WO2015158049A1 - 一种显示装置及其制作方法 - Google Patents

一种显示装置及其制作方法 Download PDF

Info

Publication number
WO2015158049A1
WO2015158049A1 PCT/CN2014/082117 CN2014082117W WO2015158049A1 WO 2015158049 A1 WO2015158049 A1 WO 2015158049A1 CN 2014082117 W CN2014082117 W CN 2014082117W WO 2015158049 A1 WO2015158049 A1 WO 2015158049A1
Authority
WO
WIPO (PCT)
Prior art keywords
nanoparticles
film layer
display device
layer
light emitting
Prior art date
Application number
PCT/CN2014/082117
Other languages
English (en)
French (fr)
Inventor
焦志强
矫士博
罗程远
Original Assignee
京东方科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US14/436,069 priority Critical patent/US9691828B2/en
Publication of WO2015158049A1 publication Critical patent/WO2015158049A1/zh

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • H10K59/38Devices specially adapted for multicolour light emission comprising colour filters or colour changing media [CCM]
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/85Arrangements for extracting light from the devices
    • H10K50/854Arrangements for extracting light from the devices comprising scattering means
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • H10K59/35Devices specially adapted for multicolour light emission comprising red-green-blue [RGB] subpixels
    • H10K59/353Devices specially adapted for multicolour light emission comprising red-green-blue [RGB] subpixels characterised by the geometrical arrangement of the RGB subpixels
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/875Arrangements for extracting light from the devices
    • H10K59/877Arrangements for extracting light from the devices comprising scattering means
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass

Definitions

  • the present invention relates to the field of display technologies, and in particular, to a display device and a method of fabricating the same. Background technique
  • OLED organic light emitting diode
  • the white light organic light emitting diode technology is relatively mature and has high luminous efficiency, so it has been widely used in organic light emitting diode display devices.
  • the white light organic light emitting diode display device includes an array substrate 100 and a package substrate 200. As shown in FIG. 1, the array substrate 100 includes a first substrate substrate 10 and a black matrix film layer formed on the first substrate substrate 10. 11. A color film layer 12, a flat layer 13, a first electrode layer 14, a second electrode layer 17, an organic light-emitting function layer 15 between the first electrode 14 and the second electrode 17, and a pixel defining layer 16. When the first electrode 14 and the second electrode 17 are simultaneously loaded with an electric signal, the organic light-emitting function layer 15 has a current passing through, and the active functional layer emits light to realize display.
  • the illuminating functional layer comprises a plurality of illuminating units
  • the color film layer comprises color film units of three colors of red, green and blue
  • each of the illuminating units corresponds to a color film unit of one of the colors to realize color display.
  • the organic light-emitting display realized by the method since the light is emitted through the flat layer 13, the color film layer 12, and the base substrate 11, part of the light is totally reflected, so that the light has a certain loss, which directly affects the display.
  • the display brightness of the device since the light is emitted through the flat layer 13, the color film layer 12, and the base substrate 11, part of the light is totally reflected, so that the light has a certain loss, which directly affects the display.
  • the display brightness of the device since the light is emitted through the flat layer 13, the color film layer 12, and the base substrate 11, part of the light is totally reflected, so that the light has a certain loss, which directly affects the display.
  • the display brightness of the device since the light is emitted
  • Embodiments of the present invention provide a display device and a method of fabricating the same, which solves the problem that the conventional display device is low in display brightness due to the influence of other film layers.
  • Embodiments of the present invention provide a display device including a light emitting unit, and further comprising a plurality of thin films located in a light exiting path of the light emitting unit, at least one of the plurality of thin films having nanoparticles.
  • At least one of the plurality of layers of film is a film having nanoparticles, so that the light single The light emitted by the element is scattered by the nanoparticles to reduce the total reflection of the light, increase the output of the light, thereby increasing the light extraction rate of the entire display device and increasing the display brightness.
  • At least one layer of the film having nanoparticles comprises a colored film layer.
  • the at least one film having nanoparticles further comprises a passivation layer and/or a flat layer.
  • the nanoparticles are one or several inorganic nanoparticles.
  • the inorganic nanoparticle material from one or more selected from the group consisting of: MgF 2, CaF 2, Si0 2, BaF, B 2 0 3, NaF, A1F 3, SiO, LiF, Na 3 AlF 6 , KF, CdF 2 , DyF 3 , LaF 3 , W0 3 , ZnSe, ZnS, Ti0 2 , Sb 2 S 3 , Zr0 2 , BaO, BaS, BaTi0 3 , Bi 2 0 3 , V 2 0 5 , and SiN x .
  • the color film layer has nanoparticles, and the color film layer has a thickness of 1.5 to 3 ⁇ m.
  • the color film layer comprises: a red film layer, a green film layer, and a blue film layer, wherein only the blue film layer has nanoparticles.
  • the red film layer, the green film layer, and the blue film layer each have nanoparticles.
  • the nanoparticle has a volume concentration in the color film layer of 1% to 60%.
  • the volume concentration of the nanoparticles in the color film layer is 5%-30%.
  • the nanoparticles have a particle size of 1.5-5 nm.
  • the light emitting unit is a backlight unit or an organic light emitting diode light emitting unit.
  • An embodiment of the present invention provides a method for fabricating a display device, where the display device includes a light emitting unit, and the method includes:
  • a plurality of thin films are formed in the light exiting path of the light emitting unit, and at least one of the plurality of thin films has nanoparticles.
  • At least one film having nanoparticles comprises a color film layer; and the method further comprises: forming a color film layer doped with nanoparticles on the substrate.
  • the step of forming a color film layer doped with nanoparticles on the substrate substrate comprises:
  • a red film layer and a green film layer not doped with nanoparticles are formed on the base substrate.
  • the step of forming a color film layer doped with nanoparticles on the substrate substrate comprises:
  • the at least one film having nanoparticles further comprises a passivation layer and/or a flat layer.
  • FIG. 1 is a schematic view of a conventional organic light emitting diode light emitting display
  • FIG. 2 is a schematic diagram of an organic light emitting diode light emitting display according to an embodiment of the present invention
  • FIG. 3 is a schematic diagram of another organic light emitting diode light emitting display according to an embodiment of the present invention.
  • FIG. 4 is a schematic diagram of a liquid crystal display according to an embodiment of the present invention.
  • FIG. 5 is a schematic diagram showing the attenuation of the brightness of the sub-pixels of different colors with the display time;
  • FIG. 6 is a schematic diagram of a method for forming a color film layer according to an embodiment of the present invention;
  • FIG. 7 is a schematic diagram of a display device according to an embodiment of the present invention; Schematic diagram of the production method.
  • Electrode layer 100-array substrate; 101-passivation layer; 102-thin film transistor; 200-package substrate; 300-color film substrate; 301-second substrate.
  • Embodiments of the present invention provide a display device, including a light emitting unit, further including a plurality of thin films in the light exiting path of the light emitting unit, at least one of the plurality of thin films having nanoparticles.
  • Nanoparticles i.e., particles having a particle size of 1-100 nm, are in the range of colloidal particle sizes. They are in the transition zone between clusters and macroscopic objects, and are a group of a small number of atoms or molecules, so the nanoparticles have new physicochemical properties. Due to the small particle size and large surface curvature, the nanoparticles have a certain surface scattering effect. And further preferably, the nanoparticles have a particle size of from 1.5 to 5 nm.
  • the light emitted by the light emitting unit is emitted through a plurality of layers of the film, wherein at least one of the plurality of layers of the film is a film having nanoparticles, that is, disposed in a plurality of layers of the light emitting side of the light emitting unit. At least one layer is a film having nanoparticles.
  • the light emitted by the light-emitting unit is emitted through a plurality of layers of film
  • those skilled in the art will appreciate that light emitted from the light-emitting unit is emitted through a single layer of film, which is also feasible.
  • the single layer film may have nanoparticles to increase the output of light.
  • the light emitting unit is a backlight unit or an organic light emitting diode light emitting unit.
  • the display device may be a liquid crystal display device or a self-luminous display device.
  • the light emitting unit is a backlight unit, and light emitted by the backlight unit of the liquid crystal display device is emitted through a pixel unit on the substrate.
  • the light emitting unit may be an organic light emitting diode light emitting unit.
  • the light emitting unit is an LED light emitting unit as an example for detailed description.
  • At least one layer of the film having nanoparticles comprises a colored film layer.
  • a color film layer is generally disposed, including a film layer of three primary colors of red, green, and blue, wherein one pixel unit includes a red sub-pixel, a green sub-pixel, and a blue color.
  • the sub-pixel realizes color display of various colors by adjusting the display gray scale of the sub-pixels of different colors.
  • the light emitting diode may be a full fluorescent light emitting diode, a full phosphorescent light emitting diode, or a light emitting diode that is phosphorescent and fluorescent in accordance with the light emitting.
  • a self-luminous display such as an organic light emitting diode display
  • light of different colors can be emitted by one diode, and colorful display can be realized without passing through the color film layer.
  • the light emitted by the organic light-emitting function layer 15 is scattered by the nanoparticles of the color film layer 12, thereby increasing the light output of the color film layer, thereby improving the whole.
  • the light output rate of the display device when nanoparticles are added to the color film layer 12, the light emitted by the organic light-emitting function layer 15 is scattered by the nanoparticles of the color film layer 12, thereby increasing the light output of the color film layer, thereby improving the whole. The light output rate of the display device.
  • the at least one film having nanoparticles further comprises a passivation layer and/or a flat layer.
  • the light emitted by the light emitting unit is also emitted through the passivation layer and/or the flat layer, and the passivation layer and/or the flat layer have nanoparticles, which can be understood as: the light emitted by the light emitting unit also passes through the blunt a layer or a flat layer, and the passivation layer or the flat layer has nanoparticles; or, the light emitted by the light emitting unit is also emitted through the passivation layer and the flat layer, and the passivation layer and the The flat layer has nanoparticles.
  • the light emitting unit of the display device is an organic light emitting diode light emitting unit
  • light emitted from the organic light emitting diode (organic light emitting function layer 15) is emitted through the flat layer 13 and the color film layer 12 (substrate There is no passivation layer thereon, and nanoparticles may be added to the flat layer 13 and the color film layer 12.
