows, holograms, gratings
    • G01J1/0437Optical elements not provided otherwise, e.g. manifolds, windows, holograms, gratings using masks, aperture plates, spatial light modulators, spatial filters, e.g. reflective filters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/02Details
    • G01J1/04Optical or mechanical part supplementary adjustable parts
    • G01J1/0488Optical or mechanical part supplementary adjustable parts with spectral filtering
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B23/00Telescopes, e.g. binoculars; Periscopes; Instruments for viewing the inside of hollow bodies; Viewfinders; Optical aiming or sighting devices
    • G02B23/24Instruments or systems for viewing the inside of hollow bodies, e.g. fibrescopes
    • G02B23/2407Optical details
    • G02B23/2461Illumination
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B23/00Telescopes, e.g. binoculars; Periscopes; Instruments for viewing the inside of hollow bodies; Viewfinders; Optical aiming or sighting devices
    • G02B23/24Instruments or systems for viewing the inside of hollow bodies, e.g. fibrescopes
    • G02B23/2407Optical details
    • G02B23/2461Illumination
    • G02B23/2469Illumination using optical fibres
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/10Beam splitting or combining systems
    • G02B27/14Beam splitting or combining systems operating by reflection only
    • G02B27/141Beam splitting or combining systems operating by reflection only using dichroic mirrors
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/10Controlling the intensity of the light
    • H05B45/14Controlling the intensity of the light using electrical feedback from LEDs or from LED modules
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/20Controlling the colour of the light
    • H05B45/22Controlling the colour of the light using optical feedback

