WO2017219703A1 - 一种上行传输的反馈信息的传输方法和设备 - Google Patents

一种上行传输的反馈信息的传输方法和设备 Download PDF

Info

Publication number
WO2017219703A1
WO2017219703A1 PCT/CN2017/076196 CN2017076196W WO2017219703A1 WO 2017219703 A1 WO2017219703 A1 WO 2017219703A1 CN 2017076196 W CN2017076196 W CN 2017076196W WO 2017219703 A1 WO2017219703 A1 WO 2017219703A1
Authority
WO
WIPO (PCT)
Prior art keywords
control channel
downlink control
pusch
subframe
uplink
Prior art date
Application number
PCT/CN2017/076196
Other languages
English (en)
French (fr)
Inventor
高雪娟
潘学明
Original Assignee
电信科学技术研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201610671985.XA external-priority patent/CN107528676B/zh
Application filed by 电信科学技术研究院 filed Critical 电信科学技术研究院
Priority to KR1020197001766A priority Critical patent/KR102197442B1/ko
Priority to US16/313,125 priority patent/US10833816B2/en
Priority to JP2018566915A priority patent/JP6722777B2/ja
Priority to EP17814442.4A priority patent/EP3478023B1/en
Publication of WO2017219703A1 publication Critical patent/WO2017219703A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1829Arrangements specially adapted for the receiver end
    • H04L1/1861Physical mapping arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1867Arrangements specially adapted for the transmitter end
    • H04L1/1896ARQ related signaling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1829Arrangements specially adapted for the receiver end
    • H04L1/1864ARQ related signaling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1812Hybrid protocols; Hybrid automatic repeat request [HARQ]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1812Hybrid protocols; Hybrid automatic repeat request [HARQ]
    • H04L1/1816Hybrid protocols; Hybrid automatic repeat request [HARQ] with retransmission of the same, encoded, message
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1867Arrangements specially adapted for the transmitter end
    • H04L1/1887Scheduling and prioritising arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/0014Carrier regulation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0044Arrangements for allocating sub-channels of the transmission path allocation of payload
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • H04L5/0055Physical resource allocation for ACK/NACK
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/14Two-way operation using the same type of signal, i.e. duplex
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/14Two-way operation using the same type of signal, i.e. duplex
    • H04L5/1469Two-way operation using the same type of signal, i.e. duplex using time-sharing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/11Allocation or use of connection identifiers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0045Arrangements at the receiver end
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/0014Carrier regulation
    • H04L2027/0083Signalling arrangements
    • H04L2027/0089In-band signals
    • H04L2027/0093Intermittant signals
    • H04L2027/0095Intermittant signals in a preamble or similar structure
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W92/00Interfaces specially adapted for wireless communication networks
    • H04W92/04Interfaces between hierarchically different network devices
    • H04W92/10Interfaces between hierarchically different network devices between terminal device and access point, i.e. wireless air interface