  • a film or layer structure on the array substrate of the liquid crystal display is large.
  • a thin film transistor 102 and a passivation layer 101 are disposed on the first substrate 10 of the array substrate 100 on the light-emitting side of the backlight unit, and a black matrix 1 1 and a color film layer 12 are disposed on the color filter substrate 300.
  • a flat layer 13 The color film layer 12 and the flat layer 13 on the color filter substrate 300 of the liquid crystal display may be doped with nanoparticles; at the same time, the passivation layer 101 of the array substrate 100 may be doped with nanoparticles to further improve light penetration. Over rate.
  • the nanoparticles are one or several inorganic nanoparticles. That is, one nanoparticle can be added in a thin film, for example, Si0 2 is added only in the blue nanoparticle film layer. It is also possible to add several mixed inorganic nanoparticles to a film. For example, it is also possible to add SiO 2 and SiN x mixed nanoparticles to the blue film layer.
  • the nanoparticles may also be other nanoparticles, for example, may also be optional, the inorganic nanoparticles are made of one or more materials selected from the group consisting of MgF 2 , CaF 2 , Si0 2 , BaF, B 2 0 3 , NaF, A1F 3 , SiO, LiF, Na 3 AlF 6 , KF, CdF 2 , DyF 3 , LaF 3 , W0 3 , ZnSe, ZnS, Ti0 2 , Sb 2 S 3 , Zr0 2 , BaO, BaS, BaTi0 3 , Bi 2 0 3 , V 2 0 5 , and SiN x .
  • the inorganic nanoparticles may also be other nanoparticles having the same or similar properties as the above materials, and the present invention The embodiment will be described in detail only by taking the above as an example.
  • the color film layer has nanoparticles, and the color film layer has a thickness of 1.5 to 3 ⁇ m. That is, nanoparticles are only present in the color film layer, and nanoparticles are not added in other film or layer structures.
  • the color film layer comprises: a red film layer, a green film layer, and a blue film layer, wherein only the blue film layer has nanoparticles.
  • the display device generally realizes colorful display by adjusting the gray scales of different sub-pixels through three primary colors of red, green, and blue, but the display unit of the existing display device may also include red, green, and blue. , white or red, green, blue, yellow, and other sub-pixels of other colors. And the film layers of different colors are respectively formed by one patterning process, the display device includes sub-pixels of other colors, and the nanoparticles may be separately added to the sub-pixels of other different colors.
  • the sub-pixels of the display unit including red, green and blue colors that is, the color film layer including the red film layer, the green film layer and the blue film layer are described in detail as an example. As shown in FIG.
  • the luminance of the blue sub-pixel 3 in the organic light emitting diode display decays faster with time, and the luminance of the green sub-pixel 1 and the red sub-pixel 2 decays slowly with time, and the color coordinate of the device emits white drift.
  • the red shift phenomenon occurs in the balance, that is, the white balance is warm when the full color display is displayed, which seriously affects the service life of the display. Therefore, as shown in Figure 3, adding nanoparticles only to the blue (B) layer can reduce the attenuation rate of blue, which in turn makes the attenuation of the blue sub-pixel and the red sub-pixel close, extending the life of the display.
  • the red film layer, the green film layer, and the blue film layer each have nanoparticles. That is, as shown in Fig. 2, nanoparticles are added to the red (R) film layer, the green (G) film layer, and the blue (B) film layer to improve the overall display brightness of the display device.
  • the nanoparticle has a volume concentration in the color film layer of 1% to 60%.
  • the volume concentration, or volume percent concentration refers to the volume (in milliliters) of the solute per 100 milliliters of solution. It is further preferred that the nanoparticle has a volume concentration in the color film layer of from 5% to 30%. In order to get better luminosity.
  • An embodiment of the present invention provides a method for fabricating a display device, where the display device includes a light emitting unit, and the method includes:
  • a plurality of thin films are formed in the light exiting path of the light emitting unit, and at least one of the plurality of thin films has nanoparticles.
  • the at least one film having nanoparticles is formed on a light exiting side of the light emitting unit.
  • the display device is a liquid crystal display device
  • the light emitting list The element is a backlight unit
  • the array substrate and the color filter substrate of the liquid crystal display device are both disposed on the light exiting side of the light emitting unit.
  • the display device is a self-luminous display device, it can be divided into a top light-emitting display device and a low-light-emitting display device.
  • the film having nanoparticles in the present invention is on the light-emitting side of the light-emitting unit.
  • the light emitted by the light-emitting unit is emitted through the thin film, and the nanoparticles scatter the light of the backlight unit to reduce the total reflection of light, improve the light output, thereby improving the light-emitting rate of the entire display device and increasing the display brightness.
  • At least one film having nanoparticles comprises a color film layer; and the method further comprises: forming a color film layer doped with nanoparticles on the substrate.
  • the blue resin-based photoresist material doped with SiO 2 nanoparticles can be spin-coated, and exposed, developed, and cured to form a blue film layer having a thickness of 1.5 to 3 ⁇ m. I.e. formed Si0 2 nanoparticles doped with a blue film on the base substrate.
  • the red film layer and the green film layer may be a normal red film layer and a green film layer formed without adding nanoparticles, directly coated with a red resin-based photoresist material, and a green resin-based photoresist material. That is: Nanoparticles are added only to the blue film layer.
  • the at least one film having nanoparticles further comprises a passivation layer and/or a flat layer.
  • a flat layer 13 doped with nanoparticles is formed on the base substrate 10 of the array substrate 100.
  • the passivation layer 101 doped with nanoparticles may be formed on the first substrate 10 of the array substrate 100, and may also be on the second substrate 301 of the color filter substrate 300.
  • a color film layer 12 doped with nanoparticles and a flat layer 13 are formed.
  • the step of forming a color film layer doped with nanoparticles on the base substrate comprises:
  • Step 101 Form a blue film layer doped with nanoparticles on the base substrate.
  • Step 102 forming a red film layer and a green film layer without doping nanoparticles on the base substrate.
  • the formed display device is as shown in FIG. 3.
  • the blue (B) film layer in the color film layer 12 is doped with nanoparticles, and the red (R) film layer and the green (G) film layer are not doped with nanoparticles.
  • the luminance of the blue sub-pixel in the organic light-emitting diode display decays faster with time
  • the luminance of the green sub-pixel and the red sub-pixel decays slowly with time
  • the white coordinate of the color coordinate drift of the device emits a red shift phenomenon. That is, the white balance is warm when the full color display is displayed, which seriously affects the service life of the display. Therefore, as shown in FIG. 3, adding nanoparticles only to the blue (B) film layer can reduce the attenuation rate of blue, thereby making the attenuation of the blue sub-pixel and the red sub-pixel close, and prolonging the service life of the display.
  • the order in which the color film layers of different colors are formed may be indefinite. Since each of the color film layers is formed by one exposure, a color film layer of a different color can be formed as needed.
  • the step of forming a color film layer doped with nanoparticles on the substrate substrate comprises:
  • a red film layer doped with nanoparticles, a green film layer, and a blue film layer are formed on the base substrate.
  • the formed display device is as shown in FIG. 2, and the blue (B) film layer, the red (R) film layer and the green (G) film layer in the color film layer 12 are doped with nanoparticles to improve the overall display device. Display brightness.
  • the method includes:
  • Step 201 Form a black matrix film layer on the first base substrate.
  • a film is formed on the first substrate by spin coating a resin-based material, and a black matrix is formed by exposure, development, and curing.
  • Step 202 Form a red film layer, a green film layer, and a blue film layer doped with SiO 2 nanoparticles on the first base substrate.
  • the substrate was spin-coated on a substrate doped with a red resinous material Si0 2 nanoparticles, and exposed and developed, to form a red cured film, the thickness of film layer formed is red Ao 1.5-3 m; SiO
  • the 2 nanoparticles have a particle size between 1 and 10 nanometers and have a volume concentration of 30% in the red film layer.
  • a green film layer and a blue film layer are sequentially formed in accordance with the above process.
  • Step 203 forming a flat layer on the first base substrate.
  • the flat layer may be formed by spin coating an acrylic material and having a thickness of about 4 ⁇ m.
  • Step 204 forming a first electrode layer, a pixel defining layer, and an organic layer on the first substrate a light emitting functional layer and a second electrode layer.
  • the method for fabricating the first electrode layer, the pixel defining layer, the organic light emitting functional layer, and the second electrode layer can be referred to the prior art, and is not described herein.
  • the acrylic material can be spin-coated and exposed, developed, and cured to define a layer, and the thickness of the pixel defining layer is about 1.5 microns.
  • each layer is formed on the first substrate by the above steps 201-204 and the array substrate 100 shown in Fig. 2 is formed.
  • Step 205 Perform the pair of the array substrate and the package substrate.
  • the display device formed after the cartridge is as shown in Fig. 2, in which the color film layer is doped with nanoparticles.
  • the display device formed as shown in FIG. 2 is not limited to the above steps, and the corresponding production sequence may be adjusted correspondingly as needed.
  • the order of steps 201 and 202 can also be reversed.
  • the embodiments of the present invention are described in detail by way of example only.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Electroluminescent Light Sources (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

