WO2015154613A1 - 对聚醚醚酮材料进行表面改性的方法 - Google Patents

对聚醚醚酮材料进行表面改性的方法 Download PDF

Info

Publication number
WO2015154613A1
WO2015154613A1 PCT/CN2015/074510 CN2015074510W WO2015154613A1 WO 2015154613 A1 WO2015154613 A1 WO 2015154613A1 CN 2015074510 W CN2015074510 W CN 2015074510W WO 2015154613 A1 WO2015154613 A1 WO 2015154613A1
Authority
WO
WIPO (PCT)
Prior art keywords
polyetheretherketone
peek
polyetheretherketone material
ion implantation
modification
Prior art date
Application number
PCT/CN2015/074510
Other languages
English (en)
French (fr)
Inventor
刘宣勇
陆涛
王贺莹
孟凡浩
Original Assignee
中国科学院上海硅酸盐研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201410141117.1A external-priority patent/CN103881129B/zh
Priority claimed from CN201410654364.1A external-priority patent/CN104371134B/zh
Application filed by 中国科学院上海硅酸盐研究所 filed Critical 中国科学院上海硅酸盐研究所
Priority to US15/302,153 priority Critical patent/US10934408B2/en
Publication of WO2015154613A1 publication Critical patent/WO2015154613A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/12Chemical modification
    • C08J7/123Treatment by wave energy or particle radiation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/14Macromolecular materials
    • A61L27/18Macromolecular materials obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/04Reinforcing macromolecular compounds with loose or coherent fibrous material
    • C08J5/0405Reinforcing macromolecular compounds with loose or coherent fibrous material with inorganic fibres
    • C08J5/042Reinforcing macromolecular compounds with loose or coherent fibrous material with inorganic fibres with carbon fibres
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/12Chemical modification
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/12Chemical modification
    • C08J7/126Halogenation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/12Chemical modification
    • C08J7/14Chemical modification with acids, their salts or anhydrides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2400/00Materials characterised by their function or physical properties
    • A61L2400/18Modification of implant surfaces in order to improve biocompatibility, cell growth, fixation of biomolecules, e.g. plasma treatment
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2430/00Materials or treatment for tissue regeneration
    • A61L2430/02Materials or treatment for tissue regeneration for reconstruction of bones; weight-bearing implants
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2371/00Characterised by the use of polyethers obtained by reactions forming an ether link in the main chain; Derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2371/00Characterised by the use of polyethers obtained by reactions forming an ether link in the main chain; Derivatives of such polymers
    • C08J2371/08Polyethers derived from hydroxy compounds or from their metallic derivatives
    • C08J2371/10Polyethers derived from hydroxy compounds or from their metallic derivatives from phenols

