WO2015158089A1 - 透明显示装置及其制作方法 - Google Patents

透明显示装置及其制作方法 Download PDF

Info

Publication number
WO2015158089A1
WO2015158089A1 PCT/CN2014/084934 CN2014084934W WO2015158089A1 WO 2015158089 A1 WO2015158089 A1 WO 2015158089A1 CN 2014084934 W CN2014084934 W CN 2014084934W WO 2015158089 A1 WO2015158089 A1 WO 2015158089A1
Authority
WO
WIPO (PCT)
Prior art keywords
type semiconductor
light
display device
area
solar cell
Prior art date
Application number
PCT/CN2014/084934
Other languages
English (en)
French (fr)
Inventor
刘利宾
Original Assignee
京东方科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US14/436,570 priority Critical patent/US9502479B2/en
Publication of WO2015158089A1 publication Critical patent/WO2015158089A1/zh

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/60OLEDs integrated with inorganic light-sensitive elements, e.g. with inorganic solar cells or inorganic photodiodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/121Active-matrix OLED [AMOLED] displays characterised by the geometry or disposition of pixel elements
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/121Active-matrix OLED [AMOLED] displays characterised by the geometry or disposition of pixel elements
    • H10K59/1213Active-matrix OLED [AMOLED] displays characterised by the geometry or disposition of pixel elements the pixel elements being TFTs
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/126Shielding, e.g. light-blocking means over the TFTs
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/13Active-matrix OLED [AMOLED] displays comprising photosensors that control luminance
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/131Interconnections, e.g. wiring lines or terminals

