WO2015154310A1 - 一种控制信道资源分配方法及装置 - Google Patents

一种控制信道资源分配方法及装置 Download PDF

Info

Publication number
WO2015154310A1
WO2015154310A1 PCT/CN2014/075211 CN2014075211W WO2015154310A1 WO 2015154310 A1 WO2015154310 A1 WO 2015154310A1 CN 2014075211 W CN2014075211 W CN 2014075211W WO 2015154310 A1 WO2015154310 A1 WO 2015154310A1
Authority
WO
WIPO (PCT)
Prior art keywords
subframe
phich
subframes
uplink
pusch
Prior art date
Application number
PCT/CN2014/075211
Other languages
English (en)
French (fr)
Inventor
王轶
唐臻飞
栗忠峰
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP14889165.8A priority Critical patent/EP3131222B1/en
Priority to JP2016561755A priority patent/JP6463779B2/ja
Priority to CN201811165694.9A priority patent/CN109327303B/zh
Priority to KR1020167031643A priority patent/KR101985348B1/ko
Priority to PCT/CN2014/075211 priority patent/WO2015154310A1/zh
Priority to CN201480001952.3A priority patent/CN105191201B/zh
Priority to EP19191671.7A priority patent/EP3633905B1/en
Publication of WO2015154310A1 publication Critical patent/WO2015154310A1/zh
Priority to US15/290,289 priority patent/US20170034819A1/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1812Hybrid protocols; Hybrid automatic repeat request [HARQ]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1829Arrangements specially adapted for the receiver end
    • H04L1/1861Physical mapping arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • H04L5/0055Physical resource allocation for ACK/NACK
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/14Two-way operation using the same type of signal, i.e. duplex
    • H04L5/1469Two-way operation using the same type of signal, i.e. duplex using time-sharing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/21Control channels or signalling for resource management in the uplink direction of a wireless link, i.e. towards the network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0014Three-dimensional division
    • H04L5/0023Time-frequency-space

Definitions

  • the present invention relates to the field of mobile communication technologies, and in particular, to a method and an apparatus for allocating control channel resources. Background technique
  • the uplink transmission of the TDD (Time Division Multiplex) system is time-multiplexed.
  • the TDD system of LTE (Long Term Evolution) defines seven uplink and downlink subframe ratios, as shown in Table 1.
  • the uplink and downlink subframe ratios can be applied to scenarios with different uplink and downlink service requirements.
  • the subframes of the TDD system can be classified into three types: an uplink subframe, a downlink subframe, and a special subframe.
  • D represents a downlink subframe
  • S represents a special subframe
  • U represents an uplink subframe. It can be seen from Table 1 that in the TDD system, some of the subframes in one radio frame are uplink subframes, and some subframes are downlink subframes. In other words, part of the duration of one radio frame is used for uplink transmission, and part of the duration is used for downlink transmission.
  • the structure of the special subframe is as shown in FIG. 1.
  • the special subframe includes DwPTS (Downlink Pilot Time Slot), GP (Guard Period), and UpPTS (Uplink). Pilot Time Slot, Upstream Pilot Time Slot) 3 parts.
  • the DwPTS portion is used for downlink transmission, for example, control channel, data channel, synchronization signal, and transmission of pilot signals.
  • the GP part acts as a guard interval and does not perform uplink and downlink transmission.
  • the UpPTS part is used to transmit an uplink SRS (Sounding Reference Signal) or a PRACH (Physical Random Access Channel).
  • part of the duration of one radio frame is used for uplink transmission, and part of the duration is used for downlink transmission. Since the uplink and downlink subframes work in time division duplex mode, for UE (User Experience, user equipment), it can be used for uplink. The number of subframes in which data is transmitted is limited. In other words, this time division method will result in a small throughput (data transfer per unit time) of the system. Summary of the invention
  • the embodiments of the present invention provide a method and a device for allocating control channel resources, which are used to solve the problem that the time-division mode in the prior art causes the uplink of the system to be small.
  • a method for allocating control channel resources includes:
  • the user equipment UE sends a physical uplink shared channel PUSCH in the current special subframe
  • the UE Determining, by the UE, the physical hybrid automatic repeat request indication channel (PHICH) resource corresponding to the PUSCH according to the uplink resource that is used to transmit the PUSCH, where the uplink resource of the PUSCH includes the current special subframe;
  • PHICH physical hybrid automatic repeat request indication channel
  • the UE receives the PHICH at the determined PHICH resource.
  • the determining, by the UE, the PHICH resource corresponding to the PUSCH, according to the uplink resource that is used to transmit the PUSCH includes:
  • the UE root when the subframe of the uplink resource that transmits the PUSCH is only the current special subframe, the UE root And determining, according to the uplink resource of the PUSCH, determining a subframe position of the PHICH resource corresponding to the PUSCH, where:
  • the uplink and downlink subframe ratio is 6, the current special subframe is the subframe ⁇ , and the PHICH resource is determined to be located in the Kth subframe after the current special subframe n, where:
  • the subframe of the uplink resource that transmits the PUSCH includes the current special subframe and is bound to the current special subframe And determining, by the UE, the subframe position of the PHICH resource corresponding to the PUSCH, according to the uplink resource that is used by the UE to transmit the PUSCH, where:
  • the cooperative subframe includes at least one uplink subframe and/or the wireless subframe in the current subframe where the current special subframe is located. Other special subframes in the frame except the current special subframe.
  • the UE determines, according to an uplink resource that transmits the PUSCH, a PHICH corresponding to the PUSCH.
  • the sub-frame positions of the resource include:
  • determining, according to the last subframe L in the coordinated subframe, a subframe position of the PHICH resource corresponding to the PUSCH includes: :
  • the uplink and downlink subframe ratio is 0, and when the special subframes 1 and 6 in one radio frame are bound to the subframes 2, 3, 4, 7, 8, and 9 in the radio frame, the PHICH resource is determined.
  • the uplink and downlink subframe ratio is 2, when a special subframe 1 in a radio frame and a subframe in the radio frame 2 binding forms a first binding frame, and the special subframe 6 in the radio frame is bound to the subframe 7 in the radio frame to form a second binding frame: then the ⁇ according to the cooperative subframe
  • the last subframe L, determining the subframe position of the PHICH resource corresponding to the PUSCH includes:
  • the uplink and downlink subframe ratio is 3, when the special subframe 1 in one radio frame and the subframe 2 in the radio Binding with 3 to form a first binding frame, where the subframe 4 is bound to the special subframe 1 of the next radio frame and the subframe 2 in the next radio frame to form a second binding frame, where When the subframes 3 and 4 in the next radio frame are bound to form a third binding frame: the subframe of the PHICH resource corresponding to the PUSCH is determined according to the last subframe L in the coordinated subframe. Locations include:
  • the third PHICH resource corresponding to the third binding frame is located after the last subframe L.
  • determining, by using the subframe position, the PHICH group number of the PHICH resource includes:
  • c ff is 0; determining the PHICH group number corresponding to the PUSCH by using the determined TMc ff .
  • determining, by using the subframe position, the PHICH group number of the PHICH resource includes:
  • the ratio of the uplink and downlink subframes is 6, the current special subframe is the subframe n, and the PHICH resource bits.
  • the other subframes in the frame except the subframes 1 and 4 are corresponding to 0; the determined PHICH group number corresponding to the PUSCH is determined by using the determination.
  • the second aspect provides a method for allocating control channel resources, where the method includes:
  • the base station receives the physical uplink shared channel PUSCH in the current special subframe
  • the base station Determining, by the base station, the physical hybrid automatic repeat request indication channel PHICH resource corresponding to the PUSCH, where the uplink resource includes the current special subframe;
  • the base station transmits a PHICH at the determined PHICH resource.
  • the determining, by the base station, the PHICH resource corresponding to the PUSCH, according to the uplink resource that receives the PUSCH includes:
  • determining the subframe position of the PHICH resource corresponding to the PUSCH includes:
  • the uplink and downlink subframe ratio is 6, the current special subframe is the subframe ⁇ , and the PHICH resource is determined to be located in the Kth subframe after the current special subframe n, where:
  • a third possible implementation when the subframe of the uplink resource that transmits the PUSCH includes the current special subframe and is bound to the current special subframe And determining, by the base station, the subframe position of the PHICH resource corresponding to the PUSCH according to the uplink resource that receives the PUSCH:
  • the cooperative subframe includes at least one uplink subframe in the radio frame where the current special subframe is located, and/or the wireless Other special subframes in the frame except the current special subframe.
  • the base station determines, according to an uplink resource that receives the PUSCH, a PHICH corresponding to the PUSCH
  • the sub-frame positions of the resource include:
  • determining, according to the last subframe L in the coordinated subframe, a subframe position of the PHICH resource corresponding to the PUSCH includes: :
  • the uplink and downlink subframe ratio is 0, and when the special subframes 1 and 6 in one radio frame are bound to the subframes 2, 3, 4, 7, 8, and 9 in the radio frame, the PHICH resource is determined.
  • the ratio of the uplink and downlink subframes is 2, and the special subframe 1 in a radio frame is bound to the subframe 2 in the radio frame to form a first binding frame, the special subframe 6 in the radio frame and the radio frame.
  • the subframe 7 is bound to form the second binding frame: the subframe position of the PHICH resource corresponding to the PUSCH is determined according to the last subframe L in the cooperation subframe, where:
  • the uplink and downlink subframe ratio is 3, when the special subframe 1 in one radio frame and the subframe 2 in the radio Binding with 3 to form a first binding frame, in which the subframe 4 is bound to the special subframe 1 of the next radio frame and the subframe 2 in the next radio frame to form a second binding frame, the next When the subframes 3 and 4 in the radio frame are bound to form a third binding frame: the subframe position of the PHICH resource corresponding to the PUSCH is determined according to the last subframe L in the coordinated subframe. :
  • determining, by using the subframe position, the PHICH group number of the PHICH resource includes:
  • a user equipment where the user equipment includes:
  • a sending unit configured to send a physical uplink shared channel PUSCH in the current special subframe
  • a determining unit configured to determine, according to an uplink resource that transmits the PUSCH, the PUSCH pair The physical hybrid automatic retransmission request indication channel PHICH resource, where the uplink resource of the transmission PUSCH includes the current special subframe;
  • a receiving unit configured to receive the PHICH at the determined PHICH resource.
  • the determining unit includes: a subframe position determining module, configured to determine, according to an uplink resource that transmits the PUSCH,
  • a resource group number determining module configured to determine, according to the subframe position, the PHICH resource
  • the subframe position determining module when the subframe of the uplink resource that transmits the PUSCH is only the current special subframe, the subframe position determining module Also used for:
  • the uplink and downlink subframe ratio is 6, the current special subframe is a subframe ⁇ , and the PHICH resource is determined to be located in the Kth subframe after the current special subframe n, where:
  • the subframe position determining module is further configured to determine, according to the cooperation subframe, a subframe position of the PHICH resource corresponding to the PUSCH.
  • At least one uplink subframe in the radio frame and/or other special components in the radio frame except the current special subframe a subframe, determining a subframe position of the PHICH resource corresponding to the PUSCH.
  • the subframe position determining module is further configured to use, according to a last one of the cooperative subframes One subframe L determines a subframe position of the PHICH resource corresponding to the PUSCH.
  • the subframe position determining module is further configured to:
  • the uplink and downlink subframe ratio is 0.
  • special subframes 1 and 6 in a radio frame are bound to subframes 2, 3, 4, 7, 8, and 9 in the radio frame, it is determined that the PHICH resource is located.
  • the uplink and downlink subframe ratio is 1, when special subframes 1 and 6 in a radio frame and the radio frame
  • the uplink and downlink subframe ratio is 2, and when the special subframes 1 and 6 in a radio frame are bound to the subframes 2 and 7 in the radio frame, it is determined that the PHICH resource is located after the last subframe L.
  • the ratio of the uplink and downlink subframes is 3.
  • the uplink and downlink subframe ratio is 2, when a special subframe 1 in a radio frame and a subframe in the radio frame The binding is performed to form a first binding frame, and the special subframe 6 in the radio frame is bound to the subframe 7 in the radio frame to form a second binding frame: the subframe position determining module is further configured to:
  • the uplink and downlink subframe ratio is 3, when the special subframe 1 in one radio frame and the subframe 2 in the radio Binding with 3 to form a first binding frame, where the subframe 4 is bound to the special subframe 1 of the next radio frame and the subframe 2 in the next radio frame to form a second binding frame, where When subframes 3 and 4 are bound in the next radio frame to form a third binding frame:
  • the resource group number determining module is further configured to use, according to the subframe position corresponding to the PHICH resource, The PHICH group number corresponding to the PUSCH is determined by using a PHICH group number indicator.
  • the resource group number determining module is further configured to:
  • c ff is 0; determining the PHICH group number corresponding to the PUSCH by using the determined TMc ff .
  • the resource group number determining module is further configured to:
  • a base station where the base station includes:
  • a receiving unit configured to receive a physical uplink shared channel PUSCH in the current special subframe
  • a determining unit configured to determine, according to the uplink resource that receives the PUSCH, a physical hybrid automatic repeat request indication channel PHICH resource corresponding to the PUSCH, where the uplink resource includes the current special subframe;
  • a transmission unit configured to transmit a PHICH at the determined PHICH resource.
  • the determining unit includes: a subframe position determining module, configured to determine, according to an uplink resource that receives the PUSCH,
  • a resource group number determining module configured to determine, according to the subframe position, the PHICH resource
  • the subframe position determining module when the subframe of the uplink resource of the PUSCH is only the current special subframe, the subframe position determining module further uses In:
  • the uplink and downlink subframe ratio is 6, the current special subframe is a subframe ⁇ , and the PHICH resource is determined to be located in the Kth subframe after the current special subframe n, where:
  • the subframe position determining module is further configured to determine, according to the cooperation subframe, a subframe position of the PHICH resource corresponding to the PUSCH.
  • the subframe position determining module is further configured to: use the coordinated subframe to include at least one uplink subframe in the radio frame where the current special subframe is located, and/or other special subframes in the radio frame except the current special subframe. And determining a subframe position of the PHICH resource corresponding to the PUSCH.
  • the subframe position determining module is further configured to use, according to a last one of the cooperative subframes One subframe L determines a subframe position of the PHICH resource corresponding to the PUSCH.
  • the subframe position determining module is further configured to:
  • the uplink and downlink subframe ratio is 0.
  • special subframes 1 and 6 in a radio frame are bound to subframes 2, 3, 4, 7, 8, and 9 in the radio frame, it is determined that the PHICH resource is located.
  • the uplink and downlink subframe ratio is 1, when the special subframes 1 and 6 in a radio frame are bound to the subframes 2, 3, 7, and 8 in the radio frame, determining that the PHICH resource is located in the last one.
  • L 8
  • K 6
  • the uplink and downlink subframe ratio is 2, and when the special subframes 1 and 6 in a radio frame are bound to the subframes 2 and 7 in the radio frame, it is determined that the PHICH resource is located after the last subframe L.
  • the ratio of the uplink and downlink subframes is 3.
  • the ratio of the uplink and downlink subframes is 5, and when the special subframe 1 in one radio frame is bound to the subframe 2 in the radio frame, it is determined that the PHICH resource is located at the Kth after the last subframe L.
  • the ratio of the uplink and downlink subframes is 2, and the special subframe 1 in a radio frame is bound to the subframe 2 in the radio frame to form a first binding frame, the special subframe 6 in the radio frame and the radio frame.
  • the subframe position determining module is further configured to:
  • the uplink and downlink subframe ratio is 3, when the special subframe 1 in one radio frame and the subframe 2 in the radio Binding with 3 to form a first binding frame, in which the subframe 4 is bound to the special subframe 1 of the next radio frame and the subframe 2 in the next radio frame to form a second binding frame, the next When the subframes 3 and 4 in the radio frame are bound to form a third binding frame: the subframe position determining module is further configured to:
  • the resource group number determining module is further configured to use, according to the subframe position corresponding to the PHICH resource, The PHICH group number corresponding to the PUSCH is determined by using a PHICH group number indicator.
  • the resource group number determining module is further configured to:
  • the resource group number determining module is further configured to:
  • the method and apparatus provided by the present invention use UpPTS for PUSCH transmission, which is equivalent to increasing the amount of uplink transmission data per unit time, thereby increasing the uplink throughput of the TDD system;
  • the method for adjusting the PHICH group number corresponding to the PHICH resource is provided corresponding to the receiving location of the downlink PHICH, thereby providing a solution for the newly determined PUSCH resource PHICH resource to conflict with the original ratio.
  • FIG. 1 is a schematic structural diagram of a special subframe in the prior art
  • FIG. 2 is a schematic flowchart of a method for allocating a control channel resource according to a first embodiment of the present invention
  • FIG. 3 is a schematic flowchart of a method for determining a PHICH resource corresponding to the PUSCH according to an embodiment of the present invention
  • FIG. 4 is a schematic flowchart of a method for allocating a control channel resource according to Embodiment 4 of the present invention
  • FIG. 5 is a schematic structural diagram of a user equipment according to an embodiment of the present invention
  • FIG. 6 is a schematic structural diagram of a base station according to an embodiment of the present invention. detailed description
  • the achievable solution is: Increase the strength by changing the length of the special time slots GP and UpPTS without changing the total length of the special subframe by 1 ms.
  • the method provided by the embodiment of the present invention provides a solution for determining a location allocation and a time-frequency of a downlink Hybrid-Archistration Channel (Physical Hybrid-ARQ Indicator Channel) corresponding to a special subframe for uplink data transmission. Resources.
  • Embodiment 1 As shown in FIG. 2, in response to the foregoing problem, an embodiment of the present invention provides a method for allocating a control channel resource, where the method includes:
  • Step 201 The UE (User Experience, User Equipment) sends a PUSCH (Physical Uplink Shared Channel) in the current special subframe.
  • PUSCH Physical Uplink Shared Channel
  • the use of the special subframe transmission means that the UpPTS (Uplink Pilot Time Slot) in the special subframe is used as the subframe for transmitting the uplink data.
  • UpPTS Uplink Pilot Time Slot
  • Step 202 The UE determines, according to an uplink resource that is used to transmit the PUSCH, a PHICH resource corresponding to the PUSCH, where the uplink resource of the PUSCH includes the current special subframe.
  • the transmitting The uplink resource of the PUSCH includes the UpPTS for transmitting the PUSCH, and may also include an uplink subframe (or a normal subframe called an uplink).
  • the specific situation may be: A, the uplink resource may be an UpPTS in one special subframe; B, the uplink resource may be an UpPTS in multiple special subframes, such as two UpPTSs in one radio frame;
  • the uplink resource may also include at least one UpPTS and at least one uplink subframe. In the case where the uplink resources are distributed in multiple subframes in the foregoing B and C, the multiple subframes may be referred to as a subframe.
  • Step 203 Receive PHICH in the determined PHICH resource.
  • the specific process of the HARQ of the uplink is: the transmitting UE pauses after transmitting a data packet to the receiving eNB through the PUSCH channel, and waits for the acknowledgment information of the eNB. After the data packet arrives at the receiving end eNB after a certain transmission delay, it is verified by the eNB. If the receiving is correct, the ACK information is fed back through the downlink control channel PHICH, and the received useful information is retained if the error is received. And feedback does not confirm (NACK) information. When the UE receives the ACK information, it transmits new data. Otherwise, it resends the last transmitted data packet, and the eNB combines the retransmitted data packet with the previously received data packet and jointly decodes it to improve the decoding accuracy.
  • NACK confirm
  • the uplink PUSCH is transmitted from the UE, and the eNB processes and feeds back the downlink PHICH.
  • the UE receives and processes the PHICH information, it retransmits the PUSCH or transmits a new PUSCH, which is called an RTT (round trip time) of a HARQ process.
  • RTT round trip time
  • From transmitting the uplink PUSCH to receiving the downlink PHICH The time, considering the transmission delay and the eNB processing time, should not be less than 4ms; likewise, from receiving the downlink PHICH to the new transmission or retransmitting the uplink PUSCH, considering the transmission delay and the UE processing time, it should not be less than 4ms.
  • the value of RTT is not less than 8ms.
  • the PUSCH-based uplink resource may have multiple components and the characteristics of the HARQ technology. Therefore, in the embodiment of the present invention, the PHICH resource corresponding to the PUSCH is determined according to the uplink resource for transmitting the PUSCH.
  • the main principles in the specific implementation are:
  • the time from the receipt of the PHICH to the transmission of the PUSCH and the transmission of the PUSCH to the PHICH receiving the feedback are minimized while satisfying the minimum time processing requirements of the base station or UE, such as 3 ms.
  • the above principles are only principles that can be referenced when designing UpPTS to transmit PUSCH. It is not a principle that must be met. Specifically, when designing UpPTS to transmit PUSCH, only some of the above principles can be considered, such as considering only the principles involving RTT, or considering the principles involving RTT and HARQ processes.
  • the specific implementation steps of determining, by the UE in the step 102, the PHICH resource corresponding to the PUSCH according to the foregoing uplink resource of the PUSCH in the step 102 are as follows (as shown in FIG. 3):
  • Step 301 The UE determines, according to the uplink resource that transmits the PUSCH, a subframe position of the PHICH resource corresponding to the PUSCH.
  • Step 302 Determine a PHICH group number of the PHICH resource according to the subframe position, and determine, by using the subframe position and the PHICH group number, a PHICH resource corresponding to the PUSCH.
  • the UE determines, according to the uplink resource of the PUSCH, the subframe position of the PHICH resource corresponding to the PUSCH, including:
  • the uplink and downlink subframes are 0, and the current special subframe is the subframe n, and the PHICH resource is determined to be located in the Kth subframe after the current special subframe n, where:
  • the corresponding PHICH resource is determined to be located in the third subframe after the special subframe 1 or 6, wherein the specific value of the K value is as follows.
  • Table 2 shows:
  • the PUSCH transmitted on the 6, the UE receives the corresponding HARQ downlink PHICH feedback information in the 5th (the value corresponding to the intersection of the 4th row and the 8th column in Table 2) after the subframe 6 (ie, the UE is in the subframe n L1 receives the HARQ downlink PHICH feedback information corresponding to the PUSCH).
  • determining that the PHICH resource is located in the fifth or tenth subframe after the current special subframe, avoiding receiving more than two PHICHs in one subframe, and minimizing changes to existing protocols It is better to meet the requirement that the time interval for transmitting the PUSCH to receive the PHICH meets the minimum processing time of the base station, and the transmission delay is small; or the time interval for transmitting the PUSCH after the PHICH satisfies the requirement of the minimum processing time of the UE, and the transmission delay is small.
  • the transmission transmission delay is small.
  • the ratio of the uplink and downlink subframes is 1, and the current special subframe is the subframe n, and the PHICH resource is determined to be located in the Kth subframe after the current special subframe n, where:
  • the corresponding PHICH resource is determined to be located in the K subframes after the special subframe 1 or 6, wherein the specific value of the K value is as follows. 3 shows:
  • the UE receives the corresponding HARQ downlink PHICH feedback information in the 8th subframe after the subframe 1 (ie, in the determination
  • the PHICH resource is determined to be located in the 8th subframe after the current special subframe, and the case where more than 2 PHICHs are received in one subframe is avoided, and the existing protocol is changed less; and the PUSCH is transmitted at the same time.
  • the time interval to receive the PHICH is better to meet the minimum processing time of the base station, and the transmission delay is small.
  • the uplink and downlink subframe ratio is 2, and the current special subframe is the subframe n, and the PHICH resource is determined to be located in the Kth subframe after the current special subframe n, where:
  • the corresponding PHICH resource is located in the Kth subframe after the special subframe 1, wherein the specific value of the K value is as shown in Table 6. :
  • the corresponding PHICH resource is determined to be located in the Kth subframe after the special subframe 1, where the specific value of the K value is as follows. 7 shows:
  • the uplink and downlink subframe ratio is 6, the current special subframe is the subframe ⁇ , and the PHICH resource is determined to be located in the Kth subframe after the current special subframe n, where:
  • the corresponding determined PHICH resource is located in the Kth subframe after the special subframe 1, wherein the specific value of the K value is as shown in Table 8. :
  • each ratio corresponds to a plurality of ⁇ values, and the ⁇ value of each of the ratios selected has the same benefit as the ⁇ value selected by the ratio 0, for the same reason as the ⁇ value selected by the ratio 0. effect. I will not repeat them here.
  • Tables 2 to 8 lists seven kinds of uplink and downlink subframes defined by a plurality of optional TDD systems of Long Term Evolution (LTE) in the case of one subframe ratio. Proportion, one of which can be the combination shown in Table 9:
  • the uplink PUSCH can be transmitted by using a subframe bundling or TTI bundling.
  • the PUSCH is transmitted in the manner that the UpPTS is bound to other uplink resources, which is equivalent to increasing the number of uplink data transmissions per unit time, thereby increasing the signal-to-noise ratio of uplink data reception and increasing the uplink coverage. Therefore, in the implementation of the current special subframe-bound cooperative subframe, the UE determines, according to the uplink resource of the PUSCH, the subframe position of the PHICH resource corresponding to the PUSCH, including:
  • the cooperative subframe is: the special subframe that transmits the PUSCH and the other the coordinated subframe include at least one uplink subframe in the radio frame where the current special subframe is located, and/or the wireless Other special subframes in the frame except the current special subframe.
  • the determining, by the UE, the subframe position of the PHICH resource corresponding to the PUSCH according to the subframe for transmitting the uplink PUSCH includes:
  • the PUSCH corresponding to the last subframe L in the coordinated subframe is determined for each ratio.
  • the subframe position of the PHICH resource can be implemented in detail:
  • Manner 1 All the uplink subframes and the special subframes in a radio frame are bound to form one binding subframe, and one binding subframe corresponds to one HARQ process.
  • the specific implementation may be:
  • the uplink and downlink subframe ratio is 0.
  • special subframes 1 and 6 in a radio frame are bound to subframes 2, 3, 4, 7, 8, and 9 in the radio frame,
  • the PHICH resource is located in the Kth subframe after the last subframe L of the binding subframe, where