Definitions

  • the invention relates to a polyetheretherketone material obtained by plasma immersion ion implantation technology and a method for surface modification thereof, and belongs to the technical field of surface modification of medical polymer materials.
  • polyetheretherketone The elastic modulus of polyetheretherketone is more compatible with human bone tissue. After implantation in human body, it can effectively reduce bone resorption and bone atrophy caused by stress shielding effect, and polyetheretherketone material is resistant to chemical corrosion and has outstanding mechanical properties.
  • Non-toxic, suitable for long-term implantation of medical implants Biomaterials 2007, 28:4845-4869.
  • polyetheretherketone has poor bioactivity and is not easily bonded to bone tissue after implantation in the human body, which limits its long-term use as an implant material.
  • bioactive materials for recombination such as tricalcium phosphate and hydroxyapatite, etc.
  • the invention aims to overcome the defects of the existing polyetheretherketone materials, improve the biocompatibility of the polyetheretherketone material and maintain its original performance in a simple and convenient manner, and the invention provides a pass A polyetheretherketone material obtained by plasma immersion ion implantation technique and a method for surface modification thereof.
  • the present invention provides a A method for surface modification of a polyetheretherketone material, the method comprising a combination of a physical method and a chemical method, comprising: plasma immersion ion implantation on a surface of the polyetheretherketone material using argon as an ion source, and then The polyetheretherketone material after plasma ion immersion ion implantation is placed in an aqueous solution of hydrogen peroxide, a hydrofluoric acid aqueous solution or ammonia water to be immersed so that the surface of the modified polyetheretherketone material has a nanoparticle structure and a shallow pore-shaped nanometer. Structure and / or gully-like nanostructures.
  • the process parameters of the plasma immersion ion implantation comprise: a background vacuum of 1 ⁇ 10 -4 to 1 ⁇ 10 -2 Pa , preferably 3 ⁇ 10 -3 to 5 ⁇ 10 -3 Pa , argon
  • the flow rate is 5 to 200 sccm, preferably 15 to 60 sccm
  • the injection voltage is 100 to 2000 V, preferably 500 to 1000 V
  • the RF power is 100 to 2000 W, preferably 300 to 500 W
  • the injection pulse frequency is 30 kHz
  • the duty ratio is 15% to 30%.
  • it is 30%
  • the injection time is 180 minutes or less, preferably 30 to 90 minutes.
  • the process parameters of the plasma immersion ion implantation comprise: the argon gas flow rate is 30 sccm, and the injection voltage is 800V.
  • the RF power is 300 W, and the injection time is 60 minutes; at the same time, the mass fraction of hydrogen peroxide in the aqueous hydrogen peroxide solution is preferably 30%, and the soaking treatment time is preferably 24 Hours.
  • the mass fraction of hydrogen peroxide in the aqueous hydrogen peroxide solution is 30% or less, preferably 15 to 30%, particularly preferably 30%.
  • the soaking time is 6 to 24 hours, preferably 24 hours; the mass fraction of hydrofluoric acid in the hydrofluoric acid aqueous solution is 20 to 40%, and the soaking treatment time is 6 to 24
  • the hour is preferably 24 hours; the mass percentage of the ammonia water is 5 to 40%, preferably 20 to 40%, and the soaking treatment time is 6 to 24 hours, preferably 24 hours. Hours.
  • the polyetheretherketone ion-implanted by plasma immersion is placed in an aqueous hydrogen peroxide solution to be immersed, and the surface of the modified polyetheretherketone material has a shallow pore-like nanostructure and a hydroxyl functional group.
  • the polyetheretherketone material after plasma ion immersion ion implantation is placed in hydrofluoric acid to be immersed, and the surface of the modified polyetheretherketone material has a gully structure and a nanoparticle structure, and the surface contains fluorine element.
  • the content of the fluorine element in the atom of the surface of the polyetheretherketone material is 20 or less, preferably 3.06% - 9.01%.
  • the polyetheretherketone ion-implanted by plasma immersion is placed in aqueous ammonia to be immersed, and the surface of the modified polyetheretherketone material has a gully structure and an amino functional group on the surface.
  • the polyetheretherketone material is a pure polyetheretherketone material or a carbon fiber reinforced polyetheretherketone material.
  • the gully nanostructure has a size of 1-500 nm.
  • the surface contact angle of the modified polyetheretherketone material is 32 ° - 49 °.
  • the modified polyetheretherketone material has a fluorine element content of 9.01% and a surface contact angle of 32 °.
  • the method of the present invention comprises subjecting the surface of the polyetheretherketone to immersion treatment in an aqueous hydrogen peroxide solution, a hydrofluoric acid aqueous solution or ammonia water immediately after argon plasma immersion ion implantation.
  • the surface of the polyetheretherketone material obtained by the modification treatment of the invention has a nano structure, for example, the surface fluorine content after immersion in a hydrofluoric acid aqueous solution can reach 9.01%. Left and right.
  • the biological properties of the surface fluorinated polyetheretherketone material were significantly improved: cell proliferation experiments confirmed the proliferation rate of rat bone marrow mesenchymal stem cells (BMSC) on the surface of the polyetheretherketone material obtained by the modification treatment of the present invention.
  • BMSC rat bone marrow mesenchymal stem cells
  • BMSC BMSC Surface modification of modified polyetheretherketone material 14
  • the alkaline phosphatase activity of the sky also increased significantly, which indicated that the modified material promoted the differentiation of stem cells into osteoblasts; antibacterial experiments showed that the fluorinated polyetheretherketone material had a certain effect on Staphylococcus aureus. The antibacterial effect.
  • the invention can be used to improve the biological activity and bacteriostatic properties of medical polyetheretherketone materials.
  • PEEK represents polyetheretherketone before modification
  • A-PEEK Indicates polyetheretherketone after ionic plasma ion immersion ion implantation.
  • H-PEEK represents polyetheretherketone after immersion in aqueous hydrogen peroxide solution
  • AH-PEEK It indicates a polyetheretherketone which has been immersed in an aqueous hydrogen peroxide solution after argon plasma immersion ion implantation.
  • figure 1 It is a scanning electron microscope topography of the surface of the polyetheretherketone before and after the modification treatment by another exemplary method of the present invention and the surface of the polyetheretherketone treated by other means.
  • figure 2 It is the contact angle of the surface of the polyetheretherketone material before and after the modification treatment by another exemplary method of the present invention and the surface of the polyetheretherketone treated by other means with water.
  • Figure 3 is a diagram showing the surface of a polyetheretherketone material before and after modification by another exemplary method of the present invention and the surface of a polyetheretherketone treated by other means. The potential varies with the pH of the electrolyte.
  • Fig. 4 is a statistical result of cell proliferation experiments of polyetheretherketone and unmodified polyetheretherketone obtained by the modification of Comparative Examples 1 and 2 and Example 1, which are shown in the figure: * and *** indicate two sets of data. The statistically significant difference between the two, where * indicates p ⁇ 0.05, indicating a statistically significant difference between the two groups of data, *** indicates p ⁇ 0.001, indicating a more significant statistical difference between the two groups of data.
  • Figure 5 is a graph showing alkaline phosphatase expression activity of rat bone marrow mesenchymal stem cells (BMSC) on the surface of polyetheretherketone material before and after modification treatment by the present invention and by other methods of polyetheretherketone on surface culture for 14 days. Results, in the figure: * indicates a statistically significant difference between the two groups of data ( p ⁇ 0.05).
  • BMSC bone marrow mesenchymal stem cells
  • PEEK represents polyetheretherketone before modification
  • A-PEEK Indicates polyetheretherketone after ionic plasma ion immersion ion implantation
  • F-PEEK represents polyetheretherketone after soaking in hydrofluoric acid aqueous solution
  • AF-PEEK It indicates a polyetheretherketone which has been immersed in a hydrofluoric acid aqueous solution after argon plasma immersion ion implantation.
  • Figure 6 It is a scanning electron microscope topography of the surface of the polyetheretherketone before and after the modification treatment by another exemplary method of the present invention and the surface of the polyetheretherketone treated by other means.
  • Figure 7 is a view of the surface of the polyetheretherketone material before and after modification by another exemplary method of the present invention and the surface of the polyetheretherketone treated by other means.
  • Ray photoelectron spectroscopy (XPS) test results in which: (a) shows the full spectrum of polyetheretherketone before modification, and (b) shows polyetheretherketone after ionic plasma immersion ion implantation Full spectrum, (c ) shows the full spectrum of polyetheretherketone after soaking in hydrofluoric acid aqueous solution, (d) shows the full polyetheretherketone immersed in hydrofluoric acid aqueous solution after argon plasma immersion ion implantation Spectrum.
  • XPS Ray photoelectron spectroscopy
  • Figure 8 shows the polyetheretherketone AF-PEEK after immersion in hydrofluoric acid solution after argon plasma immersion ion implantation in the present invention.
  • Figure 9 It is the contact angle of the surface of the polyetheretherketone material before and after the modification treatment by another exemplary method of the present invention and the surface of the polyetheretherketone treated by other means with water.
  • Figure 10 is a surface of a polyetheretherketone material before and after modification by another exemplary method of the present invention, and a polyetheretherketone surface treated by other means. Zeta The potential varies with the pH of the electrolyte.
  • Figure 11 is a statistical result of cell proliferation experiments of polyetheretherketone and unmodified polyetheretherketone obtained by modification of Comparative Examples 3 and 4 and Example 5, in which: * and *** indicate between two sets of data.
  • the statistically significant degree of significance where * indicates p ⁇ 0.05, indicating a statistically significant difference between the two groups of data, *** indicates p ⁇ 0.001, indicating a more significant statistical difference between the two groups of data.
  • Figure 12 is a diagram showing the surface of a polyetheretherketone material of a rat bone marrow mesenchymal stem cell (BMSC) before and after being modified by another exemplary method of the present invention, and a polyphosphoetherketone surface treated by other means for 14 days.
  • Enzyme expression activity test results in the figure: * and ** indicate the statistically significant difference between the two groups of data, where * means p ⁇ 0.05, indicating a statistically significant difference between the two groups of data, ** indicates p ⁇ 0.01 indicates that there is a statistically significant difference between the two groups of data.
  • Figure 13 It is the result of colony count of S. aureus cultured on the surface of the polyetheretherketone material before and after the modification treatment by another exemplary method of the present invention and the polyetheretherketone surface-coated plate treated by other means.
  • Figure 14 It is a scanning electron microscope (SEM) topography of S. aureus on the surface of polyetheretherketone material before and after modification by another exemplary method of the present invention and surface treatment of polyetheretherketone treated by other means for 24 hours.
  • SEM scanning electron microscope
  • the invention also discloses a method for modifying the surface of polyetheretherketone material by combining plasma immersion ion implantation technology and chemical method.
  • the method comprises the following steps of subjecting the surface of the polyetheretherketone to argon plasma immersion ion implantation, and immediately immersing it in an aqueous hydrogen peroxide solution, a hydrofluoric acid aqueous solution or ammonia water.
  • a surface of the polyetheretherketone material obtained by the modification treatment of the present invention Nanoparticle structure, shallow pore-like nanostructures and/or gully nanostructures.
  • the surface of the ketone is modified, and the surface of the material is activated by argon plasma immersion ion implantation, and then etched by hydrogen peroxide, hydrofluoric acid solution or ammonia water immediately afterwards to introduce a functional group such as a hydroxyl group, a fluorine element or an amino group onto the surface of the material.
  • a functional group such as a hydroxyl group, a fluorine element or an amino group onto the surface of the material.
  • Figure 1 A-PEEK
  • the surface topography of the medical polyetheretherketone material obtained by the modification of the present comparative example shows that the surface of the modified material has a gully-like structure, ranging from a few nanometers to hundreds of nanometers. Is the result of molecular chain scission caused by high energy particle bombardment on the surface of the material;
  • 2 A-PEEK
  • Figure 1 is a surface topography of the medical polyetheretherketone material obtained by the present comparative example. The figure shows that the surface of the material is flat and has no structure. There is no difference in PEEK surface;
  • Figure 2 H-PEEK Is the contact angle of the surface of the medical polyetheretherketone material treated with the comparative example with water. It can be seen that the surface contact angle of the polyetheretherketone material obtained by the present comparative treatment is about 75 °, and pure PEEK. 81 ° is similar. This shows that the treatment of polyetheretherketone materials by simply using hydrogen peroxide aqueous solution soaking does not significantly change the surface morphology or hydrophilicity of the material.
  • FIG. 1 The surface topography of the medical polyetheretherketone material obtained by the modification treatment of the present embodiment, the figure shows that the surface of the modified material has a shallow pore-shaped nanostructure, and the size is about several tens to hundreds of nanometers; 2 ( AH-PEEK It is the contact angle of the surface of the medical polyetheretherketone material obtained by the modification treatment of the present embodiment with water. It can be seen that the surface contact angle of the polyetheretherketone material obtained by the treatment in this embodiment is about 51. °. This shows that the combination of argon plasma immersion ion implantation technology and aqueous hydrogen peroxide immersion method can construct a different surface from polyetheretherketone material than A-PEEK. The new, shallow, porous nanostructures increase the hydrophilicity of the polyetheretherketone material.
  • the above comparative examples 1 and 2 and Example 1 were evaluated using a material surface Zeta potential test.
  • the specific method is as follows: the Zeta potential of the diffusion layer near the surface of the material is measured by the electrokinetic analyzer (Annepa, Austria) with the pH of the electrolyte. The change in value.
  • Two sets of 20mm ⁇ 10mm ⁇ 1mm samples were taken from each group of materials to be tested, and they were mounted face to face in parallel on the sample holder, leaving a certain gap between the two samples.
  • the electrolyte used is A 0.001 M potassium chloride solution was adjusted with hydrochloric acid and aqueous sodium hydroxide to adjust the pH of the electrolyte.
  • the instrument measures the electrokinetic current, pressure, electrolyte constant, and sample size in the diffusion layer between the surface of the material and the electrolyte, and calculates the Zeta potential using the program's own software.
  • the instrument repeats the measurement four times to ensure the accuracy of the data.