一种显示装置及其制作方法,涉及显示技术领域,一种显示装置,包括发光单元(15),还包括位于所述发光单元(15)的出光光路中的若干层薄膜,所述若干层薄膜中的至少一层具有纳米颗粒,其解决了现有的显示装置受其他膜层的影响显示亮度低的问题。

Description

一种显示装置及其制作方法 技术领域
本发明涉及显示技术领域, 尤其涉及一种显示装置及其制作方法。 背景技术
有机发光二极管(OLED, Organic Light Emitting Diode)是一种有机 薄膜电致发光器件, 其具有制备工艺简单、 成本低、 发光效率高、 易 形成柔性结构等优点。 因此, 利用有机发光二极管的显示技术已成为 一种重要的显示技术。
白光有机发光二极管的技术比较成熟, 发光效率高, 因此其在有 机发光二极管显示装置中获得了广泛应用。 白光有机发光二极管显示 装置包括阵列基板 100和封装基板 200 , 如图 1所示, 所述阵列基板 100 包括第一衬底基板 10以及形成在所述第一衬底基板 10上的黑矩阵膜层 11、 彩色膜层 12、 平坦层 13、 第一电极层 14、 第二电极层 17、 位于所 述第一电极 14和第二电极 17之间的有机发光功能层 15以及像素界定层 16。 当第一电极 14和第二电极 17同时加载电信号, 有机发光功能层 15 有电流通过, 激发功能层发光实现显示。
其中, 发光功能层包括多个发光单元, 彩色膜层包括红、 绿、 蓝 三种颜色的彩膜单元, 每一个发光单元对应其中一种颜色的彩膜单元, 以实现彩色显示。 但是, 通过该方法实现的有机发光显示, 由于光的 出射需要经过平坦层 13、 彩色膜层 12以及衬底基板 11 , 部分光会发 生全反射, 因此光会有一定的损失, 直接影响到显示器件的显示亮度。 发明内容
本发明的实施例提供一种显示装置及其制作方法, 解决了现有的 显示装置受其他膜层的影响显示亮度低的问题。
为达到上述目的, 本发明的实施例采用如下技术方案:
本发明实施例提供了一种显示装置, 包括发光单元, 还包括位于 所述发光单元的出光光路中的若干层薄膜, 所述若干层薄膜中的至少 一层具有纳米颗粒。
所述若干层薄膜中至少一层为具有纳米颗粒的薄膜, 因此发光单 元发出的光经纳米颗粒进行散射, 减少光的全反射, 提高光的输出, 进而提高整个显示装置的出光率, 增大显示亮度。
可选的, 至少一层具有纳米颗粒的薄膜包括彩色膜层。
可选的, 所述至少一层具有纳米颗粒的薄膜还包括钝化层和 /或平 坦层。
可选的, 所述纳米颗粒为一种或几种无机纳米颗粒。
可选的, 所述无机纳米颗粒由一种或多种选自以下组的材料制作: MgF2、 CaF2、 Si02、 BaF、 B203、 NaF、 A1F3、 SiO、 LiF、 Na3AlF6、 KF、 CdF2、 DyF3、 LaF3、 W03 、 ZnSe、 ZnS、 Ti02、 Sb2S3、 Zr02、 BaO、 BaS、 BaTi03、 Bi203、 V205、 以及 SiNx
可选的, 仅所述彩色膜层具有纳米颗粒, 且所述彩色膜层的厚度 为 1.5-3微米。
可选的, 所述彩色膜层包括: 红色膜层、 绿色膜层以及蓝色膜层, 其中, 仅所述蓝色膜层具有纳米颗粒。
可选的, 所述红色膜层、 绿色膜层以及蓝色膜层均具有纳米颗粒。 可选的 , 所述纳米颗粒在所述彩色膜层中的体积浓度为 1%-60%。 可选的 , 所述纳米颗粒在所述彩色膜层中的体积浓度为 5%-30%。 可选的, 所述纳米颗粒的粒径为 1.5-5纳米。
可选的, 所述发光单元为背光单元或有机发光二极管发光单元。 本发明实施例提供了一种显示装置的制作方法, 所述显示装置包 括发光单元, 所述方法包括:
形成位于所述发光单元的出光光路中的若干层薄膜, 所述若干层 薄膜中的至少一层具有纳米颗粒。
可选的, 至少一层具有纳米颗粒的薄膜包括彩色膜层; 所述方法 还包括: 在衬底基板上形成掺杂有纳米颗粒的彩色膜层。
可选的, 所述在衬底基板上形成掺杂有纳米颗粒的彩色膜层的步 骤包括:
在衬底基板上形成掺杂有纳米颗粒的蓝色膜层;
在衬底基板上形成没有掺杂纳米颗粒的红色膜层和绿色膜层。
可选的, 所述在衬底基板上形成掺杂有纳米颗粒的彩色膜层的步 骤包括:
在衬底基板上形成掺杂有纳米颗粒的红色膜层、 绿色膜层以及蓝 色膜层。
可选的, 所述至少一层具有纳米颗粒的薄膜还包括钝化层和 /或平 坦层。 附图说明 将对实施例或现有技术描述中所需要使用的附图作简单地介绍, 显而 易见地, 下面描述中的附图仅仅是本发明的一些实施例, 对于本领域 普通技术人员来讲, 在不付出创造性劳动的前提下, 还可以根据这些 附图获得其他的附图。
图 1为现有的有机发光二极管发光显示器示意图;
图 2 为本发明实施例提供的一种有机发光二极管发光显示器示意 图;
图 3 为本发明实施例提供的另一种有机发光二极管发光显示器示 意图;
图 4为本发明实施例提供的一种液晶显示器示意图;
图 5为不同颜色的子像素的亮度随显示时间的衰减示意图; 图 6为本发明实施例提供的一种形成彩色膜层的方法示意图; 图 7为本发明实施例提供的一种显示装置的制作方法示意图。
附图标记:
10-第一衬底基板; 11-黑矩阵膜层; 12-彩色膜层; 13-平坦层; 14- 第一电极层; 15-有机发光功能层; 16-像素界定层; 17-第二电极层; 100-阵列基板; 101-钝化层; 102-薄膜晶体管; 200-封装基板; 300-彩 膜基板; 301-第二衬底基板。 具体实施方式
下面将结合本发明实施例中的附图, 对本发明实施例中的技术方 案进行清楚、 完整地描述。 显然, 所描述的实施例仅仅是本发明一部 分实施例, 而不是全部的实施例。 基于本发明中的实施例, 本领域普 通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例, 都属于本发明保护的范围。
本发明实施例提供了一种显示装置, 包括发光单元, 还包括位于 所述发光单元的出光光路中的若干层薄膜, 所述若干层薄膜中的至少 一层具有纳米颗粒。