Definitions

  • Embodiments of the present invention relate to a transparent display device and a method of fabricating the same. Background technique
  • Transparent display has a wide range of applications, can be combined with multi-touch, intelligent display and other technologies, as a terminal for public information display, used in department store display windows, refrigerator door perspective, car front windshield, vending machines and other fields, Have synergistic effects such as display, interaction, and advertising. Due to its unique use scene and intelligent scene switching, the transparent display products have attracted more and more attention in the field of special display.
  • the display principle of the transparent display technology of the OLED display device is as shown in FIG. 1.
  • the display panel includes a plurality of display units 100, each of which includes sub-pixels of three primary colors of red (R), green (G), and blue (B). 10 (the gate line 31 and the data line 32 intersect to form a plurality of sub-pixels 10), and each of the sub-pixels 10 includes a light-emitting region 11 and a light-transmitting region 12.
  • the light-emitting area 11 is displayed by light-emitting of an organic light-emitting diode or the like, and the light-transmitting area 12 is not provided with any pixel structure, and is mainly used for light transmission. As the brightness of the light-emitting area 11 increases, the light transmitted through the light-transmitting area 12 increases, thereby increasing the light transmittance of the pixel and achieving the effect of transparent display. Summary of the invention
  • Embodiments of the present invention provide a transparent display device and a method of fabricating the same, by arranging a silicon solar cell in a light transmitting region of the display device, absorbing light energy in a direction perpendicular to a light transmitting direction of the light transmitting region, and converting the same For electric energy.
  • Embodiments of the present invention provide a transparent display device, the transparent display device including a display area, the display area includes a light transmitting area and an opaque area, wherein a portion of the light transmitting area is provided with at least one silicon A solar cell that absorbs light energy in a direction perpendicular to a light transmission direction of the light transmitting region and converts it into electric energy.
  • the silicon solar cell includes a P-type semiconductor and an N-type semiconductor, and the P-type semiconductor and the N-type semiconductor are disposed in the same layer.
  • an intrinsic is placed between the P-type semiconductor and the N-type semiconductor Floor.
  • the P-type semiconductor and the N-type semiconductor are both heavily doped.
  • the display device further includes a gate line and a data line, and the P-type semiconductor or the N-type semiconductor of the silicon solar cell is directly in electrical contact with the gate line and/or the data line, to the The gate lines and/or data lines provide electrical signals.
  • the display area includes a plurality of sub-pixels, each of the sub-pixels includes a light transmissive area and an opaque area, and a silicon solar cell is disposed in the light transmissive area of at least one of the sub-pixels.
  • the light transmissive region of each of the sub-pixels is provided with a silicon solar cell.
  • the display device is an OLED display device, and each of the sub-pixels includes a light-emitting region and a light-transmitting region.
  • a portion of the light-transmitting region adjacent to one side of the light-emitting region is provided with a silicon solar cell.
  • An embodiment of the present invention further provides a method for fabricating a transparent display device.
  • the display region of the transparent display device includes a light transmitting region and an opaque region, and the method includes: a substrate in a portion of the light transmitting region A silicon solar cell is directly formed on the substrate, and the silicon solar cell absorbs light energy in a direction perpendicular to the light transmission direction of the light transmitting region and converts it into electric energy.
  • a semiconductor layer is formed on the substrate, wherein the semiconductor layer includes a corresponding P-type semiconductor And a portion corresponding to the N-type semiconductor; and ion-doping the portion of the semiconductor layer corresponding to the P-type semiconductor and the portion corresponding to the N-type semiconductor to form a P-type semiconductor and an N-type semiconductor.
  • the portion of the semiconductor corresponding P-type semiconductor is ion-doped by using the first mask. Forming a P-type semiconductor; and ion-doping the portion of the semiconductor corresponding to the N-type semiconductor with the second mask to form an N-type semiconductor.
  • the semiconductor layer further includes: an active semiconductor.
  • the method further includes: forming a gate metal layer and a source/drain metal layer on the base substrate, wherein the gate metal layer includes a gate line, the source/drain metal layer includes a data line;
  • the gate lines and/or the data lines are in direct electrical contact with the P-type semiconductor or N-type semiconductor of the silicon solar cell to form an electrical connection.
  • 1 is a schematic view of a transparent display device
  • FIG. 2 is a schematic diagram of a transparent display device according to an embodiment of the present invention.
  • Figure 3 is a cross-sectional view of the A-A' of the display device shown in Figure 2;
  • Figure 4 is a cross-sectional view of the display device of Figure 2 taken along line BB';
  • FIG. 5 is a schematic diagram of a method for directly forming a silicon solar cell on a substrate according to an embodiment of the present invention. detailed description
  • An embodiment of the present invention provides a transparent display device, wherein a display area of the transparent display device includes a light transmitting area and an opaque area, and at least one silicon solar cell is disposed in a partial area of the light transmitting area, The silicon solar cell absorbs light energy in a direction perpendicular to the light transmission direction of the light transmitting region and converts it into electric energy.
  • the organic electroluminescent (EL) elements and driving circuits of the OLED display device are generally opaque, and these non-transparent devices can be highly integrated in each pixel to form a "region" without opaque devices. , as the pixel display grayscale value increases, the pixel The remaining transparent areas transmit more light, which improves the light transmittance of the pixels and achieves a transparent display.
  • the display area of the transparent display device includes a light transmitting area and an opaque area.
  • the opaque area is mainly used to illuminate the pixels, and the light-transmitting area is mainly used for light transmission so that the display device can see the objects behind.
  • the positional relationship between the light transmitting area and the opaque area of the display area may be various.
  • one pixel unit may include red, green, blue, and a transparent light transmissive area, or the light transmissive area and the opaque area may be arranged in a line spacing.
  • the positional relationship between the light-transmitting area and the opaque area of the display area is not specifically limited in the embodiment of the present invention, and may be changed as needed.
  • At least one silicon solar cell is disposed in a portion of the light transmissive region, and the silicon solar cell absorbs light energy in a direction perpendicular to a light transmitting direction of the light transmitting region.
  • the light transmission direction of the transparent region 12 of the transparent display unit 100 is generally a direction perpendicular to the substrate, that is, a direction indicated by a broken line arrow in FIG. 3, and the present invention
  • the silicon solar cell mainly absorbs light energy in a direction perpendicular to a light transmitting direction of the light transmitting region 12, that is, light energy in an arrow direction (a direction parallel to the substrate surface) shown in FIGS. 2 and 3. It converts light energy into electrical energy that can be applied to other electronic devices.
  • a transparent display device is provided in the embodiment of the present invention, wherein a portion of the transparent display device is provided with at least one silicon solar cell in a partial region of the light transmitting region, and the silicon solar cell is in a direction perpendicular to the light transmitting direction of the light transmitting region. Absorbs light energy and converts it into electrical energy, which can be applied to the power supply of display devices or other components or devices to save energy and achieve efficient use of photovoltaics.
  • the silicon solar cell comprises a P-type semiconductor 21 and
  • the N-type semiconductor 22 is provided, and the P-type semiconductor 21 and the N-type semiconductor 22 are disposed in the same layer.
  • the P-type semiconductor is doped with a trivalent element in the semiconductor material silicon or germanium crystal;
  • the N-type semiconductor is doped with a pentavalent element in the semiconductor material silicon or germanium crystal.
  • the principle of a silicon solar cell is that when a P-type semiconductor and an N-type semiconductor are combined, a special thin film, that is, a PN junction, is formed in the interface region between the two semiconductors. This is because there are many holes in the P-type semiconductor, and there are many free electrons in the N-type semiconductor. That is, a plurality of N-type semiconductors are electrons, and a minority is a hole; and a P-type semiconductor is a hole, and a minority is an electron.