Definitions

  • the present invention relates to the field of communications technologies, and in particular, to a method and device for transmitting feedback information for uplink transmission.
  • the existing Long Term Evolution (LTE) Time Division Duplex (TDD) system uses a frame structure type 2 (FS2), as shown in FIG. 1 .
  • FS2 frame structure type 2
  • uplink and downlink transmissions use different subframes or different time slots on the same frequency.
  • Each 10 ms radio frame in FS2 is composed of two 5 ms half-frames, each of which contains five sub-frames of 1 ms length.
  • the sub-frames in FS2 are classified into three types: downlink sub-frames, uplink sub-frames, and special sub-frames.
  • Each special sub-frame consists of a Downlink Pilot Time Slot (DwPTS) and a Guard Period (GP).
  • DwPTS Downlink Pilot Time Slot
  • GP Guard Period
  • UpPTS Uplink Pilot Time Slot
  • Table 7 lists the seven uplink and downlink subframe configurations supported by FS2.
  • the special subframes up to Release 13 support 10 configurations as shown in Table 2, and the symbol lengths of DwPTS and UpPTS are specified in each configuration.
  • the length of the GP can pass through one subframe.
  • the total number of symbols is obtained by the difference between the symbol lengths of DwPTS and UpPTS.
  • X is the value of the high-level signaling configuration, which is used to additionally extend the UpPTS length.
  • the DwPTS can transmit downlink pilot, downlink service data (the following line shared channel) and downlink control signaling (the following line control channel), the GP does not transmit any signal, and the UpPTS only transmits the random access and sounding reference signal (Sounding Reference Symbol, referred to as SRS), it is not possible to transmit uplink services (such as uplink shared channels) or uplink control information (such as uplink control channels).
  • SRS Sounding Reference Symbol
  • the Physical Uplink Shared Channel (PUSCH) is transmitted only in the uplink subframe, and the ACK/NACK feedback information can be carried in the Physical Hybrid-ARQ Indicator (Physical Hybrid-ARQ Indicator).
  • Physical Hybrid-ARQ Indicator Physical Hybrid-ARQ Indicator
  • Channel abbreviated as PHICH; Hybrid Automatic Repeat reQuest (HARQ) for transmission, or downlink control channel carrying uplink grant permission (UL grant) (ie, downlink control using Downlink Control Information (DCI) format Obtained by the channel)
  • the downlink control channel includes a New Data Indicator (NDI), and the NDI is No flip to indicate if it is new data.
  • NDI New Data Indicator
  • the terminal transmits the PUSCH in the uplink subframe numbered n, and receives the PHICH in the downlink subframe numbered n+k PHICH to obtain ACK/NACK feedback information of the PUSCH, where k PHICH is defined as shown in Table 3. .
  • the subframe number in Table 3 is a subframe numbered n+k in units of radio frames. If n+k is greater than 9, it indicates a subframe in the next radio frame.
  • the following table is similar.
  • a terminal detects PHICH resources in a subframe of a PHICH by to make sure, For the number of the PHICH group, Number the orthogonal sequences within the group, with It can be determined according to the following formula:
  • n DMRS is a value obtained by cyclically shifting information of a Demodulation Reference Signal (DMRS) indicated in the scheduling information of the corresponding PUSCH, as shown in Table 4; Is the length of the orthogonal sequence; For the number of PHICH groups in each subframe determined according to the configuration of the high layer signaling, one PHICH group includes multiple PHICHs for carrying ACK/NACK feedback information of different PUSCHs, and the multiple PHICHs occupy the same resource transmission.
  • DMRS Demodulation Reference Signal
  • I PRB_RA is a value determined according to the minimum physical resource block (PRB) index number (index) of the PUSCH corresponding to the PHICH;
  • the ACK/NACK feedback information carried by the PHICH received in the downlink subframe numbered n corresponds to the subframe nk.
  • the PUSCH transmitted in the medium wherein k is defined as shown in Table 6; for the TDD uplink and downlink configuration 0 or the uplink reference configuration is the carrier of the TDD uplink and downlink configuration 0, the corresponding I PHICH received in the downlink subframe numbered n
  • the information of the following control channel is taken as follows, that is, whether the retransmission is determined according to the NDI of the downlink control channel, and if the retransmission is performed, according to the downlink control
  • the scheduling information indicated by the channel is retransmitted to the PUSCH. If only the PHICH is received and the PHICH indicates NACK, the same configuration is used for the first transmission of the PUSCH for retransmission.
  • TDD special subframe configuration such as 6 symbols DwPTS, 2 symbols GP and 6 symbols UpPTS.
  • the length of the UpPTS is increased, making it possible for the terminal to perform uplink transmission in the UpPTS.
  • the embodiment of the invention provides a method and a device for transmitting feedback information of an uplink transmission, which solves the problem of how to transmit ACK/NACK feedback information of an uplink shared channel transmitted in an UpPTS.
  • the first aspect is a method for receiving feedback information of an uplink transmission, where the method includes:
  • the terminal sends the physical uplink shared channel PUSCH in the special subframe m, where m is an integer;
  • the terminal includes a subframe of a downlink transmission resource after the special subframe m or in a subframe m+k, and detects a downlink control channel using an uplink and downlink control information DCI format, where k is a positive integer;
  • the terminal determines, according to the downlink control channel, whether to retransmit the PUSCH sent in the special subframe m.
  • TDD uplink and downlink configuration 1, if m is 1 or 6, the k is 3, 5, 8, or 10; or
  • TDD uplink and downlink configuration 3 if m is 1, the k is 7, 8, or 9; or
  • TDD uplink and downlink configuration 6 if m is 1, the k is 4, 5, 8, 9, or 10; or
  • TDD uplink and downlink configuration 6 if m is 6, the k is 3, 4, 5, 9, or 10.
  • the terminal determines, according to the downlink control channel, whether to retransmit the PUSCH sent in the special subframe m, including:
  • the terminal After determining, by the terminal, the PUSCH sent by the downlink control channel, the terminal determines whether to retransmit the special subframe m according to the indication field that is used by the downlink control channel to indicate whether to retransmit. PUSCH.
  • the terminal determines, according to the downlink control channel, whether the downlink control channel corresponds to a PUSCH sent in a special subframe, including:
  • the terminal determines, according to the 2-bit uplink index UL index indication field in the downlink control channel, whether the downlink control channel corresponds to a PUSCH sent in a special subframe.
  • the terminal determines, according to the size of the uplink DCI format used by the downlink control channel, whether the downlink control channel corresponds to the PUSCH sent in the special subframe, including:
  • the terminal determines that the downlink control channel corresponds to a PUSCH sent in a special subframe;
  • the terminal determines that the downlink control channel corresponds to the PUSCH sent in the normal subframe;
  • the first DCI size and the second DCI size are different.
  • the first indication field carries a hybrid automatic repeat request HARQ process number of a PUSCH corresponding to the downlink control channel.
  • the terminal determines, according to the RNTI used by the downlink control channel to perform the downlink control channel, whether the downlink control channel corresponds to the PUSCH sent in the special subframe, including:
  • the terminal determines that the downlink control channel corresponds to a PUSCH sent in a special subframe;
  • the terminal determines that the downlink control channel corresponds to the PUSCH sent in the normal subframe;
  • the first RNTI and the second RNTI are different.
  • the method further includes:
  • the terminal determines, according to the index value of the terminal, a location of the indication domain corresponding to the terminal for indicating whether to retransmit, in the downlink control channel.
  • the subframe m+k is different from a subframe that detects a downlink control channel of a PUSCH transmitted in a corresponding normal subframe.
  • TDD uplink and downlink configuration if m is 1 or 6, the k is 4 or 9; or
  • TDD uplink and downlink configuration 2 if m is 1 or 6, the k is 3, 4, 5, 8, 9, or 10; or
  • TDD uplink and downlink configuration 3 if m is 1, the k is 4, 5, 6, or 10; or
  • TDD uplink and downlink configuration 4 if m is 1, the k is 3, 4, 5, 6, 9, or 10; or
  • TDD uplink and downlink configuration 5 if m is 1, the k is 2, 3, 4, 5, 6, 8, 9, or 10.
  • the terminal determines, according to the downlink control channel, whether to retransmit the sent in the special subframe m. PUSCH, including:
  • the terminal determines, according to the 2-bit uplink index UL index indication field in the downlink control channel, whether the downlink control channel corresponds to the PUSCH sent in the special subframe, including:
  • the terminal determines that the downlink control channel corresponds to a PUSCH transmitted in a special subframe
  • the terminal determines that the downlink control channel corresponds to a PUSCH transmitted in a normal uplink subframe.
  • a second aspect is a method for transmitting feedback information of an uplink transmission, where the method includes:
  • the base station scheduling terminal sends the physical uplink shared channel PUSCH in the special subframe m, where m is an integer;
  • the base station detects, in the special subframe m, the PUSCH sent by the terminal;
  • the base station includes a subframe of the downlink transmission resource after the special subframe m or transmits a downlink control channel using the uplink and downlink control information DCI format to the terminal in the subframe m+k, where k is a positive integer.
  • the downlink control channel carries an indication field indicating whether the PUSCH in the special subframe m is retransmitted.
  • TDD uplink and downlink configuration 1, if m is 1 or 6, the k is 3, 5, 8, 10; or
  • TDD uplink and downlink configuration 3 if m is 1, the k is 7, 8, or 9; or
  • TDD uplink and downlink configuration 6 if m is 1, the k is 4, 5, 8, 9, or 10; or,
  • TDD uplink and downlink configuration 6 if m is 6, the k is 3, 4, 5, 9, or 10.
  • the base station sends, to the terminal, a downlink control channel that uses an uplink DCI format, including:
  • the base station carries a first indication field in the downlink control channel, where the first indication field is used to indicate information about a PUSCH corresponding to the downlink control channel;
  • the base station carries a second indication field in the downlink control channel, where the second indication field is used to indicate that the PUSCH corresponding to the downlink control channel is a PUSCH in a special subframe or a PUSCH in a normal subframe; and or
  • the base station Determining, by the base station, the downlink control according to whether the downlink control channel corresponds to a PUSCH sent in a special subframe Radio network temporary identity RNTI used in channel scrambling; and/or
  • the determining, by the base station, the size of the uplink DCI format used by the downlink control channel, according to whether the downlink control channel corresponds to the PUSCH sent in the special subframe includes:
  • the base station determines that the downlink control channel uses an uplink DCI format of a first DCI size
  • the base station determines that the downlink control channel uses an uplink DCI format of a second DCI size
  • the first DCI size and the second DCI size are different.
  • the first indication field carries a hybrid automatic repeat request HARQ process number of a PUSCH corresponding to the downlink control channel.
  • the determining, by the base station, the RNTI used when the downlink control channel is scrambled according to whether the downlink control channel corresponds to the PUSCH sent in the special subframe includes:
  • the base station determines to use the first RNTI for scrambling when the downlink control channel is scrambled;
  • the base station determines to use the second RNTI when the downlink control channel is scrambled;
  • the first RNTI and the second RNTI are different.
  • the method further includes: the base station mapping the indication domain of the multiple terminals to indicate whether to retransmit according to the index values of the multiple terminals Corresponding to the corresponding position in the downlink control channel corresponding to the special subframe.
  • the subframe m+k is different from a subframe that transmits a downlink control channel corresponding to a PUSCH transmitted in a normal subframe.
  • TDD uplink and downlink configuration if m is 1 or 6, the k is 4 or 9; or
  • TDD uplink and downlink configuration 3 if m is 1, the k is 4, 5, 6, or 10; or
  • TDD uplink and downlink configuration 4 if m is 1, the k is 3, 4, 5, 6, 9, or 10; or
  • TDD uplink and downlink configuration 5 if m is 1, the k is 2, 3, 4, 5, 6, 8, 9, or 10.
  • the determining, by the base station, the value of the 2-bit uplink index UL index indication field in the downlink control channel, according to whether the downlink control channel corresponds to the PUSCH sent in the special subframe includes:
  • the base station will use the UL index
  • the least significant bit LSB and the most significant bit MSB are both set to 0;
  • the base station sets at least one of an LSB and an MSB of the UL index to 1.
  • a computer readable storage medium having stored therein executable program code for implementing the method of the first aspect.
  • a computer readable storage medium wherein executable program code is stored, the program code for implementing the method of the second aspect.
  • a fifth aspect a terminal, where the terminal includes:
  • a sending module configured to send a physical uplink shared channel PUSCH in a special subframe m, where m is an integer;
  • a detecting module configured to: after the special subframe m, include a subframe of a downlink transmission resource or in a subframe m+k, detect a downlink control channel that uses an uplink and downlink control information DCI format, where k is a positive integer;
  • a determining module configured to determine, according to the downlink control channel, whether to retransmit the PUSCH sent in the special subframe m.
  • TDD uplink and downlink configuration 1, if m is 1 or 6, the k is 3, 5, 8, or 10; or
  • TDD uplink and downlink configuration 3 if m is 1, the k is 7, 8, or 9; or
  • TDD uplink and downlink configuration 6 if m is 1, the k is 4, 5, 8, 9, or 10; or
  • TDD uplink and downlink configuration 6 if m is 6, the k is 3, 4, 5, 9, or 10.
  • the determining module is specifically configured to:
  • the determining module is specifically configured to:
  • the determining module is specifically configured to:
  • the detecting module detects that the downlink control channel uses the uplink DCI format of the first DCI, determines that the downlink control channel corresponds to the PUSCH sent in the special subframe, or if the detecting module detects the downlink control channel Determining, by using the uplink DCI format of the second DCI size, that the downlink control channel corresponds to a PUSCH sent in a normal subframe; wherein the first DCI size and the second DCI size are different.
  • the first indication field carries a hybrid automatic repeat request HARQ process number of a PUSCH corresponding to the downlink control channel.
  • the determining module is specifically configured to:
  • the detecting module detects that the downlink control channel is scrambled by using the first RNTI, determining that the downlink control channel is corresponding to the PUSCH sent in the special subframe, or if the detecting module detects that the downlink control channel is used.
  • the second RNTI is scrambled to determine that the downlink control channel corresponds to a PUSCH transmitted in a normal subframe; wherein the first RNTI and the second RNTI are different.
  • the determining module is further configured to:
  • the subframe m+k is different from a subframe that detects a downlink control channel of a PUSCH transmitted in a corresponding normal subframe.
  • TDD uplink and downlink configuration if m is 1 or 6, the k is 4 or 9; or
  • TDD uplink and downlink configuration 2 if m is 1 or 6, the k is 3, 4, 5, 8, 9, or 10; or
  • TDD uplink and downlink configuration 3 if m is 1, the k is 4, 5, 6, or 10; or
  • TDD uplink and downlink configuration 4 if m is 1, the k is 3, 4, 5, 6, 9, or 10; or
  • TDD uplink and downlink configuration 5 if m is 1, the k is 2, 3, 4, 5, 6, 8, 9, or 10.
  • the determining module is specifically configured to:
  • the determining module is specifically configured to:
  • the downlink control channel corresponds to a PUSCH transmitted in a normal uplink subframe.
  • a terminal includes: a transceiver, and at least one processor coupled to the transceiver, wherein:
  • the processor is configured to read a program in the memory and perform the following process:
  • the transceiver is configured to receive and transmit data under the control of a processor.
  • the processor reads the program in the memory, performs the operations performed by the detecting module and the determining module in the embodiment shown in the fifth aspect, and the transceiver performs the control under the control of the processor.
  • a seventh aspect a base station, where the base station includes:
  • a scheduling module configured to: the scheduling terminal sends a physical uplink shared channel PUSCH in a special subframe m, where m is an integer;
  • a detecting module configured to detect, in the special subframe m, a PUSCH sent by the terminal
  • a processing module configured to: after the special subframe m, include a subframe of a downlink transmission resource or in a subframe m+k, send, to the terminal, a downlink control channel that uses an uplink and downlink control information DCI format, where k is a positive integer
  • the downlink control channel carries an indication field for indicating whether the PUSCH in the special subframe m is retransmitted.
  • TDD uplink and downlink configuration 1, if m is 1 or 6, the k is 3, 5, 8, 10; or
  • TDD uplink and downlink configuration 3 if m is 1, the k is 7, 8, or 9; or
  • TDD uplink and downlink configuration 6 if m is 1, the k is 4, 5, 8, 9, or 10; or,
  • TDD uplink and downlink configuration 6 if m is 6, the k is 3, 4, 5, 9, or 10.
  • the processing module is specifically configured to:
  • a second indication field carrying, in the downlink control channel, a second indication field, where the second indication field is used to indicate that the PUSCH corresponding to the downlink control channel is a PUSCH in a special subframe or a PUSCH in a normal subframe;
  • the processing module is specifically configured to:
  • the downlink control channel corresponds to the PUSCH sent in the special subframe, determining that the downlink control channel uses the uplink DCI format of the first DCI size; or if the downlink control channel corresponds to the PUSCH sent in the normal subframe, determining the The downlink control channel uses an uplink DCI format of a second DCI size; wherein the first DCI size and the second DCI size are different.
  • the first indication field carries a hybrid automatic repeat request HARQ process number of a PUSCH corresponding to the downlink control channel.
  • the processing module is specifically configured to:
  • the downlink control channel is corresponding to the PUSCH sent in the special subframe, determining whether the downlink control channel is scrambled, the first RNTI is used for scrambling; or if the downlink control channel is corresponding to the PUSCH sent in the normal subframe, determining The second RNTI is used when the downlink control channel is scrambled; wherein the first RNTI and the second RNTI are different.
  • the processing module is further configured to:
  • the subframe m+k is different from a subframe that transmits a downlink control channel corresponding to a PUSCH transmitted in a normal subframe.
  • TDD uplink and downlink configuration if m is 1 or 6, the k is 4 or 9; or
  • TDD uplink and downlink configuration 2 if m is 1 or 6, the k is 3, 4, 5, 8, 9, or 10; or
  • TDD uplink and downlink configuration 3 if m is 1, the k is 4, 5, 6, or 10; or
  • TDD uplink and downlink configuration 4 if m is 1, the k is 3, 4, 5, 6, 9, or 10; or
  • TDD uplink and downlink configuration 5 if m is 1, the k is 2, 3, 4, 5, 6, 8, 9, or 10.
  • the processing module is specifically configured to:
  • the downlink control channel corresponds to the PUSCH transmitted in the special subframe, set the least significant bit LSB and the most significant bit MSB of the UL index to 0;
  • the downlink control channel corresponds to a PUSCH transmitted in a normal uplink subframe
  • at least one of the LSB and the MSB of the UL index is set to 1.
  • a base station includes: a transceiver, and at least one processor coupled to the transceiver, wherein:
  • the processor is configured to read a program in the memory and perform the following process:
  • the scheduling terminal sends the physical uplink shared channel PUSCH in the special subframe m, where m is an integer; in the special subframe m, detecting the PUSCH sent by the terminal; after the special subframe m
  • the subframe including the downlink transmission resource or the subframe m+k the transceiver is controlled to send, to the terminal, a downlink control channel using the DCI format of the uplink and downlink control information, where k is a positive integer, and the downlink control channel carries An indication field for indicating whether the PUSCH in the special subframe m is retransmitted;
  • the transceiver is configured to receive and transmit data under the control of the processor.
  • the processor reads a program in the memory, and performs operations performed by the scheduling module, the detecting module, and the processing module in the embodiment shown in the seventh aspect.
  • the terminal after the terminal sends the physical uplink shared channel (PUSCH) in the special subframe m, the terminal includes the subframe of the downlink transmission resource or the subframe m+k after the special subframe m. Detecting a downlink control channel using an uplink DCI format, and determining, according to the downlink control channel, whether to retransmit the PUSCH sent in the special subframe m, thereby providing transmission of feedback information for transmitting a PUSCH in a special subframe The scheme ensures that the PUSCH sent in the special subframe can normally obtain the ACK/NACK feedback information.
  • PUSCH physical uplink shared channel
  • FIG. 1 is a schematic structural diagram of FS2 in an LTE TDD system
  • FIG. 2 is a schematic flowchart of a method for receiving feedback information of uplink transmission according to an embodiment of the present disclosure
  • FIG. 3 is a schematic flowchart of a method for sending feedback information of uplink transmission according to an embodiment of the present invention
  • FIG. 4 is a schematic diagram of a terminal according to an embodiment of the present disclosure.
  • FIG. 5 is a schematic diagram of another terminal according to an embodiment of the present disclosure.
  • FIG. 6 is a schematic diagram of a base station according to an embodiment of the present disclosure.
  • FIG. 7 is a schematic diagram of another base station according to an embodiment of the present invention.
  • GSM Global System for Mobile communications
  • CDMA Code Division Multiple Access
  • TDMA Time Division Multiple Access
  • WCDMA Wideband Code Division Multiple Access Wireless
  • FDMA Frequency Division Multiple Access
  • OFDMA Orthogonal Frequency-Division Multiple Access
  • SC-FDMA single carrier FDMA
  • GPRS General Packet Radio Service
  • LTE Long Term Evolution
  • the terminal can be a wireless terminal, which can be a device that provides voice and/or data connectivity to the user, a handheld device with wireless connectivity, or other processing device that is connected to the wireless modem.
  • the wireless terminal can communicate with one or more core networks via a radio access network (eg, Radio Access Network, RAN for short), and the wireless terminal can be a mobile terminal, such as a mobile phone (or "cellular" phone) and has a mobile
  • the computer of the terminal for example, can be a portable, pocket, handheld, computer built-in or in-vehicle mobile device that exchanges language and/or data with the wireless access network.
  • a wireless terminal may also be called a system, a subscriber unit, a subscriber station, a mobile station, a mobile station, a remote station, an access point, or an access point.
  • Remote Terminal Access Terminal, User Terminal, User Agent, User Device, or User Equipment.
  • a base station may refer to a device in an access network that communicates with a wireless terminal over one or more sectors over an air interface.
  • the base station can be used to convert the received air frame to the IP packet as a router between the wireless terminal and the rest of the access network, wherein the remainder of the access network can include an Internet Protocol (IP) network.
  • IP Internet Protocol
  • the base station can also coordinate attribute management of the air interface.
  • the base station may be a Base Transceiver Station (BTS) in GSM or CDMA, or may be a base station (NodeB) in WCDMA, or may be an evolved base station in LTE (NodeB or eNB or e-NodeB, evolutional) Node B), the embodiment of the present invention is not limited.
  • a method for receiving feedback information of an uplink transmission includes:
  • the terminal sends the PUSCH in the special subframe m, where m is an integer.
  • n 1 or 6.
  • the terminal sends the PUSCH in an UpPTS in the special subframe m.
  • the terminal may also send the PUSCH in the GP in the special subframe m.
  • the specific location of the PUSCH is not limited in this embodiment of the present invention.
  • the terminal includes a subframe of a downlink transmission resource after the special subframe m or in a subframe m+k, and detects a downlink control channel that uses an uplink DCI format, where k is a positive integer.
  • the terminal includes a subframe of the downlink transmission resource after the special subframe m to detect; if the HARQ of the PUSCH sent by the terminal is synchronized In the manner, the terminal performs detection in the subframe m+k.
  • the terminal when the terminal detects a downlink control channel that uses the uplink DCI format in the subframe that includes the downlink transmission resource after the special subframe m, the terminal may include the downlink resource in any one of the special subframes m.
  • the detection may be performed in a subframe, or may be detected in any subframe including a downlink resource within a set time after the special subframe m, for example, any of 10 subframes after the special subframe m
  • the detection of one downlink subframe and/or special subframe depends on the scheduling implementation and resource allocation of the base station.
  • the terminal determines, according to the downlink control channel, whether to retransmit the PUSCH sent in the special subframe m.
  • the terminal after transmitting the physical uplink shared channel (PUSCH) in the special subframe m, the terminal includes the subframe of the downlink transmission resource after the special subframe m or in the subframe m+k, and detects the use of the uplink DCI format. a downlink control channel, and determining, according to the downlink control channel, whether to retransmit the PUSCH sent in the special subframe m, thereby providing a transmission scheme for transmitting PUSCH feedback information in a special subframe, ensuring The PUSCH transmitted in the special subframe can normally obtain ACK/NACK feedback information.
  • PUSCH physical uplink shared channel
  • the terminal in S23 determines, according to the downlink control channel, whether to retransmit the sent in the special subframe m.
  • PUSCH the following processes can be used:
  • the terminal After determining, by the terminal, the PUSCH sent by the downlink control channel, the terminal determines whether to retransmit the special subframe m according to the indication field that is used by the downlink control channel to indicate whether to retransmit. PUSCH.
  • the terminal determines, according to the downlink control channel, whether the downlink control channel corresponds to a PUSCH sent in a special subframe, and includes the following five possible implementation manners:
  • the terminal determines whether the downlink control channel corresponds to the PUSCH sent in the special subframe according to the size of the uplink DCI format used by the downlink control channel.
  • the uplink DCI format used by the downlink control channel of the PUSCH transmitted in the special subframe is large. Small (referred to as the first DCI size), which is different from the size of the uplink DCI format (referred to as the second DCI size) used by the downlink control channel of the PUSCH transmitted in the normal subframe, thereby distinguishing whether the detected downlink control channel corresponds to
  • the PUSCH sent in the special subframe is implemented in a manner that the uplink DCI format corresponding to the UpPTS is a newly defined uplink DCI format or the extra bit field is added to the existing DCI format.
  • the uplink DCI format corresponding to the normal uplink subframe is the existing uplink DCI format, and the existing uplink DCI format may be 3GPP 36.212Rel-13 and DCI format 0/4 defined in the previous version.
  • the terminal may blindly check different uplink DCI formats to distinguish whether the detected downlink control channel is a PUSCH in a special subframe or a PUSCH in a normal subframe.
  • the terminal determines that the downlink control channel corresponds to the PUSCH sent in the special subframe; or if the terminal detects When the downlink control channel uses the uplink DCI format of the second DCI, the terminal determines that the downlink control channel corresponds to the PUSCH transmitted in the normal subframe.
  • the mode 2 the terminal determines, according to the first indication field in the downlink control channel, whether the downlink control channel corresponds to a PUSCH sent in a special subframe, where the first indication field is used to indicate that the downlink control channel corresponds to Information about PUSCH.
  • the first indication field carries the HARQ process ID of the PUSCH corresponding to the downlink control channel.
  • the number of the HARQ process may be a PUSCH in the UpPTS and a PUSCH in the normal subframe.
  • the PUSCH in the UpPTS may be numbered separately, and the PUSCH in the normal subframe may be separately numbered.
  • the embodiment of the present invention does not limit the specific implementation form of the first indication domain, as long as the information that can identify the PUSCH corresponding to the downlink control channel can be used as the first indication domain.
  • an uplink DCI format corresponding to the UpPTS is a newly defined uplink DCI format, or an uplink DCI format obtained by adding an extra bit field based on an existing DCI format, where
  • the first indication field is used to indicate information such as the process number of the PUSCH transmitted in the UpPTS, and the process ID is used to identify the information of the PUSCH transmitted in the UpPTS, and the uplink DCI format of the common uplink subframe is the existing uplink DCI format.
  • the existing uplink DCI format may be DCI format 0/4 defined in 3GPP 36.212Rel-13 and previous versions;
  • Another implementation manner is: for a terminal that supports transmitting a PUSCH in the UpPTS, the padding bit in the existing uplink DCI format is reused as the first indication field, that is, the terminal corresponding to the PUSCH in the UpPTS is supported at this time.
  • the uplink DCI format of the UpPTS and the common uplink subframe are the same, and the size is the same.
  • the first indication field indicates the HARQ process number of the PUSCH in the UpPTS and the PUSCH in the normal subframe, and may also define that the first indication field is all 0s corresponding to the normal uplink subframe, and the remaining states are used to indicate which UpPTS is transmitted.
  • PUSCH of course, can also have other indications Should be
  • Another implementation manner is: defining an uplink DCI format A for a terminal supporting the transmission of the PUSCH in the UpPTS, where the uplink DCI format A can add an additional indication field based on the existing uplink DCI format, for example, in the DCI format 0/4.
  • An additional indication field is added as the first indication field, and the indication field is only valid for the terminal supporting the transmission of the PUSCH in the UpPTS, or is a completely redefined uplink DCI format, where the first indication field indicates the PUSCH in the UpPTS and The HARQ process number of the PUSCH in the normal subframe, or one state indication of the first indication field corresponds to the normal uplink subframe, and the remaining states are used to indicate which PUSCH is transmitted in the UpPTS, and the terminal that supports the PUSCH in the UpPTS is supported.
  • the uplink DCI format A is used for scheduling, and the terminal supporting the PUSCH in the UpPTS may be further defined, and all or part of the downlink DCI format may be in accordance with the size of the uplink DCI format A.
  • the DCI format A is the same size as all or part of the downlink DCI format, so that the number of blind detections of the DCI by the terminal is not increased; for example, the terminal supporting the transmission of the PUSCH in the UpPTS defines its uplink DCI format based on the existing DCI format 0, At least the bit indication field is additionally added as the first indication field on the basis of the existing DCI format 0. Of course, it is not excluded that the other indication fields can be further added, and the uplink DCI format 0 after the indication field is added as the terminal supporting the transmission of the PUSCH in the UpPTS.
  • Corresponding uplink DCI format 0 since the original DCI design ensures that the uplink DCI format 0 and the downlink DCI format 1A have the same size, thereby reducing the number of blind detections, in order to maintain the original number of blind detections, when supporting the terminal transmitting PUSCH in the UpPTS