纳米颗粒即粒径为 1-100纳米的粒子, 属于胶体粒子大小的范围。 它们处于原子簇和宏观物体之间的过渡区, 是由数目不多的原子或分 子组成的集团, 因此纳米颗粒具有新异的物理化学特性。 由于粒径很 小, 表面曲率很大, 纳米颗粒具有一定的表面散射效应。 且进一步优 选的, 所述纳米颗粒的粒径为 1.5-5纳米。
本发明实施例中, 所述发光单元发出的光穿过若干层薄膜发出, 其中, 所述若干层薄膜中至少一层为具有纳米颗粒的薄膜, 即设置在 发光单元出光侧的若干层薄膜中至少一层为具有纳米颗粒的薄膜。 则 发光单元发出的光经过该薄膜时发生光散射现象, 减少光的全反射, 提高光的输出, 进而提高整个显示装置的出光率, 增大显示亮度。
尽管在本发明的实施例中, 所述发光单元发出的光穿过若干层薄 膜发出, 但本领域技术人员能够理解, 发光单元发出的光穿过单层薄 膜发出, 也是可行的。 在后一种情况下, 所述单层薄膜可以具有纳米 颗粒, 从而提高光的输出。
可选的, 所述发光单元为背光单元或有机发光二极管发光单元。 需要说明的是, 所述显示装置可以是液晶显示装置也可以是自发光显 示装置。 且当所述显示装置为液晶显示装置, 则所述发光单元为背光 单元, 且液晶显示装置的背光单元发出的光经基板上的像素单元发出。 当显示装置为自发光显示装置时, 则所述发光单元可以是有机发光二 极管发光单元。 本发明实施例以所述发光单元为发光二极管发光单元 为例进行详细说明。
可选的, 至少一层具有纳米颗粒的薄膜包括彩色膜层。
需要说明的是, 当发光单元发出白光, 为了实现彩色显示, 一般 设置彩色膜层, 包括红、 绿、 蓝三种基色的膜层, 其中一个像素单元 包括红色子像素、 绿色子像素和蓝色子像素, 通过调节不同颜色的子 像素的显示灰阶, 实现各种颜色的彩色显示。 其中可选的, 发光二极 管可以是全荧光发光二极管、 全磷光发光二极管、 还可以是磷光和荧 光符合发光的发光二极管。 当然, 对于自发光显示器, 例如有机发光 二极管显示器, 可以由一个二极管发不同颜色的光, 则可以不通过彩 色膜层即可实现多彩显示。 具体的, 如图 2所示, 彩色膜层 12中添加纳米颗粒, 则有机发光 功能层 15发出的光经过彩色膜层 12的纳米颗粒的散射, 提高彩色膜 层的光的输出, 进而提高整个显示装置的出光率。
可选的, 所述至少一层具有纳米颗粒的薄膜还包括钝化层和 /或平 坦层。
所述发光单元发出的光还穿过钝化层和 /或平坦层发出, 且所述钝 化层和 /或所述平坦层具有纳米颗粒, 可以理解为: 发光单元发出的光 还穿过钝化层或平坦层发出, 且所述钝化层或所述平坦层具有纳米颗 粒; 或者, 所述发光单元发出的光还穿过钝化层和平坦层发出, 且所 述钝化层和所述平坦层具有纳米颗粒。
需要说明的是, 如图 2 所示, 当显示装置的发光单元为有机发光 二极管发光单元, 则有机发光二极管 (有机发光功能层 15 ) 发出的光 经平坦层 13 以及彩色膜层 12发出 (基板上没有钝化层) , 并且可以 在所述平坦层 13和所述彩色膜层 12中添加纳米颗粒。
当然, 对于液晶显示器, 由于其是背光发光单元, 液晶显示器的 阵列基板上的薄膜或层结构较多。 如图 4 所示, 背光单元的出光侧的 阵列基板 100的第一衬底基板 10上设置有薄膜晶体管 102以及钝化层 101 , 彩膜基板 300上设置有黑矩阵 1 1、 彩色膜层 12以及平坦层 13。 所述液晶显示器的彩膜基板 300上的彩色膜层 12和平坦层 13可以掺 杂有纳米颗粒; 同时, 还可以在阵列基板 100的钝化层 101掺杂纳米 颗粒, 以进一步提高光的透过率。
可选的, 所述纳米颗粒为一种或几种无机纳米颗粒。 即, 可以在 一层薄膜中添加一种纳米颗粒, 例如在所述蓝色膜层中仅添加 Si02纳 米颗粒。 还可以在一层薄膜中添加几种混合的无机纳米颗粒。 例如, 还可以在所述蓝色膜层中添加 Si02和 SiNx混合的纳米颗粒。
当然 , 所述纳米颗粒还可以是其他纳米颗粒, 例如还可以是金纳 可选的, 所述无机纳米颗粒由一种或多种选自以下组的材料制作: MgF2、 CaF2、 Si02、 BaF、 B203、 NaF、 A1F3、 SiO、 LiF、 Na3AlF6、 KF、 CdF2、 DyF3、 LaF3、 W03 、 ZnSe、 ZnS、 Ti02、 Sb2S3、 Zr02、 BaO、 BaS、 BaTi03、 Bi203、 V205、 以及 SiNx。 当然, 所述无机纳米 颗粒还可以是与上述材料性质相同或相近的其他纳米颗粒, 本发明实 施例仅以上述为例进行详细说明。
可选的, 仅所述彩色膜层具有纳米颗粒, 且所述彩色膜层的厚度 为 1.5-3微米。 即仅在所述彩色膜层具有纳米颗粒, 而不在其他薄膜或 层结构中添加纳米颗粒。
可选的, 所述彩色膜层包括: 红色膜层、 绿色膜层以及蓝色膜层, 其中, 仅所述蓝色膜层具有纳米颗粒。
需要说明的是, 显示装置一般通过红、 绿、 蓝三种基色即可通过 调节不同子像素的显示灰阶实现多彩显示, 但现有的显示装置的显示 单元还可以是包括红、 绿、 蓝、 白或者红、 绿、 蓝、 黄等其他颜色的 子像素。 且不同颜色的膜层是分别通过一次构图工艺形成的, 显示装 置包括其他颜色的子像素, 还可以在其他不同颜色的子像素分别添加 纳米颗粒。 本发明实施例仅以显示单元包括红、 绿、 蓝三种颜色的子 像素, 即彩色膜层包括红色膜层、 绿色膜层以及蓝色膜层为例进行详 细说明。 如图 5所示, 有机发光二极管显示器中蓝色子像素 3 的亮度 随时间的衰减较快, 绿色子像素 1 和红色子像素 2的亮度随时间的衰 减较慢, 器件发光的色坐标漂移白平衡出现红移现象, 即全彩显示时 白平衡向暖, 严重影响了显示器的使用寿命。 因此, 如图 3 所示, 仅 在蓝色 (B )膜层添加纳米颗粒, 可以减小蓝色的衰减速率, 进而使得 蓝色子像素和红色子像素的衰减接近, 延长显示器的使用寿命。