  • the uplink and downlink subframe ratio is 0, when special subframes 1 and 6 in one radio frame are bound to subframes 2, 3, 4, 7, 8, and 9 in the radio frame.
  • the PUSCH transmitted on the special subframe 1 receives the corresponding HARQ downlink PHICH feedback information in the sixth subframe after the subframe 9, that is, receives the HARQ downlink corresponding to the PUSCH in the subframe 5 of the next radio frame. PHICH feedback information.
  • the bundled subframes can be regarded as a whole. Therefore, the PUSCH transmitted by using the special subframe can multiplex the subframe position of the original subframe 9 to receive the PHICH, so that the protocol modification can be minimized. Moreover, the time interval from the transmission of the PUSCH to the reception of the PHICH satisfies the minimum value of the minimum processing time (3 ms) of the base station, and the transmission delay is effectively reduced.
  • the binding mode can implement three HARQ processes and/or PUTS transmission with an RTT of 30 ms.
  • the transmission delay is generally 50 ms.
  • the RTT value of the HARQ process is set to 30ms, which can effectively increase the time diversity gain of such delay-sensitive service transmission.
  • the number of UpPTSs included in each HARQ process is the same, which reduces the complexity of the system (UE or base station) coordinating the processing of each HARQ process.
  • the ratio of the uplink and downlink subframes is 1.
  • the bound subframes can be regarded as a whole, so the special sub- The PUSCH transmitted by the frame can multiplex the subframe position of the original subframe 8 to receive the PHICH, and the time interval from the transmission of the PUSCH to the reception of the PHICH is a minimum value that satisfies the minimum processing time (3 ms) of the base station, thereby effectively reducing the transmission delay.
  • the binding mode can implement two HARQ processes, an RTT of 20 ms or three HARQ processes, and a 30 ms PUSCH transmission.
  • the general transmission delay requirement is about 50 ms
  • the RTT value of the HARQ process is set to 20 ms or 30 ms to effectively increase the time diversity gain of the delay-sensitive service transmission.
  • the number of UpPTSs included in each HARQ process is the same, which reduces the complexity of the system (UE or base station) coordinating the processing of each HARQ process.
  • the PHICH resource is located in the sixth subframe after the current special subframe, and the time interval from the transmission of the PUSCH to the reception of the PHICH is a minimum value that satisfies the minimum processing time (3 ms) of the base station, and is effective. Reduced transmission delay.
  • the corresponding RTU is 30ms PUSCH transmission.
  • the general transmission delay is about 50ms, and the RTT value of the HARQ process is set.
  • the time diversity gain of such delay sensitive service transmission can be effectively increased for 20ms or 30ms.
  • the number of UpPTSs included in each HARQ process is the same, which reduces the complexity of the system (UE or base station) coordinating the processing of each HARQ process.
  • the ratio of the uplink and downlink subframes is 5.
  • the uplink and downlink subframe ratio is 6.
  • the PHICH resource is located at the location.
  • a radio frame includes two special sub-frames, and each special sub-frame can form a binding sub-frame.
  • each binding sub-frame corresponds to a different HARQ process, the specific implementation may be:
  • the uplink and downlink subframe ratio is 2, when a special subframe 1 in a radio frame is bound to the subframe 2 in the radio frame to form a first binding frame, and the special subframe 6 in the radio frame and the When the subframe 7 in the radio frame is bound to form the second binding frame: the subframe position of the PHICH resource corresponding to the PUSCH is determined according to the last subframe L in the coordinated subframe, where:
  • the user equipment UE transmits the PUSCH in the special subframe 1 or 6, it is determined that the PHICH resource is located in the Kth subframe after the last subframe L of the binding subframe, where the K value
  • the uplink and downlink subframe ratio is 2, when a special subframe 1 in a radio frame is bound to a subframe 2 in the radio frame to form a first binding frame, in a special subframe.
  • the PUSCH transmitted on the UE the UE receives the corresponding HARQ downlink PHICH feedback in the fourth subframe after the subframe 2, and receives the subframe 6 on the radio frame.
  • the fourth subframe after the frame 7 receives the corresponding HARQ downlink PHICH feedback information, that is, the HARQ downlink PHICH feedback information corresponding to the PUSCH transmitted on the special subframe 6, and is received on the subframe 1 of the next radio frame.
  • the uplink and downlink subframe ratio is 3, when a special subframe 1 in a radio frame is bound to the subframes 2 and 3 in the radio to form a first binding frame, the subframe 4 and the next in the radio frame The special subframe 1 of the radio frame and the subframe 2 in the next radio frame are bound to form a second binding frame, and when the subframes 3 and 4 in the next radio frame are bound to form a third binding frame: Determining, according to the last subframe L in the coordinated subframe, the subframe position of the PHICH resource corresponding to the PUSCH includes:
  • the bound subframes can be regarded as a whole, so the PUSCH transmitted by using the special subframe can reuse the original sub-frame.
  • the frame receives the subframe position of the PHICH, and the time interval from the transmission of the PUSCH to the reception of the PHICH is a minimum value that satisfies the minimum processing time (3 ms) of the base station, thereby effectively reducing the transmission delay.
  • the PHICH information corresponding to the PUSCH may be the group number of the PHICH and the orthogonal sequence number in the group group seq
  • nPHICH ⁇ n PHICH is uniquely identified and separated by the following formula:
  • rn ⁇ is the demodulation reference signal cyclic shift value; is the lowest index of the resource block (l owes t
  • PHICH spreading factor length; ⁇ is the number of PHICH groups.
  • the method provided by the embodiment of the present invention further determines the time-frequency domain of the PHICH resource, and the method further determines the PHICH group number of the PHICH resource according to the subframe position, which specifically includes:
  • the determining, by the subframe location, the PHICH group number of the PHICH resource includes:
  • the special subframe 1 or 6 transmits the PUSCH, and the PHICH resource corresponding to the PUSCH is located in the 5th subframe after the special subframe, in this case:
  • the PHICH resources corresponding to different PUSCHs in the same subframe are as follows: a, the PUSCH transmitted by the special subframe 1 and the uplink subframe 2, and the corresponding downlink PHICH is received in the subframe 6;
  • the corresponding PUSCH, the corresponding downlink PHICH is received in subframe 1.
  • the ratio is still present: the downlink PHICHs corresponding to subframes 3 and 4 are all transmitted in the same subframe; the downlink PHICHs corresponding to subframes 8 and 9 are all transmitted in the same subframe.
  • the current special subframe is subframe n
  • the PHICH resource is located at the Kth subframe after the special subframe n
  • the radio frame in which the current special subframe is located is removed.
  • the other subframes of 7 and 9 correspond to 0
  • the PHICH group number corresponding to the PUSCH is determined by using the determination;
  • the TMc ff corresponding to the subframe is 0; determining the PHICH group number corresponding to the PUSCH by using the determined TMc ff ;
  • I PHICH in subframe/ff 1,4, 6 or 9
  • the special subframe 1 or 6 transmits the PUSCH, and the PHICH resource corresponding to the PUSCH is located in the 4th subframe after the special subframe, in this case:
  • 1 p H 1 of the PHICH resources corresponding to the PUSCH transmitted on the subframe 8 in the subframe 1 or the previous radio frame; b, the uplink subframe 4 and The PUSCH transmitted in the special subframe 6 and the corresponding downlink PHICH are received in the subframe 0 of the next radio frame.
  • the PHICH resource corresponding to different PUSCHs on the regional frame it is specified for subframe 4 or
  • the current special subframe is the subframe n
  • the PHICH resource is located in the Kth subframe after the special subframe n.
  • the corresponding ⁇ is 0; determining the PHICH group number corresponding to the PUSCH by using the determined H; or
  • the principle that the uplink PUSCH to the downlink PHICH timing is not less than 4 ms in one RTT period, and the time that the UE receives the PHICH to the PUSCH in the HARQ retransmission is not less than 4 ms, and an RTT is provided as an example of 10 ms.
  • the corresponding determined PHICH resource is located in the Kth subframe after the special subframe, where, in each ratio, the specific value of the K value is as follows. 13 shows:
  • the current special subframe is subframe n, and then determining that the PHICH resource is located in the Kth subframe after the current special subframe n
  • Specific implementations include:
  • the UE receives the corresponding HARQ downlink PHICH feedback information in the sixth subframe after the subframe 1 (in the determined PHICH resource transmission PHICH)
  • the UE receives the HARQ downlink PHICH feedback information corresponding to the PUSCH on the subframe 7;
  • the UE receives the corresponding HARQ downlink PHICH feedback information in the sixth subframe after the subframe 1 (in the determined PHICH resource transmission PHICH) , that is, receiving the HARQ downlink PHICH feedback information corresponding to the PUSCH on the subframe 7;
  • the UE receives the corresponding HARQ downlink PHICH feedback information in the sixth subframe after the subframe 1 (in the determined PHICH resource transmission PHICH) , that is, receiving the HARQ downlink PHICH feedback information corresponding to the PUSCH on the subframe 7;
  • the method further determines the time-frequency domain of the PHICH resource, and the method uses TMc ff according to the subframe position corresponding to the PHICH resource.
  • Determining the PHICH group number corresponding to the puSCH may be: For the subframe ratio 0, the downlink PHICHs corresponding to the four pairs of subframes are all transmitted in the same subframe, and the four pairs of subframes are: 1 and 2; 3 and 4; 6 and 7 and 8 and 9, so in this embodiment, the PHICH resource corresponding to the PUSCH transmitted on any one of the subframes in each pair of subframes can be selected.
  • the other subframes in which the subframes 1 and 6 are removed from the radio frame in which the current special subframe is located are 0.
  • the formula for this value can be:
  • the present invention provides for the value of the PHICH group number m i ⁇ N TM , m i (representing the PHICH group number range factor):
  • the timing relationship can be:
  • the special subframes 1 and 6 are bound to the general subframes 2, 3, 4, 7, 8, and 9 to transmit the PUSCH as a binding subframe (bundle), and the binding subframe corresponds to
  • special subframes 1 and 6 are bound to general subframes 2, 3, 7, and 8, and a PUSCH is transmitted as a bundled subframe, and the downlink PHICH corresponding to the bundled subframe is The receiving location is associated with the last subframe 8 in the bundle, and the receiving bit is in subframe 4 of the next radio frame;
  • the special subframes 1 and 6 are bound to the general subframes 2 and 7, and the PUSCH is transmitted as a binding subframe.
  • the special subframe 1 is bound to the general subframes 2, 3, and 4, and the PUSCH is transmitted as a binding subframe.
  • the special subframes 1 and 6 are bound to the general subframes 2, 3, 4, 7 and 8.
  • the PUSCH is transmitted, and the binding subframe corresponds to the downlink.
  • the receiving position of the PHICH is associated with the last subframe 8 in the bundle, and the subframe 5 of the second radio frame after the frame is received.
  • the embodiment of the present invention further provides another control channel resource.
  • the allocation method includes (the flow of the method is shown in Figure 4):
  • Step 401 When the base station receives the PUSCH in the current special subframe.
  • Step 402 The base station determines, according to the uplink resource of the PUSCH, the PHICH resource corresponding to the PUSCH, where the uplink resource of the PUSCH includes the current special subframe.
  • the base station receives the The uplink resource of the PUSCH, and determining the PHICH resource corresponding to the PUSCH includes:
  • Step 403 The base station transmits the PHICH in the determined PHICH resource.
  • the base station determines, according to the uplink resource of the PUSCH, the subframe position of the PHICH resource corresponding to the PUSCH, including:
  • the ratio of the uplink and downlink subframes is 1, and the current special subframe is the subframe n, and the PHICH resource is determined to be located in the Kth subframe after the current special subframe n, where:
  • the ratio of the uplink and downlink subframes is 2, and the current special subframe is the subframe ⁇ , and the PHICH resource is determined to be located in the Kth subframe after the current special subframe n, where:
  • the uplink and downlink subframe ratio is 6, the current special subframe is the subframe ⁇ , and the PHICH resource is determined to be located in the Kth subframe after the current special subframe n, where:
  • the uplink PUSCH can be transmitted by using a subframe bundling or TTI bundling. And determining, by the base station, the subframe position of the PHICH resource corresponding to the PUSCH, according to the uplink resource that receives the PUSCH, where the subframe of the uplink resource of the PUSCH includes the current special subframe and the other subframes:
  • the sub-frame positions of the resource include:
  • the cooperation subframe includes at least one uplink subframe in the radio frame where the current special subframe is located, and/or other special subframes in the radio frame except the current special subframe.
  • the base station determines, according to the uplink resource of the PUSCH, the PHICH resource corresponding to the PUSCH.
  • Subframe positions include:
  • Manner 1 All the uplink subframes in a radio frame are bound to form one binding sub-frame, and each binding sub-frame corresponds to one HARQ process.
  • the specific implementation may be:
  • the uplink and downlink subframe ratio is 0, and when the special subframes 1 and 6 in one radio frame are bound to the subframes 2, 3, 4, 7, 8, and 9 in the radio frame, the PHICH resource is determined.
  • the ratio of the uplink and downlink subframes is 5, and when the special subframe 1 in one radio frame is bound to the subframe 2 in the radio frame, it is determined that the PHICH resource is located at the Kth after the last subframe L.
  • a radio frame includes two special sub-frames, and each special sub-frame can form a binding sub-frame, and each binding sub-frame corresponds to a different HARQ process, and the specific implementation can be implemented.
  • the uplink and downlink subframe ratio is 2, when a special subframe 1 in a radio frame is bound to the subframe 2 in the radio frame to form a first binding frame, and the special subframe 6 in the radio frame and the When the subframe 7 in the radio frame is bound to form the second binding frame: the subframe position of the PHICH resource corresponding to the PUSCH is determined according to the last subframe L in the coordinated subframe, where:
  • the uplink and downlink subframe ratio is 3, when a special subframe 1 in a radio frame is bound to the subframes 2 and 3 in the radio to form a first binding frame, the subframe 4 and the next in the radio frame The special subframe 1 of the radio frame and the subframe 2 in the next radio frame are bound to form a second binding frame, and when the subframes 3 and 4 in the next radio frame are bound to form a third binding frame: Determining, according to the last subframe L in the coordinated subframe, the subframe position of the PHICH resource corresponding to the PUSCH includes:
  • the PHICH information corresponding to the base station may be the PHICH group number and the orthogonal sequence number in the group (group seq ⁇
  • n PHICH , n PHICH are uniquely identified and separated by the following formula: n (
  • the method provided by the embodiment of the present invention further determines a time-frequency domain of the PHICH resource, and the method is further The determining, by the subframe position, the PHICH group number of the PHICH resource, specifically: determining, by using a PHICH group number indication factor, a PHICH group number corresponding to the PUSCH according to the subframe position corresponding to the PHICH resource.
  • the determining, by the subframe location, the PHICH group number of the PHICH resource includes:
  • the ⁇ corresponding to the other subframe is 0; determining the PHICH group number corresponding to the PUSCH by using the determination; or
  • the embodiment of the present invention further provides a user equipment 500, where the user equipment includes:
  • the sending unit 501 is configured to send a PUSCH in the current special subframe.
  • a determining unit 502 configured to determine, according to an uplink resource that transmits the PUSCH, a PHICH resource corresponding to the PUSCH, where an uplink resource of the PUSCH is included in the current special subframe, and a receiving unit 503, configured to determine the PHICH The resource receives the PHICH.
  • Determining the PHICH resource corresponding to the PUSCH includes: determining a subframe position of the resource and a PHICH group number of the resource. Therefore, the determining unit 502 for the content that needs to be determined specifically includes: a subframe position determining module, configured to determine, according to an uplink resource that transmits the PUSCH, a subframe position of the PHICH resource corresponding to the PUSCH;
  • the resource group number determining module determines the PHICH group number of the PHICH resource according to the subframe position, and determines the PHICH resource corresponding to the PUSCH by using the subframe position and the PHICH group number.
  • the UE determines the subframe position of the PHICH resource corresponding to the PUSCH according to the uplink resource of the PUSCH.
  • the determination module is also used to:
  • the ratio of the uplink and downlink subframes is 3, and the current special subframe is the subframe n, and the PHICH resource is determined.
  • the uplink and downlink subframe ratio is 6, the current special subframe is a subframe ⁇ , and the PHICH resource is determined to be located in the Kth subframe after the current special subframe n, where:
  • the uplink PUSCH can be transmitted by using a subframe bundling or TTI bundling. Therefore, the resource used to transmit the PUSCH may be a binding frame. Therefore, the specific implementation when the subframe position determining module determines the subframe position of the PHICH resource corresponding to the PUSCH may be:
  • the subframe location determining module is further configured to determine, according to the coordinated subframe, a child of the PHICH resource corresponding to the PUSCH. Frame position.
  • the subframe position determining module is further configured to use at least one uplink subframe in the radio frame where the current special subframe is included in the cooperation subframe, and/or the current special subframe in the radio frame.
  • the other special subframes determine the subframe position of the PHICH resource corresponding to the PUSCH.
  • the subframe position determining module is further configured to use, according to the last one of the coordinated subframes.
  • the subframe L determines a subframe position of the PHICH resource corresponding to the PUSCH.
  • the subframe position determining module is configured according to the last subframe in the cooperative subframe.
  • the implementation of determining the subframe position of the PHICH resource corresponding to the PUSCH includes multiple manners, and specifically:
  • the uplink and downlink subframe ratio is 1, when the special subframes 1 and 6 in a radio frame are bound to the subframes 2, 3, 7, and 8 in the radio frame, determining that the PHICH resource is located in the last one.
  • L 8
  • K 6
  • the uplink and downlink subframe ratio is 2, and when the special subframes 1 and 6 in a radio frame are bound to the subframes 2 and 7 in the radio frame, it is determined that the PHICH resource is located after the last subframe L.
  • the ratio of the uplink and downlink subframes is 3.
  • a radio frame includes two special sub-frames, and each of the special sub-frames can form a binding sub-frame, and each of the binding sub-frames corresponds to a different HARQ process, and specifically includes:
  • the uplink and downlink subframe ratio is 2, when a special subframe 1 in a radio frame is bound to the subframe 2 in the radio frame to form a first binding frame, the special subframe 6 in the radio frame and the radio frame
  • the subframe position determining module is further configured to:
  • the uplink and downlink subframes have a ratio of 3, and the special subframe 1 in one radio frame is bound to the subframes 2 and 3 in the radio to form a first binding frame, and the subframe 4 and the next radio frame in the radio frame.
  • the special subframe 1 and the subframe 2 in the next radio frame are bound to form a second binding frame, where the subframes 3 and 4 in the next radio frame are bound to form a third binding frame:
  • the frame position determination module is also used to:
  • the PHICH information corresponding to the PUSCH may be the group number of the PHICH and the orthogonal sequence number in the group (group seq ⁇
  • n PHICH, n PHICH is uniquely identified and separated by the following formula: PHICH 1 PRB_RA Ding DMRS ) AAA U v PHICH Ding 1 PHICH i PHICH n "P se H ( i II
  • the method provided by the embodiment of the present invention further determines the time-frequency domain of the PHICH resource, then the resource
  • the group number determining module is further configured to determine the PHICH group number corresponding to the PUSCH by using the PHICH group number indication factor H according to the subframe position corresponding to the PHICH resource.
  • the resource group number determining module is further configured to:
  • c ff is 0; determining the PHICH group number corresponding to the PUSCH by using the determined TMc ff .
  • the resource group number determining module is further configured to:
  • Embodiment 6 is a base station 600, the base station includes: The receiving unit 601 is configured to receive the PUSCH in the current special subframe.
  • a determining unit 602 configured to determine, according to an uplink resource that receives the PUSCH, a PHICH resource corresponding to the PUSCH, where the uplink resource includes the current special subframe;
  • the transmitting unit 603 is configured to transmit the PHICH at the determined PHICH resource.
  • the PHICH resource includes two parts: a subframe position of the PHICH resource and a PHICH group number of the PHICH resource. Therefore, the determining unit 602 specifically includes:
  • a subframe position determining module configured to determine, according to an uplink resource that receives the PUSCH, a subframe position of a PHICH resource corresponding to the PUSCH;
  • the resource group number determining module is configured to determine a PHICH group number of the PHICH resource according to the subframe position, and determine, by using the subframe position and the PHICH group number, a PHICH resource corresponding to the PUSCH.
  • the subframe position determining module determines, according to the uplink resource of the PUSCH, the subframe position of the PHICH resource corresponding to the PUSCH, The subframe position determining module is further configured to:
  • the ratio of the uplink and downlink subframes is 0, and the current special subframe is the subframe n, and the PHICH resource is determined to be located in the Kth subframe after the current special subframe n, where:
  • the ratio of the uplink and downlink subframes is 1, and the current special subframe is the subframe n, and the PHICH resource is determined to be located in the Kth subframe after the current special subframe n, where:
  • the ratio of the uplink and downlink subframes is 2, and the current special subframe is the subframe n, and the PHICH resource is determined to be located in the Kth subframe after the current special subframe n, where:
  • the ratio of the uplink and downlink subframes is 6, the current special subframe is the subframe n, and the PHICH resource is determined to be located in the Kth subframe after the current special subframe n, where:
  • the sub-frame of the uplink resource that transmits the PUSCH includes the current special sub-frame and other sub-frames, that is, when the sub-frame of the uplink resource that transmits the PUSCH includes the current special sub-frame and the current special sub-frame
  • the frame-bound cooperative subframe, the subframe position determining module is further configured to determine, according to the cooperative subframe, a subframe position of the PHICH resource corresponding to the PUSCH.
  • the subframe position determining module is further configured to: use the cooperative subframe to include at least one uplink subframe in a radio frame where the current special subframe is located, and/or The other special subframes of the current special subframe determine the subframe position of the PHICH resource corresponding to the PUSCH.
  • the subframe position determining module is further configured to determine, according to the last subframe L in the coordinated subframe, a subframe position of the PHICH resource corresponding to the PUSCH.
  • the uplink and downlink subframe ratio is 0.
  • special subframes 1 and 6 in a radio frame are bound to subframes 2, 3, 4, 7, 8, and 9 in the radio frame, it is determined that the PHICH resource is located.
  • the uplink and downlink subframe ratio is 1, when the special subframes 1 and 6 in a radio frame are bound to the subframes 2, 3, 7, and 8 in the radio frame, determining that the PHICH resource is located in the last one.
  • L 8
  • K 6
  • the uplink and downlink subframe ratio is 2, and when the special subframes 1 and 6 in a radio frame are bound to the subframes 2 and 7 in the radio frame, it is determined that the PHICH resource is located after the last subframe L.
  • the ratio of the uplink and downlink subframes is 3.
  • the ratio of the uplink and downlink subframes is 5, and when the special subframe 1 in one radio frame is bound to the subframe 2 in the radio frame, it is determined that the PHICH resource is located at the Kth after the last subframe L.
  • the uplink and downlink subframe ratio is 6, when special subframes 1 and 6 in a radio frame and the radio frame
  • a radio frame includes two special sub-frames, and each special sub-frame can form a binding sub-frame, and each binding sub-frame corresponds to a different HARQ process, and the specific implementation can be:
  • the uplink and downlink subframe ratio is 2, when a special subframe 1 in a radio frame is bound to the subframe 2 in the radio frame to form a first binding frame, and the special subframe 6 in the radio frame and the When the subframe 7 in the radio frame is bound to form the second binding frame: the subframe position determining module is further configured to:
  • the uplink and downlink subframe ratio is 3, when a special subframe 1 in a radio frame is bound to the subframes 2 and 3 in the radio to form a first binding frame, the subframe 4 and the next in the radio frame The special subframe 1 of the radio frame and the subframe 2 in the next radio frame are bound to form a second binding frame, and when the subframes 3 and 4 in the next radio frame are bound to form a third binding frame: the sub-frame
  • the frame position determination module is also used to:
  • the PHICH information corresponding to the base station may be the PHICH group number and the orthogonal sequence number in the group (group seq ⁇
  • the method provided by the embodiment of the present invention further determines a time-frequency domain of the PHICH resource, where the resource group number determining module is further configured to determine the PUSCH by using a PHICH group number indication factor H according to a subframe position corresponding to the PHICH resource. Corresponding PHICH group number.
  • the resource group number determining module is further configured to:
  • the resource group number determining module is further configured to:
  • the ratio of the uplink and downlink subframes is 6, the current special subframe is the subframe n, and the PHICH resource bits.
  • the foregoing one or more technical solutions in the embodiments of the present application have at least the following technical effects:
  • the method provided by the embodiment of the present invention solves the problem that when the uplink PUSCH is transmitted by using a special subframe (separate or bound) in the prior art There is no specific scheme to determine the receiving location of the downlink PHICH corresponding to the uplink PUSCH;
  • the method for adjusting the PHICH group number corresponding to the PHICH resource is provided corresponding to the receiving location of the downlink PHICH, so as to provide a solution for the conflict between the PHICH resource corresponding to the newly determined PUSCH and the original ratio.
  • the disclosed system, apparatus, and method may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the modules or units is only a logical function division.
  • there may be another division manner for example, multiple units or components may be used. Combined or can be integrated into another system, or some features can be ignored, or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be in an electrical, mechanical or other form.
  • the components displayed for the unit may or may not be physical units, ie may be located in one place, or may be distributed over multiple network units. You can choose some of them according to actual needs or All units are used to achieve the objectives of the solution of this embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the above integrated unit can be implemented in the form of hardware or in the form of a software function unit.
  • the integrated unit if implemented in the form of a software functional unit and sold or used as a standalone product, may be stored in a computer readable storage medium.
  • the instructions include a plurality of instructions for causing a computer device (which may be a personal computer, a server, or a network device, etc.) or a processor to perform all or part of the steps of the methods described in various embodiments of the present application.
  • the foregoing storage medium includes: a U disk, a removable hard disk, a read-only memory (ROM), a random access memory (RAM), a magnetic disk or an optical disk, and the like, which can store program codes. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明涉及移动通信技术领域,尤其涉及一种控制信道资源分配方法及装置,该方法包括:用户设备UE在当前特殊子帧发送物理上行共享信道 PUSCH;UE根据传输所述PUSCH的上行资源,确定所述PUSCH对应的物理混合自动重传请求指示信道PHICH资源,所述传输PUSCH的上行资源中包含所述当前特殊子帧;在确定的PHICH资源接收PHICH。利用本发明提供的方法和装置解决了使用特殊子帧传输上行PUSCH时,没有具体的方案确定所述上行PUSCH对应的下行PHICH的接收位置的问题。