  • FIG. 3 is the surface of the polyetheretherketone material modified by the above comparative examples and examples.
  • Zeta potential with electrolyte pH The value change graph shows that the Zeta potential of the material surface gradually decreases with increasing pH. Since the pH of the in vivo environment is around 7.4, the material is at pH 7.4. Zeta potential is of concern. It can be seen that at pH 7.4, the Zeta potential of PEEK and H-PEEK is almost the same; compared to PEEK, A-PEEK The absolute value of the surface potential is significantly reduced, while AH-PEEK The absolute value of the potential has a certain increase, which may be related to two different structures on the surface of the material.
  • the cytocompatibility of the polyetheretherketone material obtained by the above-mentioned Comparative Examples 1 and 2 and the modification of Example 1 was evaluated by in vitro culture experiments using rat bone marrow mesenchymal stem cells (BMSC).
  • BMSC bone marrow mesenchymal stem cells
  • the proliferation of cells on the surface of the material was measured using an AlamarBlueTM ( AbD serotec Ltd, UK) kit. Methods as below:
  • A is the absorbance value
  • A' is the absorbance value of the negative control well
  • ⁇ 1 570nm
  • ⁇ 2 600nm .
  • Figure 4 is a comparison of the above Comparative Examples 1 and 2 and Example 1 Statistical results of cell proliferation experiments of polyetheretherketone and unmodified polyetheretherketone obtained by modification treatment.
  • the figure shows that the proliferation of BMSC cells on A-PEEK and AH-PEEK surface is better than that of unmodified samples.
  • AH-PEEK promoted cell proliferation most significantly.
  • the shallow pore-shaped nanostructures on the surface of the polyetheretherketone material obtained by the modification treatment can significantly promote the proliferation of BMSC cells.
  • the cells are eluted from the surface of the sample, and the supernatant is taken after centrifugation.
  • the reaction was terminated by adding a sodium hydroxide solution, and the amount of p-nitrophenol formed by the reaction was calculated by measuring the absorbance at a wavelength of 405 nm;
  • the amount of total protein in the supernatant is determined by BCA protein method, and the amount of p-nitrophenol ( ⁇ M) / total protein ( Gg) to measure ALP activity.
  • Figure 5 is a rat bone marrow mesenchymal stem cell (BMSC) The results of alkaline phosphatase expression activity test on the surface of the polyetheretherketone material before and after the modification treatment of the present invention and the polyetheretherketone treated by other methods for 14 days.
  • the figure shows: Comparative Example 1 and Example 1
  • the surface ALP activity of the polyetheretherketone material obtained by the modification treatment was higher than that of the unmodified sample.
  • the polyetheretherketone material modified by the modification of Example 1 was more effective in improving the activity of ALP.
  • Comparative example 2 There was no significant difference between the ALP activity and the unmodified sample on the surface of the treated polyetheretherketone material.
  • the shallow pore-shaped nanostructure on the surface of the polyetheretherketone material obtained by the modification of the embodiment 1 can improve the BMSC ALP activity of the cells.
  • ALP It is a marker of early osteogenic differentiation of stem cells. It can be seen that this shallow pore-like structure promotes the differentiation of stem cells into osteoblasts, which is beneficial for improving the cytocompatibility of materials.
  • FIG. 6 A-PEEK
  • the surface topography of the medical polyetheretherketone material obtained by the modification of the present comparative example shows that the surface of the modified material has a gully-like structure, ranging from a few nanometers to hundreds of nanometers. Is the result of molecular chain scission caused by high energy particle bombardment on the surface of the material; 9 ( A-PEEK ) is the contact angle of the surface of the medical polyetheretherketone material obtained by the modification of the comparative example with water. It can be seen that the surface contact angle of the polyetheretherketone material obtained by the modification treatment of the present comparative ratio is About 126 °. This indicates that the argon plasma immersion ion implantation technique can produce a gully structure on the surface of the polyetheretherketone material while reducing the hydrophilicity of the surface of the material.
  • Figure 6 The surface topography of the medical polyetheretherketone material obtained by the present comparative example shows that the surface of the material is flat and unstructured, and is not different from the PEEK surface;
  • Figure 9 Is the contact angle of the surface of the medical polyetheretherketone material treated with the present comparative example with water. It can be seen that the surface contact angle of the polyetheretherketone material obtained by the present comparative treatment is about 72 °, and pure PEEK. 81 ° is similar, only a slight drop. This indicates that the treatment of the polyetheretherketone material by the hydrofluoric acid aqueous solution immersion method does not significantly change the surface morphology or hydrophilicity of the material.
  • FIG. 6 The surface topography of the medical polyetheretherketone material obtained by the modification treatment of the present embodiment shows that the surface of the modified material retains a structure similar to A-PEEK; Fig. 9 (AF-PEEK) It is the contact angle of the surface of the medical polyetheretherketone material obtained by the modification treatment of the present embodiment with water. It can be seen that the surface contact angle of the polyetheretherketone material obtained by the treatment in this example is about 32 °. This shows: AF-PEEK The surface structure is caused by argon PIII; hydrofluoric acid treatment does not affect the morphology of the material, but can improve the hydrophilicity of the material.
  • the chemical state of the surface of the polyetheretherketone material obtained by the above modification of Comparative Examples 3, 4 and Example 5 was evaluated by X-ray photoelectron spectroscopy (XPS) test.
  • the instrument used was PHI 5000C ESCA System of American PHI Company (upgraded by American RBD Company); the radiation source was Mg target K ⁇ system (1253.6 eV), high voltage 14.0 kV, power 250 W, vacuum better than 1 ⁇ 10 -8 Torr.
  • the RBD147 data acquisition card and AugerScan software of American RBD Company were used to collect the full scan spectrum of samples from 0 to 1200 eV and the narrow scan spectrum (high resolution spectrum) of carbon (C) and oxygen (O) elements in 1s orbit;
  • Figure 7 is an X-ray photoelectron spectroscopy spectrum of the surface of the polyetheretherketone material before and after the modification treatment of the present invention and the surface of the polyetheretherketone treated by other means ( XPS) test results.
  • XPS X-ray photoelectron spectroscopy spectrum of the surface of the polyetheretherketone material before and after the modification treatment of the present invention and the surface of the polyetheretherketone treated by other means (XPS) test results.
  • C1s carbon
  • O1s oxygen
  • F1s there is also a small F1s in the full spectrum of F-PEEK. Peak, this may be caused by the fact that the surface of the material is not cleaned after hydrofluoric acid immersion and a small amount of fluorine remains. Based on the measured atomic percentage of the surface, the surface fluorine content of F-PEEK and AF-PEEK are 0.79% and 9.01%, it can be seen that the amount of fluorine remaining on F-PEEK is very small, much smaller than the fluorine content on AF-PEEK, so the residual fluorine on F-PEEK can be ignored.
  • Figure 8 is the C1s high-resolution spectrum of the AF-PEEK sample, and the peak representing the C*-F bond (288.5 eV) can be clearly seen in the peak fitted by the high-resolution spectrum.
  • An important role in the fluorination process also demonstrates that argon PIII treatment does have some activation on the PEEK surface.
  • Figure 10 is a surface of a polyetheretherketone material before and after the modification treatment of the present invention and a polyetheretherketone surface treated by other means.
  • Zeta The potential varies with the pH value of the electrolyte. The graph shows that the Zeta potential on the surface of the material decreases with increasing pH. Since the pH of the in vivo environment is around 7.4, the material is at pH. A Zeta potential with a value of 7.4 is of concern. It can be seen that at a pH of 7.4, the Zeta potentials of the four surfaces are all negative.
  • the potential value of F-PEEK PEEK is very close; the surface potentials of the modified A-PEEK and AF-PEEK are both smaller than those of PEEK, which may be due to the structure of the material surface.
  • Comparison The surface potential of AF-PEEK and A-PEEK was found in the former Zeta The potential is more negative than the latter, which is most likely due to the presence of fluorine on the surface of the former.
  • the above data show that the simple hydrofluoric acid aqueous solution soaking treatment does not change the electrical state near the surface of the polyetheretherketone material, and the immersion of hydrofluoric acid aqueous solution after argon ion implantation significantly reduces the polyetheretherketone.
  • Example 3 Comparative Examples 3 and 4 and the polyetheretherketone material obtained by the modification of Example 5, respectively, corresponding to Comparative Examples 1 and 2 and Example 1
  • the polyetheretherketone material obtained by the modification treatment has the same parameters and steps.
  • Figure 11 is a comparison of the above Comparative Examples 3, 4 and Example 5 Statistical results of cell proliferation experiments of polyetheretherketone and unmodified polyetheretherketone obtained by modification treatment.
  • the figure shows that the proliferation of BMSC cells on A-PEEK and AF-PEEK surface is better than that of unmodified samples.
  • AF-PEEK promoted cell proliferation most significantly.
  • the surface of the polyetheretherketone material obtained by the modification treatment can significantly promote the proliferation of BMSC cells.
  • Figure 12 is a rat bone marrow mesenchymal stem cell (BMSC) The results of alkaline phosphatase expression activity test on the surface of the polyetheretherketone material before and after the modification treatment of the present invention and the polyetheretherketone treated by other methods for 14 days.
  • the figure shows: cells in A-PEEK and The ALP activity on the surface of AF-PEEK material is higher than that in the unmodified sample, and the AF-PEEK surface has a more significant effect on the up-regulation of ALP activity; while the A-LP on the F-PEEK surface There was no significant difference between active and unmodified samples.
  • the surface of the polyetheretherketone material obtained by the modification of the embodiment 5 can enhance the ALP activity of the BMSC cells.
  • ALP It is a marker of differentiation of bone marrow stem cells into osteoblasts. It can be seen that the surface fluorinated polyetheretherketone material promotes the early osteogenic differentiation of stem cells, which is beneficial for improving the biological activity of the material.
  • the antibacterial activity of the polyetheretherketone material obtained by the above modification of Comparative Examples 3 and 4 and Example 5 was evaluated using Staphylococcus aureus ( S. aureus , ATCC 25923).
  • the specific method is as follows: Staphylococcus aureus was inoculated on the surface of the nutrient agar plate, and cultured in an anaerobic incubator at 36.5 °C for 48 h, and continuously passed to the third generation non-bacteria as an experimental strain. The strain was scraped off and inoculated on a nutrient agar medium, and culture was continued for 24 h.
  • the bacterial solution was diluted to 10 7 cfu/mL with reference to the bacterial standard turbidity tube.
  • the sample to be tested was placed in a 75% aqueous solution of ethanol for 2 hours. Pipette 60 ⁇ L of the inoculum onto the surface of the sample and incubate in an anaerobic incubator at 36.5 °C and 90% humidity. After 24 h, the bacteria on the surface of the sample were washed with 4.5 mL of physiological saline and diluted to a specific concentration. 100 ⁇ L of the diluted bacterial solution was inoculated into a nutrient agar culture dish, and cultured in an anaerobic incubator at 36.5 ° C for 24 h, the number of viable colonies was recorded;
  • Figure 13 is the Staphylococcus aureus in The colony count results of the surface of the polyetheretherketone material before and after the modification treatment of the present invention and the polyetheretherketone surface-coated plate treated by other means.
  • the figure shows that the number of colonies on the surface of F-PEEK and AF-PEEK is higher than There is less on PEEK, and the number of colonies on A-PEEK is increased compared to PEEK. Calculate the number of colonies on the surface of the sample PEEK with reference to the data in Figure 13.
  • the reduction rate of the number of colonies on the surface of F-PEEK samples was 12.01 ( ⁇ 2.50) %, indicating that the bacteriostatic effect of this material is extremely weak and cannot meet the requirements for the use of antimicrobial materials.
  • the percentage reduction of AF-PEEK surface colony was 42.89 ( ⁇ 2.06)%, indicating that the surface of the material had a certain antibacterial effect on Staphylococcus aureus.
  • the antibacterial activity of the polyetheretherketone material obtained by the above-mentioned Comparative Examples 3 and 4 and the modification of Example 5 was further evaluated by a scanning electron microscope (SEM) method for observing the morphology of S. aureus.
  • SEM scanning electron microscope
  • the specific method is as follows: 60 ⁇ L of the bacterial solution with a density of 10 7 cfu/mL is inoculated on the surface of the pre-sterilized sample, and cultured in an anaerobic incubator at 36.5 ° C and 90% humidity for 24 h, then the sample is washed with PBS. Twice, then the sample was transferred to a new 24-well plate and the bacteria were fixed in a 2.5% glutaraldehyde solution for 30 min.
  • Figure 14 is the Staphylococcus aureus in Scanning electron microscopy (SEM) topography of the surface of the polyetheretherketone material before and after the modification treatment of the present invention and the surface of the polyetheretherketone treated by other methods for 24 hours.
  • SEM Scanning electron microscopy
  • the figure shows that PEEK and The bacteria on A-PEEK have a complete surface and a distinct filopodia, indicating that the bacteria are very active.
  • Sample F-PEEK has pits on the surface of several bacteria, while in AF-PEEK The number of bacteria with pits on the upper surface is significantly increased, and most of them have larger surface pits, and some have wrinkles, showing bacteria in fluorinated PEEK.
  • the growth of the surface of the material is somewhat hindered. It can be seen that the surface of fluorinated PEEK has a certain inhibitory effect on the growth of Staphylococcus aureus.
  • the pure polyetheretherketone is polished and then ultrasonically cleaned with acetone and deionized water for 30 minutes each time, and then placed in 80 after cleaning. Dry in °C oven and keep it in a safe place.
  • plasma immersion ion implantation of polyetheretherketone matrix with argon as ion source the specific process parameters such as Comparative Example 1
  • the sample of polyetheretherketone injected through argon was immediately placed in an ammonia solution with a mass fraction of 25%, soaked for 24 hours, and then ultrasonically washed 3 times with deionized water for 20 minutes each time. .
  • the cleaned polyetheretherketone material is naturally dried and stored. The surface of the material has an amino functional group.
  • the method of the invention is simple and easy to control, and the polyetheretherketone material obtained by the modification treatment of the invention can obtain different nanostructures on the surface, and the biocompatibility is remarkably improved; and the potential osteoinductive growth factor and the antibacterial drug are provided.
  • the loading prospects meet the performance requirements of medical polyetheretherketones.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Epidemiology (AREA)
  • Public Health (AREA)
  • Transplantation (AREA)
  • Dermatology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Veterinary Medicine (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Materials For Medical Uses (AREA)