Definitions

  • the present invention relates to a light source device suitable for an endoscope.
  • a light source device is employed to perform imaging inside the cavity.
  • a light source device employing a semiconductor light source such as an LED as a light emitting unit may be used.
  • Such a light source device can perform dimming control of the LED by PWM control that changes the duty ratio of the drive pulse or current control that changes the LED current.
  • the device disclosed in Japanese Patent Application Laid-Open No. 2009-192772 is designed to obtain illumination light by combining light from an LED that generates red light, an LED that generates green light, and an LED that generates blue light.
  • An optical sensor for detecting the light emission amount of each LED is provided, and the drive current supplied to each LED is controlled so that the difference between the light amount detected by each optical sensor and the light amount target value becomes small.
  • the apparatus disclosed in Japanese Patent Application Laid-Open No. 2009-192773 can obtain illumination light having a desired color balance.
  • each LED differs depending on the color of the generated light. For example, the maximum amount of emitted light is different for each LED of each color. Also, depending on the color balance setting, the maximum amount of light used by each color LED varies. That is, the amount of light incident on each photosensor is different for each color LED.
  • each optical sensor has different resolutions that can be used for detecting the amount of incident light. In each optical sensor, it is necessary to set the maximum value of the incident light quantity that can be detected in accordance with the emitted light quantity of the LED with the largest use maximum light quantity. The sensor has a problem that the resolution is low and the light quantity cannot be detected with sufficient accuracy.
  • An object of the present invention is to provide a light source device that can detect the amount of light of each color with high accuracy even when optical sensors having the same characteristics with a common dynamic range are used.
  • the light source device includes a first semiconductor light emitting element that emits light of a first color with a first light quantity as a maximum use light quantity, and a second color light with a second light quantity as a use maximum light quantity.
  • the second semiconductor light emitting element to emit, the first light quantity detection unit for detecting the light emission amount of the first semiconductor light emitting element, and the detection range identical to the detection range of the first light quantity detection unit.
  • a second light amount detector for detecting the light emission amount of the second semiconductor light emitting element, and the first and second light amounts to match the predetermined value within the detection range.
  • the first light amount limiting unit that restricts the amount of the first light incident on the first light amount detection unit from the semiconductor light emitting element and the second light emitting unit incident on the second light amount detection unit At least one of the second light quantity limiting units for limiting the quantity of the second light to be performed.
  • a control unit for controlling the light emission amounts of the first and second semiconductor light emitting elements based on the detection results of the first and second light quantity detection units. It has.
  • the light source device has the same detection range as that of the first to fifth semiconductor light emitting elements, and detects the amount of light emitted from the first to fifth semiconductor light emitting elements.
  • a control unit that controls the light emission amount of the first to fifth semiconductor light emitting elements, and the first to sixth light guides are used for the first to fifth semiconductor light emitting elements, respectively.
  • the maximum light intensity is matched with a predetermined value within the detection range. In order, at least one of the diameter and length are adjusted individually.
  • the block diagram which shows the light source device which concerns on the 1st Embodiment of this invention.
  • the graph which shows an example of the light emission amount of each LED required in order to obtain the illumination light suitable for the predetermined observation mode of an endoscope by taking a wavelength on a horizontal axis and taking a light emission amount on a vertical axis.
  • the graph showing the spectral sensitivity characteristics of the optical sensors 42c to 44c, with the horizontal axis representing wavelength and the vertical axis representing relative sensitivity.
  • Explanatory drawing which shows typically a mode that the emitted light of each LED42-44 injects into the optical sensors 42c-44c, respectively.
  • Explanatory drawing which shows typically a mode that the emitted light of each LED42-44 injects into the optical sensors 42c-44c, respectively.
  • Explanatory drawing for demonstrating a modification Explanatory drawing for demonstrating a modification.
  • Explanatory drawing for demonstrating a modification Explanatory drawing for demonstrating the 2nd Embodiment of this invention.
  • Explanatory drawing for demonstrating the 3rd Embodiment of this invention Explanatory drawing for demonstrating the 4th Embodiment of this invention.
  • FIG. 1 is a block diagram showing a light source device according to the first embodiment of the present invention.
  • the light source device is applied to an endoscope system having an endoscope, a video processor, and a monitor.
  • the endoscope system 1 includes an endoscope 10, a video processor 20, a monitor 30, and a light source device 40.
  • the endoscope 10 has an elongated insertion portion 11 that can be inserted into a lumen or the like at the distal end side, and the proximal end side is detachably connected to the light source device 40 by a connector 12. ing.
  • the endoscope 10 is detachably connected to the video processor 20 by a cable 17 and a connector 18.
  • a cable 17 and a connector 18 can be attached to the light source device 40 and the video processor 20.
  • an imaging element 13 for capturing an image of a subject such as in a lumen and a lens 14 for irradiating the subject with light from the light source device 40 are disposed.
  • the illumination light transmitted from the light source device 40 via the light guide 15 is irradiated to the subject by the lens 14.
  • the imaging element 13 is configured by a CCD, a CMOS sensor, or the like. Return light from the subject is incident on the imaging surface, photoelectrically converts the incident subject optical image, and sequentially outputs imaging outputs based on the accumulated charges.
  • the image sensor 13 operates when a drive signal including a synchronization signal is supplied from the video processor 20, and supplies an imaging output to the video processor 20 via the signal line 16.
  • the video processor 20 performs predetermined signal processing on the imaging output to generate a video signal that can be displayed on the monitor 30.
  • a video signal from the video processor 20 is supplied to the monitor 30 via the cable 21. In this way, an endoscopic image based on the imaging output can be displayed on the display screen of the monitor 30.
  • the video processor 20 can control the light source device 40 so that the brightness of the captured image becomes the target brightness.
  • the video processor 20 outputs information for adjusting the brightness of the captured image to the target brightness to the light source device 40 as brightness control information.
  • the brightness control information is supplied to the control unit 41 of the light source device 40 via the cable 22.
  • the light source device 40 includes an LED (R-LED) 42 that generates red light, an LED (G-LED) 43 that generates green light, and an LED (B-LED) 44 that generates blue light.
  • R-LED red light
  • G-LED green light
  • B-LED blue light
  • Lenses 42a to 44a are arranged on the optical axes of the emitted light from the LEDs 42 to 44, respectively. Each of the lenses 42a to 44a converts the light emitted from the LEDs 42 to 44 into substantially parallel light and emits the light. On the optical axis of the lens 42a that emits light from the R-LED 42, dichroic filters 47 and 48 constituting an optical path portion are arranged. Light from the G-LED 43 is also incident on the dichroic filter 47 through the lens 43a. Further, light from the B-LED 44 is also incident on the dichroic filter 48 through the lens 44a.
  • the dichroic filter 47 reflects the light from the G-LED 43 and transmits the light from the R-LED 42.
  • the dichroic filter 48 reflects the light from the B-LED 44 and transmits the light transmitted through the dichroic filter 47. In this way, the light from the LEDs 42 to 44 is synthesized by the dichroic filters 47 and 48.
  • the combined light from the dichroic filter 48 enters the light guide 15 via the lens 50. It is possible to change the arrangement order of the LEDs 42 to 44 by appropriately setting the characteristics of the dichroic filters 47 and 48. However, the characteristics of the dichroic filter are better when the LEDs 42 to 44 are arranged in the wavelength band of the emitted light. Is easy to set.
  • the LEDs 42 to 44 are driven by the LED driving unit 46 and light up.
  • the LED drive unit 46 is controlled by the control unit 41 to generate a PWM pulse that is a drive signal for driving each LED.
  • Each of the LEDs 42 to 44 emits light with a light emission amount corresponding to the duty ratio and current amount of the PWM pulse from the LED drive unit 46.
  • the control unit 41 outputs the dimming information for controlling each of the LEDs 42 to 44 to the LED driving unit 46, thereby controlling the duty ratio and current level of the PWM pulse to control the dimming of each of the LEDs 42 to 44. .
  • the control unit 41 generates dimming information so that the light emission amounts of the LEDs 42 to 44 can maintain a predetermined color balance.
  • the color balance of each LED 42 to 44 needs to be determined by the spectral sensitivity characteristics of the endoscope 10.
  • the memory unit 53 of the light source device 40 stores information on the light amount ratios generated by the LEDs 42 to 44 in accordance with the spectral sensitivity characteristics of the endoscope 10.
  • the control unit 41 outputs control information for controlling each of the LEDs 42 to 44 to the LED drive unit 46 based on the information on the light amount ratio stored in the memory unit 53.
  • the memory unit 53 has been described on the assumption that information on the light quantity ratio of each LED for obtaining an optimum color balance is stored.
  • the endoscope 10 is attached to the video processor 20 or the light source device 40.
  • information regarding the light amount ratio may be read from the endoscope 10 and set in the control unit 41.
  • the LED has a temperature characteristic, and the amount of light changes depending on the temperature even if the LED current value is the same. Since the LED has a characteristic that the temperature rises with light emission, it is necessary to consider the temperature characteristic in order to accurately control the amount of illumination light. And since temperature characteristics differ for each LED of each color, it is necessary to measure temperature for every LED. However, the LEDs 42 to 44 are relatively close to each other in the light source device 40, and it is difficult to measure a temperature change due to each LED alone. Therefore, in the present embodiment, the current value is controlled by measuring and obtaining the light quantity of each LED.
  • optical sensors having the same characteristics with a common dynamic range are used as the optical sensors. Even in this case, the resolution of each optical sensor is improved by controlling the incident light quantity so that the incident light quantities of the light incident on the respective optical sensors are substantially equal to each other.
  • optical sensors 42c to 44c for detecting the amount of light from each LED 42 are disposed.
  • the optical sensors 42c to 44c have sufficient sensitivity in the wavelength band of the emitted light from the LEDs 42 to 44.
  • the optical sensors 42c to 44c generate an output signal proportional to the incident light intensity.
  • the output signals of the optical sensors 42c to 44c are supplied to the control unit 41.
  • a light amount limiting member 42b is disposed between the LED 42 and the optical sensor 42c, and a light amount limiting member 43b is disposed between the LED 43 and the optical sensor 43c, and the LED 44 and the optical sensor 44c.
  • a light quantity limiting member 44b is disposed between the two.
  • the light quantity limiting members 42b to 44b can adjust the light quantity of the emitted light from the LEDs 42 to 44 and enter the light sensors 42c to 44c, respectively.
  • a neutral density filter ND filter
  • the light quantity limiting members 42b to 44b are configured to be able to adjust the rate (attenuation rate) of light attenuation according to the light emission intensity of the LEDs 42 to 44, respectively.
  • FIG. 2 is a graph showing an example of the light emission amount of each LED necessary for obtaining illumination light suitable for a predetermined observation mode of the endoscope, with the wavelength on the horizontal axis and the light emission amount on the vertical axis.
  • Curves Tr, Tg, and Tb in FIG. 2 indicate the light emission amounts necessary for the R-LED 42, the G-LED 43, and the B-LED 44, respectively.
  • the light emission amounts of the respective LEDs necessary for obtaining illumination light suitable for a predetermined observation mode are different from each other.
  • FIG. 3 is a graph showing the spectral sensitivity characteristics of the optical sensors 42c to 44c, with the horizontal axis representing wavelength and the vertical axis representing relative sensitivity.
  • the optical sensors 42c to 44c employ the same characteristics.
  • a solid line in FIG. 3 indicates spectral sensitivity characteristics.
  • FIG. 4A and FIG. 4B are explanatory views schematically showing how light emitted from the LEDs 42 to 44 enters the optical sensors 42c to 44c, respectively.
  • the light quantity limiting member 62 represents the light quantity limiting members 42b to 44b
  • the optical sensor 64 represents the optical sensors 42c to 44c.
  • an arrow 61 at the left end indicates the emitted light of each of the LEDs 42 to 44.
  • Light emitted from the LEDs 42 to 44 enters a light sensor 64 corresponding to the light sensors 42c to 44c via a light amount limiting member 62 corresponding to the light amount limiting members 42b to 44b.
  • a thin arrow 63 on the right side indicates that light emitted from the LEDs 42 to 44 is attenuated by the light amount limiting member 62 and enters the optical sensor 64.
  • the example in which the light quantity limiting members 42b to 44b and the optical sensors 42c to 44c are arranged in the vicinity of the LEDs 42 to 44 has been described.
  • the light from the LEDs 42 to 44 to the lenses 42a to 44a is described.
  • the light sensors 42c to 44c can detect the amount of light emitted from the LEDs 42 to 44 at positions other than the road, they can be arranged at appropriate positions.
  • the amount of light attenuation varies depending on the distance between each of the LEDs 42 to 44 and each of the optical sensors 42c to 44c.
  • FIG. 4B shows this state, and each light emitted from the light source 65 corresponding to each of the LEDs 42 to 44 is gradually attenuated after the light intensity limiting members 42b to 44b as shown by the thicknesses of the arrows 61, 63, 66.