  • the DCI format 0 corresponding to the terminal supporting the PUSCH in the UpPTS needs to be padding (ie, padded with 0 at the end) to ensure the DCI size and its corresponding downlink.
  • the DCI format 1A is the same.
  • the DCI format 1A corresponding to the terminal supporting the transmission of the PUSCH in the UpPTS is padded to ensure that its DCI size is the same as its corresponding uplink DCI format 0, wherein the downlink DCI format corresponding to the terminal transmitting the PUSCH in the UpPTS is supported, for example, DCI.
  • Format 1A does not exclude other downlink DCI formats such as DCI 1B/1C/1D/2/2A/2B, which can directly reuse the existing downlink DCI format, and support the terminal that transmits PUSCH in UpPTS in order to maintain the number of blind detections.
  • Corresponding downlink DCI formats 3 and 3A have the same DCI size as the uplink DCI format 0 and the downlink DCI format 1A corresponding to the terminal supporting the PUSCH transmission in the UpPTS.
  • the terminal determines, according to the second indication field in the downlink control channel, whether the downlink control channel corresponds to a PUSCH sent in a special subframe, where the second indication field is used to indicate that the downlink control channel corresponds to
  • the PUSCH is a PUSCH in a special subframe or a PUSCH in a normal subframe.
  • the second indication field may be a newly defined bit field in the downlink control channel, or may reuse a 1-bit idle bit field in the existing uplink DCI format, such as padding bits. Reusing the 1-bit idle bit field in the existing uplink DCI format, so that the uplink DCI format of the corresponding special subframe and the uplink DCI format of the corresponding normal subframe The same size can reduce the number of blind detections of the terminal on the uplink DCI format.
  • the second indication field is represented by 1-bit information. For example, when the second indication field is “0”, it indicates the PUSCH transmitted in the corresponding special subframe; when the second indication field is “1”, it indicates the PUSCH transmitted in the normal subframe; vice versa.
  • An implementation manner is: for a terminal that supports transmitting a PUSCH in the UpPTS, the padding bit in the existing uplink DCI format is reused as the second indication domain, that is, the terminal corresponding to the UpPTS is supported for the terminal that supports the PUSCH in the UpPTS.
  • the uplink DCI format of the common uplink subframe is the same, and the size is the same.
  • By analyzing the padding bit in the uplink as the second indication field it can be known whether the uplink DCI corresponds to the UpPTS or the normal uplink subframe and the PUSCH in the UpPTS.
  • the first indication field may be defined as all 0s corresponding to the normal uplink subframe, and the remaining states are used to indicate which PUSCH is transmitted in the UpPTS, and of course, there may be other indication corresponding manners;
  • Another implementation manner is: defining an uplink DCI format A for a terminal supporting the transmission of the PUSCH in the UpPTS, where the uplink DCI format A can add an additional indication field based on the existing uplink DCI format, for example, in the DCI format 0/4.
  • An additional indicator field is added as the second indicator field, and the indicator field is only valid for the terminal that supports transmitting the PUSCH in the UpPTS, or is a completely redefined uplink DCI format, where the second indication field may be only 1 bit.
  • One state indicates a corresponding normal uplink subframe, and another state is used to indicate a corresponding UpPTS.
  • the second indication field may be more than one bit, one state indication corresponds to a normal uplink subframe, and the other state is used for Indicates which PUSCH to be transmitted in the UpPTS, for example, the process number, etc.; the terminal that supports the PUSCH in the UpPTS, and the PUSCH transmitted in the UpPTS and the normal uplink subframe are scheduled using the uplink DCI format A, and may further Defining a terminal that supports the transmission of the PUSCH in the UpPTS, all or part of the downlink DCI format may be padding according to the size of the uplink DCI format A.
  • the uplink DCI format A is padding according to the size of all or part of the downlink DCI format, so as to ensure that the uplink DCI format A is the same size as all or part of the downlink DCI format, thereby not increasing the number of blind detections of the terminal by the terminal; for example:
  • the terminal that supports the PUSCH in the UpPTS is configured to define its uplink DCI format based on the existing DCI format 0, and at least the bit indication field is additionally added as the second indication field on the basis of the existing DCI format 0, although it is not excluded that it can be further increased.
  • the uplink DCI format 0 after the indication field is added as the uplink DCI format 0 corresponding to the terminal that supports the PUSCH in the UpPTS, because the original DCI design ensures that the uplink DCI format 0 and the downlink DCI format 1A have the same size, thereby reducing blindness.
  • the terminal corresponding to the terminal supporting the transmission of the PUSCH in the UpPTS is required.
  • DCI format 0 is padding (ie, padding 0 at the end) to ensure that its DCI size is the same as its corresponding downlink DCI format 1A, when supported in UpPT
  • the DCI format 1A corresponding to the terminal transmitting the PUSCH in S is smaller than the corresponding uplink DCI format 0
  • the DCI format 1A corresponding to the terminal supporting the PUSCH in the UpPTS needs to be padding to ensure that the DCI size corresponds to it.
  • the uplink DCI format 0 is the same, wherein the downlink DCI format corresponding to the terminal transmitting the PUSCH in the UpPTS is supported, for example, DCI format 1A, when However, it is not excluded that other downlink DCI formats, such as DCI 1B/1C/1D/2/2A/2B, can directly reuse the existing downlink DCI format, and support the downlink corresponding to the terminal transmitting the PUSCH in the UpPTS in order to maintain the number of blind detections.
  • the DCI formats 3 and 3A have the same DCI size as the above-mentioned uplink DCI format 0 and downlink DCI format 1A corresponding to the terminal supporting the PUSCH transmission in the UpPTS.
  • the mode is that the terminal that supports the PUSCH in the UpPTS is configured to schedule the PUSCH transmitted in the UpPTS to be the same as the uplink DCI used in the PUSCH transmitted in the normal uplink subframe, for example, the existing uplink DCI format may be reused, or the uplink may be newly defined. DCI format; of course, the DCI format is not excluded.
  • the RNTI (denoted as the first RNTI) used for scrambling the downlink control channel of the PUSCH transmitted in the special subframe, and the RNTI used when scrambling the downlink control channel of the PUSCH transmitted in the normal subframe ( It is recorded as the second RNTI) to distinguish whether the detected downlink control channel corresponds to the PUSCH transmitted in the special subframe.
  • the terminal may perform blind detection by using the first RNTI and the second RNTI to distinguish whether the detected downlink control channel is a PUSCH in a corresponding special subframe or a PUSCH in a normal subframe.
  • the terminal determines that the downlink control channel corresponds to a PUSCH sent in a special subframe; or if the terminal detects the The downlink control channel is scrambled by using the second RNTI, and the terminal determines that the downlink control channel corresponds to the PUSCH transmitted in the normal subframe.
  • the method further includes:
  • the terminal determines, according to the index value of the terminal, a location of the indication domain corresponding to the terminal for indicating whether to retransmit, in the downlink control channel.
  • the downlink control channel that is scrambled by the first RNTI carries only one terminal that sends a PUSCH in a special subframe, and indicates whether If the first RNTI is shared by multiple terminals, the downlink control channel scrambled by the first RNTI may carry multiple terminals that transmit PUSCH in a special subframe.
  • An indication field for indicating whether to retransmit. Therefore, each terminal may be configured with an index value for identifying a location of the indication field of the terminal for indicating whether to retransmit in the downlink control channel.
  • Manner 5 The terminal determines, according to an uplink index UL index indication field in the downlink control channel, whether the downlink control channel corresponds to a PUSCH sent in a special subframe.
  • the terminal determines that the downlink control channel corresponds to a special subframe.
  • the terminal determines that the downlink control channel corresponds to a PUSCH transmitted in a normal uplink subframe.
  • the 2-bit uplink index (UL index) field in the existing uplink DCI format may be used to determine that the downlink control channel using the uplink DCI format is in the corresponding uplink subframe.
  • the PUSCH is also a PUSCH in a special subframe.
  • the 2-bit UL index is 0, that is, the Least Significant Bit (LSB) and the Most Significant Bit (MSB) are both set to 0, it indicates that the downlink control channel corresponds to The PUSCH transmitted in the special subframe; when at least one bit in the LSB or the MSB is 1, it indicates that the downlink control channel corresponds to the PUSCH transmitted in the normal uplink subframe.
  • LSB Least Significant Bit
  • MSB Most Significant Bit
  • the time domain location of detecting the downlink control channel may be defined according to the principle of m+k.
  • the k value definition of the TDD uplink and downlink configuration 0 in Table 7 is defined.
  • k 4 or 5 or 9 or 10.
  • the definition of k is as shown in Table 3, when the terminal is sent in the special subframe 1.
  • the terminal detects the downlink control channel in the subframe 6, and determines whether the PUSCH in the special subframe 1 is retransmitted according to the NDI in the downlink control channel.
  • the terminal may be at n+k.
  • the downlink control channel and/or the PHICH are detected in the corresponding subframe.
  • whether the PUSCH in the special subframe 1 is retransmitted may be determined according to the NDI in the downlink control channel, as shown in Table 3,
  • the terminal detects the downlink control channel/PHICH in the subframe 6, and determines whether the PUSCH in the uplink subframe 2 is retransmitted according to the bearer feedback information in the NDI or PHICH in the downlink control channel.
  • the control channel detects the downlink control channel in the subframe 6 and detects the downlink control channel in the subframe 6 when the uplink DCI format corresponding to the special subframe and the uplink DCI format of the corresponding normal uplink subframe are the same/size.
  • the UL index field in the downlink control channel determines whether the downlink control channel corresponds to the PUSCH in the special subframe 1 or the uplink subframe 2, that is, when both the LSB and the MSB of the UL index are 0, determining that the downlink control channel corresponds to the special sub- a PUSCH in the frame 1, and determining whether to retransmit the PUSCH according to the NDI.
  • determining that the downlink control channel corresponds to the PUSCH in the uplink subframe 2
  • determining according to the NDI Whether to retransmit the PUSCH are possible.
  • the uplink DCI may further carry a HARQ process ID indication field, where the indication field may be a reuse of the existing number of bits in the existing uplink DCI format, used to indicate the PUSCH process number in the special subframe, or used for Indicates the PUSCH process number in the special subframe and the normal subframe.
  • the indication field may be a reuse of the existing number of bits in the existing uplink DCI format, used to indicate the PUSCH process number in the special subframe, or used for Indicates the PUSCH process number in the special subframe and the normal subframe.
  • the indication field used to indicate whether to retransmit is NDI.
  • the foregoing methods 1 to 5 are applicable to the HARQ of the PUSCH transmitted by the terminal in an asynchronous manner and a synchronous manner.
  • the terminal if the terminal is in the subframe m+k, detecting a downlink control signal using the uplink DCI format For the HARQ of the PUSCH transmitted by the terminal, the synchronization mode is adopted.
  • the subframe of the downlink control channel of the PUSCH transmitted in the corresponding special subframe is detected, and the PUSCH transmitted in the corresponding normal subframe is detected.
  • the subframes of the downlink control channel are the same, and the definition of k is as follows:
  • TDD uplink and downlink configuration if m is 1 or 6, the k is 4, 5, 9 or 10; or
  • TDD uplink and downlink configuration 1, if m is 1 or 6, the k is 3, 5, 8, or 10; or
  • TDD uplink and downlink configuration 3 if m is 1, the k is 7, 8, or 9; or
  • TDD uplink and downlink configuration 6 if m is 1, the k is 4, 5, 8, 9, or 10; or
  • TDD uplink and downlink configuration 6 if m is 6, the k is 3, 4, 5, 9, or 10.
  • the sub-frame of the downlink control channel for detecting the PUSCH transmitted in the special subframe is the same as the subframe for detecting the downlink control channel of the PUSCH transmitted in the corresponding normal subframe, and the definition of k is such that the special subframe corresponds to the normal subframe.
  • the downlink control channel in the uplink DCI format is in the same subframe.
  • the terminal needs to determine whether the downlink control channel corresponds to After determining the PUSCH sent in the special subframe corresponding to the downlink control channel, the PUSCH sent in the special subframe determines whether to retransmit the identifier according to the indication field that is used to indicate whether to retransmit the downlink control channel.
  • the determining whether the downlink control channel corresponds to the PUSCH sent in the special subframe may be any one of the foregoing methods 1 to 5 or a combination manner.
  • the determining, by the terminal, the SPU, according to the downlink control channel, whether to retransmit the PUSCH sent in the special subframe m specifically:
  • the terminal performs detection in a subframe that includes a downlink resource after the special subframe m, and further includes the following two situations:
  • the terminal If the terminal performs detection in any subframe that includes a downlink resource after the special subframe m, that is, if the set time is not defined, the terminal keeps transmitting in the special subframe m.
  • the information related to the PUSCH is received until the downlink control channel using the uplink DCI format, that is, the PUSCH transmitted in the special subframe, and the downlink control channel in the uplink DCI format is used, which can determine whether the PUSCH is retransmitted. Further, determining whether to retransmit the PUSCH sent in the special subframe m according to the indication field that is used to indicate whether to retransmit in the downlink control channel.
  • the terminal determines that the PUSCH transmitted in the special subframe m is successfully transmitted, and does not need to be retransmitted;
  • the terminal If the terminal detects the downlink control channel in the uplink DCI format, and the downlink control channel corresponds to the PUSCH sent in the special subframe, the terminal carries the indication according to the downlink control channel.
  • the retransmitted indication field determines whether to retransmit the PUSCH transmitted in the special subframe m.
  • the terminal performs detection in the subframe m+k, further including the case:
  • the terminal If the terminal detects a downlink control channel using an uplink DCI format in the subframe m+k, and the downlink control channel corresponds to a PUSCH transmitted in a special subframe, the terminal is configured according to the downlink control channel. And an indication field that is used to indicate whether to retransmit, and determines whether to retransmit the PUSCH sent in the special subframe m.
  • the terminal determines that the PUSCH transmission sent in the special subframe m is successful, and does not need to be retransmitted.
  • the indication field used to indicate whether the retransmission is the NDI that is, the terminal determines whether to retransmit the PUSCH sent in the special subframe m according to the NDI carried in the downlink control channel.
  • each transmission has a PUSCH of a corresponding downlink control channel: if the NDI in the downlink control channel does not change with respect to the NDI corresponding to the first transmission of the PUSCH, the terminal The PUSCH needs to be retransmitted; if the NDI in the downlink control channel is changed with respect to the NDI corresponding to the first transmission of the PUSCH, that is, the downlink control channel schedules a new PUSCH transmission, the terminal There is no need to retransmit the PUSCH.
  • the downlink control channel is a downlink control channel indicating the activation/release of the downlink SPS resource, that is, the SPS PUSCH. If the scheduling command is used, the terminal does not need to retransmit the PUSCH; if the NDI in the downlink control channel is 1, the terminal needs to retransmit the PUSCH.
  • SPS Semi-Persistent Scheduling
  • the terminal detects the downlink control channel in the uplink DCI format in the subframe m+k, that is, the HARQ of the PUSCH sent by the terminal adopts a synchronization mode, as another possible implementation manner.
  • the downlink control channel of the PUSCH sent in the corresponding special subframe and the downlink control channel of the PUSCH sent in the corresponding normal subframe may be distinguished by using different subframes, that is, the subframe m+k is different from the detection of the corresponding normal subframe.
  • m is 1 or 6
  • k is 4 or 9.
  • the terminal detects a downlink control channel corresponding to the PUSCH transmitted in the special subframe m in the subframe m+4 or the subframe m+9, that is, in the subframe 5 or the sub-frame
  • the downlink control channel corresponding to the PUSCH transmitted in the special subframe 1 or 6 is detected in the frame 0, and according to the table 6, the terminal detects the corresponding normal in the subframe 1, the subframe 4, the subframe 6 or the subframe 9.
  • a downlink control channel of the PUSCH transmitted in the subframe and therefore, detecting a subframe of the downlink control channel of the PUSCH transmitted in the corresponding special subframe is different from detecting the transmission in the corresponding normal subframe.
  • the subframe of the downlink control channel of the PUSCH is different from detecting the transmission in the corresponding normal subframe.
  • m is 1 or 6
  • k is 3, 4, 5, 8, 9, or 10.
  • the terminal is in the subframe m+3, the subframe m+4, the subframe m+5, the subframe m+8, the subframe m+9, or the subframe m+10.
  • Detecting a downlink control channel corresponding to the PUSCH sent in the special subframe m that is, detecting the special subframe in subframe 0, subframe 1, subframe 4, subframe 5, subframe 6, or subframe 9.
  • the downlink control channel of the PUSCH transmitted in 1 or 6 and the terminal detects the downlink control channel corresponding to the PUSCH transmitted in the normal subframe in subframe 3 or subframe 8 according to Table 6, and therefore, detects the corresponding special subframe.
  • the subframe of the downlink control channel of the PUSCH transmitted in the subframe is different from the subframe of the downlink control channel of the PUSCH transmitted in the corresponding normal subframe.
  • m is 1, and k is 4, 5, 6, or 10.
  • the terminal detects the PUSCH sent in the special subframe m in the subframe m+4, the subframe m+5, the subframe m+6, or the subframe m+10.
  • the downlink control channel that is, the downlink control channel corresponding to the PUSCH transmitted in the special subframe 1 is detected in the subframe 1, the subframe 5, the subframe 6 or the subframe 7, and according to the table 6, the terminal is in the sub-frame.
  • the subframe 8 or the subframe 9 the downlink control channel of the PUSCH transmitted in the corresponding normal subframe is detected. Therefore, detecting the subframe of the downlink control channel of the PUSCH transmitted in the corresponding special subframe is different from detecting the corresponding normal subframe.
  • m is 1, and the k is 3, 4, 5, 6, 9, or 10.
  • the terminal is in the subframe m+3, the subframe m+4, the subframe m+5, the subframe m+6, the subframe m+9, or the subframe m+10.
  • Detecting a downlink control channel corresponding to the PUSCH sent in the special subframe m that is, detecting the special subframe in subframe 0, subframe 1, subframe 4, subframe 5, subframe 6, or subframe 7.
  • the downlink control channel of the PUSCH transmitted in the first subframe and the terminal detects the downlink control channel corresponding to the PUSCH transmitted in the normal subframe in the subframe 8 or the subframe 9, as shown in Table 6, and therefore, detects the transmission in the corresponding special subframe.
  • the subframe of the downlink control channel of the PUSCH is different from the subframe of the downlink control channel of the PUSCH transmitted in the corresponding normal subframe.
  • m is 1, and the k is 2, 3, 4, 5, 6, 8, 9, or 10.
  • the terminal is in the subframe m+2, the subframe m+3, the subframe m+4, the subframe m+5, the subframe m+6, the subframe m+8, In the subframe m+9 or the subframe m+10, the downlink control channel corresponding to the PUSCH transmitted in the special subframe m is detected, that is, in subframe 0, subframe 1, subframe 3, subframe 4, and subframe 5 In the subframe 6, the subframe 7, or the subframe 9, the downlink control channel corresponding to the PUSCH transmitted in the special subframe 1 is detected, and according to the table 6, the terminal detects the transmission in the corresponding normal subframe in the subframe 8.
  • the downlink control channel of the PUSCH is different from the subframe of the downlink control channel of the PUSCH transmitted in the corresponding normal subframe.
  • the TDD uplink/downlink configuration (TDD UL/DL Configuration) is the TDD uplink and downlink configuration of the uplink reference TDD uplink and downlink configuration or system information configuration.
  • the terminal in S23 determines, according to the downlink control channel, whether to retransmit the special subframe.
  • the PUSCH sent in frame m includes the following two cases:
  • the terminal determines that the PUSCH transmission in the special subframe m is successful, and does not need to be retransmitted.
  • the terminal determines whether the indication field is used to indicate whether to retransmit or not in the downlink control channel.
  • the PUSCH transmitted in the special subframe m is retransmitted.
  • the indication field used to indicate whether the retransmission is the NDI that is, the terminal determines whether to retransmit the PUSCH sent in the special subframe m according to the NDI carried in the downlink control channel.
  • the terminal needs to retransmit the PUSCH; if the downlink control channel The NDI in the change in the NDI corresponding to the first transmission of the PUSCH, that is, the downlink The control channel schedules a new PUSCH transmission, and the terminal does not need to retransmit the PUSCH.
  • the terminal For the SPS PUSCH: if the NDI in the downlink control channel is 0, the terminal does not need to retransmit the PUSCH; if the NDI in the downlink control channel is 1, the terminal needs to retransmit the PUSCH.
  • the terminal transmits the PUSCH in the normal subframe n
  • the PHICH corresponding to the PUSCH and/or the downlink control channel using the uplink DCI format are detected in the subframe n+k; where k is k PHICH, pre-defined standard value, as shown in table 3, is defined for the PUSCH transmission in subframe n detected PHICH in a subframe n + k PHICH; and further, according to the detected PHICH and / or downlink control The channel is determined using the prior art to determine whether the PUSCH is retransmitted.
  • a method for transmitting feedback information of an uplink transmission includes:
  • the base station scheduling terminal sends a PUSCH in a special subframe m, where m is an integer;
  • the base station detects, in the special subframe m, a PUSCH sent by the terminal.
  • the base station includes a subframe of a downlink transmission resource after the special subframe m or a downlink control channel that uses an uplink DCI format, where k is a positive integer, in the subframe m+k.
  • the downlink control channel carries an indication field for indicating whether the PUSCH transmitted in the special subframe m is retransmitted.
  • the indication field used to indicate whether the PUSCH in the special subframe m is retransmitted is an NDI.
  • the base station scheduling terminal sends the PUSCH in the special subframe m, and detects the PUSCH sent by the terminal in the special subframe m; the base station includes the downlink transmission after the special subframe m
  • the subframe of the resource or the subframe m+k transmits a downlink control channel using the uplink DCI format to the terminal, where the downlink control channel carries whether to indicate whether the PUSCH transmitted in the special subframe m is retransmitted.
  • the PUSCH can normally obtain ACK/NACK feedback information.
  • TDD uplink and downlink configuration if m is 1 or 6, the k is 4, 5, 9 or 10; or
  • TDD uplink and downlink configuration 1, if m is 1 or 6, the k is 3, 5, 8, 10; or
  • TDD uplink and downlink configuration 3 if m is 1, the k is 7, 8, or 9; or
  • TDD uplink and downlink configuration 6 if m is 1, the k is 4, 5, 8, 9, or 10; or,
  • TDD uplink and downlink configuration 6 if m is 6, the k is 3, 4, 5, 9, or 10.
  • the base station sends, to the terminal, a downlink control channel that uses an uplink DCI format, include:
  • the base station carries a first indication field in the downlink control channel, where the first indication field is used to indicate information about a PUSCH corresponding to the downlink control channel;
  • the base station carries a second indication field in the downlink control channel, where the second indication field is used to indicate that the PUSCH corresponding to the downlink control channel is a PUSCH in a special subframe or a PUSCH in a normal subframe; and or
  • the determining, by the base station, the size of the uplink DCI format used by the downlink control channel, according to whether the downlink control channel corresponds to the PUSCH sent in the special subframe includes:
  • the base station determines that the downlink control channel uses an uplink DCI format of a first DCI size
  • the base station determines that the downlink control channel uses an uplink DCI format of a second DCI size
  • the first DCI size and the second DCI size are different.
  • the first indication field carries a HARQ process number of a PUSCH corresponding to the downlink control channel.
  • the determining, by the base station, the RNTI used when the downlink control channel is scrambled according to whether the downlink control channel corresponds to the PUSCH sent in the special subframe includes:
  • the base station determines to use the first RNTI for scrambling when the downlink control channel is scrambled;
  • the base station determines to use the second RNTI when the downlink control channel is scrambled;
  • the first RNTI and the second RNTI are different.
  • the method further includes:
  • the base station maps, according to an index value of the multiple terminals, an indication field of the multiple terminals for indicating whether to retransmit to a corresponding position in the downlink control channel of the corresponding special subframe.
  • the subframe m+k is different from a subframe that detects a downlink control channel of a PUSCH transmitted in a corresponding normal subframe.
  • m is 1 or 6
  • k is 4 or 9;
  • m is 1 or 6
  • k is 3, 4, 5, 8, 9, or 10;
  • m is 1, and the k is 4, 5, 6, or 10; or
  • m is 1, and the k is 3, 4, 5, 6, 9, or 10; or
  • m is 1, and the k is 2, 3, 4, 5, 6, 8, 9, or 10.
  • the determining, by the base station, the value of the 2-bit uplink index UL index indication field in the downlink control channel, according to whether the downlink control channel corresponds to the PUSCH sent in the special subframe includes:
  • the base station sets the least significant bit LSB and the most significant bit MSB of the UL index to 0;
  • the base station sets at least one of an LSB and an MSB of the UL index to 1.
  • the TDD uplink and downlink configuration 1 is taken as an example.
  • the PUSCH transmitted in the UpPTS in the special subframe 1 or 6 is assumed to use asynchronous HARQ, and the feedback information is carried through the downlink control channel; corresponding to the PUSCH transmitted in the UpPTS.
  • the downlink control channel includes a first indication field, which is used to indicate a HARQ process number of the PUSCH transmitted in the UpPTS, where the HARQ process number transmitted in the UpPTS in the special subframe 1 is 0, and the UpPTS in the special subframe 6 is transmitted.
  • the HARQ process number is 1. The following description will be made from the implementation of the base station side and the terminal side, respectively.
  • Base station side 1. Base station side:
  • the scheduling terminal transmits the PUSCH-1 in the UpPTS in the special subframe 1, and receives the PUSCH-1 sent by the terminal in the special subframe 1, and obtains the 1-bit ACK/NACK feedback information, where:
  • the NDI is The NDI in the downlink control channel corresponding to the first transmission of the PUSCH-1 is reversed (that is, set to a different value, for example, the NDI corresponding to the first transmission is 0, then the NDI in the downlink control channel is set to 1), and any one of the subframes including the downlink resource after the special subframe 1 or the set time after the special subframe 1 includes the subframe of the downlink resource (for example, any of the following 10 subframes)
  • a downlink subframe and/or a special subframe according to a scheduling implementation and a resource allocation situation of the base station, send a downlink control channel carrying the NDI to the terminal;
  • the base station includes a downlink resource subframe or any one of the set times after the special subframe 1 includes a downlink resource subframe (for example, Any one of the following 10 subframes and/or a special subframe depends on the scheduling implementation and resource allocation of the base station. For example, in subframe 9, the downlink control channel using the uplink DCI format is sent to the terminal.
  • the NDI in the channel is also set to 0
  • the downlink control is
  • the first indication field in the channel indicates the PUSCH-1 transmitted in the special subframe 1, for example, the 1-bit first indication field indicates "0", indicating the HARQ process number 0 of the PUSCH transmitted in the UpPTS.
  • the scheduling terminal transmits the PUSCH-2 in the UpPTS in the special subframe 6, and receives the PUSCH-2 sent by the terminal in the special subframe 6, and obtains the 1-bit ACK/NACK feedback information, where:
  • the NDI is The NDI in the downlink control channel corresponding to the first transmission of the PUSCH-2 is reversed (that is, set to a different value, for example, the NDI corresponding to the first transmission is 0, then the NDI in the downlink control channel is set to 1), and any one of the subframes including the downlink resource or the set time after the special subframe 6 or the subframe after the special subframe 6 includes the subframe of the downlink resource (for example, any of the following 10 subframes)
  • a downlink subframe and/or a special subframe according to a scheduling implementation and a resource allocation situation of the base station, send a downlink control channel carrying the NDI to the terminal;
  • the base station includes a downlink resource subframe or any one of the set times after the special subframe 6 includes a subframe of the downlink resource (for example, the subframe after the special subframe 6). Any one of the following 10 subframes and/or a special subframe depends on the scheduling implementation and resource allocation of the base station. For example, in subframe 9, the downlink control channel using the uplink DCI format is sent to the terminal.
  • the NDI in the downlink control channel is set to the same value as the NDI in the downlink control channel corresponding to the first transmission of the PUSCH-2 (for example, if the NDI corresponding to the first transmission is 0, the downlink control The NDI in the channel is also set to 0), and the first indication field in the downlink control channel indicates the PUSCH-2 sent in the special subframe 6.
  • the 1-bit first indication field indicates "1", indicating that the transmission is in the UpPTS.
  • the HARQ process number of the PUSCH is 1.
  • the feedback information of PUSCH-1 and PUSCH-2 transmitted in the UpPTS in the special subframe 1 and the special subframe 6 is obtained through the downlink control channel transmitted in the subframe 9
  • the downlink control channel indicates the HARQ process number of the PUSCH transmitted in different UpPTSs. Therefore, the terminal side can distinguish the feedback information of PUSCH-1 and PUSCH-2.
  • the scheduling terminal transmits PUSCH-3 in the normal uplink subframe 2; receives the PUSCH-3 transmitted by the terminal in the uplink subframe 2, and acquires 1 bit of ACK/NACK feedback information; according to the k PHICH definition in Table 3 Determining that the PHICH of the PUSCH-3 is transmitted in the subframe 6, and determining the PHICH resource parameter according to the minimum PRB index of the PUSCH-3 and the DMRS cyclic shift indication in the scheduling signaling.
  • the PHICH carrying the ACK/NACK feedback information of the PUSCH-3 is transmitted in the subframe 6 in accordance with the parameter.
  • the base station may also send the downlink control channel using the uplink DCI format in the subframe 6, and the downlink is used.
  • the NDI in the control channel is set to the same value as the NDI in the downlink control channel corresponding to the first transmission of the PUSCH-3 (for example, if the NDI corresponding to the first transmission is 0, the NDI in the downlink control channel is also Set to 0).