Abstract

本发明涉及一种对聚醚醚酮材料进行表面改性的方法,所述方法为物理法和化学法相结合的方法,包括:以氩气为离子源对聚醚醚酮材料表面进行等离子体浸没离子注入,然后将经等离子体浸没离子注入后的聚醚醚酮材料放入过氧化氢水溶液、氢氟酸水溶液或者氨水中进行浸泡处理以使改性后的聚醚醚酮材料表面具有纳米颗粒结构、浅孔洞状纳米结构和 / 或沟壑状纳米结构。

Description

对聚醚醚酮材料进行表面改性的方法 技术领域
本发明涉及一种通过等离子体浸没离子注入技术获得的聚醚醚酮材料及其表面改性的方法,属于医用高分子材料表面改性技术领域 。
背景技术
聚醚醚酮的弹性模量与人体骨组织的较为匹配,植入人体后可有效减少应力屏蔽效应造成的骨吸收和骨萎缩,且聚醚醚酮材料耐化学腐蚀,机械性能突出,对生物体无毒性,适合用作医疗植入装置长期植入( Biomaterials 2007, 28:4845-4869)。然而,聚醚醚酮的生物活性较差,植入人体后不易与骨组织键合,限制了其作为植入体材料的长期使用。目前针对聚醚醚酮材料生物相容性差这一问题进行改进的通用方法有以下几种:一是使用生物活性材料进行复合(如磷酸三钙和羟基磷灰石等),这种方法尽管可有效提高聚醚醚酮生物相容性,但却大幅牺牲了其固有良好的力学性能,不利于其临床应用。另外一种是在材料表面涂覆生物活性涂层(如氧化钛、羟基磷灰石等),这种方法可以使材料基本保持聚醚醚酮基体的原有力学性能,但是存在基体和涂层之间结合的牢固性问题,因此也限制了其临床应用。还有一种方法是通过化学反应在聚醚醚酮表面接枝活性官能团(如氨基和羧基等),这种方法虽然也可以达到预期的改性效果,但是往往需要多个反应步骤,造成操作繁琐、耗时的缺点。
由于聚醚醚酮材料的化学稳定性,它能抵抗除浓硫酸以外的其他化学试剂的侵蚀(Biomaterials)。如何通过简便的方式,即提高聚醚醚酮材料生物相容性,又保持聚醚醚酮材料本身的优秀性能,已经成为研究热点之一。
发明内容
本发明旨在克服现有聚醚醚酮材料存在的缺陷,通过简便、易行的方式,提高聚醚醚酮材料生物相容性,并保持其原有的性能,本发明提供了一种通过等离子体浸没离子注入技术获得的聚醚醚酮材料及其表面改性的方法。
本发明提供 了一种 对聚醚醚酮材料进行表面改性的方法,所述方法为物理法和化学法相结合的方法,包括:以氩气为离子源对聚醚醚酮材料表面进行等离子体浸没离子注入,然后将经等离子体浸没离子注入后的聚醚醚酮材料放入过氧化氢水溶液、氢氟酸水溶液或者氨水进行浸泡处理以使改性后的聚醚醚酮材料表面具有纳米颗粒结构、浅孔洞状纳米结构和 / 或沟壑状纳米结构。
较佳地, 所述等离子体浸没离子注入的工艺参数包括:本底真空度为 1 × 10-4 ~ 1 × 10-2Pa ,优选 3 × 10-3 ~ 5 × 10-3Pa ,氩气流量为 5 ~ 200sccm ,优选 15 ~ 60sccm ,注入电压为 100 ~ 2000V ,优选 500 ~ 1000V ,射频功率为 100 ~ 2000W ,优选 300 ~ 500W ,注入脉冲频率为 30kHz ,占空比为 15%~30% ,优选 30% ,注入时间为 180 分钟以下,优选 30 ~ 90 分钟。
较佳地, 所述等离子体浸没离子注入的工艺参数包括:所述氩气流量为 30sccm ,所述注入电压为 800V ,所述射频功率为 300W ,所述注入时间为 60 分钟;与此同时,所述过氧化氢水溶液中过氧化氢的质量分数优选为 30% ,所述浸泡处理时间优选为 24 小时。
较佳地, 所述过氧化氢水溶液中过氧化氢的质量分数为 30% 以下,优选 15 ~ 30% ,尤其优选为 30% ,浸泡时间为 6 ~ 24 小时,优选为 24 小时; 所述氢氟酸水溶液中氢氟酸的质量分数为 20 ~ 40% ,所述浸泡处理时间为 6 ~ 24 小时,优选为 24 小时; 所述氨水的质量百分数为 5 ~ 40% ,优选 20 ~ 40% ,所述浸泡处理时间为 6 ~ 24 小时,优选为 24 小时。
较佳地, 将经等离子体浸没离子注入后的聚醚醚酮放入过氧化氢水溶液中进行浸泡处理,改性后的聚醚醚酮材料的表面具有浅孔洞状纳米结构、羟基官能团。
较佳地, 将经等离子体浸没离子注入后的聚醚醚酮材料放入氢氟酸中进行浸泡处理,改性后的聚醚醚酮材料的表面具有沟壑状结构和纳米颗粒结构,表面含有氟元素,在所述聚醚醚酮材料的表面的原子中所述氟元素含量为 20 以下,优选 3.06% - 9.01% 。
较佳地, 将经等离子体浸没离子注入后的聚醚醚酮放入氨水中进行浸泡处理,改性后的聚醚醚酮材料的表面具有沟壑状结构,表面含有氨基官能团。
较佳地, 所述聚醚醚酮材料为纯聚醚醚酮材料或碳纤维增强聚醚醚酮材料。
较佳地, 所述沟壑状纳米结构的尺寸为 1-500nm 。在优选的示例中,所述改性的聚醚醚酮材料表面接触角为 32 °- 49 °。其中一个示例为所述改性的聚醚醚酮材料表面氟元素的含量为 9.01% ,表面接触角为 32 °。
本发明的方法包括对聚醚醚酮表面进行氩气等离子体浸没离子注入以后,立即将其放入过氧化氢水溶液、氢氟酸水溶液或氨水中进行浸泡处理。经过本发明改性处理得到的聚醚醚酮材料表面具有纳米结构,例如经氢氟酸水溶液浸泡后表面氟含量能够达到9.01% 左右。表面氟化后的聚醚醚酮材料的生物学性能得到显著提高:细胞增殖实验证实,经过本发明改性处理得到的聚醚醚酮材料表面大鼠骨髓间充质干细胞(BMSC)的增殖率明显高于未改性聚醚醚酮;BMSC 在改性后的聚醚醚酮材料表面培养14 天的碱性磷酸酶活性也有明显的提高,这表明改性后的材料对干细胞向成骨细胞分化起到了促进作用;抗菌实验表明,氟化的聚醚醚酮材料对金黄色葡萄球菌有一定的抑菌效果。本发明可用于改善医用聚醚醚酮材料的生物活性和抑菌性能。
附图说明
以下图 1-5 中, PEEK 表示改性处理前的聚醚醚酮, A-PEEK 表示经过氩气等离子体浸没离子注入后的聚醚醚酮, H-PEEK 表示经过过氧化氢水溶液浸泡处理后的聚醚醚酮, AH-PEEK 表示经过氩气等离子体浸没离子注入以后又在过氧化氢水溶液中浸泡处理过的聚醚醚酮。
图 1 是经本发明又一示例方法改性处理前后的聚醚醚酮表面以及通过其它方式处理的聚醚醚酮表面的扫描电镜形貌图。
图 2 是经本发明又一示例方法改性处理前后的聚醚醚酮材料表面以及通过其它方式处理的聚醚醚酮表面与水的接触角。
图 3 是经本发明又一示例方法改性处理前后的聚醚醚酮材料表面以及通过其它方式处理的聚醚醚酮表面的 Zeta 电位随电解液 pH 值变化图。
图 4 是经后述对比例 1 、 2 以及实施例 1 改性处理得到的聚醚醚酮与未改性聚醚醚酮细胞增殖实验统计结果,图中: * 和 *** 表示两组数据之间统计学差异的显著程度,其中 * 表示 p < 0.05 ,表明两组数据有统计学上的显著性差异, *** 表示 p < 0.001 ,表明两组数据有更为显著的统计学差异。
图 5 是大鼠骨髓间充质干细胞( BMSC )在经本发明改性处理前后的聚醚醚酮材料表面以及通过其它方式处理的聚醚醚酮表面培养 14 天的碱性磷酸酶表达活性测试结果,图中: * 表示两组数据之间有统计学上的显著性差异( p < 0.05 )。
以下图 6-14 中, PEEK 表示改性处理前的聚醚醚酮, A-PEEK 表示经过氩气等离子体浸没离子注入后的聚醚醚酮, F-PEEK 表示经过氢氟酸水溶液浸泡处理后的聚醚醚酮, AF-PEEK 表示经过氩气等离子体浸没离子注入以后又在氢氟酸水溶液中浸泡处理过的聚醚醚酮。
图 6 是经本发明又一示例方法改性处理前后的聚醚醚酮表面以及通过其它方式处理的聚醚醚酮表面的扫描电镜形貌图。
图 7 是经本发明又一示例方法改性处理前后的聚醚醚酮材料表面以及通过其它方式处理的聚醚醚酮表面的 X 射线光电子能谱( XPS )测试结果,图中:( a )表示改性处理前的聚醚醚酮的全谱图,( b )表示经过氩气等离子体浸没离子注入后的聚醚醚酮的全谱图,( c )表示经过氢氟酸水溶液浸泡处理后的聚醚醚酮的全谱图,( d )表示经过氩气等离子体浸没离子注入以后又在氢氟酸水溶液中浸泡处理过的聚醚醚酮的全谱图。
图 8 示出了本发明中经过氩气等离子体浸没离子注入以后又在氢氟酸水溶液浸泡处理后的聚醚醚酮 AF-PEEK 的 C1s 高分辨谱。
图 9 是经本发明又一示例方法改性处理前后的聚醚醚酮材料表面以及通过其它方式处理的聚醚醚酮表面与水的接触角。
图 10 是经本发明又一示例方法改性处理前后的聚醚醚酮材料表面以及通过其它方式处理的聚醚醚酮表面 Zeta 电位随电解液 pH 值变化图。
图 11 是经对比例 3 、 4 以及实施例 5 改性处理得到的聚醚醚酮与未改性聚醚醚酮细胞增殖实验统计结果,图中: * 和 *** 表示两组数据之间统计学差异的显著程度,其中 * 表示 p < 0.05 ,表明两组数据有统计学上的显著性差异, *** 表示 p < 0.001 ,表明两组数据有更为显著的统计学差异。
图 12 是大鼠骨髓间充质干细胞( BMSC )在经本发明又一示例方法改性处理前后的聚醚醚酮材料表面以及通过其它方式处理的聚醚醚酮表面培养 14 天的碱性磷酸酶表达活性测试结果,图中: * 和 ** 表示两组数据之间统计学差异的显著程度,其中 * 表示 p < 0.05 ,表明两组数据有统计学上的显著性差异, ** 表示 p < 0.01 ,表明两组数据有较为显著的统计学差异。
图 13 是金黄色葡萄球菌在经本发明又一示例方法改性处理前后的聚醚醚酮材料表面以及通过其它方式处理的聚醚醚酮表面涂板培养的菌落计数结果。
图14 是金黄色葡萄球菌在经本发明又一示例方法改性处理前后的聚醚醚酮材料表面以及通过其它方式处理的聚醚醚酮表面培养24小时的扫描电子显微镜(SEM)形貌图。
具体实施方式
通过以下具体实施方式并参照附图对本发明作进一步详细说明,应理解为,以下实施方式仅为对本发明的说明,不是对本发明内容的限制,任何对本发明内容未作实质性变更的技术方案仍落入本发明的保护范围。
本发明为了解决现有医用聚醚醚酮材料存在的生物相容性不佳问题,还公开了一种将等离子体浸没离子注入技术和化学法相结合对聚醚醚酮材料表面进行改性的方法,所述方法包括对聚醚醚酮表面进行氩气等离子体浸没离子注入以后,立即将其放入过氧化氢水溶液、氢氟酸水溶液或氨水中进行浸泡处理。经过本发明改性处理得到的聚醚醚酮材料表面出现了一种 纳米颗粒结构、浅孔洞状纳米结构和 / 或沟壑状纳米结构 。
由于聚醚醚酮材料的化学稳定性,它能抵抗除浓硫酸以外的其他化学试剂的侵蚀( Biomaterials 2007, 28: 4845-4869 ),因此单纯的化学处理很难向聚醚醚酮表面引入元素。而一些物理改性方法,例如高能粒子的轰击或侵蚀,可以对惰性材料的表面改性起到一定的效果,因此,本申请提出了将等离子体浸没离子注入技术和化学法相结合对聚醚醚酮进行表面改性,通过氩气等离子体浸没离子注入将材料表面活化,再通过后续立即进行的过氧化氢、氢氟酸溶液或氨水浸泡腐蚀,向材料表面引入羟基、氟元素或氨基等官能团,以提高聚醚醚酮材料的生物活性和抗菌性。
以下进一步列举出一些示例性的实施例以更好地说明本发明。应理解,本发明详述的上述实施方式,及以下实施例仅用于说明本发明而不用于限制本发明的范围,本领域的技术人员根据本发明的上述内容作出的一些非本质的改进和调整均属于本发明的保护范围。另外,下述工艺参数中的具体配比、时间、温度等也仅是示例性,本领域技术人员可以在上述限定的范围内选择合适的值。