Description

一种控制信道资源分配方法及装置
技术领域
本发明涉及移动通信技术领域, 尤其涉及一种控制信道资源分配方法及 装置。 背景技术
TDD ( Time Division Multiplex, 时分复用) 系统的上行传输釆用时分复 用的方式。
LTE ( Long Term Evolution, 长期演进) 的 TDD系统定义了 7种上下行 子帧配比, 具体如表 1 所示。 其中, 不同上下行子帧配比可应用于具有不同 上下行业务需求的场景。
Figure imgf000002_0001
表 1
TDD系统的子帧可分为 3类: 上行子帧、 下行子帧和特殊子帧。 表 1中, D表示下行子帧, S表示特殊子帧, U表示上行子帧。 由表 1可知, 在 TDD 系统中, 1个无线帧中的部分子帧为上行子帧、 部分子帧为下行子帧。 换句话 说, 1个无线帧的部分时长用于上行传输, 部分时长用于下行传输。
其中 ,特殊子帧的结构如图 1所示,特殊子帧包括 DwPTS ( Downlink Pilot Time Slot, 下行导频时隙)、 GP ( Guard Period, 保护间隔)和 UpPTS ( Uplink Pilot Time Slot, 上行导频时隙) 3部分。 具体地, DwPTS部分用于下行传输, 例如, 控制信道、 数据信道、 同步信号和导频信号的传输。 GP部分作为保护 间隔, 不进行上下行传输。 UpPTS 部分用于传输上行的 SRS ( Sounding Reference Signal,探测参考信号 )或 PRACH( Physical Random Access Channel, 物理随机接入信道)。
在 TDD系统中, 1个无线帧的部分时长用于上行传输, 部分时长用于下 行传输, 由于上下行子帧以时分双工的方式工作, 对于 UE ( User Experience , 用户设备), 可用于上行传输数据的子帧数有限。 换句话说, 这种时分方式会 导致系统上行的吞吐量(单位时间的数据传输量) 小。 发明内容
本发明实施例提供一种控制信道资源分配方法及装置, 用以解决现有技 术中的时分方式导致系统上行的吞吐量小的问题。
第一方面, 提供一种控制信道资源分配方法, 方法包括:
用户设备 UE在当前特殊子帧发送物理上行共享信道 PUSCH;
所述 UE根据传输所述 PUSCH的上行资源, 确定所述 PUSCH对应的物 理混合自动重传请求指示信道 PHICH资源, 所述传输 PUSCH的上行资源中 包含所述当前特殊子帧;
所述 UE在确定的 PHICH资源接收 PHICH。
结合第一方面, 在第一种可能的实现方式中, 所述 UE根据传输所述 PUSCH的上行资源, 确定所述 PUSCH对应的 PHICH资源包括:
所述 UE根据传输所述 PUSCH的上行资源, 确定所述 PUSCH对应的 PHICH资源的子帧位置;
根据所述子帧位置确定所述 PHICH资源的 PHICH组号, 利用所述子帧 位置和所述 PHICH组号确定所述 PUSCH对应的 PHICH资源。
结合第一方面的第一种可能的实现方式, 在第二种可能的实现方式中, 当所述传输 PUSCH的上行资源的子帧只是所述当前特殊子帧, 则所述 UE根 据传输所述 PUSCH的上行资源, 确定所述 PUSCH对应的 PHICH资源的子 帧位置包括:
上下行子帧配比为 0, 所述当前特殊子帧为子帧 n, 则确定所述 PHICH 资源位于所述当前特殊子帧 n之后的第 K个子帧中, 其中: 当 n=l或 6时, K=5; 当 η=1或 6时, k=10; 或者
上下行子帧配比为 1 , 所述当前特殊子帧为子帧 n, 则确定所述 PHICH 资源位于所述当前特殊子帧 n之后的第 K个子帧中, 其中: 当 n=l或 6时, K=4; 当 η=1或 6时, k=5; 当 n=l或 6时, k= 8; 或者
上下行子帧配比为 2, 所述当前特殊子帧为子帧 n, 则确定所述 PHICH 资源位于所述当前特殊子帧 n之后的第 K个子帧中, 其中: 当 n=l或 6时, K=4; 当 η=1或 6时, k=5; 当 n=l或 6时, k=7; 当 n=l或 6时, k=8; 或者 上下行子帧配比为 3 , 所述当前特殊子帧为子帧 n, 则确定所述 PHICH 资源位于所述当前特殊子帧 n之后的第 K个子帧中, 其中: 当 n=l时, K=4、 5、 6、 7、 8或 9; 或者
上下行子帧配比为 4, 所述当前特殊子帧为子帧 η, 则确定所述 PHICH 资源位于所述当前特殊子帧 n之后的第 K个子帧中, 其中: 当 n=l时, K=4、 5、 6、 7、 8或 9; 或者
上下行子帧配比为 5 , 所述当前特殊子帧为子帧 η, 则确定所述 PHICH 资源位于所述当前特殊子帧 n之后的第 K个子帧中, 其中: 当 n=l时, K=4、 5、 6、 7、 8或 9; 或者
上下行子帧配比为 6, 所述当前特殊子帧为子帧 η, 则确定所述 PHICH 资源位于所述当前特殊子帧 n之后的第 K个子帧中, 其中:
n= =1或 6时, K=4;
n= =1或 6时, k=5;
n= =1或 6时, k=8;
n= =1或 6时, k=9;
n= =1或 6时, k=10。 结合第一方面的第一种可能的实现方式, 在第三种可能的实现方式中, 当所述传输 PUSCH 的上行资源的子帧包括所述当前特殊子帧以及与该当前 特殊子帧绑定的协作子帧, 则所述 UE根据传输所述 PUSCH的上行资源, 确 定所述 PUSCH对应的 PHICH资源的子帧位置包括:
根据所述协作子帧, 确定所述 PUSCH对应的 PHICH资源的子帧位置。 结合第一方面的第三种可能的实现方式, 在第四种可能的实现方式中, 所述协作子帧包括所述当前特殊子帧所在无线帧中的至少一个上行子帧和 /或 该无线帧中除所述当前特殊子帧的其他特殊子帧。
结合第一方面的第三或第四种可能的实现方式中的任意一种, 在第五种 可能的实现方式中, 所述 UE根据传输所述 PUSCH的上行资源, 确定所述 PUSCH对应的 PHICH资源的子帧位置包括:
根据所述协作子帧中的最后一个子帧 L,确定所述 PUSCH对应的 PHICH 资源的子帧位置。
结合第一方面的第五种可能的实现方式, 在第六种可能的实现方式中, 根据所述协作子帧中的最后一个子帧 L, 确定所述 PUSCH对应的 PHICH资 源的子帧位置包括:
上下行子帧配比为 0,当一个无线帧中的特殊子帧 1和 6与该无线帧中的 子帧 2、 3、 4、 7、 8和 9绑定时, 则确定所述 PHICH资源位于所述最后一个 子帧 L之后的第 K个子帧中, L=9, K=6; 或者
上下行子帧配比为 1 ,当一个无线帧中的特殊子帧 1和 6与该无线帧中的 子帧 2、 3、 7和 8绑定时, 则确定所述 PHICH资源位于所述最后一个子帧 L 之后的第 K个子帧中, L=8, K=6; 或者
上下行子帧配比为 2,当一个无线帧中的特殊子帧 1和 6与该无线帧中的 子帧 2和 7绑定时, 则确定所述 PHICH资源位于所述最后一个子帧 L之后的 第 K个子帧中, L=7, K=6、 9或 19; 或者
上下行子帧配比为 3 ,当一个无线帧中的特殊子帧 1与该无线帧中的子帧 2、 3和 4绑定时,则确定所述 PHICH资源位于所述最后一个子帧 L之后的第 K个子帧中, L=4, K=16; 或者
上下行子帧配比为 5 ,当一个无线帧中的特殊子帧 1与该无线帧中的子帧 2绑定时,则确定所述 PHICH资源位于所述子帧 2之后的第 Κ个子帧中, Κ=5、 15或 25; 或者
上下行子帧配比为 6 ,当一个无线帧中的特殊子帧 1和 6与该无线帧中的 子帧 2、 3、 4、 7和 8绑定时, 所述 PHICH资源位于所述最后一个子帧 L之 后的第 K个子帧中, L=8, K=17。
结合第一方面的第五种可能的实现方式, 在第七种可能的实现方式中, 上下行子帧配比为 2 ,当一个无线帧中的特殊子帧 1与该无线帧中的子帧 2绑 定形成第一绑定帧, 该无线帧中的特殊子帧 6与该无线帧中的子帧 7绑定形 成第二绑定帧时: 则所述^^据所述协作子帧中的最后一个子帧 L, 确定所述 PUSCH对应的 PHICH资源的子帧位置包括:
所述第一绑定帧对应的第一 PHICH资源位于所述最后一个子帧 L之后的 第 K1个子帧中, L=2, Kl=4;
所述第二绑定帧对应的第二 PHICH资源位于所述最后一个子帧 L之后的 第 K2个子帧中, L=7 , K2=4。
结合第一方面的第五种可能的实现方式, 在第八种可能的实现方式中, 上下行子帧配比为 3 , 当一个无线帧中的特殊子帧 1与该无线中的子帧 2和 3 绑定形成第一绑定帧, 该无线帧中子帧 4与下个无线帧的特殊子帧 1 以及所 述下个无线帧中子帧 2绑定形成第二绑定帧, 所述下个无线帧中子帧 3和 4 绑定形成第三绑定帧时: 则所述才艮据所述协作子帧中的最后一个子帧 L,确定 所述 PUSCH对应的 PHICH资源的子帧位置包括:
所述第一绑定帧对应的第一 PHICH资源位于所述最后一个子帧 L之后的 第 K个子帧中, L=3 , K=6;
所述第二绑定帧对应的第二 PHICH资源位于所述最后一个子帧 L之后的 第 K个子帧中, L=2, K=6;
所述第三绑定帧对应的第三 PHICH资源位于所述最后一个子帧 L之后的 第 K个子帧中, L=4, K=6。
结合第一方面的第一至八种可能的实现方式中任意一种, 在第九种可能 的实现方式中, 根据所述子帧位置确定所述 PHICH资源的 PHICH组号: 根据所述 PHICH资源对应的子帧位置,利用 PHICH组号指示因子 确 定所述 PUSCH对应的 PHICH组号。
结合第一方面的第九种可能的实现方式, 在第十种可能的实现方式中, 根据所述子帧位置确定所述 PHICH资源的 PHICH组号包括:
上下行子帧配比为 0, 所述当前特殊子帧为子帧 n, 所述 PHICH资源位 于所述特殊子帧 n之后的第 K个子帧中, 其中: 当 n=l或 6, K=5时, 确定 子帧 2、 4、 7和 9对应的 PHICH组号指示因子 为 1 , 该当前特殊子帧所 在的无线帧中除去所述子帧 2、 4、 7和 9的其他子帧对应的 ^^为 0; 利用 确定的 确定所述 PUSCH对应的 PHICH组号; 或者
上下行子帧配比为 0, 所述当前特殊子帧为子帧 n, 所述 PHICH资源位 于所述特殊子帧 n之后的第 K个子帧中, 其中: 当 n=l或 6, K=5时, 确定 子帧 1、 6、 4和 9对应的 ™cff为 1 , 该当前特殊子帧所在的无线帧中除去所 述子帧 1、 6、 4和 9的其他子帧对应的 ™cff为 0; 利用确定的 ™cff确定所述 PUSCH对应的 PHICH组号。
结合第一方面的第九种可能的实现方式, 在第十一种可能的实现方式中, 根据所述子帧位置确定所述 PHICH资源的 PHICH组号包括:
上下行子帧配比为 6, 所述当前特殊子帧为子帧 n, 所述 PHICH资源位 于所述特殊子帧 n之后的第 K个子帧中, 其中: 当 n=l或 6, K=4时, 确定 子帧 6和 8对应的 PHICH组号指示因子 ™cff为 1 , 该当前特殊子帧所在的无 线帧中除去所述子帧 6和 8的其他子帧对应的 H为 0; 利用确定的 H确 定所述 PUSCH对应的 PHICH组号; 或者
上下行子帧配比为 6, 所述当前特殊子帧为子帧 n, 所述 PHICH资源位 于所述特殊子帧 n之后的第 K个子帧中, 其中: 当 η=1或 6, Κ=4时, 确定 子帧 1和 4对应的 ^^为 1 ,该当前特殊子帧所在的无线帧中除去所述子帧 1 和 4的其他子帧对应的 为 0; 利用确定的 确定所述 PUSCH对应的 PHICH组号。
第二方面, 提供一种控制信道资源分配方法, 方法包括:
基站在当前特殊子帧接收物理上行共享信道 PUSCH;
所述基站根据接收所述 PUSCH的上行资源, 确定所述 PUSCH对应的物 理混合自动重传请求指示信道 PHICH资源, 所述上行资源中包含所述当前特 殊子帧;
所述基站在确定的 PHICH资源传输 PHICH。
结合第二方面, 在第一种可能的实现方式中, 所述基站根据接收所述 PUSCH的上行资源, 确定所述 PUSCH对应的 PHICH资源包括:
所述基站根据接收所述 PUSCH 的上行资源, 确定所述 PUSCH对应的 PHICH资源的子帧位置;
根据所述子帧位置确定所述 PHICH资源的 PHICH组号, 利用所述子帧 位置和所述 PHICH组号确定所述 PUSCH对应的 PHICH资源。
结合第一方面的第一种可能的实现方式, 在第二种可能的实现方式中, 当所述传输 PUSCH的上行资源的子帧只是所述当前特殊子帧,则所述基站根 据接收所述 PUSCH的上行资源, 确定所述 PUSCH对应的 PHICH资源的子 帧位置包括:
上下行子帧配比为 0, 所述当前特殊子帧为子帧 n, 则确定所述 PHICH 资源位于所述当前特殊子帧 n之后的第 K个子帧中, 其中: 当 n=l或 6时, K=5; 当 η=1或 6时, k=10; 或者
上下行子帧配比为 1 , 所述当前特殊子帧为子帧 n, 则确定所述 PHICH 资源位于所述当前特殊子帧 n之后的第 K个子帧中, 其中: 当 n=l或 6时, K=4; 当 η=1或 6时, k=5; 当 n=l或 6时, k= 8; 或者 上下行子帧配比为 2, 所述当前特殊子帧为子帧 n, 则确定所述 PHICH 资源位于所述当前特殊子帧 n之后的第 K个子帧中, 其中: 当 n=l或 6时, K=4; 当 η=1或 6时, k=5; 当 n=l或 6时, k=7; 当 n=l或 6时, k=8; 或者 上下行子帧配比为 3 , 所述当前特殊子帧为子帧 n, 则确定所述 PHICH 资源位于所述当前特殊子帧 n之后的第 K个子帧中, 其中: 当 n=l时, K=4、 5、 6、 7、 8或 9; 或者
上下行子帧配比为 4, 所述当前特殊子帧为子帧 η, 则确定所述 PHICH 资源位于所述当前特殊子帧 n之后的第 K个子帧中, 其中: 当 n=l时, K=4、 5、 6、 7、 8或 9; 或者
上下行子帧配比为 5 , 所述当前特殊子帧为子帧 η, 则确定所述 PHICH 资源位于所述当前特殊子帧 n之后的第 K个子帧中, 其中: 当 n=l时, K=4、 5、 6、 7、 8或 9; 或者
上下行子帧配比为 6, 所述当前特殊子帧为子帧 η, 则确定所述 PHICH 资源位于所述当前特殊子帧 n之后的第 K个子帧中, 其中:
n= =1或 6时, K=4;
n= =1或 6时, k=5;
n= =1或 6时, k=8;
n= =1或 6时, k=9;
n= =1或 6时, k=10。
结合第二方面的第一种可能的实现方式, 在第三种可能的实现方式中, 当所述传输 PUSCH 的上行资源的子帧包括所述当前特殊子帧以及与该当前 特殊子帧绑定的协作子帧, 则所述基站根据接收所述 PUSCH的上行资源, 确 定所述 PUSCH对应的 PHICH资源的子帧位置括:
根据所述协作子帧, 确定所述 PUSCH对应的 PHICH资源的子帧位置。 结合第二方面的第三种可能的实现方式, 在第四种可能的实现方式中, 所述协作子帧包括所述当前特殊子帧所在无线帧中的至少一个上行子帧和 /或 该无线帧中除所述当前特殊子帧的其他特殊子帧。 结合第二方面的第三或第四种可能的实现方式中的任意一种, 在第五种 可能的实现方式中, 所述基站根据接收所述 PUSCH 的上行资源, 确定所述 PUSCH对应的 PHICH资源的子帧位置包括:
根据所述协作子帧中的最后一个子帧 L,确定所述 PUSCH对应的 PHICH 资源的子帧位置。
结合第二方面的第五种可能的实现方式, 在第六种可能的实现方式中, 根据所述协作子帧中的最后一个子帧 L, 确定所述 PUSCH对应的 PHICH资 源的子帧位置包括:
上下行子帧配比为 0 ,当一个无线帧中的特殊子帧 1和 6与该无线帧中的 子帧 2、 3、 4、 7、 8和 9绑定时, 则确定所述 PHICH资源位于所述最后一个 子帧 L之后的第 K个子帧中, L=9 , K=6; 或者
上下行子帧配比为 1 ,当一个无线帧中的特殊子帧 1和 6与该无线帧中的 子帧 2、 3、 7和 8绑定时, 则确定所述 PHICH资源位于所述最后一个子帧 L 之后的第 K个子帧中, L=8, K=6; 或者
上下行子帧配比为 2 ,当一个无线帧中的特殊子帧 1和 6与该无线帧中的 子帧 2和 7绑定时, 则确定所述 PHICH资源位于所述最后一个子帧 L之后的 第 K个子帧中, L=7 , K=6、 9或 19; 或者
上下行子帧配比为 3 ,当一个无线帧中的特殊子帧 1与该无线帧中的子帧 2、 3和 4绑定时,则确定所述 PHICH资源位于所述最后一个子帧 L之后的第 K个子帧中, L=4, K=16; 或者
上下行子帧配比为 5 ,当一个无线帧中的特殊子帧 1与该无线帧中的子帧 2绑定时,则确定所述 PHICH资源位于所述子帧 2之后的第 K个子帧中, K=5、 15或 25; 或者
上下行子帧配比为 6 ,当一个无线帧中的特殊子帧 1和 6与该无线帧中的 子帧 2、 3、 4、 7和 8绑定时, 所述 PHICH资源位于所述最后一个子帧 L之 后的第 K个子帧中, L=8, K=17。
结合第二方面的第五种可能的实现方式, 在第七种可能的实现方式中, 上下行子帧配比为 2 ,当一个无线帧中的特殊子帧 1与该无线帧中的子帧 2绑 定形成第一绑定帧, 该无线帧中的特殊子帧 6与该无线帧中的子帧 7绑定形 成第二绑定帧时: 则所述^^据所述协作子帧中的最后一个子帧 L, 确定所述 PUSCH对应的 PHICH资源的子帧位置包括:
所述第一绑定帧对应的第一 PHICH资源位于所述最后一个子帧 L之后的 第 K1个子帧中, L=2, Kl=4;
所述第二绑定帧对应的第二 PHICH资源位于所述最后一个子帧 L之后的 第 K2个子帧中, L=7 , K2=4。
结合第二方面的第五种可能的实现方式, 在第八种可能的实现方式中, 上下行子帧配比为 3 , 当一个无线帧中的特殊子帧 1与该无线中的子帧 2和 3 绑定形成第一绑定帧, 该无线帧中子帧 4与下个无线帧的特殊子帧 1 以及所 述下个无线帧中子帧 2绑定形成第二绑定帧, 下个无线帧中子帧 3和 4绑定 形成第三绑定帧时: 则所述才艮据所述协作子帧中的最后一个子帧 L,确定所述 PUSCH对应的 PHICH资源的子帧位置包括:
所述第一绑定帧对应的第一 PHICH资源位于所述最后一个子帧 L之后的 第 K个子帧中, L=3 , K=6;
所述第二绑定帧对应的第二 PHICH资源位于所述最后一个子帧 L之后的 第 K个子帧中, L=2, K=6;
所述第三绑定帧对应的第三 PHICH资源位于所述最后一个子帧 L之后的 第 K个子帧中, L=4, K=6。
结合第二方面的第一至八种可能的实现方式中任意一种, 在第九种可能 的实现方式中, 根据所述子帧位置确定所述 PHICH资源的 PHICH组号: 根据所述 PHICH资源对应的子帧位置,利用 PHICH组号指示因子 H 确定所述 PUSCH对应的 PHICH组号。
结合第二方面的第九种可能的实现方式, 在第十种可能的实现方式中, 根据所述子帧位置确定所述 PHICH资源的 PHICH组号包括: 上下行子帧配比为 0, 所述当前特殊子帧为子帧 n, 所述 PHICH资源位 于所述特殊子帧 n之后的第 K个子帧中, 其中: 当 n=l或 6, K=5时, 确定 子帧 2、 4、 7和 9对应的 PHICH组号指示因子 为 1 , 该当前特殊子帧所 在的无线帧中除去所述子帧 2、 4、 7和 9的其他子帧对应的 ^^为 0; 利用 确定的 确定所述 PUSCH对应的 PHICH组号; 或者
上下行子帧配比为 0, 所述当前特殊子帧为子帧 n, 所述 PHICH资源位 于所述特殊子帧 n之后的第 K个子帧中, 其中: 当 n=l或 6, K=5时, 确定 子帧 1、 6 、 4和 9对应的 ™cff为 1 , 该当前特殊子帧所在的无线帧中除去所 述子帧 n=l、 6、 4和 9的其他子帧对应的 为 0; 利用确定的 确定所 述 PUSCH对应的 PHICH组号。
结合第二方面的第九种可能的实现方式, 在第十一种可能的实现方式中, 根据所述子帧位置确定所述 PHICH资源的 PHICH组号包括:
上下行子帧配比为 6, 所述当前特殊子帧为子帧 n, 所述 PHICH资源位 于所述特殊子帧 n之后的第 K个子帧中, 其中: 当 n=l或 6, K=4时, 确定 子帧 6和 8对应的 PHICH组号指示因子 ™cff为 1 , 该当前特殊子帧所在的无 线帧中除去所述子帧 6和 8的其他子帧对应的 H为 0; 利用确定的 H确 定所述 PUSCH对应的 PHICH组号; 或者
上下行子帧配比为 6, 所述当前特殊子帧为子帧 n, 所述 PHICH资源位 于所述特殊子帧 n之后的第 K个子帧中, 其中: 当 n=l或 6, K=4时, 确定 子帧 1和 4对应的 PHICH组号指示因子 ^^为 1 , 该当前特殊子帧所在的无 线帧中除去所述子帧 1和 4的其他子帧对应的 为 0; 利用确定的 确 定所述 PUSCH对应的 PHICH组号。
第三方面, 提供一种用户设备, 该用户设备包括:
发送单元, 用于在当前特殊子帧发送物理上行共享信道 PUSCH;
确定单元, 用于根据传输所述 PUSCH的上行资源, 确定所述 PUSCH对 应的物理混合自动重传请求指示信道 PHICH资源, 所述传输 PUSCH的上行 资源中包含所述当前特殊子帧;
接收单元, 用于在确定的 PHICH资源接收 PHICH。
结合第三方面, 在第一种可能的实现方式中, 所述确定单元具体包括: 子帧位置确定模块, 用于根据传输所述 PUSCH 的上行资源, 确定所述
PUSCH对应的 PHICH资源的子帧位置;
资源组号确定模块, 用于根据所述子帧位置确定所述 PHICH 资源的
PHICH组号, 利用所述子帧位置和所述 PHICH组号确定所述 PUSCH对应的
PHICH资源。
结合第三方面的第一种可能的实现方式, 在第二种可能的实现方式中, 当所述传输 PUSCH的上行资源的子帧只是所述当前特殊子帧,则所述子帧位 置确定模块还用于:
上下行子帧配比为 0, 所述当前特殊子帧为子帧 n, 确定所述 PHICH资 源位于所述当前特殊子帧 n之后的第 K个子帧中,其中:当 n=l或 6时, K=5; 当 η=1或 6时, k=10; 或者
上下行子帧配比为 1 , 所述当前特殊子帧为子帧 n, 确定所述 PHICH资 源位于所述当前特殊子帧 n之后的第 K个子帧中,其中:当 n=l或 6时, K=4; 当 η=1或 6时, k=5; 当 n=l或 6时, k= 8; 或者
上下行子帧配比为 2, 所述当前特殊子帧为子帧 n, 确定所述 PHICH资 源位于所述当前特殊子帧 n之后的第 K个子帧中,其中:当 n=l或 6时, K=4; 当 η=1或 6时, k=5; 当 n=l或 6时, k=7; 当 n=l或 6时, k=8; 或者
上下行子帧配比为 3 , 所述当前特殊子帧为子帧 n, 确定所述 PHICH资 源位于所述当前特殊子帧 n之后的第 K个子帧中, 其中: 当 n=l时, K=4、 5、 6、 7、 8或 9; 或者
上下行子帧配比为 4, 所述当前特殊子帧为子帧 η, 确定所述 PHICH资 源位于所述当前特殊子帧 n之后的第 K个子帧中, 其中: 当 n=l时, K=4、 5、 6、 7、 8或 9; 或者 上下行子帧配比为 5 , 所述当前特殊子帧为子帧 n, 确定所述 PHICH资 源位于所述当前特殊子帧 n之后的第 K个子帧中, 其中: 当 n=l时, K=4、 5、 6、 7、 8或 9; 或者
上下行子帧配比为 6, 所述当前特殊子帧为子帧 η, 确定所述 PHICH资 源位于所述当前特殊子帧 n之后的第 K个子帧中, 其中:
n= =1或 6时, K=4;
n= =1或 6时, k=5;
n= =1或 6时, k=8;
n= =1或 6时, k=9;
n= =1或 6时, k=10。
结合第三方面的第一种可能的实现方式, 在第三种可能的实现方式中, 当所述传输 PUSCH 的上行资源的子帧包括所述当前特殊子帧以及与该当前 特殊子帧绑定的协作子帧, 则所述子帧位置确定模块还用于根据所述协作子 帧, 确定所述 PUSCH对应的 PHICH资源的子帧位置。
结合第三方面的第三种可能的实现方式, 在第四种可能的实现方式中, 在无线帧中的至少一个上行子帧和 /或该无线帧中除所述当前特殊子帧的其他 特殊子帧, 确定所述 PUSCH对应的 PHICH资源的子帧位置。
结合第三方面的第三或第四种可能的实现方式中的任意一种, 在第五种 可能的实现方式中, 所述子帧位置确定模块还用于根据所述协作子帧中的最 后一个子帧 L, 确定所述 PUSCH对应的 PHICH资源的子帧位置。
结合第三方面的第五种可能的实现方式, 在第六种可能的实现方式中, 所述子帧位置确定模块还用于:
上下行子帧配比为 0,当一个无线帧中的特殊子帧 1和 6与该无线帧中的 子帧 2、 3、 4、 7、 8和 9绑定时, 确定所述 PHICH资源位于所述最后一个子 帧 L之后的第 K个子帧中, L=9, K=6; 或者
上下行子帧配比为 1 ,当一个无线帧中的特殊子帧 1和 6与该无线帧中的 子帧 2、 3、 7和 8绑定时, 确定所述 PHICH资源位于所述最后一个子帧 L之 后的第 K个子帧中, L=8, K=6; 或者
上下行子帧配比为 2 ,当一个无线帧中的特殊子帧 1和 6与该无线帧中的 子帧 2和 7绑定时,确定所述 PHICH资源位于所述最后一个子帧 L之后的第 Κ个子帧中, L=7 , K=6、 9或 19; 或者
上下行子帧配比为 3 ,当一个无线帧中的特殊子帧 1与该无线帧中的子帧 2、 3和 4绑定时,确定所述 PHICH资源位于所述最后一个子帧 L之后的第 Κ 个子帧中, L=4 , K=16; 或者
上下行子帧配比为 5 ,当一个无线帧中的特殊子帧 1与该无线帧中的子帧 2绑定时, 确定所述 PHICH资源位于所述最后一个子帧 L之后的第 K个子帧 中, L=2 , K=5、 15或 25; 或者
上下行子帧配比为 6 ,当一个无线帧中的特殊子帧 1和 6与该无线帧中的 子帧 2、 3、 4、 7和 8绑定时, 所述 PHICH资源位于所述最后一个子帧 L之 后的第 K个子帧中, L=8, K=17。
结合第三方面的第五种可能的实现方式, 在第七种可能的实现方式中, 上下行子帧配比为 2 ,当一个无线帧中的特殊子帧 1与该无线帧中的子帧 2绑 定形成第一绑定帧, 该无线帧中的特殊子帧 6与该无线帧中的子帧 7绑定形 成第二绑定帧时: 所述子帧位置确定模块还用于:
确定所述第一绑定帧对应的第一 PHICH资源位于所述最后一个子帧 L之 后的第 K1个子帧中, L=2, Kl=4;
确定所述第二绑定帧对应的第二 PHICH资源位于所述最后一个子帧 L之 后的第 K2个子帧中, L=7 , K2=4。
结合第三方面的第五种可能的实现方式, 在第八种可能的实现方式中, 上下行子帧配比为 3 , 当一个无线帧中的特殊子帧 1与该无线中的子帧 2和 3 绑定形成第一绑定帧, 该无线帧中子帧 4与下个无线帧的特殊子帧 1 以及所 述下个无线帧中子帧 2绑定形成第二绑定帧, 所述下个无线帧中子帧 3和 4 绑定形成第三绑定帧时: 所述子帧位置确定模块还用于: 确定所述第一绑定帧对应的第一 PHICH资源位于所述最后一个子帧 L之 后的第 K个子帧中, L=3 , K=6;
确定所述第二绑定帧对应的第二 PHICH资源位于所述最后一个子帧 L之 后的第 K个子帧中, L=2, K=6;
确定所述第三绑定帧对应的第三 PHICH资源位于所述最后一个子帧 L之 后的第 K个子帧中, L=4, K=6。
结合第三方面的第一至八种可能的实现方式中任意一种, 在第九种可能 的实现方式中, 所述资源组号确定模块还用于根据所述 PHICH资源对应的子 帧位置, 利用 PHICH组号指示因子 确定所述 PUSCH对应的 PHICH组 号。
结合第三方面的第九种可能的实现方式, 在第十种可能的实现方式中, 所述资源组号确定模块还用于:
上下行子帧配比为 0, 所述当前特殊子帧为子帧 n, 所述 PHICH资源位 于所述特殊子帧 n之后的第 K个子帧中, 其中: 当 n=l或 6, K=5时, 确定 子帧 2、 4、 7和 9对应的 PHICH组号指示因子 为 1 , 该当前特殊子帧所 在的无线帧中除去所述子帧 2、 4、 7和 9的其他子帧对应的 ^^为 0; 利用 确定的 确定所述 PUSCH对应的 PHICH组号; 或者
上下行子帧配比为 0, 所述当前特殊子帧为子帧 n, 所述 PHICH资源位 于所述特殊子帧 n之后的第 K个子帧中, 其中: 当 n=l或 6, K=5时, 确定 子帧 1、 6、 4和 9对应的 ™cff为 1 , 该当前特殊子帧所在的无线帧中除去所 述子帧 1、 6、 4和 9的其他子帧对应的 ™cff为 0; 利用确定的 ™cff确定所述 PUSCH对应的 PHICH组号。
结合第三方面的第九种可能的实现方式, 在第十一种可能的实现方式中, 所述资源组号确定模块还用于:
上下行子帧配比为 6, 所述当前特殊子帧为子帧 n, 所述 PHICH资源位 于所述特殊子帧 n之后的第 K个子帧中, 其中: 当 n=l或 6, K=4时, 确定 子帧 6和 8对应的 PHICH组号指示因子 ™cff为 1 , 该当前特殊子帧所在的无 线帧中除去所述子帧 6和 8的其他子帧对应的 H为 0; 利用确定的 H确 定所述 PUSCH对应的 PHICH组号; 或者
上下行子帧配比为 6, 所述当前特殊子帧为子帧 n, 所述 PHICH资源位 于所述特殊子帧 n之后的第 K个子帧中, 其中: 当 n=l或 6, K=4时, 确定 子帧 1和 4对应的 ^^为 1 ,该当前特殊子帧所在的无线帧中除去所述子帧 1 和 4的其他子帧对应的 为 0; 利用确定的 确定所述 PUSCH对应的 PHICH组号。
第四方面, 提供一种基站, 该基站包括:
接收单元, 用于在当前特殊子帧接收物理上行共享信道 PUSCH;