  • the P-type semiconductor 21 and the N-type semiconductor 22 are disposed in the same layer, wherein the P-type semiconductor 21 is on the side close to the light.
  • the N-type semiconductor 22 is on the side close to the light, and in either case, the principle of operation of the silicon solar cell is not affected.
  • an intrinsic layer is disposed between the P-type semiconductor and the N-type semiconductor. That is, a PIN type solar cell is formed. This solar cell is more sensitive to sensitization and detection of radiation.
  • the P-type semiconductor and the N-type semiconductor are both heavily doped. It should be noted that both the P-type semiconductor and the N-type semiconductor are heavily doped to generate a large amount of current.
  • the P-type semiconductor and the N-type semiconductor may be lightly doped or the like depending on the power supply target of the silicon solar cell.
  • the display device further includes a gate line 31 and a data line 32, and a P-type semiconductor or an N-type semiconductor of the silicon solar cell and the gate line 31 and/or
  • the data lines 32 are in direct contact to form an electrical connection, and electrical signals are provided to the gate lines 31 and/or the data lines 32.
  • the embodiment of the present invention is described by taking an example in which an electric connection is made by directly contacting a P-type semiconductor of the silicon solar cell with the gate line 31, and an electrical signal is supplied to the gate line 31.
  • the direct contact electrical connection between the P-type semiconductor and the gate line and/or the data line may be directly connected to the gate line and/or the data line through the via and the metal line, and the gate line and/or Or the data line provides an electrical signal.
  • the electrical energy of the silicon solar cell can also be connected to other conductive portions to provide electrical signals to other conductive portions.
  • the P-type semiconductor or the N-type semiconductor may be electrically connected to other conductive portions via wires or the like.
  • the display area includes a plurality of sub-pixels, each of the sub-pixels includes a light transmissive area and a light-impermeable area, and a silicon solar cell is disposed in the light transmissive area of the at least one of the sub-pixels.
  • the silicon solar cell is disposed in the light transmissive region of the at least one of the sub-pixels, and the silicon solar cell may be disposed only in the transparent region corresponding to the red sub-pixel, or may be transparent to the corresponding red sub-pixel and the blue sub-pixel.
  • a silicon solar cell is disposed in the region, and no silicon solar cell or the like is disposed in the light transmissive region corresponding to the green sub-pixel.
  • a silicon solar cell may be disposed in a light transmissive region of a portion of the sub-pixels to generate electric energy through the silicon solar cell, and the other sub-pixels are not provided with a silicon solar cell to ensure a transparent display function of the display device.
  • a light-emitting area of each of the sub-pixels is provided with a silicon solar cell.
  • a silicon solar cell is disposed in the light-transmitting regions corresponding to the red (R) sub-pixel, the blue (G) sub-pixel, and the green (B) sub-pixel, which can further increase the amount of electric energy conversion of the silicon solar cell on the panel.
  • the display device is an OLED display device, and each of the sub-pixels includes a light-emitting region and a light-transmitting region.
  • the red sub-pixel 10 includes a light-emitting region 11 and a light-transmitting region 12. It should be noted that, since the OLED display device is a self-luminous display device, the sub-pixel 10 includes a light-emitting region 11 and a light-transmitting region 12, and the light-emitting region 11 is an opaque region.
  • the sub-pixel may include a pixel region and a light transmissive region, and the liquid crystal is deflected by the pixel electrode and the common electrode to realize display, which is an opaque region;
  • the display device transmits light to achieve a transparent display.
  • a silicon solar cell is disposed in a portion of the light transmitting region near a side of the light emitting region. As shown in Fig. 2, a silicon solar cell is disposed in a region of the light-transmitting region 12 near the side of the light-emitting region 11. This can reduce the area occupied by silicon solar cells in too many light-emitting areas and improve the transparency of the transparent display device.
  • the embodiment of the present invention further provides a method for fabricating a transparent display device, wherein the display area of the transparent display device includes a light transmitting area and an opaque area, and the method includes:
  • a silicon solar cell is directly formed on a corresponding region on the substrate substrate corresponding to the partial region of the light-transmitting region, and the silicon solar cell absorbs light energy in a direction perpendicular to the light-transmitting direction of the light-transmitting region and converts it into electric energy.
  • directly forming a silicon solar cell on the substrate of the transparent region portion includes:
  • Step 101 Form a semiconductor layer on a base substrate, wherein the semiconductor layer includes a portion corresponding to the P-type semiconductor and a portion corresponding to the N-type semiconductor.
  • Forming the semiconductor layer on the base substrate may be either forming a semiconductor thin film on the base substrate and forming a semiconductor pattern including a portion corresponding to the P-type semiconductor and a portion corresponding to the N-type semiconductor by a patterning process.
  • Step 102 ion doping the portion of the semiconductor layer corresponding to the P-type semiconductor and the portion corresponding to the N-type semiconductor to form a P-type semiconductor and an N-type semiconductor.
  • performing ion doping separately on the portion of the semiconductor layer corresponding to the P-type semiconductor and the portion corresponding to the N-type semiconductor includes:
  • the portion of the semiconductor corresponding to the N-type semiconductor is ion-doped to form an N-type semiconductor by a second mask.
  • the ion doping of the portion of the semiconductor corresponding P-type semiconductor by using the first mask to form the P-type semiconductor includes: exposing only the portion of the semiconductor layer corresponding to the P-type semiconductor through the first mask, and blocking other portions to The exposed portion of the corresponding P-type semiconductor is ion doped to form a P-type semiconductor.
  • the ion doping of the portion of the semiconductor corresponding N-type semiconductor by the second mask to form the N-type semiconductor comprises: exposing only the portion of the semiconductor layer corresponding to the N-type semiconductor through the second mask, and occluding the other portion to The exposed portion of the corresponding N-type semiconductor is ion doped to form an N-type semiconductor.
  • the semiconductor layer further includes: an active semiconductor. Since a thin film transistor is also formed on the base substrate to control pixel charging, the semiconductor layer further includes an active semiconductor.
  • the active semiconductor may be formed by forming a semiconductor thin film on a base substrate, and forming a pattern including a portion corresponding to the P-type semiconductor, a portion corresponding to the N-type semiconductor, and an active semiconductor by a patterning process. This can further reduce the manufacturing process and reduce production costs.
  • the method further includes:
  • the gate lines and/or the data lines are in direct electrical contact with the P-type semiconductor or N-type semiconductor of the silicon solar cell to form an electrical connection.
  • the substrate substrate includes other film or layer structures to realize the display function.
  • a gate metal layer is formed on the base substrate, the gate metal layer includes a gate line and a gate; the source/drain metal layer, and the source/drain metal layer includes a data line and a source and a drain.
  • the gate line provides a gate signal to the gate, the data line supplies a source signal to the source, the drain charges the pixel electrode, and the gate, source and drain are the three poles of the thin film transistor.
  • the gate line and/or the data line are in direct contact with the P-type semiconductor or the N-type semiconductor of the silicon solar cell to form an electrical connection, and the electric energy converted by the silicon solar cell can be directly applied to the driving film.
  • Transistor The electrical energy converted by the silicon solar cell can also be used for other conductive parts by other voltage processing or the like.
  • An embodiment of the present invention provides a transparent display device and a method for fabricating the same, wherein a portion of the transparent region of the transparent display device is provided with at least one silicon solar cell, and the silicon sun
  • the battery can absorb light energy in a direction perpendicular to the light transmission direction of the light transmitting region to convert it into electric energy, and can be applied to power supply of a display device or other components or devices, thereby saving energy and realizing efficient use of photovoltaics.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Geometry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Sustainable Development (AREA)
  • Electroluminescent Light Sources (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • Photovoltaic Devices (AREA)
  • Thin Film Transistor (AREA)