对比例 1
将 10mm × 10mm × 1mm 的纯聚醚醚酮经过抛光处理后,依次用丙酮和去离子水超声清洗干净,每次 30min ,清洗后置于 80 ℃烘箱中烘干并妥善保存。以氩气为离子源,对聚醚醚酮基体进行等离子体浸没离子注入,注入改性后的聚醚醚酮材料( A-PEEK )妥善保存,其具体的工艺参数见表 1 所示。
表1 氩气等离子体浸没离子注入参数
注入电压(V) 800 氩气流量(sccm) 30
射频功率(W) 300 本底真空(Pa) 5×10-3
占空比(%) 30 频率(kHz) 30
注入时间(min) 60
图 1 ( A-PEEK )为经本对比例改性处理得到的医用聚醚醚酮材料表面形貌图,图中显示改性后的材料表面有沟壑状的结构出现,尺寸为几纳米到上百纳米不等,这是材料表面经高能离粒子轰击产生分子断链作用的结果;图 2 ( A-PEEK )是经本对比例改性处理得到的医用聚醚醚酮材料表面与水的接触角,可以看到,经本对比例改性处理得到的聚醚醚酮材料表面接触角约为 126 °。这表明:使用氩气等离子浸没离子注入技术可以在聚醚醚酮材料表面产生沟壑状结构,同时使材料表面亲水性下降。
对比例 2
将 10mm × 10mm × 1mm 的纯聚醚醚酮经过抛光处理后,依次用丙酮和去离子水超声清洗干净,每次 30min ,清洗后置于 80 ℃烘箱中烘干并妥善保存。将聚醚醚酮材料放入质量分数为 30% 的过氧化氢水溶液中浸泡 24h ,然后用去离子水超声清洗 3 次,每次 20min 。将清洗后的聚醚醚酮材料( H-PEEK )自然晾干并妥善保存。
图 1 ( H-PEEK )为经本对比例处理得到的医用聚醚醚酮材料表面形貌图,图中显示材料表面平坦无结构,与 PEEK 表面并无区别;图 2 ( H-PEEK )是经本对比例处理得到的医用聚醚醚酮材料表面与水的接触角,可以看到,经本对比例处理得到的聚醚醚酮材料表面接触角约为 75 °,与纯 PEEK 的 81 °相差不多。这表明:单纯使用过氧化氢水溶液浸泡法处理聚醚醚酮材料,并未对材料的表面形貌或亲水性带来显著改变。
实施例 1
将 10mm × 10mm × 1mm 的纯聚醚醚酮经过抛光处理后,依次用丙酮和去离子水超声清洗干净,每次 30min ,清洗后置于 80 ℃烘箱中烘干并妥善保存。首先以氩气为离子源对聚醚醚酮基体进行等离子体浸没离子注入,其具体的工艺参数如对比例 1 中表 1 所示;然后将经过氩气注入的聚醚醚酮样品立即放入质量分数为 30% 的过氧化氢水溶液中,浸泡 24h 后用去离子水超声清洗 3 次,每次 20min 。将清洗后的聚醚醚酮材料( AH-PEEK )自然晾干并妥善保存。
图 1 ( AH-PEEK )为经本实施例改性处理得到的医用聚醚醚酮材料表面形貌图,图中显示改性后的材料表面有浅孔洞状的纳米结构出现,尺寸约几十到上百纳米;图 2 ( AH-PEEK )是经本实施例改性处理得到的医用聚醚醚酮材料表面与水的接触角,可以看到,经本实施例处理得到的聚醚醚酮材料表面接触角约为 51 °。这表明:将氩气等离子浸没离子注入技术和过氧化氢水溶液浸泡法相结合,可以在聚醚醚酮材料表面构建一种不同于 A-PEEK 的、全新的浅孔洞状纳米结构,同时提高了聚醚醚酮材料的亲水性。
实施例 2
采用材料表面 Zeta 电位测试评估经上述对比例 1 、 2 和实施例 1 改性处理所得聚醚醚酮材料表面附近的电学状态。具体方法如下:采用动电分析仪(奥地利安东帕公司)测量材料表面附近扩散层的 Zeta 电位随电解液 pH 值的变化。每组待测材料取两个 20mm × 10mm × 1mm 的样品,将它们面对面地平行安装在样品夹上,两样品中间留有一定的空隙。所用电解液为 0.001M 的氯化钾溶液,用盐酸和氢氧化钠水溶液来调节电解液的 pH 值。在每个不同的 pH 值点,仪器会测量材料表面与电解液之间扩散层内的动电电流、压力、电解液常数以及样品尺寸,并据此利用程序自带软件计算出 Zeta 电位的数值。在每个不同的 pH 值点,仪器会重复测量四次以保证数据的准确性。
图 3 是经上述对比例和实施例改性处理得到的聚醚醚酮材料表面 Zeta 电位随电解液 pH 值变化图,图中显示 , 材料表面 Zeta 电位随着 pH 值的增大逐渐减小。由于体内环境的 pH 值在 7.4 左右,所以材料在 pH 值为 7.4 时的 Zeta 电位比较受关注。可以看到,在 pH 值为 7.4 时, PEEK 与 H-PEEK 的 Zeta 电位值几乎相同;与 PEEK 相比, A-PEEK 的表面电位绝对值有显著的减小,而 AH-PEEK 的电位绝对值有一定的增大,这可能和材料表面两种不同的结构有关。上述数据表明,单纯的过氧化氢水溶液浸泡处理并没有改变聚醚醚酮材料表面附近的电学状态,而经过氩气离子注入之后再进行过氧化氢水溶液浸泡,则增大了聚醚醚酮材料的 Zeta 电位绝对值。
实施例 3
采用大鼠骨髓间充质干细胞( BMSC )体外培养实验评估经上述对比例 1 、 2 和实施例 1 改性处理所得聚醚醚酮材料的细胞相容性。利用阿尔玛蓝( AlamarBlueTM , AbD serotec Ltd , UK )试剂盒检测细胞在材料表面的增殖情况。方法如下:
1 )将使用 75% 乙醇灭菌的样品放入 24 孔培养板中,每孔滴加 1mL 密度为 2 × 104cell/mL BMSC 细胞悬液;
2 )将细胞培养板放入 5%CO2 饱和湿度的细胞培养箱中 36.5 ℃孵化 18h ;
3 )吸去细胞培养液,用 PBS 清洗样品表面后,将样品移至新的 24 孔板内,放入培养箱中继续培养;
4 )细胞培养 1 、 4 和 7 天后,吸去原培养液,加入含有 5% 阿尔玛蓝( AlamarBlueTM )染液的新培养液,将培养板置于培养箱中培养 4h 后,从每孔取出 100μL 培养液放入 96 孔板中;
5 )利用酶标仪( BIO-TEK , ELX800 )测量各孔在 570nm 和 600nm 波长下的吸光度值。按照以下公式计算 AlamarBlueTM 被细胞还原的百分率:
公式 :( 117,216×Aλ1 -80,586×Aλ2 )÷( 155,677×A'λ2 -14,652×A'λ1 ) ×100%;
其中: A 为吸光度值, A' 为阴性对照孔的吸光度值, λ1=570nm , λ2=600nm 。
图 4 是经上述对比例 1 、 2 和实施例 1 改性处理得到的聚醚醚酮与未改性聚醚醚酮细胞增殖实验统计结果。图中显示: BMSC 细胞在 A-PEEK 和 AH-PEEK 表面增殖情况好于未改性样,其中以 AH-PEEK 对细胞增殖的促进作用最为明显。而 H-PEEK 表面的 BMSC 增值率和未改性样之间并无显著的差别。可见,经实施例 1 改性处理得到的聚醚醚酮材料表面的浅孔洞状纳米结构可以显著促进 BMSC 细胞的增殖。
实施例 4
采用大鼠骨髓间充质干细胞( BMSC )体外培养 14 天的碱性磷酸酶( ALP )活性测试进一步评估经上述对比例 1 、 2 和实施例 1 改性处理所得聚醚醚酮材料的细胞相容性。方法如下:
1 )将使用 75% 乙醇灭菌的样品放入 24 孔培养板中,每孔滴加 1mL 密度为 5 × 103cell/mL BMSC 细胞悬液;
2 )将细胞培养板放入 5%CO2 饱和湿度的细胞培养箱中 36.5 ℃培养 14 天,期间每 3 天更换一次培养液;
3 )细胞培养 14 天后,将样品移至新的 24 孔板内并用 PBS 清洗样品表面,每孔加入细胞裂解液于 4 ℃裂解 40min ;
4 )将细胞从样品表面洗脱,离心后取上清液。向上清液中加入磷酸对硝基苯酯,置于 37 ℃恒温箱中 30min 后加入氢氧化钠溶液终止反应,通过测试其在 405nm 波长处的吸光度来计算反应生成的对硝基苯酚的量;
5 )通过 BCA 蛋白法检测上清液中总蛋白量,最终用对硝基苯酚的物质的量( μM ) / 总蛋白质量( μg )来衡量 ALP 活性。
图 5 是大鼠骨髓间充质干细胞( BMSC )在经本发明改性处理前后的聚醚醚酮材料表面以及通过其它方式处理的聚醚醚酮表面培养 14 天的碱性磷酸酶表达活性测试结果。图中显示:经对比例 1 和实施例 1 改性处理得到的聚醚醚酮材料表面 ALP 活性高于未改性样,其中经实施例 1 改性处理得到的聚醚醚酮材料对 ALP 活性的提高更为明显。而经对比例 2 处理得到的聚醚醚酮材料表面的 ALP 活性和未改性样之间并无显著的差别。可见,经实施例 1 改性处理得到的聚醚醚酮材料表面的浅孔洞状纳米结构可以提高 BMSC 细胞的 ALP 活性。 ALP 是干细胞早期成骨分化的标志,可见这种浅孔洞状结构对干细胞向成骨细胞分化起到了促进作用,这对于提高材料的细胞相容性是有利的。
通过上述对比例、实施例及相应的结果讨论可知,单独的过氧化氢水溶液处理前后,聚醚醚酮的材料学性质以及生物学性能并未有明显差别,可见这种处理方法不能对聚醚醚酮材料起到表面改性的效果。而经过氩气等离子体浸没离子注入以后再进行过氧化氢溶液浸泡,则可以在聚醚醚酮表面构建一种钱孔洞状的纳米结构,并显著提高材料的生物学性能,可见这种改性方法是非常有效的,同时也凸显了物理改性和化学改性方法相结合的优点。单独的氩气注入也对材料起到了一定的改性效果,然而由此种方法得到的聚醚醚酮的生物学性能的提高并不是很显著,这也再一次证明了物理和化学改性方法相结合的优越性。
对比例 3
将 10mm × 10mm × 1mm 的纯聚醚醚酮经过抛光处理后,依次用丙酮和去离子水超声清洗干净,每次 30min ,清洗后置于 80 ℃烘箱中烘干并妥善保存。以氩气为离子源,对聚醚醚酮基体进行等离子体浸没离子注入,注入改性后的聚醚醚酮材料( A-PEEK )妥善保存,其具体的工艺参数见表 2 所示。
表2 氩气等离子体浸没离子注入参数
注入电压(V) 800 氩气流量(sccm) 30
射频功率(W) 300 本底真空(Pa) 5×10-3
占空比(%) 30 频率(kHz) 30
注入时间(min) 60
图 6 ( A-PEEK )为经本对比例改性处理得到的医用聚醚醚酮材料表面形貌图,图中显示改性后的材料表面有沟壑状的结构出现,尺寸为几纳米到上百纳米不等,这是材料表面经高能离粒子轰击产生分子断链作用的结果;图 9 ( A-PEEK )是经本对比例改性处理得到的医用聚醚醚酮材料表面与水的接触角,可以看到,经本对比例改性处理得到的聚醚醚酮材料表面接触角约为 126 °。这表明:使用氩气等离子浸没离子注入技术可以在聚醚醚酮材料表面产生沟壑状结构,同时使材料表面亲水性下降。
对比例 4
将 10mm × 10mm × 1mm 的纯聚醚醚酮经过抛光处理后,依次用丙酮和去离子水超声清洗干净,每次 30min ,清洗后置于 80 ℃烘箱中烘干并妥善保存。将聚醚醚酮材料放入质量分数为 40% 的氢氟酸水溶液中浸泡 24h ,然后用去离子水超声清洗 3 次,每次 20min 。将清洗后的聚醚醚酮材料( F-PEEK )自然晾干并妥善保存;
图 6 ( F-PEEK )为经本对比例处理得到的医用聚醚醚酮材料表面形貌图,图中显示材料表面平坦无结构,与 PEEK 表面并无区别;图 9 ( F-PEEK )是经本对比例处理得到的医用聚醚醚酮材料表面与水的接触角,可以看到,经本对比例处理得到的聚醚醚酮材料表面接触角约为 72 °,与纯 PEEK 的 81 °相差不多,仅有略微的下降。这表明:单纯使用氢氟酸水溶液浸泡法处理聚醚醚酮材料,并未对材料的表面形貌或亲水性带来显著改变。