  • the light enters the optical sensor 64 corresponding to the optical sensors 42c to 44c through the light amount limiting member 62 corresponding to the above. It shows that as the distance from the light source 65 to the optical sensor 64 is longer, the light is attenuated with a larger attenuation amount and enters the optical sensor 64.
  • the amount of attenuation of light also changes depending on the position and optical axis direction of each LED 42 to 44, the position of the light amount limiting members 42b to 44b and the optical sensors 42c to 44c, and the angle of the light incident surface. With the angle set, the characteristics of the light quantity limiting members 42b to 44b are controlled.
  • the light sensors 42c to 44c receive the same amount of light and the detection ranges of the light sensors 42c to 44c.
  • the characteristics (attenuation rates) of the light quantity limiting members 42b to 44b are set so that light matching the above is incident.
  • the sensitivity of the optical sensors 42c to 44c with respect to the R, G, and B lights is based on green (G) light. Assuming (1), it is 0.2 for red (R) light and 0.6 for blue (B) light.
  • the ratio (light emission ratio) of the light emission amounts of the LEDs 42 to 44 suitable for the predetermined observation mode shown in FIG. 3 is 0.8 to 1: 0.5 with the light emission amount of the G-LED 42 as a reference (1). Shall.
  • the light quantity limiting members 42b to 44b are set so that the ratio of the attenuation rate is (n ⁇ 0.2 ⁇ 0.8) vs. n (n ⁇ 0.6 ⁇ 0.5). .
  • Table 1 below shows such a relationship of the attenuation ratio.
  • each LED 42 to 44 emits light with the characteristics of FIG. 2, and even when the optical sensors 42c to 44c having the same characteristics as FIG.
  • Each of the light sensors 42c to 44c receives light whose maximum incident light amount of each color light corresponds to the detection range, and the resolution that can be used for detecting the incident light amount can be made common and maximized. In the optical sensors 42c to 44c, the light amount can be detected with high accuracy.
  • the characteristics of the light quantity limiting members 42b to 44b are shown in correspondence with the characteristics of FIGS. 2 and 3, but the characteristics of the light quantity limiting members 42b to 44b are the light emission ratios of the LEDs 42 to 44 and the characteristics. What is necessary is just to set according to the sensor sensitivity ratio of the optical sensors 42c-44c.
  • the attenuation rate of the light quantity limiting member 44b with respect to the B-LED 44 having the highest efficiency.
  • the characteristics of the optical sensors 42c to 44c the sensitivity to the blue (B) light is lower than the sensitivity to the green (G) light.
  • the light amount limitation on the G-LED 43 and the B-LED 44 is limited.
  • the characteristics (attenuation rate) of the members 43b and 44b may be made similar, and the characteristics (attenuation rate) of the light quantity limiting member 42b with respect to the R-LED 42 may be reduced.
  • the example in which the light quantity limiting members 42b to 44b are provided in the respective optical sensors 42c to 44c has been described.
  • either one or two of the optical sensors 42c to 44c are provided with a light quantity limiting member. Even if light is incident, it is clear that a certain degree of effect can be obtained.
  • each LED is incident on each optical sensor via each light quantity limiting member, and each light sensor is controlled by individually controlling the characteristics of each light quantity limiting member. It is possible to allow light having an appropriate light amount level to enter. Thereby, it is possible to make the use maximum light quantity of each LED and the detection range of an optical sensor substantially correspond. That is, regardless of the light emission ratio of the LED and the characteristics of the optical sensor, each optical sensor can determine the amount of incident light with the same and maximum resolution. In this way, the photometric accuracy by each optical sensor can be improved, and the light quantity ratio of each LED can be controlled with high accuracy, for example, to the optimum color balance for the connected endoscope.
  • Modification 5 to 7 are explanatory diagrams for explaining modifications of the present embodiment.
  • the modification of FIG. 5 shows an example in which a wavelength cut filter is employed.
  • a wavelength cut filter 67 and a light amount limiting member 62 are provided between the LEDs 42 to 44 and the optical sensors 42c to 44c, respectively.
  • the light emitted from the LEDs 42 to 44 enters the optical sensors 64 via the wavelength cut filters 67 and the light quantity limiting members 62.
  • FIG. 5 corresponds to the G light
  • the light amount limiting member 62 and the optical sensor 64 are examples that are the light amount limiting member 43b and the optical sensor 43c of FIG. 1, respectively.
  • the wavelength cut filter 67 provided for each of the optical sensors 42c to 44c restricts the wavelength of light incident on each of the optical sensors 42c to 44c, and allows only light of the corresponding wavelength to pass therethrough. That is, the wavelength cut filter 67 provided corresponding to the optical sensor 42c allows only red (R) light to pass and blocks other color light from passing. Similarly, the wavelength cut filter 67 provided corresponding to the optical sensor 43c allows only green (G) light to pass therethrough and blocks the passage of other color lights. Similarly, the wavelength cut filter 67 provided corresponding to the optical sensor 44c allows only blue (B) light to pass and blocks other color light from passing.
  • each optical sensor 42c to 44c receives leakage light from an LED other than the inspection target, it is extremely difficult for each of the optical sensors 42c to 44c to accurately detect the light amount of each of the detection target LEDs.
  • a wavelength cut filter 67 is provided corresponding to each of the optical sensors 42c to 44c, and prevents leakage light from an LED other than the inspection target from entering each of the optical sensors 42c to 44c. .
  • each light sensor 42c to 44c can detect the light emission amount of the LED to be inspected with high accuracy.
  • FIG. 5 shows an example in which the wavelength cut filter and the light quantity limiting member are combined, the light quantity limiting members 42b to 44b themselves may have wavelength cut characteristics.
  • FIG. 6 shows an example in which a pinhole (aperture) member 68 is employed as the light quantity limiting member.
  • FIG. 6 corresponds to the G light
  • the pinhole member 68 and the optical sensor 64 show examples of the light quantity limiting member 43b and the optical sensor 43c of FIG. 1, respectively.
  • the pinhole member 68 has an opening 68a having a predetermined opening diameter. The amount of passing light is limited according to the opening diameter of the opening 68a.
  • the aperture diameters of the pinhole members which are the respective light quantity limiting members 42b to 44b, are appropriately set, so that all the optical sensors 42c to 44c are dynamically adjusted. Light of a level corresponding to the range can be made incident, and the amount of light emitted from each of the LEDs 42 to 44 can be detected with high accuracy.
  • FIG. 7 shows another modification example, in which a mesh member 71 is employed as the light quantity limiting member.
  • the mesh member 71 has slits 71a formed at appropriate intervals, and the amount of light passing therethrough can be limited by the interval of the slits 71a and the slit size. In this case, the same effect as that obtained when the pinhole member is employed can be obtained.
  • FIG. 8 is an explanatory diagram for explaining a second embodiment of the present invention.
  • a light guide is employed as the light quantity limiting member.
  • FIG. 8 shows only the configuration of an optical system that detects the light amount of each LED in the light source device.
  • the light source device in the present embodiment includes a light source unit 81 that emits light to an endoscope or the like and three sensors 83R, 83G, and 83B.
  • the light source unit 81 is provided with three R-LEDs 81R, G-LEDs 81G, and B-LEDs 81B that respectively emit R, G, and B light.
  • Lenses 83R, 83G, and 83B are disposed on the optical axes of the emitted light from the LEDs 81R, 81G, and 81B, respectively.
  • Each of the lenses 83R, 83G, 83B converts the light emitted from the LEDs 81R, 81G, 81B into substantially parallel light and emits the light.
  • LEDs 81R, 81G, and 81B Light emitted from these LEDs 81R, 81G, and 81B is synthesized by an optical path portion configured by dichroic filters 84a and 84b similar to those in the first embodiment. The combined light is emitted to an endoscope or the like (not shown) through a lens 86.
  • the light guide members and the incident end surfaces of the light guides 87R, 87G, and 87B that are also the light amount limiting members are desired.
  • Light emitted from the LEDs 81R, 81G, and 81B is incident on the incident end faces of the light guides 87R, 87G, and 87B, transmitted through the light guides 87R, 87G, and 87B, and then transmitted to the light guides 87R, 87G, and 87B.
  • the emission ends of the light guides 87R, 87G, and 87B are desired on the light receiving surfaces of the sensors 82R, 82G, and 82B.
  • the sensors 82R, 82G, and 82B measure the amount of light transmitted by the light guides 87R, 87G, and 87B. Can be detected.
  • the sensors 82R, 82G, and 82B may have the same configuration as the optical sensors 42c to 44c in FIG.
  • the incident end faces of the light guides 87R, 87G, and 87B are arranged in the vicinity of the LEDs 81R, 81G, and 81B, respectively, the LEDs 81R, 81G, and 81B lead to the lenses 83R, 83G, and 83B. If the sensor 82R, 82G, or 82B can supply light that can detect the amount of light emitted from each of the LEDs 81R, 81G, and 81B at a position other than the optical path, the incident end faces of the light guides 87R, 87G, and 87B are appropriately positioned. Can be arranged.
  • the attenuation of light transmitted by the light guides 87R, 87G, and 87B by changing the number (diameter) of the light guides 87 and the length of the light guides 87. .
  • the sensors 82R, 82G having the same characteristics are changed.
  • 82B can be made to receive light having substantially the same amount of incident light. Accordingly, the sensors 82R, 82G, and 82B can be operated with the same resolution, and the amount of light emitted from the LEDs 81R, 81G, and 81B can be detected with high accuracy.
  • the light emitted from the LEDs 81R, 81G, and 81B is guided to the sensors 82R, 82G, and 82B by the light guides 87R, 87G, and 87B, so that the arrangement of the sensors 82R, 82G, and 82B is performed.
  • the degree of freedom is high.
  • the light guides 87R, 87G, and 87B can guide the light from the LEDs 81R, 81G, and 81B to the sensors 82R, 82G, and 82B mounted on a substrate (not shown).
  • the light guide is used as an example of the light guide member.
  • the light guide member is not limited to the light guide.
  • a rod lens or the like may be used as long as it functions to transmit light from the incident end to the exit end, and the light transmission characteristics in the transmission path can be adjusted.
  • FIG. 9 is an explanatory diagram for explaining a third embodiment of the present invention. This embodiment shows an example in which a color sensor is used as a sensor. In FIG. 9, the same components as those of FIG.
  • This embodiment is different from the second embodiment only in that one color sensor 90 is used instead of the three sensors 82R, 82G, and 82B in FIG.
  • the color sensor 90 for example, one having three light receiving parts for red, green, and blue can be adopted, but is not limited to this.
  • the light exit surfaces of the light guides 87R, 87G, 87B for guiding the light emitted from the LEDs 81R, 81G, 81B are desired on the light incident surfaces of the three light receiving portions of the color sensor 90.
  • the color sensor 90 can determine the amounts of R, G, and B light incident on the R, G, and B light receiving portions.
  • the diameters and lengths of the light guides 87R, 87G, and 87B are appropriately set according to the light emission amounts of the LEDs 81R, 81G, and 81B and the sensitivity characteristics of the R, G, and B light receiving portions of the color sensor 90. By doing so, the resolution of the color sensor 90 with respect to the R, G, and B light can be made similar and maximized. Thereby, the color sensor 90 can detect the light emission amount of the LEDs 81R, 81G, and 81B with high accuracy.
  • FIG. 10 is an explanatory diagram for explaining a fourth embodiment of the present invention.
  • the present embodiment shows an example in which a color sensor is used as a sensor and LEDs that generate five colors of light are employed.
  • the five LEDs 81R, 81G, and the A-LED 81A that emits amber light and the V-LED 81V that emits violet light are added. This is an example applied to a light source section 93 having 81B, 81A, and 81V.
  • Lenses 83R, 83G, 83B, 83A, and 83V are disposed on the optical axes of the emitted light from the LEDs 81R, 81G, 81B, 81A, and 81V, respectively.
  • the lenses 83R, 83G, 83B, 83A, and 83V convert the light emitted from the LEDs 81R, 81G, 81B, 81A, and 81V into substantially parallel light and emit the light.
  • Light emitted from these LEDs 81R, 81G, 81B, 81A, and 81V is synthesized by an optical path portion constituted by dichroic filters 84a to 84d.
  • the combined light is emitted to an endoscope or the like (not shown) through a lens 86.
  • the incident end faces of the light guides 87R, 87G, 87B, 87A, 87V which are light quantity limiting members, are desired in the vicinity of the LEDs 81R, 81G, 81B, 81A, 81V.
  • an incident end face of the light guide 87G2 that is a light amount limiting member is also desired in the vicinity of the LED 81G.
  • the amount of light emitted from each LED is detected at a position other than the light path from each LED to each lens on the incident end face of the light guides 87R, 87G, 87B, 87A, 87V, 87G2. It may be arranged at any position where
  • light emitted from the five LEDs 81R, 81G, 81B, 81A, 81V is detected by the two color sensors 90, 91.
  • the color sensors 90 and 91 measure purple (V) and blue (B) as blue without distinction, and detect amber (A) and red (R) as red without distinction. Therefore, R, G, B light is made incident on one color sensor 90 via light guides 87R, 87G, 87B, and A, G, B is inputted to the other sensor 91 via light guides 87A, 87G2, 87V. V light is incident.
  • the light guides 87G and 87G2 transmit substantially the same amount of G light from the LED 81G.
  • the light amounts of the R, G, B, A, and V light emitted from the LEDs 81R, 81G, 81B, 81A, and 81V from the outputs of the sensors are determined. Can be sought.
  • the diameters and lengths of the light guides 87R, 87G, 87B, 87A, 87V, 87G2, the light emission amounts of the LEDs 81R, 81G, 81B, 81A, 81V and the R, G By appropriately setting according to the sensitivity characteristic of the B light receiving unit, the resolution of the color sensors 90 and 91 with respect to the R, G, and B light can be made comparable. Thereby, the color sensors 90 and 91 can detect the light emission amounts of the LEDs 81R, 81G, 81B, 81A, and 81V with high accuracy.
  • the present invention is not limited to the above-described embodiments as they are, and can be embodied by modifying constituent elements without departing from the scope of the invention in the implementation stage.
  • various inventions can be formed by appropriately combining a plurality of constituent elements disclosed in the above embodiments. For example, you may delete some components of all the components shown by embodiment.
  • constituent elements over different embodiments may be appropriately combined.