Abstract

一种透明显示装置及其制作方法。该透明显示装置的显示区包括透光区(12)和不透光区(11),在所述透光区(12)的部分区域设置有至少一个硅太阳能电池,所述硅太阳能电池沿与透光区(12)的透光方向垂直的方向吸收光能并将其转换为电能。

Description

透明显示装置及其制作方法
技术领域
本发明的实施例涉及一种透明显示装置及其制作方法。 背景技术
随着显示技术的不断进步, 新的显示技术不断地被提出和实现, 透明 显示产品便是这样一种新型的显示产品。 透明显示具有广阔的应用范围, 可以融合多点触控、 智能显示等技术, 作为公共信息显示的终端, 用在百 货陈列窗、 冰箱门透视、 汽车前挡风玻璃、 自动售货机等各个领域, 具有 展示、 互动、 广告等协同效果。 透明显示产品由于其独特的使用场景和可 实现智能化的场景切换, 使得其在特种显示领域的应用也越来越受到关注。
OLED显示装置的透明显示技术的显示原理如图 1所示,显示面板包括 多个显示单元 100, 每一显示单元包括红(R ) 、 绿(G ) 、 蓝(B )三种基 色的子像素 10 (栅线 31和数据线 32交叉形成多个子像素 10 ) , 每一个子 像素 10包括发光区 11以及透光区 12。发光区 11通过有机发光二极管等发 光实现显示, 透光区 12不设置任何像素结构, 主要用于透光。 且随着发光 区 11 的亮度的提高, 透光区 12透光的光线也就越多, 从而提高了像素的 透光率, 达到了透明显示的效果。 发明内容
本发明的实施例提供一种透明显示装置及其制作方法, 通过在所述显 示装置的透光区设置硅太阳能电池, 在与透光区的透光方向垂直的方向吸 收光能并将其转换为电能。
本发明的实施例提供了一种透明显示装置, 所述透明显示装置包括显 示区, 所述显示区包括透光区和不透光区, 其中所述透光区的部分区域设 置有至少一个硅太阳能电池, 所述硅太阳能电池沿与所述透光区的透光方 向垂直的方向吸收光能并将其转换为电能。
在一个示例中, 所述硅太阳能电池包括 P型半导体和 N型半导体, 且 所述 P型半导体和所述 N型半导体设置在同一层。
在一个示例中, 在所述 P型半导体和所述 N型半导体之间设置有本征 层。
在一个示例中 , 所述 P型半导体和所述 N型半导体均为重掺杂。
在一个示例中, 所述显示装置还包括栅线和数据线, 所述硅太阳能电 池的 P型半导体或 N型半导体与所述栅线和 /或所述数据线直接接触电连 接, 向所述栅线和 /或数据线提供电信号。
在一个示例中, 所述显示区包括多个子像素, 每一子像素包括透光区 和不透光区, 在至少一个所述子像素的透光区设置有硅太阳能电池。
在一个示例中, 每一所述子像素的透光区均设置有一个硅太阳能电池。 在一个示例中, 所述显示装置为 OLED显示装置, 每一所述子像素包 括发光区和透光区。
在一个示例中, 所述透光区靠近发光区一侧的部分区域设置有硅太阳 能电池。
本发明的实施例还提供了一种透明显示装置的制作方法, 所述透明显 示装置的显示区包括透光区和不透光区, 所述方法包括: 在所述透光区部 分区域衬底基板上直接形成硅太阳能电池, 所述硅太阳能电池沿与透光区 的透光方向垂直的方向吸收光能并将其转换为电能。
在一个示例中, 所述在所述透光区部分区域的衬底基板上直接形成硅 太阳能电池的过程中, 在所述衬底基板上形成半导体层, 其中所述半导体 层包括对应 P型半导体的部分和对应 N型半导体的部分; 对所述半导体层 对应 P型半导体的部分和对应 N型半导体的部分分别进行离子掺杂, 形成 P型半导体和 N型半导体。
在一个示例中, 所述对所述半导体层对应 P型半导体部分和对应 N型 半导体部分分别进行离子掺杂的过程中, 利用第一掩模板对所述半导体对 应 P型半导体的部分进行离子掺杂形成 P型半导体; 利用第二掩模板对所 述半导体对应 N型半导体的部分进行离子掺杂形成 N型半导体。
在一个示例中, 所述半导体层还包括: 有源半导体。
在一个示例中, 所述方法还包括: 在所述衬底基板上形成栅金属层以 及源漏金属层, 其中所述栅金属层包括栅线, 所述源漏金属层包括数据线; 以及所述栅线和 /或所述数据线与所述硅太阳能电池的 P型半导体或 N型半 导体直接接触形成电连接。 附图说明 以下将结合附图对本发明的实施例进行更详细的说明, 以使本领域普通 技术人员更加清楚地理解本发明, 其中:
图 1为一种透明显示装置的示意图;
图 2为本发明实施例提供的一种透明显示装置示意图;
图 3为图 2所示的显示装置的 A-A'截面示意图;
图 4为图 2所示的显示装置的 B-B'截面示意图;
图 5 为本发明实施例提供的一种在衬底基板上直接形成硅太阳能电池 的方法示意图。 具体实施方式
下面将结合本发明实施例中的附图, 对本发明实施例中的技术方案进行 清楚、 完整地描述, 显然, 所描述的实施例仅仅是本发明一部分实施例, 而 不是全部的实施例。 基于本发明中的实施例, 本领域普通技术人员在没有做 出创造性劳动前提下所获得的所有其他实施例, 都属于本发明保护的范围。 域内具有一般技能的人士所理解的通常意义。 本发明专利申请说明书以及权 利要求书中使用的"第一"、 "第二 "以及类似的词语并不表示任何顺序、 数量 或者重要性, 而只是用来区分不同的组成部分。 同样, "一个"、 "一"或者"该" 等类似词语也不表示数量限制, 而是表示存在至少一个。 "包括"或者"包含" 等类似的词语意指出现该词前面的元件或者物件涵盖出现在该词后面列举的 元件或者物件及其等同, 而不排除其他元件或者物件。 "上"、 "下"、 等仅用 于表示相对位置关系, 当被描述对象的绝对位置改变后, 则该相对位置关系 也可能相应地改变。