实施例 5
将 10mm × 10mm × 1mm 的纯聚醚醚酮经过抛光处理后,依次用丙酮和去离子水超声清洗干净,每次 30min ,清洗后置于 80 ℃烘箱中烘干并妥善保存。首先以氩气为离子源对聚醚醚酮基体进行等离子体浸没离子注入,其具体的工艺参数如对比例 3 中表 2 所示;然后将经过氩气注入的聚醚醚酮样品立即放入质量分数为 40% 的氢氟酸水溶液中,浸泡 24h 后用去离子水超声清洗 3 次,每次 20min 。将清洗后的聚醚醚酮材料( AF-PEEK )自然晾干并妥善保存;
图 6 ( AF-PEEK )为经本实施例改性处理得到的医用聚醚醚酮材料表面形貌图,图中显示改性后的材料表面保留了与 A-PEEK 类似的结构;图 9 ( AF-PEEK )是经本实施例改性处理得到的医用聚醚醚酮材料表面与水的接触角,可以看到,经本实施例处理得到的聚醚醚酮材料表面接触角约为 32 °。这表明: AF-PEEK 上的表面结构是由氩气 PIII 造成的;氢氟酸处理不会对材料的形貌造成影响,而可以使材料的亲水性提高。
实施例 6
采用 X 射线光电子能谱( XPS )测试评估经上述对比例 3 、 4 以及实施例 5 改性处理所得聚醚醚酮材料表面的化学状态。所用仪器为美国 PHI 公司的 PHI 5000C ESCA System ( 经过美国 RBD 公司升级 ) ;采用射线源为 Mg 靶 Kα 系( 1253.6 eV ),高压 14.0 kV ,功率 250 W ,真空优于 1×10-8 Torr 。采用美国 RBD 公司的 RBD147 数据采集卡和 AugerScan 软件采集样品在 0~1200 eV 的全扫描谱以及碳( C )、氧( O )元素 1s 轨道的窄扫描谱(高分辨谱);
图 7 是经本发明改性处理前后的聚醚醚酮材料表面以及通过其它方式处理的聚醚醚酮表面的 X 射线光电子能谱( XPS )测试结果。从图中可以看到,在 PEEK 和 A-PEEK 表面探测到的只有碳元素( C1s )和氧元素( O1s )的峰,说明经过氩气 PIII 处理以后,材料表面没有新的元素引入。而在样品 AF-PEEK 的全谱中,在结合能为 687 eV 处有一个明显的氟元素( F1s )的峰,说明材料表面被引入了氟元素。在 F-PEEK 的全谱中也有一个很小的 F1s 峰,这可能是由于氢氟酸浸泡后材料表面没有清洗干净而残余少量的氟造成的。根据测得的表面原子百分比, F-PEEK 和 AF-PEEK 的表面氟含量分别为 0.79% 和 9.01% ,可见 F-PEEK 上残留的氟的量是很少的,远小于 AF-PEEK 上的氟含量,因此可以将 F-PEEK 上的残留氟忽略不计。图 8 是 AF-PEEK 样品的 C1s 高分辨谱,由此高分辨谱拟合的峰中可以明显地看到代表 C* ― F 键( 288.5 eV )的峰。由此可见,通过氩气 PIII 和后续的氢氟酸浸泡处理, PEEK 表面被成功的氟化了;相反,单独氢氟酸处理的 PEEK 表面不能被氟化,可见氩气 PIII 处理在 PEEK 氟化过程中的重要作用,这同时也证明了氩气 PIII 处理对 PEEK 表面确实起到了一定的活化作用。
实施例 7
采用材料表面 Zeta 电位测试评估经上述对比例 3 、 4 以及实施例 5 改性处理所得聚醚醚酮材料表面附近的电学状态,方法如实施例 2 (对比例 3 、 4 以及实施例 5 改性处理所得聚醚醚酮材料,分别对应对比例 1 、 2 和实施例 1 改性处理所得聚醚醚酮材料,其它参数、步骤与实施例 2 相同);
图 10 是经本发明改性处理前后的聚醚醚酮材料表面以及通过其它方式处理的聚醚醚酮表面 Zeta 电位随电解液 pH 值变化图,图中显示 , 材料表面 Zeta 电位随着 pH 值的增大逐渐减小。由于体内环境的 pH 值在 7.4 左右,所以材料在 pH 值为 7.4 时的 Zeta 电位比较受关注。可以看到,在 pH 值为 7.4 时,四种表面的 Zeta 电位都是负值。其中, F-PEEK 的电位值与 PEEK 的非常接近;经过改性的 A-PEEK 和 AF-PEEK 的表面电位绝对值都比 PEEK 的小,这可能是由于材料表面的结构造成的。比较 AF-PEEK 和 A-PEEK 的表面电位发现,前者的 Zeta 电位比后者的更负一些,这很可能是因为前者表面有氟存在。上述数据表明,单纯的氢氟酸水溶液浸泡处理并没有改变聚醚醚酮材料表面附近的电学状态,而经过氩气离子注入之后再进行氢氟酸水溶液浸泡,则明显减小了聚醚醚酮材料的 Zeta 电位绝对值。
实施例 8
采用大鼠骨髓间充质干细胞( BMSC )体外培养实验评估经上述对比例 3 、 4 以及实施例 5 改性处理所得聚醚醚酮材料的生物活性,方法如实施例 3 (对比例 3 、 4 以及实施例 5 改性处理所得聚醚醚酮材料,分别对应对比例 1 、 2 和实施例 1 改性处理所得聚醚醚酮材料,其它参数、步骤相同)。
图 11 是经上述对比例 3 、 4 以及实施例 5 改性处理得到的聚醚醚酮与未改性聚醚醚酮细胞增殖实验统计结果。图中显示: BMSC 细胞在 A-PEEK 和 AF-PEEK 表面增殖情况好于未改性样,其中以 AF-PEEK 对细胞增殖的促进作用最为明显。而 F-PEEK 表面的 BMSC 增殖率和未改性样之间并无显著的差别。可见,经实施例 5 改性处理得到的聚醚醚酮材料表面可以显著促进 BMSC 细胞的增殖。
实施例 9
采用大鼠骨髓间充质干细胞( BMSC )体外培养 14 天的碱性磷酸酶( ALP )活性测试进一步评估经上述对比例 3 、 4 以及实施例 5 改性处理所得聚醚醚酮材料的生物活性,方法如实施例 4 (对比例 3 、 4 以及实施例 5 改性处理所得聚醚醚酮材料,分别对应对比例 1 、 2 和实施例 1 改性处理所得聚醚醚酮材料,其它参数、步骤相同)。
图 12 是大鼠骨髓间充质干细胞( BMSC )在经本发明改性处理前后的聚醚醚酮材料表面以及通过其它方式处理的聚醚醚酮表面培养 14 天的碱性磷酸酶表达活性测试结果。图中显示:细胞在 A-PEEK 和 AF-PEEK 材料表面的 ALP 活性高于未改性样,其中 AF-PEEK 表面对 ALP 活性的上调作用更为显著;而 F-PEEK 表面的 ALP 活性和未改性样之间并无显著的差别。可见,经实施例 5 改性处理得到的聚醚醚酮材料表面可以提高 BMSC 细胞的 ALP 活性。 ALP 是骨髓干细胞向成骨细胞分化的标志,可见表面氟化的聚醚醚酮材料对于干细胞的早期骨向分化起到了促进作用,这对于提高材料的生物活性是有利的。
实施例 10
采用金黄色葡萄球菌( Staphylococcus aureus S. aureus , ATCC 25923 )评价经上述对比例 3 、 4 以及实施例 5 改性处理所得聚醚醚酮材料的的抗菌活性。具体方法如下:取金黄色葡萄球菌接种于营养琼脂板表面,在 36.5 ℃厌氧恒温箱中培养 48 h ,连续传至第三代无杂菌者作为实验用菌种。刮下菌种并接种于营养琼脂培养基,继续培养 24 h 。参照细菌标准比浊管,将菌液稀释为 107 cfu/mL 。将待测样品置于 75% 乙醇水溶液中震荡消毒 2 h 。吸取 60 μL 菌液接种于样品表面,置于 36.5 ℃和 90% 湿度的厌氧恒温箱中培养。 24 h 后用 4.5 mL 生理盐水将样品表面的细菌洗下,并稀释至特定浓度。取稀释后的菌液 100 μL 接种于营养琼脂培养皿,于 36.5 ℃厌氧恒温箱培养 24 h 后,记录存活菌落数;
图 13 是 金黄色葡萄球菌在 经本发明改性处理前后的聚醚醚酮材料表面以及通过其它方式处理的聚醚醚酮表面涂板培养的菌落计数结果。图中显示, F-PEEK 和 AF-PEEK 表面的菌落数都比 PEEK 上的少,而 A-PEEK 上的菌落数目与 PEEK 相比有所增加。以样品 PEEK 表面的菌落数目作为参照,根据图 13 中数据计算出的 F-PEEK 样品表面菌落数目减少率为 12.01 (± 2.50) % ,表明这种材料的抑菌效果是极其微弱的,无法满足抗菌性材料的使用要求。同样方法计算出的 AF-PEEK 表面菌落数减少百分比为 42.89 (± 2.06) % ,说明材料表面对金黄色葡萄球菌有一定的抑菌作用。
实施例 11
通过扫描电子显微镜( SEM )观察金黄色葡萄球菌形貌的方法进一步评价经上述对比例 3 、 4 以及实施例 5 改性处理所得聚醚醚酮材料的的抗菌活性。具体方法如下:吸取 60 μL 密度为 107 cfu/mL 的菌液接种于事先灭菌好的样品表面,置于 36.5 ℃和 90% 湿度的厌氧恒温箱中培养 24 h 后,用 PBS 清洗样品两次,然后将样品移至新的 24 孔板内,向孔中加入 2.5% 的戊二醛溶液将细菌固定 30 min 。用体积分数分别为 30% , 50% , 75% , 90% , 95% 和 100% 的乙醇系列溶液对细菌进行脱水,然后将样品依次置于乙醇和 HMDS 的混合溶液(乙醇 : HMDS=2:1 , 1:1 , 1:2 v/v )以及 100% 的 HMDS 溶液中进行干燥,最后在 SEM 下观察样品表面细菌的形貌;
图 14 是 金黄色葡萄球菌在 经本发明改性处理前后的聚醚醚酮材料表面以及通过其它方式处理的聚醚醚酮表面培养 24 小时的扫描电子显微镜( SEM )形貌图。图中显示, PEEK 和 A-PEEK 上的细菌具有完整的表面和明显的丝状伪足,这说明细菌的生长活性很好。样品 F-PEEK 上有几个细菌的表面出现了凹坑,而在 AF-PEEK 上表面有凹坑的细菌数目明显增加,而且它们中的大多数表面凹坑更大,有些还出现了缩皱现象,可见细菌在氟化的 PEEK 材料表面的生长受到了一定的阻碍。由此可知,氟化的 PEEK 表面对金黄色葡萄球菌的生长起到了一定的抑制作用。
实施例 12
将 10mm × 10mm × 1mm 的纯聚醚醚酮经过抛光处理后,依次用丙酮和去离子水超声清洗干净,每次 30min ,清洗后置于 80 ℃烘箱中烘干并妥善保存。首先以氩气为离子源对聚醚醚酮基体进行等离子体浸没离子注入,其具体的工艺参数如对比例 1 中表 1 所示;然后将经过氩气注入的聚醚醚酮样品立即放入质量分数为 25% 的氨水溶液中,浸泡 24h 后用去离子水超声清洗 3 次,每次 20min 。将清洗后的聚醚醚酮材料自然晾干并妥善保存。材料表面有氨基官能团。
通过上述实施例及相应的结果讨论可知,单独的氢氟酸水溶液处理前后,聚醚醚酮的材料学性质以及生物学性能并未有明显差别,可见这种处理方法不能对聚醚醚酮材料起到表面改性的效果。而经过氩气等离子体浸没离子注入以后再进行氢氟酸溶液浸泡,则可以向聚醚醚酮表面引入氟元素,并显著提高材料的生物活性和抑菌性,可见这种改性方法是非常有效的,同时也凸显了物理改性和化学改性方法相结合的优点。单独的氩气注入也对材料起到了一定的改性效果,然而由此种方法得到的聚醚醚酮的生物学性能的提高并不是很显著,这也再一次证明了物理和化学改性方法相结合的优越性。
产业应用性
本发明的方法简单易控,经过本发明改性处理得到的聚醚醚酮材料,其表面可获得不同的纳米结构,生物相容性得到显著提高;并具有潜在的骨诱导生长因子和抗菌药物装载前景,可满足医用聚醚醚酮所需的性能要求。