确定单元, 用于根据接收所述 PUSCH的上行资源, 确定所述 PUSCH对 应的物理混合自动重传请求指示信道 PHICH资源, 所述上行资源中包含所述 当前特殊子帧;
传输单元, 用于在确定的 PHICH资源传输 PHICH。
结合第四方面, 在第一种可能的实现方式中, 所述确定单元包括: 子帧位置确定模块, 用于根据接收所述 PUSCH 的上行资源, 确定所述
PUSCH对应的 PHICH资源的子帧位置;
资源组号确定模块, 用于根据所述子帧位置确定所述 PHICH 资源的
PHICH组号, 利用所述子帧位置和所述 PHICH组号确定所述 PUSCH对应的
PHICH资源。
结合第四方面的第一种可能的实现方式, 在第二种可能的实现方式中, 当所述传输 PUSCH的上行资源的子帧只是所述当前特殊子帧,则子帧位置确 定模块还用于:
上下行子帧配比为 0, 所述当前特殊子帧为子帧 n, 确定所述 PHICH资 源位于所述当前特殊子帧 n之后的第 K个子帧中,其中:当 n=l或 6时, K=5; 当 η=1或 6时, k=10; 或者 上下行子帧配比为 1 , 所述当前特殊子帧为子帧 n, 确定所述 PHICH资 源位于所述当前特殊子帧 n之后的第 K个子帧中,其中:当 n=l或 6时, K=4; 当 η=1或 6时, k=5; 当 n=l或 6时, k= 8; 或者
上下行子帧配比为 2, 所述当前特殊子帧为子帧 n, 确定所述 PHICH资 源位于所述当前特殊子帧 n之后的第 K个子帧中,其中:当 n=l或 6时, K=4; 当 η=1或 6时, k=5; 当 n=l或 6时, k=7; 当 n=l或 6时, k=8; 或者
上下行子帧配比为 3 , 所述当前特殊子帧为子帧 n, 确定所述 PHICH资 源位于所述当前特殊子帧 n之后的第 K个子帧中, 其中: 当 n=l时, K=4、 5、 6、 7、 8或 9; 或者
上下行子帧配比为 4, 所述当前特殊子帧为子帧 η, 确定所述 PHICH资 源位于所述当前特殊子帧 n之后的第 K个子帧中, 其中: 当 n=l时, K=4、 5、 6、 7、 8或 9; 或者
上下行子帧配比为 5 , 所述当前特殊子帧为子帧 η, 确定所述 PHICH资 源位于所述当前特殊子帧 n之后的第 K个子帧中, 其中: 当 n=l时, K=4、 5、 6、 7、 8或 9; 或者
上下行子帧配比为 6, 所述当前特殊子帧为子帧 η, 确定所述 PHICH资 源位于所述当前特殊子帧 n之后的第 K个子帧中, 其中:
当 n=l或 6时, K=4;
当 η=1或 6时, k=5;
当 n=l或 6时, k=8;
当 n=l或 6时, k=9;
当 n=l或 6时, k=10。
结合第四方面的第一种可能的实现方式, 在第三种可能的实现方式中, 当所述传输 PUSCH 的上行资源的子帧包括所述当前特殊子帧以及与该当前 特殊子帧绑定的协作子帧, 则子帧位置确定模块还用于根据所述协作子帧, 确定所述 PUSCH对应的 PHICH资源的子帧位置。
结合第四方面的第三种可能的实现方式, 在第四种可能的实现方式中, 子帧位置确定模块还用于利用所述协作子帧包括所述当前特殊子帧所在无线 帧中的至少一个上行子帧和 /或该无线帧中除所述当前特殊子帧的其他特殊子 帧, 确定所述 PUSCH对应的 PHICH资源的子帧位置。
结合第四方面的第三或第四种可能的实现方式中的任意一种, 在第五种 可能的实现方式中, 所述子帧位置确定模块还用于根据所述协作子帧中的最 后一个子帧 L, 确定所述 PUSCH对应的 PHICH资源的子帧位置。
结合第四方面的第五种可能的实现方式, 在第六种可能的实现方式中, 所述子帧位置确定模块还用于:
上下行子帧配比为 0 ,当一个无线帧中的特殊子帧 1和 6与该无线帧中的 子帧 2、 3、 4、 7、 8和 9绑定时, 确定所述 PHICH资源位于所述最后一个子 帧 L之后的第 K个子帧中, L=9, K=6; 或者
上下行子帧配比为 1 ,当一个无线帧中的特殊子帧 1和 6与该无线帧中的 子帧 2、 3、 7和 8绑定时, 确定所述 PHICH资源位于所述最后一个子帧 L之 后的第 K个子帧中, L=8, K=6; 或者
上下行子帧配比为 2 ,当一个无线帧中的特殊子帧 1和 6与该无线帧中的 子帧 2和 7绑定时,确定所述 PHICH资源位于所述最后一个子帧 L之后的第 K个子帧中, L=7 , K=6、 9或 19; 或者
上下行子帧配比为 3 ,当一个无线帧中的特殊子帧 1与该无线帧中的子帧 2、 3和 4绑定时,确定所述 PHICH资源位于所述最后一个子帧 L之后的第 Κ 个子帧中, L=4 , K=16; 或者
上下行子帧配比为 5 ,当一个无线帧中的特殊子帧 1与该无线帧中的子帧 2绑定时, 则确定所述 PHICH资源位于所述最后一个子帧 L之后的第 K个子 帧中, L=2, K=5、 15或 25; 或者
上下行子帧配比为 6 ,当一个无线帧中的特殊子帧 1和 6与该无线帧中的 子帧 2、 3、 4、 7和 8绑定时, 所述 PHICH资源位于所述最后一个子帧 L之 后的第 K个子帧中, L=8, K=17。
结合第四方面的第五种可能的实现方式, 在第七种可能的实现方式中, 上下行子帧配比为 2 ,当一个无线帧中的特殊子帧 1与该无线帧中的子帧 2绑 定形成第一绑定帧, 该无线帧中的特殊子帧 6与该无线帧中的子帧 7绑定形 成第二绑定帧时: 所述子帧位置确定模块还用于:
确定所述第一绑定帧对应的第一 PHICH资源位于所述最后一个子帧 L之 后的第 K1个子帧中, L=2, Kl=4;
确定所述第二绑定帧对应的第二 PHICH资源位于所述最后一个子帧 L之 后的第 K2个子帧中, L=7 , K2=4。
结合第四方面的第五种可能的实现方式, 在第八种可能的实现方式中, 上下行子帧配比为 3 , 当一个无线帧中的特殊子帧 1与该无线中的子帧 2和 3 绑定形成第一绑定帧, 该无线帧中子帧 4与下个无线帧的特殊子帧 1 以及所 述下个无线帧中子帧 2绑定形成第二绑定帧, 下个无线帧中子帧 3和 4绑定 形成第三绑定帧时: 所述子帧位置确定模块还用于:
确定所述第一绑定帧对应的第一 PHICH资源位于所述最后一个子帧 L之 后的第 K个子帧中, L=3 , K=6;
确定所述第二绑定帧对应的第二 PHICH资源位于所述最后一个子帧 L之 后的第 K个子帧中, L=2, K=6;
确定所述第三绑定帧对应的第三 PHICH资源位于所述最后一个子帧 L之 后的第 K个子帧中, L=4, K=6。
结合第四方面的第一至八种可能的实现方式中任意一种, 在第九种可能 的实现方式中, 所述资源组号确定模块还用于根据所述 PHICH资源对应的子 帧位置, 利用 PHICH组号指示因子 确定所述 PUSCH对应的 PHICH组 号。
结合第四方面的第九种可能的实现方式, 在第十种可能的实现方式中, 所述资源组号确定模块还用于:
上下行子帧配比为 0 , 所述当前特殊子帧为子帧 n, 所述 PHICH资源位 于所述特殊子帧 n之后的第 K个子帧中, 其中: 当 n=l或 6 , K=5时, 确定 子帧 2、 4、 7和 9对应的 PHICH组号指示因子 为 1 , 该当前特殊子帧所 在的无线帧中除去所述子帧 2、 4、 7和 9的其他子帧对应的 ^^为 0; 利用 确定的 确定所述 PUSCH对应的 PHICH组号; 或者
上下行子帧配比为 0, 所述当前特殊子帧为子帧 n, 所述 PHICH资源位 于所述特殊子帧 n之后的第 K个子帧中, 其中: 当 n=l或 6, K=5时, 确定 子帧 1、 6 、 4和 9对应的 ™cff为 1 , 该当前特殊子帧所在的无线帧中除去所 述子帧 n=l、 6、 4和 9的其他子帧对应的 为 0; 利用确定的 确定所 述 PUSCH对应的 PHICH组号。
结合第四方面的第九种可能的实现方式, 在第十一种可能的实现方式中, 所述资源组号确定模块还用于:
上下行子帧配比为 6, 所述当前特殊子帧为子帧 n, 所述 PHICH资源位 于所述特殊子帧 n之后的第 K个子帧中, 其中: 当 n=l或 6, K=4时, 确定 子帧 6和 8对应的 PHICH组号指示因子 ™cff为 1 , 该当前特殊子帧所在的无 线帧中除去所述子帧 6和 8的其他子帧对应的 H为 0; 利用确定的 H确 定所述 PUSCH对应的 PHICH组号; 或者
上下行子帧配比为 6, 所述当前特殊子帧为子帧 n, 所述 PHICH资源位 于所述特殊子帧 n之后的第 K个子帧中, 其中: 当 n=l或 6, K=4时, 确定 子帧 1和 4对应的 PHICH组号指示因子 ^^为 1 , 该当前特殊子帧所在的无 线帧中除去所述子帧 1和 4的其他子帧对应的 为 0; 利用确定的 确 定所述 PUSCH对应的 PHICH组号。
本发明所提供的方法和装置将 UpPTS用于 PUSCH的传输, 相当于增加 了单位时间内上行传输的数据量, 从而增加了 TDD系统上行的吞吐量;
另外, 在确定所述下行 PHICH 的接收位置的同时, 还对应提供了调整 PHICH资源对应的 PHICH组号的方法, 从而提供了新确定的 PUSCH对应的 PHICH资源与原有配比冲突的解决办法。 附图说明
图 1为现有技术中特殊子帧的结构示意图;
图 2为本发明实施例一提供的一种控制信道资源分配方法的流程示意图; 图 3为本发明实施例提供的确定所述 PUSCH对应的 PHICH资源的方法 流程示意图;
图 4为本发明实施例四提供的一种控制信道资源分配方法的流程示意图; 图 5为本发明实施例提供的一种用户设备的结构示意图;
图 6为本发明实施例提供的一种基站的结构示意图。 具体实施方式
为使本发明实施例的目的、 技术方案和优点更加清楚, 下面将结合本发 明实施例中的附图, 对本发明实施例中的技术方案进行清楚、 完整地描述, 显然, 所描述的实施例是本发明一部分实施例, 而不是全部的实施例。 基于 本发明中的实施例, 本领域普通技术人员在没有作出创造性劳动前提下所获 得的所有其他实施例, 都属于本发明保护的范围。
在 TDD系统中, 由于上下行子帧以时分双工的方式工作, 对于 UE, 可 用于上行传输数据的子帧数有限。 针对这一问题, 可实现的解决方案是: 在 不改变特殊子帧总长度 1ms的条件下, 通过改变特殊时隙 GP和 UpPTS的长 度, 增力。 UpPTS符号数, 可从 UpPTS获得额外的资源用来传输上行 PUSCH ( Physical Uplink Shared Channel, 物理上行共享信道), 即传输上行数据。
使用特殊子帧传输上行 PUSCH的方法中, 还需要釆用基于 ACK/NACK 的 HARQ ( Hybrid Automatic Repeat Request, 混合自动重传请求)技术提高解 码正确率。 基于上述情况, 本发明实施例所提供的方法提供一种方案, 确定 用于上行数据传输的特殊子帧对应的下行 PHICH ( Physical Hybrid- ARQ Indicator Channel, 物理 HARQ指示信道) 的位置分配和时频资源。
实施例一 如图 2所示, 针对上述问题, 本发明实施例提供一种控制信道资源分配 方法, 方法包括:
步骤 201 , UE ( User Experience, 用户设备)在当前特殊子帧发送 PUSCH ( Physical Uplink Shared Channel, 物理上行共享信道 );
其中,使用特殊子帧传输是指:将特殊子帧中的 UpPTS ( Uplink Pilot Time Slot, 上行导频时隙)作为传输上行数据的子帧。
步骤 202, 所述 UE根据传输所述 PUSCH的上行资源,确定所述 PUSCH 对应的 PHICH资源,所述传输 PUSCH的上行资源中包含所述当前特殊子帧; 在本发明实施例中, 所述传输 PUSCH 的上行资源包括所述用于传输 PUSCH 的 UpPTS , 也可以包括上行子帧 (或称为上行的普通子帧 (normal subframe ) )。具体情况可以是: A,该上行资源可以是 1个特殊子帧中的 UpPTS; B, 该上行资源可以是多个特殊子帧中的 UpPTS, 如位于 1无线帧中的 2个 UpPTS; C, 该上行资源还可以是包括至少一个 UpPTS和至少一个上行子帧。 在上述 B和 C中上行资源分布在多个子帧中的情况, 可以称该多个子帧为绑 定子帧。
步骤 203 , 在确定的 PHICH资源接收 PHICH。
因为现有 LTE 系统釆用基于 ACK/NACK的 HARQ技术, 上行链路的 HARQ的具体过程为:发送端 UE通过 PUSCH信道发送一个数据分组包给接 收端 eNB后暂停, 等待 eNB的确认信息。 数据包经过一定传输时延后到达接 收端 eNB后,由 eNB对其进行校验,若接收正确,则通过下行控制信道 PHICH 反馈确认(ACK )信息, 若接收错误则保留收到的有用信息, 并反馈不确认 ( NACK )信息。 当 UE收到 ACK信息, 就发送新的数据, 否则重新发送上 次传输的数据包,由 eNB将重传数据包与之前收到的数据包合并后联合解码, 提高解码正确率。
从 UE传输上行 PUSCH, eNB处理并反馈下行 PHICH, 到 UE接收并处 理 PHICH信息后重传 PUSCH或者传输新的 PUSCH, 称为一个 HARQ进程 的 RTT (round trip time, 往返时间)。 从发送上行 PUSCH到接收下行 PHICH 的时间, 考虑传输时延和 eNB处理时间, 不应小于 4ms; 同样, 从接收下行 PHICH到新传或者重传上行 PUSCH, 考虑传输时延和 UE处理时间, 不应小 于 4ms。 RTT的值不小于 8ms。
基于传输 PUSCH的上行资源可以有多种组成情况以及 HARQ技术的特 点, 所以本发明实施例中有多种方式实现根据传输 PUSCH的上行资源, 确定 所述 PUSCH对应的 PHICH资源。 在具体实现时的主要原则是:
从接收 PHICH到传输 PUSCH的时间和传输 PUSCH到接收反馈的 PHICH 的时间最小化, 同时满足基站或 UE最小的时间处理需求, 如 3ms。
尽量避免一个子帧内的 PHICH资源对应不同的 HARQ进程。
尽量复用当前的 RTT值(即数据包初传到重传的时间)或者尽可能少的 增加额外的 RTT值。
上述原则仅仅是设计 UpPTS传输 PUSCH时可以参考的原则, 并非是必 须要满足的原则。 具体在设计 UpPTS传输 PUSCH时, 可以仅考虑上述原则 中的部分原则, 如仅考虑涉及 RTT的原则, 或者考虑涉及 RTT和 HARQ进 程的原则等。 在上述原则的指导下, 所述步骤 102 中所述 UE根据传输所述 PUSCH的上行资源,确定所述 PUSCH对应的 PHICH资源的具体实现步骤包 括(如图 3所示):
步骤 301 , UE根据传输所述 PUSCH的上行资源,确定所述 PUSCH对应 的 PHICH资源的子帧位置;
步骤 302,根据所述子帧位置确定所述 PHICH资源的 PHICH组号, 利用 所述子帧位置和所述 PHICH组号确定所述 PUSCH对应的 PHICH资源。
根据上述方法, 以下结合图表以及各种上下行子帧配比对本发明实施例 所提供的方法做详细描述:
一、 当所述传输 PUSCH的上行资源的子帧只是所述当前特殊子帧, UE 根据传输所述 PUSCH的上行资源, 确定所述 PUSCH对应的 PHICH资源的 子帧位置包括:
具体的, 结合表 1所示的 LTE的 TDD系统定义的 7种上下行子帧配比, 以下对各配比情况下的 PHICH资源可实现方案进行详细描述:
1、上下行子帧配比为 0,所述当前特殊子帧为子帧 n,则确定所述 PHICH 资源位于所述当前特殊子帧 n之后的第 K个子帧中, 其中:
当 n=l或 6时, K=5;
当 η=1或 6时, Κ=10;
具体地, 当用户设备 UE在特殊子帧 1或 6传输 PUSCH; 则对应的确定 所述 PHICH资源位于特殊子帧 1或 6之后的第 Κ个子帧中, 其中, K值的具 体可选值如表 2所示:
Figure imgf000025_0001
表 2
在具体的子帧结构中, 对于 UL/DL configuration 0(上下行子帧配比 0);
A, 如表 2所示, Kl=5的情况下, 在特殊子帧 η=1上传输的 PUSCH, UE在子帧 n=l之后的第 5 (表 2中第 4行第 3列交叉点所对应的数值 )个子 帧接收对应的 HARQ下行 PHICH反馈信息 (即在确定的 PHICH资源接收 PHICH ), 即在子帧 n=6上接收所述 PUSCH对应的 HARQ下行 PHICH反馈 信息; 在子帧 n=6上传输的 PUSCH, UE在子帧 6之后的第 5 (表 2中第 4 行第 8列交叉点所对应的数值)个子帧接收对应的 HARQ下行 PHICH反馈信 息(即 UE在子帧 n=l上接收所述 PUSCH对应的 HARQ下行 PHICH反馈信 息)。
B, 如表 2所示, K2=10的情况下, 在特殊子帧 η=1上传输的 PUSCH, UE在子帧 n=l之后的第 10个子帧接收对应的 HARQ下行 PHICH反馈信息
(即在确定的 PHICH资源接收 PHICH ), 即在下一个无线帧的子帧 n=l上接 收所述 PUSCH对应的 HARQ下行 PHICH反馈信息; 在子帧 n=6上传输的 PUSCH, UE在下一个无线帧的子帧 n=6上接收所述 PUSCH对应的 HARQ 下行 PHICH反馈信息。
上述实施例中, 确定所述 PHICH资源位于所述当前特殊子帧之后的第 5 或第 10个子帧中,避免了一个子帧上接收大于 2个 PHICH的情况, 对现有协 议改动最小, 同时较好的满足了传输 PUSCH到接收 PHICH的时间间隔满足 基站最小处理时间的需求,传输时延较小; 或者, PHICH后传输 PUSCH的时 间间隔满足 UE最小处理时间的需求,传输时延较小。
传输传输时延较小。
2、上下行子帧配比为 1 ,所述当前特殊子帧为子帧 n,则确定所述 PHICH 资源位于所述当前特殊子帧 n之后的第 K个子帧中, 其中:
当 n=l或 6时, K=4;
当 η=1或 6时, Κ=5;
当 η=1或 6时, Κ= 8。
具体地, 当用户设备 UE在特殊子帧 1或 6传输 PUSCH; 则对应的确定 所述 PHICH资源位于特殊子帧 1或 6之后的 K个子帧中, 其中, K值的具体 可选值如表 3所示:
Figure imgf000026_0001
表 3
在具体的子帧结构中, 对于 UL/DL configurationl (上下行子帧配比 1);
A, 如表 3所示, Kl=4的情况下, 在特殊子帧 η=1上传输的 PUSCH, UE在子帧 n=l之后的第 4个子帧接收对应的 HARQ下行 PHICH反馈信息(即 在确定的 PHICH资源接收 PHICH ), 即在子帧 m=5上接收所述 PUSCH对应 的 HARQ下行 PHICH反馈信息; 在子帧 n=6上传输的 PUSCH, UE在下一 个无线帧的子帧 m=0上接收所述 PUSCH对应的 HARQ下行 PHICH反馈信息。 上述实施例中, 确定所述 PHICH资源位于所述当前特殊子帧之后的第 4 个子帧中, 避免了一个子帧上接收大于 1个 PHICH的情况, 对现有协议改动 最小; 同时传输 PUSCH到接收 PHICH的时间间隔较好的满足了基站最小处 理时间的需求, 传输时延较小。
B , 如表 3所示, K2=5的情况下, 在特殊子帧 η=1上传输的 PUSCH, UE在子帧 n=l之后的第 5个子帧接收对应的 HARQ下行 PHICH反馈信息(即 在确定的 PHICH资源接收 PHICH ), 即在子帧 n=6上接收所述 PUSCH对应 的 HARQ下行 PHICH反馈信息; 在子帧 n=6上传输的 PUSCH, UE在下个 无线帧的子帧 n=l上接收所述 PUSCH对应的 HARQ下行 PHICH反馈信息。
C, 如表 3所示, K3=8的情况下, 在特殊子帧 η=1上传输的 PUSCH, UE在子帧 1之后的第 8个子帧接收对应的 HARQ下行 PHICH反馈信息 (即 在确定的 PHICH资源接收 PHICH ), 即在子帧 m=9上接收所述 PUSCH对应 的 HARQ下行 PHICH反馈信息; 在子帧 n=6上传输的 PUSCH, UE在下一 个无线帧的子帧 m=4上接收所述 PUSCH对应的 HARQ下行 PHICH反馈信息。
上述实施例中, 确定所述 PHICH资源位于所述当前特殊子帧之后的第 8 个子帧中, 避免了一个子帧上接收大于 2个 PHICH的情况, 对现有协议改动 较小; 同时传输 PUSCH到接收 PHICH的时间间隔较好的满足了基站最小处 理时间的需求, 传输时延较小。
3、上下行子帧配比为 2 ,所述当前特殊子帧为子帧 n,则确定所述 PHICH 资源位于所述当前特殊子帧 n之后的第 K个子帧中, 其中:
当 n=l或 6时, K=4;
当 η=1或 6时, Κ=5;
当 η=1或 6时, Κ=7;
当 η=1或 6时, Κ=8。
具体地, 当用户设备 UE在特殊子帧 1或 6传输 PUSCH; 则对应的确定 所述 PHICH资源位于特殊子帧 1或 6之后的 K个子帧中, 其中, K值的具体 可选值如表 4所示:
Figure imgf000028_0001
表 4
在具体的子帧结构中, 对于 UL/DL configuration2(上下行子帧配比 2); 如表 4所示, Kl=4的情况下, 在特殊子帧 η=1上传输的 PUSCH, UE在 子帧 1之后的第 4个子帧接收对应的 HARQ下行 PHICH反馈信息(在确定的 PHICH资源接收 PHICH ), 即在子帧 m=5上接收所述 PUSCH对应的 HARQ 下行 PHICH反馈信息; 在子帧 n=6上传输的 PUSCH, UE在下一个无线帧的 子帧 m=0上接收所述 PUSCH对应的 HARQ下行 PHICH反馈信息。
上述表 4中: K2=5, Κ3=7和 Κ4=8中, 当 UE在特殊子帧 n=l或 6上 传输 PUSCH, UE会在特定子帧接收对应的 HARQ下行 PHICH反馈信息,结 合表 4所给出的 K值, 所述特定子帧的确定方式与 Kl=4相同。 此处不再赘 述。
4、上下行子帧配比为 3 ,所述当前特殊子帧为子帧 η,则确定所述 PHICH 资源位于所述当前特殊子帧 n之后的第 K个子帧中, 其中: 当 n=l时, K=4、 5、 6、 7、 8或 9;
具体地, 当用户设备 UE在特殊子帧 η=1传输 PUSCH; 则对应的确定所 述 PHICH资源位于特殊子帧 1之后的第 K个子帧中, 其中, K值的具体可选 值如表 5所示:
Figure imgf000028_0002
Kl=4 4
K2=5 5
Κ3=6 6
Κ4=7 7
Κ5=8 8
Κ6=9 9
表 5
在具体的子帧结构中, 对于 UL/DL configuration3(上下行子帧配比 3); 如表 5所示, Kl=4的情况下, 在特殊子帧 η=1上传输的 PUSCH, UE在 子帧 1之后的第 4个子帧接收对应的 HARQ下行 PHICH反馈信息(在确定的 PHICH资源接收 PHICH ), 即在子帧 m=5上接收所述 PUSCH对应的 HARQ 下行 PHICH反馈信息。
上述表 5中: K2=5, Κ3=6、 Κ4=7、 Κ5=8和 Κ6=9中, 当 UE在特殊子 帧 n=l上传输 PUSCH, UE会在特定的子帧接收对应的 HARQ下行 PHICH 反馈信息, 结合表 5所给出的 K值, 所述特定子帧的确定方式与 Kl=4相同。 此处不再赘述。
5、上下行子帧配比为 4,所述当前特殊子帧为子帧 η,则确定所述 PHICH 资源位于所述当前特殊子帧 n之后的第 K个子帧中, 其中: 当 n=l时, K=4、 5、 6、 7、 8或 9;
具体地, 当用户设备 UE在特殊子帧 1传输 PUSCH; 则对应的确定所述 PHICH资源位于特殊子帧 1之后的第 K个子帧中, 其中, K值的具体可选值 如表 6所示:
Figure imgf000029_0001
Figure imgf000030_0001
在具体的子帧结构中, 对于 UL/DL configuration 4(上下行子帧配比 4); 如表 6所示, Kl=4的情况下, 在特殊子帧 η=1上传输的 PUSCH, UE在 子帧 1之后的第 4个子帧接收对应的 HARQ下行 PHICH反馈信息(在确定的 PHICH资源接收 PHICH ), 即在子帧 m=5上接收所述 PUSCH对应的 HARQ 下行 PHICH反馈信息。
上述表 6中: K2=5, Κ3=6、 Κ4=7、 Κ5=8和 Κ6=9中, 当 UE在特殊子 帧 n=l上传输 PUSCH, UE会在特定的子帧接收对应的 HARQ下行 PHICH 反馈信息, 结合表 6所给出的 K值, 所述特定子帧的确定方式与 Kl=4相同。 此处不再赘述。
6、上下行子帧配比为 5,所述当前特殊子帧为子帧 η,则确定所述 PHICH 资源位于所述当前特殊子帧 n之后的第 K个子帧中, 其中: 当 n=l时, K=4、 5、 6、 7、 8或 9;
具体地, 当用户设备 UE在特殊子帧 η=1上传输 PUSCH; 则对应的确定 所述 PHICH资源位于特殊子帧 1之后的第 K个子帧中, 其中, K值的具体可 选值如表 7所示:
Figure imgf000030_0002
表 7
在具体的子帧结构中, 对于 UL/DL configuration5(上下行子帧配比 5); 如表 7所示, Kl=4的情况下, 在特殊子帧 η=1上传输的 PUSCH, UE在 子帧 η=1之后的第 4个子帧接收对应的 HARQ下行 PHICH反馈信息(在确定 的 PHICH资源接收 PHICH ), 即在子帧 m=5上接收所述 PUSCH对应的 HARQ 下行 PHICH反馈信息。
上述表 7中: K2=5, Κ3=6、 Κ4=7、 Κ5=8和 Κ6=9中, 当 UE在特殊子 帧 n=l上传输 PUSCH, UE会在特定的子帧接收对应的 HARQ下行 PHICH 反馈信息, 所述特定子帧的确定方式与 Kl=4相同。 此处不再赘述。
7、上下行子帧配比为 6,所述当前特殊子帧为子帧 η,则确定所述 PHICH 资源位于所述当前特殊子帧 n之后的第 K个子帧中, 其中:
当 n=l或 6时, K=4;
当 η=1或 6时, Κ=5;
当 η=1或 6时, Κ=8;
当 η=1或 6时, Κ=9;
当 η=1或 6时, Κ=10;
具体地, 当用户设备 UE在特殊子帧 1传输 PUSCH; 则对应的确定所述 PHICH资源位于特殊子帧 1之后的第 K个子帧中, 其中, K值的具体可选值 如表 8所示:
Figure imgf000031_0001
表 8
在具体的子帧结构中, 对于 UL/DL configuration6(上下行子帧配比 6); 如表 8所示, Kl=4的情况下, 在特殊子帧 η=1上传输的 PUSCH, UE在 子帧 n=l之后的第 4个子帧接收对应的 HARQ下行 PHICH反馈信息(在确定 的 PHICH资源接收 PHICH ),即在子帧 m=5上接收所述 PUSCH对应的 HARQ 下行 PHICH反馈信息; 在子帧 n=6上传输的 PUSCH, UE在下一个无线帧的 子帧 m=0上接收所述 PUSCH对应的 HARQ下行 PHICH反馈信息。
上述表 8中: K2=5、 Κ3=8、 Κ4=9和 Κ5=10中, 当 UE在特殊子帧 n=l 或 6上传输 PUSCH, UE会在特定的子帧接收对应的 HARQ下行 PHICH反馈 信息, 所述特定子帧的确定方式与 Kl=4相同。 此处不再赘述。
上述实施例中, 每个配比都对应了多个 Κ值, 与配比 0选择的 Κ值的相 同理由, 上述各配比选择的 Κ值也具有与配比 0所选 Κ值的相同有益效果。 此处不再赘述。
上述表 2〜表 8中的每个表都给出了一个子帧配比情况下, 多种可选的 Κ 成长期演进 ( LTE, Long Term Evolution ) 的 TDD系统定义的 7种上下行子 帧配比, 其中一种可以是表 9所示的组合情况:
Figure imgf000032_0001
表 9
在表 9所示的实例中, 所述当前特殊子帧为子帧 η, 则确定所述 PHICH 资源位于所述当前特殊子帧 n之后的第 K个子帧中,其中, 配比 0: n=l或 6 , K=5、 西己匕 1 : n=l或 6 , K=4; 西己匕 2: n=l或 6 , K=5、 西己匕 3 : n=l , K=6、 西己 t匕 4: n=l , K=6、 西己 t匕 5: n=l , K=6、 西己 t匕 6: n=l 6 , K=5。 二、当所述传输 PUSCH的上行资源的子帧包括所述当前特殊子帧以及其 他子帧, UE根据传输所述 PUSCH 的上行资源, 确定所述 PUSCH对应的 PHICH资源的子帧位置包括:
进一步, 在现有协议 Rel-11 中还规定, 可以通过子帧绑定 (subframe bundling or TTI bundling ) 的方式传输上行 PUSCH。 釆用 UpPTS与其他上行 资源绑定的方式传输 PUSCH,相当于增加了单位时间内上行数据的传输次数, 从而增加了上行数据接收的信噪比, 进而增加上行覆盖。 所以在本发明实施 当前特殊子帧绑定的协作子帧, 则 UE根据传输所述 PUSCH的上行资源, 确 定所述 PUSCH对应的 PHICH资源的子帧位置包括:
根据所述协作子帧, 确定所述 PUSCH对应的 PHICH资源的子帧位置。 在本发明实施例中, 所述协作子帧是指: 传输 PUSCH的特殊子帧与其他 所述协作子帧包括所述当前特殊子帧所在无线帧中的至少一个上行子帧 和 /或该无线帧中除所述当前特殊子帧的其他特殊子帧。
进一步, 为了综合考虑传输时延和 eNB处理时间, 以及考虑传输时延和 UE处理时间, 考虑尽量复用当前的 RTT值(即数据包初传到重传的时间 ) 或者尽可能少的增加额外的 RTT值, 所以在本发明实施例中, 所述 UE根据 传输上行 PUSCH的子帧, 确定所述 PUSCH对应的 PHICH资源的子帧位置 包括:
根据所述协作子帧中的最后一个子帧 L,确定所述 PUSCH对应的 PHICH 资源的子帧位置。