本发明的实施例提供了一种透明显示装置, 所述透明显示装置的显示 区包括透光区和不透光区, 在所述透光区的部分区域设置有至少一个硅太 阳能电池, 所述硅太阳能电池沿与透光区的透光方向垂直的方向吸收光能 并将其转换为电能。
OLED显示装置所具有的有机电致发光(EL )元件以及驱动电路等结 构通常都是不透明的, 在设计时可以把这些非透明设备高度集成于每一个 像素内部一个没有非透明设备的"区域", 随着像素显示灰阶值的提高,像素 的其余透明区域透过光线也就越多, 从而提高了像素的透光率, 达到了透 明的显示效果。
需要说明的是, 透明显示装置的显示区包括透光区和不透光区。 不透 光区主要用于点亮像素, 透光区主要用于透光使得显示装置可以看到后面 的物体等。 显示区的透光区和不透光区的位置关系可以是多种。 例如, 可 以是一个像素单元包括红、 绿、 蓝以及一个透明的透光区, 也可以是透光 区和不透光区以行间隔的形式排布等。 对于显示区透光区和不透光区的位 置关系本发明实施例不作具体限制, 可以根据需要变换。
在所述透光区的部分区域设置有至少一个硅太阳能电池, 所述硅太阳 能电池沿与透光区的透光方向垂直的方向吸收光能。需要说明的是,如图 2、 图 3所示, 透明显示单元 100的透光区 12的透光方向一般为与衬底基板垂 直的方向, 即图 3 中虚线箭头指示的方向, 本发明的实施例中, 所述硅太 阳能电池主要吸收与透光区 12的透光方向垂直的方向的光能, 即图 2、 图 3所示的箭头方向(平行于基板表面的方向)的光能,并将光能转换为电能, 该电能可应用于其他电子设备。
本发明实施例提供的一种透明显示装置, 所述透明显示装置的透光区 的部分区域设置有至少一个硅太阳能电池, 且所述硅太阳能电池沿与透光 区的透光方向垂直的方向吸收光能并将其转换为电能, 此电能可应用于显 示器件或者其他部件或设备的供电, 以节省能源, 实现光电的有效利用。
可选的, 如图 2、 图 3所示, 所述硅太阳能电池包括 P型半导体 21和
N型半导体 22,且所述 P型半导体 21和所述 N型半导体 22设置在同一层。
需要说明的是, P 型半导体即在半导体材料硅或锗晶体中掺杂三价元 素; N型半导体即在半导体材料硅或锗晶体中掺杂五价元素。
硅太阳能电池的原理为 P型半导体和 N型半导体结合在一起时, 在两 种半导体的交界面区域里会形成一个特殊的薄膜即 PN结。这是由于 P型半 导体的空穴多, N型半导体的自由电子多。 即, N型半导体的多子是电子, 少子是空穴; 而 P型半导体的多子是空穴, 少子是电子。 由于出现这种浓 度差, 相对而言, N区的电子会扩散到 P区, P区的空穴会扩散到 N区, 而一旦扩散就形成了一个由 N指向 P的"内电场", 而内电场的作用是阻碍 多子扩散, 促使少子漂移, 所以, 当扩散和漂移运动达到平衡后, 就形成 了一个特殊的薄层, 即 PN结当受到光照, PN结中 N型半导体的空穴往 P 型区移动, 而 P型区中的电子往 N型区移动, 从而形成从 N型区到 P型区 的电流, 在 PN结中形成电势差, 这就形成了一种电源。
本发明的实施例中, 如图 2所示, 所述 P型半导体 21和所述 N型半导 体 22设置在同一层,其中 P型半导体 21为靠近光的一侧。 当然也可以是 N 型半导体 22为靠近光的一侧, 不管哪种情况, 均不影响硅太阳能电池的作 用原理。 本发明实施例仅以附图所示的示例为例进行详细说明。
可选的, 在所述 P型半导体和所述 N型半导体之间设置有本征层。 即 形成 PIN型太阳能电池。 这种太阳能电池感光和探测辐射的灵敏度更好。
可选的, 所述 P型半导体和所述 N型半导体均为重掺杂。 需要说明的 是, P型半导体和所述 N型半导体均为重掺杂其产生的电流量大。 当然, 根据硅太阳能电池的供电对象, 所述 P型半导体和所述 N型半导体也可以 是轻掺杂等。
可选的, 如图 2、 图 4所示, 所述显示装置还包括栅线 31和数据线 32, 所述硅太阳能电池的 P型半导体或 N型半导体与所述栅线 31和 /或所述数 据线 32直接接触形成电连接, 向所述栅线 31和 /或数据线 32提供电信号。
如图 4所示, 本发明实施例以所述硅太阳能电池的 P型半导体与所述 栅线 31直接接触形成电连接, 向所述栅线 31提供电信号为例进行说明。 需要说明的是, P 型半导体与所述栅线和 /或所述数据线直接接触电连接可 以是通过过孔以及金属线与栅线和 /或所述数据线直接连接, 向栅线和 /或所 述数据线提供电信号。 当然, 所述硅太阳能电池的电能还可以连接其他导 电部, 向其他导电部提供电信号。 则 P型半导体或 N型半导体还可以是通 过导线等与其他导电部形成电连接。