Landscapes

  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Optics & Photonics (AREA)
  • Surgery (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Public Health (AREA)
  • Biophysics (AREA)
  • Medical Informatics (AREA)
  • Radiology & Medical Imaging (AREA)
  • Molecular Biology (AREA)
  • Veterinary Medicine (AREA)
  • Biomedical Technology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Pathology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Heart & Thoracic Surgery (AREA)
  • General Health & Medical Sciences (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Astronomy & Astrophysics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Endoscopes (AREA)
  • Instruments For Viewing The Inside Of Hollow Bodies (AREA)

Abstract

 光源装置は、第1及び第2の半導体発光素子と、相互に同一の検出レンジを有し、第1及び第2の半導体発光素子の発光量をそれぞれ検出するための第1及び第2の光量検出部と、第1及び第2の半導体発光素子の使用最大光量である第1及び第2の光量を検出レンジ内の所定値に一致させるために、第1の半導体発光素子から第1の光量検出部に入射される第1の光の光量を制限する第1の光量制限部及び第2の半導体発光素子から第2の光量検出部に入射される第2の光の光量を制限する第2の光量制限部のうちの少なくとも一方を有する光量制限手段と、第1及び第2の光量検出部の検出結果に基づいて、第1の半導体発光素子及び第2の半導体発光素子の発光量を制御する制御部とを具備する。