具体的, 结合表 1所示的 LTE的 TDD系统定义的 7种上下行子帧配比, 以下对各配比情况下根据所述协作子帧中的最后一个子帧 L , 确定所述 PUSCH对应的 PHICH资源的子帧位置可实现方案进行详细描述:
因为不同配比情况下, 上行子帧的位置以及数量都不相同, 所以在具体 绑定时候会出现多种情况, 以下根据绑定的不同情况分别说明: 方式一: 一个无线帧中的所有上行子帧和特殊子帧绑定形成一个绑定子 帧, 一个绑定子帧对应一个 HARQ进程, 具体实现可以是:
1、 上下行子帧配比为 0, 当一个无线帧中的特殊子帧 1和 6与该无线帧 中的子帧 2、 3、 4、 7、 8和 9绑定时, 则确定所述 PHICH资源位于所述最后 一个子帧 L之后的第 K个子帧中, L=9, K=6;
具体地, 当用户设备 UE在特殊子帧 1 或 6传输 PUSCH; 则确定所述
PHICH资源位于所述绑定子帧的最后一个子帧 L之后的第 K个子帧中,其中,
K值的具体可选值如表 10所示:
Figure imgf000034_0001
表 10
在表 10中, 背景标示为斜线的子帧 1、 2、 3、 4、 6、 7、 8和 9绑定在一 起传输数据。
如表 10所示, 上下行子帧配比为 0, 当一个无线帧中的特殊子帧 1和 6 与该无线帧中的子帧 2、 3、 4、 7、 8和 9绑定的情况下, 在特殊子帧 1上传 输的 PUSCH, UE在子帧 9之后的第 6个子帧接收对应的 HARQ下行 PHICH 反馈信息, 即在下个无线帧的子帧 5上接收所述 PUSCH对应的 HARQ下行 PHICH反馈信息。
在该实施例中, 当特殊子帧 1和 6与该无线帧中的子帧 2、 3、 4、 7、 8 和 9绑定时, 绑定在一起的子帧可以看做是一个整体, 所以利用特殊子帧发 送的 PUSCH可以复用原有子帧 9接收 PHICH的子帧位置, 这样对协议改动 可以最小。 且从传输 PUSCH到接收 PHICH的时间间隔满足基站最小处理时 间 (3ms )前提下的最小值, 有效的减少了传输时延。 此外, 这种绑定方式可 以实现 3个 HARQ进程和 /或 RTT为 30ms的 PUSCH传输;对于如 VOIP( Voice over Internet Protocol, 网络电话)等时延敏感业务,一般传输时延要求在 50ms 左右, HARQ进程的 RTT值设置为 30ms能够有效增大这种时延敏感类业务 传输的时间分集增益。各 HARQ进程中包含的 UpPTS数目相同, 降低了系统 ( UE或基站)协调处理各 HARQ进程的复杂度。
2、 上下行子帧配比为 1 , 当一个无线帧中的特殊子帧 1和 6与该无线帧 中的子帧 2、 3、 7和 8绑定时, 则确定所述 PHICH资源位于所述最后一个子 帧 L之后的第 K个子帧中, L=8, K=6;
在该实施例中, 当特殊子帧 1和 6与该无线帧中的子帧 2、 3、 7和 8绑 定时, 绑定在一起的子帧可以看做是一个整体, 所以利用特殊子帧发送的 PUSCH可以复用原有子帧 8接收 PHICH的子帧位置,从传输 PUSCH到接收 PHICH 的时间间隔为满足基站最小处理时间 (3ms )前提下的最小值, 有效 的减少了传输时延。 此外, 这种绑定方式可以实现 2个 HARQ进程、 RTT为 20ms或 3个 HARQ进程、 30ms的 PUSCH传输。 对于如 VOIP等时延敏感业 务, 一般传输时延要求在 50ms左右, HARQ进程的 RTT值设置为 20ms或者 30ms能够有效增大这种时延敏感类业务传输的时间分集增益。此外 ,各 HARQ 进程中包含的 UpPTS数目相同,降低了系统( UE或基站)协调处理各个 HARQ 进程的复杂度。
3、 上下行子帧配比为 2, 当一个无线帧中的特殊子帧 1和 6与该无线帧 中的子帧 2和 7绑定时, 则确定所述 PHICH资源位于所述最后一个子帧 L之 后的第 K个子帧中, L=7 , K=6、 9或 19;
该实施例中, 确定所述 PHICH资源位于所述当前特殊子帧之后的第 6个 子帧中, 从传输 PUSCH到接收 PHICH的时间间隔为满足基站最小处理时间 (3ms)前提下的最小值,有效的减少了传输时延。
K=6或 9时, 对应 RTT为 20ms或者 K=l 9时,对应 RTT为 30ms的 PUSCH 传输,对于如 VOIP等时延敏感业务,一般传输时延要求在 50ms左右, HARQ 进程的 RTT值设置为 20ms或者 30ms能够有效增大这种时延敏感类业务传输 的时间分集增益。 此外, 各 HARQ进程中包含的 UpPTS数目相同, 降低了系 统( UE或基站 )协调处理各个 HARQ进程的复杂度。 4、 上下行子帧配比为 3 , 当一个无线帧中的特殊子帧 1与该无线帧中的 子帧 2、 3和 4绑定时, 则确定所述 PHICH资源位于所述最后一个子帧 L之 后的第 K个子帧中, L=4, K=16;
5、 上下行子帧配比为 4, 当一个无线帧中的特殊子帧 1与该无线帧中的 子帧 2和 3绑定时, 则确定所述 PHICH资源位于所述最后一个子帧 L之后的 第 Κ个子帧中, L=4, K=6;
6、 上下行子帧配比为 5, 当一个无线帧中的特殊子帧 1与该无线帧中的 子帧 2绑定时,则确定所述 PHICH资源位于所述子帧 2之后的第 K个子帧中, K=5、 15或 25; 或者
7、 上下行子帧配比为 6, 当一个无线帧中的特殊子帧 1和 6与该无线帧 中的子帧 2、 3、 4、 7和 8绑定时, 所述 PHICH资源位于所述最后一个子帧 L 之后的第 K个子帧中, L=8, K=17。
方式二、 一个无线帧中包括两个特殊子帧, 每个特殊子帧都可以形成一 个绑定子帧, 各绑定子帧分别对应不同的 HARQ进程时, 具体实现可以是:
1、 上下行子帧配比为 2, 当一个无线帧中的特殊子帧 1与该无线帧中的 子帧 2绑定形成第一绑定帧,该无线帧中的特殊子帧 6与该无线帧中的子帧 7 绑定形成第二绑定帧时: 则所述才艮据所述协作子帧中的最后一个子帧 L,确定 所述 PUSCH对应的 PHICH资源的子帧位置包括:
所述第一绑定帧对应的第一 PHICH资源位于所述最后一个子帧 L之后的 第 K1个子帧中, L=2, Kl=4;
所述第二绑定帧对应的第二 PHICH资源位于所述最后一个子帧 L之后的 第 K2个子帧中, L=7, K2=4。
具体地, 当用户设备 UE在特殊子帧 1 或 6传输 PUSCH; 则确定所述 PHICH资源位于所述绑定子帧的最后一个子帧 L之后的第 K个子帧中,其中, K值的
Figure imgf000036_0001
Figure imgf000037_0001
在表 11中, 背景标示为横线的子帧 1和 2绑定形成第一绑定帧; 背景标 示为竖线的子帧 6和 7绑定形成第二绑定帧。
如表 11所示, 上下行子帧配比为 2, 当一个无线帧中的特殊子帧 1与该 无线帧中的子帧 2 绑定形成第一绑定帧的情况下, 在特殊子帧 1 上传输的 PUSCH, UE在子帧 2之后的第 4个子帧接收对应的 HARQ下行 PHICH反馈 在该无线帧的子帧 6上接收;
当一个无线帧中的特殊子帧 n=6与该无线帧中的子帧 m=7绑定形成第二 绑定帧的情况下,在特殊子帧 n=6上传输的 PUSCH, UE在子帧 7之后的第 4 个子帧接收对应的 HARQ 下行 PHICH反馈信息, 即特殊子帧 6 上传输的 PUSCH对应的 HARQ下行 PHICH反馈信息,在下个无线帧的子帧 1上接收。
2、 上下行子帧配比为 3 , 当一个无线帧中的特殊子帧 1与该无线中的子 帧 2和 3绑定形成第一绑定帧,该无线帧中子帧 4与下个无线帧的特殊子帧 1 以及所述下个无线帧中子帧 2绑定形成第二绑定帧,所述下个无线帧中子帧 3 和 4绑定形成第三绑定帧时: 则所述根据所述协作子帧中的最后一个子帧 L, 确定所述 PUSCH对应的 PHICH资源的子帧位置包括:
所述第一绑定帧对应的第一 PHICH资源位于所述最后一个子帧 L之后的 第 K个子帧中, L=3 , K=6;
所述第二绑定帧对应的第二 PHICH资源位于所述最后一个子帧 L之后的 第 K个子帧中, L=2, K=6;
所述第三绑定帧对应的第三 PHICH资源位于所述最后一个子帧 L之后的 第 K个子帧中, L=4, K=6。
上述实施例中, 当特殊子与无线帧中的其他子帧绑定时, 绑定在一起的 子帧可以看做是一个整体,所以利用特殊子帧发送的 PUSCH可以复用原有子 帧接收 PHICH的子帧位置,从传输 PUSCH到接收 PHICH的时间间隔为满足 基站最小处理时间 (3ms )前提下的最小值, 有效的减少了传输时延。
当 UE确定所述 PUSCH对应的 PHICH资源的子帧位置后,该 PUSCH所 对应的 PHICH 信息可由 PHICH 的组号和组内 的正交序列号 group seq
nPHICH ^ n PHICH ) 通过以下公式唯一确定并分离出来:
). modC„+ U
PHICH
n
Figure imgf000038_0001
PHICH RA 1 l PHICH」 + nDMRS) mod 2N S, F 其中 "rn^是解调参考信号循环移位值; 是资源块的最低指数 (lowest
PHICH
index); N
疋 PHICH扩频因子长度; ^^是 PHICH组数。
则本发明实施例所提供的方法还确定 PHICH资源的时频域, 则该方法还 根据所述子帧位置确定所述 PHICH资源的 PHICH组号, 具体包括:
根据所述 PHICH资源对应的子帧位置,利用 PHICH组号指示因子 确 定所述 PUSCH对应的 PHICH组号。
在具体的实例中,所述根据所述子帧位置确定所述 PHICH资源的 PHICH 组号包括:
A, 利用表 12所示的实例, 对本发明实施例中 ― PHICH的确定作进一步详细 的说明:
Figure imgf000038_0002
表 12
由表 12可知,对于 UL/DL configuration 0,特殊子帧 1或 6传输 PUSCH, 并且 PUSCH所对应的 PHICH资源位于所述特殊子帧之后的第 5个子帧中, 则在该情况下:
该配比 UL/DL configuration 0中,同一子帧上对应不同 PUSCH的 PHICH 资源的情况例如: a, 特殊子帧 1和上行子帧 2传输的 PUSCH, 对应的下行 PHICH都在子 帧 6接收;
为了区分同一子帧上对应不同 PUSCH的 PHICH资源, 规定子帧 1或 2 上传输的 PUSCH所对应的 PHICH资源的 PHICH组号指示因子 H = 1; b, 特殊子帧 6和上行子帧 7传输的 PUSCH, 对应的下行 PHICH都在 子帧 1接收。
为了区分同一子帧上对应不同 PUSCH的 PHICH资源, 规定子帧 6或 7 上传输的 PUSCH所对应的 PHICH资源的 PHICH组号指示因子 1 p H = 1
基于上述情况, 可以规定对于子帧 2 和 7 上传输的 PUSCH 所对应的 PHICH资源的 ™cff = l ; 或者, 规定对于子帧 1和 6上传输的 PUSCH所对应 的 PHICH资源的 ™cff = 1。 另外, 因为该配比中还存在: 子帧 3和 4对应的 下行 PHICH都在同一子帧传输; 子帧 8和 9对应的下行 PHICH都在同一子 帧传输。
所以在该配比情况下 {1 , 2} , {3 , 4} , {6, 7} , {8, 9}这四组子帧都出现 了下行 PHICH在同一子帧接收的情况,为了区分同一子帧上对应不同 PUSCH 的 PHICH资源, 本发明实施例提供的方法是从每组子帧中选择一个子帧对应 的 PHICH资源的 ™cff = 1 , 所以每组子帧都有两种选择。 在该配比有四组子 帧存在上述情况的前提下,则该配比下 ™cff的形成共有 16种实施方式。此外, 尽量复用原有子帧对应的 的值或者尽量少的改变原有子帧对应的 H 值。 H的取值遵循上述原则, 为了简化描述以下提供两种 ™cff值组成方式 的具体描述:
方式一、 所以基于上述情况, 本发明实施中, 当上下行子帧配比为 0, 所 述当前特殊子帧为子帧 n, 所述 PHICH资源位于所述特殊子帧 n之后的第 K 个子帧中, 其中: 当 n=l或 6, K=5时, 确定子帧 2、 4、 7和 9对应的 PHICH 组号指示因子 ^^为 L 该当前特殊子帧所在的无线帧中除去所述子帧 2、 4、 7和 9的其他子帧对应的 为 0;利用确定的 确定所述 PUSCH对应的 PHICH组号;
在实际的应用环境中, 上述实现方式一还可以通过具体的公式进行表达, 具体公式可以是:
1 for TDD UL/DL configuration 0 with PUSCH transmission
I PHICH in subframe m = 2,4, 7 or 9
[0 otherwise
方式二、 上下行子帧配比为 0 , 所述当前特殊子帧为子帧 n, 所述 PHICH 资源位于所述特殊子帧 n之后的第 K个子帧中, 其中: 当 n=l或 6, K=5时, 确定子帧 1、 6、 4和 9对应的 ™cff为 1 , 该当前特殊子帧所在的无线帧中除 去所述子帧 n=l、 6 、 4和 9的其他子帧对应的 ™cff为 0; 利用确定的 ™cff确 定所述 PUSCH对应的 PHICH组号;
在实际的应用环境中, 上述实现方式二还可以通过具体的公式进行表达, 具体公式可以是:
1 for TDD UL/DLconf iguraton 0 with PUSCH transmissc n
I PHICH in subframe/ff = 1,4, 6 or 9
0 otherwise
另夕卜, 对于 UL/DL configuration 6, 特殊子帧 1或 6传输 PUSCH, 并且 PUSCH所对应的 PHICH资源位于所述特殊子帧之后的第 4个子帧中, 则在 该情况下:
a, 特殊子帧 1和上一个无线帧的上行子帧 8传输的 PUSCH, 对应的下 行 PHICH都在子帧 5接收;
为了区分同一子帧上对应不同 PUSCH的 PHICH资源, 规定子帧 1或上 一个无线帧中的子帧 8上传输的 PUSCH所对应的 PHICH资源的 1 p H = 1; b, 上行子帧 4和特殊子帧 6传输的 PUSCH, 对应的下行 PHICH在下一 个无线帧的子帧 0接收。 为了区分子帧 0上对应不同 PUSCH的 PHICH资源, 规定对于子帧 4或
6上传输的 PUSCH所对应的 PHICH资源的 PHICH组号指示因子 1 p H = 1
基于上述情况, 可以规定对于子帧 6 和 8 上传输的 PUSCH 所对应的 PHICH资源的 ™cff = l ; 或者, 规定对于子帧 1和 4上传输的 PUSCH所对应 的 PHICH资源的 H = 1
所以基于上述情况, 本发明实施中, 当上下行子帧配比为 6, 所述当前特 殊子帧为子帧 n,所述 PHICH资源位于所述特殊子帧 n之后的第 K个子帧中, 其中: 当 n=l或 6, K=4时, 确定子帧 6和 8对应的 ™cff为 i , 该当前特殊子 帧所在的无线帧中除去所述子帧 6和 8的其他子帧对应的 ^^为 0; 利用确 定的 H确定所述 PUSCH对应的 PHICH组号; 或者
上下行子帧配比为 6, 所述当前特殊子帧为子帧 n, 所述 PHICH资源位 于所述特殊子帧 n之后的第 K个子帧中, 其中: 当 n=l或 6, K=4时, 确定 子帧 1和 4对应的 ^^为 1 ,该当前特殊子帧所在的无线帧中除去所述子帧 1 和 4的其他子帧对应的 为 0; 利用确定的 确定所述 PUSCH对应的 PHICH组号。
实施例二
在本发明实施例中,考虑在一个 RTT周期内,上行 PUSCH到下行 PHICH 定时的原则不小于 4ms , 以及 HARQ重传中 UE接收 PHICH到发送 PUSCH 的时间不小于 4ms, 以下提供一个 RTT为 10ms实例:
当用户设备 UE在特殊子帧传输 PUSCH;则对应的确定所述 PHICH资源 位于特殊子帧之后的第 K个子帧中, 其中, 在每种配比情况下, K值的具体 可选值如表 13所示:
Figure imgf000041_0001
2 5 6 5 6
3 6 6 6 6
4 6 6 6
5 6 6
6 5 4 6 6 5 4 7
表 13
在该实施例中, 根据表 13所给出的具体实例情况, 所述当前特殊子帧为 子帧 n, 则确定所述 PHICH资源位于所述当前特殊子帧 n之后的第 K个子帧 中的具体实现包括:
<1>对于 UL/DL configuration 0, 在特殊子帧 n=l上传输的 PUSCH, UE 在子帧 1之后的第 5个子帧接收对应的 HARQ下行 PHICH反馈信息,即在特 殊子帧 n=6上接收所述 PUSCH对应的 HARQ下行 PHICH反馈信息; 在特殊 子帧 n=6上传输的 PUSCH, UE在子帧 6之后的第 5个子帧接收对应的 HARQ 下行 PHICH反馈信息 (即 UE在下一个无线帧的特殊子帧 n=l 上接收所述 PUSCH对应的 HARQ下行 PHICH反馈信息)。
<2>对于 UL/DL configuration 1 , 在特殊子帧 n=l上传输的 PUSCH, UE 在子帧 1之后的第 4个子帧接收对应的 HARQ下行 PHICH反馈信息(在确定 的 PHICH资源接收 PHICH ),即在子帧 m=5上接收所述 PUSCH对应的 HARQ 下行 PHICH反馈信息; 在特殊子帧 n=6上传输的 PUSCH, UE在子帧 6之后 的第 4个子帧接收对应的 HARQ下行 PHICH反馈信息, 即 UE在下一个无线 帧的子帧 m=0上接收所述 PUSCH对应的 HARQ下行 PHICH反馈信息;
<1>对于 UL/DL configuration 2, 在特殊子帧 n=l上传输的 PUSCH, UE 在子帧 1之后的第 5个子帧接收对应的 HARQ下行 PHICH反馈信息(在确定 的 PHICH资源接收 PHICH ), 即在子帧 6上接收所述 PUSCH对应的 HARQ 下行 PHICH反馈信息; 在子帧 n=6上传输的 PUSCH, UE在子帧 6之后的第 5个子帧接收对应的 HARQ下行 PHICH反馈信息, 即 UE在下一个无线帧的 子帧 1上接收所述 PUSCH对应的 HARQ下行 PHICH反馈信息; <1>对于 UL/DL configuration 3 , 在特殊子帧 n=l上传输的 PUSCH, UE 在子帧 1之后的第 6个子帧接收对应的 HARQ下行 PHICH反馈信息(在确定 的 PHICH资源传输 PHICH ),即 UE在子帧 7上接收所述 PUSCH对应的 HARQ 下行 PHICH反馈信息;
<1>对于 UL/DL configuration 4, 在特殊子帧 n=l上传输的 PUSCH, UE 在子帧 1之后的第 6个子帧接收对应的 HARQ下行 PHICH反馈信息(在确定 的 PHICH资源传输 PHICH ), 即在子帧 7上接收所述 PUSCH对应的 HARQ 下行 PHICH反馈信息;
<1>对于 UL/DL configuration 5, 在特殊子帧 n=l上传输的 PUSCH, UE 在子帧 1之后的第 6个子帧接收对应的 HARQ下行 PHICH反馈信息(在确定 的 PHICH资源传输 PHICH ), 即在子帧 7上接收所述 PUSCH对应的 HARQ 下行 PHICH反馈信息;
<1>对于 UL/DL configuration 6, 在特殊子帧 n=l上传输的 PUSCH, UE 在子帧 1之后的第 5个子帧接收对应的 HARQ下行 PHICH反馈信息,即在子 帧 n=6上接收所述 PUSCH对应的 HARQ下行 PHICH反馈信息; 在特殊子帧 n=6上传输的 PUSCH, UE在子帧 6之后的第 5个子帧接收对应的 HARQ下 行 PHICH反馈信息 (即 UE在下一个无线帧的子帧 n=l上接收所述 PUSCH 对应的 HARQ下行 PHICH反馈信息)。
通过本发明实施例上述方法, 确定所述 PUSCH对应的 PHICH资源的子 帧位置之后,还进一步确定 PHICH资源的时频域, 则该方法根据所述 PHICH 资源对应的子帧位置,利用 ™cff确定所述 puSCH对应的 PHICH组号可以是: 对于子帧配比 0, 有四对子帧对应的下行 PHICH都在同一子帧传输, 四 对子帧分别是: 1和 2; 3和 4; 6和 7以及 8和 9, 所以在该实施例中可以选 择每对子帧中任意一个子帧上传输的 PUSCH 所对应的 PHICH 资源的
1 p = 1 , 在该实例中可以规定子帧 m=2、 4、 7和 9对应的 为 ι , 该当 前特殊子帧所在的无线帧中除去所述子帧 m=2、 4、 7和 9的其他子帧对应的 1 PHICH为 0。
对于子帧配比 6, 有两对子帧对应的下行 PHICH都在同一子帧传输, 两 队子帧分别是: 1和 8; 4和 6。 所以在该实施例中可以选择每对子帧中任意 一个子帧上传输的 PUSCH所对应的 PHICH资源有 ™cff = 1 ,在该实例中可以 规定子帧 1和 6对应的 ^^为 1 , 该当前特殊子帧所在的无线帧中除去所述 子帧 1和 6的其他子帧对应的 为 0。 其中该 值的公式可以是:
1 for TDD UL/DL confi guration 0 wi th PUSCH transmi ss ion
in subframe m - 2,4, 7 or 9, and for TDD UL/DL confi guration 6
I
with PUSCH transmi ss ion in subframe 2 = 1 or 6
[θ otherwi se
group
相应的,本发明规定,对于 PHICH组数 m i · N™ , mi (表示 PHICH 的组数范围因子) 的取值:
对于 UL/DL configuration 0, 由于子帧 1和 6上增加了 PHICH资源, m . = 2 . 对于 UL/DL configuration 6 ,由于子帧 1和 6上增加了 PHICH资源, ' = 2; 对于 UL/DL configuration 1 ,由于子帧 0和 5上增加了 PHICH资源, ' = 1; 对于 UL/DL configuration 2,由于子帧 1和 6上增加了 PHICH资源, ' = 1; 类似的, 对于 UL/DL configurations ~ 5 , 由于子帧 7上增加了 PHICH资
Figure imgf000044_0001
其他子帧上的 PHICH资源不变, 则该实施例中每种配比情况下
可以是表 14所示的情况:
上下行 子帧
酉己匕 0 1 2 3 4 5 6 7 8 9
0 - - - - - -
1 1 1 - - 1 1 1 - - 1
2 0 1 - 1 0 0 1 - 1 0
3 1 0 - - - 0 0 1 1 1
4 0 0 - - 0 0 0 1 1 1
5 0 0 - 0 0 0 0 1 1 0 6 1 2 - - - 1 2 - - 1
表 14
实施例三
当所述传输 PUSCH 的上行资源的子帧包括所述当前特殊子帧以及其他 子帧, 即特殊子帧与其他普通子帧绑定传输时, 该实施例给出了 RTT=30ms 情况下配比的定时关系, 具体可以是:
对于 UL/DL configuration 0, 特殊子帧 1和 6与一般子帧 2, 3 , 4, 7 , 8 和 9绑定, 作为一个绑定子帧 (bundle )传输 PUSCH, 则该绑定子帧对应的 下行 PHICH的接收位置与 bundle内最后一个子帧 9关联, = 6 , 则接收 位在下一无线帧的子帧 5;
对于 UL/DL configuration 1 , 特殊子帧 1和 6与一般子帧 2 , 3 , 7和 8绑 定,作为一个绑定子帧(bundle )传输 PUSCH,则该绑定子帧对应的下行 PHICH 的接收位置与 bundle内最后一个子帧 8关联, 则接收位在下一无 线帧的子帧 4;
对于 UL/DL configuration 2 , 特殊子帧 1和 6与一般子帧 2和 7绑定, 作 为一个绑定子帧(bundle )传输 PUSCH, 则该绑定子帧对应的下行 PHICH的 接收位置与 bundle内最后一个子帧 7关联, = 19 , 则接收位在该帧后第 二个无线帧的子帧 6;
对于 UL/DL configuration 3 , 特殊子帧 1与一般子帧 2 , 3 , 4绑定, 作为 一个绑定子帧( bundle )传输 PUSCH, 则该绑定子帧对应的下行 PHICH的接 收位置与 bundle内最后一个子帧 4关联, = 16 , 则接收位在该帧后第二 个无线帧的子帧 0;
对于 UL/DL configuration 4, 特殊子帧 1与一般子帧 2, 3绑定, 作为一 个绑定子帧(bundle )传输 PUSCH, 则该绑定子帧对应的下行 PHICH的接收 位置与 bundle内最后一个子帧 3关联, = 6 , 则接收位在子帧 9;
对于 UL/DL configuration 5 , 特殊子帧 1与一般子帧 2绑定, 作为一个绑 定子帧(bundle )传输 PUSCH, 则该绑定子帧对应的下行 PHICH的接收位置 与 bundle内最后一个子帧 2关联, = 25 , 则接收位在该帧后第二个无线 帧的子帧 7;
对于 UL/DL configuration 6, 特殊子帧 1和 6与一般子帧 2, 3 , 4, 7 , 8 绑定, 作为一个绑定子帧 (bundle )传输 PUSCH, 则该绑定子帧对应的下行
PHICH的接收位置与 bundle内最后一个子帧 8关联, 则接收位在 该帧后第二个无线帧的子帧 5。
根据上述方法确定的 Κ值的具体可选值, 如表 15所示:
Figure imgf000046_0001
表 15
实施例四
因为用户设备利用特殊子帧传输一上行数据后, 基站侧需要确定使用某 一子帧传输所述上行数据对应的反馈信息, 所以基于这一思想, 本发明实施 例还提供另外一种控制信道资源分配方法, 方法包括(该方法的流程如图 4 所示 ):
步骤 401 , 当基站在当前特殊子帧接收 PUSCH;
步骤 402, 基站根据接收所述 PUSCH的上行资源, 确定所述 PUSCH对 应的 PHICH资源, 所述传输 PUSCH的上行资源中包含所述当前特殊子帧; 在本发明实施例中, 所述基站根据接收所述 PUSCH的上行资源, 确定所 述 PUSCH对应的 PHICH资源包括:
基站根据接收所述 PUSCH的上行资源,确定所述 PUSCH对应的 PHICH 资源的子帧位置; 根据所述子帧位置确定所述 PHICH资源的 PHICH组号, 利用所述子帧 位置和所述 PHICH组号确定所述 PUSCH对应的 PHICH资源。
步骤 403 , 基站在确定的 PHICH资源传输 PHICH。
根据上述方法, 以下结合图表以及各种上下行子帧配比对本发明实施例 所提供的方法做详细描述:
一、 当所述传输 PUSCH的上行资源的子帧只是所述当前特殊子帧,基站 根据接收所述 PUSCH的上行资源, 确定所述 PUSCH对应的 PHICH资源的 子帧位置包括:
具体的, 结合表 1所示的长期演进 ( LTE, Long Term Evolution )的 TDD 系统定义的 7种上下行子帧配比, 以下对各配比情况下的 PHICH资源可实现 方案进行详细描述:
上下行子帧配比为 0, 所述当前特殊子帧为子帧 n, 则确定所述 PHICH 资源位于所述当前特殊子帧 n之后的第 K个子帧中, 其中: 当 n=l或 6时, K=5; 当 η=1或 6时, k=10; 或者
上下行子帧配比为 1 , 所述当前特殊子帧为子帧 n, 则确定所述 PHICH 资源位于所述当前特殊子帧 n之后的第 K个子帧中, 其中:
当 n=l或 6时, K=4;
当 η=1或 6时, Κ =5;
当 η=1或 6时, Κ = 8; 或者
上下行子帧配比为 2, 所述当前特殊子帧为子帧 η, 则确定所述 PHICH 资源位于所述当前特殊子帧 n之后的第 K个子帧中, 其中:
当 n=l或 6时, K=4;
当 η=1或 6时, Κ =
当 η=1或 6时, Κ =7
当 η=1或 6时, Κ =8 或者
上下行子帧配比为 3 , 所述当前特殊子帧为子帧 η, 则确定所述 PHICH 资源位于所述当前特殊子帧 n之后的第 K个子帧中, 其中: 当 n=l时, K=4、 5、 6、 7、 8或 9; 或者
上下行子帧配比为 4, 所述当前特殊子帧为子帧 n, 则确定所述 PHICH 资源位于所述当前特殊子帧 n之后的第 K个子帧中, 其中: 当 n=l时, K=4、 5、 6、 7、 8或 9; 或者
上下行子帧配比为 5, 所述当前特殊子帧为子帧 η, 则确定所述 PHICH 资源位于所述当前特殊子帧 n之后的第 K个子帧中, 其中: 当 n=l时, K=4、 5、 6、 7、 8或 9; 或者
上下行子帧配比为 6, 所述当前特殊子帧为子帧 η, 则确定所述 PHICH 资源位于所述当前特殊子帧 n之后的第 K个子帧中, 其中:
当 n=l或 6时, K=4; 当 η=1或 6时, Κ =5; 当 η=1或 6时, Κ =8; 当 η=1或 6时, Κ =9; 当 η=1或 6时, Κ =10。
二、 在现有协议 Rel-11中还规定, 可以通过子帧绑定(subframe bundling or TTI bundling )的方式传输上行 PUSCH。 当所述传输 PUSCH的上行资源的 子帧包括所述当前特殊子帧以及其他子帧,基站根据接收所述 PUSCH的上行 资源, 确定所述 PUSCH对应的 PHICH资源的子帧位置包括:
当所述传输 PUSCH 的上行资源的子帧包括所述当前特殊子帧以及与该 当前特殊子帧绑定的协作子帧, 则基站根据接收所述 PUSCH的上行资源, 确 定所述 PUSCH对应的 PHICH资源的子帧位置包括:
根据所述协作子帧, 确定所述 PUSCH对应的 PHICH资源的子帧位置。 在本发明实施例中, 所述协作子帧包括所述当前特殊子帧所在无线帧中 的至少一个上行子帧和 /或该无线帧中除所述当前特殊子帧的其他特殊子帧。