  • the terminal determines that the base station does not send the downlink control channel indicating the retransmission, that is, the terminal determines that the PUSCH-1 transmission is successful, and does not need to retransmit. If the set time is not specified, the terminal needs to keep the information of PUSCH-1 until it receives a DCI capable of determining whether the PUSCH-1 is retransmitted for further operation; if detected, for example, downlink control is detected in subframe 9.
  • the terminal determines, according to the process ID indicated by the first indication field in the downlink control channel, the PUSCH-1 transmitted in the UpPTS corresponding to the special subframe 1, and then according to the NDI in the downlink control channel, relative to the PUSCH. Whether the NDI corresponding to the first transmission of -1 is flipped to determine whether retransmission is required. For example, if the NDI is the same as the NDI corresponding to the first transmission, the terminal determines that retransmission is required, and performs PUSCH-1 according to scheduling information (ie, indicated resource and modulation coding level, etc.) in the downlink control channel.
  • scheduling information ie, indicated resource and modulation coding level, etc.
  • the terminal determines to transmit a new data, and starts to transmit new data according to the scheduling information, that is, the PUSCH-1 transmission is successful, and does not need to be heavy. pass.
  • the terminal determines that the base station does not send the downlink control channel indicating the retransmission, that is, the terminal determines that the PUSCH-2 transmission is successful, and does not need to retransmit. If the set time is not specified, the terminal needs to keep the PUSCH-2 information until it receives a DCI capable of determining whether the PUSCH-2 is retransmitted for further operation; if detected, for example, downlink control is detected in subframe 9.
  • the terminal determines, according to the process ID indicated by the first indication field in the downlink control channel, the PUSCH-2 transmitted in the UpPTS in the corresponding special subframe 6, and then according to the NDI in the downlink control channel, relative to the PUSCH. Whether the NDI corresponding to the first transmission of -2 is flipped to determine whether retransmission is required. For example, if the NDI is the same as the NDI corresponding to the first transmission, the terminal determines that retransmission is required, and performs PUSCH-2 according to scheduling information (ie, indicated resource and modulation coding level, etc.) in the downlink control channel. Retransmit.
  • scheduling information ie, indicated resource and modulation coding level, etc.
  • the terminal determines to transmit a new data, and starts to transmit new data according to the scheduling information, that is, determines that the PUSCH-2 transmission is successful, and does not need to retransmit.
  • PHICH of 3 is transmitted in subframe 6, and its PHICH resource parameter is determined according to the minimum PRB index of PUSCH-3 and the DMRS cyclic shift indication in the scheduling signaling.
  • the PHICH carrying the ACK/NACK feedback information of the PUSCH-3 is detected in the subframe 6 according to the parameter, and whether retransmission is determined according to the feedback information in the PHICH. Specifically, if it is ACK, no retransmission is needed, and if it is NACK, PUSCH-3 is retransmitted according to the first scheduling information transmitted for the first time.
  • the terminal may also detect the downlink control channel using the uplink DCI format in the subframe 6. If not, the feedback information in the PHICH is used as the standard, and if detected, according to the NDI in the downlink control channel. Whether the NDI corresponding to the first transmission of the PUSCH-3 is inverted to determine whether retransmission is required.
  • the terminal determines that retransmission is required, and performs scheduling on the downlink control channel (ie, the indicated resource and modulation coding level, etc.) on the PUSCH- 3: Performing retransmission; if the NDI is different from the NDI corresponding to the first transmission, the terminal determines to transmit new data, and starts transmitting new data according to the scheduling information, that is, determines that the PUSCH-3 transmission is successful, and does not need to retransmit.
  • the downlink control channel ie, the indicated resource and modulation coding level, etc.
  • the normal uplink subframe may also be used.
  • the downlink control channel corresponding to the PUSCH transmitted in the UpPTS is transmitted in the corresponding PHICH transmission subframe.
  • the terminal can blindly check the DCI of different sizes to distinguish whether the downlink control channel is in the PUSCH in the UpPTS or in the normal uplink subframe. PUSCH.
  • the base station scheduling is required to avoid the PUSCH transmitted in the corresponding UpPTS.
  • the downlink control channel and the downlink control channel corresponding to the PUSCH transmitted in the normal uplink subframe are transmitted in the same subframe, or need to be defined or configured by the downlink control channel corresponding to the PUSCH transmitted in the UpPTS and the corresponding normal uplink subframe.
  • the downlink control channel of the PUSCH is distinguished by using different RNTIs, or needs to be distinguished by an indication of a downlink control channel corresponding to the PUSCH transmitted in the UpPTS and a second bit field of the downlink control channel of the PUSCH transmitted in the normal uplink subframe.
  • the idle bit field reuse in the DCI may be used as the second bit field in order not to change the original DCI size in the normal uplink subframe.
  • Embodiment 2 In this embodiment, the TDD uplink and downlink configuration 1 is taken as an example.
  • the PUSCH transmitted in the UpPTS in the special subframe 1 or 6 is assumed to use asynchronous HARQ, and the feedback information is carried through the downlink control channel.
  • the following description will be made from the implementation of the base station side and the terminal side, respectively.
  • Base station side 1. Base station side:
  • the scheduling terminal transmits the PUSCH-1 in the UpPTS in the special subframe 1, and receives the PUSCH-1 sent by the terminal in the special subframe 1, and obtains the 1-bit ACK/NACK feedback information, where:
  • the ACK/NACK feedback information is ACK
  • the base station does not need new uplink data transmission, scheduling is required,
  • the downlink control channel using the uplink DCI format needs to be sent to the terminal; if the base station has a new uplink data transmission and needs to be scheduled, the NDI is reversed with respect to the NDI in the downlink control channel corresponding to the first transmission of the PUSCH-1 (ie, Set to a different value, for example, the NDI corresponding to the first transmission is 0, then the NDI in the downlink control channel is set to 1), and any subframe after the special subframe 1 includes the subframe of the downlink resource or in the special sub-frame.
  • any one of the set times after the frame 1 includes a subframe of the downlink resource (for example, any one of the subsequent 10 subframes and/or a special subframe, depending on the scheduling implementation and resource allocation of the base station), Transmitting, to the terminal, a downlink control channel carrying the NDI;
  • a subframe of the downlink resource for example, any one of the subsequent 10 subframes and/or a special subframe, depending on the scheduling implementation and resource allocation of the base station
  • the base station includes a downlink resource subframe or any one of the set times after the special subframe 1 includes a downlink resource subframe (for example, Any one of the following 10 subframes and/or a special subframe depends on the scheduling implementation and resource allocation of the base station.
  • the downlink control channel using the uplink DCI format is sent to the terminal.
  • the base station may process the downlink control channel by using any of the following methods:
  • Method A The first DCI size transmission is used for the downlink control channel, where the first DCI size is different from the DCI size corresponding to the normal uplink subframe.
  • Method B The second indication field in the downlink control channel is set to "1", indicating that the downlink control channel corresponds to the PUSCH transmitted in the UpPTS;
  • Method C The downlink control channel is scrambled by using the first RNTI, where the first RNTI is different from the RNTI corresponding to the normal uplink subframe, and is used to distinguish the downlink control channel corresponding to the PUSCH in the normal uplink subframe.
  • the scheduling terminal transmits PUSCH-2 in the normal uplink subframe 2; receives the PUSCH-2 transmitted by the terminal in the uplink subframe 2, and acquires its 1-bit ACK/NACK feedback information; according to the k PHICH definition in Table 3 Determining that the PHICH of the PUSCH-2 is transmitted in the subframe 6, and determining the PHICH resource parameter according to the minimum PRB index of the PUSCH-2 and the DMRS cyclic shift indication in the scheduling signaling.
  • the PHICH carrying the ACK/NACK feedback information of the PUSCH-2 is transmitted in the subframe 6 according to the parameter.
  • the downlink control channel using the uplink DCI format may also be sent in the subframe 6, and the downlink is used.
  • the NDI in the control channel is set to the same value as the NDI in the downlink control channel corresponding to the first transmission of the PUSCH-2. For example, if the NDI corresponding to the first transmission is 0, the NDI in the downlink control channel is Also set to 0. Further, the base station may process the downlink control channel by using any of the following methods:
  • Method 1 The second DCI size transmission is used for the downlink control channel, where the second DCI size is the DCI size corresponding to the normal uplink subframe.
  • Method 2 The second indication field in the downlink control channel is set to “0”, indicating that the downlink control channel corresponds to the PUSCH transmitted in the normal uplink subframe;
  • Method 3 scrambling the downlink control channel by using the second RNTI, and distinguishing the downlink control channel corresponding to the PUSCH in the UpPTS;
  • the terminal determines that the base station does not send the downlink control channel indicating the retransmission, that is, determines that the PUSCH-1 transmission succeeds, Retransmission is required. If the set time is not agreed, the terminal needs to keep the information of PUSCH-1 until it receives the DCI that can determine whether the PUSCH-1 is retransmitted for further operation; if the downlink using the uplink DCI format is detected For the control channel, for example, the downlink control channel is detected in the subframe 6, the terminal processes the method corresponding to the base station side:
  • Method A determining the downlink control if the detected DCI size is the first DCI size (ie, by determining the first DCI and the second DCI size by blind detection, determining that the downlink control channel is a downlink control channel using the first DCI size)
  • the channel corresponds to the PUSCH in the UpPTS;
  • Method B If the second indication field in the downlink control channel is "1", determine that the downlink control channel corresponds to the PUSCH in the UpPTS;
  • Method C If the downlink control channel is scrambled by using the first RNTI (ie, the downlink control channel is determined to be scrambled by the first RNTI by blindly detecting the first RNTI and the second RNTI), determining that the downlink control channel is corresponding to the UpPTS PUSCH.
  • the terminal determines whether retransmission is required according to whether the NDI in the downlink control channel is inverted with respect to the NDI corresponding to the first transmission of the PUSCH-1. For example, if the NDI is the same as the NDI corresponding to the first transmission, the terminal determines that retransmission is required, and performs PUSCH-1 according to scheduling information (ie, indicated resource and modulation coding level, etc.) in the downlink control channel. For example, if the NDI is different from the NDI corresponding to the first transmission, the terminal determines that the new data is transmitted, and starts to transmit new data according to the scheduling information, that is, determines that the PUSCH-1 transmission is successful, and does not need to retransmit.
  • scheduling information ie, indicated resource and modulation coding level, etc.
  • the PHICH of 2 is transmitted in subframe 6, and the PHICH resource parameter is determined according to the minimum PRB index of PUSCH-2 and the DMRS cyclic shift indication in the scheduling signaling.
  • the PHICH carrying the ACK/NACK feedback information of the PUSCH-2 is detected in the subframe 6 according to the parameter, and whether retransmission is determined according to the feedback information in the PHICH.
  • the terminal determines that retransmission is not required; if the ACK/NACK feedback information is NACK, the terminal retransmits PUSCH-2 according to the first transmission of the same scheduling information.
  • the terminal may also detect the downlink control channel using the uplink DCI format in the subframe 6. If not, the feedback information in the PHICH is used as a standard, and if detected, the terminal adopts a method corresponding to the base station side. Processing:
  • Method 1 Determine the downlink control channel according to the detected DCI size as the second DCI size (ie, by blindly detecting the first DCI and the second DCI, determining that the downlink control channel is a DCI format using the second DCI size) Corresponding to the PUSCH in the normal uplink subframe;
  • Method 2 According to the second indication field in the downlink control channel is “0”, determining that the downlink control channel corresponds to a PUSCH in a common uplink subframe;
  • Method 3 The second RNTI is scrambled according to the downlink control channel, that is, the downlink control channel is determined to be scrambled by the second RNTI by blindly detecting the first RNTI and the second RNTI, and determining that the downlink control channel corresponds to the normal uplink PUSCH in a subframe.
  • the terminal determines whether retransmission is required according to whether the NDI in the downlink control channel is reversed relative to the NDI corresponding to the first transmission of the PUSCH-2. For example, if the NDI is the same as the NDI corresponding to the first transmission, the terminal determines that retransmission is required, and performs PUSCH-2 according to scheduling information (ie, indicated resource and modulation coding level, etc.) in the downlink control channel. For example, if the NDI is different from the NDI corresponding to the first transmission, the terminal determines that the new data is transmitted, and starts to transmit new data according to the scheduling information, that is, determines that the PUSCH-2 transmission is successful, and does not need to be retransmitted.
  • scheduling information ie, indicated resource and modulation coding level, etc.
  • Embodiment 3 In this embodiment, the TDD uplink and downlink configuration 1 is taken as an example.
  • the PUSCH transmitted in the UpPTS in the special subframe 1 or 6 is assumed to use the synchronous HARQ, and the ACK/NACK feedback of the PUSCH transmitted in the special subframe m
  • the following description will be made from the implementation of the base station side and the terminal side, respectively.
  • Base station side 1. Base station side:
  • the scheduling terminal transmits the PUSCH-1 in the UpPTS in the special subframe 1, and receives the PUSCH-1 sent by the terminal in the special subframe 1, and obtains the 1-bit ACK/NACK feedback information, where:
  • the NDI is The NDI in the downlink control channel corresponding to the first transmission of the PUSCH-1 is reversed (that is, set to a different value, for example, the NDI corresponding to the first transmission is 0, then the NDI in the downlink control channel is set to 1), and in subframe 5 (obtained according to m+k), send a downlink control channel carrying the NDI to the terminal;
  • the base station sends a downlink control channel using the uplink DCI format to the terminal in subframe 5 (obtained according to m+k), and sets the NDI in the downlink control channel to the PUSCH.
  • the NDI of the downlink control channel corresponding to the first transmission of -1 has the same value. For example, if the NDI corresponding to the first transmission is 0, the NDI in the downlink control channel is also set to 0.
  • the scheduling terminal transmits PUSCH-2 in the normal uplink subframe 2; receives the PUSCH-2 transmitted by the terminal in the uplink subframe 2, and acquires its 1-bit ACK/NACK feedback information; according to the k PHICH definition in Table 3 Determining that the PHICH of the PUSCH-2 is transmitted in the subframe 6, and determining the PHICH resource parameter according to the minimum PRB index of the PUSCH-2 and the DMRS cyclic shift indication in the scheduling signaling.
  • the PHICH carrying the ACK/NACK feedback information of the PUSCH-2 is transmitted in the subframe 6 according to the parameter.
  • the downlink control channel using the uplink DCI format may also be sent in the subframe 6, and the downlink is used.
  • the NDI in the control channel is set to the same value as the NDI in the downlink control channel corresponding to the first transmission of the PUSCH-2. For example, if the NDI corresponding to the first transmission is 0, the NDI in the downlink control channel is Also set to 0.
  • the downlink control channel that carries the ACK/NACK feedback information sent in the subframe 5 and the subframe 6 may be scrambled by using the same DCI and the same RNTI, and the terminal may pass A subframe of the downlink control channel is detected to determine whether the PUSCH corresponding to the downlink control channel corresponds to an UpPTS or a normal uplink subframe.
  • the terminal determines that the base station does not send the downlink control channel that indicates retransmission, that is, determines that the PUSCH-1 transmission is successful, and does not need to retransmit;
  • the terminal determines whether retransmission is needed according to whether the NDI in the downlink control channel is reversed relative to the NDI corresponding to the first transmission of the PUSCH-1. For example, if the NDI is the same as the NDI corresponding to the first transmission, the terminal determines that retransmission is required, and performs PUSCH-1 according to scheduling information (ie, indicated resource and modulation coding level, etc.) in the downlink control channel. For example, if the NDI is different from the NDI corresponding to the first transmission, the terminal determines to transmit a new data, and starts to transmit new data according to the scheduling information, that is, the PUSCH-1 transmission is successful, and does not need to be heavy. pass.
  • scheduling information ie, indicated resource and modulation coding level, etc.
  • the PHICH of 2 is transmitted in subframe 6, and the PHICH resource parameter is determined according to the minimum PRB index of PUSCH-2 and the DMRS cyclic shift indication in the scheduling signaling.
  • the PHICH carrying the ACK/NACK feedback information of the PUSCH-2 is detected in the subframe 6 according to the parameter, and whether retransmission is determined according to the ACK/NACK feedback information in the PHICH. If the ACK/NACK feedback information is ACK, the terminal channel does not need to retransmit; if the ACK/NACK is NACK, the terminal retransmits the PUSCH-2 according to the first transmission of the same scheduling information.
  • the terminal can also simultaneously detect the downlink control channel using the uplink DCI format in the subframe 6; If it is detected, the feedback information in the PHICH is used as a standard; if it is detected, whether the retransmission needs to be retransmitted according to whether the NDI corresponding to the first transmission of the PUSCH-2 in the downlink control channel is inverted. . For example, if the NDI is the same as the NDI corresponding to the first transmission, the terminal determines that retransmission is required, and performs PUSCH-2 according to scheduling information (ie, indicated resource and modulation coding level, etc.) in the downlink control channel.
  • scheduling information ie, indicated resource and modulation coding level, etc.
  • the terminal determines that the new data is transmitted, and starts to transmit new data according to the scheduling information, that is, the PUSCH-2 transmission is successful, and does not need to be heavy. pass.
  • the foregoing embodiment is described by using a dynamically scheduled PUSCH as an example.
  • the method provided by the embodiment of the present invention is also applicable to the SPS PUSCH.
  • the only difference is that if the SPS PUSCH is used, the definition of the NDI is not a flip, but a Indicates retransmission, 0 indicates initial transmission, and the rest of the processing is the same as the dynamically scheduled PUSCH.
  • the asynchronous HARQ in the UpPTS is used as an example, and the synchronous HARQ is also applicable to the PUSCH in the UpPTS. If the method is synchronous HARQ, the process is similar. The only difference is that the base station side transmits the PUSCH in the corresponding UpPTS.
  • the subframe of the downlink control channel is not any subframe after the special subframe or any subframe within the set time after the special subframe, but according to the subframe number of the UpPTS and the fixed subframe position determined in Table 7,
  • the terminal side When detecting the downlink control channel of the PUSCH corresponding to the UpPTS, the terminal side does not detect each subframe after the UpPTS or each subframe detection within a set time after the UpPTS, but the subframe number of the UpPTS and Table 7 determines the fixed subframe position detection.
  • the above method processing flow can be implemented by a software program, which can be stored in a storage medium, and when the stored software program is called, the above method steps are performed.
  • a terminal including:
  • the sending module 41 is configured to send a physical uplink shared channel PUSCH in the special subframe m, where m is an integer;
  • the detecting module 42 is configured to: after the special subframe m, include a subframe of a downlink transmission resource or in a subframe m+k, detect a downlink control channel that uses an uplink and downlink control information DCI format, where k is a positive integer;
  • the determining module 43 is configured to determine, according to the downlink control channel, whether to retransmit the PUSCH sent in the special subframe m.
  • TDD uplink and downlink configuration if m is 1 or 6, the k is 4, 5, 9 or 10; or
  • TDD uplink and downlink configuration 1, if m is 1 or 6, the k is 3, 5, 8, or 10; or
  • TDD uplink and downlink configuration 3 if m is 1, the k is 7, 8, or 9; or
  • TDD uplink and downlink configuration 6 if m is 1, the k is 4, 5, 8, 9, or 10; or
  • TDD uplink and downlink configuration 6 if m is 6, the k is 3, 4, 5, 9, or 10.
  • the determining module is specifically configured to:
  • the determining module is specifically configured to:
  • the determining module is specifically configured to:
  • the detecting module detects that the downlink control channel uses the uplink DCI format of the first DCI, determines that the downlink control channel corresponds to the PUSCH sent in the special subframe, or if the detecting module detects the downlink control channel Determining, by using the uplink DCI format of the second DCI size, that the downlink control channel corresponds to a PUSCH sent in a normal subframe; wherein the first DCI size and the second DCI size are different.
  • the first indication field carries a hybrid automatic repeat request HARQ process number of a PUSCH corresponding to the downlink control channel.
  • the determining module is specifically configured to:
  • the detecting module detects that the downlink control channel is scrambled by using the first RNTI, determining that the downlink control channel is corresponding to the PUSCH sent in the special subframe, or if the detecting module detects that the downlink control channel is used.
  • the second RNTI is scrambled to determine that the downlink control channel corresponds to a PUSCH transmitted in a normal subframe; wherein the first RNTI and the second RNTI are different.
  • the determining module is further configured to:
  • the subframe m+k is different from a subframe that detects a downlink control channel of a PUSCH transmitted in a corresponding normal subframe.
  • TDD uplink and downlink configuration if m is 1 or 6, the k is 4 or 9; or
  • TDD uplink and downlink configuration 2 if m is 1 or 6, the k is 3, 4, 5, 8, 9, or 10; or
  • TDD uplink and downlink configuration 3 if m is 1, the k is 4, 5, 6, or 10; or
  • TDD uplink and downlink configuration 4 if m is 1, the k is 3, 4, 5, 6, 9, or 10; or
  • TDD uplink and downlink configuration 5 if m is 1, the k is 2, 3, 4, 5, 6, 8, 9, or 10.
  • the determining module is specifically configured to:
  • the determining module is specifically configured to:
  • the downlink control channel corresponds to a PUSCH transmitted in a normal uplink subframe.
  • another terminal including a transceiver 610, and at least one processor 600 coupled to the transceiver 610, wherein:
  • the processor 600 is configured to read a program in the memory 620 and perform the following process:
  • the transceiver 610 is configured to receive and transmit data under the control of the processor 600.
  • the bus architecture may include any number of interconnected buses and bridges, specifically linked by one or more processors represented by processor 600 and various circuits of memory represented by memory 620.
  • the bus architecture can also link various other circuits such as peripherals, voltage regulators, and power management circuits, which are well known in the art and, therefore, will not be further described herein.
  • the bus interface provides an interface.
  • Transceiver 610 can be a plurality of components, including a transmitter and a receiver, providing means for communicating with various other devices on a transmission medium.
  • the user interface 630 may also be an interface capable of externally connecting the required devices, including but not limited to a keypad, a display, a speaker, a microphone, a joystick, and the like.
  • the processor 600 is responsible for managing the bus architecture and general processing, and the memory 620 can store data used by the processor 600 in performing operations.
  • the processor 600 reads the program in the memory 620, performs the operations performed by the detecting module 42 and the determining module 43 in the embodiment shown in FIG. 4, and the transceiver 610 performs the processing. Under the control of the device 600, For the operations performed by the sending module 41 in the embodiment shown in FIG. 4, refer to the related description in the embodiment shown in FIG. 4, and details are not described herein again.
  • a base station including:
  • the scheduling module 61 is configured to: the scheduling terminal sends the physical uplink shared channel PUSCH in the special subframe m, where m is an integer;
  • the detecting module 62 is configured to detect, in the special subframe m, the PUSCH sent by the terminal;
  • the processing module 63 is configured to: after the special subframe m, include a subframe of a downlink transmission resource or in a subframe m+k, send, to the terminal, a downlink control channel that uses an uplink and downlink control information DCI format, where k is positive An integer, where the downlink control channel carries an indication field indicating whether the PUSCH in the special subframe m is retransmitted.
  • TDD uplink and downlink configuration if m is 1 or 6, the k is 4, 5, 9 or 10; or
  • TDD uplink and downlink configuration 1, if m is 1 or 6, the k is 3, 5, 8, 10; or
  • TDD uplink and downlink configuration 3 if m is 1, the k is 7, 8, or 9; or
  • TDD uplink and downlink configuration 6 if m is 1, the k is 4, 5, 8, 9, or 10; or,
  • TDD uplink and downlink configuration 6 if m is 6, the k is 3, 4, 5, 9, or 10.
  • the processing module is specifically configured to:
  • a first indication field where the first indication field is used to indicate information about a PUSCH corresponding to the downlink control channel
  • a second indication field carrying, in the downlink control channel, a second indication field, where the second indication field is used to indicate that the PUSCH corresponding to the downlink control channel is a PUSCH in a special subframe or a PUSCH in a normal subframe;
  • the processing module is specifically configured to:
  • the downlink control channel corresponds to the PUSCH sent in the special subframe, determining that the downlink control channel uses the uplink DCI format of the first DCI size; or if the downlink control channel corresponds to the PUSCH sent in the normal subframe, determining the The downlink control channel uses an uplink DCI format of a second DCI size; wherein the first DCI size and location The second DCI is different in size.
  • the first indication field carries a hybrid automatic repeat request HARQ process number of a PUSCH corresponding to the downlink control channel.
  • the processing module is specifically configured to:
  • the downlink control channel is corresponding to the PUSCH sent in the special subframe, determining whether the downlink control channel is scrambled, the first RNTI is used for scrambling; or if the downlink control channel is corresponding to the PUSCH sent in the normal subframe, determining The second RNTI is used when the downlink control channel is scrambled; wherein the first RNTI and the second RNTI are different.
  • the processing module is further configured to:
  • the subframe m+k is different from a subframe that transmits a downlink control channel corresponding to a PUSCH transmitted in a normal subframe.
  • TDD uplink and downlink configuration if m is 1 or 6, the k is 4 or 9; or
  • TDD uplink and downlink configuration 2 if m is 1 or 6, the k is 3, 4, 5, 8, 9, or 10; or
  • TDD uplink and downlink configuration 3 if m is 1, the k is 4, 5, 6, or 10; or
  • TDD uplink and downlink configuration 4 if m is 1, the k is 3, 4, 5, 6, 9, or 10; or
  • TDD uplink and downlink configuration 5 if m is 1, the k is 2, 3, 4, 5, 6, 8, 9, or 10.
  • the processing module is specifically configured to:
  • the downlink control channel corresponds to the PUSCH transmitted in the special subframe, set the least significant bit LSB and the most significant bit MSB of the UL index to 0;
  • the downlink control channel corresponds to a PUSCH transmitted in a normal uplink subframe
  • at least one of the LSB and the MSB of the UL index is set to 1.
  • another base station including: a transceiver 510, and at least one processor 500 connected to the transceiver 510, wherein:
  • the processor 500 is configured to read a program in the memory 520 and perform the following process:
  • the scheduling terminal sends a physical uplink shared channel PUSCH in the special subframe m, where m is an integer; in the special subframe m, detecting a PUSCH sent by the terminal; in the special subframe m Then, the subframe including the downlink transmission resource or the subframe m+k controls the transceiver 510 to send, to the terminal, a downlink control channel using the DCI format of the uplink and downlink control information, where k is a positive integer, and the downlink control channel Carrying an indication field for indicating whether the PUSCH in the special subframe m is retransmitted;
  • the transceiver 510 is configured to receive and transmit data under the control of the processor 500.
  • the bus architecture may include any number of interconnected buses and bridges, specifically linked by one or more processors represented by processor 500 and various circuits of memory represented by memory 520.
  • the bus architecture can also link various other circuits such as peripherals, voltage regulators, and power management circuits, which are well known in the art and, therefore, will not be further described herein.
  • the bus interface provides an interface.
  • Transceiver 510 can be a plurality of components, including a transmitter and a transceiver, providing means for communicating with various other devices on a transmission medium.
  • the processor 500 is responsible for managing the bus architecture and general processing, and the memory 520 can store data used by the processor 500 when performing operations.
  • the processor 500 reads the program in the memory 520, and performs the operations performed by the scheduling module 61, the detecting module 62, and the processing module 63 in the embodiment shown in FIG. 6, which is specifically referred to FIG. The related description in the embodiment is shown, and details are not described herein again.
  • embodiments of the present invention can be provided as a method, system, or computer program product. Accordingly, the present invention may take the form of an entirely hardware embodiment, an entirely software embodiment, or a combination of software and hardware. Moreover, the invention can take the form of a computer program product embodied on one or more computer-usable storage media (including but not limited to disk storage, CD-ROM, optical storage, etc.) including computer usable program code.
  • computer-usable storage media including but not limited to disk storage, CD-ROM, optical storage, etc.
  • the computer program instructions can also be stored in a computer readable memory that can direct a computer or other programmable data processing device to operate in a particular manner, such that the instructions stored in the computer readable memory produce an article of manufacture comprising the instruction device.
  • the apparatus implements the functions specified in one or more blocks of a flow or a flow and/or block diagram of the flowchart.
  • These computer program instructions can also be loaded onto a computer or other programmable data processing device such that a series of operational steps are performed on a computer or other programmable device to produce computer-implemented processing for execution on a computer or other programmable device.
  • the instructions provide steps for implementing the functions specified in one or more of the flow or in a block or blocks of a flow diagram.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Detection And Prevention Of Errors In Transmission (AREA)