Description

光源装置
 本発明は、内視鏡に好適な光源装置に関する。
 従来より、体腔内等へ細長の内視鏡を挿入して被検部位の観察や各種処置を行うようにした内視鏡が広く用いられている。このような内視鏡においては、腔内の撮影を行うために光源装置が採用される。近年、発光部としてLED等の半導体光源を採用した光源装置が用いられることがある。このような光源装置は、駆動パルスのデューティ比を変化させるPWM制御やLED電流を変化させる電流制御によって、LEDを調光制御することができる。
 このようなLED光源を利用した照明装置として、特開2009-192772号公報に開示された装置がある。特開2009-192772号公報の装置は、赤色光を発生するLED、緑色光を発生するLED及び青色光を発生するLEDからの光を合成して照明光を得るようになっており、各色のLEDの発光量を夫々検出する光センサを設けて、各光センサで検出された光量と光量目標値との差が小さくなるように、各LEDに供給する駆動電流を制御するものである。これにより、特開2009-192772号公報の装置では、所望の色バランスの照明光を得ることができる。
 しかしながら、各LEDは、発生する光の色によって特性が異なり、例えば、各色のLED毎に最大出射光量は相違する。また、色バランスの設定によっても、各色のLEDの使用最大光量が異なる。即ち、各光センサの入射光量は各色のLED毎に相互に相違する。これに対し、ダイナミックレンジが共通の同一特性の光センサを用いた場合、各光センサは入射光量の検出に利用可能な分解能が異なってしまう。各光センサにおいては、使用最大光量が最も大きいLEDの出射光量に合わせて、検出可能な入射光量の最大値を設定する必要があり、使用最大光量が比較的小さいLEDからの光を検出する光センサについては分解能が低く、十分な精度での光量検出ができないという問題があった。
 本発明は、ダイナミックレンジが共通の同一特性の光センサを用いた場合でも、高精度に各色光の光量を検出することができる光源装置を提供することを目的とする。
 本発明に係る光源装置は、第1の光量を使用最大光量とし第1の色の光を出射する第1の半導体発光素子と、第2の光量を使用最大光量とし第2の色の光を出射する第2の半導体発光素子と、前記第1の半導体発光素子の発光量を検出するための第1の光量検出部と、前記第1の光量検出部の検出レンジと同一の検出レンジを有し、前記第2の半導体発光素子の発光量を検出するための第2の光量検出部と、前記第1及び第2の光量を前記検出レンジ内の所定値に一致させるために、前記第1の半導体発光素子から前記第1の光量検出部に入射される前記第1の光の光量を制限する第1の光量制限部及び前記第2の半導体発光素子から前記第2の光量検出部に入射される前記第2の光の光量を制限する第2の光量制限部のうちの少なくとも一方を有する光量制限手段と、前記第1及び第2の光量検出部の検出結果に基づいて、前記第1の半導体発光素子及び前記第2の半導体発光素子の発光量を制御する制御部とを具備する。
 また、本発明に係る光源装置は、第1乃至第5の半導体発光素子と、相互に同一の検出レンジを有し、前記第1乃至第5の半導体発光素子の発光量を検出するための第1及び第2のカラーセンサと、前記第1乃至第3の半導体発光素子からの光を前記第1のカラーセンサの3つの受光部に伝達する第1乃至第3のライトガイドと、前記第3乃至第5の半導体発光素子からの光を前記第2のカラーセンサの3つの受光部に伝達する第4乃至第6のライトガイドと、前記第1及び第2のカラーセンサの検出結果に基づいて、前記第1乃至第5の半導体発光素子の発光量を制御する制御部と、を具備し、前記第1乃至第6のライトガイドは、前記第1乃至第5の半導体発光素子のそれぞれの使用最大光量を前記検出レンジ内の所定値に一致させるために、径及び長さの少なくとも一方が個別に調整される。
本発明の第1の実施の形態に係る光源装置を示すブロック図。 横軸に波長をとり縦軸に発光量をとって、内視鏡の所定の観察モードに適した照明光を得るために必要な各LEDの発光量の一例を示すグラフ。 横軸に波長をとり縦軸に相対感度をとって、光センサ42c~44cの分光感度特性を示すグラフ。 各LED42~44の出射光がそれぞれ光センサ42c~44cに入射する様子を模式的に示す説明図。 各LED42~44の出射光がそれぞれ光センサ42c~44cに入射する様子を模式的に示す説明図。 変形例を説明するための説明図。 変形例を説明するための説明図。 変形例を説明するための説明図。 本発明の第2の実施の形態を説明するための説明図。 本発明の第3の実施の形態を説明するための説明図。 本発明の第4の実施の形態を説明するための説明図。
 以下、図面を参照して本発明の実施の形態について詳細に説明する。
(第1の実施の形態)
 図1は本発明の第1の実施の形態に係る光源装置を示すブロック図である。本実施の形態は、光源装置を内視鏡、ビデオプロセッサ及びモニタを有する内視鏡システムに適用したものである。
 内視鏡システム1は、内視鏡10、ビデオプロセッサ20、モニタ30及び光源装置40によって構成される。内視鏡10は、先端側に、管腔内等に挿入可能な細長の挿入部11を有しており、基端側は、コネクタ12によって光源装置40に着脱自在に接続されるようになっている。
 また、内視鏡10はケーブル17及びコネクタ18によってビデオプロセッサ20に着脱自在に接続されるようになっている。このように、光源装置40及びビデオプロセッサ20には、異なる種別の内視鏡を装着することができるようになっている。
 挿入部11の先端には、管腔内等の被写体の映像を撮像するための撮像素子13及び光源装置40からの光を被写体に照射するためのレンズ14が配設されている。レンズ14によって、光源装置40からライトガイド15を介して伝送された照明光が被写体に照射される。撮像素子13は、CCDやCMOSセンサ等によって構成されており、被写体からの戻り光が撮像面に入射され、入射した被写体光学像を光電変換し、蓄積した電荷に基づく撮像出力を順次出力する。
 撮像素子13は、ビデオプロセッサ20から同期信号を含む駆動信号が供給されて動作し、撮像出力を信号線16を介してビデオプロセッサ20に供給する。
 ビデオプロセッサ20は、撮像出力に対して所定の信号処理を施してモニタ30に表示可能な映像信号を生成する。ビデオプロセッサ20からの映像信号は、ケーブル21を介してモニタ30に供給される。こうして、モニタ30の表示画面上において、撮像出力に基づく内視鏡画像が表示可能である。
 また、ビデオプロセッサ20は、撮像画像の明るさが目標の明るさとなるように、光源装置40を制御することができるようになっている。ビデオプロセッサ20は、撮像画像の明るさを目標明るさに調整するための情報を明るさ制御情報として光源装置40に出力するようになっている。明るさ制御情報はケーブル22を介して光源装置40の制御部41に供給される。
 光源装置40は、赤色光を発生するLED(R-LED)42、緑色光を発生するLED(G-LED)43及び青色光を発生するLED(B-LED)44を有している。なお、本実施の形態においては、3色の光を発生するLEDを採用する例について説明するが、色の種類及び色数は本実施の形態に限定されるものではない。本実施の形態では、複数種類のLEDを用いればよく、例えば図1に紫色(バイオレット)や琥珀色(アンバー)光を発生するLEDを追加してもよい。
 各LED42~44の出射光の光軸上にはそれぞれレンズ42a~44aが配置されている。各レンズ42a~44aは、それぞれLED42~44の出射光を略平行光に変換して出射する。R-LED42からの光を出射するレンズ42aの光軸上には、光路部を構成するダイクロイックフィルタ47,48が配置されている。ダイクロイックフィルタ47には、レンズ43aを介してG-LED43からの光も入射される。また、ダイクロイックフィルタ48には、レンズ44aを介してB-LED44からの光も入射される。
 ダイクロイックフィルタ47は、G-LED43からの光を反射して、R-LED42からの光を透過させる。ダイクロイックフィルタ48は、B-LED44からの光を反射して、ダイクロイックフィルタ47の透過光を透過させる。こうして、LED42~44の光がダイクロイックフィルタ47,48によって合成される。ダイクロイックフィルタ48からの合成光は、レンズ50を介してライトガイド15に入射するようになっている。なお、ダイクロイックフィルタ47,48の特性を適宜設定することによって、LED42~44の配置順を変更することも可能であるが、LED42~44を出射光の波長帯域順に配置した方がダイクロイックフィルタの特性の設定が容易である。
 各LED42~44は、LED駆動部46によって駆動されて点灯する。LED駆動部46は、制御部41に制御されて、各LEDを駆動するための駆動信号であるPWMパルスを発生するようになっている。なお、各LED42~44は、LED駆動部46からのPWMパルスのデューティ比及び電流量に応じた発光量で発光するようになっている。制御部41は、各LED42~44を制御するための調光情報をLED駆動部46に出力することで、PWMパルスのデューティ比及び電流レベルを制御して、各LED42~44を調光制御する。
 制御部41は、各LED42~44の発光量が、所定のカラーバランスを維持できるように、調光情報を発生する。各LED42~44のカラーバランスは、内視鏡10の分光感度特性によって決定する必要がある。光源装置40のメモリ部53には、内視鏡10の分光感度特性に応じて各LED42~44に発生させる光量比の情報が格納されている。制御部41は、メモリ部53に記憶された光量比の情報に基づいて各LED42~44を制御するための制御情報をLED駆動部46に出力するようになっている。
 なお、メモリ部53には、最適なカラーバランスを得るための各LEDの光量比の情報が記憶されているものとして説明したが、内視鏡10をビデオプロセッサ20や光源装置40に装着することによって、内視鏡10からこの光量比に関する情報を読み出して制御部41に設定するようにしてもよい。
 しかしながら、LEDは温度特性を有し、同一LED電流値であっても温度によって光量が変化する。LEDは、発光に伴って温度上昇する特性を有しているので、照明光量を正確に制御するためには、温度特性を考慮する必要がある。しかも、各色のLED毎に温度特性が異なることから、各LED毎に温度を測定する必要がある。しかし、光源装置40内ではLED42~44は比較的近接配置されており、各LED単体による温度変化を計測することは困難である。そこで、本実施の形態においては、各LEDの光量を測定して求めることで、電流値を制御するようになっている。
 この場合において、本実施の形態においては、各光センサとしてダイナミックレンジが共通の同一特性の光センサを用いる。この場合でも、各光センサに入射する光の入射光量が相互に略等しくなるように、入射光量制御を行うことで、各光センサの分解能を向上させるようになっている。
 各LED42~44のそれぞれの近傍には各LED42からの光の量を検出するための光センサ42c~44cが配設されている。光センサ42c~44cは、LED42~44の出射光の波長帯域で十分な感度を有する。光センサ42c~44cは、入射光強度に比例した出力信号を生成。光センサ 42c~44cの出力信号は制御部41に供給されるようになっている。
 本実施の形態においては、LED42と光センサ42cとの間には、光量制限部材42bが配置され、LED43と光センサ43cとの間には、光量制限部材43bが配置され、LED44と光センサ44cとの間には、光量制限部材44bが配置されている。
 光量制限部材42b~44bは、それぞれLED42~44の出射光の光量を調整して光センサ42c~44cに入射させることができるようになっている。例えば、光量制限部材42b~44bとしては、減光フィルタ(NDフィルタ)を採用することができる。本実施の形態においては、光量制限部材42b~44bは、それぞれ、LED42~44の発光強度に応じて光を減衰させる割合(減衰率)を調整可能に構成されている。
 図2は横軸に波長をとり縦軸に発光量をとって、内視鏡の所定の観察モードに適した照明光を得るために必要な各LEDの発光量の一例を示すグラフである。図2の曲線Tr,Tg,TbはそれぞれR-LED42,G-LED43及びB-LED44に必要な発光量を示している。図2に示すように、所定の観察モードに適した照明光を得るために必要な各LEDの発光量は相互に相違している。
 また、図3は横軸に波長をとり縦軸に相対感度をとって、光センサ42c~44cの分光感度特性を示すグラフである。本実施の形態においては、光センサ42c~44cとしては相互に同一特性のものを採用する。図3の実線は分光感度特性を示している。
 図4A、図4Bは各LED42~44の出射光がそれぞれ光センサ42c~44cに入射する様子を模式的に示す説明図である。なお、図4A、図4Bでは、光量制限部材62は光量制限部材42b~44bを代表して示すものであり、光センサ64は光センサ42c~44cを代表して示すものである。図4Aにおいて、左端の矢印61は各LED42~44の出射光を示している。LED42~44の各出射光は光量制限部材42b~44bに相当する光量制限部材62を介して光センサ42c~44cに相当する光センサ64に入射する。右側の細い矢印63はLED42~44の出射光が光量制限部材62によって減衰して光センサ64に入射することを示している。
 なお、図1の例においては、光量制限部材42b~44b及び光センサ42c~44cを各LED42~44の近傍に配置する例について説明したが、各LED42~44から各レンズ42a~44aに至る光路上以外の位置で、光センサ42c~44cが各LED42~44の出射光量を検出することができる位置であれば、適宜の位置に配置可能である。
 また、各LED42~44と各光センサ42c~44cまでのそれぞれの距離によっても、光の減衰量は変化する。図4Bはこの状態を示しており、各LED42~44に相当する光源65の各出射光は、矢印61,63,66の太さにて示すように、次第に減衰した後光量制限部材42b~44bに相当する光量制限部材62を介して光センサ42c~44cに相当する光センサ64に入射する。光源65から光センサ64までの距離が長い程、大きな減衰量で光が減衰して光センサ64に入射することを示している。
 なお、各LED42~44の位置及び光軸方向と、光量制限部材42b~44b及び光センサ42c~44cの位置及び光の入射面の角度によっても光の減衰量は変化するので、適宜の位置及び角度に設定した状態で、光量制限部材42b~44bの特性を制御する。
 本実施の形態においては、LED42~44からそれぞれの使用最大光量の光が出射された場合において、各光センサ42c~44cに、同一光量の光であって、各光センサ42c~44cの検出レンジに一致する光が入射するように、光量制限部材42b~44bの特性(減衰率)が設定される。
 いま、光センサ42c~44cとして、図3に示す特性を有する光センサを採用した場合には、各R,G,B光に対する各光センサ42c~44cの感度は、緑(G)光を基準(1)とすると、赤(R)光については0.2であり、青(B)光については0.6である。