Claims (8)

  1. 一种对聚醚醚酮材料进行表面改性的方法,其特征在于,所述方法为物理法和化学法相结合的方法,包括:以氩气为离子源对聚醚醚酮材料表面进行等离子体浸没离子注入,然后将经等离子体浸没离子注入后的聚醚醚酮材料放入过氧化氢水溶液、氢氟酸水溶液或者氨水中进行浸泡处理以使改性后的聚醚醚酮材料表面具有纳米颗粒结构、浅孔洞状纳米结构和 / 或沟壑状纳米结构 。
  2. 根据权利要求 1 所述的方法,其特征在于,所述等离子体浸没离子注入的工艺参数包括:本底真空度为 1 × 10-4 ~ 1 × 10-2Pa ,优选 3 × 10-3 ~ 5 × 10-3Pa ,氩气流量为 5 ~ 200sccm ,优选 15 ~ 60sccm ,注入电压为 100 ~ 2000V ,优选 500 ~ 1000V ,射频功率为 100 ~ 2000W ,优选 300 ~ 500W ,注入脉冲频率为 30kHz ,占空比为 15%~30% ,优选 30% ,注入时间为 180 分钟以下,优选 30 ~ 90 分钟。
  3. 根据权利要求 2 所述的方法,其特征在于,所述等离子体浸没离子注入的工艺参数为:所述氩气流量为 30sccm ,所述注入电压为 800V ,所述射频功率为 300W ,所述注入时间为 60 分钟。
  4. 根据权利要求 1-3 所述的方法,其特征在于,所述过氧化氢水溶液中过氧化氢的质量分数为 30% 以下,优选 15 ~ 30% ,浸泡时间为 6 ~ 24 小时;所述氢氟酸水溶液中氢氟酸的质量分数为 20 ~ 40% ,浸泡时间为 6 ~ 24 小时;所述氨水的质量百分数为 5 ~ 40% ,优选 20 ~ 40% ,浸泡时间为 6 ~ 24 小时。
  5. 根据权利要求 1 ~ 4 中任一项所述的方法,其特征在于,将经等离子体浸没离子注入后的聚醚醚酮材料放入氢氟酸中进行浸泡处理,改性后的聚醚醚酮材料的表面具有氟元素,在所述聚醚醚酮材料的表面的原子中所述氟元素含量为 20 以下,优选 3.06% - 9.01%。
  6. 根据权利要求 1~4 中任一项所述的方法,其特征在于,将经等离子体浸没离子注入后的聚醚醚酮放入过氧化氢水溶液中进行浸泡处理,改性后的聚醚醚酮材料的表面具有羟基官能团。
  7. 根据权利要求 1~4 中任一项所述的方法,其特征在于,将经等离子体浸没离子注入后的聚醚醚酮放入氨水中进行浸泡处理,改性后的聚醚醚酮材料的表面具有氨基官能团。
  8. 根据权利要求 1 ~ 7 中任一项所述的方法,其特征在于,所述聚醚醚酮材料为纯聚醚醚酮材料或碳纤维增强聚醚醚酮材料。
PCT/CN2015/074510 2014-04-09 2015-03-18 对聚醚醚酮材料进行表面改性的方法 WO2015154613A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/302,153 US10934408B2 (en) 2014-04-09 2015-03-18 Surface modification method for polyether-ether-ketone material