可选的, 所述显示区包括多个子像素, 每一子像素包括透光区和不透 光区, 在至少一个所述子像素的透光区设置有硅太阳能电池。 在至少一个 所述子像素的透光区设置有硅太阳能电池既可以是仅在对应红色子像素的 透光区设置硅太阳能电池, 也可以是在对应红色子像素和蓝色子像素的透 光区设置硅太阳能电池, 且在对应绿色子像素的透光区不设置硅太阳能电 池等。 即, 可以是在部分的子像素的透光区设置硅太阳能电池, 以通过硅 太阳能电池产生电能, 其他子像素不设置硅太阳能电池, 以保证显示装置 的透明显示功能。
每一所述子像素的透光区均设置有一个硅太阳能电池。 如图 2 所示, 在对应红色 (R )子像素、 蓝色 (G )子像素以及绿色 (B )子像素的透光 区均设置硅太阳能电池, 这样可以进一步增大面板上硅太阳能电池的电能 转换量。
可选的, 所述显示装置为 OLED显示装置, 每一所述子像素包括发光 区和透光区。 如图 2所示, 红色子像素 10包括发光区 11和透光区 12。 需 要说明的是, 由于 OLED显示装置为自发光显示装置, 因此子像素 10包括 发光区 11和透光区 12, 发光区 11为不透光区。 当显示装置为液晶显示装 置, 则所述子像素可以是包括像素区和透光区, 在所述像素区通过像素电 极和公共电极驱动液晶偏转实现显示, 为不透光区; 在透光区显示装置透 光光线, 达到透明显示效果。
可选的, 所述透光区靠近发光区一侧的部分区域设置有硅太阳能电池。 如图 2所示, 透光区 12靠近发光区 11一侧的区域设置硅太阳能电池。 这 样可以减少硅太阳能电池占用太多发光区的面积, 提高透明显示装置的透 明效果。
本发明的实施例还提供了一种透明显示装置的制作方法, 所述透明显 示装置的显示区包括透光区和不透光区, 所述方法包括:
在所述透光区部分区域对应的衬底基板上的相应区域直接形成硅太阳 能电池, 所述硅太阳能电池沿与透光区的透光方向垂直的方向吸收光能并 将其转换为电能。
可选的, 如图 5 所示, 在所述透光区部分区域的衬底基板上直接形成 硅太阳能电池包括:
步骤 101、 在衬底基板上形成半导体层, 其中所述半导体层包括对应 P 型半导体的部分和对应 N型半导体的部分。
在衬底基板上形成半导体层既可以是在衬底基板上形成半导体薄膜, 并通过构图工艺形成包括对应 P型半导体的部分和对应 N型半导体的部分 的半导体图案。
步骤 102、 对所述半导体层对应 P型半导体的部分和对应 N型半导体 的部分分别进行离子掺杂, 形成 P型半导体和 N型半导体。
可选的, 对所述半导体层对应 P型半导体的部分和对应 N型半导体的 部分分别进行离子掺杂包括:
利用第一掩模板对所述半导体对应 P型半导体的部分进行离子掺杂形 成 P型半导体;
利用第二掩模板对所述半导体对应 N型半导体的部分进行离子掺杂形 成 N型半导体。
利用第一掩模板对所述半导体对应 P型半导体的部分进行离子掺杂形 成 P型半导体包括: 通过第一掩模板仅将半导体层对应 P型半导体的部分 暴露, 并将其他部分进行遮挡, 以对暴露的对应 P型半导体的部分进行离 子掺杂形成 P型半导体。 利用第二掩模板对所述半导体对应 N型半导体的 部分进行离子掺杂形成 N型半导体包括: 通过第二掩模板仅将半导体层对 应 N型半导体的部分暴露, 并将其他部分进行遮挡, 以对暴露的对应 N型 半导体的部分进行离子掺杂形成 N型半导体。
可选的, 所述半导体层还包括: 有源半导体。 由于衬底基板上还形成 有薄膜晶体管用以控制像素充电, 所述半导体层还包括有源半导体。 该有 源半导体既可以是在衬底基板上形成半导体薄膜, 并通过构图工艺形成包 括对应 P型半导体的部分、对应 N型半导体的部分以及有源半导体的图案。 这样可以进一步减少制作工艺, 降低生产成本。
可选的, 所述方法还包括:
在衬底基板上形成栅金属层以及源漏金属层, 其中所述栅金属层包括 栅线, 所述源漏金属层包括数据线;
所述栅线和 /或所述数据线与所述硅太阳能电池的 P型半导体或 N型半 导体直接接触形成电连接。
需要说明的是, 衬底基板上除本发明实施例提供的薄膜或层结构之外, 还包括其他的薄膜或层结构以实现显示功能。 衬底基板上形成有栅金属层 , 栅金属层包括栅线以及栅极; 源漏金属层, 源漏金属层包括数据线以及源 极和漏极。 栅线向栅极提供栅极信号, 数据线向源极提供源极信号, 漏极 向像素电极充电, 栅极、 源极和漏极为薄膜晶体管的三个极。
本发明实施例中, 所述栅线和 /或所述数据线与所述硅太阳能电池的 P 型半导体或 N型半导体直接接触形成电连接, 可以将硅太阳能电池转换的 电能直接应用于驱动薄膜晶体管。 硅太阳能电池转换的电能还可以通过其 他电压处理等用于其他导电部。
本发明的实施例提供的一种透明显示装置及其制作方法, 所述透明显 示装置的透光区的部分区域设置有至少一个硅太阳能电池, 且所述硅太阳 能电池沿与透光区的透光方向垂直的方向吸收光能将其转换为电能, 可应 用于显示器件或者其他部件或设备的供电, 因此可以节省能源, 实现光电 的有效利用。
以上实施例仅用于说明本发明, 而并非对本发明的限制, 有关技术领域 的普通技术人员, 在不脱离本发明的精神和范围的情况下, 还可以做出各种 变化和变型, 因此所有这样的变化和变形以及等同的技术方案也属于本发明 的范畴, 本发明的专利保护范围应由权利要求限定。
本申请要求于 2014年 04月 16日提交的名称为"一种透明显示装置及其 制作方法" 的中国专利申请 No. 201410153794.5的优先权, 其全文以引用方 式合并于本文。