进一步, 为了综合考虑传输时延和 eNB处理时间, 以及考虑传输时延和 UE处理时间, 所以在本发明实施例中, 基站根据接收所述 PUSCH的上行资 源, 确定所述 PUSCH对应的 PHICH资源的子帧位置包括:
根据所述协作子帧中的最后一个子帧 L,确定所述 PUSCH对应的 PHICH 资源的子帧位置。
具体的, 结合表 1所示的 LTE的 TDD系统定义的 7种上下行子帧配比, 以下对各配比情况下根据所述协作子帧中的最后一个子帧 L , 确定所述 PUSCH对应的 PHICH资源的子帧位置可实现方案进行详细描述:
因为不同配比情况下, 上行子帧的位置以及数量都不相同, 所以在具体 绑定时候会出现多种情况, 以下根据绑定的不同情况分别说明:
方式一: 一个无线帧中的所有上行子帧绑定形成一个绑定子帧, 并且每 个绑定子帧对应一个 HARQ进程, 具体实现可以是:
上下行子帧配比为 0 ,当一个无线帧中的特殊子帧 1和 6与该无线帧中的 子帧 2、 3、 4、 7、 8和 9绑定时, 则确定所述 PHICH资源位于所述最后一个 子帧 L之后的第 K个子帧中, L=9 , K=6; 或者
上下行子帧配比为 1 ,当一个无线帧中的特殊子帧 1和 6与该无线帧中的 子帧 2、 3、 7和 8绑定时, 则确定所述 PHICH资源位于所述最后一个子帧 L 之后的第 K个子帧中, L=8, K=6; 或者
上下行子帧配比为 2 ,当一个无线帧中的特殊子帧 1和 6与该无线帧中的 子帧 2和 7绑定时, 则确定所述 PHICH资源位于所述最后一个子帧 L之后的 第 K个子帧中, L=7 , K=6、 9或 19; 或者
上下行子帧配比为 3 ,当一个无线帧中的特殊子帧 1与该无线帧中的子帧 2、 3和 4绑定时,则确定所述 PHICH资源位于所述最后一个子帧 L之后的第 K个子帧中, L=4, K=16; 或者
上下行子帧配比为 5 ,当一个无线帧中的特殊子帧 1与该无线帧中的子帧 2绑定时, 则确定所述 PHICH资源位于所述最后一个子帧 L之后的第 K个子 帧中, L=2, K=5、 15或 25; 或者
上下行子帧配比为 6 ,当一个无线帧中的特殊子帧 1和 6与该无线帧中的 子帧 2、 3、 4、 7和 8绑定时, 所述 PHICH资源位于所述最后一个子帧 L之 后的第 K个子帧中, L=8, K=17。
方式二、 一个无线帧中包括两个特殊子帧, 每个特殊子帧都可以形成一 个绑定子帧, 并且各绑定子帧分别对应不同的 HARQ进程时, 具体实现可以 1、 上下行子帧配比为 2, 当一个无线帧中的特殊子帧 1与该无线帧中的 子帧 2绑定形成第一绑定帧,该无线帧中的特殊子帧 6与该无线帧中的子帧 7 绑定形成第二绑定帧时: 则所述才艮据所述协作子帧中的最后一个子帧 L,确定 所述 PUSCH对应的 PHICH资源的子帧位置包括:
所述第一绑定帧对应的第一 PHICH资源位于所述最后一个子帧 L之后的 第 K个子帧中, L=2, Kl=4;
所述第二绑定帧对应的第二 PHICH资源位于所述最后一个子帧 L之后的 第 K个子帧中, L=7 , K2=4。
2、 上下行子帧配比为 3 , 当一个无线帧中的特殊子帧 1与该无线中的子 帧 2和 3绑定形成第一绑定帧,该无线帧中子帧 4与下个无线帧的特殊子帧 1 以及所述下个无线帧中子帧 2绑定形成第二绑定帧,所述下个无线帧中子帧 3 和 4绑定形成第三绑定帧时: 则所述根据所述协作子帧中的最后一个子帧 L, 确定所述 PUSCH对应的 PHICH资源的子帧位置包括:
所述第一绑定帧对应的第一 PHICH资源位于所述最后一个子帧 L之后的 第 K个子帧中, L=3 , K=6;
所述第二绑定帧对应的第二 PHICH资源位于所述最后一个子帧 L之后的 第 K个子帧中, L=2, K=6;
所述第三绑定帧对应的第三 PHICH资源位于所述最后一个子帧 L之后的 第 K个子帧中, L=4, K=6。
当基站确定所述 PUSCH对应的 PHICH资源的子帧位置后, 该基站所对 应 的 PHICH 信息可 由 PHICH 的组号和组 内 的正交序 列 号 ( group seq \
n PHICH , n PHICH ) 通过以下公式唯一确定并分离出来: n (
11 PgHrIoCuHp 二 N i PgHrIoCuHp +丁 I丄 PHICH N^ PgHrIoCuHp seq 'PHICH n PHICH
Figure imgf000050_0001
mod 2N SF
则本发明实施例所提供的方法还确定 PHICH资源的时频域, 则该方法还根据 所述子帧位置确定所述 PHICH资源的 PHICH组号, 具体包括: 根据所述 PHICH资源对应的子帧位置,利用 PHICH组号指示因子 确 定所述 PUSCH对应的 PHICH组号。
在具体的实例中,所述根据所述子帧位置确定所述 PHICH资源的 PHICH 组号包括:
1、 上下行子帧配比为 0 , 所述当前特殊子帧为子帧 n, 所述 PHICH资源 位于所述特殊子帧 n之后的第 K个子帧中, 其中: 当 n=l或 6, K=5时, 确 定子帧 2、 4、 7和 9对应的 PHICH组号指示因子 ^^为 1 , 该当前特殊子帧 所在的无线帧中除去所述子帧 2、 4、 7和 9的其他子帧对应的 ^^为 0; 利 用确定的 确定所述 PUSCH对应的 PHICH组号; 或者
上下行子帧配比为 0 , 所述当前特殊子帧为子帧 n, 所述 PHICH资源位 于所述特殊子帧 n之后的第 K个子帧中, 其中: 当 n=l或 6 , K=5时, 确定 子帧 1、 6、 4和 9对应的 ™cff为 1 , 该当前特殊子帧所在的无线帧中除去所 述子帧 n=l、 6、 4和 9的其他子帧对应的 为 0; 利用确定的 确定所 述 PUSCH对应的 PHICH组号。
2、 上下行子帧配比为 6 , 所述当前特殊子帧为子帧 n, 所述 PHICH资源 位于所述特殊子帧 n之后的第 K个子帧中, 其中: 当 n=l或 6, K=4时, 确 定子帧 6和 8对应的 PHICH组号指示因子 ^^为 1 , 该当前特殊子帧所在的 无线帧中除去所述子帧 6和 8的其他子帧对应的 为 0;利用确定的 确 定所述 PUSCH对应的 PHICH组号; 或者
上下行子帧配比为 6 , 所述当前特殊子帧为子帧 n, 所述 PHICH资源位 于所述特殊子帧 n之后的第 K个子帧中, 其中: 当 n=l或 6 , K=4时, 确定 子帧 1和 4对应的 PHICH组号指示因子 ^^为 1 , 该当前特殊子帧所在的无 线帧中除去所述子帧 1和 4的其他子帧对应的 为 0; 利用确定的 确 定所述 PUSCH对应的 PHICH组号。 实施例五
如图 5 所示, 针对实施例一提供的方法, 本发明实施例还提供一种用户 设备 500, 该用户设备包括:
发送单元 501 , 用于在当前特殊子帧发送 PUSCH;
确定单元 502,用于根据传输所述 PUSCH的上行资源,确定所述 PUSCH 对应的 PHICH资源,所述传输 PUSCH的上行资源中包含所述当前特殊子帧; 接收单元 503 , 用于在确定的 PHICH资源接收 PHICH。
确定所述 PUSCH对应的 PHICH资源包括: 确定资源的子帧位置以及资 源的 PHICH组号。 所以针对需要确定的内容所述确定单元 502具体包括: 子帧位置确定模块, 用于根据传输所述 PUSCH 的上行资源, 确定所述 PUSCH对应的 PHICH资源的子帧位置;
资源组号确定模块, 根据所述子帧位置确定所述 PHICH资源的 PHICH 组号, 利用所述子帧位置和所述 PHICH组号确定所述 PUSCH对应的 PHICH 资源。
一、 当所述传输 PUSCH的上行资源的子帧只是所述当前特殊子帧, UE 根据传输所述 PUSCH的上行资源, 确定所述 PUSCH对应的 PHICH资源的 子帧位置时, 所述子帧位置确定模块还用于:
上下行子帧配比为 0, 所述当前特殊子帧为子帧 n, 确定所述 PHICH资 源位于所述当前特殊子帧 n之后的第 K个子帧中,其中:当 n=l或 6时, K=5; 当 η=1或 6时, k=10; 或者
上下行子帧配比为 1 , 所述当前特殊子帧为子帧 n, 确定所述 PHICH资 源位于所述当前特殊子帧 n之后的第 K个子帧中,其中:当 n=l或 6时, K=4; 当 η=1或 6时, k=5; 当 n=l或 6时, k= 8; 或者
上下行子帧配比为 2, 所述当前特殊子帧为子帧 n, 确定所述 PHICH资 源位于所述当前特殊子帧 n之后的第 K个子帧中,其中:当 n=l或 6时, K=4; 当 η=1或 6时, k=5; 当 n=l或 6时, k=7; 当 n=l或 6时, k=8; 或者
上下行子帧配比为 3 , 所述当前特殊子帧为子帧 n, 确定所述 PHICH资 源位于所述当前特殊子帧 n之后的第 K个子帧中, 其中: 当 η=1时, Κ=4、 5、 6、 7、 8或 9; 或者
上下行子帧配比为 4, 所述当前特殊子帧为子帧 η, 确定所述 PHICH资 源位于所述当前特殊子帧 η之后的第 Κ个子帧中, 其中: 当 η=1时, Κ=4、 5、 6、 7、 8或 9; 或者
上下行子帧配比为 5 , 所述当前特殊子帧为子帧 η, 确定所述 PHICH资 源位于所述当前特殊子帧 n之后的第 K个子帧中, 其中: 当 n=l时, K=4、 5、 6、 7、 8或 9; 或者
上下行子帧配比为 6, 所述当前特殊子帧为子帧 η, 确定所述 PHICH资 源位于所述当前特殊子帧 n之后的第 K个子帧中, 其中:
当 n=l或 6时, K=4;
当 η=1或 6时, k=5;
当 n=l或 6时, k=8;
当 n=l或 6时, k=9;
当 n=l或 6时, k=10。
二、 在现有协议 Rel-11中还规定, 可以通过子帧绑定(subframe bundling or TTI bundling )的方式传输上行 PUSCH。 所以用于传输所述 PUSCH的资源 可以是绑定帧, 所以子帧位置确定模块确定所述 PUSCH对应的 PHICH资源 的子帧位置时的具体实现可以是:
当所述传输 PUSCH 的上行资源的子帧包括所述当前特殊子帧以及其他 子帧, 所述子帧位置确定模块还用于根据所述协作子帧, 确定所述 PUSCH对 应的 PHICH资源的子帧位置。
另外, 所述子帧位置确定模块还用于利用所述协作子帧包括的所述当前 特殊子帧所在无线帧中的至少一个上行子帧和 /或该无线帧中除所述当前特殊 子帧的其他特殊子帧, 确定所述 PUSCH对应的 PHICH资源的子帧位置。
可选的, 为了综合考虑传输时延和 eNB处理时间, 以及考虑传输时延和 UE处理时间, 所述子帧位置确定模块还用于根据所述协作子帧中的最后一个 子帧 L, 确定所述 PUSCH对应的 PHICH资源的子帧位置。
具体的, 结合表 1所示的 LTE的 TDD系统定义的 7种上下行子帧配比, 在各配比情况下, 所述子帧位置确定模块根据所述协作子帧中的最后一个子 帧 L, 确定所述 PUSCH对应的 PHICH资源的子帧位置的实现包括多种方式, 具体可以是:
方式一: 一个无线帧中的所有上行子帧和特殊子帧绑定形成一个绑定子 帧, 每个绑定子帧对应一个 HARQ进程, 则所述子帧位置确定模块还用于: 上下行子帧配比为 0 ,当一个无线帧中的特殊子帧 1和 6与该无线帧中的 子帧 2、 3、 4、 7、 8和 9绑定时, 确定所述 PHICH资源位于所述最后一个子 帧 L之后的第 K个子帧中, L=9, K=6; 或者
上下行子帧配比为 1 ,当一个无线帧中的特殊子帧 1和 6与该无线帧中的 子帧 2、 3、 7和 8绑定时, 确定所述 PHICH资源位于所述最后一个子帧 L之 后的第 K个子帧中, L=8, K=6; 或者
上下行子帧配比为 2 ,当一个无线帧中的特殊子帧 1和 6与该无线帧中的 子帧 2和 7绑定时,确定所述 PHICH资源位于所述最后一个子帧 L之后的第 K个子帧中, L=7 , K=6、 9或 19; 或者
上下行子帧配比为 3 ,当一个无线帧中的特殊子帧 1与该无线帧中的子帧 2、 3和 4绑定时,确定所述 PHICH资源位于所述最后一个子帧 L之后的第 Κ 个子帧中, L=4 , K=16; 或者
上下行子帧配比为 5 ,当一个无线帧中的特殊子帧 1与该无线帧中的子帧 2绑定时, 确定所述 PHICH资源位于所述最后一个子帧 L之后的第 K个子帧 中, L=2 , K=5、 15或 25; 或者
上下行子帧配比为 6 ,当一个无线帧中的特殊子帧 1和 6与该无线帧中的 子帧 2、 3、 4、 7和 8绑定时, 所述 PHICH资源位于所述最后一个子帧 L之 后的第 K个子帧中, L=8, K=17。
方式二、 一个无线帧中包括两个特殊子帧, 每个特殊子帧都可以形成一 个绑定子帧, 各绑定子分别对应不同的 HARQ进程时, 具体包括: 上下行子帧配比为 2,当一个无线帧中的特殊子帧 1与该无线帧中的子帧 2绑定形成第一绑定帧,该无线帧中的特殊子帧 6与该无线帧中的子帧 7绑定 形成第二绑定帧时: 所述子帧位置确定模块还用于:
确定所述第一绑定帧对应的第一 PHICH资源位于所述最后一个子帧 L之 后的第 K1个子帧中, L=2, Kl=4;
确定所述第二绑定帧对应的第二 PHICH资源位于所述最后一个子帧 L之 后的第 K2个子帧中, L=7, K2=4。
上下行子帧配比为 3 , 当一个无线帧中的特殊子帧 1与该无线中的子帧 2 和 3绑定形成第一绑定帧, 该无线帧中子帧 4与下个无线帧的特殊子帧 1以 及所述下个无线帧中子帧 2 绑定形成第二绑定帧, 所述下个无线帧中子帧 3 和 4绑定形成第三绑定帧时: 所述子帧位置确定模块还用于:
确定所述第一绑定帧对应的第一 PHICH资源位于所述最后一个子帧 L之 后的第 K个子帧中, L=3 , K=6;
确定所述第二绑定帧对应的第二 PHICH资源位于所述最后一个子帧 L之 后的第 K个子帧中, L=2, K=6;
确定所述第三绑定帧对应的第三 PHICH资源位于所述最后一个子帧 L之 后的第 K个子帧中, L=4, K=6。
当 UE确定所述 PUSCH对应的 PHICH资源的子帧位置后,该 PUSCH所 对应的 PHICH 信息可由 PHICH 的组号和组内 的正交序列号 ( group seq \
n PHICH, n PHICH ) 通过以下公式唯一确定并分离出来: PHICH 1 PRB_RA 丁 DMRS ) AAA U v PHICH 丁 1 PHICH i PHICH n "PseH(i 二
ICH
Figure imgf000055_0001
_RA 1 I V PHICH」 +丁 n nDMRS、 ) m moudu 2厶N1 v SPFHICH 则本发明实施例所提供的方法还确定 PHICH资源的时频域, 则所述资源组号 确定模块还用于根据所述 PHICH资源对应的子帧位置, 利用 PHICH组号指 示因子 H确定所述 PUSCH对应的 PHICH组号。 可选的, 所述资源组号确定模块还用于:
上下行子帧配比为 0, 所述当前特殊子帧为子帧 n, 所述 PHICH资源位 于所述特殊子帧 n之后的第 K个子帧中, 其中: 当 n=l或 6, K=5时, 确定 子帧 2、 4、 7和 9对应的 PHICH组号指示因子 为 1 , 该当前特殊子帧所 在的无线帧中除去所述子帧 2、 4、 7和 9的其他子帧对应的 ^^为 0; 利用 确定的 确定所述 PUSCH对应的 PHICH组号; 或者
上下行子帧配比为 0, 所述当前特殊子帧为子帧 n, 所述 PHICH资源位 于所述特殊子帧 n之后的第 K个子帧中, 其中: 当 n=l或 6, K=5时, 确定 子帧 1、 6、 4和 9对应的 ™cff为 1 , 该当前特殊子帧所在的无线帧中除去所 述子帧 1、 6、 4和 9的其他子帧对应的 ™cff为 0; 利用确定的 ™cff确定所述 PUSCH对应的 PHICH组号。
可选的, 所述资源组号确定模块还用于:
上下行子帧配比为 6, 所述当前特殊子帧为子帧 n, 所述 PHICH资源位 于所述特殊子帧 n之后的第 K个子帧中, 其中: 当 n=l或 6, K=4时, 确定 子帧 6和 8对应的 PHICH组号指示因子 ™cff为 1 , 该当前特殊子帧所在的无 线帧中除去所述子帧 6和 8的其他子帧对应的 H为 0; 利用确定的 H确 定所述 PUSCH对应的 PHICH组号; 或者
上下行子帧配比为 6, 所述当前特殊子帧为子帧 n, 所述 PHICH资源位 于所述特殊子帧 n之后的第 K个子帧中, 其中: 当 n=l或 6, K=4时, 确定 子帧 1和 4对应的 ^^为 1 ,该当前特殊子帧所在的无线帧中除去所述子帧 1 和 4的其他子帧对应的 为 0; 利用确定的 确定所述 PUSCH对应的 PHICH组号。
实施例六 基站 600, 该基站包括: 接收单元 601 , 用于在当前特殊子帧接收 PUSCH;
确定单元 602,用于根据接收所述 PUSCH的上行资源,确定所述 PUSCH 对应的 PHICH资源, 所述上行资源中包含所述当前特殊子帧;
传输单元 603 , 用于在确定的 PHICH资源传输 PHICH。
所述 PHICH资源包括两个部分: PHICH资源的子帧位置以及 PHICH资 源的 PHICH组号。 所以所述确定单元 602具体包括:
子帧位置确定模块, 用于根据接收所述 PUSCH 的上行资源, 确定所述 PUSCH对应的 PHICH资源的子帧位置;
资源组号确定模块, 用于根据所述子帧位置确定所述 PHICH 资源的 PHICH组号, 利用所述子帧位置和所述 PHICH组号确定所述 PUSCH对应的 PHICH资源。
一、 当所述传输 PUSCH的上行资源的子帧只是所述当前特殊子帧, 子帧 位置确定模块根据接收所述 PUSCH 的上行资源, 确定所述 PUSCH对应的 PHICH资源的子帧位置时, 则该子帧位置确定模块还用于:
上下行子帧配比为 0, 所述当前特殊子帧为子帧 n, 确定所述 PHICH资 源位于所述当前特殊子帧 n之后的第 K个子帧中, 其中:
当 n=l或 6时, K=5;
当 η=1或 6时, k=10; 或者
上下行子帧配比为 1 , 所述当前特殊子帧为子帧 n, 确定所述 PHICH资 源位于所述当前特殊子帧 n之后的第 K个子帧中, 其中:
当 n=l或 6时, K=4;
当 η=1或 6时, k=5;
当 n=l或 6时, k= 8; 或者
上下行子帧配比为 2, 所述当前特殊子帧为子帧 n, 确定所述 PHICH资 源位于所述当前特殊子帧 n之后的第 K个子帧中, 其中:
当 n=l或 6时, K=4;
当 η=1或 6时, k=5; 当 n=l或 6
当 η=1或 6时, k=8; 或者
上下行子帧配比为 3 , 所述当前特殊子帧为子帧 n, 确定所述 PHICH资 源位于所述当前特殊子帧 n之后的第 K个子帧中, 其中 当 n=l时, K=4、 5、 6、 7、 8或 9; 或者
上下行子帧配比为 4, 所述当前特殊子帧为子帧 n, 确定所述 PHICH资 源位于所述当前特殊子帧 n之后的第 K个子帧中, 其中 当 η=1时, Κ=4、 5、 6、 7、 8或 9; 或者
上下行子帧配比为 5 , 所述当前特殊子帧为子帧 n, 确定所述 PHICH资 源位于所述当前特殊子帧 n之后的第 K个子帧中, 其中 当 n=l时, K=4、 5、 6、 7、 8或 9; 或者
上下行子帧配比为 6, 所述当前特殊子帧为子帧 n, 确定所述 PHICH资 源位于所述当前特殊子帧 n之后的第 K个子帧中, 其中:
当 n=l或 6时, K=4;
当 η=1或 6时, k=5
当 n=l或 6时, k=8
当 n=l或 6时, k=9
当 n=l或 6时, k=10。
二、当所述传输 PUSCH的上行资源的子帧包括所述当前特殊子帧以及其 他子帧,即当所述传输 PUSCH的上行资源的子帧包括所述当前特殊子帧以及 与该当前特殊子帧绑定的协作子帧, 则子帧位置确定模块还用于根据所述协 作子帧, 确定所述 PUSCH对应的 PHICH资源的子帧位置。
其中, 在具体实现过程中, 所述子帧位置确定模块还用于利用所述协作 子帧包括所述当前特殊子帧所在无线帧中的至少一个上行子帧和 /或该无线帧 中除所述当前特殊子帧的其他特殊子帧, 确定所述 PUSCH对应的 PHICH资 源的子帧位置。
可选的, 为了综合考虑传输时延和 eNB处理时间, 以及考虑传输时延和 UE处理时间, 所以在本发明实施例中, 所述子帧位置确定模块还用于根据所 述协作子帧中的最后一个子帧 L, 确定所述 PUSCH对应的 PHICH资源的子 帧位置。
具体的, 结合表 1所示的长期演进 ( LTE, Long Term Evolution )的 TDD 系统定义的 7种上下行子帧配比, 以下对各配比情况下根据所述协作子帧中 的最后一个子帧 L, 确定所述 PUSCH对应的 PHICH资源的子帧位置可实现 方案进行详细描述:
因为不同配比情况下, 上行子帧的位置以及数量都不相同, 所以在具体 绑定时候会出现多种情况, 以下根据绑定的不同情况分别说明:
方式一: 一个无线帧中的所有上行子帧绑定形成一个绑定子帧, 并且每 个绑定子帧对应一个 HARQ进程, 所述子帧位置确定模块还用于:
上下行子帧配比为 0 ,当一个无线帧中的特殊子帧 1和 6与该无线帧中的 子帧 2、 3、 4、 7、 8和 9绑定时, 确定所述 PHICH资源位于所述最后一个子 帧 L之后的第 K个子帧中, L=9, K=6; 或者
上下行子帧配比为 1 ,当一个无线帧中的特殊子帧 1和 6与该无线帧中的 子帧 2、 3、 7和 8绑定时, 确定所述 PHICH资源位于所述最后一个子帧 L之 后的第 K个子帧中, L=8, K=6; 或者
上下行子帧配比为 2 ,当一个无线帧中的特殊子帧 1和 6与该无线帧中的 子帧 2和 7绑定时,确定所述 PHICH资源位于所述最后一个子帧 L之后的第 K个子帧中, L=7 , K=6、 9或 19; 或者
上下行子帧配比为 3 ,当一个无线帧中的特殊子帧 1与该无线帧中的子帧 2、 3和 4绑定时,确定所述 PHICH资源位于所述最后一个子帧 L之后的第 Κ 个子帧中, L=4 , K=16; 或者
上下行子帧配比为 5 ,当一个无线帧中的特殊子帧 1与该无线帧中的子帧 2绑定时, 则确定所述 PHICH资源位于所述最后一个子帧 L之后的第 K个子 帧中, L=2, K=5、 15或 25; 或者
上下行子帧配比为 6 ,当一个无线帧中的特殊子帧 1和 6与该无线帧中的 子帧 2、 3、 4、 7和 8绑定时, 所述 PHICH资源位于所述最后一个子帧 L之 后的第 K个子帧中, L=8, K=17。
方式二、 一个无线帧中包括两个特殊子帧, 每个特殊子帧都可以形成一 个绑定子帧, 并且各绑定子帧分别对应不同的 HARQ进程时, 具体实现可以 疋:
1、 上下行子帧配比为 2, 当一个无线帧中的特殊子帧 1与该无线帧中的 子帧 2绑定形成第一绑定帧,该无线帧中的特殊子帧 6与该无线帧中的子帧 7 绑定形成第二绑定帧时: 所述子帧位置确定模块还用于:
确定所述第一绑定帧对应的第一 PHICH资源位于所述最后一个子帧 L之 后的第 K1个子帧中, L=2, Kl=4;
确定所述第二绑定帧对应的第二 PHICH资源位于所述最后一个子帧 L之 后的第 K2个子帧中, L=7 , K2=4。
2、 上下行子帧配比为 3 , 当一个无线帧中的特殊子帧 1与该无线中的子 帧 2和 3绑定形成第一绑定帧,该无线帧中子帧 4与下个无线帧的特殊子帧 1 以及所述下个无线帧中子帧 2绑定形成第二绑定帧,下个无线帧中子帧 3和 4 绑定形成第三绑定帧时: 所述子帧位置确定模块还用于:
确定所述第一绑定帧对应的第一 PHICH资源位于所述最后一个子帧 L之 后的第 K个子帧中, L=3 , K=6;
确定所述第二绑定帧对应的第二 PHICH资源位于所述最后一个子帧 L之 后的第 K个子帧中, L=2, K=6;
确定所述第三绑定帧对应的第三 PHICH资源位于所述最后一个子帧 L之 后的第 K个子帧中, L=4, K=6。
当基站确定所述 PUSCH对应的 PHICH资源的子帧位置后, 该基站所对 应 的 PHICH 信息可 由 PHICH 的组号和组 内 的正交序 列 号 ( group seq \
n PHICH, n PHICH ) 通过以下公式唯一确定并分离出来: group _ 7- ■ T Τ group
- - 扇 P
P nHjjImCHjj \丄 PRB RA + nDMRS ) ) m moudu N 1 v P gHICH 卞 1 PHICH PHICH seq group PHICH n PHICH _ I P PRPBR _ R PAA 1 1 ' P ΡHΜIΤΓCHΜ _ + η lDηMΜRΡSς)/ m lllod" 2 则
SF
本发明实施例所提供的方法还确定 PHICH资源的时频域, 则所述资源组号确 定模块还用于根据所述 PHICH资源对应的子帧位置, 利用 PHICH组号指示 因子 H确定所述 PUSCH对应的 PHICH组号。
在具体的实例中,基站根据所述子帧位置确定所述 PHICH资源的 PHICH 组号时, 所述资源组号确定模块还用于:
上下行子帧配比为 0, 所述当前特殊子帧为子帧 n, 所述 PHICH资源位 于所述特殊子帧 n之后的第 K个子帧中, 其中: 当 n=l或 6, K=5时, 确定 子帧 2、 4、 7和 9对应的 PHICH组号指示因子 为 1 , 该当前特殊子帧所 在的无线帧中除去所述子帧 2、 4、 7和 9的其他子帧对应的 ^^为 0; 利用 确定的 确定所述 PUSCH对应的 PHICH组号; 或者
上下行子帧配比为 0, 所述当前特殊子帧为子帧 n, 所述 PHICH资源位 于所述特殊子帧 n之后的第 K个子帧中, 其中: 当 n=l或 6, K=5时, 确定 子帧 1、 6 、 4和 9对应的 ™cff为 1 , 该当前特殊子帧所在的无线帧中除去所 述子帧 n=l、 6、 4和 9的其他子帧对应的 为 0; 利用确定的 确定所 述 PUSCH对应的 PHICH组号。
可选的, 所述资源组号确定模块还用于:
上下行子帧配比为 6, 所述当前特殊子帧为子帧 n, 所述 PHICH资源位 于所述特殊子帧 n之后的第 K个子帧中, 其中: 当 n=l或 6, K=4时, 确定 子帧 6和 8对应的 PHICH组号指示因子 ™cff为 1 , 该当前特殊子帧所在的无 线帧中除去所述子帧 6和 8的其他子帧对应的 H为 0; 利用确定的 H确 定所述 PUSCH对应的 PHICH组号; 或者
上下行子帧配比为 6, 所述当前特殊子帧为子帧 n, 所述 PHICH资源位 于所述特殊子帧 n之后的第 K个子帧中, 其中: 当 η=1或 6, Κ=4时, 确定 子帧 1和 4对应的 PHICH组号指示因子 ^^为 1 , 该当前特殊子帧所在的无 线帧中除去所述子帧 1和 4的其他子帧对应的 为 0; 利用确定的 确 定所述 PUSCH对应的 PHICH组号。
本申请实施例中的上述一个或多个技术方案, 至少具有如下的技术效果: 本发明实施例所提供的方法解决了现有技术中, 使用特殊子帧 (单独或 者绑定)传输上行 PUSCH时, 没有具体的方案确定所述上行 PUSCH对应的 下行 PHICH的接收位置的问题;
另外, 在确定所述下行 PHICH 的接收位置的同时, 还对应提供了调整 PHICH资源对应的 PHICH组号的方法, 从而提供了新确定的 PUSCH对应的 PHICH资源与原有配比冲突的解决办法。
所属领域的技术人员可以清楚地了解到, 为描述的方便和简洁, 仅以上 述各功能模块的划分进行举例说明, 实际应用中, 可以根据需要而将上述功 能分配由不同的功能模块完成, 即将装置的内部结构划分成不同的功能模块, 以完成以上描述的全部或者部分功能。 上述描述的系统, 装置和单元的具体 工作过程, 可以参考前述方法实施例中的对应过程, 在此不再赘述。
在本申请所提供的几个实施例中, 应该理解到, 所揭露的系统, 装置和 方法, 可以通过其它的方式实现。 例如, 以上所描述的装置实施例仅仅是示 意性的, 例如, 所述模块或单元的划分, 仅仅为一种逻辑功能划分, 实际实 现时可以有另外的划分方式, 例如多个单元或组件可以结合或者可以集成到 另一个系统, 或一些特征可以忽略, 或不执行。 另一点, 所显示或讨论的相 互之间的耦合或直接耦合或通信连接可以是通过一些接口, 装置或单元的间 接耦合或通信连接, 可以是电性, 机械或其它的形式。 为单元显示的部件可以是或者也可以不是物理单元, 即可以位于一个地方, 或者也可以分布到多个网络单元上。 可以根据实际的需要选择其中的部分或 者全部单元来实现本实施例方案的目的。
另外, 在本申请各个实施例中的各功能单元可以集成在一个处理单元中, 也可以是各个单元单独物理存在, 也可以两个或两个以上单元集成在一个单 元中。 上述集成的单元既可以釆用硬件的形式实现, 也可以釆用软件功能单 元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售 或使用时, 可以存储在一个计算机可读取存储介质中。 基于这样的理解, 本 申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的 全部或部分可以以软件产品的形式体现出来, 该计算机软件产品存储在一个 存储介质中, 包括若干指令用以使得一台计算机设备(可以是个人计算机, 服务器, 或者网络设备等)或处理器(processor )执行本申请各个实施例所述 方法的全部或部分步骤。 而前述的存储介质包括: U盘、 移动硬盘、 只读存 储器(ROM, Read-Only Memory ), 随机存取存储器(RAM, Random Access Memory )、 磁碟或者光盘等各种可以存储程序代码的介质。
以上所述, 以上实施例仅用以对本申请的技术方案进行了详细介绍, 但 以上实施例的说明只是用于帮助理解本发明的方法及其核心思想, 不应理解 为对本发明的限制。 本技术领域的技术人员在本发明揭露的技术范围内, 可 轻易想到的变化或替换, 都应涵盖在本发明的保护范围之内。