可选的, 所述红色膜层、 绿色膜层以及蓝色膜层均具有纳米颗粒。 即如图 2 所示, 在红色 (R ) 膜层、 绿色 (G ) 膜层以及蓝色 (B ) 膜 层中均添加纳米颗粒, 以提高显示装置的整体显示亮度。
可选的, 所述纳米颗粒在所述彩色膜层中的体积浓度为 1%-60%。 所述体积浓度即体积百分浓度,指每 100毫升的溶液中溶质的体积(以 毫升计) 。 其进一步优选的, 所述纳米颗粒在所述彩色膜层中的体积 浓度为 5%-30%。 以得到较好的发光亮度。
本发明实施例提供了一种显示装置的制作方法, 所述显示装置包 括发光单元, 所述方法包括:
形成位于所述发光单元的出光光路中的若干层薄膜, 所述若干层 薄膜中的至少一层具有纳米颗粒。
所述至少一层具有纳米颗粒的薄膜形成在所述发光单元的出光 侧。 需要说明的是, 若所述显示装置为液晶显示装置, 则所述发光单 元为背光单元, 液晶显示装置的阵列基板和彩膜基板均设置在发光单 元的出光侧。 若所述显示装置为自发光显示装置, 可以分为顶发光显 示装置和低发光显示装置, 但无论对于哪一种显示装置, 本发明中具 有纳米颗粒的薄膜均在所述发光单元的出光侧, 即: 发光单元发出的 光经该层薄膜射出, 纳米颗粒对背光单元的光进行散射, 减少光的全 反射, 提高光的输出, 进而提高整个显示装置的出光率, 增大显示亮 度。
可选的, 至少一层具有纳米颗粒的薄膜包括彩色膜层; 所述方法 还包括: 在衬底基板上形成掺杂有纳米颗粒的彩色膜层。
具体的, 可以通过旋涂掺杂有 Si02纳米颗粒的蓝色树脂类光阻材 料, 并经过曝光、 显影、 固化形成蓝色膜层, 其厚度可是 1.5-3微米。 即在衬底基板上形成掺杂有 Si02纳米颗粒的蓝色膜层。 其中, 红色膜 层和绿色膜层可以是不添加纳米颗粒、 直接经涂布红色树脂类光阻材 料和绿色树脂类光阻材料而形成的正常的红色膜层和绿色膜层。 即: 仅在蓝色膜层中添加纳米颗粒。
当然, 也可以同时在红色树脂类光阻材料和绿色树脂类光阻材料 中添加纳米颗粒, 并经旋涂形成掺杂有纳米颗粒的红色膜层以及绿色 膜层。
可选的, 所述至少一层具有纳米颗粒的薄膜还包括钝化层和 /或平 坦层。
当显示装置为自发光显示装置时, 如图 2 所示, 在阵列基板 100 的衬底基板 10上形成掺杂有纳米颗粒的平坦层 13。 当显示装置为液晶 显示装置时, 可以在阵列基板 100的第一衬底基板上 10上形成掺杂有 纳米颗粒的钝化层 101 ,还可以在彩膜基板 300的第二衬底基板 301上 形成掺杂有纳米颗粒的彩色膜层 12以及平坦层 13。
可选的, 如图 6 所示, 所述在衬底基板上形成掺杂有纳米颗粒的 彩色膜层的步骤包括:
步骤 101、 在衬底基板上形成掺杂有纳米颗粒的蓝色膜层。
步骤 102、在衬底基板上形成没有掺杂纳米颗粒的红色膜层和绿色 膜层。
形成的显示装置如图 3所示, 彩色膜层 12中的蓝色 (B ) 膜层中 掺杂有纳米颗粒, 红色 (R ) 膜层和绿色 (G ) 膜层不掺杂纳米颗粒。 具体的, 有机发光二极管显示器中蓝色子像素的亮度随时间的衰减较 快, 绿色子像素和红色子像素的亮度随时间的衰减较慢, 器件发光的 色坐标漂移白平衡出现红移现象, 即全彩显示时白平衡向暖, 严重影 响了显示器的使用寿命。 因此, 如图 3所示, 仅在蓝色 (B )膜层添加 纳米颗粒, 可以减小蓝色的衰减速率, 进而使得蓝色子像素和红色子 像素的衰减接近, 延长显示器的使用寿命。
需要说明的是, 形成不同颜色的彩色膜层的制作顺序可以是不定 的。 由于每一个彩色膜层均是通过一次曝光形成, 则可以根据需要形 成不同颜色的彩色膜层。
可选的, 所述在衬底基板上形成掺杂有纳米颗粒的彩色膜层的步 骤包括:
在衬底基板上形成掺杂有纳米颗粒的红色膜层、 绿色膜层以及蓝 色膜层。
即形成的显示装置如图 2所示, 彩色膜层 12中的蓝色(B )膜层、 红色 (R ) 膜层和绿色 (G ) 膜层均掺杂纳米颗粒, 以提高显示装置的 整体显示亮度。
下面提供以具体实施例用于说明形成如图 2 所示的显示装置的制 作方法, 如图所示, 所述方法包括:
步骤 201、 在第一衬底基板上形成黑矩阵膜层。
具体的, 第一衬底基板形成之后, 通过旋涂树脂类材料在第一衬 底基板上形成一层薄膜, 通过曝光、 显影、 固化形成黑矩阵。
步骤 202、 在第一衬底基板上形成掺杂有 Si02纳米颗粒的红色膜 层、 绿色膜层以及蓝色膜层。
具体的, 在衬底基板上旋涂掺杂有 Si02纳米颗粒的红色树脂类材 料, 并经过曝光、 显影、 固化形成红色膜层, 形成的红色膜层的厚度 为 1.5-3 敖米; Si02纳米颗粒的粒径在 1-10纳米之间, 其在红色膜层 中的体积浓度为 30%。 然后按照上述工艺依次形成绿色膜层和蓝色膜 层。
步骤 203、 在第一衬底基板上形成平坦层。
具体的, 可以通过旋涂亚克力系材料并固化处平坦层, 平坦层的 厚度约 4微米。
步骤 204、 在第一衬底基板上形成第一电极层、 像素界定层、 有机 发光功能层以及第二电极层。
具体的形成第一电极层、 像素界定层、 有机发光功能层以及第二 电极层的制作方法可以参照现有技术, 在这里不作赘述。 其中, 可以 旋涂亚克力系材料并经过曝光、 显影、 固化像素界定层, 像素界定层 的厚度为约 1.5微米。
经过上述步骤 201-204 在第一衬底基板上形成各层薄膜或层结构 及形成如图 2所示的阵列基板 100。
步骤 205、 将所述阵列基板和封装基板进行对盒。
对盒后形成的显示装置即如图 2 所示, 其中彩色膜层中掺杂有纳 米颗粒。
需要说明的是, 形成如图 2 所述的显示装置不仅仅局限于上述步 骤, 还可以根据需要对应调整相应的制作顺序。 例如步骤 201 和步骤 202的先后顺序也可以进行调换。本发明实施例仅以上述为例进行详细 说明。
以上所述, 仅为本发明的具体实施方式, 但本发明的保护范围并 围内, 可轻易想到变化或替换, 都应涵盖在本发明的保护范围之内。 因此, 本发明的保护范围应以所述权利要求的保护范围为准。