 図3に示す所定の観察モードに適した各LED42~44の発光量の比(発光比率)が、G-LED42の発光量を基準(1)として、0.8対1対0.5であるものとする。この場合には、光量制限部材42b~44bは、それぞれ減衰率の比が(n÷0.2÷0.8)対n対(n÷0.6÷0.5)となるように設定する。下記表1はこのような減衰比の関係を示している。
[表1]
Figure JPOXMLDOC01-appb-I000001
 例えば、表1の例では、G-LED43からのG光を光量制限部材43bによって1/1000に減衰させる場合には、R光については、光量制限部材42bによって(1/1000)×5×5/4=6.25/1000だけ減衰させればよく、B光については、光量制限部材44bによって(1/1000)×(5/3)×2=1/300だけ減衰させればよい。
 表1に対応する減衰比の光量制限部材42b~44bを採用することにより、図2の特性で各LED42~44を発光させ、図3と同一特性の光センサ42c~44cを用いた場合でも、各光センサ42c~44cには、各色光の最大入射光量が検知レンジに対応した光が入射することになり、入射光量の検出に利用可能な分解能を共通で且つ最大にすることができ、各光センサ42c~44cにおいて、高精度の光量検出が可能である。
 また、表1では、各光量制限部材42b~44bの特性を図2及び図3の特性に対応させて示したが、各光量制限部材42b~44bの特性は、各LED42~44の発光比率及び光センサ42c~44cのセンサ感度比に応じて設定すればよい。
 なお、一般的には、効率が最も高いB-LED44に対する光量制限部材44bの減衰率を最も大きくすることが考えられる。また、一般的に光センサ42c~44cの特性としては、青(B)光に対する感度が、緑(G)光に対する感度よりも低いので、結果的に、G-LED43及びB-LED44に対する光量制限部材43b,44bの特性(減衰率)を同程度にし、R-LED42に対する光量制限部材42bの特性(減衰率)を小さくするようにしてもよい。
 なお、図1の例では、各光センサ42c~44cにそれぞれ光量制限部材42b~44bを設ける例について説明したが、各光センサ42c~44cのいずれか1つ又は2つに光量制限部材を介して光を入射させるようにしても、ある程度の効果が得られることは明らかである。
 このように本実施の形態においては、各LEDの光を各光量制限部材を介して各光センサに入射させるようにしており、各光量制限部材の特性を個別に制御することで、各光センサに適宜の光量レベルの光を入射させることができる。これにより、各LEDの使用最大光量と光センサの検知レンジとを略一致させることが可能である。即ち、LEDの発光比率及び光センサの特性に拘わらず、各光センサが入射光の光量を同様で且つ最大の分解能で求めることができる。こうして、各光センサによる測光精度を向上させることができ、各LEDの光量比を、例えば接続された内視鏡に最適なカラーバランスに高精度に制御することができる。
 なお、上記実施の形態においては、3個のLEDによる3つの発光部を用いた光源の例を説明したが、2個又は4個以上の発光部を有する光源に適用することができることは明らかである。
(変形例)
 図5乃至図7は本実施の形態の変形例を説明するための説明図である。図5の変形例は、波長カットフィルタを採用した例を示している。各LED42~44と各光センサ42c~44cとの間には、それぞれ波長カットフィルタ67及び光量制限部材62が設けられる。本変形例においては、図5に示すように、各LED42~44の出射光は、各波長カットフィルタ67及び各光量制限部材62を介して各光センサ64に入射されることになる。なお、図5はG光に対応したものであり、光量制限部材62及び光センサ64はそれぞれ図1の光量制限部材43b及び光センサ43cである例を示している。
 各光センサ42c~44cに対してそれぞれ設けられた波長カットフィルタ67は、各光センサ42c~44cに入射する光の波長を制限し、対応する波長の光のみを通過させる。即ち、光センサ42cに対応して設けられた波長カットフィルタ67は赤(R)光のみを通過させ、他の色光の通過を阻止する。同様に、光センサ43cに対応して設けられた波長カットフィルタ67は緑(G)光のみを通過させ、他の色光の通過を阻止する。同様に、光センサ44cに対応して設けられた波長カットフィルタ67は青(B)光のみを通過させ、他の色光の通過を阻止する。
 比較的狭い範囲に複数のLED及び光センサが配置されている場合には、各光センサに検査対象以外のLEDからの漏れ光が入射する虞れがある。各光センサ42c~44cが検査対象以外のLEDからの漏れ光を受光した場合には、各光センサ42c~44cにおいて、検知対象の各LEDの光量を正確に検知することは極めて困難となる。
 そこで、本変形例においては、各光センサ42c~44cに対応させて波長カットフィルタ67を設けており、各光センサ42c~44cに検査対象以外のLEDからの漏れ光が入射することを阻止する。これにより、本変形例では、各光センサ42c~44cにおいて、検査対象のLEDの発光量を高精度に検知することが可能である。
 なお、図5では波長カットフィルタと光量制限部材とを組み合わせた例を示したが、光量制限部材42b~44b自体に波長カット特性を持たせるようにしてもよい。
 図6は光量制限部材として、ピンホール(絞り)部材68を採用した例を示している。なお、図6はG光に対応したものであり、ピンホール部材68及び光センサ64はそれぞれ図1の光量制限部材43b及び光センサ43cである例を示している。ピンホール部材68は、所定の開口径の開口部68aを有する。開口部68aの開口径に応じて通過光量は制限される。LED42~44の発光量及び光センサ42c~44cの感度特性に基づいて、各光量制限部材42b~44bであるピンホール部材の開口径を適宜設定することで、全ての光センサ42c~44cにダイナミックレンジに対応したレベルの光を入射させることができ、各LED42~44の出射光量を高精度に検出することが可能である。
 また、図7は他の変形例を示しており、光量制限部材として、メッシュ部材71を採用した例を示している。メッシュ部材71は、適宜の間隔でスリット71aが形成されており、スリット71aの間隔及びスリットサイズによって、通過光量を制限することができる。この場合にも、ピンホール部材を採用した場合と同様の効果が得られる。
(第2の実施の形態)
 図8は本発明の第2の実施の形態を説明するための説明図である。本実施の形態は光量制限部材として、ライトガイドを採用したものである。なお、図8は光源装置のうち各LEDの光量を検出する光学系の構成のみを示している。
 本実施の形態における光源装置は、光を内視鏡等に出射する光源部81と3つのセンサ83R,83G,83Bとを有している。光源部81には、R,G,B光をそれぞれ出射する3つのR-LED81R,G-LED81G,B-LED81Bが設けられている。各LED81R,81G,81Bの出射光の光軸上にはそれぞれレンズ83R,83G,83Bが配置されている。各レンズ83R,83G,83Bは、それぞれLED81R,81G,81Bの出射光を略平行光に変換して出射する。これらのLED81R,81G,81Bの出射光は、第1の実施の形態と同様のダイクロイックフィルタ84a,84bにより構成される光路部によって合成される。この合成光はレンズ86を介して図示しない内視鏡等に出射させるようになっている。
 本実施の形態においては、各LED81R,81G,81Bの近傍には、導光部材であり、且つ光量制限部材でもあるライトガイド87R,87G,87Bの入射端面がそれぞれ望んでいる。各LED81R,81G,81Bからの出射光は、各ライトガイド87R,87G,87Bの入射端面に入射し、それぞれライトガイド87R,87G,87Bによって伝送されてライトガイド87R,87G,87Bの出射端に導かれる。
 ライトガイド87R,87G,87Bの出射端は、各センサ82R,82G,82Bの受光面に望んでおり、センサ82R,82G,82Bは、ライトガイド87R,87G,87Bによって伝送された光の光量を検出することができる。なお、センサ82R,82G,82Bとしては、図1の光センサ42c~44cと同様の構成のものを採用することができる。
 なお、図8では、各ライトガイド87R,87G,87Bの入射端面をそれぞれLED81R,81G,81Bの近傍に配置する例について示したが、LED81R,81G,81Bから各レンズ83R,83G,83Bに至る光路上以外の位置で、センサ82R,82G,82Bにおいて各LED81R,81G,81Bの出射光量を検出可能な光を供給できる位置であれば、ライトガイド87R,87G,87Bの入射端面を適宜の位置に配置可能である。
 本実施の形態においては、ライトガイド87の本数(径)及びライトガイド87の長さを変化させることで、ライトガイド87R,87G,87Bによって伝送する光の減衰量を制御することが可能である。LED81R,81G,81Bの発光量及びセンサ82R,82G,82Bの分光感度に応じて、ライトガイド87R,87G,87Bの径及び長さの少なくとも一方を変更することで、同一特性のセンサ82R,82G,82Bに略同様の入射光量の光を入射させることが可能である。これにより、各センサ82R,82G,82Bを同様の分解能で動作させることができ、各LED81R,81G,81Bの出射光量を高精度に検出することが可能である。
 なお、本実施の形態においては、LED81R,81G,81Bの出射光をライトガイド87R,87G,87Bによってセンサ82R,82G,82Bに導くようになっていることから、センサ82R,82G,82Bの配置の自由度が高いという利点がある。例えば、ライトガイド87R,87G,87Bによって各LED81R,81G,81Bからの光を図示しない基板上に搭載されたセンサ82R,82G,82Bまで導くことも可能である。
 また、本実施の形態においては、導光部材の一例としてライトガイドを用いて説明したが、導光部材はライトガイドに限定されるものではない。例えば、導光部材としては、ロッドレンズなど、光を入射端から出射端へ伝送する機能を果たし、伝達経路での光の伝達特性が調整可能であればよい。
(第3の実施の形態)
 図9は本発明の第3の実施の形態を説明するための説明図である。本実施の形態はセンサとしてカラーセンサを用いた例を示している。図9において図8と同一の構成要素には同一符号を付して説明を省略する。
 本実施の形態は、図8の3つのセンサ82R,82G,82Bに代えて1つのカラーセンサ90を採用した点が第2の実施の形態と異なるのみである。カラーセンサ90としては、例えば、赤、緑、青用の3つ受光部を有するものを採用することができるが、これに限定されるものではない。
 LED81R,81G,81Bからの出射光を導くライトガイド87R,87G,87Bの各出射面は、カラーセンサ90の3つの受光部の各入射面に望んでいる。カラーセンサ90は、R,G,B光の各受光部に入射したR,G,B光の光量を求めることができるようになっている。
 本実施の形態においても、ライトガイド87R,87G,87Bの径及び長さを、LED81R,81G,81Bの発光量及びカラーセンサ90のR,G,B受光部の感度特性に応じて、適宜設定することによって、カラーセンサ90のR,G,B光に対する分解能を同程度で且つ最大にすることができる。これにより、カラーセンサ90は、LED81R,81G,81Bの発光量を、高精度に検出することが可能である。
 他の構成、作用及び効果は、第2の実施の形態と同様である。
(第4の実施の形態)
 図10は本発明の第4の実施の形態を説明するための説明図である。図10において図9と同一の構成要素には同一符号を付して説明を省略する。本実施の形態はセンサとしてカラーセンサを用いると共に、5色の色光を発生するLEDを採用した例を示している。
 本実施の形態はR,G,B光を出射する3つのLED81R,81G,81Bの他にアンバー光を出射するA-LED81A及びバイオレット光を出射するV-LED81Vを加えた5つのLED81R,81G,81B,81A,81Vを有する光源部93に適用した例である。
 各LED81R,81G,81B,81A,81Vの出射光の光軸上にはそれぞれレンズ83R,83G,83B,83A,83Vが配置されている。各レンズ83R,83G,83B,83A,83Vは、それぞれLED81R,81G,81B,81A,81Vの出射光を略平行光に変換して出射する。これらのLED81R,81G,81B,81A,81Vの出射光は、ダイクロイックフィルタ84a~84dにより構成される光路部によって合成される。この合成光はレンズ86を介して図示しない内視鏡等に出射させるようになっている。
 本実施の形態においても、各LED81R,81G,81B,81A,81Vの近傍には、光量制限部材であるライトガイド87R,87G,87B,87A,87Vの入射端面が望んでいる。更に、本実施の形態においては、LED81Gの近傍には光量制限部材であるライトガイド87G2の入射端面も望んでいる。
 なお、本実施の形態においても、ライトガイド87R,87G,87B,87A,87V,87G2の入射端面を、各LEDから各レンズに至る光路上以外の位置で、各LEDの出射光量を検出することができるいずれの位置に配置してもよい。
 本実施の形態においては、5つのLED81R,81G,81B,81A,81Vからの出射光を2つのカラーセンサ90,91によって検出する。カラーセンサ90,91は、紫(V)と青(B)については、区別無く青色として計測し、アンバー(A)と赤(R)についても区別無く赤として検出する。そこで、一方のカラーセンサ90に、ライトガイド87R,87G,87Bを介してR,G,B光を入射させると共に、他方のセンサ91に、ライトガイド87A,87G2,87Vを介してA,G,V光を入射させる。この場合において、ライトガイド87G,87G2はLED81Gから略同一の光量のG光を伝送する。従って、カラーセンサ90,91に入射されるG光を基準とすることで、各センサの出力からLED81R,81G,81B,81A,81Vが出射したR,G,B,A,V光の光量を求めることができる。
 本実施の形態においても、ライトガイド87R,87G,87B,87A,87V,87G2の径及び長さを、LED81R,81G,81B,81A,81Vの発光量及びカラーセンサ90,91のR,G,B受光部の感度特性に応じて、適宜設定することによって、カラーセンサ90,91のR,G,B光に対する分解能を同程度にすることができる。これにより、カラーセンサ90,91は、LED81R,81G,81B,81A,81Vの発光量を、高精度に検出することが可能である。
 このように、本実施の形態においても、上記各実施の形態と同様の効果を得ることができる。更に、本実施の形態においては、2個のカラーセンサを用いて、5色のLEDの発光量を高精度に求めることが可能である。
 本発明は、上記各実施形態にそのまま限定されるものではなく、実施段階ではその要旨を逸脱しない範囲で構成要素を変形して具体化できる。また、上記各実施形態に開示されている複数の構成要素の適宜な組み合わせにより、種々の発明を形成できる。例えば、実施形態に示される全構成要素の幾つかの構成要素を削除してもよい。さらに、異なる実施形態にわたる構成要素を適宜組み合わせてもよい。

