WO2015156554A1 - 소음 및 진동흡수용 초미세 발포 폴리우레탄 탄성체 및 이의 제조방법 - Google Patents

소음 및 진동흡수용 초미세 발포 폴리우레탄 탄성체 및 이의 제조방법 Download PDF

Info

Publication number
WO2015156554A1
WO2015156554A1 PCT/KR2015/003423 KR2015003423W WO2015156554A1 WO 2015156554 A1 WO2015156554 A1 WO 2015156554A1 KR 2015003423 W KR2015003423 W KR 2015003423W WO 2015156554 A1 WO2015156554 A1 WO 2015156554A1
Authority
WO
WIPO (PCT)
Prior art keywords
polyurethane elastomer
foamed polyurethane
poly
glycol
ultra
Prior art date
Application number
PCT/KR2015/003423
Other languages
English (en)
French (fr)
Inventor
양재수
최희영
이준모
양철식
Original Assignee
에스케이씨 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 에스케이씨 주식회사 filed Critical 에스케이씨 주식회사
Publication of WO2015156554A1 publication Critical patent/WO2015156554A1/ko

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/74Polyisocyanates or polyisothiocyanates cyclic
    • C08G18/76Polyisocyanates or polyisothiocyanates cyclic aromatic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/04Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent

Definitions

  • Ultra-fine foamed polyurethane elastomer for absorbing noise and vibration and a method for manufacturing the same The present invention relates to an ultra-fine foamed polyurethane elastomer and a method for manufacturing the same. Particularly, high durability is required between apartment floor noise preventing materials, vehicle dustproof members, It relates to a method for producing a polyurethane elastic body used in the production of mechanical dustproof members or rail pads. Polyurethane elastomer with fine cell structure has excellent vibration damping and layer absorption, and excellent dynamic properties, durability and durability at high loads.
  • polyurethane elastomers are suitable as materials for rail pads used in places where elastic force is required, such as soundproofing materials between apartment floors, vehicle antivibration members, and machine antivibration members, and in areas requiring sound insulation, particularly railroad track systems.
  • the rail pad is a component of the tail fastening device in the railway track system, which attenuates the vibration generated when the train is running, thereby reducing the noise transmitted to the vehicle, thereby increasing the riding comfort.
  • the rail pads can reduce the maintenance cost by evenly distributing the load of the vehicle and reducing the wave wear of the irregular rail.
  • Polyurethane elastomers are generally prepared by reacting poly and diisocyanate-based materials, of which a method of producing polyurethane elastomers using naphthalene diisocyanate (NDI) is well known.
  • NDI is reacted with polyol alone, or NDI and 4,4-diphenylmethane diisocyanate (p—MDI) are reacted with poly to give an isocyanate (NCO) group end group.
  • NCO isocyanate
  • Containing polyurethane prepolymers are prepared. Subsequently, water, catalysts, foaming agents, antioxidants, chain extenders, form a subject by adding an extender). The subject matter thus formed can be foamed using a foaming machine to produce polyurethane elastomers.
  • Korean Laid-Open Patent Publication No. 2008-0003268 discloses 1,5-naphthalene diisocyanate (NDI), a 3,3'-dimethyl-4,4'-biphenylene diisocyanate (NDI), which is a high melting point isocyanate-based material.
  • NDI 1,5-naphthalene diisocyanate
  • NDI 3,3'-dimethyl-4,4'-biphenylene diisocyanate
  • PPDI P-phenylene diisocyanate
  • isocyanate-based materials such as NDI, TODI, and PPDI used in the prior art are relatively expensive and have a disadvantage of requiring operation at high temperature due to high viscosity of the prepolymer.
  • the isocyanate-based materials have a problem that it is not easy to handle the raw material, such as a relatively low storage stability due to the high reaction activity.
  • MDI 4,4'-diphenylmethane diisocyanate
  • an object of the present invention is to prepare ultra-expanded polyurethane elastomer, by introducing 4,4'-diphenylmethane diisocyanate to improve the viscosity of the prepolymer, easy handling of raw materials, high storage stability, and rail It is to provide a manufacturing method that can produce a polyurethane elastomer having excellent physical properties required for the pad All. According to the above object, the present invention,
  • (1) 4,4-diphenylmethane diisocyanate (a) poly (oxytetramethylene) glycol (PTMG) and poly () having a number average molecular weight of 500 to 5,000 g / mol and a hydroxyl functionality of 1.9 to 2.1 At least one selected from caprolactone) glycol (PCL), (b) ⁇ -hydro- ⁇ -hydroxypoly (oxypropylene) and ⁇ having a number average molecular weight of 600 to 6,000 g / mol and a hydroxyl functionality of 1.9 to 2.7 At least one selected from -hydro- ⁇ -hydroxypoly (oxypropylene-co-oxyethylene), or (c) a mixture of the above (a) and (b) to form a terminal free isocyanate (NCO) Preparing a prepolymer containing a group;
  • the ultrafine foamed polyurethane elastomers according to the present invention are (1) 4,4-diphenylmethane diisocyanate units, and (2) (a) poly (oxytetramethylene) glycol (PTMG) units and poly (caprolactone) glycols. At least one selected from (PCL) unit syndromes, (b) from ⁇ -hydro- ⁇ -hydroxypoly (oxypropylene) units and ⁇ -hydro- ⁇ -hydroxypoly (oxypropylene-co-oxyethylene) units At least one selected, or (c) a unit comprising both (a) and (b) above.
  • the ultra-expanded polyurethane elastomer has a ratio of dynamic modulus to static modulus (dynamic modulus / static modulus) of 1.0 to . 1.63, Preferably it is 1.0-1.5, More preferably, it is 1.1-1.3.
  • the ultra-fine foamed polyurethane elastomer preferably has a static modulus of 25 to 60 kN / mm and a dynamic modulus of elasticity of 30 to 75 kN / mm, it is possible to exhibit excellent dustproof performance.
  • the ultra-fine foamed polyurethane elastomer when measured by the permanent compression shrinkage based on KS M ISO 1856, preferably has a permanent compression shrinkage of 7% or less, more preferably 5% or less.
  • the ultra-expanded polyurethane elastic body when subjected to repeated load test 3X10 6 times at a load of 5 to 75 kN at 4Hz, preferably a static modulus of elasticity of less than 25%, more preferably less than 20% Since it has a rate of change, it has excellent durability.
  • the ultra-expanded polyurethane polyurethane when measured on the basis of KS M 6518, preferably has a tensile strength before aging of 5 to 12 MPa, measured after storage for 96 hours at a temperature of 70 sul 1 ° C The tensile strength after aging may be 90% or more of the tensile strength before aging.
  • the ultra-expanded polyurethane elastic body when measured on the basis of KS M 6518, preferably has a pre-aging of 250 to 450%, aging measured after storage for 96 hours at a temperature of 70 °C 1 ° C
  • the post-elongation may be at least 90% of elongation before aging.
  • (1) 4,4'diphenylmethane diisocyanate (a) poly (oxytetramethylene) glycol (PTMG) and poly (capro) having a number average molecular weight of 500 to 5,000 g / mol and a hydroxyl functionality of 1.9 to 2.1 At least one selected from lacron) glycol (PCL), (b) ⁇ -hydro- ⁇ -hydroxypoly (oxypropylene) and ⁇ - having a number average molecular weight of 600 to 6,000 g / mol and a hydroxyl functionality of 1.9 to 2.7 At least one selected from hydro- ⁇ -hydroxypoly (oxypropylene-co-oxyethylene), or (c) a mixture of the above (a) and (b) to react with a terminal free isocyanate (NCO) group.
  • NCO terminal free isocyanate
  • step (3) mixing and foaming the prepolymer prepared in step (1) with the subject matter prepared in step (2) to produce a polyurethane elastomer, the method being prepared by a method for producing an ultra-fine foamed polyurethane elastomer Can be.
  • the method for producing an ultra-fine foamed polyurethane elastomer firstly comprises, as step (1), 4,4-diphenylmethane diisocyanate, (a) a number average molecular weight of 500 to 5,000 g / mol and hydroxyl At least one selected from poly (oxytetramethylene) glycol (PTMG) and poly (caprolactone) glycol (PCL) having a functionality of 1.9 to 2.1, (b) a number average molecular weight of 600 to 6,000 g / mol and a hydroxyl functionality ⁇ -hydro ⁇ -hydroxypoly (oxypropylene) and ⁇ -hydro- ⁇ -hydroxypoly (oxype having a value of 1.9 to 2.7 Reacting at least one selected from propylene-co-oxyethylene) or (c) the mixture of ( a ) and (b) to prepare a prepolymer containing a terminal free isocyanate (NCO) group.
  • NCO terminal free isocyanate
  • step (1) at least one selected from (a) poly (oxytetramethylene) glycol (PTMG) and poly (caprolactone) glycol (PCL), or (b) ⁇ -hydro- ⁇ —hydroxypoly At least one selected from (oxypropylene) and ⁇ -hydro- ⁇ —hydroxypoly (oxypropylene-co-oxyethylene), or (c) the mixture component of (a) and (b) is a final ultrafine It influences the physical properties of the foamed polyurethane elastomer.
  • PTMG poly (oxytetramethylene) glycol
  • PCL poly (caprolactone) glycol
  • the number average molecular weight (Mn) of the (a) poly (oxytetramethylene) glycol (PTMG) and poly (caprolactone) glycol (PCL) is 500 to 5,000, more preferably 1,000 to 4,000.
  • the hydroxyl functionality of the PTMG and PCL, that is, the number of terminal hydroxyl groups is 1.9 to 2.1, more preferably 2.0.
  • the number average molecular weight (Mn) of (b) ⁇ -hydro- ⁇ -hydroxypoly (oxypropylene) and ⁇ -hydro- ⁇ -hydroxypoly (oxypropylene-co-oxyethylene) is 600 to 6,0 It is 0 and it is more preferable that it is 1,000-5,000.
  • the ultrafine foamed polyurethane elastomer produced has appropriate flexibility to prevent cracking, while the ultrafine foamed poly
  • the urethane elastomer may have sufficient hardness, and the prepolymer prepared in step (1) may have an appropriate viscosity and thus may have good handleability.
  • the number average molecular weight is smaller than the preferred range, flexibility may be insufficient, and when the number average molecular weight is larger than the preferred range, the hardness of the manufactured ultra-fine foamed polyurethane elastomer may be low, so that it may be difficult to have sufficient strength as a rail pad.
  • the content of terminal free isocyanate (NCO) groups of the prepolymer prepared through step (1) may be 10 to 25% by weight, preferably 13 to 20% by weight.
  • the increase ratio of 4,4-diphenylmethane diisocyanate to the component (a), (b) or (c) may be 20:80 to 60:40, preferably 50:50 to 40:60. .
  • the equivalent ratio of the 4,4-diphenylmethane diisocyanate and the component (a), (b) or (c) is 5: 1 to 27: 1, preferably 7: 1 to 15: 1 day. Can be.
  • Reaction of the said 4, 4- diphenylmethane diisocyanate and the said component (a), (b) or (c) is a 4, 4- diphenylmethane di
  • Degassing prior to reaction with isocyanate may be followed by reaction with the 4,4-diphenylmethane diisocyanate.
  • the defoaming at 7 ° C to 120 ° C, preferably at 80 ° C to 10 ° C
  • a prepolymer can be prepared.
  • reaction of (b) or (c) may be made at 70 ° C. to 90 ° C., preferably at 75 ° C. to 82 ° C., for 1 to 3 hours, preferably 1.5 to 2.5 hours.
  • reaction of the 4,4-diphenylmethane diisocyanate with components (a), (b), or (c) may be performed without a catalyst.
  • the method for producing an ultra-fine foamed polyurethane elastomer according to the present invention, as step (2), includes a step of preparing a subject in which water, a polyol and an additive are mixed.
  • the subject matter is 0 to 1.2 parts by weight and 80 to 100 parts by weight, preferably 0.001 to 1.2 parts by weight and 85 to 100 parts by weight of water and polyol, respectively, based on 100 parts by weight of the prepolymer. Parts by weight, more preferably 0.2 to 0.6 parts by weight and 90 to 100 parts by weight, respectively.
  • the water produces carbon dioxide (C0 2 ) by reaction with 4,4-diphenylmethane diisocyanate to act as blowing agent.
  • the polyol included in the blowing agent composition may be ⁇ poly (oxytetramethylene) glycol, (ii) poly (caprolactone) glycol, or (iii) poly (oxytetramethylene) glycol and poly (caprolactone) glycol 3: It may be a copolymer composed of a weight ratio of 7 to 7: 3.
  • the soft segment may be softened by interaction with the polyol included in the prepolymer prepared in step (1). It is possible to improve the dynamic elasticity behavior by increasing the crystallinity of the (soft segment), and when used at 100 parts by weight or less, the crystallinity of the hard segment can be reduced to prevent the durability from being lowered.
  • the additive may include at least one selected from the group consisting of crosslinking agents, chain extenders, catalysts, foam stabilizers, antioxidants, and antibacterial agents.
  • the crosslinking agent may be included as necessary, and may include, for example, trimethylpropanol (TMP), glycerol or 4,4-methylene bis (2-chloroaniline) (M0CA), and may be used in an amount of 0 to 3 parts by weight.
  • TMP trimethylpropanol
  • M0CA 4,4-methylene bis (2-chloroaniline)
  • the chain extender is a molecular weight of 500 having a 2 to 4-hydroxy-C under 2 - 10 may be a hydrocarbon, for example 1, 4-butane dieul, 1,3_-propanediol, butylene glycol, or ethyl 1,6-nucleic acid It may be a diol, based on 100 parts by weight of the prepolymer may be used in 0.1 to 30 parts by weight, preferably 5 to 20 parts by weight.
  • Such catalysts include organometallic compounds (e.g., tin (II) salts of 3 ⁇ 4 large organic carboxylic acids, specifically tin ( ⁇ ) dioctoate, tin ( ⁇ ) dilaurate, dibutyltin diacetate and dibutyltin).
  • organometallic compounds e.g., tin (II) salts of 3 ⁇ 4 large organic carboxylic acids, specifically tin ( ⁇ ) dioctoate, tin ( ⁇ ) dilaurate, dibutyltin diacetate and dibutyltin).
  • tertiary amines e.g., tetramethylethylenediamine, N-methylmorphlin, diethylbenzylamine, triethylamine, dimethylcyclonuxylamine, diazabicyclooctane, ⁇ , ⁇ '-dimethylpiperazine , ⁇ -methyl, ⁇ '-(4- ⁇ -dimethylamino) butyl piperazine, ⁇ , ⁇ , ⁇ ', ⁇ ", ⁇ " -pentamethyldiethylenetriamine, etc.), amidine (e.g., 2,3- Dimethyl-3,4,5,6-tetrahydropyrimidine), tris- (dialkylaminoalkyl) -s—nuxahydretriazine (such as tris- ( ⁇ , ⁇ -dimethylaminopropyl) -S-nucleohydro) Triazine), tetraalkylammonium hydrox
  • sodium metal and potassium isopropylate ray bit and from 10 to 20 carbon atoms and optionally a side chain And alkali metal salts of long-chain fatty acids having OH groups, preferably 2,6-dimethylmorpholineethylether and tetramethylethylenediamine.
  • the catalyst can be used in amounts of 0.5 to 3 parts by weight, preferably 1 to 2 parts by weight, based on 100 parts by weight of the prepolymer.
  • the foam stabilizer can prevent the phase separation of the subject, lower the surface tension of the polyurethane produced to grow bubbles, and can prevent the destruction of cells due to bubble destabilization when the viscosity rises.
  • the foam stabilizer to improve the fluidity of the article and the layer conductivity during the mold foaming to uniform the product density preferably may be a silicone foam stabilizer.
  • the foam stabilizer may be used in an amount of 0.3 to 3 parts by weight, preferably 0.5 to 2.5 parts by weight, based on 100 parts by weight of the prepolymer. If the foaming agent is 0.3 parts by weight of the subphase, it is possible to prevent the problem of uneven molding of the foam, and if the foaming agent is 3 parts by weight or less, it is possible to prevent the problem that the hardness of the foam is lowered or shrinkage occurs.
  • the antioxidant is not particularly limited as long as it is a commonly used antioxidant, and may include hindered phenol-based or hindered arylamine-based antioxidants.
  • the content of the antioxidant may be 0.01 to 1.0 parts by weight based on 100 parts by weight of the prepolymer.
  • the antimicrobial agent is not particularly limited as long as it is a conventionally used antimicrobial agent, and the content of the antimicrobial agent may be 0,01 to 1.0 parts by weight based on 100 parts by weight of the prepolymer.
  • the method for producing an ultra-fine foamed polyurethane elastomer according to the present invention as a step (3), mixing and foaming the preliminary polymer produced in the step (1) and the subject produced in the step (2) Multi-specifically, after mixing and foaming the prepolymer prepared in step (1) with the main body prepared in step (2) using a low pressure foaming machine in a mold; The mold is cured at a predetermined temperature and time condition and then demolded, and then in an oven.
  • the final ultrafine foamed polyurethane elastomer can be prepared by undergoing a secondary curing process.
  • the temperature of the mold may be 40 ° c to 7 (rc, preferably 5 (rc to 6 (rc), the curing time is 5 to 15 minutes, preferably 7 to 10 minutes.
  • the temperature of the prepolymer is from 5C to 85 ° C, preferably from 55 ° C to 65 ° C, and the temperature of the subject is from 40 ° C to 70 ° C, preferably It may be maintained at 50 ° C to 60 ° C.
  • the temperature of the oven during the second curing may be 75 ° C to 110 ° C, preferably 8 C C to 9 C C, the curing time may be 6 to 15 hours, preferably 8 to 12 hours.
  • the ultra-fine foamed polyurethane elastic body prepared in this way can be used, such as apartment floor noise suppression material, vehicle anti-vibration member, or mechanical anti-vibration member, in particular can be useful in the manufacture of the rail pad.
  • apartment floor noise suppression material such as apartment floor noise suppression material, vehicle anti-vibration member, or mechanical anti-vibration member, in particular can be useful in the manufacture of the rail pad.
  • Ultrafine foamed polyurethane elastomers were prepared in the same manner as in Example 1, except that the prepolymer and the subject were prepared in the composition shown in Table 1 below.
  • Example 8 70-30 0.5 100 10 1.5 1.0 1.0 0.01 0.1
  • Example 9 50 50-0.2 100 10 1.5 1.0 1.0 0.01 0.1
  • Example 10 50 50-0.8 100 10 1.5 1.0 1.0 0.01 0.1
  • Example 11 50 50-1.2 100 10 1.5 1.0 1.0 0.01 0.1
  • Comparative Examples 1 to 4 Ultrafine foamed polyurethane elastomers were prepared in the same manner as in Example 1, except that the prepolymer and the main ingredient were prepared in the composition shown in Table 2 below.
  • the content of the components constituting the subject represents the weight part value based on 100 parts by weight of the prepolymer.
  • Test Examples Static and modulus modulus, dynamic modulus, tensile strength before and after aging, electrical resistance, durability test of ultrafine foamed polyurethane elastomers according to Examples and Comparative Examples of the present invention .
  • the compression set was evaluated in the following manner and the results are shown in Tables 3 to 5 below.
  • the evaluation method of the specimen was evaluated at room temperature of 20 to 3CTC by KSRCKorea Railway Standards) TR 0014-12R. Evaluation proceeded after storing the specimen which passed more than 24 hours after hardening for 2 hours or more at room temperature.
  • the evaluation items are as follows.
  • the polyurethane elastomers according to the embodiments of the present invention exhibit excellent physical properties in terms of tensile strength, elongation, static modulus, dynamic modulus, electrical resistance, and permanent compression.
  • the polyurethane elastomer according to the comparative example was poor in any one or more of these properties.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Polyurethanes Or Polyureas (AREA)

Abstract

본 발명은, (1) 4,4-디페닐메탄 디이소시아네이트(MDI) 단위, 및 (2) (a) 폴리(옥시테트라메틸렌)글리콜(PTMG) 단위 및 폴리(카프로락톤)글리콜(PCL) 단위 중에서 선택된 1종 이상, (b) α-히드로-ω-히드록시폴리(옥시프로필렌) 단위 및 α-히드로-ω-히드록시폴리(옥시프로필렌-코-옥시에틸렌) 단위 중에서 선택된 1종 이상, 또는 (c) 상기 (a) 및 (b) 둘 다를 포함하는 단위를 포함하고, 동적탄성계수/정적탄성계수 비율이 1.0 내지 1.63인, 초미세 발포 폴리우레탄 탄성체에 관한 것이다. 상기 초미세 발포 폴리우레탄 탄성체는 고 내구성 및 우수한 정적/동적 탄성 특성을 가지므로 아파트 층간 소음 방지재, 차량용 방진 부재, 기계 방진 부재 또는 레일 패드의 제조에 유용하게 사용될 수 있다.

Description

명세서
소음및 진동흡수용초미세 발포폴리우레탄탄성체 및 이의 제조방법 기술분야 본 발명은 초미세 발포 폴리우레탄 탄성체 및 이의 제조방법에 대한 것 으로, 특히 고 내구성이 요구되는 아파트 층간 소음 방지재, 차량용 방진 부재, 기계 방진 부재 또는 레일 패드 등의 제조에 사용되는 폴리우레탄 탄성체의 제 조방법에 관한 것이다. 꿰경기술 미세한 셀 구조를 가지는 폴리우레탄 탄성체는 제진성 및 층격 흡수성 이 우수하고, 고하중시의 동적 특성, 내구성 및 내영구변형성이 뛰어나다. 이 러한 폴리우레탄 탄성체는 아파트 층간 소음 방지재, 차량용 방진 부재, 기계 방진 부재 등 탄성력이 필요한 곳이나 방음이 필요한 분야, 특히 철도 궤도시 스템에 사용되는 레일 패드의 재료로서 적합하다.
레일 패드는 철도 궤도시스템에서 테일 체결 장치를 구성하는 한 요소 로서 열차 운행시 발생하는 진동을 감쇄시켜 차량으로 전달되는 소음을 줄여 승차감을 높일 수 있다. 또한, 레일 패드는 차량의 하중을 고르게 분산시키고 불규칙한 레일의 파상마모를 줄임으로써 유지보수비용을 절감시켜 줄 수 있다. 폴리우레탄 탄성체는 일반적으로 폴리을과 디이소시아네이트계 물질을 반웅시켜 제조되며, 그 중 나프탈렌 디이소시아네이트 (NDI)를 사용하여 폴리우 레탄 탄성체를 제조하는 방법이 잘 알려져 있다. 구체적으로, NDI를 단독으로 폴리올과 반웅시키거나, 또는 NDI와 4,4—디페닐메탄 디이소시아네이트 (4,4- diphenylmethane diisocyanate; p— MDI)를 폴리을과 반웅시켜, 이소시아네이트 (NCO)기 말단기 함유 폴리우레탄 예비 중합체를 제조한다. 이후, 제조된 폴리 우레탄 예비 중합체에 물, 촉매, 정포제, 산화방지제, 사슬 연장제 (chain extender) 등을 첨가하여 주제를 형성한다. 이와 같이 형성된 주제를 발포기 를 사용해서 발포하며 폴리우레탄 탄성체를 제조할 수 있다.
이 외에도 한국 공개특허공보 제 2008-0003268호는 고융점 이소시아네 이트계 물질인 1,5-나프탈렌 디이소시아네이트 (NDI), 3,3'-디메틸 -4,4'-바이페 닐렌 디이소시아네이트 (TODI) 및 P-페닐렌 디이소시아네이트 (PPDI)을 2종 이 상의 폴리을과 반웅시켜, 내굴곡 피로 특성이 우수한 폴리우레탄 탄성체를 제 조하는 방법올 개시하고 있다.
그러나, 상기 종래기술에서 사용된 NDI, TODI 및 PPDI와 같은 이소시 아네이트계 물질들은 가격이 상대적으로 고가이고, 예비 중합체의 점도가 높아 고온에서의 운전이 필요한 단점이 있다. 또한, 상기 이소시아네이트계 물질들 은 반응활성이 상대적으로 높아 저장안정성이 매우 저조한 등의 원료 취급이 용이하지 않은 문제점을 가지고 있다.
한편, 4,4'-디페닐메탄 디이소시아네이트 (MDI)는 상대적으로 가격이 저 렴하고 점도가 낮아 원료 취급이 간편한 장점이 있지만, MDI가 가지는 구조적 한계로 인해 레일 패드에서 요구하는 고내구성 및 정적 /동적탄성 등의 주요 물 성을 층족시킬 수 없었다.
따라서, 경제성, 원료 취급성 및 예비 중합체의 저장안정성이 우수하면 서도, 레일 패드에서 요구되는 고내구성 및 탄성 등의 물성을 층족하는 새로운 폴리우레탄 탄성체의 개발이 요구되고 있다. 발명의 개요
본 발명의 목적은 아파트 층간 소음 방지재, 차량용 방진 부재, 기계 방 진 부재 또는 레일 패드로 사용되는 초미세 발포 폴리우레탄 탄성체를 제공하 는 것이다.
또한, 본 발명의 목적은 초미세 발포 폴리우레탄 탄성체의 제조에, 4,4'- 디페닐메탄 디이소시아네이트를 도입하여 예비 중합체의 점도를 개선함으로써 원료 취급이 용이하고, 저장안정성이 높으면서도, 레일 패드에 요구되는 우수한 물성을 가지는 폴리우레탄 탄성체를 제조할 수 있는 제조방법을 제공하는 것이 다. 상기 목적에 따라 본 발명은,
(1) 4,4-디페닐메탄 디이소시아네이트 단위, 및
(2) (a) 폴리 (옥시테트라메틸렌)글리콜 (PTMG) 단위 및 폴리 (카프로락 톤)글리콜 (PCL) 단위 중에서 선택된 1종 이상, (b) α-히드로—ω-히드록시폴리 (옥시프로필렌) 단위 및 α-히드로 -ω-히드록시폴리 (옥시프로필렌-코-옥시에틸 렌) 단위 중에서 선택된 1종 이상, 또는 (c) 상기 (a) 및 (b) 둘 다를 포함하고, 동적탄성계수 /정적탄성계수 비율이 1.0 내지 1.63인, 초미세 발포 폴리 우레탄 탄성체를 제공한다. 또한, 본 발명은
(1) 4, 4-디페닐메탄 디이소시아네이트와, (a) 수평균분자량이 500 내지 5,000 g/mol이고 히드록실 관능가가 1.9 내지 2.1인 폴리 (옥시테트라메틸렌)글 리콜 (PTMG) 및 폴리 (카프로락톤)글리콜 (PCL) 중에서 선택된 1종 이상, (b) 수 평균분자량이 600 내지 6,000 g/mol이고 히드록실 관능가가 1.9 내지 2.7인 α-히드로 -ω-히드록시폴리 (옥시프로필렌) 및 α-히드로 -ω-히드록시폴리 (옥시프 로필렌 -코-옥시에틸렌) 중에서 선택된 1종 이상, 또는 (c) 상기 (a) 및 (b)의 흔합물을 반웅시켜, 말단 자유 이소시아네이트 (NCO)기를 함유하는 예비 중합 체를 제조하는 단계;
(2) 물, 폴리올 및 첨가제를 흔합한 주제를 제조하는 단계; 및
(3) 상기 단계 (1)에서 제조된 예비 중합체와 단계 (2)에서 제조된 주제 를 흔합 및 발포시켜 폴리우레탄 탄성체를 제조하는 단계를 포함하는 초미세 발포 폴리우레탄 탄성체의 제조방법을 제공한다. 본 발명의 따른 초미세 발포 폴리우레탄계 탄성체는 고 내구 반복 특성 및 우수한 정적 /동적탄성 특성을 가지므로 아파트 층간 소음 방지재, 차량용 방진 부재, 기계 방진 부재 또는 레일 패드의 제조에 유용하게 사용될 수 있다. 또한, 본 발명의 초미세 발포 폴리우레탄계 탄성체의 제조방법에 의하 면, 초미세 발포 폴리우레탄 탄성체의 제조에 4,4'-디페닐메탄 디이소시아네이 트를 도입하여, 예비 중합체의 점도를 개선함으로써 원료 취급이 간편하면서도 예비 중합체의 저장안정성이 우수하며, 우수한 물성을 가지는 폴리우레탄 탄성 체를 제조할 수 있어/초미세 발포 폴리우레탄 탄성체의 제조에 유용하게 사용 될 수 있다. 발명의 상세한설명 이하, 본 발명을 더욱 상세히 설명한다. 본 발명에 따른 초미세 발포 폴리우레탄 탄성체는 (1) 4,4-디페닐메탄 디이소시아네이트 단위, 및 (2) (a) 폴리 (옥시테트라메틸렌)글리콜 (PTMG) 단위 및 폴리 (카프로락톤)글리콜 (PCL) 단위 증에서 선택된 1종 이상, (b) α-히드로- ω-히드록시폴리 (옥시프로필렌) 단위 및 α-히드로 -ω-히드록시폴리 (옥시프로필 렌 -코-옥시에틸렌) 단위 중에서 선택된 1종 이상, 또는 (c) 상기 (a) 및 (b) 둘 다를 포함하는 단위를 포함한다.
상기 초미세 발포 폴리우레탄 탄성체는 정적탄성계수에 대한 동적탄성 계수의 비율 (동적탄성계수 /정적탄성계수)이 1.0 내지. 1.63, 바람직하게는 1.0 내지 1.5이고, 보다 바람직하게는 1.1 내지 1.3이다.
또한, 상기 초미세 발포 폴리우레탄 탄성체는 바람직하게는 25 내지 60 kN/mm의 정적탄성계수 및 30 내지 75 kN/mm의 동적탄성계수를 .가지므로, 뛰어난 방진 성능을 발휘할 수 있다.
또한, 상기 초미세 발포 폴리우레탄 탄성체는, KS M ISO 1856 기준으로 영구압축줄음율을 측정하였을 때, 바람직하게는 7% 이하, 보다 바람직하게는 5% 이하의 영구압축줄음율을 가진다.
또한, 상기 초미세 발포 폴리우레탄 탄성체는, 하중 5 내지 75 kN을 4Hz로 3X106회 반복하중시험을 하였을 때, 바람직하게는 초기 대비 25% 이 하, 보다 바람직하게는 20% 이하의 정적탄성계수 변화율을 가지므로, 뛰어난 내구성을 가진다. 또한, 상기 초미세 발포 폴리우레탄 탄성체는, KS M 6518 기준으로 측 정하였을 때, 바람직하게는 5 내지 12 MPa의 노화 전 인장강도를 가지며, 70士 1 °C의 온도에서 96시간 보관 후 측정한 노화 후의 인장강도가 노화 전 인 장강도의 90% 이상일 수 있다.
또한, 상기 초미세 발포 폴리우레탄 탄성체는, KS M 6518 기준으로 측 정하였을 때, 바람직하게는 250 내지 450%의 노화 전 신을을 가지며, 70士 1 °C 의 온도에서 96시간 보관 후 측정한 노화 후의 신율은 노화 전 신율의 90% 이상일 수 있다. '상기 본 발명에 따른 초미세 발포 폴리우레탄 탄성체는,
(1) 4,4ᅳ디페닐메탄 디이소시아네이트와, (a) 수평균분자량이 500 내지 5,000 g/mol이고 히드록실 관능가가 1.9 내지 2.1인 폴리 (옥시테트라메틸렌)글 리콜 (PTMG) 및 폴리 (카프로락론)글리콜 (PCL) 중에서 선택된 1종 이상, (b) 수 평균분자량이 600 내지 6,000 g/mol이고 히드록실 관능가가 1.9 내지 2.7인 α-히드로 -ω-히드록시폴리 (옥시프로필렌) 및 α-히드로 -ω-히드록시폴리 (옥시프 로필렌 -코-옥시에틸렌) 중에서 선택된 1종 이상, 또는 (c) 상기 (a) 및 (b)의 흔합물을 반응시켜, 말단 자유 이소시아네이트 (NCO)기를 함유하는 예비 중합 체를 제조하는 단계;
(2) 물, 폴리을 및 첨가제를 흔합한 주제를 제조하는 단계; 및
(3) 상기 단계 (1)에서 제조된 예비 중합체와 단계 (2)에서 제조된 주제 를 흔합 및 발포시켜 폴리우레탄 탄성체를 제조하는 단계를 포함하는, 초미세 발포 폴리우레탄 탄성체의 제조방법에 의해 제조될 수 있다. 본 발명에 따른 초미세 발포 폴리우레탄 탄성체의 제조방법은, 우선 단 계 (1)로서, 4,4-디페닐메탄 디이소시아네이트와, (a) 수평균분자량이 500 내지 5,000 g/mol이고 히드록실 관능가가 1.9 내지 2.1인 폴리 (옥시테트라메틸렌)글 리콜 (PTMG) 및 폴리 (카프로락톤)글리콜 (PCL) 중에서 선택된 1종 이상, (b) 수 평균분자량이 600 내지 6,000 g/mol이고 히드록실 관능가가 1.9 내지 2.7인 α-히드로 _ω-히드록시폴리 (옥시프로팔렌) 및 α-히드로 -ω-히드록시폴리 (옥시프 로필렌 -코-옥시에틸렌) 중에서 선택된 1종 이상, 또는 (c) 상기 (a) 및 (b)의 흔합물을 반응시켜, 말단 자유 이소시아네이트 (NCO)기를 함유하는 예비 중합 체를 제조하는 단계를 포함한다.
상기 단계 (1)에서, (a) 폴리 (옥시테트라메틸렌)글리콜 (PTMG) 및 폴리 (카프로락톤)글리콜 (PCL) 중에 선택된 1종 이상, 또는 (b) α-히드로 -ω—히드록 시폴리 (옥시프로필렌) 및 α-히드로 -ω—히드록시폴리 (옥시프로필렌-코-옥시에틸 렌) 중에 선택된 1종 이상, 또는 (c) 상기 (a) 및 (b)의 흔합물 성분은 최종 초 미세 발포 폴리우레탄 탄성체의 물성을 좌우한다. 이 중, (a) 폴리 (옥시테트라 메틸렌)글리콜 (PTMG) 및 폴리 (카프로락톤)글리콜 (PCL) 중에 선택된 1종 이상 을 포함할 경우, 물, 오일, 용제, 염소 등에 대한 내성이 우수하고, 생분해성이 있어서 환경적 관점에서도 장점을 가질 수 있다.
상기 (a) 폴리 (옥시테트라메틸렌)글리콜 (PTMG) 및 폴리 (카프로락톤)글 리콜 (PCL)의 수평균 분자량 (Mn)은 500 내지 5,000이고, 1,000 내지 4,000인 것이 보다 바람직하다. 또한, 상기 PTMG 및 PCL의 히드록실 관능가 (functionality) , 즉 말단 히드록실기 갯수는 1.9 내지 2.1개이며, 보다 바람직 하게는 2.0이다.
상기 (b) α-히드로 -ω-히드록시폴리 (옥시프로필렌) 및 α-히드로 -ω-히드 록시폴리 (옥시프로필렌 -코-옥시에틸렌)의 수평균분자량 (Mn)은 600 내지 6,0ᄋ0이고, 1,000 내지 5,000인 것이 보다 바람직하다.
상기 성분 (a) 및 (b)의 수평균 분자량이 상기의 바람직한 범위 이내인 경우, 제조된 초미세 발포 폴리우레탄 탄성체가 적절한 유연성을 가지게 되어 깨짐 현상을 방지할 수 있으면서도, 제조된 초미세 발포 폴리우레탄 탄성체가 충분한 경도를 가질 수 있으며, 상기 단계 (1)에서 제조되는 예비 중합체가 적 절한 점도를 가지게 되어 취급성이 양호할 수 있다. 즉, 상기 수평균 분자량이 바람직한 범위보다 작은 경우에는 유연성이 부족할 수 있고, 바람직한 범위보 다 큰 경우 제조된 초미세 발포 폴리우레탄 탄성체의 경도가 낮아져 레일 패드 로서 충분한 강도를 갖기 어려울 수 있다.
상기 단계 (1)을 통하여 제조된 예비 중합체의 말단 자유 이소시아네이 트 (NCO) 기의 함량은 10 내지 25 중량%일 수 있으며, 바람직하게는 13 내지 20 중량 %일 수 있다.
상기 4,4-디페닐메탄 디이소시아네이트와, 상기 성분 (a), (b) 또는 (c) 와의 증량비는 20:80 내지 60:40, 바람직하게는 50:50 내지 40:60일 수 있다. 이때, 상기 4,4-디페닐메탄 디이소시아네이트와, 상기 성분 (a), (b) 또는 (c)와 의 당량비는 5: 1 내지 27: 1, 바람직하게는 7: 1 내지 15: 1일 수 있다. 상기 4,4-디페닐메탄 디이소시아네이트와상기 성분 (a), (b) 또는 (c)와 의 반웅은, 성분 (a), (b) 또는 (c)를 4,4-디페닐메탄 디이소시아네이트와의 반 웅 전에 우선적으로 탈포시킨 후, 상기 4,4-디페닐메탄 디이소시아네이트와 반 응시켜 이루어질 수 있다.
상기 탈포는, 7C C 내지 120°C , 바람직하게는 80°C 내지 10C C에서
0.5 내지 3 시간, 바람직하게는 0.5 내지 1 시간 동안 이루어질 수 있다. 상 기 탈포 과정을 통하여 상기 성분 (a), (b) 또는 (c)로부터 충분히 탈포가 이루 어졌다고 판단되면, 상기 4,4-디페닐메탄 디이소시아네이트와 반웅시켜 말단 자유 이소시아네이트 (NCO)기를 함유하는 예비 중합체를 제조할 수 있다.
상기 탈포 이후의 상기 4,4-디페닐메탄 디이소시아네이트와 성분 (a),
(b) 또는 (c)의 반웅은 70°C 내지 90°C , 바람직하게는 75 °C 내지 82°C에서 1 내지 3 시간, 바람직하게는 1.5 내지 2.5 시간 동안 이루어질 수 있다.
이때, 상기 4,4-디페닐메탄 디이소시아네이트와 성분 (a), (b), 또는 (c) 와의 반웅은 무촉매 하에서 이루어질 수 있다. 본 발명에 따른 초미세 발포 폴리우레탄 탄성체의 제조방법은, 단계 (2) 로서, 물, 폴리올 및 첨가제를 흔합한 주제를 제조하는 단계를 포함한다.
상기 단계 (2)에서, 상기 주제는 물 및 폴리올을 상기 예비 중합체 100 중량부를 기준으로 각각 0초과 내지 1.2 중량부 및 80 내지 100 중량부, 바람 직하게는 각각 0.001 내지 1.2 중량부 및 85 내지 100 중량부, 더욱 바람직하 게는 각각 0.2 내지 0.6 중량부 및 90 내지 100 중량부의 양으로 포함할 수 있다.
상기 물은 4,4-디페닐메탄 디이소시아네이트와의 반응에 의해 이산화탄 소 (C02)를 생성하여 발포제로서 작용한다. 상기 발포제 조성물에 포함된 폴리올은 ω 폴리 (옥시테트라메틸렌)글리 콜, (ii) 폴리 (카프로락톤)글리콜, 또는 (iii) 폴리 (옥시테트라메틸렌)글리콜과 폴 리 (카프로락톤)글리콜이 3:7 내지 7:3의 중량비로 구성된 공중합체일 수 있다. 상기 발포제 조성물에 포함된 폴리올이 상기 예비 중합체 100 중량부 를 기준으로 80 중량부 이상으로 사용되는 경우, 상기 단계 (1)에서 제조된 예 비 중합체에 포함되어 있는 폴리올과의 상호 작용에 의해 소프트 세그먼트 (soft segment)의 결정화도를 높여 동적탄성 거동을 향상시킬 수 있으며, 100 중량부 이하로 사용되는 경우, 하드 세그먼트 (hard segment)의 결정화도를 저 하시켜 내구성이 저하되는 것을 방지할 수 있다.
상기 첨가제로는 가교제, 사슬 연장제, 촉매, 정포제, 산화방지제, 및 항 균제로 이루어진 군으로부터 선택된 1종 이상을 들 수 있다.
상기 가교제는 필요에 따라 포함될 수 있으며, 예컨대 트리메틸프로판 올 (TMP), 글리세롤 또는 4,4-메틸렌 비스 (2-클로로아닐린) (M0CA)을 들 수 있고, 0 내지 3 중량부로 사용될 수 있다.
상기 사슬 연장제는 2 내지 4개의 하이드록시기를 갖는 분자량 500 이 하의 C2-10 탄화수소일 수 있으며, 예컨대 1,4-부탄디을, 1,3_프로판디올, 에틸 렌글리콜 또는 1,6-핵산디올일 수 있고, 상기 예비 중합체 100 중량부를 기준 으로 0.1 내지 30 중량부, 바람직하게는 5 내지 20 중량부로 사용될 수 있다. 상기 촉매로는 유기금속 화합물 (예 ¾대 유기 카르복실산의 주석 (II) 염, 구체적으로 주석 (Π) 디옥토에이트, 주석 (Π) 디라우레이트, 디부틸주석 디아세테 이트 및 디부틸주석 디라우레이트 등), 3급 아민 (예컨대 테트라메틸에틸렌디아 민, N-메틸모르플린, 디에틸벤질아민, 트리에틸아민, 디메틸시클로핵실아민, 디 아자비시클로옥탄, Ν,Ν'-디메틸피페라진, Ν-메틸, Ν'-(4-Ν-디메틸아미노)부틸 피페라진, Ν,Ν,Ν',Ν",Ν"-펜타메틸디에틸렌트리아민 등), 아미딘 (예컨대 2,3-디 메틸 -3,4,5,6-테트라히드로피리미딘), 트리스- (디알킬아미노알킬) -s—핵사히드 로트리아진 (예컨대 트리스 -(Ν,Ν-디메틸아미노프로필) -S-핵사히드로트리아진), 테트라알킬암모늄 수산화물 (예컨대 테트라메틸 암모늄 수산화물), 알칼리 금속 수산화물 (예컨대 수산화나트륨), 알칼리 금속 알콜레이트 (예컨대 소듐메탈레이 트 및 포타슘 이소프로필레이트), 및 10 내지 20개 탄소 원자 및 임의로 측쇄 OH 기를 갖는 장쇄 지방산의 알칼리 금속 염을 들 수 있고, 바람직하게는 2,6-디메틸모폴린에틸에터 및 테트라메틸에틸렌디아민을 들 수 있다.
촉매는 반웅성에 따라 상기 예비 중합체 100 중량부에 대하여 0.5 내지 3 중량부, 바람직하게는 1 내지 2 중량부의 양으로 사용될 수 있다.
상기 정포제는 주제의 상 분리 현상을 방지할 수 있으며, 제조되는 폴 리우레탄의 표면 장력을 낮춰 기포를 성장시키고, 점도 상승 시 기포 불안정화 로 인한 셀의 파괴를 예방할 수 있다. 또한, 상기 정포제는 품의 유동성과 몰 드 발포시 층전성을 좋게하여 제품밀도를 균일하게 하는데, 바람직하게는 실리 콘 정포제일 수 있다.
상기 정포제는 상기 예비 중합체 100 중량부에 대하여 0.3 내지 3 중 량부, 바람직하게는 0.5 내지 2.5 증량부로 사용될 수 있다. 상기 정포제가 0.3 중량부 아상이면 발포체의 성형이 불균일해지는 문제를 방지할 수 있고, 상기 정포제가 3 중량부 이하이면 발포체의 경도가 저하되거나 수축이 발생되 는 문제점을 방지할 수 있다.
상기 산화방지제는 통상적으로 사용되는 산화방지제라면 특별히 제한되 지 않으며 힌더드페놀 (hindered phenol)계 또는 힌더드아릴아민 (hindered arylamine)계 산화방지제를 들 수 있다. 상기 산화방지제의 함량은 예비 중합 체 100 중량부에 대하여 0.01 내지 1.0 중량부일 수 있다.
상기 항균제는 통상적으로 사용되는 항균제라면 특별히 제한되지 않으 며, 상기 항균제의 함량은 예비 중합체 100 중량부에 대하여 0,01 내지 1.0 중량부일 수 있다. 또한, 본 발명에 따른 초미세 발포 폴리우레탄 탄성체의 제조방법은, 단 계 (3)으로서, 상기 단계 (1)에서 제조된 예비 증합체와, 상기 단계 (2)에서 제 조된 주제를 흔합 및 발포시켜 폴리우레탄 탄성체를 제조하는 단계를 포함한 다- 구체적으로, 저압 발포기를 이용하여 상기 단계 (1)에서 제조된 예비 중 합체와 상기 단계 (2)에서 제조된 주제를 금형에 흔합 및 발포한 후, 상기 금 형에서 소정의 온도 및 시간의 조건으로 경화시킨 다음 탈형하고, 이후 오븐에 서 2차 경화 과정을 거침으로써 최종 초미세 발포 폴리우레탄 탄성체를 제조할 수 있다.
상기 발포기로는 저압 발포기를 들 수 있다.
상기 금형의 온도는 40°c 내지 7(rc, 바람직하게는 5(rc 내지 6(rc일 수 있고, 경화시간은 5 내지 15 분, 바람직하게는 7 내지 10 분일 수 있다. 상기 발포기 내에서 예비 중합체 및 상기 주제를 흔합할 때, 상기 예비 중합체의 온도는 5C C 내지 85 °C , 바람직하게는 55 °C 내지 65 °C , 상기 주제의 온도는 40°C 내지 70°C , 바람직하게는 50°C 내지 60 °C로 유지될 수 있다. 상기 발포기 내에서 상기 예비 중합체의 온도가 50 °C 이상인 경우 적절 한 취급성을 나타낼 수 있는 점도를 가질 수 있고, 85 °C 이하일 경우에는 적절 한 저장안정성을 유지할 수 있다. 또한, 상기 주제의 온도가 40°C 이상이면 적절한 점도를 가지므로 취급이 용이하게 되고, 7C C 이하일 경우 상 분리 현 상을 억제할 수 있다.
상기 2차 경화 시 오븐의 온도는 75 °C 내지 110°C , 바람직하게는 8C C 내지 9C C일 수 있고, 경화 시간은 6 내지 15 시간, 바람직하게는 8 내지 12 시간일 수 있다.
이와 같이 제조된 초미세 발포 폴리우레탄 탄성체는, 아파트 층간 소음 방지재, 차량용 방진 부재, 또는 기계 방진 부재 등에 사용될 수 있고, 특히 레 일 패드의 제조에 유용하게 사용될 수 있다. 이하에서는 본 발명의 이해를 돕기 위하여 바람직한 실시예를 제시하여 본 발명을 더욱 구체적으로 설명한다. 다만, 하기 실시예는 본 발명을 예시하기 위한 것일 뿐, 본 발명의 범위가 하기 실시예로 한정되거나 제한되는 것은 아 니다, 실시예 1
(1) 60 중량부의 폴리 (옥시테트라메틸렌)글리콜 (PTMG, hydroxyl value: 56)(PTMEG 2000, Korea PTG사)을 85 °C에서 1시간 동안 탈포한 후, 40 중량 부의 4,4'-디페닐메탄 디이소시아네이트 (MDI, BASF사)를 교반하면서 첨가하여 말단 자유 이소시아네이트기의 함량이 10.9 중량%인 예비 중합체를 합성하였 다.
(2) 예비 중합체 0.5 중량부의 물, 100 중량부의 폴리올 (CAPA 2201A, Perstorp사), 1.5 중량부의 가교제 (TMP, Perstorp사), 10 중량부의 사슬 연장 제 (1,4-BD, SK Global Chemical사), 1 중량부의 촉매 (DABCO 33-LV, Air products사), 1 중량부의 정포제 (SH-190, DOW Corning사), 0.01 증량부의 산 화방지제 (Irganox 1010, BASF사) 및 0.1 중량부의 항균제 (I-PPG20, 베스텍 사)를 흔합하여 주제를 제조하였다.
(3) 앞서의 단계들에서 제조된 예비 중합체 및 주제를 각각 85 °C 및
5CTC로 유지하면서 저압 발포기 내에서 흔합 및 발포하였다. 이후 60°C의 금 형에서 10분간 경화시키고 탈형한 다음, 9CTC의 오븐에서 12시간 추가 경화하 여 초미세 발포 폴리우레탄 탄성체를 제조하였다. 실시예 2 내지 11 하기 표 1에 나타낸 바와 같은 조성으로 예비 중합체 및 주제를 제조한 것을 제외하고는, 실시예 1과 동일한 방법으로 초미세 발포 폴리우레탄 탄성체 를 제조하였다.
[표 1 ]
Figure imgf000012_0001
실시예 8 70 - 30 0.5 100 10 1.5 1.0 1.0 0.01 0.1 실시예 9 50 50 - 0.2 100 10 1.5 1.0 1.0 0.01 0.1 실시예 10 50 50 - 0.8 100 10 1.5 1.0 1.0 0.01 0.1 실시예 11 50 50 - 1.2 100 10 1.5 1.0 1.0 0.01 0.1
비교예 1 내지 4 하기 표 2에 나타낸 바와 같은 조성으로 예비 중합체 및 주제를 제조한 것을 제외하고는, 실시예 1과 동일 방법으로 초미세 발포 폴리우레탄 탄성체 를 제조하였다.
[표 2 ]
Figure imgf000013_0001
상기 표 1 및 2에서, 주제를 이루는 성분들의 함량은 예비중합체 100 중량부를 기준으로 할 때의 중량부 값을 나타낸 것이다. 시험예 본 발명의 실시예 및 비교예에 따른 초미세 발포 폴리우레탄 탄성체의 정적탄성계수, 동적탄성계수, 노화 전과 노화 후의 인장강도, 전기저항, 내구성 시험 및.압축 영구 줄음율을 다음과 같은 방법으로 평가하여 그 결과를 하기 표 3 내지 5에 나타내었다. 시편의 평가 방법은 KSRCKorea Railway Standards) TR 0014-12R에 의해 20 내지 3CTC의 실온에서 평가를 진행하였다. 평가는 경화 후 24시간 이상 경과한 시편을 2시간 이상 실온 중에 보관한 후에 진행하였다. 평가 항 목은 아래와 같다.
1. 정적탄성계수 (kNf/mm)
- 시험하중 : P1: 18 kN, P2: 68 kN, 4지점 변위 측정법
- 시험속도 : 100 kN/min
2. 동적탄성계수 (kNf/mm)
- 초기하중 : 43 kN
- 시험변위 :土 0.05 mm
- 시험주파수 : 20 Hz
3. 인장강도 /신율 (노화 전 MPa/%): KS M 6518
4. 인장강도 /신율 (노화 후, 70土 1 °C 96시간, MPa/%): KS M 6518
5. 전기저항 (Q. cm): DIN IEC 93/167
- 측정전압 : 100 V, Apparatus-Guard Electrode, Electrode system-Conducting Rubber
6. 반복하중시험 (내구성 시험)
- 정적탄성계수 변화율 (%) = (시험 후 정적탄성계수 - 시험 전 정적 탄성계수) / 시험 전 정적탄성계수 x lOO
- 시험하중 : 5 내지 75 kN, 4 Hz
- 반복횟수 : 3X 106
7. 압축영구줄음율 (23±2°C , 70 시간, 50%): KS M ISO 1856: 2007 [표 3]
Figure imgf000015_0001
[표 4]
Figure imgf000015_0002
동적탄성계수 /정적탄성계수 1.42 1.49 1.38 1.37 전기저항 (ffi . cm) 5.7x1ο11 5.7xlOu 5.3xlOu 5.2χ10η 영구압축줄음율 (%) 6 6 6 5
[표 5 ]
o o ·ᄀ 비교예 1 비교예 2 비교예 3 비교예 4 예비중합체 말단자유 NCO % 7.1 3.4 7.1 3.4
인장강도 노화 전 4.1 3.2 4.9 2.8
(MPa) 노화후 3.9 2.9 4.5 2.4
신을 노화 전 240 210 200 180
(%) 노화후 230 200 180 170
내구성 시험 전 28.4 25.2 22.4 20.5
정적탄성계수
내구성 시험 후 36.9 34.0 29.6 28.3
(kN/mm)
변화율 29.9 34.9 32.1 38.0
동적탄성계수 내구성 시험 전 46.9 45.6 39.0 37.7
(kN/mm) 내구성 시험 후 63.8 61.1 52.3 51.3
. 동적탄성계수 /정적탄성계수 1.65 1.81 1.74 . 1.84
전기저항 (Q . cm) 5.4xlOu 5.7χ10η 5.6χ10η 5.1χ10η 영구압축줄음율 (%) 11 9 10 9
상기 표 3 내지 5에서 보듯이, 본원발명의 실시예에 따른 폴리우레탄 탄성체들은 인장강도, 신율, 정적탄성계수, 동적탄성계수, 전기저항, 영구압축줄 음을 등의 측면에서 고루 우수한 물성을 나타낸 반면, 비교예에 따른 폴리우레 탄 탄성체들은 이들 중 어느 하나 이상의 물성에서 저조하였다.

Claims

허청구범위 [청구항 1]
(1) 4,4-디페닐메탄 디이소시아네이트 (MDI) 단위, 및
(2) (a) 폴리 (옥시테트라메틸렌)글리콜 (PTMG) 단위 및 폴리 (카프로락톤)글 리콜 (PCL) 단위 중에서 선택된 1종 이상, (b) α-히드로 -ω_히드록시폴리 (옥시프로 필렌) 단위 및 α-히드로 _ω-히드록시폴리 (옥시프로필렌 -코—옥시에틸렌) 단위 중 에서 선택된 1종 이상, 또는 (c) 상기 (a) 및 (b) 둘 다를 포함하는 단위를 포함 하고,
동적탄성계수 /정적탄성계수 비율이 1.0 내지 1.63인, 초미세 발포 폴리우 레탄 탄성체.
[청구항 2]
제 1 항에 있어서,
상기 동적탄성계수 /정적탄성계수 비율이 1.0 내지 1.5인, 초미세 발포 폴 리우레탄 탄성체.
[청구항 3]
제 1 항에 있어서,
상기 정적탄성계수 및 동적탄성계수가 각각 25 내지 60 kN/mm 및 30 내 지 75 kN/mm인, 초미세 발포 폴리우레탄 탄성체.
[청구항 4]
제 1 항에 있어서,
상기 초미세 발포 폴리우레탄 탄성체가, KS M ISO 1856 기준으로 영구압 축줄음율을 측정하였을 때 7% 이하의 영구압축줄음율을 갖는, 초미세 발포 폴리 우레탄 탄성체.
[청구항 5]
제 1 항에 있어서,
상기 초미세 발포 폴리우레탄 탄성체가, 하중 5 내지 75 kN을 4Hz로 3X106회 반복하중시험을 하였을 때 초기 대비 25% 이하의 정적탄성계수 변화율 을 갖는 초미세 발포 폴리우레탄 탄성체.
[청구항 6]
제 1 항에 있어서,
상기 초미세 발포 폴리우레탄 탄성체가, KS M 6518 기준으로 측정하였을 때, 5 내지 12 MPa의 노화 전 인장강도를 가지며, 70土 1 °C의 온도에서 96시간 보 관 후 측정한 노화 후의 인장강도가 노화 전 인장강도의 90% 이상인, 초미세 발 포 폴리우레탄 탄성체.
[청구항 7]
게 1 항에 있어서,
상기 초미세 발포 폴리우레탄 탄성체가, KS M 6518 기준으로 측정하였을 때, 250 내지 450%의 노화 전 신율을 갖고, 70士 1 °C의 온도에서 96시간 보관 후 측정한 노화 후의 신율이 노화 전 신율의 90% 이상인, 초미세 발포 폴리우레탄 탄성체.
[청구항 8]
(1) 4,4-디페닐메탄 디이소시아네이트 (MDI)와, (a) 수평균분자량이 500 내 지 5,000 g/mol이고 히드록실 관능가가 1.9 내지 2.1인 폴리 (옥시테트라메틸렌) 글리콜 (PTMG) 및 폴리 (카프로락톤)글리콜 (PCL) 중에서 선택된 1종 이상, (b) 수 평균분자량이 600 내지 6,000 g/mol이고 히드록실 관능가가 1.9 내지 2.7인 α- 히드로 -ω—히드록시폴리 (옥시프로필렌) 및 α-히드로 -ω—히드록시폴리 (옥시프로필 렌 -코-옥시에틸렌) 중에서 선택된 1종 이상, 또는 (c) 상기 (a) 및 (b)의 흔합물 을 반응시켜, 말단 자유 이소시아네이트 (NCO)기를 함유하는 예비 중합체를 제조 하는 단계; (2) 물, 폴리올 및 첨가제를 흔합한 주제를 제조하는 단계; 및
(3) 상기 단계 (1)에서 제조된 예비 중합체와 단계 (2)에서 제조된 주제를 흔합 및 발포시켜 폴리우레탄 탄성체를 제조하는 단계를 포함하는, 제 1 항의 초 미세 발포 폴리우레탄 탄성체의 제조방법.
[청구항 9]
제 8 항에 있어서,
상기 예비 중합체가 말단 자유 이소시아네이트 (NCO)기를 10 내지 25 중 량 %의 양으로 함유하는, 초미세 발포 폴리우레탄 탄성체의 제조방법.
[청구항 10]
제 8 항에 있어서,
상기 4,4-디페닐메탄 디이소시아네이트와, 성분 (a), (b) 또는 (c)의 중량비 가 20:80 내지 60:40인, 초미세 발포 폴리우레탄 탄성체의 제조방법.
[청구항 11]
제 8 항에 있어서,
상기 단계 (1)에서, 상기 4,4-디페닐메탄 디이소시아네이트와 성분 (a), (b) 또는 (c)와의 반웅이, 상기 성분 (a), (b) 또는 (c)를 우선적으로 탈포시킨 후, 상기 4,4-디페닐메탄 디이소시아네이트와 반웅시켜 이루어지는, 초미세 발포 폴 리우레탄 탄성체의 제조방법.
[청구항 12]
제 11 항에 있어서,
상기 탈포가, 7C C 내지 12C C에서 0.5 내지 3 시간 동안 이루어지는, 초 미세 발포 폴리우레탄 탄성체의 제조방법.
[청구항 13]
제 11 항에 있어서, 상기 탈포 이후의 상기 4,4-디페닐메탄 디이소시아네이트와 성분 (a), (b) 또는 (c)와의 반응이 70 °C 내지 9( C에서 1 내지 3 시간 동안 이루어지는, 초미 세 발포 폴리우레탄 탄성체의 제조방법.
[청구항 14]
제 8 항에 있어서,
상기 단계 (1)에서, 상기 4,4-디페닐메탄 디이소시아네이트와 성분 (a), (b) 또는 (c)와의 반웅이 무촉매 하에서 이루어지는, 초미세 발포 폴리우레탄 탄 성체의 제조방법.
[청구항 15]
제 8 항에 있어서,
상기 단계 (2)에서, 상기 주제가 물 및 폴리을을 상기 예비 중합체 100 중 량부를기준으로 각각 0초과 내지 1.2 중량부 및 80 내지 100 중량부의 양으로 포함하는, 초미세 발포 폴리우레탄 탄성체의 제조방법.
[청구항 16]
제 8 항에 있어서,
상기 폴리올이,
(i) 폴리 (옥시테트라메틸렌)글리콜,
(ii) 폴리 (카프로락톤)글리콜, 또는
(iii) 폴리 (옥.시테트라메틸렌)글리콜 및 폴리 (카프로락톤)글리콜이 3:7 내지 7:3의 중량비로 구성된 공중합체인, 초미세 발포 폴리우레탄 탄성체의 제조방법.
[청구항 17]
제 8 항에 있어서,
상기 단계 (3)에서, 상기 예비 중합체와 주제가 각각 5C C 내지 85°C , 및 40 °C 내지 7CTC의 온도로 유지되며 흔합되는, 초미세 발포 폴리우레탄 탄성체의 제조방법.
PCT/KR2015/003423 2014-04-08 2015-04-06 소음 및 진동흡수용 초미세 발포 폴리우레탄 탄성체 및 이의 제조방법 WO2015156554A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2014-0042038 2014-04-08
KR1020140042038A KR20150116730A (ko) 2014-04-08 2014-04-08 소음 및 진동흡수용 초미세 발포 폴리우레탄 탄성체 및 이의 제조방법

Publications (1)

Publication Number Publication Date
WO2015156554A1 true WO2015156554A1 (ko) 2015-10-15

Family

ID=54288075

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2015/003423 WO2015156554A1 (ko) 2014-04-08 2015-04-06 소음 및 진동흡수용 초미세 발포 폴리우레탄 탄성체 및 이의 제조방법

Country Status (2)

Country Link
KR (1) KR20150116730A (ko)
WO (1) WO2015156554A1 (ko)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101895981B1 (ko) * 2017-01-19 2018-09-06 에스케이씨 주식회사 자운스 범퍼용 초미세 발포 폴리우레탄 탄성체 및 이의 제조방법
KR102332355B1 (ko) 2020-04-24 2021-12-03 코오롱플라스틱 주식회사 철도 레일패드용 열가소성 탄성 수지조성물 및 이로부터 제조된 레일패드

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08198927A (ja) * 1995-01-19 1996-08-06 Bando Chem Ind Ltd 防振・緩衝材
KR100245236B1 (ko) * 1991-12-17 2000-02-15 앤쥼 쉐이크 바쉬어 폴리우레탄 발포체
KR20040104444A (ko) * 2004-11-22 2004-12-10 목동엽 고기능성 인라인스케이트용 폴리우레탄 수지 조성물
JP2011038005A (ja) * 2009-08-12 2011-02-24 Nippon Polyurethane Ind Co Ltd 発泡ポリウレタンエラストマーの製造方法
KR20130025161A (ko) * 2011-09-01 2013-03-11 금호석유화학 주식회사 미세기공 폴리우레탄 엘라스토머 및 그 제조 방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100245236B1 (ko) * 1991-12-17 2000-02-15 앤쥼 쉐이크 바쉬어 폴리우레탄 발포체
JPH08198927A (ja) * 1995-01-19 1996-08-06 Bando Chem Ind Ltd 防振・緩衝材
KR20040104444A (ko) * 2004-11-22 2004-12-10 목동엽 고기능성 인라인스케이트용 폴리우레탄 수지 조성물
JP2011038005A (ja) * 2009-08-12 2011-02-24 Nippon Polyurethane Ind Co Ltd 発泡ポリウレタンエラストマーの製造方法
KR20130025161A (ko) * 2011-09-01 2013-03-11 금호석유화학 주식회사 미세기공 폴리우레탄 엘라스토머 및 그 제조 방법

Also Published As

Publication number Publication date
KR20150116730A (ko) 2015-10-16

Similar Documents

Publication Publication Date Title
KR101351432B1 (ko) 초미세 발포 폴리우레탄 탄성체의 제조방법
TWI389928B (zh) 發泡聚胺基甲酸乙酯彈性體及其製造方法以及鐵路用緩衝填層
JP2009524718A (ja) 粘弾性的で軟質の連続気泡ポリウレタンフォームの製造方法
CN115124693B (zh) 一种发泡聚氨酯弹性体及其制备方法和应用
WO2010023885A1 (ja) 軟質ポリウレタンフォームの製造方法
KR101389785B1 (ko) 연질 폴리우레탄폼 및 그 제조 방법
US10316132B2 (en) Polyurethane mats
KR101740609B1 (ko) 철도에 사용되는 레일패드 및 이의 제조방법
WO2015156554A1 (ko) 소음 및 진동흡수용 초미세 발포 폴리우레탄 탄성체 및 이의 제조방법
JP4459711B2 (ja) 鉄道用パッドの製造方法
KR100319281B1 (ko) 폴리우레아 탄성 중합체의 미세 발포체
CN113831503B (zh) 一种减振道床垫用弹性体及其制备方法
JPH0725974A (ja) 衝撃吸収性ポリウレタンフォーム
CN106608960B (zh) 聚氨酯微孔弹性体的制备方法
CN110191905B (zh) 用于颠簸缓冲器的微孔发泡聚氨酯弹性体及其制备方法
JP5767804B2 (ja) スピーカーエッジ材
KR20130025161A (ko) 미세기공 폴리우레탄 엘라스토머 및 그 제조 방법
JP2012017435A (ja) ポリウレタンエラストマー組成物及び防振材
KR101364550B1 (ko) 초미세 발포 폴리우레탄 탄성체 제조용 유화제
KR102266175B1 (ko) 철도용 탄성 패드
JP2928088B2 (ja) 発泡ポリウレタンエラストマー製鉄道用パッド
JP4480241B2 (ja) 低硬度ポリウレタン組成物、エラストマーおよび低硬度ロール
JP2004285152A (ja) 低反発性ウレタンフォームおよびその製造方法
KR20180043499A (ko) 탄성 및 내마모성이 향상된 슬라럼 및 fsk용 인라인스케이트용 폴리우레탄 수지
JPH05310878A (ja) 軟質エラストマー組成物

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15776475

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15776475

Country of ref document: EP

Kind code of ref document: A1