Abstract

本发明公开了一种上行传输的反馈信息的传输方法和设备,方法包括:终端在特殊子帧m中发送物理上行共享信道PUSCH,m为整数;所述终端在所述特殊子帧m之后包含下行传输资源的子帧或者在子帧m+k中,检测使用上行下行控制信息DCI格式的下行控制信道,k为正整数;所述终端根据所述下行控制信道,确定是否重传所述特殊子帧m中发送的PUSCH。从而提供了一种在特殊子帧中传输的PUSCH的反馈信息的传输方案,保证了在特殊子帧中发送的PUSCH可以正常获得ACK/NACK反馈信息。

Description

一种上行传输的反馈信息的传输方法和设备
本申请要求在2016年8月15日提交中国专利局、申请号为201610671985.X、发明名称为“一种上行传输的反馈信息的传输方法和设备”,在2016年8月5日提交中国专利局、申请号为201610641360.9、发明名称为“一种上行传输的反馈信息的传输方法和设备”,在2016年6月22日提交中国专利局、申请号为201610460911.1、发明名称为“一种上行传输的反馈信息的传输方法和设备”的中国专利申请的优先权,这些专利申请的全部内容通过引用结合在本申请中。
技术领域
本发明涉及通信技术领域,特别涉及一种上行传输的反馈信息的传输方法和设备。
背景技术
现有长期演进(Long Term Evolution,简称LTE)时分双工(Time Division Duplex,简称TDD)系统使用帧结构(frame structure type 2,简称FS2),如图1所示。在TDD系统中,上行和下行传输使用相同的频率上的不同子帧或不同时隙。FS2中每个10ms无线帧(radio frame)由两个5ms半帧(half-frame)构成,每个半帧中包含5个1ms长度的子帧(subframe)。FS2中的子帧分为三类:下行子帧、上行子帧和特殊子帧,每个特殊子帧由下行传输时隙(Downlink Pilot Time Slot,简称DwPTS)、保护间隔(Guard Period,简称GP)和上行传输时隙(Uplink Pilot Time Slot,简称UpPTS)三部分构成。FS2中支持的7种上下行子帧配置方式如表1所示。
表1:上下行配置
Figure PCTCN2017076196-appb-000001
特殊子帧截止到版本13(Release 13,Rel-13)中支持如表2所示的10种配置,每种配置中都规定了DwPTS和UpPTS的符号长度,GP的长度可以通过一个子帧中的符号总数与DwPTS和UpPTS的符号长度之差得到。
表2:特殊子帧配置(Special subframe configuration)
Figure PCTCN2017076196-appb-000002
表2中,X为高层信令配置的值,用于额外扩展UpPTS长度,目前支持X=2或4个符号,相当于将GP划分出一部分作为UpPTS。DwPTS可以传输下行导频、下行业务数据(如下行共享信道)和下行控制信令(如下行控制信道),GP不传输任何信号,UpPTS仅传输随机接入和探测参考信号(Sounding Reference Symbol,简称SRS),不能传输上行业务(如上行共享信道)或上行控制信息(如上行控制信道)。
在现有LTE TDD系统中,物理上行控制信道(Physical Uplink Shared Channel,简称PUSCH)仅在上行子帧中传输,其ACK/NACK反馈信息可以承载在物理混合重传指示信道(Physical Hybrid-ARQ Indicator Channel,简称PHICH;Hybrid Automatic Repeat reQuest,简称HARQ)中传输,也可以通过承载上行调度许可(UL grant)的下行控制信道(即使用上行下行控制信息(Downlink Control Information,简称DCI)格式的下行控制信道)来获得,该下行控制信道中包含新数据指示域(New Data Indicator,简称NDI),用NDI是 否翻转来表示是否为新数据。
终端在编号为n的上行子帧中传输PUSCH会在编号为n+kPHICH的下行子帧中接收PHICH,以获得该PUSCH的ACK/NACK反馈信息,其中,kPHICH的定义如表3所示。
表3:TDD中的kPHICH(kPHICH for TDD)
Figure PCTCN2017076196-appb-000003
表3中的子帧编号是以无线帧为单位的,编号为n+k的子帧,如果n+k大于9,则表明为下一个无线帧中的子帧,以下表格类似。
一个终端在检测PHICH的子帧中的PHICH资源由
Figure PCTCN2017076196-appb-000004
来确定,
Figure PCTCN2017076196-appb-000005
为PHICH组的编号,
Figure PCTCN2017076196-appb-000006
为组内的正交序列编号,
Figure PCTCN2017076196-appb-000007
Figure PCTCN2017076196-appb-000008
可根据如下公式确定:
Figure PCTCN2017076196-appb-000009
其中:nDMRS为根据对应的PUSCH的调度信息中指示的解调参考信号(Demodulation Reference Signal,简称DMRS)循环移位信息所得到的值,如表4所示;
Figure PCTCN2017076196-appb-000010
为正交序列的长度;
Figure PCTCN2017076196-appb-000011
为根据高层信令的配置确定的每个子帧中的PHICH组的个数,一个PHICH组中包含多个PHICH分别用于承载不同PUSCH的ACK/NACK反馈信息,这多个PHICH占用相同的资源传输,通过正交序列区分彼此,对于TDD每个子帧中实际包含的PHICH组数为
Figure PCTCN2017076196-appb-000012
其中mi为编号为i的TDD子帧对应的预先约定的系数,对于不同的TDD上下行配置中的不同的TDD子帧,mi可以为0、1、2,如表5所示,当mi=0时,表示该子帧中不包PHICH资源;IPRB_RA为根据该PHICH对应的PUSCH的最小物理资源块(Physical Resource Block,简称PRB)索引号(index)确定的值;IPHICH为标准约定的TDD上下行配置相关的值,对于TDD上下行配置0或上行参考TDD上下行配置0,n=4或9时,IPHICH=1,其他情况IPHICH=0,该值用于当两个子帧中的PUSCH的反馈信息 对应在同一个子帧中通过PHICH传输时,区分该子帧中的PHICH资源与PUSCH的对应关系。
表4:
使用上行DCI格式的PDCCH/EPDCCH中指示DMRS循环移位的指示域与nDMRS的对应关系(Mapping between nDMRS and the cyclic shift for DMRS field in PDCCH/EPDCCH with uplink DCI format)
Figure PCTCN2017076196-appb-000013
表5:FS2中的因子mi
Figure PCTCN2017076196-appb-000014
对于TDD上下行配置1~6或上行参考配置为TDD上下行配置1~6的载波,在编号为n的下行子帧中接收到的PHICH所承载的ACK/NACK反馈信息对应于在子帧n-k中传输的PUSCH,其中,k的定义如表6所示;对于TDD上下行配置0或上行参考配置为TDD 上下行配置0的载波,在编号为n的下行子帧中接收到的对应IPHICH=0的PHICH所承载的ACK/NACK反馈信息对应于在子帧n-k中传输的PUSCH,在编号为n的下行子帧中接收到的对应IPHICH=1的PHICH所承载的ACK/NACK反馈信息对应于在子帧n-6中传输的PUSCH。
表6:TDD配置0~6中的k
Figure PCTCN2017076196-appb-000015
此外,终端还需要在上述检测PHICH的子帧中检测承载UL grant的下行控制信道,即使用上行DCI格式的下行控制信道。如果检测到上述下行控制信道,则根据其中的NDI指示域是否翻转来确定该下行控制信道是用来调度新数据传输的还是用来调度前一个PUSCH进行重传的,例如PUSCH第一次传输时相应的下行控制信道中的NDI为0,则如果在PUSCH之后的PHICH检测子帧中接收到NDI=0的下行控制信道,即说明NDI未翻转,即该下行控制信道用于调度这个PUSCH进行重传;如果在一个PHICH检测子帧中同时检测到了PHICH和下行控制信道,以下行控制信道的信息为准,即根据下行控制信道的NDI确定是否为重传,如果重传,则根据该下行控制信道所指示的调度信息对该PUSCH进行重传,如果仅收到了PHICH且PHICH指示NACK时,则使用该PUSCH第一次传输相同的配置进行重传。
随着移动通信业务需求的发展变化,为了实现TDD特殊子帧中进行上行传输,提出了定义新的TDD特殊子帧配置,例如6个符号DwPTS,2个符号GP以及6个符号UpPTS;在新的特殊子帧中,增加了UpPTS的长度,使得终端在UpPTS中进行上行传输成为可能。但是,在UpPTS中传输的上行共享信道的ACK/NACK反馈信息如何传输,目前还没有解决方案。
发明内容
本发明实施例提供了一种上行传输的反馈信息的传输方法和设备,解决了在UpPTS中传输的上行共享信道的ACK/NACK反馈信息如何传输,目前还没有解决方案的问题。
第一方面,一种上行传输的反馈信息的接收方法,所述方法包括:
终端在特殊子帧m中发送物理上行共享信道PUSCH,m为整数;
所述终端在所述特殊子帧m之后包含下行传输资源的子帧或者在子帧m+k中,检测使用上行下行控制信息DCI格式的下行控制信道,k为正整数;
所述终端根据所述下行控制信道,确定是否重传所述特殊子帧m中发送的PUSCH。
一种可能的实施方式中,所述k的定义如下:
对于时分双工TDD上下行配置0,若m为1或6,所述k为4、5、9或10;或者
对于TDD上下行配置1,若m为1或6,所述k为3、5、8或10;或者
对于TDD上下行配置2,若m为1或6,所述k为2或7;或者
对于TDD上下行配置3,若m为1,所述k为7、8或9;或者
对于TDD上下行配置4,若m为1,所述k为7或8;或者
对于TDD上下行配置5,若m为1,所述k为7;或者
对于TDD上下行配置6,若m为1,所述k为4、5、8、9或10;或者
对于TDD上下行配置6,若m为6,所述k为3、4、5、9或10。
基于上述任一实施例,所述终端根据所述下行控制信道,确定是否重传所述特殊子帧m中发送的PUSCH,包括:
所述终端根据所述下行控制信道,确定所述下行控制信道是否对应特殊子帧中发送的PUSCH;
所述终端在确定所述下行控制信道对应特殊子帧中发送的PUSCH后,根据所述下行控制信道携带的用于指示是否重传的指示域,确定是否重传所述特殊子帧m中发送的PUSCH。
一种可能的实施方式中,所述终端根据所述下行控制信道,确定所述下行控制信道是否对应特殊子帧中发送的PUSCH,包括:
所述终端根据所述下行控制信道使用的上行DCI格式的大小,确定所述下行控制信道是否对应特殊子帧中发送的PUSCH;和/或
所述终端根据所述下行控制信道中的第一指示域,确定所述下行控制信道是否对应特殊子帧中发送的PUSCH,所述第一指示域用于指示所述下行控制信道对应的PUSCH的相关信息;和/或
所述终端根据所述下行控制信道中的第二指示域,确定所述下行控制信道是否对应特殊子帧中发送的PUSCH,所述第二指示域用于指示所述下行控制信道对应的PUSCH为特殊子帧中的PUSCH或者普通子帧中的PUSCH;和/或
所述终端根据所述下行控制信道加扰时使用的无线网络临时标识RNTI,确定所述下行控制信道是否对应特殊子帧中发送的PUSCH;和/或
所述终端根据所述下行控制信道中的2比特上行索引UL index指示域,确定所述下行控制信道是否对应特殊子帧中发送的PUSCH。
一种可能的实施方式中,所述终端根据所述下行控制信道使用的上行DCI格式的大小,确定所述下行控制信道是否对应特殊子帧中发送的PUSCH,包括:
若所述终端检测到所述下行控制信道使用第一DCI大小的上行DCI格式,所述终端确定所述下行控制信道对应特殊子帧中发送的PUSCH;或者
若所述终端检测到所述下行控制信道使用第二DCI大小的上行DCI格式,所述终端确定所述下行控制信道对应普通子帧中发送的PUSCH;
其中,所述第一DCI大小和所述第二DCI大小不同。
一种可能的实施方式中,所述第一指示域中携带所述下行控制信道对应的PUSCH的混合自动重传请求HARQ进程编号。
一种可能的实施方式中,所述终端根据所述下行控制信道加扰时使用的RNTI,确定所述下行控制信道是否对应特殊子帧中发送的PUSCH,包括:
若所述终端检测到所述下行控制信道使用第一RNTI进行加扰,所述终端确定所述下行控制信道对应特殊子帧中发送的PUSCH;或者
若所述终端检测到所述下行控制信道使用第二RNTI进行加扰,所述终端确定所述下行控制信道对应普通子帧中发送的PUSCH;
其中,所述第一RNTI和所述第二RNTI不同。
一种可能的实施方式中,若所述第一RNTI为多个终端共享,所述终端确定所述下行控制信道对应特殊子帧中发送的PUSCH之后,所述方法还包括:
所述终端根据所述终端的索引值,确定出对应于所述终端的用于指示是否重传的指示域在所述下行控制信道中的位置。
一种可能的实施方式中,所述子帧m+k不同于检测对应普通子帧中发送的PUSCH的下行控制信道的子帧。
其中,所述k的定义如下:
对于TDD上下行配置1,若m为1或6,所述k为4或9;或者
对于TDD上下行配置2,若m为1或6,所述k为3、4、5、8、9或10;或者
对于TDD上下行配置3,若m为1,所述k为4、5、6或10;或者
对于TDD上下行配置4,若m为1,所述k为3、4、5、6、9或10;或者
对于TDD上下行配置5,若m为1,所述k为2、3、4、5、6、8、9或10。
进一步,所述终端根据所述下行控制信道,确定是否重传所述特殊子帧m中发送的 PUSCH,包括:
所述终端根据所述下行控制信道携带的用于指示是否重传的指示域,确定是否重传所述特殊子帧m中发送的PUSCH。
一种可能的实施方式中,所述终端根据所述下行控制信道中的2比特上行索引UL index指示域,确定所述下行控制信道是否对应特殊子帧中发送的PUSCH,包括:
当所述UL index的最低有效比特LSB和最高有效比特MSB都置为0时,所述终端确定所述下行控制信道对应于在特殊子帧中传输的PUSCH;
当所述UL index的LSB和MSB中的至少一个置为1时,所述终端确定所述下行控制信道对应于在普通上行子帧中传输的PUSCH。
第二方面,一种上行传输的反馈信息的发送方法,所述方法包括:
基站调度终端在特殊子帧m中发送物理上行共享信道PUSCH,m为整数;
所述基站在所述特殊子帧m中,检测所述终端发送的PUSCH;
所述基站在所述特殊子帧m之后包含下行传输资源的子帧或者在子帧m+k中,向所述终端发送使用上行下行控制信息DCI格式的下行控制信道,k为正整数,所述下行控制信道中携带用于指示所述特殊子帧m中的PUSCH是否重传的指示域。
一种可能的实施方式中,所述k的定义如下:
对于时分双工TDD上下行配置0,若m为1或6,所述k为4、5、9或10;或者
对于TDD上下行配置1,若m为1或6,所述k为3、5、8、10;或者
对于TDD上下行配置2,若m为1或6,所述k为2或7;或者
对于TDD上下行配置3,若m为1,所述k为7、8或9;或者
对于TDD上下行配置4,若m为1,所述k为7或8;或者
对于TDD上下行配置5,若m为1,所述k为7;或者,
对于TDD上下行配置6,若m为1,所述k为4、5、8、9或10;或者,
对于TDD上下行配置6,若m为6,所述k为3、4、5、9或10。
基于上述任一实施例,所述基站向所述终端发送使用上行DCI格式的下行控制信道,包括:
所述基站根据所述下行控制信道是否对应特殊子帧中发送的PUSCH,确定所述下行控制信道使用的上行DCI格式的大小;和/或
所述基站在所述下行控制信道中携带第一指示域,所述第一指示域用于指示所述下行控制信道对应的PUSCH的相关信息;和/或
所述基站在所述下行控制信道中携带第二指示域,所述第二指示域用于指示所述下行控制信道对应的PUSCH为特殊子帧中的PUSCH或者普通子帧中的PUSCH;和/或
所述基站根据所述下行控制信道是否对应特殊子帧中发送的PUSCH,确定所述下行控 制信道加扰时使用的无线网络临时标识RNTI;和/或
所述基站根据所述下行控制信道是否对应特殊子帧中发送的PUSCH,确定所述下行控制信道中的2比特上行索引UL index指示域的取值。
一种可能的实施方式中,所述基站根据所述下行控制信道是否对应特殊子帧中发送的PUSCH,确定所述下行控制信道使用的上行DCI格式的大小,包括:
若所述下行控制信道对应特殊子帧中发送的PUSCH,所述基站确定所述下行控制信道使用第一DCI大小的上行DCI格式;或者
若所述下行控制信道对应普通子帧中发送的PUSCH,所述基站确定所述下行控制信道使用第二DCI大小的上行DCI格式;
其中,所述第一DCI大小和所述第二DCI大小不同。
一种可能的实施方式中,所述第一指示域中携带所述下行控制信道对应的PUSCH的混合自动重传请求HARQ进程编号。
一种可能的实施方式中,所述基站根据所述下行控制信道是否对应特殊子帧中发送的PUSCH,确定所述下行控制信道加扰时使用的RNTI,包括:
若所述下行控制信道对应特殊子帧中发送的PUSCH,所述基站确定所述下行控制信道加扰时使用第一RNTI进行加扰;或者
若所述下行控制信道对应普通子帧中发送的PUSCH,所述基站确定所述下行控制信道加扰时使用第二RNTI;
其中,所述第一RNTI和所述第二RNTI不同。
一种可能的实施方式中,若对应特殊子帧的RNTI为多个终端共享,还包括:所述基站根据多个终端的索引值,将多个终端的用于指示是否重传的指示域映射到对应特殊子帧的所述下行控制信道中的相应位置。
一种可能的实施方式中,所述子帧m+k不同于发送对应于普通子帧中发送的PUSCH的下行控制信道的子帧。
其中,所述k的定义如下:
对于TDD上下行配置1,若m为1或6,所述k为4或9;或者
对于TDD上下行配置2,若m为1或6,所述k为3、4、5、8、9或10;或者
对于TDD上下行配置3,若m为1,所述k为4、5、6或10;或者
对于TDD上下行配置4,若m为1,所述k为3、4、5、6、9或10;或者
对于TDD上下行配置5,若m为1,所述k为2、3、4、5、6、8、9或10。
一种可能的实施方式中,所述基站根据所述下行控制信道是否对应特殊子帧中发送的PUSCH,确定所述下行控制信道中的2比特上行索引UL index指示域的取值,包括:
若所述下行控制信道对应于在特殊子帧中传输的PUSCH,所述基站将所述UL index 的最低有效比特LSB和最高有效比特MSB都置为0;
若所述下行控制信道对应于在普通上行子帧中传输的PUSCH,所述基站将所述UL index的LSB和MSB中的至少一个置为1。
第三方面,提供了一种计算机可读存储介质,其中存储有可执行的程序代码,该程序代码用以实现第一方面所述的方法。
第四方面,提供了一种计算机可读存储介质,其中存储有可执行的程序代码,该程序代码用以实现第二方面所述的方法。
第五方面,一种终端,所述终端包括:
发送模块,用于在特殊子帧m中发送物理上行共享信道PUSCH,m为整数;
检测模块,用于在所述特殊子帧m之后包含下行传输资源的子帧或者在子帧m+k中,检测使用上行下行控制信息DCI格式的下行控制信道,k为正整数;
确定模块,用于根据所述下行控制信道,确定是否重传所述特殊子帧m中发送的PUSCH。
一种可能的实施方式中,所述k的定义如下:
对于时分双工TDD上下行配置0,若m为1或6,所述k为4、5、9或10;或者
对于TDD上下行配置1,若m为1或6,所述k为3、5、8或10;或者
对于TDD上下行配置2,若m为1或6,所述k为2或7;或者
对于TDD上下行配置3,若m为1,所述k为7、8或9;或者
对于TDD上下行配置4,若m为1,所述k为7或8;或者
对于TDD上下行配置5,若m为1,所述k为7;或者
对于TDD上下行配置6,若m为1,所述k为4、5、8、9或10;或者
对于TDD上下行配置6,若m为6,所述k为3、4、5、9或10。
基于上述任一实施例,所述确定模块具体用于:
根据所述下行控制信道,确定所述下行控制信道是否对应特殊子帧中发送的PUSCH;
在确定所述下行控制信道对应特殊子帧中发送的PUSCH后,根据所述下行控制信道携带的用于指示是否重传的指示域,确定是否重传所述特殊子帧m中发送的PUSCH。
一种可能的实施方式中,所述确定模块具体用于:
根据所述下行控制信道使用的上行DCI格式的大小,确定所述下行控制信道是否对应特殊子帧中发送的PUSCH;和/或
根据所述下行控制信道中的第一指示域,确定所述下行控制信道是否对应特殊子帧中发送的PUSCH,所述第一指示域用于指示所述下行控制信道对应的PUSCH的相关信息;和/或
根据所述下行控制信道中的第二指示域,确定所述下行控制信道是否对应特殊子帧中 发送的PUSCH,所述第二指示域用于指示所述下行控制信道对应的PUSCH为特殊子帧中的PUSCH或者普通子帧中的PUSCH;和/或
根据所述下行控制信道加扰时使用的无线网络临时标识RNTI,确定所述下行控制信道是否对应特殊子帧中发送的PUSCH;和/或
根据所述下行控制信道中的2比特上行索引UL index指示域,确定所述下行控制信道是否对应特殊子帧中发送的PUSCH。
一种可能的实施方式中,所述确定模块具体用于:
若所述检测模块检测到所述下行控制信道使用第一DCI大小的上行DCI格式,确定所述下行控制信道对应特殊子帧中发送的PUSCH;或者若所述检测模块检测到所述下行控制信道使用第二DCI大小的上行DCI格式,确定所述下行控制信道对应普通子帧中发送的PUSCH;其中,所述第一DCI大小和所述第二DCI大小不同。
一种可能的实施方式中,所述第一指示域中携带所述下行控制信道对应的PUSCH的混合自动重传请求HARQ进程编号。
一种可能的实施方式中,所述确定模块具体用于:
若所述检测模块检测到所述下行控制信道使用第一RNTI进行加扰,确定所述下行控制信道对应特殊子帧中发送的PUSCH;或者若所述检测模块检测到所述下行控制信道使用第二RNTI进行加扰,确定所述下行控制信道对应普通子帧中发送的PUSCH;其中,所述第一RNTI和所述第二RNTI不同。
一种可能的实施方式中,若所述第一RNTI为多个终端共享,所述确定模块还用于:
根据所述终端的索引值,确定出对应于所述终端的用于指示是否重传的指示域在所述下行控制信道中的位置。
一种可能的实施方式中,所述子帧m+k不同于检测对应普通子帧中发送的PUSCH的下行控制信道的子帧。
其中,所述k的定义如下:
对于TDD上下行配置1,若m为1或6,所述k为4或9;或者
对于TDD上下行配置2,若m为1或6,所述k为3、4、5、8、9或10;或者
对于TDD上下行配置3,若m为1,所述k为4、5、6或10;或者
对于TDD上下行配置4,若m为1,所述k为3、4、5、6、9或10;或者
对于TDD上下行配置5,若m为1,所述k为2、3、4、5、6、8、9或10。
进一步,所述确定模块具体用于:
根据所述下行控制信道携带的用于指示是否重传的指示域,确定是否重传所述特殊子帧m中发送的PUSCH。
一种可能的实施方式中,所述确定模块具体用于:
当所述UL index的最低有效比特LSB和最高有效比特MSB都置为0时,确定所述下行控制信道对应于在特殊子帧中传输的PUSCH;
当所述UL index的LSB和MSB中的至少一个置为1时,确定所述下行控制信道对应于在普通上行子帧中传输的PUSCH。
第六方面,一种终端,包括:收发机、以及与所述收发机连接的至少一个处理器,其中:
所述处理器,用于读取所述存储器中的程序,执行下列过程:
控制所述收发机在特殊子帧m中发送PUSCH,m为整数;在所述特殊子帧m之后包含下行传输资源的子帧或者在子帧m+k中,检测使用上行DCI格式的下行控制信道,k为正整数;根据所述下行控制信道,确定是否重传所述特殊子帧m中发送的PUSCH;
所述收发机,用于在处理器的控制下接收和发送数据。
其中,所述处理器读取所述存储器中的程序,执行第五方面所示实施例中的检测模块和确定模块所执行的操作,所述收发机在所述处理器的控制下,执行第五方面所示实施例中的发送模块所执行的操作。
第七方面,一种基站,所述基站包括:
调度模块,用于调度终端在特殊子帧m中发送物理上行共享信道PUSCH,m为整数;
检测模块,用于在所述特殊子帧m中,检测所述终端发送的PUSCH;
处理模块,用于在所述特殊子帧m之后包含下行传输资源的子帧或者在子帧m+k中,向所述终端发送使用上行下行控制信息DCI格式的下行控制信道,k为正整数,所述下行控制信道中携带用于指示所述特殊子帧m中的PUSCH是否重传的指示域。
一种可能的实施方式中,所述k的定义如下:
对于时分双工TDD上下行配置0,若m为1或6,所述k为4、5、9或10;或者
对于TDD上下行配置1,若m为1或6,所述k为3、5、8、10;或者
对于TDD上下行配置2,若m为1或6,所述k为2或7;或者
对于TDD上下行配置3,若m为1,所述k为7、8或9;或者
对于TDD上下行配置4,若m为1,所述k为7或8;或者
对于TDD上下行配置5,若m为1,所述k为7;或者,
对于TDD上下行配置6,若m为1,所述k为4、5、8、9或10;或者,
对于TDD上下行配置6,若m为6,所述k为3、4、5、9或10。
基于上述任一实施例,所述处理模块具体用于:
根据所述下行控制信道是否对应特殊子帧中发送的PUSCH,确定所述下行控制信道使用的上行DCI格式的大小;和/或
在所述下行控制信道中携带第一指示域,所述第一指示域用于指示所述下行控制信道 对应的PUSCH的相关信息;和/或
在所述下行控制信道中携带第二指示域,所述第二指示域用于指示所述下行控制信道对应的PUSCH为特殊子帧中的PUSCH或者普通子帧中的PUSCH;和/或
根据所述下行控制信道是否对应特殊子帧中发送的PUSCH,确定所述下行控制信道加扰时使用的无线网络临时标识RNTI;和/或
根据所述下行控制信道是否对应特殊子帧中发送的PUSCH,确定所述下行控制信道中的2比特上行索引UL index指示域的取值。
一种可能的实施方式中,所述处理模块具体用于:
若所述下行控制信道对应特殊子帧中发送的PUSCH,确定所述下行控制信道使用第一DCI大小的上行DCI格式;或者若所述下行控制信道对应普通子帧中发送的PUSCH,确定所述下行控制信道使用第二DCI大小的上行DCI格式;其中,所述第一DCI大小和所述第二DCI大小不同。
一种可能的实施方式中,所述第一指示域中携带所述下行控制信道对应的PUSCH的混合自动重传请求HARQ进程编号。
一种可能的实施方式中,所述处理模块具体用于:
若所述下行控制信道对应特殊子帧中发送的PUSCH,确定所述下行控制信道加扰时使用第一RNTI进行加扰;或者若所述下行控制信道对应普通子帧中发送的PUSCH,确定所述下行控制信道加扰时使用第二RNTI;其中,所述第一RNTI和所述第二RNTI不同。
一种可能的实施方式中,若对应特殊子帧的RNTI为多个终端共享,所述处理模块还用于:
根据多个终端的索引值,将多个终端的用于指示是否重传的指示域映射到对应特殊子帧的所述下行控制信道中的相应位置。
一种可能的实施方式中,所述子帧m+k不同于发送对应于普通子帧中发送的PUSCH的下行控制信道的子帧。
其中,所述k的定义如下:
对于TDD上下行配置1,若m为1或6,所述k为4或9;或者
对于TDD上下行配置2,若m为1或6,所述k为3、4、5、8、9或10;或者
对于TDD上下行配置3,若m为1,所述k为4、5、6或10;或者
对于TDD上下行配置4,若m为1,所述k为3、4、5、6、9或10;或者
对于TDD上下行配置5,若m为1,所述k为2、3、4、5、6、8、9或10。
一种可能的实施方式中,所述处理模块具体用于:
若所述下行控制信道对应于在特殊子帧中传输的PUSCH,将所述UL index的最低有效比特LSB和最高有效比特MSB都置为0;
若所述下行控制信道对应于在普通上行子帧中传输的PUSCH,将所述UL index的LSB和MSB中的至少一个置为1。
第八方面,一种基站,包括:收发机、以及与所述收发机连接的至少一个处理器,其中:
所述处理器,用于读取存储器中的程序,执行下列过程:
通过所述收发机,调度终端在特殊子帧m中发送物理上行共享信道PUSCH,m为整数;在所述特殊子帧m中,检测所述终端发送的PUSCH;在所述特殊子帧m之后包含下行传输资源的子帧或者在子帧m+k中,控制所述收发机向所述终端发送使用上行下行控制信息DCI格式的下行控制信道,k为正整数,所述下行控制信道中携带用于指示所述特殊子帧m中的PUSCH是否重传的指示域;
所述收发机,用于在所述处理器的控制下接收和发送数据。
其中,所述处理器读取所述存储器中的程序,执行第七方面所示实施例中的调度模块、检测模块和处理模块所执行的操作。
本发明实施例提供的方法和设备中,终端在特殊子帧m中发送物理上行共享信道PUSCH后,在所述特殊子帧m之后包含下行传输资源的子帧或者在子帧m+k中,检测使用上行DCI格式的下行控制信道,并根据所述下行控制信道,确定是否重传所述特殊子帧m中发送的PUSCH,从而提供了一种在特殊子帧中传输PUSCH的反馈信息的传输方案,保证了在特殊子帧中发送的PUSCH可以正常获得ACK/NACK反馈信息。
附图说明
图1为LTE TDD系统中FS2的结构示意图;
图2为本发明实施例提供的一种上行传输的反馈信息的接收方法的流程示意图;
图3为本发明实施例提供的一种上行传输的反馈信息的发送方法的流程示意图;
图4为本发明实施例提供的一种终端的示意图;
图5为本发明实施例提供的另一种终端的示意图;
图6为本发明实施例提供的一种基站的示意图;
图7为本发明实施例提供的另一种基站的示意图。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
本发明实施例中描述的技术方案可用于各种通信系统,例如2G,3G,4G,5G通信系统和下一代通信系统,例如全球移动通信系统(Global System for Mobile communications,简称GSM),码分多址(Code Division Multiple Access,简称CDMA)系统,时分多址(Time Division Multiple Access,简称TDMA)系统,宽带码分多址(Wideband Code Division Multiple Access Wireless,简称WCDMA),频分多址(Frequency Division Multiple Addressing,简称FDMA)系统,正交频分多址(Orthogonal Frequency-Division Multiple Access,简称OFDMA)系统,单载波FDMA(SC-FDMA)系统,通用分组无线业务(General Packet Radio Service,简称GPRS)系统,长期演进(Long Term Evolution,简称LTE)系统等等。
本发明实施例中是结合终端和/或基站来描述的,其中:
终端可以是无线终端,无线终端可以是指向用户提供语音和/或数据连通性的设备,具有无线连接功能的手持式设备、或连接到无线调制解调器的其他处理设备。无线终端可以经无线接入网(例如,Radio Access Network,简称RAN)与一个或多个核心网进行通信,无线终端可以是移动终端,如移动电话(或称为“蜂窝”电话)和具有移动终端的计算机,例如,可以是便携式、袖珍式、手持式、计算机内置的或者车载的移动装置,它们与无线接入网交换语言和/或数据。例如,个人通信业务(Personal Communication Service,简称PCS)电话、无绳电话、会话发起协议(SIP)话机、无线本地环路(Wireless Local Loop,简称WLL)站、个人数字助理(Personal Digital Assistant,简称PDA)等设备。无线终端也可以称为系统、订户单元(Subscriber Unit)、订户站(Subscriber Station),移动站(Mobile Station)、移动台(Mobile)、远程站(Remote Station)、接入点(Access Point)、远程终端(Remote Terminal)、接入终端(Access Terminal)、用户终端(User Terminal)、用户代理(User Agent)、用户设备(User Device)、或用户装备(User Equipment)。
基站可以是指接入网中在空中接口上通过一个或多个扇区与无线终端通信的设备。基站可用于将收到的空中帧与IP分组进行相互转换,作为无线终端与接入网的其余部分之间的路由器,其中接入网的其余部分可包括网际协议(IP)网络。基站还可协调对空中接口的属性管理。例如,基站可以是GSM或CDMA中的基站(Base Transceiver Station,简称BTS),也可以是WCDMA中的基站(NodeB),还可以是LTE中的演进型基站(NodeB或eNB或e-NodeB,evolutional Node B),本发明实施例并不限定。
下面结合说明书附图对本发明实施例作进一步详细描述。应当理解,此处所描述的实施例仅用于说明和解释本发明,并不用于限定本发明。
图2所示的实施例中,提供了一种上行传输的反馈信息的接收方法,所述方法包括:
S21、终端在特殊子帧m中发送PUSCH,m为整数。
可选的,m=1或6。
可选的,所述终端在特殊子帧m中的UpPTS中发送PUSCH。当然,所述终端也可以在特殊子帧m中的GP中发送PUSCH,本发明实施例不对发送PUSCH的具体位置进行限定。
S22、所述终端在所述特殊子帧m之后包含下行传输资源的子帧或者在子帧m+k中,检测使用上行DCI格式的下行控制信道,k为正整数。
本步骤中,若所述终端发送的PUSCH的HARQ采用异步方式,则所述终端在所述特殊子帧m之后包含下行传输资源的子帧进行检测;若所述终端发送的PUSCH的HARQ采用同步方式,则所述终端在子帧m+k中进行检测。
可选的,所述终端在所述特殊子帧m之后包含下行传输资源的子帧中检测使用上行DCI格式的下行控制信道时,可以在所述特殊子帧m之后的任意一个包含下行资源的子帧中进行检测,也可以在所述特殊子帧m之后的设定时间内的任意一个包含下行资源的子帧中进行检测,例如在所述特殊子帧m之后的10个子帧中的任意一个下行子帧和/或特殊子帧进行检测,取决于基站的调度实现和资源分配情况。
S23、所述终端根据所述下行控制信道,确定是否重传所述特殊子帧m中发送的PUSCH。
本发明实施例中,终端在特殊子帧m中发送物理上行共享信道PUSCH后,在所述特殊子帧m之后包含下行传输资源的子帧或者在子帧m+k中,检测使用上行DCI格式的下行控制信道,并根据所述下行控制信道,确定是否重传所述特殊子帧m中发送的PUSCH,从而提供了一种在特殊子帧中传输PUSCH的反馈信息的传输方案,保证了在特殊子帧中发送的PUSCH可以正常获得ACK/NACK反馈信息。
本发明实施例中,对于所述终端发送的PUSCH的HARQ采用同步方式和异步方式的情况下,S23中所述终端根据所述下行控制信道,确定是否重传所述特殊子帧m中发送的PUSCH时,均可采用如下过程处理:
所述终端根据所述下行控制信道,确定所述下行控制信道是否对应特殊子帧中发送的PUSCH;
所述终端在确定所述下行控制信道对应特殊子帧中发送的PUSCH后,根据所述下行控制信道携带的用于指示是否重传的指示域,确定是否重传所述特殊子帧m中发送的PUSCH。
进一步,所述终端根据所述下行控制信道,确定所述下行控制信道是否对应特殊子帧中发送的PUSCH,包括以下五种可能的实现方式:
方式1、所述终端根据所述下行控制信道使用的上行DCI格式的大小,确定所述下行控制信道是否对应特殊子帧中发送的PUSCH。
该方式中,对应特殊子帧中发送的PUSCH的下行控制信道使用的上行DCI格式的大 小(记为第一DCI大小),与对应普通子帧中发送的PUSCH的下行控制信道使用的上行DCI格式的大小(记为第二DCI大小)不同,从而区分检测到的下行控制信道是否对应特殊子帧中发送的PUSCH(一种实现方式为对于支持在UpPTS中传输PUSCH的终端,对应UpPTS的上行DCI格式为新定义的上行DCI格式或者在现有DCI格式的基础上增加额外比特域得到的上行DCI格式,对应普通上行子帧的上行DCI格式为现有上行DCI格式,其中,现有上行DCI格式可以为3GPP 36.212Rel-13及以前版本中定义的DCI格式0/4)。
该方式中,所述终端可以通过盲检不同大小的上行DCI格式,区分检测到的下行控制信道是对应特殊子帧中的PUSCH还是普通子帧中的PUSCH。
该方式中,若所述终端检测到所述下行控制信道使用第一DCI大小的上行DCI格式,则所述终端确定所述下行控制信道对应特殊子帧中发送的PUSCH;或者若所述终端检测到所述下行控制信道使用第二DCI大小的上行DCI格式,则所述终端确定所述下行控制信道对应普通子帧中发送的PUSCH。
方式2、所述终端根据所述下行控制信道中的第一指示域,确定所述下行控制信道是否对应特殊子帧中发送的PUSCH,所述第一指示域用于指示所述下行控制信道对应的PUSCH的相关信息。
可选的,所述第一指示域中携带所述下行控制信道对应的PUSCH的HARQ进程编号。该HARQ进程编号可以是UpPTS中的PUSCH和普通子帧中的PUSCH共同编号,也可以是单独对UpPTS中的PUSCH进行编号,单独对普通子帧中的PUSCH进行编号。当然,本发明实施例不限定所述第一指示域的具体实现形式,只要是可以识别所述下行控制信道对应的PUSCH的信息均可作为所述第一指示域。
一种实现方式为:对于支持在UpPTS中传输PUSCH的终端,对应UpPTS的上行DCI格式为新定义的上行DCI格式或者在现有DCI格式的基础上增加额外比特域得到的上行DCI格式,其中的第一指示域用于指示UpPTS中传输的PUSCH的进程号等信息,该进程号用于识别是哪个UpPTS中传输的PUSCH的信息,对应普通上行子帧的上行DCI格式为现有上行DCI格式,其中,现有上行DCI格式可以为3GPP 36.212Rel-13及以前版本中定义的DCI格式0/4;
另一种实现方式为:对于支持在UpPTS中传输PUSCH的终端,重用现有上行DCI格式中的填充(padding)比特作为上述第一指示域,即此时对于支持在UpPTS中传输PUSCH的终端对应UpPTS和普通上行子帧的上行DCI格式相同,大小一致,通过解析其中的padding比特作为第一指示域,可以知道该上行DCI所对应的是UpPTS还是普通上行子帧以及对应哪个UpPTS中的PUSCH,例如第一指示域指示UpPTS中的PUSCH和普通子帧中的PUSCH统一进行的HARQ进程编号,还可以定义第一指示域为全0是对应普通上行子帧,其余状态用来指示哪个UpPTS中传输的PUSCH,当然也可以有其他指示的对 应方式;
另一种实现方式为:对于支持在UpPTS中传输PUSCH的终端定义上行DCI格式A,该上行DCI格式A可以在现有上行DCI格式的基础上增加额外指示域,例如在DCI格式0/4的基础上增加额外的指示域作为第一指示域,该指示域只对支持在UpPTS中传输PUSCH的终端有效,或者为完全重新定义的上行DCI格式,其中,第一指示域指示UpPTS中的PUSCH和普通子帧中的PUSCH统一进行的HARQ进程编号,或者第一指示域的一个状态指示对应普通上行子帧,其余状态用来指示对应哪个UpPTS中传输的PUSCH;支持在UpPTS中传输PUSCH的终端,对在UpPTS和普通上行子帧中传输的PUSCH都使用该上行DCI格式A进行调度,还可以进一步定义支持UpPTS中传输PUSCH的终端,其全部或者部分下行DCI格式可以按照该上行DCI格式A的大小进行padding,或该上行DCI格式A按照其全部或者部分下行DCI格式的大小进行padding,从而保证上行DCI格式A与全部或部分下行DCI格式的大小相同,从而不增加终端对DCI的盲检次数;例如:对于支持在UpPTS中传输PUSCH的终端基于现有的DCI格式0来定义其上行DCI格式,在现有DCI格式0的基础上至少额外增加比特指示域作为第一指示域,当然不排除还可以进一步增加其他指示域,增加指示域之后的上行DCI格式0作为支持UpPTS中传输PUSCH的终端所对应的上行DCI格式0,由于原DCI设计保证上行DCI格式0和下行DCI格式1A的大小相同,从而减少盲检次数的,为了维持原有的盲检次数,当支持在UpPTS中传输PUSCH的终端所对应的上行DCI格式0的大小小于下行DCI格式1A时,需对支持在UpPTS中传输PUSCH的终端所对应的DCI格式0进行padding(即在末尾填充0)以保证其DCI大小与其对应的下行DCI格式1A相同,当支持在UpPTS中传输PUSCH的终端所对应的下行DCI格式1A的大小小于其对应的上行DCI格式0时,需对支持在UpPTS中传输PUSCH的终端所对应的DCI格式1A进行padding以保证其DCI大小与其对应的上行DCI格式0相同,其中,支持在UpPTS中传输PUSCH的终端所对应的下行DCI格式,例如DCI格式1A,当然也不排除其他下行DCI格式如DCI 1B/1C/1D/2/2A/2B,可以直接重用现有的下行DCI格式,为了维持盲检次数,支持在UpPTS中传输PUSCH的终端所对应的下行DCI格式3和3A,其DCI大小同上述支持在UpPTS中传输PUSCH的终端所对应的上行DCI格式0和下行DCI格式1A的大小。
方式3、所述终端根据所述下行控制信道中的第二指示域,确定所述下行控制信道是否对应特殊子帧中发送的PUSCH,所述第二指示域用于指示所述下行控制信道对应的PUSCH为特殊子帧中的PUSCH或者普通子帧中的PUSCH。
该方式中,所述第二指示域可以为所述下行控制信道中新定义的比特域,也可以重用现有上行DCI格式中的1比特空闲比特域,例如填充比特等。重用现有上行DCI格式中的1比特空闲比特域,从而使对应特殊子帧的上行DCI格式和对应普通子帧的上行DCI格式 的大小相同,可以减少终端对上行DCI格式的盲检次数。
该方式中,所述第二指示域采用1比特信息表示。例如,所述第二指示域为“0”时,表示对应特殊子帧中发送的PUSCH;所述第二指示域为“1”时,表示对应普通子帧中发送的PUSCH;反之亦可。
一种实现方式为:对于支持在UpPTS中传输PUSCH的终端,重用现有上行DCI格式中的填充(padding)比特作为上述第二指示域,即此时对于支持在UpPTS中传输PUSCH的终端对应UpPTS和普通上行子帧的上行DCI格式相同,大小一致,通过解析其中的padding比特作为第二指示域,可以知道该上行DCI所对应的是UpPTS还是普通上行子帧以及对应哪个UpPTS中的PUSCH,其中,可以定义第一指示域为全0是对应普通上行子帧,其余状态用来指示哪个UpPTS中传输的PUSCH,当然也可以有其他指示的对应方式;
另一种实现方式为:对支持在UpPTS中传输PUSCH的终端定义上行DCI格式A,该上行DCI格式A可以在现有上行DCI格式的基础上增加额外指示域,例如在DCI格式0/4的基础上增加额外的指示域作为第二指示域,该指示域只对支持在UpPTS中传输PUSCH的终端有效,或者为完全重新定义的上行DCI格式,其中,第二指示域可以仅为1比特,一个状态指示对应普通上行子帧,另一个状态用来指示对应UpPTS,如果存在多个UpPTS中的PUSCH,第二指示域可以为超过1比特,一个状态指示对应普通上行子帧,其余状态用于指示对应哪个UpPTS中传输的PUSCH,例如表现为进程号等;支持在UpPTS中传输PUSCH的终端,对在UpPTS和普通上行子帧中传输的PUSCH都使用该上行DCI格式A进行调度,还可以进一步定义支持UpPTS中传输PUSCH的终端,其全部或者部分下行DCI格式可以按照该上行DCI格式A的大小进行padding,或该上行DCI格式A按照其全部或者部分下行DCI格式的大小进行padding,从而保证上行DCI格式A与全部或部分下行DCI格式的大小相同,从而不增加终端对DCI的盲检次数;例如:对于支持在UpPTS中传输PUSCH的终端基于现有的DCI格式0来定义其上行DCI格式,在现有DCI格式0的基础上至少额外增加比特指示域作为第二指示域,当然不排除还可以进一步增加其他指示域,增加指示域之后的上行DCI格式0作为支持UpPTS中传输PUSCH的终端所对应的上行DCI格式0,由于原DCI设计保证上行DCI格式0和下行DCI格式1A的大小相同,从而减少盲检次数;为了维持原有的盲检次数,当支持在UpPTS中传输PUSCH的终端所对应的上行DCI格式0的大小小于下行DCI格式1A时,需对支持在UpPTS中传输PUSCH的终端所对应的DCI格式0进行padding(即在末尾填充0)以保证其DCI大小与其对应的下行DCI格式1A相同,当支持在UpPTS中传输PUSCH的终端所对应的下行DCI格式1A的大小小于其对应的上行DCI格式0时,需对支持在UpPTS中传输PUSCH的终端所对应的DCI格式1A进行padding以保证其DCI大小与其对应的上行DCI格式0相同,其中,支持在UpPTS中传输PUSCH的终端所对应的下行DCI格式,例如DCI格式1A,当 然也不排除其他下行DCI格式如DCI 1B/1C/1D/2/2A/2B,可以直接重用现有的下行DCI格式,为了维持盲检次数,支持在UpPTS中传输PUSCH的终端所对应的下行DCI格式3和3A,其DCI大小同上述支持在UpPTS中传输PUSCH的终端所对应的上行DCI格式0和下行DCI格式1A的大小。
方式4、所述终端根据所述下行控制信道加扰时使用的无线网络临时标识(Radio Network Temporary Identifier,简称RNTI),确定所述下行控制信道是否对应特殊子帧中发送的PUSCH;一种实现方式为支持在UpPTS中传输PUSCH的终端用于调度在UpPTS中传输的PUSCH和在普通上行子帧中传输的PUSCH所使用的上行DCI格式相同,例如可以重用现有上行DCI格式,或者新定义上行DCI格式;当然,也不排除DCI格式不同。
该方式中,对应特殊子帧中发送的PUSCH的下行控制信道加扰时使用的RNTI(记为第一RNTI),与对应普通子帧中发送的PUSCH的下行控制信道加扰时使用的RNTI(记为第二RNTI)不同,从而区分检测到的下行控制信道是否对应特殊子帧中发送的PUSCH。
该方式中,所述终端可以通过使用第一RNTI和第二RNTI进行盲检,以区分检测到的下行控制信道是对应特殊子帧中的PUSCH还是普通子帧中的PUSCH。
该方式中,若所述终端检测到所述下行控制信道使用第一RNTI进行加扰,所述终端确定所述下行控制信道对应特殊子帧中发送的PUSCH;或者若所述终端检测到所述下行控制信道使用第二RNTI进行加扰,所述终端确定所述下行控制信道对应普通子帧中发送的PUSCH。
该方式中,可选的,若所述第一RNTI为多个终端共享,所述终端确定所述下行控制信道对应特殊子帧中发送的PUSCH之后,所述方法还包括:
所述终端根据所述终端的索引值,确定出对应于所述终端的用于指示是否重传的指示域在所述下行控制信道中的位置。
具体的,若所述第一RNTI为所述终端专用的,此时,采用所述第一RNTI加扰的所述下行控制信道仅承载一个在特殊子帧中发送PUSCH的终端的用于指示是否重传的指示域;若所述第一RNTI为多个终端共享的,此时,采用所述第一RNTI加扰的所述下行控制信道可以承载多个在特殊子帧中发送PUSCH的终端的用于指示是否重传的指示域,因此,可以为每个终端配置一个索引值,用于标识该终端的用于指示是否重传的指示域在所述下行控制信道中的位置。
方式5:所述终端根据所述下行控制信道中的上行索引UL index指示域,确定所述下行控制信道是否对应特殊子帧中发送的PUSCH。
该方式中,当所述UL index的最低有效比特LSB(Least Significant Bit)和最高有效比特MSB(Most Significant Bit)都置为0时,所述终端确定所述下行控制信道对应于在特殊子帧中传输的PUSCH,当所述UL index的LSB和MSB中的至少一个置为1时,所 述终端确定所述下行控制信道对应于在普通上行子帧中传输的PUSCH。
一种实现方式为,对于TDD上下行配置0,可以使用现有上行DCI格式中的2比特上行索引(UL index)域来确定使用该上行DCI格式的下行控制信道是对应普通上行子帧中的PUSCH还特殊子帧中的PUSCH。
具体的,当2比特UL index都为0时,即最低有效比特(Least Significant Bit,简称LSB)和最高有效比特(Most Significant Bit,简称MSB)都置为0时,表示该下行控制信道对应于在特殊子帧中传输的PUSCH;当LSB或MSB中的至少一个比特为1时,表示该下行控制信道对应于在普通上行子帧中传输的PUSCH。
该实现方式中,可以是按照m+k的原则来定义检测下行控制信道的时域位置,例如对于特殊子帧中的PUSCH,如表格7中对于TDD上下行配置0的k值定义。可选择,当m=1或6时,k=4或5或9或10,对于普通上行子帧中的PUSCH,k的定义如表3中所示,当终端在特殊子帧1中发送了PUSCH时,可以在m+k对应的子帧中检测下行控制信道,m为特殊子帧编号,根据该下行控制信道中的NDI确定特殊子帧1中的PUSCH是否重传,例如k=5,则终端在子帧6中检测下行控制信道,根据该下行控制信道中的NDI确定特殊子帧1中的PUSCH是否重传,当终端在上行子帧2中发送了PUSCH时,可以在n+k对应的子帧中检测下行控制信道和/或PHICH,当检测到下行控制信道时,可以根据该下行控制信道中的NDI确定特殊子帧1中的PUSCH是否重传,如表3所示,对于n=2时,k=4,则终端在子帧6中检测下行控制信道/PHICH,根据该下行控制信道中的NDI或PHICH中承载反馈信息确定上行子帧2中的PUSCH是否重传,此时,特殊子帧1和上行子帧2中的PUSCH都对应在子帧6中检测下行控制信道,当该终端对应特殊子帧的上行DCI格式和对应普通上行子帧的上行DCI格式相同/大小一致时,终端在子帧6中检测下行控制信道并根据在子帧6中检测到的下行控制信道中的UL index域确定该下行控制信道对应于特殊子帧1还是上行子帧2中的PUSCH,即当UL index的LSB和MSB都为0时,确定该下行控制信道对应于特殊子帧1中的PUSCH,并根据NDI确定是否重传该PUSCH,当UL index的LSB和MSB中的任何一个为1时,确定该下行控制信道对应于上行子帧2中的PUSCH,并根据NDI确定是否重传该PUSCH。
当然还可以进一步在上述上行DCI中携带HARQ进程号指示域,该指示域可以是现有上行DCI格式中的现有比特数的重用,用于指示特殊子帧中的PUSCH进程编号,或者用于指示特殊子帧和普通子帧中的PUSCH进程编号。
可选的,用于指示是否重传的指示域为NDI。
上述方式1~5均适用于所述终端发送的PUSCH的HARQ采用异步方式和同步方式。
上述方式1~5可以单独使用,也可以组合使用,本发明实施例不对其进行限定。
本发明实施例中,若所述终端在子帧m+k中,检测使用上行DCI格式的下行控制信 道,即对于所述终端发送的PUSCH的HARQ采用同步方式,作为一种可能的实施方式,检测对应特殊子帧中发送的PUSCH的下行控制信道的子帧与检测对应普通子帧中发送的PUSCH的下行控制信道的子帧相同,所述k的定义如下:
对于TDD上下行配置0,若m为1或6,所述k为4、5、9或10;或者
对于TDD上下行配置1,若m为1或6,所述k为3、5、8或10;或者
对于TDD上下行配置2,若m为1或6,所述k为2或7;或者
对于TDD上下行配置3,若m为1,所述k为7、8或9;或者
对于TDD上下行配置4,若m为1,所述k为7或8;或者
对于TDD上下行配置5,若m为1,所述k为7;或者
对于TDD上下行配置6,若m为1,所述k为4、5、8、9或10;或者
对于TDD上下行配置6,若m为6,所述k为3、4、5、9或10。
由于检测对应特殊子帧中发送的PUSCH的下行控制信道的子帧与检测对应普通子帧中发送的PUSCH的下行控制信道的子帧相同,上述k的定义使特殊子帧与普通子帧对应的使用上行DCI格式的下行控制信道在同一个子帧中,因此,所述终端在所述子帧m+k中检测到使用上行DCI格式的下行控制信道后,需要先确定所述下行控制信道是否对应特殊子帧中发送的PUSCH,在确定所述下行控制信道对应特殊子帧中发送的PUSCH后,再根据所述下行控制信道携带的用于指示是否重传的指示域,确定是否重传所述特殊子帧m中发送的PUSCH。其中,确定所述下行控制信道是否对应特殊子帧中发送的PUSCH时可以采用上述方式1~5中的任一方式或组合方式。
基于上述任一实施例,S23中所述终端根据所述下行控制信道,确定是否重传所述特殊子帧m中发送的PUSCH,具体包括:
1、所述终端在所述特殊子帧m之后的包含下行资源的子帧中进行检测,进一步包括以下两种情况:
1)若所述终端在所述特殊子帧m之后的任意一个包含下行资源的子帧中进行检测,即没有定义设定时间,则所述终端一直保留在所述特殊子帧m中发送的PUSCH的相关信息,直到接收到可以确定该PUSCH是否重传的使用上行DCI格式的下行控制信道,即对应特殊子帧中发送的PUSCH且使用上行DCI格式的下行控制信道。进一步,根据该下行控制信道中携带的用于指示是否重传的指示域,确定是否重传所述特殊子帧m中发送的PUSCH。
2)若所述终端在所述特殊子帧m之后的设定时间内的任意一个包含下行资源的子帧中进行检测,即定义了设定时间,则:
若所述终端在设定时间内未检测到使用上行DCI格式的下行控制信道、或者虽然检测到了使用上行DCI格式的下行控制信道但该下行控制信道对应普通子帧中发送的PUSCH, 则所述终端确定在所述特殊子帧m中发送的PUSCH传输成功,不需要重传;
若所述终端在设定时间内检测到使用上行DCI格式的下行控制信道,且该下行控制信道对应特殊子帧中发送的PUSCH,则所述终端根据该下行控制信道中携带的用于指示是否重传的指示域,确定是否重传所述特殊子帧m中发送的PUSCH。
2、所述终端在子帧m+k中进行检测,进一步包括情况:
1)若所述终端在所述子帧m+k中检测到使用上行DCI格式的下行控制信道,且该下行控制信道对应特殊子帧中发送的PUSCH,则所述终端根据该下行控制信道中携带的用于指示是否重传的指示域,确定是否重传所述特殊子帧m中发送的PUSCH。
2)若所述终端在所述子帧m+k中未检测到使用上行DCI格式的下行控制信道,或者虽然检测到了使用上行DCI格式的下行控制信道但该下行控制信道对应普通子帧中发送的PUSCH,则所述终端确定在所述特殊子帧m中发送的PUSCH传输成功,不需要重传。
可选的,用于指示是否重传的指示域为NDI,即所述终端根据所述下行控制信道中携带的NDI,确定是否重传所述特殊子帧m中发送的PUSCH。
具体的,对于动态调度,即每一次传输都有对应的下行控制信道的PUSCH:若所述下行控制信道中的NDI相对于所述PUSCH的第一次传输所对应的NDI没有发生改变,则终端需要重传所述PUSCH;若所述下行控制信道中的NDI相对于所述PUSCH的第一次传输所对应的NDI发生了改变,即所述下行控制信道调度了一个新的PUSCH传输,则终端不需要重传所述PUSCH。
对于半持续调度(Semi-Persistent Scheduling,简称SPS)PUSCH:若所述下行控制信道中的NDI为0,表示所述下行控制信道为指示下行SPS资源激活/释放的下行控制信道,即SPS PUSCH的调度命令,则终端不需要重传所述PUSCH;若所述下行控制信道中的NDI为1,则终端需要重传所述PUSCH。
本发明实施例中,若所述终端在子帧m+k中,检测使用上行DCI格式的下行控制信道,即对于所述终端发送的PUSCH的HARQ采用同步方式,作为另一种可能的实施方式,可以通过不同子帧来区分对应特殊子帧中发送的PUSCH的下行控制信道和对应普通子帧中发送的PUSCH的下行控制信道,即所述子帧m+k不同于检测对应普通子帧中发送的PUSCH的下行控制信道的子帧。其中,所述k的定义如下:
1)对于TDD上下行配置1,m为1或6,所述k为4或9。
具体的,对于TDD上下行配置1,所述终端在子帧m+4或子帧m+9中检测对应所述特殊子帧m中发送的PUSCH的下行控制信道,即在子帧5或子帧0中检测对应所述特殊子帧1或6中发送的PUSCH的下行控制信道,而根据表6所示,终端在子帧1、子帧4、子帧6或子帧9中检测对应普通子帧中发送的PUSCH的下行控制信道,因此,检测对应特殊子帧中发送的PUSCH的下行控制信道的子帧不同于检测对应普通子帧中发送的 PUSCH的下行控制信道的子帧。
2)对于TDD上下行配置2,m为1或6,所述k为3、4、5、8、9或10。
具体的,对于TDD上下行配置2,所述终端在子帧m+3、子帧m+4、子帧m+5、子帧m+8、子帧m+9或子帧m+10中检测对应所述特殊子帧m中发送的PUSCH的下行控制信道,即在子帧0、子帧1、子帧4、子帧5、子帧6或子帧9中检测对应所述特殊子帧1或6中发送的PUSCH的下行控制信道,而根据表6所示,终端在子帧3或子帧8中检测对应普通子帧中发送的PUSCH的下行控制信道,因此,检测对应特殊子帧中发送的PUSCH的下行控制信道的子帧不同于检测对应普通子帧中发送的PUSCH的下行控制信道的子帧。
3)对于TDD上下行配置3,m为1,所述k为4、5、6或10。
具体的,对于TDD上下行配置3,所述终端在子帧m+4、子帧m+5、子帧m+6或子帧m+10中检测对应所述特殊子帧m中发送的PUSCH的下行控制信道,即在子帧1、子帧5、子帧6或子帧7中检测对应所述特殊子帧1中发送的PUSCH的下行控制信道,而根据表6所示,终端在子帧0、子帧8或子帧9中检测对应普通子帧中发送的PUSCH的下行控制信道,因此,检测对应特殊子帧中发送的PUSCH的下行控制信道的子帧不同于检测对应普通子帧中发送的PUSCH的下行控制信道的子帧。
4)对于TDD上下行配置4,m为1,所述k为3、4、5、6、9或10。
具体的,对于TDD上下行配置4,所述终端在子帧m+3、子帧m+4、子帧m+5、子帧m+6、子帧m+9或子帧m+10中检测对应所述特殊子帧m中发送的PUSCH的下行控制信道,即在子帧0、子帧1、子帧4、子帧5、子帧6或子帧7中检测对应所述特殊子帧1中发送的PUSCH的下行控制信道,而根据表6所示,终端在子帧8或子帧9中检测对应普通子帧中发送的PUSCH的下行控制信道,因此,检测对应特殊子帧中发送的PUSCH的下行控制信道的子帧不同于检测对应普通子帧中发送的PUSCH的下行控制信道的子帧。
5)对于TDD上下行配置5,m为1,所述k为2、3、4、5、6、8、9或10。
具体的,对于TDD上下行配置5,所述终端在子帧m+2、子帧m+3、子帧m+4、子帧m+5、子帧m+6、子帧m+8、子帧m+9或子帧m+10中检测对应所述特殊子帧m中发送的PUSCH的下行控制信道,即在子帧0、子帧1、子帧3、子帧4、子帧5、子帧6、子帧7或子帧9中检测对应所述特殊子帧1中发送的PUSCH的下行控制信道,而根据表6所示,终端在子帧8中检测对应普通子帧中发送的PUSCH的下行控制信道,因此,检测对应特殊子帧中发送的PUSCH的下行控制信道的子帧不同于检测对应普通子帧中发送的PUSCH的下行控制信道的子帧。
具体的,所述k的定义如表7所示:
表7
Figure PCTCN2017076196-appb-000016
表7中,TDD上下行配置(TDD UL/DL Configuration)为上行参考TDD上下行配置或系统信息配置的TDD上下行配置。
进一步,若所述子帧m+k不同于检测对应普通子帧中发送的PUSCH的下行控制信道的子帧,则S23中所述终端根据所述下行控制信道,确定是否重传所述特殊子帧m中发送的PUSCH,包括以下两种情况:
一、若所述终端在所述子帧m+k中未检测到使用上行DCI格式的下行控制信道,则所述终端确定所述特殊子帧m中发送的PUSCH传输成功,不需要重传。
二、若所述终端在所述子帧m+k中检测到了使用上行DCI格式的下行控制信道,则所述终端根据该下行控制信道中携带的用于指示是否重传的指示域,确定是否重传所述特殊子帧m中发送的PUSCH。
可选的,用于指示是否重传的指示域为NDI,即所述终端根据所述下行控制信道中携带的NDI,确定是否重传所述特殊子帧m中发送的PUSCH。
具体的,对于动态调度PUSCH:若所述下行控制信道中的NDI相对于所述PUSCH的第一次传输所对应的NDI没有发生改变,则终端需要重传所述PUSCH;若所述下行控制信道中的NDI相对于所述PUSCH的第一次传输所对应的NDI发生了改变,即所述下行 控制信道调度了一个新的PUSCH传输,则终端不需要重传所述PUSCH。
对于SPS PUSCH:若所述下行控制信道中的NDI为0,则终端不需要重传所述PUSCH;若所述下行控制信道中的NDI为1,则终端需要重传所述PUSCH。
需要说明的是,当终端在普通子帧n中发送了PUSCH时,在子帧n+k中检测与所述PUSCH对应的PHICH和/或使用上行DCI格式的下行控制信道;其中,k为kPHICH,为标准中预先定义的值,如表3所示,用于定义在子帧n中发送的PUSCH在子帧n+kPHICH中检测PHICH;进一步,根据检测到的PHICH和/或下行控制信道,使用现有技术确定该PUSCH是否重传。
基于同一发明构思,图3所示的实施例中,提供了一种上行传输的反馈信息的发送方法,所述方法包括:
S31、基站调度终端在特殊子帧m中发送PUSCH,m为整数;
S32、所述基站在所述特殊子帧m中,检测所述终端发送的PUSCH;
S33、所述基站在所述特殊子帧m之后包含下行传输资源的子帧或者在子帧m+k中,向所述终端发送使用上行DCI格式的下行控制信道,k为正整数,所述下行控制信道中携带用于指示所述特殊子帧m中发送的PUSCH是否重传的指示域。
可选的,所述用于指示所述特殊子帧m中的PUSCH是否重传的指示域为NDI。
本发明实施例中,基站调度终端在特殊子帧m中发送PUSCH,并在所述特殊子帧m中,检测所述终端发送的PUSCH;所述基站在所述特殊子帧m之后包含下行传输资源的子帧或者在子帧m+k中,向所述终端发送使用上行DCI格式的下行控制信道,所述下行控制信道中携带用于指示所述特殊子帧m中发送的PUSCH是否重传的指示域,以指示所述终端是否重新所述特殊子帧m中发送的PUSCH,从而提供了一种在特殊子帧中传输PUSCH的反馈信息的传输方案,保证了在特殊子帧中发送的PUSCH可以正常获得ACK/NACK反馈信息。
一种可能的实施方式中,所述k的定义如下:
对于TDD上下行配置0,若m为1或6,所述k为4、5、9或10;或者
对于TDD上下行配置1,若m为1或6,所述k为3、5、8、10;或者
对于TDD上下行配置2,若m为1或6,所述k为2或7;或者
对于TDD上下行配置3,若m为1,所述k为7、8或9;或者
对于TDD上下行配置4,若m为1,所述k为7或8;或者
对于TDD上下行配置5,若m为1,所述k为7;或者,
对于TDD上下行配置6,若m为1,所述k为4、5、8、9或10;或者,
对于TDD上下行配置6,若m为6,所述k为3、4、5、9或10。
基于上述任一实施例,所述基站向所述终端发送使用上行DCI格式的下行控制信道, 包括:
所述基站根据所述下行控制信道是否对应特殊子帧中发送的PUSCH,确定所述下行控制信道使用的上行DCI格式的大小;和/或
所述基站在所述下行控制信道中携带第一指示域,所述第一指示域用于指示所述下行控制信道对应的PUSCH的相关信息;和/或
所述基站在所述下行控制信道中携带第二指示域,所述第二指示域用于指示所述下行控制信道对应的PUSCH为特殊子帧中的PUSCH或者普通子帧中的PUSCH;和/或
所述基站根据所述下行控制信道是否对应特殊子帧中发送的PUSCH,确定所述下行控制信道加扰时使用的无线网络临时标识RNTI;和/或
所述基站根据所述下行控制信道是否对应特殊子帧中发送的PUSCH,确定所述下行控制信道中的2比特上行索引UL index指示域的取值。
一种可能的实施方式中,所述基站根据所述下行控制信道是否对应特殊子帧中发送的PUSCH,确定所述下行控制信道使用的上行DCI格式的大小,包括:
若所述下行控制信道对应特殊子帧中发送的PUSCH,所述基站确定所述下行控制信道使用第一DCI大小的上行DCI格式;或者
若所述下行控制信道对应普通子帧中发送的PUSCH,所述基站确定所述下行控制信道使用第二DCI大小的上行DCI格式;
其中,所述第一DCI大小和所述第二DCI大小不同。
一种可能的实施方式中,所述第一指示域中携带所述下行控制信道对应的PUSCH的HARQ进程编号。
一种可能的实施方式中,所述基站根据所述下行控制信道是否对应特殊子帧中发送的PUSCH,确定所述下行控制信道加扰时使用的RNTI,包括:
若所述下行控制信道对应特殊子帧中发送的PUSCH,所述基站确定所述下行控制信道加扰时使用第一RNTI进行加扰;或者
若所述下行控制信道对应普通子帧中发送的PUSCH,所述基站确定所述下行控制信道加扰时使用第二RNTI;
其中,所述第一RNTI和所述第二RNTI不同。
一种可能的实施方式中,若对应特殊子帧的RNTI为多个终端共享,还包括:
所述基站根据多个终端的索引值,将多个终端的用于指示是否重传的指示域映射到对应特殊子帧的所述下行控制信道中的相应位置。
一种可能的实施方式中,所述子帧m+k不同于检测对应普通子帧中发送的PUSCH的下行控制信道的子帧。
该方式下,可选的,所述k的定义如下:
对于TDD上下行配置1,m为1或6,所述k为4或9;或者
对于TDD上下行配置2,m为1或6,所述k为3、4、5、8、9或10;或者
对于TDD上下行配置3,m为1,所述k为4、5、6或10;或者
对于TDD上下行配置4,m为1,所述k为3、4、5、6、9或10;或者
对于TDD上下行配置5,m为1,所述k为2、3、4、5、6、8、9或10。
一种可能的实施方式中,所述基站根据所述下行控制信道是否对应特殊子帧中发送的PUSCH,确定所述下行控制信道中的2比特上行索引UL index指示域的取值,包括:
若所述下行控制信道对应于在特殊子帧中传输的PUSCH,所述基站将所述UL index的最低有效比特LSB和最高有效比特MSB都置为0;
若所述下行控制信道对应于在普通上行子帧中传输的PUSCH,所述基站将所述UL index的LSB和MSB中的至少一个置为1。
下面通过三个具体实施例,对本发明实施例提供的方法进行详细说明。
实施例1:本实施例以TDD上下行配置1为例,在特殊子帧1或6中的UpPTS中传输的PUSCH假设使用异步HARQ,通过下行控制信道承载反馈信息;对应UpPTS中传输的PUSCH的下行控制信道中包含第一指示域,用于指示UpPTS中传输的PUSCH的HARQ进程号,其中,特殊子帧1中的UpPTS中传输的HARQ进程号为0,特殊子帧6中的UpPTS中传输的HARQ进程号为1。下面分别从基站侧和终端侧的实施进行描述。
1、基站侧:
1)调度终端在特殊子帧1中的UpPTS中传输PUSCH-1;在特殊子帧1中接收终端发送的PUSCH-1,并获取其1比特的ACK/NACK反馈信息,其中:
若ACK/NACK反馈信息为ACK,则:如果基站没有新的上行数据传输需要调度,不需要向该终端发送使用上行DCI格式的下行控制信道;如果基站有新的上行数据传输需要调度,将NDI相对于PUSCH-1的第一次传输所对应的下行控制信道中的NDI进行翻转(即置为不同的值,例如第一次传输对应的NDI为0,则该下行控制信道中的NDI置为1),并在特殊子帧1之后的任意一个包含下行资源的子帧或在特殊子帧1之后的设定时间中的任意一个包含下行资源的子帧(例如其后10个子帧中的任意一个下行子帧和/或特殊子帧,取决于基站的调度实现和资源分配情况),向该终端发送携带该NDI的下行控制信道;
若ACK/NACK反馈信息为NACK,则:基站在特殊子帧1之后的任意一个包含下行资源的子帧或在特殊子帧1之后的设定时间中的任意一个包含下行资源的子帧(例如其后10个子帧中的任意一个下行子帧和/或特殊子帧,取决于基站的调度实现和资源分配情况),例如在子帧9中,向该终端发送使用上行DCI格式的下行控制信道,且将该下行控制信道中的NDI置为与该PUSCH-1的第一次传输所对应的下行控制信道中的NDI相同的值(例如第一次传输对应的NDI为0,则该下行控制信道中的NDI也置为0)、且将该下行控制 信道中的第一指示域指示特殊子帧1中发送的PUSCH-1,例如1比特第一指示域指示“0”,表示UpPTS中传输的PUSCH的HARQ进程号0。