Claims

权利要求书
1、 一种透明显示装置, 所述透明显示装置包括显示区, 所述显示区 包括透光区和不透光区,其中所述透光区的部分区域设置有至少一个硅太 阳能电池,所述硅太阳能电池沿与所述透光区的透光方向垂直的方向吸收 光能并将其转换为电能。
2、 根据权利要求 1所述的显示装置, 其中所述硅太阳能电池包括 P 型半导体和 N型半导体, 且所述 P型半导体和所述 N型半导体设置在同 一层。
3、 根据权利要求 2所述的显示装置, 其中在所述 P型半导体和所述
N型半导体之间设置有本征层。
4、 根据权利要求 2或 3所述的显示装置, 其中所述 P型半导体和所 述 N型半导体均为重掺杂。
5、 根据权利要求 2或 3所述的显示装置, 还包括栅线和数据线, 其中所述硅太阳能电池的 P型半导体或 N型半导体与所述栅线和 /或 所述数据线直接接触形成电连接, 以向所述栅线和 /或数据线提供电信号。
6、 根据权利要求 1-5任一项所述的显示装置, 其中所述显示区包括 多个子像素,每一子像素包括所述透光区和所述不透光区,所述硅太阳能 电池设置在至少一个所述子像素的所述透光区。
7、 根据权利要求 6所述的显示装置, 其中每一所述子像素的透光区 均设置有一个硅太阳能电池。
8、 根据权利要求 7所述的显示装置, 其中所述显示装置为 OLED显 示装置, 每一所述子像素包括发光区和透光区。
9、 根据权利要求 8所述的显示装置, 其中所述透光区靠近所述发光 区一侧的部分区域设置有硅太阳能电池。
10、 一种透明显示装置的制作方法, 所述透明显示装置包括显示区, 所述显示区包括透光区和不透光区, 所述方法包括:
在所述透光区部分区域对应的衬底基板上的区域直接形成硅太阳能 电池,所述硅太阳能电池沿与所述透光区的透光方向垂直的方向吸收光能 并将其转换为电能。
11、 根据权利要求 10所述的制作方法, 其中: 在所述衬底基板上形成半导体层,其中所述半导体层包括对应 P型半 导体的部分和对应 N型半导体的部分; 以及
对所述半导体层对应 P型半导体的部分和对应 N型半导体的部分分 别进行离子掺杂, 以形成 P型半导体和 N型半导体。
12、 根据权利要求 11所述的制作方法, 其中:
利用第一掩模板对所述半导体对应 P 型半导体的部分进行离子掺杂 形成 P型半导体; 以及
利用第二掩模板对所述半导体对应 N型半导体的部分进行离子掺杂 形成 N型半导体。
13、 根据权利要求 11所述的制作方法, 其中所述半导体层还包括: 有源半导体。
14、 根据权利要求 10所述的制作方法, 还包括:
在所述衬底基板上形成栅金属层以及源漏金属层,其中所述栅金属层 包括栅线, 所述源漏金属层包括数据线; 以及
所述栅线和 /或所述数据线与所述硅太阳能电池的 P型半导体或 N型半 导体直接接触形成电连接。
PCT/CN2014/084934 2014-04-16 2014-08-21 透明显示装置及其制作方法 WO2015158089A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/436,570 US9502479B2 (en) 2014-04-16 2014-08-21 Transparent display device and manufacturing method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410153794.5A CN103985734B (zh) 2014-04-16 2014-04-16 一种透明显示装置及其制作方法
CN201410153794.5 2014-04-16

Publications (1)

Publication Number Publication Date
WO2015158089A1 true WO2015158089A1 (zh) 2015-10-22

Family

ID=51277638

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/084934 WO2015158089A1 (zh) 2014-04-16 2014-08-21 透明显示装置及其制作方法

Country Status (3)

Country Link
US (1) US9502479B2 (zh)
CN (1) CN103985734B (zh)
WO (1) WO2015158089A1 (zh)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103985734B (zh) * 2014-04-16 2017-03-08 京东方科技集团股份有限公司 一种透明显示装置及其制作方法
CN104201292B (zh) 2014-08-27 2019-02-12 京东方科技集团股份有限公司 一种有机电致发光器件及其制备方法
CN104867964B (zh) 2015-05-18 2019-02-22 京东方科技集团股份有限公司 阵列基板、其制造方法以及有机发光二极管显示装置
CN105070218A (zh) * 2015-09-10 2015-11-18 上海和辉光电有限公司 太阳能显示屏以及太阳能手机
KR102435391B1 (ko) * 2015-09-25 2022-08-23 삼성디스플레이 주식회사 표시 장치
KR102500161B1 (ko) * 2016-01-15 2023-02-16 삼성디스플레이 주식회사 유기 발광 표시 장치
JP6772277B2 (ja) * 2016-09-26 2020-10-21 パイオニア株式会社 発光装置
CN109904189B (zh) * 2019-03-15 2021-03-02 京东方科技集团股份有限公司 像素单元及阵列基板、显示装置
CN110047906B (zh) * 2019-05-21 2022-10-18 京东方科技集团股份有限公司 基于透明光电二极管的显示装置、显示面板及其制造方法
CN113330577A (zh) * 2019-05-28 2021-08-31 深圳市柔宇科技股份有限公司 Oled双面显示面板
CN110850616A (zh) * 2019-11-29 2020-02-28 上海天马微电子有限公司 显示装置
CN111524955A (zh) * 2020-05-08 2020-08-11 义乌清越光电科技有限公司 一种自发电显示屏幕及显示设备
US11832500B2 (en) 2021-10-14 2023-11-28 L3Harris Technologies, Inc. Multi-functional pixels designed for transmission matching in transparent displays having transparent regions between the pixels