 本出願は、2014年4月17日に日本国に出願された特願2014-85818号を優先権主張の基礎として出願するものであり、上記の開示内容は、本願明細書、請求の範囲に引用されるものとする。

Claims (10)

  1.  第1の光量を使用最大光量とし第1の色の光を出射する第1の半導体発光素子と、
     第2の光量を使用最大光量とし第2の色の光を出射する第2の半導体発光素子と、
     前記第1の半導体発光素子の発光量を検出するための第1の光量検出部と、
     前記第1の光量検出部の検出レンジと同一の検出レンジを有し、前記第2の半導体発光素子の発光量を検出するための第2の光量検出部と、
     前記第1及び第2の光量を前記検出レンジ内の所定値に一致させるために、前記第1の半導体発光素子から前記第1の光量検出部に入射される前記第1の光の光量を制限する第1の光量制限部及び前記第2の半導体発光素子から前記第2の光量検出部に入射される前記第2の光の光量を制限する第2の光量制限部のうちの少なくとも一方を有する光量制限手段と、
     前記第1及び第2の光量検出部の検出結果に基づいて、前記第1の半導体発光素子及び前記第2の半導体発光素子の発光量を制御する制御部と
     を具備したことを特徴とする光源装置。
  2.  前記第1及び第2の光量制限部は、基準光量に対する前記第1の半導体発光素子の発光量の比率である第1の発光比率と前記第1の光量検出部の分光感度特性との関係、及び前記基準光量に対する第2の半導体発光素子の発光量の比率である第2の発光比率と前記第2の光量検出部の分光感度特性との関係に基づいて光の減衰率が決定される
     ことを特徴とする請求項1に記載の光源装置。
  3.  前記第1及び第2の光量制限部の少なくとも一方は、減光フィルタによって構成される
     ことを特徴とする請求項1又は2に記載の光源装置。
  4.  前記第1及び第2の光量制限部の少なくとも一方は、前記第1及び第2の光量検出部に検出対象の色の光のみを通過させる波長フィルタを含む
     ことを特徴とする請求項3に記載の光源装置。
  5.  前記第1及び第2の光量制限部の少なくとも一方は、前記発光比率に基づいた大きさの開口が形成されたスリットによって構成される
     ことを特徴とする請求項1又は2に記載の光源装置。
  6.  前記第1及び第2の光量制限部の少なくとも一方は、前記第1及び第2の光量検出部に検出対象の光を伝達するものであって、前記第1及び第2の光量を前記検出レンジ内の所定値に一致させるために、光の伝達特性が調整された導光部材によって構成される
     ことを特徴とする請求項1又は2に記載の光源装置。
  7.  前記導光部材はライトガイドファイバであり、該ライトガイドファイバは、前記光の伝達特性として径および長さの少なくとも一方が調整されている
     ことを特徴とする請求項6に記載の光源装置。
  8.  前記第1及び第2の光量検出部は、複数の光の光量を検出可能なカラーセンサによって構成される
     ことを特徴とする請求項1又は2に記載の光源装置。
  9.  第1乃至第5の半導体発光素子と、
     相互に同一の検出レンジを有し、前記第1乃至第5の半導体発光素子の発光量を検出するための第1及び第2のカラーセンサと、
     前記第1乃至第3の半導体発光素子からの光を前記第1のカラーセンサの3つの受光部に伝達する第1乃至第3のライトガイドと、
     前記第3乃至第5の半導体発光素子からの光を前記第2のカラーセンサの3つの受光部に伝達する第4乃至第6のライトガイドと、
     前記第1及び第2のカラーセンサの検出結果に基づいて、前記第1乃至第5の半導体発光素子の発光量を制御する制御部と、を具備し、
     前記第1乃至第6のライトガイドは、前記第1乃至第5の半導体発光素子のそれぞれの使用最大光量を前記検出レンジ内の所定値に一致させるために、径及び長さの少なくとも一方が個別に調整される
     ことを特徴とする光源装置。
  10.  前記第3の半導体発光素子は緑色光を発生し、
     前記第1及び第2のカラーセンサは、共通に受光する前記第3の半導体発光素子からの緑色光を基準に第1,第2,第4及び第5の半導体発光素子の発光量を求める
     ことを特徴とする請求項9に記載の光源装置。
PCT/JP2015/059325 2014-04-17 2015-03-26 光源装置 WO2015159676A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2015541358A JP5914770B2 (ja) 2014-04-17 2015-03-26 光源装置
CN201580003301.2A CN105873495B (zh) 2014-04-17 2015-03-26 光源装置
EP15779601.2A EP3132738A4 (en) 2014-04-17 2015-03-26 Light source device
US15/196,756 US9766447B2 (en) 2014-04-17 2016-06-29 Light source apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-085818 2014-04-17
JP2014085818 2014-04-17