2)调度终端在特殊子帧6中的UpPTS中传输PUSCH-2;在特殊子帧6中接收终端发送的PUSCH-2,并获取其1比特的ACK/NACK反馈信息,其中:
若ACK/NACK反馈信息为ACK,则:如果基站没有新的上行数据传输需要调度,不需要向该终端发送使用上行DCI格式的下行控制信道;如果基站有新的上行数据传输需要调度,将NDI相对于PUSCH-2的第一次传输所对应的下行控制信道中的NDI进行翻转(即置为不同的值,例如第一次传输对应的NDI为0,则该下行控制信道中的NDI置为1),并在特殊子帧6之后的任意一个包含下行资源的子帧或在特殊子帧6之后的设定时间中的任意一个包含下行资源的子帧(例如其后10个子帧中的任意一个下行子帧和/或特殊子帧,取决于基站的调度实现和资源分配情况),向该终端发送携带该NDI的下行控制信道;
若ACK/NACK反馈信息为NACK,则:基站在特殊子帧6之后的任意一个包含下行资源的子帧或在特殊子帧6之后的设定时间中的任意一个包含下行资源的子帧(例如其后10个子帧中的任意一个下行子帧和/或特殊子帧,取决于基站的调度实现和资源分配情况),例如在子帧9中,向该终端发送使用上行DCI格式的下行控制信道,且将该下行控制信道中的NDI置为与该PUSCH-2的第一次传输所对应的下行控制信道中的NDI相同的值(例如第一次传输对应的NDI为0,则该下行控制信道中的NDI也置为0)、且将该下行控制信道中的第一指示域指示特殊子帧6中发送的PUSCH-2,例如1比特第一指示域指示“1”,表示UpPTS中传输的PUSCH的HARQ进程号1。
需要说明的是,虽然特殊子帧1和特殊子帧6中的UpPTS中传输的PUSCH-1和PUSCH-2的反馈信息都通过在子帧9中传输的下行控制信道来获得,但由于两个下行控制信道分别指示了不同的UpPTS中传输的PUSCH的HARQ进程号,因此,终端侧可以区分PUSCH-1和PUSCH-2的反馈信息。
3)调度终端在普通上行子帧2中传输PUSCH-3;在上行子帧2中接收终端发送的PUSCH-3,并获取其1比特的ACK/NACK反馈信息;根据表3中的kPHICH定义,确定PUSCH-3的PHICH在子帧6中发送,并根据PUSCH-3的最小PRB index和调度信令中的DMRS循环移位指示,确定其PHICH资源参数
Figure PCTCN2017076196-appb-000017
按照该参数在子帧6中发送承载PUSCH-3的ACK/NACK反馈信息的PHICH。
当然,若ACK/NACK反馈信息为NACK,基站如果想通过动态调度来改变PUSCH-3重传的资源和配置,还可以在子帧6中发送使用上行DCI格式的下行控制信道,且将该下行控制信道中的NDI置为与该PUSCH-3的第一次传输所对应的下行控制信道中的NDI相同的值(例如第一次传输对应的NDI为0,则该下行控制信道中的NDI也置为0)。
2、终端侧:
1)接收用于调度终端在特殊子帧1中的UpPTS中传输的PUSCH-1的调度信息,并按照调度信息在特殊子帧1中的UpPTS中发送该PUSCH-1;在特殊子帧1之后的包含下行传输资源的子帧中或在特殊子帧1之后的设定时间中的任意一个包含下行资源的子帧(例如其后10个子帧中的每个下行子帧和/或特殊子帧),检测使用上行DCI格式的下行控制信道。
具体的,若规定了设定时间,则如果在设定时间内未检测到,则终端判断基站未发送指示重传的下行控制信道,即终端判断PUSCH-1传输成功,不需要重传,若没有规定设定时间,则终端需要一直保留着PUSCH-1的信息,直到接收到能够判断该PUSCH-1是否重传的DCI作进一步操作;若检测到,例如在子帧9中检测到下行控制信道,则终端根据该下行控制信道中的第一指示域所指示的进程号确定为对应特殊子帧1中的UpPTS中传输的PUSCH-1,然后根据该下行控制信道中的NDI相对于该PUSCH-1的第一次传输所对应的NDI是否翻转来确定是否需要重传。例如,若该NDI与第一次传输所对应的NDI相同,则终端确定需要重传,并按照该下行控制信道中的调度信息(即所指示的资源和调制编码等级等信息)对PUSCH-1进行重传;又如,若该NDI与第一次传输所对应的NDI不同,则终端确定为新数据传输,并根据调度信息开始传输新的数据,即判断PUSCH-1传输成功,不需要重传。
2)接收用于调度终端在特殊子帧6中的UpPTS中传输的PUSCH-2的调度信息,按照调度信息在特殊子帧6中的UpPTS中发送该PUSCH-2;在特殊子帧6之后的包含下行传输资源的子帧中或在特殊子帧6之后的设定时间中的任意一个包含下行资源的子帧(例如其后10个子帧中的每个下行子帧和/或特殊子帧),检测使用上行DCI格式的下行控制信道。
具体的,若规定了设定时间,则如果在设定时间内未检测到,则终端判断基站未发送指示重传的下行控制信道,即终端判断PUSCH-2传输成功,不需要重传,若没有规定设定时间,则终端需要一直保留着PUSCH-2的信息,直到接收到能够判断该PUSCH-2是否重传的DCI作进一步操作;若检测到,例如在子帧9中检测到下行控制信道,则终端根据该下行控制信道中的第一指示域所指示的进程号确定为对应特殊子帧6中的UpPTS中传输的PUSCH-2,然后根据该下行控制信道中的NDI相对于该PUSCH-2的第一次传输所对应的NDI是否翻转来确定是否需要重传。例如,若该NDI与第一次传输所对应的NDI相同,则终端确定需要重传,并按照该下行控制信道中的调度信息(即所指示的资源和调制编码等级等信息)对PUSCH-2进行重传。又如,若该NDI与第一次传输所对应的NDI不同,则终端确定为新数据传输,并根据调度信息开始传输新的数据,即判断PUSCH-2传输成功,不需要重传。
3)接收用于调度终端在普通上行子帧2中传输的PUSCH-3的调度信息,按照调度信 息在上行子帧2中发送该PUSCH-3;根据表3中的kPHICH定义,确定PUSCH-3的PHICH在子帧6中发送,并根据PUSCH-3的最小PRB index和调度信令中的DMRS循环移位指示,确定其PHICH资源参数
Figure PCTCN2017076196-appb-000018
按照该参数在子帧6中检测承载PUSCH-3的ACK/NACK反馈信息的PHICH,并根据该PHICH中的反馈信息确定是否重传。具体的:如果为ACK则不需要重传,如果为NACK则按照第一次传输相同的调度信息重新传输PUSCH-3。
当然,终端还可以在子帧6中同时检测使用上行DCI格式的下行控制信道,如果未检测到,则以上述PHICH中的反馈信息为准,如果检测到,根据该下行控制信道中的NDI相对于该PUSCH-3的第一次传输所对应的NDI是否翻转来确定是否需要重传。具体的:若该NDI与第一次传输所对应的NDI相同,则终端确定需要重传,并按照该下行控制信道中的调度信息(即所指示的资源和调制编码等级等信息)对PUSCH-3进行重传;若该NDI与第一次传输所对应的NDI不同,则终端确定为新数据传输,并根据调度信息开始传输新的数据,即判断PUSCH-3传输成功,不需要重传。
本实施例中,如果对应UpPTS中传输的PUSCH的下行控制信道所使用的DCI大小与对应普通上行子帧中传输的PUSCH的下行控制信道所使用的DCI大小不同,则也可以在普通上行子帧所对应的PHICH传输子帧中传输对应UpPTS中传输的PUSCH的下行控制信道,此时,终端可以通过盲检不同大小的DCI,区分下行控制信道是对应UpPTS中的PUSCH还是普通上行子帧中的PUSCH。如果对应UpPTS中传输的PUSCH的下行控制信道所使用的DCI大小与对应普通上行子帧中传输的PUSCH的下行控制信道所使用的DCI大小相同,则需要基站调度实现避免将对应UpPTS中传输的PUSCH的下行控制信道和对应普通上行子帧中传输的PUSCH的下行控制信道在同一个子帧中传输,或者需要通过定义或配置对应UpPTS中传输的PUSCH的下行控制信道和对应普通上行子帧中传输的PUSCH的下行控制信道使用不同的RNTI来区分,或者需要通过定义对应UpPTS中传输的PUSCH的下行控制信道和对应普通上行子帧中传输的PUSCH的下行控制信道的第二比特域的指示来区分,其中,为了不改变普通上行子帧中的原始DCI大小,可以使用该DCI中的空闲比特域重用作为第二比特域。
实施例2:本实施例仍以TDD上下行配置1为例,在特殊子帧1或6中的UpPTS中传输的PUSCH假设使用异步HARQ,通过下行控制信道承载反馈信息。下面分别从基站侧和终端侧的实施进行描述。
1、基站侧:
1)调度终端在特殊子帧1中的UpPTS中传输PUSCH-1;在特殊子帧1中接收终端发送的PUSCH-1,并获取其1比特的ACK/NACK反馈信息,其中:
若ACK/NACK反馈信息为ACK,则:如果基站没有新的上行数据传输需要调度,不 需要向该终端发送使用上行DCI格式的下行控制信道;如果基站有新的上行数据传输需要调度,将NDI相对于PUSCH-1的第一次传输所对应的下行控制信道中的NDI进行翻转(即置为不同的值,例如第一次传输对应的NDI为0,则该下行控制信道中的NDI置为1),并在特殊子帧1之后的任意一个包含下行资源的子帧或在特殊子帧1之后的设定时间中的任意一个包含下行资源的子帧(例如其后10个子帧中的任意一个下行子帧和/或特殊子帧,取决于基站的调度实现和资源分配情况),向该终端发送携带该NDI的下行控制信道;
若ACK/NACK反馈信息为NACK,则:基站在特殊子帧1之后的任意一个包含下行资源的子帧或在特殊子帧1之后的设定时间中的任意一个包含下行资源的子帧(例如其后10个子帧中的任意一个下行子帧和/或特殊子帧,取决于基站的调度实现和资源分配情况),例如在子帧6中,向该终端发送使用上行DCI格式的下行控制信道,并将该下行控制信道中的NDI置为与该PUSCH-1的第一次传输所对应的下行控制信道中的NDI相同的值,例如,第一次传输对应的NDI为0,则该下行控制信道中的NDI也置为0。进一步基站可以采用如下任一方法对该下行控制信道进行处理:
方法A:对该下行控制信道使用第一DCI大小传输,该第一DCI大小不同于普通上行子帧所对应的DCI大小;
方法B:将该下行控制信道中的第二指示域置为“1”,表示该下行控制信道对应UpPTS中传输的PUSCH;
方法C:使用第一RNTI加扰该下行控制信道,该第一RNTI不同于普通上行子帧所对应的RNTI,用于区分对应普通上行子帧中的PUSCH的下行控制信道。
2)调度终端在普通上行子帧2中传输PUSCH-2;在上行子帧2中接收终端发送的PUSCH-2,并获取其1比特的ACK/NACK反馈信息;根据表3中的kPHICH定义,确定PUSCH-2的PHICH在子帧6中发送,并根据PUSCH-2的最小PRB index和调度信令中的DMRS循环移位指示,确定其PHICH资源参数
Figure PCTCN2017076196-appb-000019
按照该参数在子帧6中发送承载PUSCH-2的ACK/NACK反馈信息的PHICH。
当然,如果ACK/NACK反馈信息为NACK,基站如果想通过动态调度来改变PUSCH-2重传的资源和配置,还可以在子帧6中发送使用上行DCI格式的下行控制信道,且将该下行控制信道中的NDI置为与该PUSCH-2的第一次传输所对应的下行控制信道中的NDI相同的值,例如,第一次传输对应的NDI为0,则该下行控制信道中的NDI也置为0。进一步基站可以采用如下任一方法对该下行控制信道进行处理:
方法1:对该下行控制信道使用第二DCI大小传输,该第二DCI大小为普通上行子帧所对应的DCI大小;
方法2:将该下行控制信道中的第二指示域置为“0”,表示该下行控制信道对应普通上行子帧中传输的PUSCH;
方法3:使用第二RNTI加扰该下行控制信道,用于区分对应UpPTS中的PUSCH的下行控制信道;
2、终端侧:
1)接收用于调度终端在特殊子帧1中的UpPTS中传输的PUSCH-1的调度信息,按照调度信息在特殊子帧1中的UpPTS中发送该PUSCH-1;在特殊子帧1之后的包含下行传输资源的子帧中或在特殊子帧1之后的设定时间中的任意一个包含下行资源的子帧(例如其后10个子帧中的每个下行子帧和/或特殊子帧),检测使用上行DCI格式的下行控制信道。如果定义了设定时间,则如果在设定时间内未检测到使用上行DCI格式的下行控制信道,则终端判断基站未发送指示重传的下行控制信道,即判断该PUSCH-1传输成功,不需要重传,如果没有约定设定时间,则终端需要一直保留着PUSCH-1的信息,直到接收到能够判断该PUSCH-1是否重传的DCI作进一步操作;如果检测到使用上行DCI格式的下行控制信道,例如在子帧6中检测到下行控制信道,则终端采用与基站侧对应的方法进行处理:
方法A:若检测到的DCI大小为第一DCI大小(即通过盲检第一DCI和第二DCI大小,确定了该下行控制信道为使用第一DCI大小的下行控制信道),确定该下行控制信道对应UpPTS中的PUSCH;
方法B:若该下行控制信道中的第二指示域为“1”,确定该下行控制信道对应UpPTS中的PUSCH;
方法C:若该下行控制信道采用第一RNTI加扰(即通过盲检第一RNTI和第二RNTI,确定了该下行控制信道为第一RNTI加扰的),确定该下行控制信道对应UpPTS中的PUSCH。
进一步,终端根据该下行控制信道中的NDI相对于该PUSCH-1的第一次传输所对应的NDI是否翻转来确定是否需要重传。例如,该NDI与第一次传输所对应的NDI相同,则终端确定需要重传,并按照该下行控制信道中的调度信息(即所指示的资源和调制编码等级等信息)对PUSCH-1进行重传;又如,该NDI与第一次传输所对应的NDI不同,则终端确定为新数据传输,并根据调度信息开始传输新的数据,即判断PUSCH-1传输成功,不需要重传。
2)接收用于调度终端在普通上行子帧2中传输的PUSCH-2的调度信息,按照调度信息在上行子帧2中发送该PUSCH-2;根据表3中的kPHICH定义,确定PUSCH-2的PHICH在子帧6中发送,并根据PUSCH-2的最小PRB index和调度信令中的DMRS循环移位指示,确定其PHICH资源参数
Figure PCTCN2017076196-appb-000020
按照该参数在子帧6中检测承载PUSCH-2的ACK/NACK反馈信息的PHICH,并根据该PHICH中的反馈信息确定是否重传。如果ACK/NACK反馈信息为ACK,则终端确定不需要重传;如果ACK/NACK反馈 信息为NACK,则终端按照第一次传输相同的调度信息重新传输PUSCH-2。当然,终端还可以在子帧6中同时检测使用上行DCI格式的下行控制信道,如果未检测到,则以上述PHICH中的反馈信息为准,如果检测到,则终端采用与基站侧对应的方法进行处理:
方法1:根据检测到的DCI大小为第二DCI大小(即通过盲检第一DCI和第二DCI大小,确定了该下行控制信道为使用第二DCI大小的DCI格式),确定该下行控制信道对应普通上行子帧中的PUSCH;
方法2:根据该下行控制信道中的第二指示域为“0”,确定该下行控制信道对应普通上行子帧中的PUSCH;
方法3:根据该下行控制信道采用第二RNTI加扰(即通过盲检第一RNTI和第二RNTI,确定了该下行控制信道为第二RNTI加扰的),确定该下行控制信道对应普通上行子帧中的PUSCH。
进一步,终端根据该下行控制信道中的NDI相对于该PUSCH-2的第一次传输所对应的NDI是否翻转来确定是否需要重传。例如,该NDI与第一次传输所对应的NDI相同,则终端确定需要重传,并按照该下行控制信道中的调度信息(即所指示的资源和调制编码等级等信息)对PUSCH-2进行重传;又如,该NDI与第一次传输所对应的NDI不同,则终端确定为新数据传输,并根据调度信息开始传输新的数据,即判断PUSCH-2传输成功,不需要重传。
实施例3:本实施例仍以TDD上下行配置1为例,在特殊子帧1或6中的UpPTS中传输的PUSCH假设使用同步HARQ,在特殊子帧m中传输的PUSCH的ACK/NACK反馈信息在子帧m+k中通过检测承载ACK/NACK反馈信息的下行控制信道来获得,其中,假设k=4。下面分别从基站侧和终端侧的实施进行描述。
1、基站侧:
1)调度终端在特殊子帧1中的UpPTS中传输PUSCH-1;在特殊子帧1中接收终端发送的PUSCH-1,并获取其1比特的ACK/NACK反馈信息,其中:
若ACK/NACK反馈信息为ACK,则:如果基站没有新的上行数据传输需要调度,不需要向该终端发送使用上行DCI格式的下行控制信道;如果基站有新的上行数据传输需要调度,将NDI相对于PUSCH-1的第一次传输所对应的下行控制信道中的NDI进行翻转(即置为不同的值,例如第一次传输对应的NDI为0,则该下行控制信道中的NDI置为1),并在子帧5(根据m+k得到)中向该终端发送携带该NDI的下行控制信道;
若ACK/NACK反馈信息为NACK,则基站在子帧5(根据m+k得到)中向该终端发送使用上行DCI格式的下行控制信道,并将该下行控制信道中的NDI置为与该PUSCH-1的第一次传输所对应的下行控制信道中的NDI相同的值,例如,第一次传输对应的NDI为0,则该下行控制信道中的NDI也置为0。
2)调度终端在普通上行子帧2中传输PUSCH-2;在上行子帧2中接收终端发送的PUSCH-2,并获取其1比特的ACK/NACK反馈信息;根据表3中的kPHICH定义,确定PUSCH-2的PHICH在子帧6中发送,并根据PUSCH-2的最小PRB index和调度信令中的DMRS循环移位指示,确定其PHICH资源参数
Figure PCTCN2017076196-appb-000021
按照该参数在子帧6中发送承载PUSCH-2的ACK/NACK反馈信息的PHICH。
当然,如果ACK/NACK反馈信息为NACK,基站如果想通过动态调度来改变PUSCH-2重传的资源和配置,还可以在子帧6中发送使用上行DCI格式的下行控制信道,且将该下行控制信道中的NDI置为与该PUSCH-2的第一次传输所对应的下行控制信道中的NDI相同的值,例如,第一次传输对应的NDI为0,则该下行控制信道中的NDI也置为0。
需要说明的是,由于定义的反馈子帧位置不同,上述在子帧5和子帧6中发送的承载ACK/NACK反馈信息的下行控制信道可以使用相同的DCI以及相同的RNTI加扰,终端可以通过检测到下行控制信道的子帧来判断该下行控制信道所对应的PUSCH对应UpPTS还是普通上行子帧。
2、终端侧:
1)接收用于调度终端在特殊子帧1中的UpPTS中传输的PUSCH-1的调度信息,按照调度信息在特殊子帧1中的UpPTS中发送该PUSCH-1;根据m+k,确定在子帧5中检测使用上行DCI格式的下行控制信道。
具体的,如果未检测到,则终端判断基站未发送指示重传的下行控制信道,即判断该PUSCH-1传输成功,不需要重传;
如果检测到,则终端根据该下行控制信道中的NDI相对于该PUSCH-1的第一次传输所对应的NDI是否翻转来确定是否需要重传。例如,若该NDI与第一次传输所对应的NDI相同,则终端确定需要重传,并按照该下行控制信道中的调度信息(即所指示的资源和调制编码等级等信息)对PUSCH-1进行重传;又如,若该NDI与第一次传输所对应的NDI不同,则终端确定为新数据传输,并根据调度信息开始传输新的数据,即判断PUSCH-1传输成功,不需要重传。
2)接收用于调度终端在普通上行子帧2中传输的PUSCH-2的调度信息,按照调度信息在上行子帧2中发送该PUSCH-2;根据表3中的kPHICH定义,确定PUSCH-2的PHICH在子帧6中发送,并根据PUSCH-2的最小PRB index和调度信令中的DMRS循环移位指示,确定其PHICH资源参数
Figure PCTCN2017076196-appb-000022
按照该参数在子帧6中检测承载PUSCH-2的ACK/NACK反馈信息的PHICH,并根据该PHICH中的ACK/NACK反馈信息确定是否重传。若ACK/NACK反馈信息为ACK,则终端渠道不需要重传;若ACK/NACK为NACK,则终端按照第一次传输相同的调度信息重新传输PUSCH-2。
当然,终端还可以在子帧6中同时检测使用上行DCI格式的下行控制信道;如果未检 测到,则以上述PHICH中的反馈信息为准;如果检测到,则根据该下行控制信道中的NDI相对于该PUSCH-2的第一次传输所对应的NDI是否翻转来确定是否需要重传。例如,若该NDI与第一次传输所对应的NDI相同,则终端确定需要重传,并按照该下行控制信道中的调度信息(即所指示的资源和调制编码等级等信息)对PUSCH-2进行重传;又如,若该NDI与第一次传输所对应的NDI不同,则终端确定为新数据传输,并根据调度信息开始传输新的数据,即判断PUSCH-2传输成功,不需要重传。
上述实施例中均是以动态调度的PUSCH为例进行说明的,本发明实施例提供的方法对于SPS PUSCH也同样适用,唯一的区别在于,如果是SPS PUSCH,NDI的定义不是翻转,而是1表示重传,0表示初传,其余处理均与动态调度的PUSCH相同,此处不再一一举例说明。
上述实施例1和2中,以UpPTS中的PUSCH使用异步HARQ为例,对UpPTS中的PUSCH使用同步HARQ同样适用;如果为同步HARQ,过程类似,唯一的差别是基站侧传输对应UpPTS中的PUSCH的下行控制信道的子帧不是特殊子帧之后的任意子帧或特殊子帧之后的设定时间内的任意子帧,而是根据UpPTS的子帧编号以及表7确定的固定子帧位置,而终端侧在检测对应UpPTS中的PUSCH的下行控制信道时,也不是在UpPTS之后的的每个子帧检测或者在UpPTS之后的设定时间内的每个子帧检测,而是在UpPTS的子帧编号以及表7确定的固定子帧位置检测。
上述方法处理流程可以用软件程序实现,该软件程序可以存储在存储介质中,当存储的软件程序被调用时,执行上述方法步骤。
基于同一发明构思,图4所示的实施例中,提供了一种终端,包括:
发送模块41,用于在特殊子帧m中发送物理上行共享信道PUSCH,m为整数;
检测模块42,用于在所述特殊子帧m之后包含下行传输资源的子帧或者在子帧m+k中,检测使用上行下行控制信息DCI格式的下行控制信道,k为正整数;
确定模块43,用于根据所述下行控制信道,确定是否重传所述特殊子帧m中发送的PUSCH。
一种可能的实施方式中,所述k的定义如下:
对于TDD上下行配置0,若m为1或6,所述k为4、5、9或10;或者
对于TDD上下行配置1,若m为1或6,所述k为3、5、8或10;或者
对于TDD上下行配置2,若m为1或6,所述k为2或7;或者
对于TDD上下行配置3,若m为1,所述k为7、8或9;或者
对于TDD上下行配置4,若m为1,所述k为7或8;或者
对于TDD上下行配置5,若m为1,所述k为7;或者
对于TDD上下行配置6,若m为1,所述k为4、5、8、9或10;或者
对于TDD上下行配置6,若m为6,所述k为3、4、5、9或10。
基于上述任一实施例,所述确定模块具体用于:
根据所述下行控制信道,确定所述下行控制信道是否对应特殊子帧中发送的PUSCH;
在确定所述下行控制信道对应特殊子帧中发送的PUSCH后,根据所述下行控制信道携带的用于指示是否重传的指示域,确定是否重传所述特殊子帧m中发送的PUSCH。
一种可能的实施方式中,所述确定模块具体用于:
根据所述下行控制信道使用的上行DCI格式的大小,确定所述下行控制信道是否对应特殊子帧中发送的PUSCH;和/或
根据所述下行控制信道中的第一指示域,确定所述下行控制信道是否对应特殊子帧中发送的PUSCH,所述第一指示域用于指示所述下行控制信道对应的PUSCH的相关信息;和/或
根据所述下行控制信道中的第二指示域,确定所述下行控制信道是否对应特殊子帧中发送的PUSCH,所述第二指示域用于指示所述下行控制信道对应的PUSCH为特殊子帧中的PUSCH或者普通子帧中的PUSCH;和/或
根据所述下行控制信道加扰时使用的无线网络临时标识RNTI,确定所述下行控制信道是否对应特殊子帧中发送的PUSCH;和/或
根据所述下行控制信道中的2比特上行索引UL index指示域,确定所述下行控制信道是否对应特殊子帧中发送的PUSCH。
一种可能的实施方式中,所述确定模块具体用于:
若所述检测模块检测到所述下行控制信道使用第一DCI大小的上行DCI格式,确定所述下行控制信道对应特殊子帧中发送的PUSCH;或者若所述检测模块检测到所述下行控制信道使用第二DCI大小的上行DCI格式,确定所述下行控制信道对应普通子帧中发送的PUSCH;其中,所述第一DCI大小和所述第二DCI大小不同。
一种可能的实施方式中,所述第一指示域中携带所述下行控制信道对应的PUSCH的混合自动重传请求HARQ进程编号。
一种可能的实施方式中,所述确定模块具体用于:
若所述检测模块检测到所述下行控制信道使用第一RNTI进行加扰,确定所述下行控制信道对应特殊子帧中发送的PUSCH;或者若所述检测模块检测到所述下行控制信道使用第二RNTI进行加扰,确定所述下行控制信道对应普通子帧中发送的PUSCH;其中,所述第一RNTI和所述第二RNTI不同。
一种可能的实施方式中,若所述第一RNTI为多个终端共享,所述确定模块还用于:
根据所述终端的索引值,确定出对应于所述终端的用于指示是否重传的指示域在所述下行控制信道中的位置。
一种可能的实施方式中,所述子帧m+k不同于检测对应普通子帧中发送的PUSCH的下行控制信道的子帧。
其中,所述k的定义如下:
对于TDD上下行配置1,若m为1或6,所述k为4或9;或者
对于TDD上下行配置2,若m为1或6,所述k为3、4、5、8、9或10;或者
对于TDD上下行配置3,若m为1,所述k为4、5、6或10;或者
对于TDD上下行配置4,若m为1,所述k为3、4、5、6、9或10;或者
对于TDD上下行配置5,若m为1,所述k为2、3、4、5、6、8、9或10。
一种可能的实施方式中,所述确定模块具体用于:
根据所述下行控制信道携带的用于指示是否重传的指示域,确定是否重传所述特殊子帧m中发送的PUSCH。
一种可能的实施方式中,所述确定模块具体用于:
当所述UL index的最低有效比特LSB和最高有效比特MSB都置为0时,确定所述下行控制信道对应于在特殊子帧中传输的PUSCH;
当所述UL index的LSB和MSB中的至少一个置为1时,确定所述下行控制信道对应于在普通上行子帧中传输的PUSCH。
基于同一发明构思,图5所示实施例中,提供了另一种终端,包括收发机610、以及与所述收发机610连接的至少一个处理器600,其中:
所述处理器600,用于读取所述存储器620中的程序,执行下列过程:
控制所述收发机610在特殊子帧m中发送PUSCH,m为整数;在所述特殊子帧m之后包含下行传输资源的子帧或者在子帧m+k中,检测使用上行DCI格式的下行控制信道,k为正整数;根据所述下行控制信道,确定是否重传所述特殊子帧m中发送的PUSCH;
所述收发机610,用于在处理器600的控制下接收和发送数据。
其中,在图5中,总线架构可以包括任意数量的互联的总线和桥,具体由处理器600代表的一个或多个处理器和存储器620代表的存储器的各种电路链接在一起。总线架构还可以将诸如外围设备、稳压器和功率管理电路等之类的各种其他电路链接在一起,这些都是本领域所公知的,因此,本文不再对其进行进一步描述。总线接口提供接口。收发机610可以是多个元件,即包括发送机和接收机,提供用于在传输介质上与各种其他装置通信的单元。针对不同的用户设备,用户接口630还可以是能够外接内接需要设备的接口,连接的设备包括但不限于小键盘、显示器、扬声器、麦克风、操纵杆等。处理器600负责管理总线架构和通常的处理,存储器620可以存储处理器600在执行操作时所使用的数据。
本实施例中,所述处理器600读取所述存储器620中的程序,执行图4所示实施例中的检测模块42和确定模块43所执行的操作,所述收发机610在所述处理器600的控制下, 执行图4所示实施例中的发送模块41所执行的操作,具体参见图4所示实施例中的相关描述,此处不再赘述。
基于同一发明构思,图6所示的实施例中,提供了一种基站,包括:
调度模块61,用于调度终端在特殊子帧m中发送物理上行共享信道PUSCH,m为整数;
检测模块62,用于在所述特殊子帧m中,检测所述终端发送的PUSCH;
处理模块63,用于在所述特殊子帧m之后包含下行传输资源的子帧或者在子帧m+k中,向所述终端发送使用上行下行控制信息DCI格式的下行控制信道,k为正整数,所述下行控制信道中携带用于指示所述特殊子帧m中的PUSCH是否重传的指示域。
一种可能的实施方式中,所述k的定义如下:
对于TDD上下行配置0,若m为1或6,所述k为4、5、9或10;或者
对于TDD上下行配置1,若m为1或6,所述k为3、5、8、10;或者
对于TDD上下行配置2,若m为1或6,所述k为2或7;或者
对于TDD上下行配置3,若m为1,所述k为7、8或9;或者
对于TDD上下行配置4,若m为1,所述k为7或8;或者
对于TDD上下行配置5,若m为1,所述k为7;或者,
对于TDD上下行配置6,若m为1,所述k为4、5、8、9或10;或者,
对于TDD上下行配置6,若m为6,所述k为3、4、5、9或10。
基于上述任一实施例,所述处理模块具体用于:
根据所述下行控制信道是否对应特殊子帧中发送的PUSCH,确定所述下行控制信道使用的上行DCI格式的大小;和/或
在所述下行控制信道中携带第一指示域,所述第一指示域用于指示所述下行控制信道对应的PUSCH的相关信息;和/或
在所述下行控制信道中携带第二指示域,所述第二指示域用于指示所述下行控制信道对应的PUSCH为特殊子帧中的PUSCH或者普通子帧中的PUSCH;和/或
根据所述下行控制信道是否对应特殊子帧中发送的PUSCH,确定所述下行控制信道加扰时使用的无线网络临时标识RNTI;和/或
根据所述下行控制信道是否对应特殊子帧中发送的PUSCH,确定所述下行控制信道中的2比特上行索引UL index指示域的取值。
一种可能的实施方式中,所述处理模块具体用于:
若所述下行控制信道对应特殊子帧中发送的PUSCH,确定所述下行控制信道使用第一DCI大小的上行DCI格式;或者若所述下行控制信道对应普通子帧中发送的PUSCH,确定所述下行控制信道使用第二DCI大小的上行DCI格式;其中,所述第一DCI大小和所 述第二DCI大小不同。
一种可能的实施方式中,所述第一指示域中携带所述下行控制信道对应的PUSCH的混合自动重传请求HARQ进程编号。
一种可能的实施方式中,所述处理模块具体用于:
若所述下行控制信道对应特殊子帧中发送的PUSCH,确定所述下行控制信道加扰时使用第一RNTI进行加扰;或者若所述下行控制信道对应普通子帧中发送的PUSCH,确定所述下行控制信道加扰时使用第二RNTI;其中,所述第一RNTI和所述第二RNTI不同。
一种可能的实施方式中,若对应特殊子帧的RNTI为多个终端共享,所述处理模块还用于:
根据多个终端的索引值,将多个终端的用于指示是否重传的指示域映射到对应特殊子帧的所述下行控制信道中的相应位置。
一种可能的实施方式中,所述子帧m+k不同于发送对应于普通子帧中发送的PUSCH的下行控制信道的子帧。
其中,所述k的定义如下:
对于TDD上下行配置1,若m为1或6,所述k为4或9;或者
对于TDD上下行配置2,若m为1或6,所述k为3、4、5、8、9或10;或者
对于TDD上下行配置3,若m为1,所述k为4、5、6或10;或者
对于TDD上下行配置4,若m为1,所述k为3、4、5、6、9或10;或者
对于TDD上下行配置5,若m为1,所述k为2、3、4、5、6、8、9或10。
一种可能的实施方式中,所述处理模块具体用于:
若所述下行控制信道对应于在特殊子帧中传输的PUSCH,将所述UL index的最低有效比特LSB和最高有效比特MSB都置为0;
若所述下行控制信道对应于在普通上行子帧中传输的PUSCH,将所述UL index的LSB和MSB中的至少一个置为1。
基于同一发明构思,图7所示实施例中,提供了另一种基站,包括:收发机510、以及与所述收发机510连接的至少一个处理器500,其中:
所述处理器500,用于读取存储器520中的程序,执行下列过程:
通过所述收发机510,调度终端在特殊子帧m中发送物理上行共享信道PUSCH,m为整数;在所述特殊子帧m中,检测所述终端发送的PUSCH;在所述特殊子帧m之后包含下行传输资源的子帧或者在子帧m+k中,控制所述收发机510向所述终端发送使用上行下行控制信息DCI格式的下行控制信道,k为正整数,所述下行控制信道中携带用于指示所述特殊子帧m中的PUSCH是否重传的指示域;
所述收发机510,用于在所述处理器500的控制下接收和发送数据。
其中,在图7中,总线架构可以包括任意数量的互联的总线和桥,具体由处理器500代表的一个或多个处理器和存储器520代表的存储器的各种电路链接在一起。总线架构还可以将诸如外围设备、稳压器和功率管理电路等之类的各种其他电路链接在一起,这些都是本领域所公知的,因此,本文不再对其进行进一步描述。总线接口提供接口。收发机510可以是多个元件,即包括发送机和收发机,提供用于在传输介质上与各种其他装置通信的单元。处理器500负责管理总线架构和通常的处理,存储器520可以存储处理器500在执行操作时所使用的数据。
本实施例中,所述处理器500读取所述存储器520中的程序,执行图6所示实施例中的调度模块61、检测模块62和处理模块63所执行的操作,具体参见图6所示实施例中的相关描述,此处不再赘述。
本领域内的技术人员应明白,本发明的实施例可提供为方法、系统、或计算机程序产品。因此,本发明可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本发明可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。
本发明是参照根据本发明实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
尽管已描述了本发明的优选实施例,但本领域内的技术人员一旦得知了基本创造性概念,则可对这些实施例作出另外的变更和修改。所以,所附权利要求意欲解释为包括优选实施例以及落入本发明范围的所有变更和修改。
显然,本领域的技术人员可以对本发明进行各种改动和变型而不脱离本发明的精神和范围。这样,倘若本发明的这些修改和变型属于本发明权利要求及其等同技术的范围之内,则本发明也意图包含这些改动和变型在内。