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070102035A1 (en) * 2005-10-31 2007-05-10 Xiai (Charles) Yang Method and Structure for Integrated Solar Cell LCD Panel
CN101813849A (zh) * 2009-02-19 2010-08-25 北京京东方光电科技有限公司 彩膜基板及其制造方法和液晶面板
US20120326131A1 (en) * 2011-06-27 2012-12-27 Samsung Mobile Display Co., Ltd. Organic light emitting diode display
CN103105706A (zh) * 2012-09-17 2013-05-15 友达光电股份有限公司 显示面板及其制作方法
CN103137024A (zh) * 2013-02-04 2013-06-05 北京小米科技有限责任公司 一种显示装置及一种设备
CN103529581A (zh) * 2013-10-18 2014-01-22 京东方科技集团股份有限公司 显示面板及显示装置
CN103700691A (zh) * 2013-12-24 2014-04-02 京东方科技集团股份有限公司 显示基板及显示装置
CN203774331U (zh) * 2014-04-16 2014-08-13 京东方科技集团股份有限公司 一种透明显示装置
CN103985734A (zh) * 2014-04-16 2014-08-13 京东方科技集团股份有限公司 一种透明显示装置及其制作方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7206044B2 (en) * 2001-10-31 2007-04-17 Motorola, Inc. Display and solar cell device
CA2617752A1 (en) * 2007-12-24 2009-06-24 Ignis Innovation Inc Power scavenging and harvesting for power efficient display
US20100114679A1 (en) * 2008-11-02 2010-05-06 Yang Pan Programmable advertising panel powered by solar cells and communiation means thereof
US20110109853A1 (en) * 2009-11-06 2011-05-12 University Of Central Florida Research Foundation, Inc. Liquid Crystal Displays with Embedded Photovoltaic Cells
KR101156434B1 (ko) * 2010-01-05 2012-06-18 삼성모바일디스플레이주식회사 유기 발광 표시 장치
TWI418912B (zh) * 2010-09-13 2013-12-11 Wintek China Technology Ltd 顯示裝置
CN103487989A (zh) * 2012-06-12 2014-01-01 宏碁股份有限公司 透明显示装置
CN103456243B (zh) * 2013-08-23 2016-05-11 京东方科技集团股份有限公司 一种幕墙
CN103474448A (zh) * 2013-08-30 2013-12-25 京东方科技集团股份有限公司 一种电致发光器件及显示装置
CN103681774B (zh) * 2013-12-31 2018-11-23 北京维信诺科技有限公司 一种集成太阳能电池的oled显示装置

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070102035A1 (en) * 2005-10-31 2007-05-10 Xiai (Charles) Yang Method and Structure for Integrated Solar Cell LCD Panel
CN101813849A (zh) * 2009-02-19 2010-08-25 北京京东方光电科技有限公司 彩膜基板及其制造方法和液晶面板
US20120326131A1 (en) * 2011-06-27 2012-12-27 Samsung Mobile Display Co., Ltd. Organic light emitting diode display
CN103105706A (zh) * 2012-09-17 2013-05-15 友达光电股份有限公司 显示面板及其制作方法
CN103137024A (zh) * 2013-02-04 2013-06-05 北京小米科技有限责任公司 一种显示装置及一种设备
CN103529581A (zh) * 2013-10-18 2014-01-22 京东方科技集团股份有限公司 显示面板及显示装置
CN103700691A (zh) * 2013-12-24 2014-04-02 京东方科技集团股份有限公司 显示基板及显示装置
CN203774331U (zh) * 2014-04-16 2014-08-13 京东方科技集团股份有限公司 一种透明显示装置
CN103985734A (zh) * 2014-04-16 2014-08-13 京东方科技集团股份有限公司 一种透明显示装置及其制作方法

Also Published As

Publication number Publication date
CN103985734B (zh) 2017-03-08
CN103985734A (zh) 2014-08-13
US20160181330A1 (en) 2016-06-23
US9502479B2 (en) 2016-11-22

Similar Documents

Publication Publication Date Title
WO2015158089A1 (zh) 透明显示装置及其制作方法
US11177327B2 (en) Display panel, manufacturing method thereof, and display device
CN105336745B (zh) 低温多晶硅tft基板
CN107256880B (zh) 一种显示器阵列基板、制备方法和显示器
WO2015109758A1 (zh) 阵列基板、其制备方法及显示装置
US8183769B2 (en) Organic electroluminescent display unit and method for fabricating the same
JP2019511831A (ja) Tftアレイ基板及びその製造方法、表示装置
JP2019511831A5 (zh)
WO2016074401A1 (zh) 阵列基板及其制造方法、显示装置
JP2019501400A (ja) アレイ基板、その製造方法及び表示装置
CN105304677B (zh) 一种oled显示面板及显示装置、显示系统
JP2015095657A (ja) 薄膜トランジスタの駆動バックプレート及びその製造方法
JP7053858B2 (ja) 表示パネル、ディスプレイ及び表示端末
KR102645630B1 (ko) 표시 장치 및 그것의 제조 방법
WO2019109748A1 (zh) 阵列基板及其制备方法、显示装置
KR20140061123A (ko) 유기발광 표시장치 및 그것의 제조 방법
US20230337483A1 (en) Array substrate and display panel
KR20140133669A (ko) 유기 발광 표시 장치
US11974473B2 (en) Display substrate, manufacturing method thereof and display device
WO2020168801A1 (zh) 显示模组及其制造方法、显示装置
CN110391283A (zh) 有机发光显示面板和有机发光显示装置
TW200524173A (en) Light sensor and display
TWI692666B (zh) 顯示面板、顯示屏及其控制方法以及顯示終端
CN110164942A (zh) 一种显示面板及其制备方法、显示装置
CN104460165B (zh) 一种液晶显示器和液晶面板以及阵列基板

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 14436570

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14889223

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 06/04/2017)

122 Ep: pct application non-entry in european phase

Ref document number: 14889223

Country of ref document: EP

Kind code of ref document: A1