Claims

权 利 要 求
1. 一种显示装置, 包括发光单元, 其特征在于, 还包括位于所述 发光单元的出光光路中的若干层薄膜, 所述若干层薄膜中的至少一层 具有纳米颗粒。
2. 根据权利要求 1所述的显示装置, 其特征在于, 至少一层具有 纳米颗粒的薄膜包括彩色膜层。
3. 根据权利要求 2所述的显示装置, 其特征在于, 所述至少一层 具有纳米颗粒的薄膜还包括钝化层和 /或平坦层。
4. 根据权利要求 2或 3所述的显示装置, 其特征在于, 所述纳米 颗粒为一种或几种无机纳米颗粒。
5. 根据权利要求 4所述的显示装置, 其特征在于, 所述无机纳米 颗粒由一种或多种选自以下组的材料制作: MgF2、 CaF2、 Si02、 BaF、 B203、 NaF、 A1F3、 SiO、 LiF、 Na3AlF6、 KF、 CdF2、 DyF3、 LaF3、 W03、 ZnSe、 ZnS、 Ti02、 Sb2S3、 Zr02、 BaO、 BaS、 BaTi03、 Bi203、 V205、 以及 SiNx
6. 根据权利要求 2所述的显示装置, 其特征在于, 仅所述彩色膜 层具有纳米颗粒, 且所述彩色膜层的厚度为 1.5-3微米。
7. 根据权利要求 6所述的显示装置, 其特征在于, 所述彩色膜层 包括: 红色膜层、 绿色膜层以及蓝色膜层, 其中, 仅所述蓝色膜层具 有纳米颗粒。
8. 根据权利要求 6所述的显示装置, 其特征在于, 所述红色膜层、 绿色膜层以及蓝色膜层均具有纳米颗粒。
9. 根据权利要求 2所述的显示装置, 其特征在于, 所述纳米颗粒 在所述彩色膜层中的体积浓度为 1%-60%。
10. 根据权利要求 9所述的显示装置, 其特征在于, 所述纳米颗粒 在所述彩色膜层中的体积浓度为 5%-30%。
11. 根据权利要求 1所述的显示装置, 其特征在于, 所述纳米颗粒 的粒径为 1.5-5纳米。
12. 根据权利要求 1所述的显示装置, 其特征在于, 所述发光单元 为背光单元或有机发光二极管发光单元。
13. 一种显示装置的制作方法, 所述显示装置包括发光单元, 其特 征在于, 所述方法包括:
形成位于所述发光单元的出光光路中的若干层薄膜, 所述若干层 薄膜中的至少一层具有纳米颗粒。
14. 根据权利要求 13所述的制作方法, 其特征在于, 至少一层具 有纳米颗粒的薄膜包括彩色膜层; 所述方法还包括: 在衬底基板上形 成掺杂有纳米颗粒的彩色膜层。
15. 根据权利要求 14所述的制作方法, 其特征在于, 所述在衬底 基板上形成掺杂有纳米颗粒的彩色膜层的步骤包括:
在衬底基板上形成掺杂有纳米颗粒的蓝色膜层;
在衬底基板上形成没有掺杂纳米颗粒的红色膜层和绿色膜层。
16. 根据权利要求 14所述的制作方法, 其特征在于, 所述在衬底 基板上形成掺杂有纳米颗粒的彩色膜层的步骤包括:
在衬底基板上形成掺杂有纳米颗粒的红色膜层、 绿色膜层以及蓝 色膜层。
17. 根据权利要求 13所述的制作方法, 其特征在于, 所述至少一 层具有纳米颗粒的薄膜还包括钝化层和 /或平坦层。
PCT/CN2014/082117 2014-04-15 2014-07-14 一种显示装置及其制作方法 WO2015158049A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/436,069 US9691828B2 (en) 2014-04-15 2014-07-14 Display apparatus having thin films including nanoparticles

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410150972.9 2014-04-15
CN201410150972.9A CN103943661A (zh) 2014-04-15 2014-04-15 一种显示装置及其制作方法

Publications (1)

Publication Number Publication Date
WO2015158049A1 true WO2015158049A1 (zh) 2015-10-22

Family

ID=51191254

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/082117 WO2015158049A1 (zh) 2014-04-15 2014-07-14 一种显示装置及其制作方法

Country Status (3)