Claims (46)

  1. 一种上行传输的反馈信息的接收方法,其特征在于,所述方法包括:
    终端在特殊子帧m中发送物理上行共享信道PUSCH,m为整数;
    所述终端在所述特殊子帧m之后包含下行传输资源的子帧或者在子帧m+k中,检测使用上行下行控制信息DCI格式的下行控制信道,k为正整数;
    所述终端根据所述下行控制信道,确定是否重传所述特殊子帧m中发送的PUSCH。
  2. 根据权利要求1所述的方法,其特征在于,所述k的定义如下:
    对于时分双工TDD上下行配置0,若m为1或6,所述k为4、5、9或10;或者
    对于TDD上下行配置1,若m为1或6,所述k为3、5、8或10;或者
    对于TDD上下行配置2,若m为1或6,所述k为2或7;或者
    对于TDD上下行配置3,若m为1,所述k为7、8或9;或者
    对于TDD上下行配置4,若m为1,所述k为7或8;或者
    对于TDD上下行配置5,若m为1,所述k为7;或者
    对于TDD上下行配置6,若m为1,所述k为4、5、8、9或10;或者
    对于TDD上下行配置6,若m为6,所述k为3、4、5、9或10。
  3. 根据权利要求1或2所述的方法,其特征在于,所述终端根据所述下行控制信道,确定是否重传所述特殊子帧m中发送的PUSCH,包括:
    所述终端根据所述下行控制信道,确定所述下行控制信道是否对应特殊子帧中发送的PUSCH;
    所述终端在确定所述下行控制信道对应特殊子帧中发送的PUSCH后,根据所述下行控制信道携带的用于指示是否重传的指示域,确定是否重传所述特殊子帧m中发送的PUSCH。
  4. 根据权利要求3所述的方法,其特征在于,所述终端根据所述下行控制信道,确定所述下行控制信道是否对应特殊子帧中发送的PUSCH,包括:
    所述终端根据所述下行控制信道使用的上行DCI格式的大小,确定所述下行控制信道是否对应特殊子帧中发送的PUSCH;和/或
    所述终端根据所述下行控制信道中的第一指示域,确定所述下行控制信道是否对应特殊子帧中发送的PUSCH,所述第一指示域用于指示所述下行控制信道对应的PUSCH的相关信息;和/或
    所述终端根据所述下行控制信道中的第二指示域,确定所述下行控制信道是否对应特殊子帧中发送的PUSCH,所述第二指示域用于指示所述下行控制信道对应的PUSCH为特殊子帧中的PUSCH或者普通子帧中的PUSCH;和/或
    所述终端根据所述下行控制信道加扰时使用的无线网络临时标识RNTI,确定所述下行控制信道是否对应特殊子帧中发送的PUSCH;和/或
    所述终端根据所述下行控制信道中的2比特上行索引UL index指示域,确定所述下行控制信道是否对应特殊子帧中发送的PUSCH。
  5. 根据权利要求4所述的方法,其特征在于,所述终端根据所述下行控制信道使用的上行DCI格式的大小,确定所述下行控制信道是否对应特殊子帧中发送的PUSCH,包括:
    若所述终端检测到所述下行控制信道使用第一DCI大小的上行DCI格式,所述终端确定所述下行控制信道对应特殊子帧中发送的PUSCH;或者
    若所述终端检测到所述下行控制信道使用第二DCI大小的上行DCI格式,所述终端确定所述下行控制信道对应普通子帧中发送的PUSCH;
    其中,所述第一DCI大小和所述第二DCI大小不同。
  6. 根据权利要求4所述的方法,其特征在于,所述第一指示域中携带所述下行控制信道对应的PUSCH的混合自动重传请求HARQ进程编号。
  7. 根据权利要求4所述的方法,其特征在于,所述终端根据所述下行控制信道加扰时使用的RNTI,确定所述下行控制信道是否对应特殊子帧中发送的PUSCH,包括:
    若所述终端检测到所述下行控制信道使用第一RNTI进行加扰,所述终端确定所述下行控制信道对应特殊子帧中发送的PUSCH;或者
    若所述终端检测到所述下行控制信道使用第二RNTI进行加扰,所述终端确定所述下行控制信道对应普通子帧中发送的PUSCH;
    其中,所述第一RNTI和所述第二RNTI不同。
  8. 根据权利要求7所述的方法,其特征在于,若所述第一RNTI为多个终端共享,所述终端确定所述下行控制信道对应特殊子帧中发送的PUSCH之后,所述方法还包括:
    所述终端根据所述终端的索引值,确定出对应于所述终端的用于指示是否重传的指示域在所述下行控制信道中的位置。
  9. 根据权利要求1所述的方法,其特征在于,所述子帧m+k不同于检测对应普通子帧中发送的PUSCH的下行控制信道的子帧。
  10. 根据权利要求9所述的方法,其特征在于,所述k的定义如下:
    对于TDD上下行配置1,若m为1或6,所述k为4或9;或者
    对于TDD上下行配置2,若m为1或6,所述k为3、4、5、8、9或10;或者
    对于TDD上下行配置3,若m为1,所述k为4、5、6或10;或者
    对于TDD上下行配置4,若m为1,所述k为3、4、5、6、9或10;或者
    对于TDD上下行配置5,若m为1,所述k为2、3、4、5、6、8、9或10。
  11. 根据权利要求9所述的方法,其特征在于,所述终端根据所述下行控制信道,确定是否重传所述特殊子帧m中发送的PUSCH,包括:
    所述终端根据所述下行控制信道携带的用于指示是否重传的指示域,确定是否重传所述特殊子帧m中发送的PUSCH。
  12. 根据权利要求4所述的方法,其特征在于,所述终端根据所述下行控制信道中的2比特上行索引UL index指示域,确定所述下行控制信道是否对应特殊子帧中发送的PUSCH,包括:
    当所述UL index的最低有效比特LSB和最高有效比特MSB都置为0时,所述终端确定所述下行控制信道对应于在特殊子帧中传输的PUSCH;
    当所述UL index的LSB和MSB中的至少一个置为1时,所述终端确定所述下行控制信道对应于在普通上行子帧中传输的PUSCH。
  13. 一种上行传输的反馈信息的发送方法,其特征在于,所述方法包括:
    基站调度终端在特殊子帧m中发送物理上行共享信道PUSCH,m为整数;
    所述基站在所述特殊子帧m中,检测所述终端发送的PUSCH;
    所述基站在所述特殊子帧m之后包含下行传输资源的子帧或者在子帧m+k中,向所述终端发送使用上行下行控制信息DCI格式的下行控制信道,k为正整数,所述下行控制信道中携带用于指示所述特殊子帧m中的PUSCH是否重传的指示域。
  14. 根据权利要求13所述的方法,其特征在于,所述k的定义如下:
    对于时分双工TDD上下行配置0,若m为1或6,所述k为4、5、9或10;或者
    对于TDD上下行配置1,若m为1或6,所述k为3、5、8、10;或者
    对于TDD上下行配置2,若m为1或6,所述k为2或7;或者
    对于TDD上下行配置3,若m为1,所述k为7、8或9;或者
    对于TDD上下行配置4,若m为1,所述k为7或8;或者
    对于TDD上下行配置5,若m为1,所述k为7;或者,
    对于TDD上下行配置6,若m为1,所述k为4、5、8、9或10;或者,
    对于TDD上下行配置6,若m为6,所述k为3、4、5、9或10。
  15. 根据权利要求13或14所述的方法,其特征在于,所述基站向所述终端发送使用上行DCI格式的下行控制信道,包括:
    所述基站根据所述下行控制信道是否对应特殊子帧中发送的PUSCH,确定所述下行控制信道使用的上行DCI格式的大小;和/或
    所述基站在所述下行控制信道中携带第一指示域,所述第一指示域用于指示所述下行控制信道对应的PUSCH的相关信息;和/或
    所述基站在所述下行控制信道中携带第二指示域,所述第二指示域用于指示所述下行 控制信道对应的PUSCH为特殊子帧中的PUSCH或者普通子帧中的PUSCH;和/或
    所述基站根据所述下行控制信道是否对应特殊子帧中发送的PUSCH,确定所述下行控制信道加扰时使用的无线网络临时标识RNTI;和/或
    所述基站根据所述下行控制信道是否对应特殊子帧中发送的PUSCH,确定所述下行控制信道中的2比特上行索引UL index指示域的取值。
  16. 根据权利要求15所述的方法,其特征在于,所述基站根据所述下行控制信道是否对应特殊子帧中发送的PUSCH,确定所述下行控制信道使用的上行DCI格式的大小,包括:
    若所述下行控制信道对应特殊子帧中发送的PUSCH,所述基站确定所述下行控制信道使用第一DCI大小的上行DCI格式;或者
    若所述下行控制信道对应普通子帧中发送的PUSCH,所述基站确定所述下行控制信道使用第二DCI大小的上行DCI格式;
    其中,所述第一DCI大小和所述第二DCI大小不同。
  17. 根据权利要求15所述的方法,其特征在于,所述第一指示域中携带所述下行控制信道对应的PUSCH的混合自动重传请求HARQ进程编号。
  18. 根据权利要求15所述的方法,其特征在于,所述基站根据所述下行控制信道是否对应特殊子帧中发送的PUSCH,确定所述下行控制信道加扰时使用的RNTI,包括:
    若所述下行控制信道对应特殊子帧中发送的PUSCH,所述基站确定所述下行控制信道加扰时使用第一RNTI进行加扰;或者
    若所述下行控制信道对应普通子帧中发送的PUSCH,所述基站确定所述下行控制信道加扰时使用第二RNTI;
    其中,所述第一RNTI和所述第二RNTI不同。
  19. 根据权利要求15所述的方法,其特征在于,若对应特殊子帧的RNTI为多个终端共享,还包括:
    所述基站根据多个终端的索引值,将多个终端的用于指示是否重传的指示域映射到对应特殊子帧的所述下行控制信道中的相应位置。
  20. 根据权利要求13所述的方法,其特征在于,所述子帧m+k不同于发送对应于普通子帧中发送的PUSCH的下行控制信道的子帧。
  21. 根据权利要求20所述的方法,其特征在于,所述k的定义如下:
    对于TDD上下行配置1,若m为1或6,所述k为4或9;或者
    对于TDD上下行配置2,若m为1或6,所述k为3、4、5、8、9或10;或者
    对于TDD上下行配置3,若m为1,所述k为4、5、6或10;或者
    对于TDD上下行配置4,若m为1,所述k为3、4、5、6、9或10;或者
    对于TDD上下行配置5,若m为1,所述k为2、3、4、5、6、8、9或10。
  22. 根据权利要求15所述的方法,其特征在于,所述基站根据所述下行控制信道是否对应特殊子帧中发送的PUSCH,确定所述下行控制信道中的2比特上行索引UL index指示域的取值,包括:
    若所述下行控制信道对应于在特殊子帧中传输的PUSCH,所述基站将所述UL index的最低有效比特LSB和最高有效比特MSB都置为0;
    若所述下行控制信道对应于在普通上行子帧中传输的PUSCH,所述基站将所述ULindex的LSB和MSB中的至少一个置为1。
  23. 一种终端,其特征在于,所述终端包括:
    发送模块,用于在特殊子帧m中发送物理上行共享信道PUSCH,m为整数;
    检测模块,用于在所述特殊子帧m之后包含下行传输资源的子帧或者在子帧m+k中,检测使用上行下行控制信息DCI格式的下行控制信道,k为正整数;
    确定模块,用于根据所述下行控制信道,确定是否重传所述特殊子帧m中发送的PUSCH。
  24. 根据权利要求23所述的终端,其特征在于,所述k的定义如下:
    对于时分双工TDD上下行配置0,若m为1或6,所述k为4、5、9或10;或者
    对于TDD上下行配置1,若m为1或6,所述k为3、5、8或10;或者
    对于TDD上下行配置2,若m为1或6,所述k为2或7;或者
    对于TDD上下行配置3,若m为1,所述k为7、8或9;或者
    对于TDD上下行配置4,若m为1,所述k为7或8;或者
    对于TDD上下行配置5,若m为1,所述k为7;或者
    对于TDD上下行配置6,若m为1,所述k为4、5、8、9或10;或者
    对于TDD上下行配置6,若m为6,所述k为3、4、5、9或10。
  25. 根据权利要求23或24所述的终端,其特征在于,所述确定模块具体用于:
    根据所述下行控制信道,确定所述下行控制信道是否对应特殊子帧中发送的PUSCH;
    在确定所述下行控制信道对应特殊子帧中发送的PUSCH后,根据所述下行控制信道携带的用于指示是否重传的指示域,确定是否重传所述特殊子帧m中发送的PUSCH。
  26. 根据权利要求25所述的终端,其特征在于,所述确定模块具体用于:
    根据所述下行控制信道使用的上行DCI格式的大小,确定所述下行控制信道是否对应特殊子帧中发送的PUSCH;和/或
    根据所述下行控制信道中的第一指示域,确定所述下行控制信道是否对应特殊子帧中发送的PUSCH,所述第一指示域用于指示所述下行控制信道对应的PUSCH的相关信息;和/或
    根据所述下行控制信道中的第二指示域,确定所述下行控制信道是否对应特殊子帧中发送的PUSCH,所述第二指示域用于指示所述下行控制信道对应的PUSCH为特殊子帧中的PUSCH或者普通子帧中的PUSCH;和/或
    根据所述下行控制信道加扰时使用的无线网络临时标识RNTI,确定所述下行控制信道是否对应特殊子帧中发送的PUSCH;和/或
    根据所述下行控制信道中的2比特上行索引UL index指示域,确定所述下行控制信道是否对应特殊子帧中发送的PUSCH。
  27. 根据权利要求26所述的终端,其特征在于,所述确定模块具体用于:
    若所述检测模块检测到所述下行控制信道使用第一DCI大小的上行DCI格式,确定所述下行控制信道对应特殊子帧中发送的PUSCH;或者若所述检测模块检测到所述下行控制信道使用第二DCI大小的上行DCI格式,确定所述下行控制信道对应普通子帧中发送的PUSCH;其中,所述第一DCI大小和所述第二DCI大小不同。
  28. 根据权利要求26所述的终端,其特征在于,所述第一指示域中携带所述下行控制信道对应的PUSCH的混合自动重传请求HARQ进程编号。
  29. 根据权利要求26所述的终端,其特征在于,所述确定模块具体用于:
    若所述检测模块检测到所述下行控制信道使用第一RNTI进行加扰,确定所述下行控制信道对应特殊子帧中发送的PUSCH;或者若所述检测模块检测到所述下行控制信道使用第二RNTI进行加扰,确定所述下行控制信道对应普通子帧中发送的PUSCH;其中,所述第一RNTI和所述第二RNTI不同。
  30. 根据权利要求29所述的终端,其特征在于,若所述第一RNTI为多个终端共享,所述确定模块还用于:
    根据所述终端的索引值,确定出对应于所述终端的用于指示是否重传的指示域在所述下行控制信道中的位置。
  31. 根据权利要求23所述的终端,其特征在于,所述子帧m+k不同于检测对应普通子帧中发送的PUSCH的下行控制信道的子帧。
  32. 根据权利要求31所述的终端,其特征在于,所述k的定义如下:
    对于TDD上下行配置1,若m为1或6,所述k为4或9;或者
    对于TDD上下行配置2,若m为1或6,所述k为3、4、5、8、9或10;或者
    对于TDD上下行配置3,若m为1,所述k为4、5、6或10;或者
    对于TDD上下行配置4,若m为1,所述k为3、4、5、6、9或10;或者
    对于TDD上下行配置5,若m为1,所述k为2、3、4、5、6、8、9或10。
  33. 根据权利要求31所述的终端,其特征在于,所述确定模块具体用于:
    根据所述下行控制信道携带的用于指示是否重传的指示域,确定是否重传所述特殊子 帧m中发送的PUSCH。
  34. 根据权利要求26所述的终端,其特征在于,所述确定模块具体用于:
    当所述UL index的最低有效比特LSB和最高有效比特MSB都置为0时,确定所述下行控制信道对应于在特殊子帧中传输的PUSCH;
    当所述UL index的LSB和MSB中的至少一个置为1时,确定所述下行控制信道对应于在普通上行子帧中传输的PUSCH。
  35. 一种基站,其特征在于,所述基站包括:
    调度模块,用于调度终端在特殊子帧m中发送物理上行共享信道PUSCH,m为整数;
    检测模块,用于在所述特殊子帧m中,检测所述终端发送的PUSCH;
    处理模块,用于在所述特殊子帧m之后包含下行传输资源的子帧或者在子帧m+k中,向所述终端发送使用上行下行控制信息DCI格式的下行控制信道,k为正整数,所述下行控制信道中携带用于指示所述特殊子帧m中的PUSCH是否重传的指示域。
  36. 根据权利要求35所述的基站,其特征在于,所述k的定义如下:
    对于时分双工TDD上下行配置0,若m为1或6,所述k为4、5、9或10;或者
    对于TDD上下行配置1,若m为1或6,所述k为3、5、8、10;或者
    对于TDD上下行配置2,若m为1或6,所述k为2或7;或者
    对于TDD上下行配置3,若m为1,所述k为7、8或9;或者
    对于TDD上下行配置4,若m为1,所述k为7或8;或者
    对于TDD上下行配置5,若m为1,所述k为7;或者,
    对于TDD上下行配置6,若m为1,所述k为4、5、8、9或10;或者,
    对于TDD上下行配置6,若m为6,所述k为3、4、5、9或10。
  37. 根据权利要求35或36所述的基站,其特征在于,所述处理模块具体用于:
    根据所述下行控制信道是否对应特殊子帧中发送的PUSCH,确定所述下行控制信道使用的上行DCI格式的大小;和/或
    在所述下行控制信道中携带第一指示域,所述第一指示域用于指示所述下行控制信道对应的PUSCH的相关信息;和/或
    在所述下行控制信道中携带第二指示域,所述第二指示域用于指示所述下行控制信道对应的PUSCH为特殊子帧中的PUSCH或者普通子帧中的PUSCH;和/或
    根据所述下行控制信道是否对应特殊子帧中发送的PUSCH,确定所述下行控制信道加扰时使用的无线网络临时标识RNTI;和/或
    根据所述下行控制信道是否对应特殊子帧中发送的PUSCH,确定所述下行控制信道中的2比特上行索引UL index指示域的取值。
  38. 根据权利要求37所述的基站,其特征在于,所述处理模块具体用于:
    若所述下行控制信道对应特殊子帧中发送的PUSCH,确定所述下行控制信道使用第一DCI大小的上行DCI格式;或者若所述下行控制信道对应普通子帧中发送的PUSCH,确定所述下行控制信道使用第二DCI大小的上行DCI格式;其中,所述第一DCI大小和所述第二DCI大小不同。
  39. 根据权利要求37所述的基站,其特征在于,所述第一指示域中携带所述下行控制信道对应的PUSCH的混合自动重传请求HARQ进程编号。
  40. 根据权利要求37所述的基站,其特征在于,所述处理模块具体用于:
    若所述下行控制信道对应特殊子帧中发送的PUSCH,确定所述下行控制信道加扰时使用第一RNTI进行加扰;或者若所述下行控制信道对应普通子帧中发送的PUSCH,确定所述下行控制信道加扰时使用第二RNTI;其中,所述第一RNTI和所述第二RNTI不同。
  41. 根据权利要求37所述的基站,其特征在于,若对应特殊子帧的RNTI为多个终端共享,所述处理模块还用于:
    根据多个终端的索引值,将多个终端的用于指示是否重传的指示域映射到对应特殊子帧的所述下行控制信道中的相应位置。
  42. 根据权利要求35所述的基站,其特征在于,所述子帧m+k不同于发送对应于普通子帧中发送的PUSCH的下行控制信道的子帧。
  43. 根据权利要求42所述的基站,其特征在于,所述k的定义如下:
    对于TDD上下行配置1,若m为1或6,所述k为4或9;或者
    对于TDD上下行配置2,若m为1或6,所述k为3、4、5、8、9或10;或者
    对于TDD上下行配置3,若m为1,所述k为4、5、6或10;或者
    对于TDD上下行配置4,若m为1,所述k为3、4、5、6、9或10;或者
    对于TDD上下行配置5,若m为1,所述k为2、3、4、5、6、8、9或10。
  44. 根据权利要求37所述的基站,其特征在于,所述处理模块具体用于:
    若所述下行控制信道对应于在特殊子帧中传输的PUSCH,将所述UL index的最低有效比特LSB和最高有效比特MSB都置为0;
    若所述下行控制信道对应于在普通上行子帧中传输的PUSCH,将所述UL index的LSB和MSB中的至少一个置为1。
  45. 一种终端,其特征在于,包括收发机、以及与所述收发机连接的至少一个处理器,其中:
    所述处理器,用于读取所述存储器中的程序,执行下列过程:
    控制所述收发机在特殊子帧m中发送PUSCH,m为整数;在所述特殊子帧m之后包含下行传输资源的子帧或者在子帧m+k中,检测使用上行DCI格式的下行控制信道,k为正整数;根据所述下行控制信道,确定是否重传所述特殊子帧m中发送的PUSCH;
    所述收发机,用于在所述处理器的控制下接收和发送数据。
  46. 一种基站,其特征在于,包括:收发机、以及与所述收发机连接的至少一个处理器,其中:
    所述处理器,用于读取存储器中的程序,执行下列过程:
    通过所述收发机,调度终端在特殊子帧m中发送物理上行共享信道PUSCH,m为整数;在所述特殊子帧m中,检测所述终端发送的PUSCH;在所述特殊子帧m之后包含下行传输资源的子帧或者在子帧m+k中,控制所述收发机向所述终端发送使用上行下行控制信息DCI格式的下行控制信道,k为正整数,所述下行控制信道中携带用于指示所述特殊子帧m中的PUSCH是否重传的指示域;
    所述收发机,用于在所述处理器的控制下接收和发送数据。
PCT/CN2017/076196 2016-06-22 2017-03-09 一种上行传输的反馈信息的传输方法和设备 WO2017219703A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020197001766A KR102197442B1 (ko) 2016-06-22 2017-03-09 업링크 전송의 피드백 정보의 전송 방법 및 장치
US16/313,125 US10833816B2 (en) 2016-06-22 2017-03-09 Transmission method and apparatus for feedback information of uplink transmission
JP2018566915A JP6722777B2 (ja) 2016-06-22 2017-03-09 アップリンク伝送のフィードバック情報を送信するための方法および装置
EP17814442.4A EP3478023B1 (en) 2016-06-22 2017-03-09 Transmission method and apparatus for feedback information of uplink transmission

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
CN201610460911 2016-06-22
CN201610460911.1 2016-06-22
CN201610641360.9 2016-08-05
CN201610641360 2016-08-05
CN201610671985.XA CN107528676B (zh) 2016-06-22 2016-08-15 一种上行传输的反馈信息的传输方法和设备
CN201610671985.X 2016-08-15

Publications (1)

Publication Number Publication Date
WO2017219703A1 true WO2017219703A1 (zh) 2017-12-28

Family

ID=60783780

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/076196 WO2017219703A1 (zh) 2016-06-22 2017-03-09 一种上行传输的反馈信息的传输方法和设备

Country Status (5)

Country Link
US (1) US10833816B2 (zh)
EP (1) EP3478023B1 (zh)
JP (1) JP6722777B2 (zh)
KR (1) KR102197442B1 (zh)
WO (1) WO2017219703A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018026199A1 (en) * 2016-08-02 2018-02-08 Samsung Electronics Co., Ltd. Method and apparatus for communicating in a wireless communication system
JP7268955B2 (ja) * 2017-03-24 2023-05-08 ソニーグループ株式会社 端末装置、通信方法、及びプログラム
BR112019025672A2 (pt) * 2017-06-09 2020-09-01 Guangdong Oppo Mobile Telecommunications Corp., Ltd. método de comunicação sem fio, dispositivo de rede e dispositivo terminal que compreendem uma unidade de processamento e uma unidade de comunicação
US20220408469A1 (en) * 2019-11-07 2022-12-22 Beijing Xiaomi Mobile Software Co., Ltd. Downlink control information configuration method and apparatus, and communication device and storage medium

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104067681A (zh) * 2012-01-27 2014-09-24 夏普株式会社 用于重新配置上行链路和下行链路分配的设备
CN104144508A (zh) * 2013-05-08 2014-11-12 中国移动通信集团公司 一种调度上行子帧的方法、装置、系统及ue
WO2015009004A1 (ko) * 2013-07-16 2015-01-22 한국전자통신연구원 반송파 집성 기반의 무선 통신 시스템에서 통신 방법
WO2015154310A1 (zh) * 2014-04-11 2015-10-15 华为技术有限公司 一种控制信道资源分配方法及装置

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102845121B (zh) * 2010-04-13 2016-05-04 Lg电子株式会社 用于接收下行链路信号的方法和装置
RU2613178C2 (ru) * 2011-01-07 2017-03-15 Интердиджитал Пэйтент Холдингз, Инк. Способ, система и устройство для приема совместно используемого канала нисходящей линии связи в кооперативных многоточечных передачах
WO2012173433A2 (ko) 2011-06-15 2012-12-20 엘지전자 주식회사 제어 정보를 전송하는 방법 및 이를 위한 장치
WO2013051980A1 (en) 2011-10-03 2013-04-11 Telefonaktiebolaget L M Ericsson (Publ) Methods and apparatus for modified phich
KR20140136923A (ko) * 2012-03-22 2014-12-01 텔레포나크티에볼라게트 엘엠 에릭슨(피유비엘) 무선 통신 시스템 내의 서브 프레임의 동적 구성
US9386576B2 (en) * 2012-11-14 2016-07-05 Qualcomm Incorporated PUCCH resource determination for EPDCCH
JP6087450B2 (ja) 2013-03-15 2017-03-01 エルジー エレクトロニクス インコーポレイティド 無線通信システムにおけるack/nack受信方法及び装置
US20150043434A1 (en) * 2013-08-08 2015-02-12 Sharp Laboratories Of America, Inc. Systems and methods for subframe bundling
US10903943B2 (en) * 2014-06-13 2021-01-26 Apple Inc. Enhanced LTE UL HARQ feedback indication for power saving and range improvement
CN110430028B (zh) * 2014-06-27 2021-09-07 华为技术有限公司 Pusch的传输方法及装置
WO2017185294A1 (en) * 2016-04-28 2017-11-02 Nokia Technologies Oy Method and apparatus for performing hybrid automatic repeat request processes

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104067681A (zh) * 2012-01-27 2014-09-24 夏普株式会社 用于重新配置上行链路和下行链路分配的设备
CN104144508A (zh) * 2013-05-08 2014-11-12 中国移动通信集团公司 一种调度上行子帧的方法、装置、系统及ue
WO2015009004A1 (ko) * 2013-07-16 2015-01-22 한국전자통신연구원 반송파 집성 기반의 무선 통신 시스템에서 통신 방법
WO2015154310A1 (zh) * 2014-04-11 2015-10-15 华为技术有限公司 一种控制信道资源分配方法及装置

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"Evolved Universal Terrestrial Radio Access (E-UTRA); Physical layer procedures (Release 8", 3GPP TS 36.213 V8.8.0, 30 September 2009 (2009-09-30), XP055444301 *
See also references of EP3478023A4 *

Also Published As

Publication number Publication date
KR102197442B1 (ko) 2020-12-31
KR20190020765A (ko) 2019-03-04
JP2019525535A (ja) 2019-09-05
EP3478023A1 (en) 2019-05-01
US20190165899A1 (en) 2019-05-30
US10833816B2 (en) 2020-11-10
JP6722777B2 (ja) 2020-07-15
EP3478023A4 (en) 2019-05-01
EP3478023B1 (en) 2021-02-24

Similar Documents

Publication Publication Date Title
JP6940914B2 (ja) Fdd‐tddジョイントキャリアアグリゲーションのためのアップリンク制御シグナリング
US9520967B2 (en) Carrier aggregation acknowledgement bits
JP6174810B2 (ja) キャリアアグリゲーションを使用するharqフィードバック
KR101556050B1 (ko) Tdd시스템에서 통신 방법 및 장치
JP6034485B2 (ja) Harqをサポートする、ワイヤレス通信方法、ユーザ装置および基地局
WO2012139465A1 (zh) 一种调度多子帧传输的方法及装置
JP6740387B2 (ja) 物理アップリンク共有チャネルの伝送方法及び装置
CN107528676B (zh) 一种上行传输的反馈信息的传输方法和设备
WO2012113330A1 (zh) 信息传输的方法和装置
WO2017016351A1 (zh) 一种上行数据的传输方法及装置
WO2015027798A1 (zh) 一种tdd-fdd联合系统中的传输方法和装置
WO2019030563A1 (en) METHOD AND APPARATUS FOR MONITORING CONTROL CANDIDATES BASED ON DATA PACKET ATTRIBUTIONS HAVING DIFFERENT RELIABILITY
WO2017219703A1 (zh) 一种上行传输的反馈信息的传输方法和设备
CN101677282A (zh) 无线资源调度的配置方法以及基站
EP3487230B1 (en) Uplink scheduling information sending and receiving
WO2018228044A1 (zh) 一种上行控制信道传输方法、终端、基站及装置
JP2018518883A (ja) 情報を送受信するための方法、ユーザ機器、および基地局
WO2018023501A1 (zh) 一种harq应答信息传输方法及设备
TWI786585B (zh) 資訊傳輸方法及裝置
JP6751180B2 (ja) キャリアアグリゲーションを使用するharqフィードバック
WO2014037772A1 (zh) 发送/接收harq消息的方法,基站和用户设备
WO2017219738A1 (zh) 一种发送和接收反馈信息的方法及设备
WO2018233640A1 (zh) 一种指示、确定时隙结构的方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17814442

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018566915

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20197001766

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2017814442

Country of ref document: EP

Effective date: 20190122