Claims

权 利 要 求
1、 一种控制信道资源分配方法, 其特征在于, 方法包括:
用户设备 UE在当前特殊子帧发送物理上行共享信道 PUSCH;
所述 UE根据传输所述 PUSCH的上行资源, 确定所述 PUSCH对应的物 理混合自动重传请求指示信道 PHICH资源, 所述传输 PUSCH的上行资源中 包含所述当前特殊子帧;
所述 UE在确定的 PHICH资源接收 PHICH。
2、如权利要求 1所述的方法,其特征在于,所述 UE根据传输所述 PUSCH 的上行资源, 确定所述 PUSCH对应的 PHICH资源包括:
所述 UE根据传输所述 PUSCH的上行资源, 确定所述 PUSCH对应的 PHICH资源的子帧位置;
根据所述子帧位置确定所述 PHICH资源的 PHICH组号, 利用所述子帧 位置和所述 PHICH组号确定所述 PUSCH对应的 PHICH资源。
3、 如权利要求 2所述方法, 其特征在于, 当所述传输 PUSCH的上行资 源的子帧只是所述当前特殊子帧, 则所述 UE根据传输所述 PUSCH的上行资 源, 确定所述 PUSCH对应的 PHICH资源的子帧位置包括:
上下行子帧配比为 0, 所述当前特殊子帧为子帧 n, 则确定所述 PHICH 资源位于所述当前特殊子帧 n之后的第 K个子帧中, 其中: 当 n=l或 6时, K=5; 当 η=1或 6时, k=10; 或者
上下行子帧配比为 1 , 所述当前特殊子帧为子帧 n, 则确定所述 PHICH 资源位于所述当前特殊子帧 n之后的第 K个子帧中, 其中: 当 n=l或 6时, K=4; 当 η=1或 6时, k=5; 当 n=l或 6时, k= 8; 或者
上下行子帧配比为 2, 所述当前特殊子帧为子帧 n, 则确定所述 PHICH 资源位于所述当前特殊子帧 n之后的第 K个子帧中, 其中: 当 n=l或 6时, K=4; 当 η=1或 6时, k=5; 当 n=l或 6时, k=7; 当 n=l或 6时, k=8; 或者 上下行子帧配比为 3 , 所述当前特殊子帧为子帧 n, 则确定所述 PHICH 资源位于所述当前特殊子帧 n之后的第 K个子帧中, 其中: 当 η=1时, Κ=4、 5、 6、 7、 8或 9; 或者
上下行子帧配比为 4, 所述当前特殊子帧为子帧 η, 则确定所述 PHICH 资源位于所述当前特殊子帧 η之后的第 Κ个子帧中, 其中: 当 η=1时, Κ=4、 5、 6、 7、 8或 9; 或者
上下行子帧配比为 5, 所述当前特殊子帧为子帧 η, 则确定所述 PHICH 资源位于所述当前特殊子帧 n之后的第 K个子帧中, 其中: 当 n=l时, K=4、 5、 6、 7、 8或 9; 或者
上下行子帧配比为 6, 所述当前特殊子帧为子帧 η, 则确定所述 PHICH 资源位于所述当前特殊子帧 n之后的第 K个子帧中, 其中:
当 n=l或 6时, K=4;
当 η=1或 6时, k=5;
当 n=l或 6时, k=8;
当 n=l或 6时, k=9;
当 n=l或 6时, k=10。
4、 如权利要求 2所述的方法, 其特征在于, 当所述传输 PUSCH的上行 资源的子帧包括所述当前特殊子帧以及与该当前特殊子帧绑定的协作子帧, 则所述 UE根据传输所述 PUSCH的上行资源,确定所述 PUSCH对应的 PHICH 资源的子帧位置包括:
根据所述协作子帧, 确定所述 PUSCH对应的 PHICH资源的子帧位置。
5、 如权利要求 4所述的方法, 其特征在于, 所述协作子帧包括所述当前 特殊子帧所在无线帧中的至少一个上行子帧和 /或该无线帧中除所述当前特殊 子帧的其他特殊子帧。
6、 如权利要求 4或 5任一所述的方法, 其特征在于, 所述 UE根据传输 所述 PUSCH的上行资源, 确定所述 PUSCH对应的 PHICH资源的子帧位置 包括:
根据所述协作子帧中的最后一个子帧 L,确定所述 PUSCH对应的 PHICH 资源的子帧位置。
7、 如权利要求 6所述的方法, 其特征在于, 根据所述协作子帧中的最后 一个子帧 L, 确定所述 PUSCH对应的 PHICH资源的子帧位置包括:
上下行子帧配比为 0 ,当一个无线帧中的特殊子帧 1和 6与该无线帧中的 子帧 2、 3、 4、 7、 8和 9绑定时, 则确定所述 PHICH资源位于所述最后一个 子帧 L之后的第 K个子帧中, L=9 , K=6; 或者
上下行子帧配比为 1 ,当一个无线帧中的特殊子帧 1和 6与该无线帧中的 子帧 2、 3、 7和 8绑定时, 则确定所述 PHICH资源位于所述最后一个子帧 L 之后的第 K个子帧中, L=8, K=6; 或者
上下行子帧配比为 2 ,当一个无线帧中的特殊子帧 1和 6与该无线帧中的 子帧 2和 7绑定时, 则确定所述 PHICH资源位于所述最后一个子帧 L之后的 第 K个子帧中, L=7 , K=6、 9或 19; 或者
上下行子帧配比为 3 ,当一个无线帧中的特殊子帧 1与该无线帧中的子帧 2、 3和 4绑定时,则确定所述 PHICH资源位于所述最后一个子帧 L之后的第 K个子帧中, L=4, K=16; 或者
上下行子帧配比为 5 ,当一个无线帧中的特殊子帧 1与该无线帧中的子帧 2绑定时,则确定所述 PHICH资源位于所述子帧 2之后的第 K个子帧中, K=5、 15或 25; 或者
上下行子帧配比为 6 ,当一个无线帧中的特殊子帧 1和 6与该无线帧中的 子帧 2、 3、 4、 7和 8绑定时, 所述 PHICH资源位于所述最后一个子帧 L之 后的第 K个子帧中, L=8, K=17。
8、 如权利要求 6所述的方法, 其特征在于, 上下行子帧配比为 2 , 当一 个无线帧中的特殊子帧 1与该无线帧中的子帧 2绑定形成第一绑定帧, 该无 线帧中的特殊子帧 6与该无线帧中的子帧 7绑定形成第二绑定帧时: 则所述 根据所述协作子帧中的最后一个子帧 L, 确定所述 PUSCH对应的 PHICH资 源的子帧位置包括:
所述第一绑定帧对应的第一 PHICH资源位于所述最后一个子帧 L之后的 第 Kl个子帧中, L=2, Kl=4;
所述第二绑定帧对应的第二 PHICH资源位于所述最后一个子帧 L之后的 第 Κ2个子帧中, L=7 , K2=4。
9、 如权利要求 6所述的方法, 其特征在于, 上下行子帧配比为 3 , 当一 个无线帧中的特殊子帧 1与该无线中的子帧 2和 3绑定形成第一绑定帧, 该 无线帧中子帧 4与下个无线帧的特殊子帧 1以及所述下个无线帧中子帧 2绑 定形成第二绑定帧, 所述下个无线帧中子帧 3和 4绑定形成第三绑定帧时: 则所述根据所述协作子帧中的最后一个子帧 L , 确定所述 PUSCH对应的 PHICH资源的子帧位置包括:
所述第一绑定帧对应的第一 PHICH资源位于所述最后一个子帧 L之后的 第 K个子帧中, L=3 , K=6;
所述第二绑定帧对应的第二 PHICH资源位于所述最后一个子帧 L之后的 第 K个子帧中, L=2, K=6;
所述第三绑定帧对应的第三 PHICH资源位于所述最后一个子帧 L之后的 第 K个子帧中, L=4, K=6。
10、 如权利要求 2~9任一所述的方法, 其特征在于, 根据所述子帧位置 确定所述 PHICH资源的 PHICH组号:
根据所述 PHICH资源对应的子帧位置,利用 PHICH组号指示因子 确 定所述 PUSCH对应的 PHICH组号。
11、 如权利要求 10所述的方法, 其特征在于, 根据所述子帧位置确定所 述 PHICH资源的 PHICH组号包括:
上下行子帧配比为 0 , 所述当前特殊子帧为子帧 n, 所述 PHICH资源位 于所述特殊子帧 n之后的第 K个子帧中, 其中: 当 n=l或 6 , K=5时, 确定 子帧 2、 4、 7和 9对应的 PHICH组号指示因子 为 1 , 该当前特殊子帧所 在的无线帧中除去所述子帧 2、 4、 7和 9的其他子帧对应的 ^^为 0; 利用 确定的 确定所述 PUSCH对应的 PHICH组号; 或者 上下行子帧配比为 0, 所述当前特殊子帧为子帧 n, 所述 PHICH资源位 于所述特殊子帧 n之后的第 K个子帧中, 其中: 当 n=l或 6, K=5时, 确定 子帧 1、 6、 4和 9对应的 ™cff为 1 , 该当前特殊子帧所在的无线帧中除去所 述子帧 1、 6、 4和 9的其他子帧对应的 ™cff为 0; 利用确定的 ™cff确定所述 PUSCH对应的 PHICH组号。
12、 如权利要求 10所述的方法, 其特征在于, 根据所述子帧位置确定所 述 PHICH资源的 PHICH组号包括:
上下行子帧配比为 6, 所述当前特殊子帧为子帧 n, 所述 PHICH资源位 于所述特殊子帧 n之后的第 K个子帧中, 其中: 当 n=l或 6, K=4时, 确定 子帧 6和 8对应的 PHICH组号指示因子 ™cff为 1 , 该当前特殊子帧所在的无 线帧中除去所述子帧 6和 8的其他子帧对应的 H为 0; 利用确定的 H确 定所述 PUSCH对应的 PHICH组号; 或者
上下行子帧配比为 6, 所述当前特殊子帧为子帧 n, 所述 PHICH资源位 于所述特殊子帧 n之后的第 K个子帧中, 其中: 当 n=l或 6, K=4时, 确定 子帧 1和 4对应的 ^^为 1 ,该当前特殊子帧所在的无线帧中除去所述子帧 1 和 4的其他子帧对应的 为 0; 利用确定的 确定所述 PUSCH对应的 PHICH组号。
13、 一种控制信道资源分配方法, 其特征在于, 方法包括:
基站在当前特殊子帧接收物理上行共享信道 PUSCH;
所述基站根据接收所述 PUSCH的上行资源, 确定所述 PUSCH对应的物 理混合自动重传请求指示信道 PHICH资源, 所述上行资源中包含所述当前特 殊子帧;
所述基站在确定的 PHICH资源传输 PHICH。
14、 如权利要求 13 所述的方法, 其特征在于, 所述基站根据接收所述 PUSCH的上行资源, 确定所述 PUSCH对应的 PHICH资源包括:
所述基站根据接收所述 PUSCH 的上行资源, 确定所述 PUSCH对应的 PHICH资源的子帧位置;
根据所述子帧位置确定所述 PHICH资源的 PHICH组号, 利用所述子帧 位置和所述 PHICH组号确定所述 PUSCH对应的 PHICH资源。
15、 如权利要求 14所述方法, 其特征在于, 当所述传输 PUSCH的上行 资源的子帧只是所述当前特殊子帧,则所述基站根据接收所述 PUSCH的上行 资源, 确定所述 PUSCH对应的 PHICH资源的子帧位置包括:
上下行子帧配比为 0, 所述当前特殊子帧为子帧 n, 则确定所述 PHICH 资源位于所述当前特殊子帧 n之后的第 K个子帧中, 其中: 当 n=l或 6时, K=5; 当 η=1或 6时, k=10; 或者
上下行子帧配比为 1 , 所述当前特殊子帧为子帧 n, 则确定所述 PHICH 资源位于所述当前特殊子帧 n之后的第 K个子帧中, 其中: 当 n=l或 6时, K=4; 当 η=1或 6时, k=5; 当 n=l或 6时, k= 8; 或者
上下行子帧配比为 2, 所述当前特殊子帧为子帧 n, 则确定所述 PHICH 资源位于所述当前特殊子帧 n之后的第 K个子帧中, 其中: 当 n=l或 6时, K=4; 当 η=1或 6时, k=5; 当 n=l或 6时, k=7; 当 n=l或 6时, k=8; 或者 上下行子帧配比为 3 , 所述当前特殊子帧为子帧 n, 则确定所述 PHICH 资源位于所述当前特殊子帧 n之后的第 K个子帧中, 其中: 当 n=l时, K=4、 5、 6、 7、 8或 9; 或者
上下行子帧配比为 4, 所述当前特殊子帧为子帧 η, 则确定所述 PHICH 资源位于所述当前特殊子帧 n之后的第 K个子帧中, 其中: 当 n=l时, K=4、 5、 6、 7、 8或 9; 或者
上下行子帧配比为 5 , 所述当前特殊子帧为子帧 η, 则确定所述 PHICH 资源位于所述当前特殊子帧 n之后的第 K个子帧中, 其中: 当 n=l时, K=4、 5、 6、 7、 8或 9; 或者
上下行子帧配比为 6, 所述当前特殊子帧为子帧 η, 则确定所述 PHICH 资源位于所述当前特殊子帧 n之后的第 K个子帧中, 其中:
当 n=l或 6时, K=4; 当 n=l或 6时, k=5;
当 n=l或 6时, k=8;
当 n=l或 6时, k=9;
当 n=l或 6时, k=10。
16、 如权利要求 14所述的方法, 其特征在于, 当所述传输 PUSCH的上 行资源的子帧包括所述当前特殊子帧以及与该当前特殊子帧绑定的协作子 帧, 则所述基站根据接收所述 PUSCH的上行资源, 确定所述 PUSCH对应的 PHICH资源的子帧位置括:
根据所述协作子帧, 确定所述 PUSCH对应的 PHICH资源的子帧位置。
17、 如权利要求 16所述的方法, 其特征在于, 所述协作子帧包括所述当 前特殊子帧所在无线帧中的至少一个上行子帧和 /或该无线帧中除所述当前特 殊子帧的其他特殊子帧。
18、 如权利要求 16或 17任一所述的方法, 其特征在于, 所述基站根据 接收所述 PUSCH的上行资源, 确定所述 PUSCH对应的 PHICH资源的子帧 位置包括:
根据所述协作子帧中的最后一个子帧 L,确定所述 PUSCH对应的 PHICH 资源的子帧位置。
19、 如权利要求 18所述的方法, 其特征在于, 根据所述协作子帧中的最 后一个子帧 L, 确定所述 PUSCH对应的 PHICH资源的子帧位置包括:
上下行子帧配比为 0,当一个无线帧中的特殊子帧 1和 6与该无线帧中的 子帧 2、 3、 4、 7、 8和 9绑定时, 则确定所述 PHICH资源位于所述最后一个 子帧 L之后的第 K个子帧中, L=9, K=6; 或者
上下行子帧配比为 1 ,当一个无线帧中的特殊子帧 1和 6与该无线帧中的 子帧 2、 3、 7和 8绑定时, 则确定所述 PHICH资源位于所述最后一个子帧 L 之后的第 K个子帧中, L=8, K=6; 或者
上下行子帧配比为 2,当一个无线帧中的特殊子帧 1和 6与该无线帧中的 子帧 2和 7绑定时, 则确定所述 PHICH资源位于所述最后一个子帧 L之后的 第 K个子帧中, L=7 , K=6、 9或 19; 或者
上下行子帧配比为 3 ,当一个无线帧中的特殊子帧 1与该无线帧中的子帧 2、 3和 4绑定时,则确定所述 PHICH资源位于所述最后一个子帧 L之后的第 K个子帧中, L=4, K=16; 或者
上下行子帧配比为 5 ,当一个无线帧中的特殊子帧 1与该无线帧中的子帧 2绑定时,则确定所述 PHICH资源位于所述子帧 2之后的第 K个子帧中, K=5、 15或 25; 或者
上下行子帧配比为 6 ,当一个无线帧中的特殊子帧 1和 6与该无线帧中的 子帧 2、 3、 4、 7和 8绑定时, 所述 PHICH资源位于所述最后一个子帧 L之 后的第 K个子帧中, L=8, K=17。
20、 如权利要求 18所述的方法, 其特征在于, 上下行子帧配比为 2, 当 一个无线帧中的特殊子帧 1与该无线帧中的子帧 2绑定形成第一绑定帧, 该 无线帧中的特殊子帧 6与该无线帧中的子帧 7绑定形成第二绑定帧时: 则所 述根据所述协作子帧中的最后一个子帧 L, 确定所述 PUSCH对应的 PHICH 资源的子帧位置包括:
所述第一绑定帧对应的第一 PHICH资源位于所述最后一个子帧 L之后的 第 K1个子帧中, L=2, Kl=4;
所述第二绑定帧对应的第二 PHICH资源位于所述最后一个子帧 L之后的 第 K2个子帧中, L=7 , K2=4。
21、 如权利要求 18所述的方法, 其特征在于, 上下行子帧配比为 3 , 当 一个无线帧中的特殊子帧 1与该无线中的子帧 2和 3绑定形成第一绑定帧, 该无线帧中子帧 4与下个无线帧的特殊子帧 1 以及所述下个无线帧中子帧 2 绑定形成第二绑定帧, 下个无线帧中子帧 3和 4绑定形成第三绑定帧时: 则 所述根据所述协作子帧中的最后一个子帧 L,确定所述 PUSCH对应的 PHICH 资源的子帧位置包括:
所述第一绑定帧对应的第一 PHICH资源位于所述最后一个子帧 L之后的 第 K个子帧中, L=3 , K=6; 所述第二绑定帧对应的第二 PHICH资源位于所述最后一个子帧 L之后的 第 K个子帧中, L=2, K=6;
所述第三绑定帧对应的第三 PHICH资源位于所述最后一个子帧 L之后的 第 Κ个子帧中, L=4, K=6。
22、 如权利要求 14~21任一所述的方法, 其特征在于, 根据所述子帧位 置确定所述 PHICH资源的 PHICH组号:
根据所述 PHICH资源对应的子帧位置,利用 PHICH组号指示因子 H 确定所述 PUSCH对应的 PHICH组号。
23、 如权利要求 22所述的方法, 其特征在于, 根据所述子帧位置确定所 述 PHICH资源的 PHICH组号包括:
上下行子帧配比为 0, 所述当前特殊子帧为子帧 n, 所述 PHICH资源位 于所述特殊子帧 n之后的第 K个子帧中, 其中: 当 n=l或 6, K=5时, 确定 子帧 2、 4、 7和 9对应的 PHICH组号指示因子 为 1 , 该当前特殊子帧所 在的无线帧中除去所述子帧 2、 4、 7和 9的其他子帧对应的 ^^为 0; 利用 确定的 确定所述 PUSCH对应的 PHICH组号; 或者
上下行子帧配比为 0, 所述当前特殊子帧为子帧 n, 所述 PHICH资源位 于所述特殊子帧 n之后的第 K个子帧中, 其中: 当 n=l或 6, K=5时, 确定 子帧 1、 6 、 4和 9对应的 ™cff为 1 , 该当前特殊子帧所在的无线帧中除去所 述子帧 n=l、 6、 4和 9的其他子帧对应的 为 0; 利用确定的 确定所 述 PUSCH对应的 PHICH组号。
24、 如权利要求 22所述的方法, 其特征在于, 根据所述子帧位置确定所 述 PHICH资源的 PHICH组号包括:
上下行子帧配比为 6, 所述当前特殊子帧为子帧 n, 所述 PHICH资源位 于所述特殊子帧 n之后的第 K个子帧中, 其中: 当 n=l或 6, K=4时, 确定 子帧 6和 8对应的 PHICH组号指示因子 ™cff为 1 , 该当前特殊子帧所在的无 线帧中除去所述子帧 6和 8的其他子帧对应的 H为 0; 利用确定的 H确 定所述 PUSCH对应的 PHICH组号; 或者
上下行子帧配比为 6, 所述当前特殊子帧为子帧 n, 所述 PHICH资源位 于所述特殊子帧 n之后的第 K个子帧中, 其中: 当 n=l或 6, K=4时, 确定 子帧 1和 4对应的 PHICH组号指示因子 ^^为 1 , 该当前特殊子帧所在的无 线帧中除去所述子帧 1和 4的其他子帧对应的 为 0; 利用确定的 确 定所述 PUSCH对应的 PHICH组号。
25、 一种用户设备, 其特征在于, 该用户设备包括:
发送单元, 用于在当前特殊子帧发送物理上行共享信道 PUSCH;
确定单元, 用于根据传输所述 PUSCH的上行资源, 确定所述 PUSCH对 应的物理混合自动重传请求指示信道 PHICH资源, 所述传输 PUSCH的上行 资源中包含所述当前特殊子帧;
接收单元, 用于在确定的 PHICH资源接收 PHICH。
26、 如权利要求 25所述的用户设备, 其特征在于, 所述确定单元具体包 括:
子帧位置确定模块, 用于根据传输所述 PUSCH 的上行资源, 确定所述 PUSCH对应的 PHICH资源的子帧位置;
资源组号确定模块, 用于根据所述子帧位置确定所述 PHICH 资源的 PHICH组号, 利用所述子帧位置和所述 PHICH组号确定所述 PUSCH对应的 PHICH资源。
27、 如权利要求 26所述用户设备, 其特征在于, 当所述传输 PUSCH的 上行资源的子帧只是所述当前特殊子帧, 则所述子帧位置确定模块还用于: 上下行子帧配比为 0, 所述当前特殊子帧为子帧 n, 确定所述 PHICH资 源位于所述当前特殊子帧 n之后的第 K个子帧中,其中:当 n=l或 6时, K=5; 当 η=1或 6时, k=10; 或者
上下行子帧配比为 1 , 所述当前特殊子帧为子帧 n, 确定所述 PHICH资 源位于所述当前特殊子帧 n之后的第 K个子帧中,其中:当 n=l或 6时, K=4; 当 η=1或 6时, k=5; 当 n=l或 6时, k= 8; 或者
上下行子帧配比为 2, 所述当前特殊子帧为子帧 n, 确定所述 PHICH资 源位于所述当前特殊子帧 n之后的第 K个子帧中,其中:当 n=l或 6时, K=4; 当 η=1或 6时, k=5; 当 n=l或 6时, k=7; 当 n=l或 6时, k=8; 或者
上下行子帧配比为 3 , 所述当前特殊子帧为子帧 n, 确定所述 PHICH资 源位于所述当前特殊子帧 n之后的第 K个子帧中, 其中: 当 n=l时, K=4、 5、 6、 7、 8或 9; 或者
上下行子帧配比为 4, 所述当前特殊子帧为子帧 η, 确定所述 PHICH资 源位于所述当前特殊子帧 η之后的第 Κ个子帧中, 其中 当 n=l时, K=4、 5、 6、 7、 8或 9; 或者
上下行子帧配比为 5 , 所述当前特殊子帧为子帧 η, 确定所述 PHICH资 源位于所述当前特殊子帧 η之后的第 Κ个子帧中, 其中 当 n=l时, K=4、 5、 6、 7、 8或 9; 或者
上下行子帧配比为 6, 所述当前特殊子帧为子帧 η, 确定所述 PHICH资 源位于所述当前特殊子帧 n之后的第 K个子帧中, 其中
当 n=l或 6时, K=4;
当 η=1或 6时, k=5
当 n=l或 6时, k=8
当 n=l或 6时, k=9
当 n=l或 6时, k=10。
28、 如权利要求 26所述的用户设备, 其特征在于, 当所述传输 PUSCH 的上行资源的子帧包括所述当前特殊子帧以及与该当前特殊子帧绑定的协作 子帧, 则所述子帧位置确定模块还用于根据所述协作子帧, 确定所述 PUSCH 对应的 PHICH资源的子帧位置。
29、 如权利要求 28所述的用户设备, 其特征在于, 所述子帧位置确定模 块还用于利用所述协作子帧包括的所述当前特殊子帧所在无线帧中的至少一 个上行子帧和 /或该无线帧中除所述当前特殊子帧的其他特殊子帧, 确定所述
PUSCH对应的 PHICH资源的子帧位置。
30、 如权利要求 28或 29任一所述的用户设备, 其特征在于, 所述子帧 位置确定模块还用于根据所述协作子帧中的最后一个子帧 L , 确定所述 PUSCH对应的 PHICH资源的子帧位置。
31、 如权利要求 30所述的用户设备, 其特征在于, 所述子帧位置确定模 块还用于:
上下行子帧配比为 0 ,当一个无线帧中的特殊子帧 1和 6与该无线帧中的 子帧 2、 3、 4、 7、 8和 9绑定时, 确定所述 PHICH资源位于所述最后一个子 帧 L之后的第 K个子帧中, L=9, K=6; 或者
上下行子帧配比为 1 ,当一个无线帧中的特殊子帧 1和 6与该无线帧中的 子帧 2、 3、 7和 8绑定时, 确定所述 PHICH资源位于所述最后一个子帧 L之 后的第 K个子帧中, L=8, K=6; 或者
上下行子帧配比为 2 ,当一个无线帧中的特殊子帧 1和 6与该无线帧中的 子帧 2和 7绑定时,确定所述 PHICH资源位于所述最后一个子帧 L之后的第 K个子帧中, L=7 , K=6、 9或 19; 或者
上下行子帧配比为 3 ,当一个无线帧中的特殊子帧 1与该无线帧中的子帧 2、 3和 4绑定时,确定所述 PHICH资源位于所述最后一个子帧 L之后的第 Κ 个子帧中, L=4 , K=16; 或者
上下行子帧配比为 5 ,当一个无线帧中的特殊子帧 1与该无线帧中的子帧 2绑定时, 确定所述 PHICH资源位于所述最后一个子帧 L之后的第 K个子帧 中, L=2 , K=5、 15或 25; 或者
上下行子帧配比为 6 ,当一个无线帧中的特殊子帧 1和 6与该无线帧中的 子帧 2、 3、 4、 7和 8绑定时, 所述 PHICH资源位于所述最后一个子帧 L之 后的第 K个子帧中, L=8, K=17。
32、 如权利要求 30所述的用户设备, 其特征在于, 上下行子帧配比为 2, 当一个无线帧中的特殊子帧 1与该无线帧中的子帧 2绑定形成第一绑定帧, 该无线帧中的特殊子帧 6与该无线帧中的子帧 7绑定形成第二绑定帧时: 所 述子帧位置确定模块还用于:
确定所述第一绑定帧对应的第一 PHICH资源位于所述最后一个子帧 L之 后的第 K1个子帧中, L=2, Kl=4;
确定所述第二绑定帧对应的第二 PHICH资源位于所述最后一个子帧 L之 后的第 K2个子帧中, L=7 , K2=4。
33、 如权利要求 30所述的用户设备, 其特征在于, 上下行子帧配比为 3 , 当一个无线帧中的特殊子帧 1与该无线中的子帧 2和 3绑定形成第一绑定帧, 该无线帧中子帧 4与下个无线帧的特殊子帧 1 以及所述下个无线帧中子帧 2 绑定形成第二绑定帧, 所述下个无线帧中子帧 3和 4绑定形成第三绑定帧时: 所述子帧位置确定模块还用于:
确定所述第一绑定帧对应的第一 PHICH资源位于所述最后一个子帧 L之 后的第 K个子帧中, L=3 , K=6;
确定所述第二绑定帧对应的第二 PHICH资源位于所述最后一个子帧 L之 后的第 K个子帧中, L=2, K=6;
确定所述第三绑定帧对应的第三 PHICH资源位于所述最后一个子帧 L之 后的第 K个子帧中, L=4, K=6。
34、 如权利要求 26~33任一所述的用户设备, 其特征在于, 所述资源组 号确定模块还用于根据所述 PHICH资源对应的子帧位置, 利用 PHICH组号 指示因子 确定所述 PUSCH对应的 PHICH组号。
35、 如权利要求 34所述的用户设备, 其特征在于, 所述资源组号确定模 块还用于:
上下行子帧配比为 0 , 所述当前特殊子帧为子帧 n, 所述 PHICH资源位 于所述特殊子帧 n之后的第 K个子帧中, 其中: 当 n=l或 6 , K=5时, 确定 子帧 2、 4、 7和 9对应的 PHICH组号指示因子 为 1 , 该当前特殊子帧所 在的无线帧中除去所述子帧 2、 4、 7和 9的其他子帧对应的 ^^为 0; 利用 确定的 确定所述 PUSCH对应的 PHICH组号; 或者
上下行子帧配比为 0, 所述当前特殊子帧为子帧 n, 所述 PHICH资源位 于所述特殊子帧 n之后的第 K个子帧中, 其中: 当 n=l或 6, K=5时, 确定 子帧 1、 6、 4和 9对应的 ™cff为 1 , 该当前特殊子帧所在的无线帧中除去所 述子帧 1、 6、 4和 9的其他子帧对应的 ™cff为 0; 利用确定的 ™cff确定所述 PUSCH对应的 PHICH组号。
36、 如权利要求 34所述的用户设备, 其特征在于, 所述资源组号确定模 块还用于:
上下行子帧配比为 6, 所述当前特殊子帧为子帧 n, 所述 PHICH资源位 于所述特殊子帧 n之后的第 K个子帧中, 其中: 当 n=l或 6, K=4时, 确定 子帧 6和 8对应的 PHICH组号指示因子 ™cff为 1 , 该当前特殊子帧所在的无 线帧中除去所述子帧 6和 8的其他子帧对应的 H为 0; 利用确定的 H确 定所述 PUSCH对应的 PHICH组号; 或者
上下行子帧配比为 6, 所述当前特殊子帧为子帧 n, 所述 PHICH资源位 于所述特殊子帧 n之后的第 K个子帧中, 其中: 当 n=l或 6, K=4时, 确定 子帧 1和 4对应的 ^^为 1 ,该当前特殊子帧所在的无线帧中除去所述子帧 1 和 4的其他子帧对应的 为 0; 利用确定的 确定所述 PUSCH对应的 PHICH组号。
37、 一种基站, 其特征在于, 该基站包括:
接收单元, 用于在当前特殊子帧接收物理上行共享信道 PUSCH;
确定单元, 用于根据接收所述 PUSCH的上行资源, 确定所述 PUSCH对 应的物理混合自动重传请求指示信道 PHICH资源, 所述上行资源中包含所述 当前特殊子帧;
传输单元, 用于在确定的 PHICH资源传输 PHICH。
38、 如权利要求 37所述的基站, 其特征在于, 所述确定单元包括: 子帧位置确定模块, 用于根据接收所述 PUSCH 的上行资源, 确定所述 PUSCH对应的 PHICH资源的子帧位置;
资源组号确定模块, 用于根据所述子帧位置确定所述 PHICH 资源的 PHICH组号, 利用所述子帧位置和所述 PHICH组号确定所述 PUSCH对应的 PHICH资源。
39、 如权利要求 38所述基站, 其特征在于, 当所述传输 PUSCH的上行 资源的子帧只是所述当前特殊子帧, 则子帧位置确定模块还用于:
上下行子帧配比为 0, 所述当前特殊子帧为子帧 n, 确定所述 PHICH资 源位于所述当前特殊子帧 n之后的第 K个子帧中,其中:当 n=l或 6时, K=5; 当 η=1或 6时, k=10; 或者
上下行子帧配比为 1 , 所述当前特殊子帧为子帧 n, 确定所述 PHICH资 源位于所述当前特殊子帧 n之后的第 K个子帧中,其中:当 n=l或 6时, K=4; 当 η=1或 6时, k=5; 当 n=l或 6时, k= 8; 或者
上下行子帧配比为 2, 所述当前特殊子帧为子帧 n, 确定所述 PHICH资 源位于所述当前特殊子帧 n之后的第 K个子帧中,其中:当 n=l或 6时, K=4; 当 η=1或 6时, k=5; 当 n=l或 6时, k=7; 当 n=l或 6时, k=8; 或者
上下行子帧配比为 3 , 所述当前特殊子帧为子帧 n, 确定所述 PHICH资 源位于所述当前特殊子帧 n之后的第 K个子帧中, 其中: 当 n=l时, K=4、 5、 6、 7、 8或 9; 或者
上下行子帧配比为 4, 所述当前特殊子帧为子帧 η, 确定所述 PHICH资 源位于所述当前特殊子帧 n之后的第 K个子帧中, 其中: 当 n=l时, K=4、 5、 6、 7、 8或 9; 或者
上下行子帧配比为 5 , 所述当前特殊子帧为子帧 η, 确定所述 PHICH资 源位于所述当前特殊子帧 n之后的第 K个子帧中, 其中: 当 n=l时, K=4、 5、 6、 7、 8或 9; 或者
上下行子帧配比为 6, 所述当前特殊子帧为子帧 η, 确定所述 PHICH资 源位于所述当前特殊子帧 n之后的第 K个子帧中, 其中:
当 n=l或 6时, K=4; 当 n=l或 6时, k=5;
当 n=l或 6时, k=8;
当 n=l或 6时, k=9;
当 n=l或 6时, k=10。
40、 如权利要求 38所述的基站, 其特征在于, 当所述传输 PUSCH的上 行资源的子帧包括所述当前特殊子帧以及与该当前特殊子帧绑定的协作子 帧, 则子帧位置确定模块还用于根据所述协作子帧, 确定所述 PUSCH对应的 PHICH资源的子帧位置。
41、 如权利要求 40所述的基站, 其特征在于, 子帧位置确定模块还用于 利用所述协作子帧包括所述当前特殊子帧所在无线帧中的至少一个上行子帧 和 /或该无线帧中除所述当前特殊子帧的其他特殊子帧, 确定所述 PUSCH对 应的 PHICH资源的子帧位置。
42、 如权利要求 40或 41任一所述的基站, 其特征在于, 所述子帧位置 确定模块还用于根据所述协作子帧中的最后一个子帧 L, 确定所述 PUSCH对 应的 PHICH资源的子帧位置。
43、 如权利要求 42所述的基站, 其特征在于, 所述子帧位置确定模块还 用于:
上下行子帧配比为 0,当一个无线帧中的特殊子帧 1和 6与该无线帧中的 子帧 2、 3、 4、 7、 8和 9绑定时, 确定所述 PHICH资源位于所述最后一个子 帧 L之后的第 K个子帧中, L=9, K=6; 或者
上下行子帧配比为 1 ,当一个无线帧中的特殊子帧 1和 6与该无线帧中的 子帧 2、 3、 7和 8绑定时, 确定所述 PHICH资源位于所述最后一个子帧 L之 后的第 K个子帧中, L=8, K=6; 或者
上下行子帧配比为 2,当一个无线帧中的特殊子帧 1和 6与该无线帧中的 子帧 2和 7绑定时,确定所述 PHICH资源位于所述最后一个子帧 L之后的第 K个子帧中, L=7, K=6、 9或 19; 或者
上下行子帧配比为 3 ,当一个无线帧中的特殊子帧 1与该无线帧中的子帧 2、 3和 4绑定时,确定所述 PHICH资源位于所述最后一个子帧 L之后的第 K 个子帧中, L=4 , K=16; 或者
上下行子帧配比为 5 ,当一个无线帧中的特殊子帧 1与该无线帧中的子帧 2绑定时, 则确定所述 PHICH资源位于所述最后一个子帧 L之后的第 K个子 帧中, L=2, K=5、 15或 25; 或者
上下行子帧配比为 6 ,当一个无线帧中的特殊子帧 1和 6与该无线帧中的 子帧 2、 3、 4、 7和 8绑定时, 所述 PHICH资源位于所述最后一个子帧 L之 后的第 K个子帧中, L=8, K=17。
44、 如权利要求 42所述的基站, 其特征在于, 上下行子帧配比为 2, 当 一个无线帧中的特殊子帧 1与该无线帧中的子帧 2绑定形成第一绑定帧, 该 无线帧中的特殊子帧 6与该无线帧中的子帧 7绑定形成第二绑定帧时: 所述 子帧位置确定模块还用于:
确定所述第一绑定帧对应的第一 PHICH资源位于所述最后一个子帧 L之 后的第 K1个子帧中, L=2, Kl=4;
确定所述第二绑定帧对应的第二 PHICH资源位于所述最后一个子帧 L之 后的第 K2个子帧中, L=7 , K2=4。
45、 如权利要求 42所述的基站, 其特征在于, 上下行子帧配比为 3 , 当 一个无线帧中的特殊子帧 1与该无线中的子帧 2和 3绑定形成第一绑定帧, 该无线帧中子帧 4与下个无线帧的特殊子帧 1 以及所述下个无线帧中子帧 2 绑定形成第二绑定帧, 下个无线帧中子帧 3和 4绑定形成第三绑定帧时: 所 述子帧位置确定模块还用于:
确定所述第一绑定帧对应的第一 PHICH资源位于所述最后一个子帧 L之 后的第 K个子帧中, L=3 , K=6;
确定所述第二绑定帧对应的第二 PHICH资源位于所述最后一个子帧 L之 后的第 K个子帧中, L=2, K=6;
确定所述第三绑定帧对应的第三 PHICH资源位于所述最后一个子帧 L之 后的第 K个子帧中, L=4, K=6。
46、 如权利要求 37~45任一所述的基站, 其特征在于, 所述资源组号确 定模块还用于根据所述 PHICH资源对应的子帧位置, 利用 PHICH组号指示 因子 H确定所述 PUSCH对应的 PHICH组号。
47、 如权利要求 46所述的基站, 其特征在于, 所述资源组号确定模块还 用于:
上下行子帧配比为 0, 所述当前特殊子帧为子帧 n, 所述 PHICH资源位 于所述特殊子帧 n之后的第 K个子帧中, 其中: 当 n=l或 6, K=5时, 确定 子帧 2、 4、 7和 9对应的 PHICH组号指示因子 为 1 , 该当前特殊子帧所 在的无线帧中除去所述子帧 2、 4、 7和 9的其他子帧对应的 ^^为 0; 利用 确定的 确定所述 PUSCH对应的 PHICH组号; 或者
上下行子帧配比为 0, 所述当前特殊子帧为子帧 n, 所述 PHICH资源位 于所述特殊子帧 n之后的第 K个子帧中, 其中: 当 n=l或 6, K=5时, 确定 子帧 1、 6 、 4和 9对应的 ™cff为 1 , 该当前特殊子帧所在的无线帧中除去所 述子帧 n=l、 6、 4和 9的其他子帧对应的 为 0; 利用确定的 确定所 述 PUSCH对应的 PHICH组号。
48、 如权利要求 46所述的基站, 其特征在于, 所述资源组号确定模块还 用于:
上下行子帧配比为 6, 所述当前特殊子帧为子帧 n, 所述 PHICH资源位 于所述特殊子帧 n之后的第 K个子帧中, 其中: 当 n=l或 6, K=4时, 确定 子帧 6和 8对应的 PHICH组号指示因子 ™cff为 1 , 该当前特殊子帧所在的无 线帧中除去所述子帧 6和 8的其他子帧对应的 H为 0; 利用确定的 H确 定所述 PUSCH对应的 PHICH组号; 或者
上下行子帧配比为 6, 所述当前特殊子帧为子帧 n, 所述 PHICH资源位 于所述特殊子帧 n之后的第 K个子帧中, 其中: 当 n=l或 6, K=4时, 确定 子帧 1和 4对应的 PHICH组号指示因子 ^^为 1 , 该当前特殊子帧所在的无 线帧中除去所述子帧 1和 4的其他子帧对应的 H为 0; 利用确定的 确 定所述 PUSCH对应的 PHICH组号。
PCT/CN2014/075211 2014-04-11 2014-04-11 一种控制信道资源分配方法及装置 WO2015154310A1 (zh)