Country Link
US (1) US9691828B2 (zh)
CN (1) CN103943661A (zh)
WO (1) WO2015158049A1 (zh)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104167431B (zh) 2014-08-12 2018-05-25 京东方科技集团股份有限公司 Oled显示器件及应用其的oled显示装置
CN104347680A (zh) * 2014-11-10 2015-02-11 合肥鑫晟光电科技有限公司 一种amoled显示面板及其制作方法、显示装置
CN104600093A (zh) * 2014-12-25 2015-05-06 上海和辉光电有限公司 一种显示面板
CN105182625A (zh) * 2015-09-28 2015-12-23 京东方科技集团股份有限公司 一种显示基板及其制作方法和显示装置
CN106707619A (zh) * 2017-01-16 2017-05-24 深圳市国显科技有限公司 一种白色面光源及其液晶显示器
CN106935725A (zh) * 2017-02-17 2017-07-07 武汉华星光电技术有限公司 有机电致发光显示装置
TWI658301B (zh) * 2017-12-22 2019-05-01 財團法人工業技術研究院 顯示裝置
CN110164942A (zh) * 2019-05-31 2019-08-23 江苏集萃有机光电技术研究所有限公司 一种显示面板及其制备方法、显示装置
CN111995914A (zh) * 2020-08-10 2020-11-27 Tcl华星光电技术有限公司 彩膜层以及显示装置
US11930683B2 (en) 2020-08-10 2024-03-12 Tcl China Star Optoelectronics Technology Co., Ltd. Color filter layer and display device
US20220109105A1 (en) * 2020-10-02 2022-04-07 Universal Display Corporation Application of nanoparticles for plasmon energy extraction in organic devices
CN114156363B (zh) * 2021-09-28 2024-04-30 福州大学 一种硫化锑光电晶体管及其制备方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1786753A (zh) * 2004-12-11 2006-06-14 鸿富锦精密工业(深圳)有限公司 彩色滤光片
CN101620290A (zh) * 2008-06-30 2010-01-06 中华映管股份有限公司 彩色导光板以及液晶显示装置
US20130001602A1 (en) * 2011-06-30 2013-01-03 Park Sang-Il Organic light emitting device, organic light emitting display apparatus, and methods of manufacturing the same
CN103441138A (zh) * 2013-08-13 2013-12-11 京东方科技集团股份有限公司 一种阵列基板及其制备方法、显示装置
CN203414701U (zh) * 2013-07-29 2014-01-29 京东方科技集团股份有限公司 显示基板、显示装置
CN203466191U (zh) * 2013-08-13 2014-03-05 京东方科技集团股份有限公司 一种阵列基板及显示装置
CN203883008U (zh) * 2014-04-15 2014-10-15 京东方科技集团股份有限公司 一种显示装置

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0809420B1 (en) 1995-02-06 2002-09-04 Idemitsu Kosan Company Limited Multi-color light emission apparatus and method for production thereof
US5920080A (en) 1997-06-23 1999-07-06 Fed Corporation Emissive display using organic light emitting diodes
US6661029B1 (en) * 2000-03-31 2003-12-09 General Electric Company Color tunable organic electroluminescent light source
US6515428B1 (en) 2000-11-24 2003-02-04 Industrial Technology Research Institute Pixel structure an organic light-emitting diode display device and its manufacturing method
US8163633B2 (en) * 2004-10-07 2012-04-24 Merck Patent Gmbh Light-emitting nanoparticles and method of making same
US7957621B2 (en) * 2008-12-17 2011-06-07 3M Innovative Properties Company Light extraction film with nanoparticle coatings
CN101764149B (zh) * 2010-01-13 2012-04-18 友达光电股份有限公司 有机发光二极管显示装置
KR20120115841A (ko) * 2011-04-11 2012-10-19 삼성디스플레이 주식회사 유기 발광 표시 장치
CN103022081B (zh) 2012-12-12 2015-04-22 京东方科技集团股份有限公司 阵列基板及其制备方法、有机发光二极管显示装置
CN103000639B (zh) 2012-12-12 2016-01-27 京东方科技集团股份有限公司 阵列基板及其制备方法、有机发光二极管显示装置
CN103000660B (zh) 2012-12-12 2015-07-15 京东方科技集团股份有限公司 阵列基板、白光有机发光二极管显示装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1786753A (zh) * 2004-12-11 2006-06-14 鸿富锦精密工业(深圳)有限公司 彩色滤光片
CN101620290A (zh) * 2008-06-30 2010-01-06 中华映管股份有限公司 彩色导光板以及液晶显示装置
US20130001602A1 (en) * 2011-06-30 2013-01-03 Park Sang-Il Organic light emitting device, organic light emitting display apparatus, and methods of manufacturing the same
CN203414701U (zh) * 2013-07-29 2014-01-29 京东方科技集团股份有限公司 显示基板、显示装置
CN103441138A (zh) * 2013-08-13 2013-12-11 京东方科技集团股份有限公司 一种阵列基板及其制备方法、显示装置
CN203466191U (zh) * 2013-08-13 2014-03-05 京东方科技集团股份有限公司 一种阵列基板及显示装置
CN203883008U (zh) * 2014-04-15 2014-10-15 京东方科技集团股份有限公司 一种显示装置

Also Published As

Publication number Publication date
US9691828B2 (en) 2017-06-27
US20170033163A1 (en) 2017-02-02
CN103943661A (zh) 2014-07-23

Similar Documents

Publication Publication Date Title
WO2015158049A1 (zh) 一种显示装置及其制作方法
CN110888192B (zh) 颜色转换元件和包括该颜色转换元件的显示装置
JP6998767B2 (ja) Oledアレイ基板及びその製造方法、oled表示パネル及びoled表示装置
CN104183624B (zh) 一种透明显示面板及其制作方法、透明显示装置
CN104062800B (zh) 一种显示基板、显示面板及显示装置
WO2010036070A2 (ko) 고효율 유기발광소자 및 이의 제조 방법
US9837636B2 (en) Substrate for organic light-emitting device with enhanced light extraction efficiency, method of manufacturing the same and organic light-emitting device having the same
CN204271086U (zh) 一种含光取出结构的显示屏体
TW201427893A (zh) 圖案化色轉換膜及應用其之顯示裝置
CN106098742A (zh) 有机发光显示装置及制造方法
JPH11329742A (ja) 有機エレクトロルミネッセンス素子および発光装置
WO2020244291A1 (zh) 彩膜基板、显示面板及显示面板的制备方法
CN108957836A (zh) 一种彩膜基板及其制作方法、显示器件
WO2015096380A1 (zh) 显示基板及其制备方法
WO2007114256A1 (ja) 有機エレクトロルミネセンス多色ディスプレイパネル
WO2021032198A1 (zh) 彩膜基板、显示面板及显示装置
JP2013120731A (ja) 表示装置
WO2017173683A1 (zh) 电致光致混合发光显示器件及其制作方法
KR20090073095A (ko) 발광 소자
JP2000260559A (ja) 光学的素子及び光学的素子用の基体
CN109739051A (zh) 量子点液晶显示器
WO2022267201A1 (zh) 显示面板及显示面板制作方法
WO2016105018A1 (ko) 유기발광소자용 광추출 기판 제조방법, 유기발광소자용 광추출 기판 및 이를 포함하는 유기발광소자
WO2020094068A1 (zh) 彩膜基板及其制备方法、显示器件
KR101632614B1 (ko) 유기발광소자용 광추출 기판 제조방법, 유기발광소자용 광추출 기판 및 이를 포함하는 유기발광소자

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 14436069

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14889526

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 05/04/2017)

122 Ep: pct application non-entry in european phase

Ref document number: 14889526

Country of ref document: EP

Kind code of ref document: A1