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201410141117.1 2014-04-09
CN201410141117.1A CN103881129B (zh) 2014-04-09 2014-04-09 一种聚醚醚酮材料及其表面改性的方法
CN201410654364.1 2014-11-17
CN201410654364.1A CN104371134B (zh) 2014-11-17 2014-11-17 一种表面氟化的聚醚醚酮材料及其制备方法

Publications (1)

Publication Number Publication Date
WO2015154613A1 true WO2015154613A1 (zh) 2015-10-15

Family

ID=54287313

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/074510 WO2015154613A1 (zh) 2014-04-09 2015-03-18 对聚醚醚酮材料进行表面改性的方法

Country Status (2)

Country Link
US (1) US10934408B2 (zh)
WO (1) WO2015154613A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116271213A (zh) * 2023-03-13 2023-06-23 浙江广慈医疗器械有限公司 一种聚醚醚酮基高活性生物融合器、制备方法及其应用
CN117467929A (zh) * 2023-12-28 2024-01-30 核工业西南物理研究院 一种高分子材料表面金属化处理方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113214526B (zh) * 2021-06-29 2022-11-11 中国人民解放军空军军医大学 一种表面氨基化3d打印聚醚醚酮植入物及其制备方法
CN113527749B (zh) * 2021-07-15 2022-08-02 山东大学 一种在聚醚醚酮表面制备多尺度多孔结构的方法
CN117430855B (zh) * 2023-10-16 2024-04-23 华中科技大学同济医学院附属同济医院 一种改性聚醚醚酮材料及其制备方法和在助产钳中的应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103483610A (zh) * 2012-06-13 2014-01-01 中国科学院理化技术研究所 一种血液相容性医用高分子材料的制备方法
CN103614699A (zh) * 2013-12-16 2014-03-05 中国科学院上海硅酸盐研究所 注入钽离子对聚醚醚酮表面进行改性的方法及改性的聚醚醚酮材料
CN103881129A (zh) * 2014-04-09 2014-06-25 中国科学院上海硅酸盐研究所 一种聚醚醚酮材料及其表面改性的方法
CN104371134A (zh) * 2014-11-17 2015-02-25 中国科学院上海硅酸盐研究所 一种表面氟化的聚醚醚酮材料及其制备方法

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5539059A (en) * 1988-09-28 1996-07-23 Exfluor Research Corporation Perfluorinated polyethers
US5300683A (en) * 1988-09-28 1994-04-05 Exfluor Research Corporation Fluorination of acetals, ketals and orthoesters
US4898991A (en) * 1989-01-30 1990-02-06 E. I. Du Pont De Nemours And Company New perfluoropolyethers
US6033582A (en) * 1996-01-22 2000-03-07 Etex Corporation Surface modification of medical implants
AU2002359432A1 (en) * 2001-11-21 2003-06-10 Porex Corporation Discrete hydrophilic-hydrophobic porous materials and methods for making the same
US20030171239A1 (en) * 2002-01-28 2003-09-11 Patel Bakul P. Methods and compositions for chemically treating a substrate using foam technology
WO2004019134A1 (ja) * 2002-08-22 2004-03-04 Daikin Industries, Ltd. 剥離液
WO2005096684A1 (ja) * 2004-03-31 2005-10-13 Zeon Corporation 回路基板、回路基板の製造方法及び回路基板を備えた表示装置
TWI247060B (en) * 2004-12-31 2006-01-11 Yonyu Plastics Co Ltd Method producing vapor-grown carbon fibers having 3-d linkage structure
WO2007069867A1 (en) * 2005-12-15 2007-06-21 Lg Chem, Ltd Hydrophilic adjuvant
US20090305381A1 (en) * 2006-03-15 2009-12-10 Marcela Bilek Activated Polymers Binding Biological Molecules
EP2099506A2 (en) * 2006-10-10 2009-09-16 Celonova Biosciences Inc. Compositions and devices comrising silicone and specific polyphosphazenes
US20100227372A1 (en) * 2007-07-27 2010-09-09 The University Of Sydney Biological functionalisation of substrates
US8241542B2 (en) * 2008-10-06 2012-08-14 Lockheed Martin Corporation Method for preparing a composite material having nanofibers exposed therefrom
KR101122494B1 (ko) * 2009-02-12 2012-02-29 서울대학교산학협력단 생체 비활성 재료의 표면 개질방법
US20110270356A1 (en) * 2010-02-26 2011-11-03 Mckenzie David Robert Polymeric encapsulation of medical device components
EP2556528B1 (en) * 2010-04-09 2018-11-07 Brown University Nanostructured surfaces
US9005648B2 (en) * 2010-07-06 2015-04-14 The Regents Of The University Of California Inorganically surface-modified polymers and methods for making and using them
CN102330051A (zh) 2011-09-30 2012-01-25 中国科学院上海硅酸盐研究所 一种改善医用钛金属的抗菌性和生物活性的表面改性方法
US20150274891A1 (en) * 2012-12-17 2015-10-01 Basf Se Membranes with improved flux and method for their preparation
WO2014152921A2 (en) * 2013-03-14 2014-09-25 NVS Technologies, Inc. Surface oxidation for sequestering biomolecules and related methods
WO2015027297A1 (en) * 2013-09-02 2015-03-05 The University Of Sydney Materials and methods
PL3080352T3 (pl) * 2013-12-13 2021-02-08 The North Face Apparel Corporation Obróbki plazmowe do barwienia wyrobów włókienniczych
EP3122556B1 (en) * 2014-03-26 2020-02-19 Nanovis, LLC Anti-microbial device and method for its manufacture
US10407556B2 (en) * 2014-06-11 2019-09-10 The Royal Institution For The Advancement Of Learning/Mcgill University Surface modification methods for biomedical scaffolds
EP2985043A1 (en) * 2014-08-14 2016-02-17 Institut d'Investigació Biomèdica de Bellvitge (IDIBELL) Process for manufacturing a customizable medical device and device obtained by said process

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103483610A (zh) * 2012-06-13 2014-01-01 中国科学院理化技术研究所 一种血液相容性医用高分子材料的制备方法
CN103614699A (zh) * 2013-12-16 2014-03-05 中国科学院上海硅酸盐研究所 注入钽离子对聚醚醚酮表面进行改性的方法及改性的聚醚醚酮材料
CN103881129A (zh) * 2014-04-09 2014-06-25 中国科学院上海硅酸盐研究所 一种聚醚醚酮材料及其表面改性的方法
CN104371134A (zh) * 2014-11-17 2015-02-25 中国科学院上海硅酸盐研究所 一种表面氟化的聚醚醚酮材料及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
LIU, XUANYONG: "Progress in Research on the Surface/Interface of Materials for Hard Tissue Implant", JOURNAL OF INORGANIC MATERIALS, vol. 26, no. 1, 15 January 2011 (2011-01-15), XP055230693 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116271213A (zh) * 2023-03-13 2023-06-23 浙江广慈医疗器械有限公司 一种聚醚醚酮基高活性生物融合器、制备方法及其应用
CN116271213B (zh) * 2023-03-13 2023-10-20 浙江广慈医疗器械有限公司 一种聚醚醚酮基高活性生物融合器、制备方法及其应用
CN117467929A (zh) * 2023-12-28 2024-01-30 核工业西南物理研究院 一种高分子材料表面金属化处理方法
CN117467929B (zh) * 2023-12-28 2024-03-26 核工业西南物理研究院 一种高分子材料表面金属化处理方法

Also Published As

Publication number Publication date
US10934408B2 (en) 2021-03-02
US20170121479A1 (en) 2017-05-04

Similar Documents

Publication Publication Date Title
WO2015154613A1 (zh) 对聚醚醚酮材料进行表面改性的方法
Tang et al. Effect of superhydrophobic surface of titanium on staphylococcus aureus adhesion
Xu et al. Zinc-ion implanted and deposited titanium surfaces reduce adhesion of Streptococccus mutans
Lu et al. Multilevel surface engineering of nanostructured TiO2 on carbon-fiber-reinforced polyetheretherketone
Matos et al. Three-species biofilm model onto plasma-treated titanium implant surface
Xu et al. Polydopamine coatings embedded with silver nanoparticles on nanostructured titania for long-lasting antibacterial effect
Jeong et al. Bacterial attachment on titanium surfaces is dependent on topography and chemical changes induced by nonthermal atmospheric pressure plasma
CN111471977B (zh) 一种医疗内窥镜透明防污薄膜及其制备方法
CN110064075B (zh) 一种基于纳米银/d-半胱氨酸的自组装抗菌涂层及制备方法
Yoo et al. The study on inhibition of planktonic bacterial growth by non-thermal atmospheric pressure plasma jet treated surfaces for dental application
WO2021243979A1 (zh) 聚醚醚酮复合植入物及其制备方法和应用
Qiaoxia et al. Hydroxyapatite/tannic acid composite coating formation based on Ti modified by TiO2 nanotubes
Si et al. A heterogeneous TiO2/SrTiO3 coating on titanium alloy with excellent photocatalytic antibacterial, osteogenesis and tribocorrosion properties
CN103242551A (zh) 注入钛离子对聚醚醚酮表面进行改性的方法
Almehmadi An in vitro analysis of sodium hypochlorite decontamination for the reuse of implant healing abutments
CN111494704B (zh) 制备小肽涂层的镁基合金生物材料的方法及其应用
Xu et al. Biocorrosion of pure and SLA titanium surfaces in the presence of Porphyromonas gingivalis and its effects on osteoblast behavior
Yang et al. Time-dependent reactive oxygen species inhibit Streptococcus mutans growth on zirconia after a helium cold atmospheric plasma treatment
Li et al. rBMSC and bacterial responses to isoelastic carbon fiber-reinforced poly (ether-ether-ketone) modified by zirconium implantation
Almaguer-Flores et al. Oral bacterial adhesion on amorphous carbon films
Takechi et al. In vitro investigation of the cell compatibility and antibacterial properties of titanium treated with calcium and ozone
Lv et al. The adhesion and growth of both the human primary gingival epithelial cells and Streptococcus mutans on micro-arc oxidized titanium
Oleshko et al. Plasma electrolytic oxidation of TiZr alloy in ZnONPs-contained solution: structural and biological assessment
CN104371134B (zh) 一种表面氟化的聚醚醚酮材料及其制备方法
KR102254182B1 (ko) 구강악안면 재건수술을 위한 악안면 플레이트와 이의 제조방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15777513

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15302153

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15777513

Country of ref document: EP

Kind code of ref document: A1