Priority Applications (8)

Application Number Priority Date Filing Date Title
EP14889165.8A EP3131222B1 (en) 2014-04-11 2014-04-11 Method and device for controlling channel resource allocation
JP2016561755A JP6463779B2 (ja) 2014-04-11 2014-04-11 制御チャネル資源割当方法及び装置
CN201811165694.9A CN109327303B (zh) 2014-04-11 2014-04-11 一种控制信道资源分配方法及装置
KR1020167031643A KR101985348B1 (ko) 2014-04-11 2014-04-11 채널 자원 할당 제어 방법 및 장치
PCT/CN2014/075211 WO2015154310A1 (zh) 2014-04-11 2014-04-11 一种控制信道资源分配方法及装置
CN201480001952.3A CN105191201B (zh) 2014-04-11 2014-04-11 一种控制信道资源分配方法及装置
EP19191671.7A EP3633905B1 (en) 2014-04-11 2014-04-11 Control channel resource allocation method and apparatus
US15/290,289 US20170034819A1 (en) 2014-04-11 2016-10-11 Control channel resource allocation method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2014/075211 WO2015154310A1 (zh) 2014-04-11 2014-04-11 一种控制信道资源分配方法及装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/290,289 Continuation US20170034819A1 (en) 2014-04-11 2016-10-11 Control channel resource allocation method and apparatus

Publications (1)

Publication Number Publication Date
WO2015154310A1 true WO2015154310A1 (zh) 2015-10-15

Family

ID=54287145

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/075211 WO2015154310A1 (zh) 2014-04-11 2014-04-11 一种控制信道资源分配方法及装置

Country Status (6)

Country Link
US (1) US20170034819A1 (zh)
EP (2) EP3131222B1 (zh)
JP (1) JP6463779B2 (zh)
KR (1) KR101985348B1 (zh)
CN (2) CN109327303B (zh)
WO (1) WO2015154310A1 (zh)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3240221A1 (en) * 2016-04-28 2017-11-01 Nokia Technologies Oy Method and apparatus for performing hybrid automatic repeat request processes
CN107317658A (zh) * 2016-04-26 2017-11-03 北京信威通信技术股份有限公司 Harq处理方法及装置
WO2017219738A1 (zh) * 2016-06-22 2017-12-28 电信科学技术研究院 一种发送和接收反馈信息的方法及设备
WO2017219703A1 (zh) * 2016-06-22 2017-12-28 电信科学技术研究院 一种上行传输的反馈信息的传输方法和设备
CN107528676A (zh) * 2016-06-22 2017-12-29 电信科学技术研究院 一种上行传输的反馈信息的传输方法和设备
CN107733619A (zh) * 2016-08-11 2018-02-23 中国移动通信有限公司研究院 一种传输方法、装置、移动通信终端及网络侧设备
CN107888359A (zh) * 2016-09-30 2018-04-06 普天信息技术有限公司 时分复用双工特殊子帧物理上行共享信道反馈定时的方法
WO2018121150A1 (zh) * 2016-12-29 2018-07-05 华为技术有限公司 一种信息传输方法及装置
JP2019510417A (ja) * 2016-03-18 2019-04-11 クゥアルコム・インコーポレイテッドQualcomm Incorporated 拡張されたアップリンクパイロットタイムスロット中で通信するための技法
JP2022033739A (ja) * 2016-11-03 2022-03-02 フラウンホッファー-ゲゼルシャフト ツァ フェルダールング デァ アンゲヴァンテン フォアシュンク エー.ファオ ユーザ機器、基地局および無線通信システム

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3076739B1 (en) * 2015-04-01 2019-05-01 HTC Corporation Device and network of handling data transmission in unlicensed band
KR20190021366A (ko) * 2016-06-22 2019-03-05 차이나 아카데미 오브 텔레커뮤니케이션즈 테크놀로지 물리 업링크 공유 채널의 전송 방법 및 장치
KR20200041943A (ko) 2017-09-11 2020-04-22 주식회사 윌러스표준기술연구소 무선 통신시스템에서 상향링크 전송 및 하향링크 수신방법, 장치 및 시스템

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101442816A (zh) * 2007-11-23 2009-05-27 大唐移动通信设备有限公司 一种时分双工系统的上行控制信令传输方法
CN101442338A (zh) * 2007-11-23 2009-05-27 大唐移动通信设备有限公司 一种时分双工系统的上行控制信令传输方法
US20130194980A1 (en) * 2012-01-27 2013-08-01 Sharp Laboratories Of America, Inc. Devices for reconfiguring uplink and downlink allocations
CN103326840A (zh) * 2012-03-23 2013-09-25 电信科学技术研究院 一种时分双工通信的方法、系统和设备
CN103378961A (zh) * 2012-04-28 2013-10-30 电信科学技术研究院 一种数据传输方法和装置
CN103503335A (zh) * 2011-05-03 2014-01-08 Lg电子株式会社 在无线通信系统中终端将信号发射到基站/从基站接收信号的方法及其装置

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100943908B1 (ko) * 2008-02-19 2010-02-24 엘지전자 주식회사 Pdcch를 통한 제어 정보 송수신 방법
CN102076094A (zh) * 2009-11-24 2011-05-25 北京三星通信技术研究有限公司 一种频带扩展系统中phich资源的确定方法和设备
CN101741462B (zh) * 2009-12-14 2014-03-12 中兴通讯股份有限公司 解调参考信号动态循环移位参数的处理方法
CN102457854B (zh) * 2010-10-14 2015-06-03 华为技术有限公司 一种解决信道冲突的方法、装置及系统
US9313776B2 (en) * 2011-03-15 2016-04-12 Lg Electronics Inc. Method for transmitting/receiving signal and device therefor
EP2695477A1 (en) * 2011-04-01 2014-02-12 InterDigital Patent Holdings, Inc. Method and apparatus for controlling connectivity to a network
WO2012148443A1 (en) * 2011-04-29 2012-11-01 Intel Corporation System and method of rank adaptation in mimo communication system
EP2706690B1 (en) * 2011-05-02 2018-03-21 LG Electronics Inc. Method for transmitting/receiving data in wireless access system and base station for same
CN102938690B (zh) * 2011-08-15 2015-08-26 华为技术有限公司 应答信息的发送、接收方法和设备
WO2013141770A1 (en) * 2012-03-22 2013-09-26 Telefonaktiebolaget L M Ericsson (Publ) Dynamic configuration of subframes in a radio communications system
KR102118750B1 (ko) * 2013-10-04 2020-06-03 이노스카이 주식회사 상향링크 스케줄링 및 harq 타이밍 제어 방법 및 장치

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101442816A (zh) * 2007-11-23 2009-05-27 大唐移动通信设备有限公司 一种时分双工系统的上行控制信令传输方法
CN101442338A (zh) * 2007-11-23 2009-05-27 大唐移动通信设备有限公司 一种时分双工系统的上行控制信令传输方法
CN103503335A (zh) * 2011-05-03 2014-01-08 Lg电子株式会社 在无线通信系统中终端将信号发射到基站/从基站接收信号的方法及其装置
US20130194980A1 (en) * 2012-01-27 2013-08-01 Sharp Laboratories Of America, Inc. Devices for reconfiguring uplink and downlink allocations
CN103326840A (zh) * 2012-03-23 2013-09-25 电信科学技术研究院 一种时分双工通信的方法、系统和设备
CN103378961A (zh) * 2012-04-28 2013-10-30 电信科学技术研究院 一种数据传输方法和装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3131222A4 *

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019510417A (ja) * 2016-03-18 2019-04-11 クゥアルコム・インコーポレイテッドQualcomm Incorporated 拡張されたアップリンクパイロットタイムスロット中で通信するための技法
JP6991990B2 (ja) 2016-03-18 2022-01-13 クゥアルコム・インコーポレイテッド 拡張されたアップリンクパイロットタイムスロット中で通信するための技法
CN107317658A (zh) * 2016-04-26 2017-11-03 北京信威通信技术股份有限公司 Harq处理方法及装置
EP3240221A1 (en) * 2016-04-28 2017-11-01 Nokia Technologies Oy Method and apparatus for performing hybrid automatic repeat request processes
US10587370B2 (en) 2016-04-28 2020-03-10 Nokia Technologies Oy Method and apparatus for performing hybrid automatic repeat request processes
US10833816B2 (en) 2016-06-22 2020-11-10 China Academy Of Telecommunications Technology Transmission method and apparatus for feedback information of uplink transmission
CN107529225A (zh) * 2016-06-22 2017-12-29 电信科学技术研究院 一种发送和接收反馈信息的方法及设备
WO2017219738A1 (zh) * 2016-06-22 2017-12-28 电信科学技术研究院 一种发送和接收反馈信息的方法及设备
KR102197442B1 (ko) * 2016-06-22 2020-12-31 차이나 아카데미 오브 텔레커뮤니케이션즈 테크놀로지 업링크 전송의 피드백 정보의 전송 방법 및 장치
US10873421B2 (en) 2016-06-22 2020-12-22 China Academy Of Telecommunications Technology Method and device for transmitting and receiving feedback information of physical uplink shared channel
KR20190020765A (ko) * 2016-06-22 2019-03-04 차이나 아카데미 오브 텔레커뮤니케이션즈 테크놀로지 업링크 전송의 피드백 정보의 전송 방법 및 장치
CN107528676A (zh) * 2016-06-22 2017-12-29 电信科学技术研究院 一种上行传输的反馈信息的传输方法和设备
EP3478015A4 (en) * 2016-06-22 2019-06-26 China Academy of Telecommunications Technology METHOD AND APPARATUS FOR TRANSMITTING AND RECEIVING FEEDBACK INFORMATION
JP2019525537A (ja) * 2016-06-22 2019-09-05 電信科学技術研究院China Academy of Telecommunications Technology フィードバック情報を送受信する方法及び装置
US20190280822A1 (en) * 2016-06-22 2019-09-12 China Academy Of Telecommunications Technology Method and device for transmitting and receiving feedback information
CN107528676B (zh) * 2016-06-22 2020-02-11 电信科学技术研究院 一种上行传输的反馈信息的传输方法和设备
WO2017219703A1 (zh) * 2016-06-22 2017-12-28 电信科学技术研究院 一种上行传输的反馈信息的传输方法和设备
CN107733619A (zh) * 2016-08-11 2018-02-23 中国移动通信有限公司研究院 一种传输方法、装置、移动通信终端及网络侧设备
US10873928B2 (en) 2016-08-11 2020-12-22 China Mobile Communication Ltd., Research Institute Transmission method, transmission device, mobile communication terminal and network side device
CN107888359A (zh) * 2016-09-30 2018-04-06 普天信息技术有限公司 时分复用双工特殊子帧物理上行共享信道反馈定时的方法
JP2022033739A (ja) * 2016-11-03 2022-03-02 フラウンホッファー-ゲゼルシャフト ツァ フェルダールング デァ アンゲヴァンテン フォアシュンク エー.ファオ ユーザ機器、基地局および無線通信システム
US11764938B2 (en) 2016-11-03 2023-09-19 Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung E.V. User equipment, base stations and wireless communications system for ultra-reliable communications
JP7463330B2 (ja) 2016-11-03 2024-04-08 フラウンホッファー-ゲゼルシャフト ツァ フェルダールング デァ アンゲヴァンテン フォアシュンク エー.ファオ ユーザ機器、基地局および無線通信システム
CN108259150B (zh) * 2016-12-29 2020-09-11 华为技术有限公司 一种信息传输方法及装置
CN108259150A (zh) * 2016-12-29 2018-07-06 华为技术有限公司 一种信息传输方法及装置
WO2018121150A1 (zh) * 2016-12-29 2018-07-05 华为技术有限公司 一种信息传输方法及装置
US11057104B2 (en) 2016-12-29 2021-07-06 Huawei Technologies Co., Ltd. Information transmission method and apparatus

Also Published As

Publication number Publication date
EP3131222A4 (en) 2017-02-15
KR20160144473A (ko) 2016-12-16
US20170034819A1 (en) 2017-02-02
KR101985348B1 (ko) 2019-06-03
CN109327303B (zh) 2022-03-29
CN109327303A (zh) 2019-02-12
JP2017511076A (ja) 2017-04-13
CN105191201B (zh) 2018-10-30
EP3131222B1 (en) 2019-09-11
CN105191201A (zh) 2015-12-23
EP3633905B1 (en) 2022-03-16
EP3131222A1 (en) 2017-02-15
EP3633905A1 (en) 2020-04-08
JP6463779B2 (ja) 2019-02-06

Similar Documents

Publication Publication Date Title
WO2015154310A1 (zh) 一种控制信道资源分配方法及装置
US20230199736A1 (en) Special subframe configuration for latency reduction
WO2016131344A1 (zh) 一种设备到设备发送、接收、调度方法和相应装置
CN102281646B (zh) 一种上行数据的传输方法及装置
CN101931514B (zh) 一种混合自动重传请求中的通信方法、系统和设备
KR101730363B1 (ko) 업링크 데이터를 송신하는 방법, 사용자 장비, 및 기지국
WO2009115001A1 (zh) 物理混合重传指示信道的分配方法
WO2013143453A1 (zh) 混合自动重传请求传输方法、装置及系统
US10560227B2 (en) Downlink transmission method, base station, and terminal
WO2018028691A1 (zh) 一种消息传输方法、用户设备、基站及计算机存储介质
WO2016070561A1 (zh) 数据传输处理方法及装置
WO2015013889A1 (zh) 数据传输方法、基站及用户设备
WO2018027949A1 (zh) 一种通信方法、网络设备及终端
WO2013120318A1 (zh) 一种子帧捆绑时实现上行子帧调度的方法和系统
WO2013159597A1 (zh) 数据传输方法、用户设备及基站
WO2009152673A1 (zh) 上行混合自动重传请求的实现方法和系统
WO2018059370A1 (zh) 传输方法、移动通信终端及网络侧设备
CN102916792B (zh) 数据传输方法和用户设备
WO2012019486A1 (zh) 一种中继链路的上行harq进程识别方法及装置
CN104144267B (zh) 一种VoIP语音包的调度方法及装置
CN102739379B (zh) 数据传输方法和设备
KR20110068051A (ko) 매체 접근 제어 프로토콜 데이터 유닛 재조립 방법 및 이를 수행하는 수신기
WO2014169868A1 (zh) 一种用户设备、节点设备及上行定时关系的确定方法
JP6728410B2 (ja) 制御チャネル資源割当方法及び装置
CN108702284A (zh) 一种数据传输方法、终端设备及网络设备

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480001952.3

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14889165

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016561755

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2014889165

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014889165

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20167031643

Country of ref document: KR

Kind code of ref document: A