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/196,756 Continuation US9766447B2 (en) 2014-04-17 2016-06-29 Light source apparatus

Publications (1)

Publication Number Publication Date
WO2015159676A1 true WO2015159676A1 (ja) 2015-10-22

Family

ID=54323887

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/059325 WO2015159676A1 (ja) 2014-04-17 2015-03-26 光源装置

Country Status (5)

Country Link
US (1) US9766447B2 (ja)
EP (1) EP3132738A4 (ja)
JP (1) JP5914770B2 (ja)
CN (1) CN105873495B (ja)
WO (1) WO2015159676A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017148432A (ja) * 2016-02-26 2017-08-31 富士フイルム株式会社 内視鏡用光源装置
CN108541217A (zh) * 2015-12-28 2018-09-14 索尼公司 光源设备与成像系统
WO2019092948A1 (ja) * 2017-11-09 2019-05-16 オリンパス株式会社 内視鏡システム
WO2020100184A1 (ja) * 2018-11-12 2020-05-22 オリンパス株式会社 内視鏡用光源装置、内視鏡装置及び内視鏡用光源装置の作動方法
WO2020217852A1 (ja) * 2019-04-22 2020-10-29 富士フイルム株式会社 内視鏡用光源装置、及び、内視鏡システム

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6099831B2 (ja) 2014-08-22 2017-03-22 オリンパス株式会社 光源装置
JP6916768B2 (ja) * 2018-09-05 2021-08-11 富士フイルム株式会社 内視鏡システム
JP7502280B2 (ja) * 2018-09-27 2024-06-18 インテュイティブ サージカル オペレーションズ, インコーポレイテッド 内視鏡カメラシステムにおける照明の閉ループ制御

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014000301A (ja) * 2012-06-20 2014-01-09 Fujifilm Corp 光源装置及び内視鏡システム
JP2015085097A (ja) * 2013-11-01 2015-05-07 富士フイルム株式会社 内視鏡用光源装置及び内視鏡システム

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2842407B1 (fr) * 2002-07-18 2005-05-06 Mauna Kea Technologies "procede et appareillage d'imagerie de fluorescence confocale fibree"
US7108413B2 (en) * 2004-03-11 2006-09-19 Avago Technologies Ecbu Ip (Singapore) Pte. Ltd. Sampling for color control feedback using an optical cable
US7218656B2 (en) * 2004-05-26 2007-05-15 Avago Technologies Ecbu Ip (Singapore) Pte. Ltd. Control of spectral content of a laser diode light source
KR20080070659A (ko) * 2005-10-19 2008-07-30 코닌클리즈케 필립스 일렉트로닉스 엔.브이. 컬러 조명 디바이스 및 컬러 조명 디바이스의 광출력을제어하는 방법
JP4525767B2 (ja) * 2008-02-14 2010-08-18 ソニー株式会社 照明装置及び表示装置
US9531156B2 (en) * 2008-06-18 2016-12-27 Versatile Power, Inc. Endoscopic light source
DE102008059639A1 (de) * 2008-11-28 2010-06-02 Osram Gesellschaft mit beschränkter Haftung Verfahren und Vorrichtung zum Farbpunktabgleich einer Leuchteinheit
JP4812141B2 (ja) * 2010-03-24 2011-11-09 Necシステムテクノロジー株式会社 分析装置
TWI524240B (zh) * 2010-11-01 2016-03-01 友達光電股份有限公司 光感測控制系統

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014000301A (ja) * 2012-06-20 2014-01-09 Fujifilm Corp 光源装置及び内視鏡システム
JP2015085097A (ja) * 2013-11-01 2015-05-07 富士フイルム株式会社 内視鏡用光源装置及び内視鏡システム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3132738A4 *

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108541217A (zh) * 2015-12-28 2018-09-14 索尼公司 光源设备与成像系统
JP2017148432A (ja) * 2016-02-26 2017-08-31 富士フイルム株式会社 内視鏡用光源装置
WO2019092948A1 (ja) * 2017-11-09 2019-05-16 オリンパス株式会社 内視鏡システム
JPWO2019092948A1 (ja) * 2017-11-09 2020-11-12 オリンパス株式会社 内視鏡システム、内視鏡画像の生成方法及びプロセッサ
US11497390B2 (en) 2017-11-09 2022-11-15 Olympus Corporation Endoscope system, method of generating endoscope image, and processor
WO2020100184A1 (ja) * 2018-11-12 2020-05-22 オリンパス株式会社 内視鏡用光源装置、内視鏡装置及び内視鏡用光源装置の作動方法
CN113260297A (zh) * 2018-11-12 2021-08-13 奥林巴斯株式会社 内窥镜用光源装置、内窥镜装置及内窥镜用光源装置的工作方法
CN113260297B (zh) * 2018-11-12 2024-06-07 奥林巴斯株式会社 内窥镜装置、内窥镜用光源装置及其工作方法以及光源调整方法
US12078796B2 (en) 2018-11-12 2024-09-03 Olympus Corporation Endoscope light source device, endoscope apparatus, operating method of endoscope light source device, and light amount adjusting method
WO2020217852A1 (ja) * 2019-04-22 2020-10-29 富士フイルム株式会社 内視鏡用光源装置、及び、内視鏡システム
JPWO2020217852A1 (ja) * 2019-04-22 2020-10-29
JP7163487B2 (ja) 2019-04-22 2022-10-31 富士フイルム株式会社 内視鏡用光源装置、及び、内視鏡システム

Also Published As

Publication number Publication date
US20160306163A1 (en) 2016-10-20
CN105873495B (zh) 2018-09-14
EP3132738A1 (en) 2017-02-22
US9766447B2 (en) 2017-09-19
JP5914770B2 (ja) 2016-05-11
CN105873495A (zh) 2016-08-17
EP3132738A4 (en) 2018-01-10
JPWO2015159676A1 (ja) 2017-04-13

Similar Documents

Publication Publication Date Title
JP5914770B2 (ja) 光源装置
JP5789348B2 (ja) 光源装置
EP2904961B1 (en) Endoscope device
US10524646B2 (en) Light source apparatus
JP5932748B2 (ja) 内視鏡システム
JP6072369B2 (ja) 内視鏡装置
US20160022126A1 (en) Endoscopic light source and imaging system
WO2013035531A1 (ja) 内視鏡システム及び画像表示方法
JP6169310B1 (ja) 内視鏡システム
US20120310047A1 (en) Light source apparatus
JP6383370B2 (ja) 蛍光観察装置
US20140012112A1 (en) Endoscope system, processor device thereof, and method for controlling endoscope system
JP5881658B2 (ja) 内視鏡システム及び光源装置
JP5948191B2 (ja) 内視鏡用プローブ装置及び内視鏡システム
JP2020156561A (ja) 硬性内視鏡システム
JP2018198189A (ja) 照明装置
JP6138386B1 (ja) 内視鏡装置及び内視鏡システム
JPWO2016098444A1 (ja) 内視鏡システム
JP2018126174A (ja) 内視鏡装置
WO2017047141A1 (ja) 内視鏡装置及び内視鏡システム
JP2016144694A (ja) 内視鏡システム

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2015541358

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15779601

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2015779601

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE