WO2015154901A1 - Hydraulikaggregat - Google Patents

Hydraulikaggregat Download PDF

Info

Publication number
WO2015154901A1
WO2015154901A1 PCT/EP2015/053189 EP2015053189W WO2015154901A1 WO 2015154901 A1 WO2015154901 A1 WO 2015154901A1 EP 2015053189 W EP2015053189 W EP 2015053189W WO 2015154901 A1 WO2015154901 A1 WO 2015154901A1
Authority
WO
WIPO (PCT)
Prior art keywords
pump
hydraulic unit
receptacle
component
pressure
Prior art date
Application number
PCT/EP2015/053189
Other languages
English (en)
French (fr)
Inventor
Beate Schumann
Bernd Haeusser
Oliver Gaertner
Horst Beling
Wolfgang Mailaender
Wolfgang Schuller
Rolf Stotz
Oliver Hennig
Goekhan Oezkan
Michael Schuessler
Original Assignee
Robert Bosch Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch Gmbh filed Critical Robert Bosch Gmbh
Priority to US15/303,064 priority Critical patent/US10730496B2/en
Priority to CN201580018850.7A priority patent/CN106163891B/zh
Publication of WO2015154901A1 publication Critical patent/WO2015154901A1/de

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T8/00Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force
    • B60T8/32Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration
    • B60T8/34Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration having a fluid pressure regulator responsive to a speed condition
    • B60T8/40Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration having a fluid pressure regulator responsive to a speed condition comprising an additional fluid circuit including fluid pressurising means for modifying the pressure of the braking fluid, e.g. including wheel driven pumps for detecting a speed condition, or pumps which are controlled by means independent of the braking system
    • B60T8/4068Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration having a fluid pressure regulator responsive to a speed condition comprising an additional fluid circuit including fluid pressurising means for modifying the pressure of the braking fluid, e.g. including wheel driven pumps for detecting a speed condition, or pumps which are controlled by means independent of the braking system the additional fluid circuit comprising means for attenuating pressure pulsations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T8/00Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force
    • B60T8/32Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration
    • B60T8/34Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration having a fluid pressure regulator responsive to a speed condition
    • B60T8/36Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration having a fluid pressure regulator responsive to a speed condition including a pilot valve responding to an electromagnetic force
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T8/00Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force
    • B60T8/32Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration
    • B60T8/34Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration having a fluid pressure regulator responsive to a speed condition
    • B60T8/36Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration having a fluid pressure regulator responsive to a speed condition including a pilot valve responding to an electromagnetic force
    • B60T8/3615Electromagnetic valves specially adapted for anti-lock brake and traction control systems
    • B60T8/3675Electromagnetic valves specially adapted for anti-lock brake and traction control systems integrated in modulator units
    • B60T8/368Electromagnetic valves specially adapted for anti-lock brake and traction control systems integrated in modulator units combined with other mechanical components, e.g. pump units, master cylinders
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T8/00Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force
    • B60T8/32Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration
    • B60T8/34Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration having a fluid pressure regulator responsive to a speed condition
    • B60T8/40Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration having a fluid pressure regulator responsive to a speed condition comprising an additional fluid circuit including fluid pressurising means for modifying the pressure of the braking fluid, e.g. including wheel driven pumps for detecting a speed condition, or pumps which are controlled by means independent of the braking system
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T8/00Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force
    • B60T8/32Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration
    • B60T8/34Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration having a fluid pressure regulator responsive to a speed condition
    • B60T8/40Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration having a fluid pressure regulator responsive to a speed condition comprising an additional fluid circuit including fluid pressurising means for modifying the pressure of the braking fluid, e.g. including wheel driven pumps for detecting a speed condition, or pumps which are controlled by means independent of the braking system
    • B60T8/4031Pump units characterised by their construction or mounting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B1/00Multi-cylinder machines or pumps characterised by number or arrangement of cylinders
    • F04B1/04Multi-cylinder machines or pumps characterised by number or arrangement of cylinders having cylinders in star- or fan-arrangement
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B1/00Multi-cylinder machines or pumps characterised by number or arrangement of cylinders
    • F04B1/04Multi-cylinder machines or pumps characterised by number or arrangement of cylinders having cylinders in star- or fan-arrangement
    • F04B1/0404Details or component parts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B1/00Multi-cylinder machines or pumps characterised by number or arrangement of cylinders
    • F04B1/04Multi-cylinder machines or pumps characterised by number or arrangement of cylinders having cylinders in star- or fan-arrangement
    • F04B1/0404Details or component parts
    • F04B1/0421Cylinders
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B19/00Machines or pumps having pertinent characteristics not provided for in, or of interest apart from, groups F04B1/00 - F04B17/00
    • F04B19/20Other positive-displacement pumps
    • F04B19/22Other positive-displacement pumps of reciprocating-piston type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B53/00Component parts, details or accessories not provided for in, or of interest apart from, groups F04B1/00 - F04B23/00 or F04B39/00 - F04B47/00
    • F04B53/001Noise damping
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B53/00Component parts, details or accessories not provided for in, or of interest apart from, groups F04B1/00 - F04B23/00 or F04B39/00 - F04B47/00
    • F04B53/14Pistons, piston-rods or piston-rod connections
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B53/00Component parts, details or accessories not provided for in, or of interest apart from, groups F04B1/00 - F04B23/00 or F04B39/00 - F04B47/00
    • F04B53/16Casings; Cylinders; Cylinder liners or heads; Fluid connections

Definitions

  • the invention relates to a hydraulic unit, in particular for a
  • Such a hydraulic unit is known for example from the
  • This known hydraulic unit has a housing block on which the individual components are arranged for controlling the brake pressure as a function of the existing Radschlupfs and hydraulically contacted with each other.
  • An essential component of this is a pump which is inserted into a pump receptacle of the housing block and, e.g. mechanically actuated by an electric motor and an eccentric driven by it. Pumps promote if necessary pressure medium from the
  • Wheel brakes pressure fluid under high pressure available, if an increase in the wheel brake pressure is necessary.
  • pumps in the form of piston pumps can initiate pressure pulsations due to their cyclical operating principle, which are perceivable in the vehicle as unwanted operating noise. To smooth or dampen these pulsations will be on the pump pressure side
  • Damping devices provided which usually have at least one pressure fluid reservoir with a pressure-dependent variable storage capacity (C-member) and at least one downstream arranged throttle element (R-member).
  • C-member pressure-dependent variable storage capacity
  • R-member throttle element
  • a pressure medium storage for example, spring-actuated Piston accumulator known, which are arranged in a separate memory receptacle of the hydraulic unit and contacted via pressure-carrying fluid channels with the pump pressure side.
  • spring-actuated Piston accumulator known, which are arranged in a separate memory receptacle of the hydraulic unit and contacted via pressure-carrying fluid channels with the pump pressure side.
  • throttle elements are fixed chokes with a constant throttle cross-section or dynamic chokes with a
  • a known measure for this is to arrange the fluid channel for contacting a changeover valve with an inlet valve of a vehicle brake system on the hydraulic unit such that it intersects a pump intake.
  • Vehicle brake system adversely affects where it on the fast
  • Throttle effect of the throttle element also strong and thus exacerbates the effect described.
  • a hydraulic unit according to the features of claim 1 has the advantage that can be effectively reduce the pressure pulsations of a pump without the measures used for this negative influence on the size of the building block or on the
  • a second fluid channel is provided, which opens into the pump receptacle in the region of the pump pressure side. Furthermore, a separation point is provided to seal the two fluid channels against each other. The first fluid channel crossing the pump intake flows around the pump inserted into the pump receptacle and into one
  • Damper receiving inserted pressure pulsation damper, while the second fluid channel contacted the pump pressure side with the pressure pulsation damper. Downstream of the accumulator are the two fluid channels
  • the sealing of the two fluid channels against each other can be through
  • the pressure pulsation damper can be based on its actual function of damping pressure pulsations and on improving the
  • the sealing of the fluid channels can be achieved against each other when used as an aggregate component to form the separation point cooperating with the housing block closure element which is already provided for closing the pump bore relative to the environment.
  • the sealing of the fluid channels can be achieved against each other when used as an aggregate component to form the separation point cooperating with the housing block closure element which is already provided for closing the pump bore relative to the environment.
  • Closing element a cylinder element of the pump can be used, which is provided for guiding a piston.
  • the separation point can be formed in many ways by positive and / or non-positive connection between the housing block and the unit component and can therefore be adapted to the specific application. In addition to one
  • Aggregate component causes the housing block.
  • Figure 1 shows the understanding of the technical background, a brake circuit of a slip-controllable vehicle brake system, which with the
  • FIG. 2 a first embodiment of the invention is shown schematically simplified by a longitudinal section through a hydraulic unit in the region of the pump pressure side;
  • FIGS. 4 and 5 show second and third exemplary embodiments of the invention, likewise in longitudinal section.
  • FIG. 1 shows the hydraulic components of a brake circuit of a vehicle brake system on the basis of a hydraulic circuit diagram.
  • the hydraulic unit 10 as such is shown as a dot-dash line
  • Hydraulic unit 10 are supplied. For controlling the brake pressure as a function of the current slip conditions at the
  • Wheel brakes 16 associated wheels of a vehicle is one each
  • Wheel brake 16 a so-called Druck inconvenience- or inlet valve 18 and a so-called Druckabsenk- or exhaust valve 20 assigned.
  • the inlet valves 18 are located in a pressure medium connection 22, which connects the connection of the master cylinder 12 on the hydraulic unit 10 with a port of one of the wheel brakes 16 shown. To control this
  • Pressure medium connection 22 is a so-called switching valve 24 is present. Interrupts this by electronic control the pressure fluid connection 22, the master cylinder 12 is decoupled from the wheel brakes 16 and the driver can not change the brake pressure at the wheel brakes 16 by muscle power.
  • the exhaust valves 20 can be opened by electronic control, if necessary, to discharge pressure medium from the wheel brakes 16, if a reduction of the brake pressure is necessary.
  • the outflowing pressure medium passes into a formed on the hydraulic unit 10 return 26 with a buffer memory 28 connected thereto, which initially receives the outflowing pressure medium. Downstream of the buffer memory 28 is an external one drivable pump 30 connected to the pressure medium from the
  • Buffer memory 28 abweighedt and connected via a connected to the pump outlet pump pressure line 32 back into the pressure medium connection 22 of the
  • Pump pressure line 32 opens in the section between the switching valve 24 and the inlet valve 18 in this pressure medium connection 22 a.
  • a suction line 34 is still formed on the hydraulic unit 22, which connects the suction side and the pump inlet of the pump 30 to the connection of the master cylinder 12 on the hydraulic unit 10.
  • a control of this suction line 34 is made by demand-driven electronic control of a so-called high-pressure switching valve 36.
  • the pump pressure side cooperates with a low-pressure damper 40, which is followed by a low-pressure throttle 42.
  • Low-pressure damper 40 and the low-pressure throttle 42 together form a low-pressure damping device, which with the pump 30 a single, in a pump receiver 50 of
  • Hydraulic unit 10 can form an arrangeable assembly.
  • a high-pressure damper 44 is provided in the high pressure damper 44 in the high pressure damper 44.
  • the high pressure damper 44 is not recognizable integrated high pressure throttle. Form both components together a high pressure damping device. This is the leading from the connection of the master cylinder 12 for connecting the wheel brakes 16
  • the invention consists in arranging the described components for damping the pressure pulsations as economically as possible on the hydraulic unit 10 and in particular hydraulically contacting them according to the circuit diagram shown in FIG. 1, without thereby increasing the functional properties, in particular the pressure build-up dynamics of the vehicle brake system
  • FIG. 1 A first embodiment of this is shown in FIG.
  • FIG. 2 shows a section of the outlet-side or pressure-side end of a pump 30 embodied as a piston pump.
  • This pump is installed in a pump receptacle 50 of the housing block 10.
  • the pump receptacle 50 is open to the outside and is closed by a plug 68.
  • a cylinder element 54 of the pump 30 receives a non-recognizable in Figure 2 piston axially movable and serves to guide it.
  • An actuation of the piston takes place counter to the force of a return spring 56, which is supported on the bottom of the cylinder member 54.
  • a return spring 56 In the center of the bottom of the cylinder member 54 is a
  • valve seat 60 which terminates in a conically shaped valve seat 60.
  • This valve seat 60 is controlled by a closing member 62, here exemplarily designed as a ball, which is pressed by a valve spring 64 against the valve seat 60.
  • the valve spring 64 is at the bottom of a
  • the latter is frictionally anchored by means of a press connection in the pump receptacle 50.
  • the closing member 62 abuts the valve seat 60 and thereby prevents leakage of pressure medium from the interior of the
  • annular groove 72 which is formed on a cylindrical member 54 facing end face of the plug 68.
  • the annular groove 72 surrounds the valve seat 60 at a radial distance, whereby a circumferential web 74 is formed between the annular groove 72 and the valve seat 60.
  • At least one radial recess is provided which traverses the web 74 and may be formed as a throttle cross-section 76. Pressure medium flows through the throttle cross section 76 to a fluid channel 82 formed in the housing block 52, which is referred to below as a second fluid channel 82 for reasons of confusion.
  • the latter is arranged substantially at right angles to a longitudinal axis L of the pump receptacle 50 and terminates in an unrecognizable damper receptacle 90 (FIG
  • the damper mount 90 receives the high pressure damper element 44.
  • first fluid channel 80 is provided on the housing block 52 according to the invention, which is at least partially aligned axially parallel to the second fluid channel 82 and the pump holder 50 crosses.
  • This first fluid channel 80 connects according to Figure 1, the switching valve 24 of the vehicle brake system with the inlet valve 18 and thus forms the
  • the first fluid channel 80 also extends at right angles to the longitudinal axis L of the pump receptacle 50, but unlike the second fluid channel 82 is free of throttles and thus allows unimpeded pressure fluid flow from the switching valve 24 to the inlet valve 18.
  • the pump receptacle 50 forms together with the pump 30 inserted therein a built-in cylinder member 54 of the pump 30th
  • annular channel 84 in which the first fluid channel 80 on a peripheral side of the pump receiver 50 on and on the opposite peripheral side opens again.
  • the two fluid channels 80 and 82 are sealed according to the invention against each other. This is done by means of a first separation point 100, which of a located between the two fluid channels 80 and 82 housing portion 104 of the pump receptacle 50 is formed in operative connection with an aggregate component used in the pump receptacle 50.
  • this unit component is the plug 68, which closes the pump receptacle 50 to the environment.
  • the cylinder element 54 of the pump 30 could be used as an aggregate component, but this will be disclosed in detail below in connection with the description of Figure 4.
  • the plug 68 and the cylinder member 54 of the pump 30 are exemplarily mechanically coupled together.
  • the plug 68 is provided with a collar 108 into which the cylinder element 54 dips so far until the two components abut each other with their respective end faces.
  • the cylinder element 54 is provided in this area with a circumferential, radially projecting collar 110 which is projected axially from the collar 108 in the direction of the longitudinal axis L.
  • the plug 68 has over the diameter of the pump receptacle 50 to an excess, so that between plug 68 and pump receptacle 50 is a frictional connection, ie a
  • Press connection can be formed.
  • the latter extends up to the housing section 104 located between the two fluid channels 80 and 82 and thus forms the first separation point 100.
  • the second fluid channel 82 opens on his from the
  • Damper mount 90 built-in high-pressure damper element 44 allowed.
  • Damper device opened by the damper piston 92 and thus provides a pressure medium connection to the second fluid channel 82 forth, which also opens into the damper receptacle 90. Occurring pressure pulsations in the second fluid channel 82 can be damped by the mobility of the damper piston 92 against the force of the damper spring 94.
  • the supply valve 96 is not recognizable equipped with a high-pressure throttle, flows through the recorded in the high-pressure damper 44 pressure medium. Downstream of this high-pressure throttle, the first fluid channel 80 and the second fluid channel 82 open into one another. The supply valve 96 thus acts as a second separation point 102 for mutual sealing of the two fluid channels 80 and 82.
  • a particularly effective frictional connection of the unit component, or according to embodiment 1 of the plug 68, with the pump receptacle 50 can be achieved by shrinking the plug 68.
  • the latter is cooled before the press-fitting to a temperature which is significantly lower than the temperature of the building block 52 in the region of
  • FIG. 2 shows that, in addition to the press connection, if necessary, a securing of the plug 68 and thus indirectly of the pump 30 in the pump receptacle 50 can be carried out by forming a caulking 116. For this purpose, by means of a punch of the housing block 52 in
  • Aggregate component and the pump receptacle 50 for displaying the first separation point 100 may alternatively be provided a combination of a non-positive and a positive connection. Such a second embodiment is shown in FIG.
  • the aggregate component or the plug 68 is provided on its outer periphery with cutting edges 118 which extend axially or in the direction of the longitudinal axis L of the pump receptacle 50.
  • Inner diameter of the pump receptacle 50 is partially withdrawn at a stage in sections so far that when joining the plug 68, the cutting edges
  • a number or a grouping of cutting edges 118 distributed over the circumference of the plug 68 can be freely selected according to the application.
  • the cutting edges 118 secure the plug 68 in the pump receptacle 50 against rotation and thus form a positive fit, while they laterally displace material when cutting in the inside diameter taken back portion of the wall of the pump receptacle 50 material and thus the forces acting on the stopper 68 clamping forces against the increase clamping forces achievable by pure traction.
  • FIG. 5 Another variant for the representation of the combination of a non-positive and a positive first separation point 100 is possible by using a so-called self-clinch connection between the pump receptacle 50 and the unit component.
  • This variant is shown in FIG. 5.
  • the cylinder member 54 of the pump 30 is used as the unit component. In principle, this consideration could also be applied to the previously described embodiments.
  • the cylinder member 54 is provided on its outer circumference with annular peripheral cutting edges 118.
  • Exemplary are two
  • Cutting edges 118 are formed, which on both sides of the
  • Orifice cross-section of the first fluid channel 80 come to lie in the pump receiver 50 when the cylinder member 54 of the pump 30 is in its intended final Einpressposition.
  • Several cutting edges 118 on both sides of the mouth cross-section of the first fluid channel 80 would of course be conceivable. In the joining direction of the cylinder member 54 respectively above the cutting edges 118 are along the circumference of the
  • Cylinder member 54 circumferential grooves 120 formed.
  • the annular cutting edges 118 displace material of the wall of the pump receptacle 50 into these grooves 120 and thus form the positive connection between the components.
  • Embodiment used a relatively flat shaped lid 122, which can also be anchored kraftkraft and / or form-fitting in the pump receptacle 50.

Abstract

Die Erfindung betrifft ein Hydraulikaggregat (10), insbesondere für eine schlupfregelbare Fahrzeugbremsanlage, mit einem Gehäuseblock (52) und einem in einer Pumpenaufnahme (50) des Gehäuseblocks (52) aufgenommenen Pumpe (30), mit einer Pumpensaugseite und einer Pumpendruckseite. Ein erster Fluidkanal (80) kreuzt im Bereich der Pumpendruckseite die Pumpenaufnahme (50). Erfindungsgemäß wird vorgeschlagen, zusätzlich zum ersten Fluidkanal (80) einen zweiten Fluidkanal (82) am Gehäuseblock (52) auszubilden, welcher im Bereich der Pumpendruckseite in die Pumpenaufnahme (50) mündet und zusätzlich eine erste Trennstelle (100) vorzusehen, welche die beiden Fluidkanäle (80, 82) gegeneinander abdichtet. Mit der Erfindung lässt sich eine Dämpfungseinrichtung (44) kontaktieren, die Pulsationen dämpft und das Betriebsgeräusch des Hydraulikaggregats (10) senkt, ohne dabei negativen Einfluss auf die Funktionseigenschaften, insbesondere auf die Druckaufbaudynamik, der Fahrzeugbremsanige zu haben oder die kompakte Bauweise des Hydraulikaggregats (10) zu gefährden.

Description

Beschreibung Titel
Hvdraulikaggregat Stand der Technik
Die Erfindung betrifft ein Hydraulikaggregat, insbesondere für eine
schlupfregelbare Fahrzeugbremsanlage nach den Merkmalen des Oberbegriffs des Anspruchs 1.
Ein derartiges Hydraulikaggregat ist beispielsweise bekannt aus der
DE 10 2008 002 740 AI. Dieses bekannte Hydraulikaggregat weist einen Gehäuseblock auf, an dem die einzelnen Komponenten zur Regelung des Bremsdrucks in Abhängigkeit des vorhandenen Radschlupfs angeordnet und hydraulisch miteinander kontaktiert sind. Eine wesentliche Komponente hierfür ist eine Pumpe, die in eine Pumpenaufnahme des Gehäuseblocks eingesetzt ist und, z.B. mechanisch von einem Elektromotor und einem davon angetriebenen Exzenter, betätigt wird. Pumpen fördern bei Bedarf Druckmittel von den
Radbremsen weg, um den Radbremsdruck abzusenken oder stellen den
Radbremsen Druckmittel unter hohem Druck zur Verfügung, falls eine Erhöhung des Radbremsdrucks notwendig ist.
Insbesondere Pumpen in Form von Kolbenpumpen können aufgrund ihres zyklischen Arbeitsprinzips Druckpulsationen auslösen, die im Fahrzeug als unerwünschte Betriebsgeräusche wahrnehmbar sind. Um diese Pulsationen zu glätten bzw. zu dämpfen werden auf der Pumpendruckseite
Dämpfungseinrichtungen vorgesehen, die üblicherweise wenigstens einen Druckmittelspeicher mit einer druckabhängig veränderlichen Speicherkapazität (C-Glied) und wenigstens ein stromabwärts davon angeordnetes Drosselelement (R-Glied) aufweisen. Als Druckmittelspeicher sind beispielsweise federbetätigte Kolbenspeicher bekannt, welche in einer eigenen Speicheraufnahme des Hydraulikaggregats angeordnet und über druckmittelführende Fluidkanäle mit der Pumpendruckseite kontaktiert sind. Als Drosselelemente sind Festdrosseln mit konstantem Drosselquerschnitt oder dynamische Drosseln mit einem
druckabhängig veränderlichen Drosselquerschnitt bekannt.
Unabhängig davon ist es aufgrund des geringen zur Verfügung stehenden Bauraums in Kraftfahrzeugen notwendig, das Hydraulikaggregat und damit dessen Gehäuseblock möglichst kompakt und gewichtsparend auszuführen. Eine bekannte Maßnahme hierfür ist, den Fluidkanal zur Kontaktierung eines Umschaltventils mit einem Einlassventil einer Fahrzeugbremsanlage derart am Hydraulikaggregat anzuordnen, dass dieser eine Pumpenaufnahme kreuzt.
Wird zur Dämpfung von Druckpulsationen an einen derart verlaufenden
Fluidkanal nunmehr eine Dämpfungseinrichtung angeschlossen, ergibt sich der Nachteil, dass das dem Druckmittelspeicher nachgeschaltete Drosselelement einen Strömungswiderstand darstellt, der sich in Betriebszuständen der
Fahrzeugbremsanlage nachteilig auswirkt, in denen es auf die schnelle
Bereitstellung eines möglichst großen Druckmittelvolumens ankommt. Dies sind zum Beispiel Notbremsvorgänge, insbesondere zur Vermeidung einer Kollision mit anderen Verkehrsteilnehmern. Besonders bei sinkenden Temperaturen und dementsprechend zunehmend zähflüssigem Druckmittel steigt die
Drosselwirkung des Drosselelements zudem stark an und verschärft damit den beschriebenen Effekt.
Vorteile der Erfindung
Ein Hydraulikaggregat nach den Merkmalen des Anspruchs 1 hat demgegenüber den Vorteil, dass sich die Druckpulsationen einer Pumpe wirksam reduzieren lassen, ohne dass die hierfür eingesetzten Maßnahmen negativen Einfluss nehmen auf die Baugröße des Gebäudeblocks oder auf die
Funktionseigenschaften, insbesondere die Druckaufbaudynamik, der
Fahrzeugbremsanlage. Erfindungsgemäß ist unter anderem ein zweiter Fluidkanal vorgesehen, der im Bereich der Pumpendruckseite in die Pumpenaufnahme einmündet. Ferner ist eine Trennstelle vorhanden, um die beiden Fluidkanäle gegeneinander abzudichten. Der die Pumpenaufnahme kreuzende erste Fluidkanal umströmt die in die Pumpenaufnahme eingesetzte Pumpe sowie den in eine
Dämpferaufnahme eingesetzten Druckpulsationsdämpfer, während der zweite Fluidkanal die Pumpendruckseite mit dem Druckpulsationsdämpfer kontaktiert. Stromabwärts des Druckmittelspeichers sind die beiden Fluidkanäle
zusammengeführt.
Die Abdichtung der beiden Fluidkanäle gegeneinander lässt sich durch
Modifikation ohnehin vorhandener Aggregatebauteile und einer angepassten Gestaltung des Gebäudeblocks erreichen, so dass sich insgesamt die
Bauteileanzahl bzw. der Teile- und Montageaufwand der Hydraulikaggregats durch die Erfindung nur unwesenlich erhöht.
Der Druckpulsationsdämpfer lässt sich auf seine eigentliche Funktion der Dämpfung von Druckpulsationen und darüber der Verbesserung des
Betriebsgeräuschs der Fahrzeugbremsanlage optimieren, ohne deren
Funktionseigenschaften, insbesondere die Druckaufbaudynamik negativ zu beeinflussen.
Weitere Vorteile oder vorteilhafte Weiterbildungen der Erfindung ergaben sich aus den Unteransprüchen und/oder aus der nachfolgenden Beschreibung.
Besonders einfach und kostengünstig lässt sich die Abdichtung der Fluidkanäle gegeneinander erreichen, wenn als Aggregatebauteil zur Ausbildung der Trennstelle ein mit dem Gehäuseblock zusammenwirkendes Verschlusselement eingesetzt wird, welches ohnehin zum Verschließen der Pumpenbohrung gegenüber der Umgebung vorgesehen ist. Alternativ kann anstelle des
Verschlusselements ein Zylinderelement der Pumpe verwendet werden, welches zur Führung eines Kolbens vorgesehen ist. Die Trennstelle lässt sich auf vielfältige Art und Weise durch Form- und/oder durch Kraftschluss zwischen Gehäuseblock und Aggregatebauteil ausbilden und kann daher anwendungsspezifisch angepasst werden. Neben einer
zuverlässigen und dauerhaften Abdichtwirkung wird mit einem einzigen
Arbeitsgang gleichzeitig eine ortsfeste Verankerung des jeweiligen
Aggregatebauteils am Gehäuseblock bewirkt.
Ein Einsatz von Schneidkanten an einem oder mehreren miteinander zu befestigenden Bauteilen gestattet es, die Fixierung durch einen leicht zu beherrschenden und einfach zu überwachenden Einpressvorgang darzustellen, ohne dass zusätzliches Material oder Werkzeug einzusetzen ist. Angesichts der relativ kleinen Abmessungen des Pumpenelements ist dies von Vorteil, weil dadurch zumindest eine teilautomatisiert durchführbare Montage möglich ist. Besonders platzsparend und fertigungstechnisch besonders einfach darstellbar sind die Fluidkanäle, wenn sie am Gehäuseblock im wesentlich rechtwinklig zu einer Längsachse der Pumpenaufnahme ausgerichtet sind und/oder wenn sie wenigstens abschnittsweise achsparallel zueinander verlaufen.
Zeichnung
Ausführungsbeispiele der Erfindung sind in den Figuren dargestellt und in der nachfolgenden Beschreibung detailliert erläutert.
Figur 1 zeigt zum Verständnis des technischen Hintergrundes einen Bremskreis einer schlupfregelbaren Fahrzeugbremsanlage, welcher mit den
erfindungswesentlichen Komponenten ausgerüstet ist; in Figur 2 ist ein erstes Ausführungsbeispiel der Erfindung schematisch vereinfacht anhand eines Längsschnitts durch ein Hydraulikaggregat im Bereich der Pumpendruckseite gezeigt;
Figur 3 offenbart einen Längsschnitt durch eine in das Hydraulikaggregat eingebaute Dämpfereinheit; In den Figuren 4 und 5 sind zweite bzw. dritte Ausführungsbeispiel der Erfindung, ebenfalls im Längsschnitt dargestellt.
Beschreibung der Ausführungsbeispiele:
Figur 1 zeigt anhand eines Hydraulikschaltplans die hydraulischen Komponenten eines Bremskreises einer Fahrzeugbremsanlage. Diese hydraulischen
Komponenten sind zum Teil mittelbar an ein Hydraulikaggregat 10
angeschlossen oder sind zum Teil unmittelbar an diesem Hydraulikaggregat 10 angeordnet. Das Hydraulikaggregat 10 als solches ist als strichpunktierte
Umrandungslinie in Figur 1 symbolisch dargestellt. An das Hydraulikaggregat 10 ist ein Hauptbremszylinder 12 angeschlossen, der über ein Bremspedal 14 vom Fahrer betätigbar ist. Ferner sind an das Hydraulikaggregat 10 exemplarisch zwei Radbremsen 16 angeschlossen, die mit Druckmittel aus dem
Hydraulikaggregat 10 versorgt werden. Zur Steuerung des Bremsdrucks in Abhängigkeit von den momentanen Schlupfverhältnissen an den, den
Radbremsen 16 zugeordnten Rädern eines Fahrzeugs, ist einer jeden
Radbremse 16 ein sogenanntes Druckaufbau- bzw. Einlassventil 18 und ein sogenanntes Druckabsenk- oder Auslassventil 20 zugeordnet. Die Einlassventile 18 befinden sich in einer Druckmittelverbindung 22, welche den Anschluss des Hauptbremszylinders 12 am Hydraulikaggregat 10 mit einem Anschluss einer der gezeigten Radbremsen 16 verbindet. Zur Steuerung dieser
Druckmittelverbindung 22 ist ein sogenanntes Umschaltventil 24 vorhanden. Unterbricht dieses durch elektronische Ansteuerung die Druckmittelverbindung 22 ist der Hauptbremszylinder 12 von den Radbremsen 16 abgekoppelt und der Fahrer kann durch Muskelkraft den Bremsdruck an den Radbremsen 16 nicht verändern.
Die Auslassventile 20 lassen sich durch elektronische Ansteuerung öffnen, um bedarfsweise Druckmittel aus den Radbremsen 16 abzuführen, wenn eine Absenkung des Bremsdrucks notwendig wird. Das abströmende Druckmittel gelangt in einen am Hydraulikaggregat 10 ausgebildeten Rücklauf 26 mit einem daran angeschlossenen Pufferspeicher 28, welcher das abströmende Druckmittel zunächst aufnimmt. Stromabwärts an den Pufferspeicher 28 ist eine extern antreibbare Pumpe 30 angeschlossen, die das Druckmittel aus dem
Pufferspeicher 28 abfördert und über eine mit dem Pumpenauslass verbundene Pumpendruckleitung 32 wieder in die Druckmittelverbindung 22 des
Hauptbremszylinders 12 mit den Radbremsen 16 einspeist. Die
Pumpendruckleitung 32 mündet dazu im Abschnitt zwischen dem Umschaltventil 24 und dem Einlassventil 18 in diese Druckmittelverbindung 22 ein.
Sollte der Pufferspeicher 28 zur Versorgung der Pumpe 30 mit Druckmittel allein nicht ausreichen, ist noch eine Saugleitung 34 am Hydraulikaggregat 22 ausgebildet, welche die Ansaugseite bzw. den Pumpeneinlass der Pumpe 30 mit dem Anschluss des Hauptbremszylinders 12 am Hydraulikaggregat 10 verbindet. Eine Steuerung dieser Saugleitung 34 wird durch bedarfsgerechte elektronische Ansteuerung eines sogenannten Hochdruckschaltventils 36 vorgenommen.
Diese Komponentenanordnung bzw. ihr Zusammenspiel zur Regelung des Bremsdrucks der Radbremsen 16 zählt insoweit zum Stand der Technik.
Als Pumpen 30 werden in schlupfregelbaren Fahrzeugbremsanlagen vielfach Kolbenpumpen eingesetzt, deren Kolben von einem Exzenter zu einer Hin- und Herbewegung angetrieben werden. Durch diesen zyklischen Betrieb können Druckpulsationen auftreten, welche ins Fahrzeug übertragen und dort als
Betriebsgeräusche oder Vibrationen wahrgenommen werden können.
Um Druckpulsationen in einem niederen Druckbereich bis ca. 40 bar zu dämpfen, wirkt die Pumpendruckseite mit einem Niederdruckdämpfer 40 zusammen, dem eine Niederdruckdrossel 42 nachgeschaltet ist. Niederdruckdämpfer 40 und die Niederdruckdrossel 42 bilden zusammen eine Niederdruckdämpfungseinrichtung, die mit der Pumpe 30 eine einzelne, in einer Pumpenaufnahme 50 des
Hydraulikaggregats 10 anordenbare Baugruppe bilden kann.
Ferner ist stromabwärts der Niederdruckdrossel 42 zur Dämpfung von
Druckpulsatioen im hohen Druckbereich, das heißt oberhalb von ca. 40 bar, ein Hochdruckdämpfer 44 vorgesehen. In den Hochdruckdämpfer 44 ist nicht erkennbar eine Hochdruckdrossel integriert. Beide Bauteile zusammen bilden eine Hochdruckdämpfungseinrichtung. Diese ist an die vom Anschluss des Hauptbremszylinders 12 zum Anschluss der Radbremsen 16 führende
Druckmittelverbindung 22 im Bereich zwischen dem Umschaltventil 24 und den Einlassventilen 18 angeschlossen.
Die Erfindung besteht darin, die erläuterten Komponenten zur Dämpfung der Druckpulsationen möglichst raumökonomisch am Hydraulikaggregat 10 anzuordnen und insbesondere hydraulisch entsprechend dem in Figur 1 dargestellten Schaltplan zu kontaktieren, ohne damit die Funktionseigenschaften, insbesondere die Druckaufbaudynamik der Fahrzeugbremsanlage zu
verschlechtern. Ein dahingehend erstes Ausführungsbeispiel ist in Figur 2 dargestellt.
Figur 2 zeigt als Ausschnitt das auslassseitige bzw. druckseitige Ende einer als Kolbenpumpe ausgebildeten Pumpe 30. Diese ist in eine Pumpenaufnahme 50 des Gehäuseblocks 10 eingebaut. Die Pumpenaufnahme 50 ist nach außen offen und wird von einem Stopfen 68 verschlossen. Ein Zylinderelement 54 der Pumpe 30 nimmt einen in Figur 2 nicht erkennbaren Kolben axial beweglich auf und dient zu dessen Führung. Eine Betätigung des Kolbens erfolgt entgegen der Kraft einer Rückstellfeder 56, welche am Boden des Zylinderelements 54 abgestützt ist. Im Zentrum des Bodens des Zylinderelements 54 befindet sich eine
Durchgangsbohrung 58, die in einem kegelförmig ausgebildeten Ventilsitz 60 endet. Dieser Ventilsitz 60 wird von einem Schließglied 62, hier exemplarisch als Kugel ausgeführt, gesteuert, welches dazu von einer Ventilfeder 64 gegen den Ventilsitz 60 gedrückt wird. Die Ventilfeder 64 ist am Grund einer
sacklochförmigen Ausnehmung 66 des Stopfens 68 abgestützt. Letzterer ist kraftschlüssig anhand einer Pressverbindung in der Pumpenaufnahme 50 verankert.
Im dargestellten Zustand liegt das Schließglied 62 am Ventilsitz 60 an und verhindert dadurch ein Austreten von Druckmittel aus dem Inneren des
Zylinderelements 54 in den Auslass- bzw. Druckbereich der Pumpe 30.
Mit einer Bewegung des Kolbens in Figur 2 nach unten, verkleinert sich ein vom Kolben und dem Zylinderelement 54 eingeschlossener Pumpenraum 70 und der Druck im Inneren des Pumpenraums 70 steigt an. Wird die hydraulische
Druckkraft auf das Schließglied 62 größer als die entgegenwirkende Federkraft, hebt das Schließglied 62 vom Ventilsitz 60 ab und Druckmittel strömt durch die Durchgangsbohrung 58 hindurch zu einer Ringnut 72, welche an einer dem Zylinderelement 54 zugewandten Stirnfläche des Stopfens 68 ausgebildet ist. Die Ringnut 72 umschließt den Ventilsitz 60 mit radialem Abstand, wodurch sich zwischen Ringnut 72 und Ventilsitz 60 ein umlaufender Steg 74 ausbildet.
Wenigstens eine radiale verlaufende Ausnehmung ist vorgesehen, die den Steg 74 quert und dabei als Drosselquerschnitt 76 ausgebildet sein kann. Durch den Drosselquerschnitt 76 strömt Druckmittel zu einem im Gehäuseblock 52 ausgebildeten Fluidkanal 82 ab, der nachfolgend aus Verwechselungsgründen als zweiter Fluidkanal 82 bezeichnet ist. Letzterer ist im Wesentlichen rechtwinklig zu einer Längsachse L der Pumpenaufnahme 50 angeordnet und mündet in eine nicht erkennbare Dämpferaufnahme 90 (Figur 3) am
Gehäuseblock 52 des Hydraulikaggregats 10 ein. Die Dämpferaufnahme 90 nimmt das Hochdruckdämpferelement 44 auf.
Ferner ist am Gehäuseblock 52 erfindungsgemäß ein sogenannter erster Fluidkanal 80 vorgesehen, der wenigstens abschnittsweise achsparallel zum zweiten Fluidkanal 82 ausgerichtet ist und die Pumpenaufnahme 50 kreuzt. Dieser erste Fluidkanal 80 verbindet gemäß Figur 1 das Umschaltventil 24 der Fahrzeugbremsanlage mit dem Einlassventil 18 und bildet demnach die
Druckmittelverbindung 22 aus. Der erste Fluidkanal 80 verläuft ebenfalls rechtwinklig zur Längsachse L der Pumpenaufnahme 50, ist im Unterschied zum zweiten Fluidkanal 82 aber frei von Drosselstellen und gestattet somit eine ungehinderte Druckmittelströmung vom Umschaltventil 24 zum Einlassventil 18. Dazu bildet die Pumpenaufnahme 50 zusammen mit der darin eingesetzten Pumpe 30 einen das eingebaute Zylinderelement 54 der Pumpe 30
umschließenden Ringkanal 84 aus, in den der erste Fluidkanal 80 auf einer Umfangseite der Pumpenaufnahme 50 ein- und auf der gegenüberliegenden Umfangseite wieder ausmündet.
Die beiden Fluidkanäle 80 und 82 sind erfindungsgemäß gegeneinander abgedichtet. Dies geschieht mittels einer ersten Trennstelle 100, welche von einem zwischen den beiden Fluidkanälen 80 und 82 gelegenen Gehäuseabschnitt 104 der Pumpenaufnahme 50 in Wirkverbindung mit einem in die Pumpenaufnahme 50 eingesetzten Aggregatebauteil gebildet ist. Beim dargestellten Ausführungsbeispiel handelt es sich bei diesem Aggregatebauteil um den Stopfen 68, welcher die Pumpenaufnahme 50 zur Umgebung hin verschließt.
Alternativ könnte als Aggregatebauteil auch das Zylinderelement 54 der Pumpe 30 verwendet werden, was jedoch erst nachfolgend in Zusammenhang mit der Beschreibung von Figur 4 detailliert offenbart wird.
Der Stopfen 68 und das Zylinderelement 54 der Pumpe 30 sind beispielhaft mechanisch miteinander gekoppelt. Zur Ausbildung dieser Koppelung ist der Stopfen 68 mit einem Kragen 108 versehen, in den das Zylinderelement 54 soweit eintaucht, bis die beiden Bauteile mit ihren jeweiligen Stirnflächen aneinander anliegen. Das Zylinderelement 54 ist in diesem Bereich mit einem umlaufenden, radial überstehenden Bund 110 versehen, welcher vom Kragen 108 axial in Richtung der Längsachse L überragt wird. Nach dem gegenseitigen Anlegen von Zylinderelement 54 und Stopfen 68 wird der Kragen 108 plastisch umgeformt, wodurch er den Bund 110 des Zylinderelements 54 hintergreift und somit die beiden Bauteile formschlüssig zu einer Baugruppe miteinander verbindet.
Diese Baugruppe aus Stopfen 68 und Zylinderelement 54 wird in die
Pumpenaufnahme 50 eingesetzt und zwar soweit, bis eine am Zylinderelement 54 ausgebildete Fase 112 an einer Gegenfase 114 der Pumpenaufnahme 50 zur Anlage kommt und darüber die Pumpendruckseite gegenüber der
Pumpensaugseite abdichtet. Der Stopfen 68 weist gegenüber dem Durchmesser der Pumpenaufnahme 50 ein Übermaß auf, so dass zwischen Stopfen 68 und Pumpenaufnahme 50 eine kraftschlüssige Verbindung, also eine
Pressverbindung ausbildbar ist. Letztere erstreckt sich bis zu dem zwischen den beiden Fluidkanälen 80 und 82 liegenden Gehäuseabschnitt 104 und bildet somit die erste Trennstelle 100 aus. Gemäß Figur 3 mündet der zweite Fluidkanal 82 auf seinem von der
Pumpenaufnahme 50 abgewandten Ende in eine am Gehäuseblock 52 ausgebildete Dämpferaufnahme 90 für das Hochdruckdämpferelement 44 ein. Die Mündungsstelle des zweiten Fluidkanals 82 liegt exzentrisch zu einer Mittelachse M der Dämpferaufnahme 90 in einem Bereich, welcher eine ungehinderte Umströmung eines Versorgungsventils 96 des in die
Dämpferaufnahme 90 eingebauten Hochdruckdämpferelements 44 erlaubt.
Letzteres ist exemplarisch mit einem Dämpferkolben 92 ausgestattet, der von einer Dämpferfeder 94 beaufschlagt eine in Figur 4 dargestellte Grundstellung einnimmt. In dieser Grundstellung ist das Versorgungsventil 96 der
Dämpfereinrichtung durch den Dämpferkolben 92 geöffnet und stellt damit eine Druckmittelverbindung zum zweiten Fluidkanal 82 her, welcher ebenfalls in die Dämpferaufnahme 90 einmündet. Auftretende Druckpulsationen im zweiten Fluidkanal 82 lassen sich durch die Beweglichkeit des Dämpferkolbens 92 entgegen der Kraft der Dämpferfeder 94 dämpfen.
Das Versorgungsventil 96 ist nicht erkennbar mit einer Hochdruckdrossel ausgestattet, durch die im Hochdruckdämpfer 44 aufgenommenes Druckmittel abströmt. Stromabwärts dieser Hochdruckdrossel münden der erste Fluidkanal 80 und der zweite Fluidkanal 82 ineinander. Das Versorgungsventil 96 wirkt somit als zweite Trennstelle 102 zur gegenseitigen Abdichtung der beiden Fluidkanälen 80 und 82.
Eine besonders wirksame kraftschlüssige Verbindung des Aggregatebauteils, bzw. gemäß Ausführungsbeispiel 1 des Stopfens 68, mit der Pumpenaufnahme 50 lässt sich durch Einschrumpfen des Stopfens 68 erreichen. Letzterer wird dazu vor dem Einpressvorgang auf eine Temperatur abgekühlt, die deutlich niedriger ist als die Temperatur des Gebäudeblocks 52 im Bereich der
Pumpenaufnahme 50. Mit seiner sich anschließenden Eraufwärmung steigen die am Stopfen 68 wirksamen radialen Spannkräfte auf eine Größenordnung an, die ohne Abkühlung deutlich höhere axiale Einpresskräfte erforderlich gemacht und damit die Gefahr unerwünschter Spanbildung erhöht hätte. Figur 2 zeigt darüber hinaus, dass bei Bedarf zusätzlich zur Pressverbindung eine Sicherung des Stopfens 68 und mittelbar damit der Pumpe 30 in der Pumpenaufnahme 50 durch Ausbildung einer Verstemmung 116 vorgenommen werden kann. Dazu wird mittels eines Stempels der Gehäuseblock 52 im
Umfangsbereich der Pumpenaufnahme 50 plastisch derart verformt, dass dieses
Material des Gehäuseblocks 52 eine in Umfangsrichtung des Stopfens 68 vorgesehene Schulter 116 wenigstens segment- bzw. abschnittsweise überdeckt. Anstelle der beschriebenen rein kraftschlüssigen Verbindung zwischen dem
Aggregatebauteil und der Pumpenaufnahme 50 zur Darstellung der ersten Trennstelle 100 kann alternativ auch eine Kombination aus einer kraftschlüssigen und einer formschlüssigen Verbindung vorgesehen werden. Ein derartiges zweites Ausführungsbeispiel ist in Figur 4 dargestellt.
Bei diesem Ausführungsbeispiel ist das Aggregatebauteil bzw. der Stopfen 68 an seinem Außenumfang mit Schneidkanten 118 versehen, die sich axial bzw. in Richtung der Längsachse L der Pumpenaufnahme 50 erstrecken. Der
Innendurchmesser der Pumpenaufnahme 50 ist an einer Stufe abschnittsweise soweit zurückgenommen, dass beim Fügen des Stopfens 68 die Schneidkanten
118 in die Wandung des zurückgenommenen Abschnitts der Pumpenaufnahme 50 einschneiden. Eine Anzahl bzw. eine Gruppierung von über den Umfang des Stopfens 68 verteilten Schneidkanten 118 ist anwendungsspezifisch frei wählbar. Die Schneidkanten 118 sichern den Stopfen 68 in der Pumpenaufnahme 50 gegen Verdrehung und bilden somit einen Formschluss, während sie darüber hinaus beim Einschneiden in den im Innendruchmesser zurück genommenen Abschnitt der Wandung der Pumpenaufnahme 50 Material seitlich verdrängen und damit die am Stopfen 68 angreifenden Spannkräfte gegenüber den durch reinen Kraftschluss erreichbaren Spannkräften erhöhen.
Eine weitere Variante zur Darstellung der Kombination aus einer kraftschlüssigen und einer formschlüssigen ersten Trennstelle 100 ist durch Einsatz einer sogenannten Self-clinch-Verbindung zwischen der Pumpenaufnahme 50 und dem Aggregatebauteil möglich. Diese Variante zeigt Figur 5. Bei diesem Beispiel wird als Aggregatebauteil das Zylinderelement 54 der Pumpe 30 verwendet. Diese Erwägung ließe sich prinzipiell auch auf die zuvor beschriebenen Ausführungsvarianten anwenden.
Nach Figur 5 ist das Zylinderelement 54 an seinem Außenumfang mit ringförmig umlaufenden Schneidkanten 118 versehen. Exemplarisch sind zwei
Schneidkanten 118 ausgebildet, welche zu beiden Seiten des
Mündungsquerschnitts des ersten Fluidkanals 80 in die Pumpenaufnahme 50 zu liegen kommen, wenn das Zylinderelement 54 der Pumpe 30 sich in seiner vorgesehenen endgültigen Einpressposition befindet. Mehrere Schneidkanten 118 zu beiden Seiten des Mündungsquerschnitts des ersten Fluidkanals 80 wären selbstverständlich denkbar. In Fügerichtung des Zylinderelements 54 jeweils oberhalb der Schneidkanten 118 sind entlang des Umfangs des
Zylinderelements 54 umlaufende Nuten 120 ausgebildet. Beim Fügen des Zylinderelements 54 in die Pumpenaufnahme 50 verdrängen die ringförmigen Schneidkanten 118 Material der Wandung der Pumpenaufnahme 50 in diese Nuten 120 hinein und bilden damit den Formschluss zwischen den Bauteilen aus.
Zum Verschließen der Öffnung der Pumpenaufnahme 50 wird bei diesem
Ausführungsbeispiel ein relativ flach gestalteter Deckel 122 verwendet, welcher sich ebenfalls kraft- und/oder formstoffschlüssig in der Pumpenaufnahme 50 verankern lässt.
Selbstverständlich sind weitere Änderungen oder Ergänzungen an den beschriebenen Ausführungsbeispielen denkbar, ohne vom Grundgedanken der Erfindung abzuweichen.

Claims

Ansprüche
1. Hydraulikaggregat (10), insbesondere für eine schlupfregelbare
Fahrzeugbremsanlage, mit einem Gehäuseblock (52), einer am
Gehäuseblock (52) ausgebildeten und entlang einer Längsachse (L) ausgerichteten Pumpenaufnahme (50) zur Aufnahme einer Pumpe (30) mit einer Pumpensaugseite und einer Pumpendruckseite und mit einem im Bereich der Pumpendruckseite die Pumpenaufnahme (50) kreuzenden ersten Fluidkanal (80), gekennzeichnet durch
einen, im Bereich der Pumpendruckseite in die Pumpenaufnahme (50) mündenden zweiten Fluidkanal (82) und durch eine zwischen den
Mündungsstellen der beiden Fluidkanäle (80, 82) in die Pumpenaufnahme (50) ausgebildete erste Trennstelle (100), welche die beiden Fluidkanäle (80, 82) gegeneinander abdichtet.
2. Hydraulikaggregat nach Anspruch 1, dadurch gekennzeichnet,
dass am Gehäuseblock (52) eine Dämpferaufnahme (90) für ein
Dämpferelement (44) angeordnet ist, in die der ersten Fluidkanal (80) und der zweite Fluidkanal (82) einmünden.
3. Hydraulikaggregat nach Anspruch 3, dadurch gekennzeichnet,
dass das Dämpferelement (44) mit der ihm zugeordneten Dämpferaufnahme (90) eine zweite Trennstelle (102) ausbildet, welche die beiden Fluidkanäle (80, 82) gegeneinander abdichtet.
4. Hydraulikaggregat nach einem der Ansprüche 1 bis 3, dadurch
gekennzeichnet,
dass die Pumpenaufnahme (50) in axialer Richtung ihrer Längsachse (L) zwischen den beiden Fluidkanälen (80, 82) einen Gehäuseabschnitt (104) ausbildet, der in Wechselwirkung mit einem in die Pumpenaufnahme (50) eingesetzten Aggregatebauteil (68; 54) die erste Trennstelle (100) zwischen beiden Fluidkanälen (80, 82) ausbildet. Hydraulikaggregat nach Anspruch 4, dadurch gekennzeichnet,
dass das Aggregatebauteil ein Stopfen (68) ist, welcher die
Pumpenaufnahme (50) zur Umgebung verschließt oder
dass das Aggregatebauteil ein Zylinderelement (54) ist, welches einen Kolben der Pumpe (30) führt.
Hydraulikaggregat nach Anspruch 4 oder 5, dadurch gekennzeichnet, dass wenigstens die erste Trennstelle (100) durch Kraftschluss und/oder durch Formschluss des Aggregatebauteils (68; 54) mit der Pumpenaufnahme (50) des Gehäuseblocks (52) ausgestaltet ist.
Hydraulikaggregat nach Anspruch 6, dadurch gekennzeichnet,
dass der Kraftschluss durch Einpressen oder durch Einschrumpfen des
Aggregatebauteils (68; 54) in die Pumpenaufnahme (50) hergestellt ist.
Hydraulikaggregat nach Anspruch 6, dadurch gekennzeichnet,
dass der Kraft- und/oder Formschluss des Aggregatebauteils (68; 54) in der Pumpenaufnahme (50) hergestellt ist durch wenigstens eine Schneidkante (118) am Aggregatebauteil (68; 54) und/oder an der Wandung der
Pumpenaufnahme (50), wobei diese wenigstens eine Schneidkante (118) beim Einsetzen des Aggregatebauteils (68; 54) in die Pumpenaufnahme (50) Material der Wandung der Pumpenaufnahme (50) und/oder des
Aggregatebauteils (68; 54) plastisch verformt.
Hydraulikaggregat nach Anspruch 6, dadurch gekennzeichnet,
dass der Kraft- und/oder Formschluss des Aggregatebauteils (68; 54) in der Pumpenaufnahme (50) hergestellt ist durch wenigstens eine ringförmig umlaufende Schneidkante (118) und eine dieser Schneidkante (118) nachgeordnete ringförmig umlaufende Nut (120) am Aggregatbauteil (68; 54) und/oder an der Pumpenaufnahme (50), wobei die wenigstens eine
Schneidkante (118) beim Einsetzen des Aggregatebauteils (68, 54) in die Pumpenaufnahme (50) Material der Wandung der Pumpenaufnahme (50) und/oder des Aggregatebauteils (68; 54) in die Nut (120) hinein drängt.
10. Hydraulikaggregat nach einem der Ansprüche 1 bis Anspruch 9, dadurch gekennzeichnet,
dass der erste Fluidkanal (80) ein Umschaltventil (24) mit einem Einlassventil (18) eines Bremskreises einer Fahrzeugbremsanlage verbindet, frei von Drosselstellen ist und Druckmittel zumindest abschnittsweise um das
Aggregatebauteil (68; 54) sowie um das Dämpferelement (44) herumleitet und
dass eine Druckseite der Pumpe (30) in den zweiten Fluidkanal (82) mündet, wobei an den zweiten Fluidkanal (82) das Dämpferelement (44)
angeschlossen ist.
PCT/EP2015/053189 2014-04-10 2015-02-16 Hydraulikaggregat WO2015154901A1 (de)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US15/303,064 US10730496B2 (en) 2014-04-10 2015-02-16 Hydraulic unit
CN201580018850.7A CN106163891B (zh) 2014-04-10 2015-02-16 液压设备

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102014206906.8 2014-04-10
DE102014206906 2014-04-10

Publications (1)

Publication Number Publication Date
WO2015154901A1 true WO2015154901A1 (de) 2015-10-15

Family

ID=52577836

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2015/053189 WO2015154901A1 (de) 2014-04-10 2015-02-16 Hydraulikaggregat

Country Status (3)

Country Link
US (1) US10730496B2 (de)
CN (1) CN106163891B (de)
WO (1) WO2015154901A1 (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017063678A1 (de) * 2015-10-13 2017-04-20 Robert Bosch Gmbh Hydraulikaggregat
CN111094743A (zh) * 2017-09-12 2020-05-01 罗伯特·博世有限公司 用于液压总成的、具有泵活塞的泵组件

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6733991B2 (ja) * 2016-09-23 2020-08-05 日立オートモティブシステムズ株式会社 プランジャポンプ及びブレーキ装置
JP2019116155A (ja) * 2017-12-27 2019-07-18 ロベルト・ボッシュ・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツングRobert Bosch Gmbh ブレーキ液圧制御装置
KR102098569B1 (ko) 2018-08-09 2020-04-08 주식회사 만도 유압 브레이크 시스템용 밸브블록
KR20210012663A (ko) * 2019-07-26 2021-02-03 현대모비스 주식회사 브레이크 시스템의 유압 유닛
US11668291B2 (en) * 2021-09-29 2023-06-06 Chipmast Autotronix Co., Ltd. Oil-scavenge pump and method for assembling the same
US11781541B2 (en) * 2021-09-29 2023-10-10 Chipmast Autotronix Co., Ltd. Oil-scavenge pump and method for assembling the same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02225802A (ja) * 1989-02-27 1990-09-07 Nhk Spring Co Ltd アキュムレータ
WO1996028661A1 (de) * 1995-03-11 1996-09-19 Itt Automotive Europe Gmbh Kolbenpumpe
DE10302681B3 (de) * 2003-01-24 2004-08-12 Robert Bosch Gmbh Hydraulikaggregat
DE102011089984A1 (de) * 2011-12-27 2013-06-27 Robert Bosch Gmbh Kolbenpumpe für ein Hydraulikaggregat einer Fahrzeugbremsanlage mit einem Pumpenzylinderabschnitt

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3912935C2 (de) * 1989-03-21 2003-05-28 Continental Teves Ag & Co Ohg Blockiergeschützte, hydraulische Bremsanlage
DE4013160A1 (de) * 1990-04-25 1991-10-31 Bosch Gmbh Robert Gehaeuseblock fuer ein hydraulisches bremssystem
DE4311263A1 (de) * 1993-04-06 1994-10-13 Bosch Gmbh Robert Dämpfungseinrichtung insbesondere für ein hydraulisches Bremssystem
WO1999006696A1 (de) * 1997-07-30 1999-02-11 Robert Bosch Gmbh Kolbenpumpe
DE19732770A1 (de) * 1997-07-30 1999-02-04 Bosch Gmbh Robert Kolbenpumpe
DE19732818A1 (de) * 1997-07-30 1999-02-04 Bosch Gmbh Robert Kolbenpumpe
DE19747851A1 (de) * 1997-10-30 1999-05-06 Bosch Gmbh Robert Kolbenpumpe
DE10314979B3 (de) * 2003-04-02 2004-12-02 Robert Bosch Gmbh Kolbenpumpe
DE102004052817A1 (de) * 2004-11-02 2006-05-04 Robert Bosch Gmbh Kolbenpumpe
DE102007052664A1 (de) * 2007-11-05 2009-05-07 Robert Bosch Gmbh Führungsring für eine Kolbenpumpe sowie Kolbenpumpe
DE102008002740A1 (de) 2008-06-27 2009-12-31 Robert Bosch Gmbh Kolbenpumpe
DE102009027827A1 (de) * 2009-07-20 2011-01-27 Robert Bosch Gmbh Pumpengehäuse eines Kraftfahrzeug-Hydroaggregats mit mindestens einer Hauptzylinderanschlussöffnung
DE102010039507A1 (de) * 2010-08-19 2012-02-23 Robert Bosch Gmbh Kolbenführungselement

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02225802A (ja) * 1989-02-27 1990-09-07 Nhk Spring Co Ltd アキュムレータ
WO1996028661A1 (de) * 1995-03-11 1996-09-19 Itt Automotive Europe Gmbh Kolbenpumpe
DE10302681B3 (de) * 2003-01-24 2004-08-12 Robert Bosch Gmbh Hydraulikaggregat
DE102011089984A1 (de) * 2011-12-27 2013-06-27 Robert Bosch Gmbh Kolbenpumpe für ein Hydraulikaggregat einer Fahrzeugbremsanlage mit einem Pumpenzylinderabschnitt

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017063678A1 (de) * 2015-10-13 2017-04-20 Robert Bosch Gmbh Hydraulikaggregat
US11203330B2 (en) 2015-10-13 2021-12-21 Robert Bosch Gmbh Hydraulic unit
CN111094743A (zh) * 2017-09-12 2020-05-01 罗伯特·博世有限公司 用于液压总成的、具有泵活塞的泵组件
CN111094743B (zh) * 2017-09-12 2022-01-25 罗伯特·博世有限公司 用于液压总成的、具有泵活塞的泵组件

Also Published As

Publication number Publication date
CN106163891A (zh) 2016-11-23
US20170021814A1 (en) 2017-01-26
US10730496B2 (en) 2020-08-04
CN106163891B (zh) 2019-12-17

Similar Documents

Publication Publication Date Title
WO2015154901A1 (de) Hydraulikaggregat
EP0935719B1 (de) Rückschlagventil, insbesondere für eine kolbenpumpe
EP2294316B1 (de) Kolbenpumpe einer hydraulischen fahrzeugbremsanlage
DE102017200647B4 (de) Bremssystem
EP2475562B1 (de) Relaisventileinrichtung
EP2205865B1 (de) Kolbenpumpe zur förderung eines fluids und zugehöriges bremssystem
EP2029407B1 (de) Hydraulische fahrzeugbremsanlage mit muskelkraftbetätigbarer betriebsbremse und mit einer vorrichtung zur regelung des radschlupfs
WO2018091182A1 (de) Pedalwegsimulator und hydraulikblock mit einem pedalwegsimulator
DE102004030428A1 (de) Ventilvorrichtung
DE10015295A1 (de) Kolbenpumpe
EP2079930A2 (de) Kolbenpumpe für ein fahrzeugbremssystem mit einer kolbenstange
WO1999006704A1 (de) Ventilaufsatz zur verkleinerung des totraums bei radialkolbenpumpen für fahrzeugbremsanlagen
EP2207960A1 (de) Kunststoffelement, kolbenpumpe sowie montageverfahren
DE19732818A1 (de) Kolbenpumpe
WO2017063678A1 (de) Hydraulikaggregat
DE19831450A1 (de) Kolbenpumpe
DE102011087090A1 (de) Hydraulisch gesteuertes Speicherkammerventil
EP2704933A1 (de) Hauptzylinder insbesondere für ein geregeltes bremssystem
EP3401129A1 (de) Reifen-druckbeaufschlagungseinrichtung
DE102015204317A1 (de) Hydraulikaggregat
DE102015216788A1 (de) Hochdruckpumpe für ein Kraftstoffeinspritzsystem
DE19816289A1 (de) Druckventil, insbesondere für eine Kolbenpumpe
WO2015022135A1 (de) Ventileinrichtung
DE102017203806A1 (de) Bremsanlage
EP2292480B1 (de) Retardersystem für ein Kraftfahrzeug

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15706190

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 15303064

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 15706190

Country of ref document: EP

Kind code of ref document: A1