WO2015152658A1 - 항체의 당 함량 조절을 통한 항체의 제조 방법 - Google Patents

항체의 당 함량 조절을 통한 항체의 제조 방법 Download PDF

Info

Publication number
WO2015152658A1
WO2015152658A1 PCT/KR2015/003310 KR2015003310W WO2015152658A1 WO 2015152658 A1 WO2015152658 A1 WO 2015152658A1 KR 2015003310 W KR2015003310 W KR 2015003310W WO 2015152658 A1 WO2015152658 A1 WO 2015152658A1
Authority
WO
WIPO (PCT)
Prior art keywords
antibody
sugar chain
manganese
content
glycerol
Prior art date
Application number
PCT/KR2015/003310
Other languages
English (en)
French (fr)
Inventor
장재영
황은호
김용진
김원겸
박상경
박준용
안교은
안용호
윤지용
이정우
Original Assignee
한화케미칼 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한화케미칼 주식회사 filed Critical 한화케미칼 주식회사
Priority to US15/300,710 priority Critical patent/US10808272B2/en
Priority to CN201580023733.XA priority patent/CN106459185B/zh
Priority to DK15773537.4T priority patent/DK3127917T3/da
Priority to EP15773537.4A priority patent/EP3127917B1/en
Priority to ES15773537T priority patent/ES2893536T3/es
Priority to JP2016559960A priority patent/JP6389530B2/ja
Publication of WO2015152658A1 publication Critical patent/WO2015152658A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/08Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from viruses
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P21/00Preparation of peptides or proteins
    • C12P21/005Glycopeptides, glycoproteins
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/395Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum
    • A61K39/39533Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum against materials from animals
    • A61K39/3955Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum against materials from animals against proteinaceous materials, e.g. enzymes, hormones, lymphokines
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/395Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum
    • A61K39/39591Stabilisation, fragmentation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/28Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
    • C07K16/2863Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against receptors for growth factors, growth regulators
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/32Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against translation products of oncogenes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/20Bacteria; Culture media therefor
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/10Immunoglobulins specific features characterized by their source of isolation or production
    • C07K2317/14Specific host cells or culture conditions, e.g. components, pH or temperature
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/20Immunoglobulins specific features characterized by taxonomic origin
    • C07K2317/24Immunoglobulins specific features characterized by taxonomic origin containing regions, domains or residues from different species, e.g. chimeric, humanized or veneered
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/40Immunoglobulins specific features characterized by post-translational modification
    • C07K2317/41Glycosylation, sialylation, or fucosylation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/70Immunoglobulins specific features characterized by effect upon binding to a cell or to an antigen
    • C07K2317/73Inducing cell death, e.g. apoptosis, necrosis or inhibition of cell proliferation
    • C07K2317/732Antibody-dependent cellular cytotoxicity [ADCC]
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/90Immunoglobulins specific features characterized by (pharmaco)kinetic aspects or by stability of the immunoglobulin
    • C07K2317/92Affinity (KD), association rate (Ka), dissociation rate (Kd) or EC50 value

Definitions

  • the present invention comprises the step of culturing the antibody-expressing cells in a medium containing glycerol as an additive for controlling the antibody sugar chain content, a method for producing an antibody with a controlled sugar chain content, by adjusting the sugar content of the antibody to a target content of high quality It relates to a method for producing a population of antibodies and to a population of antibodies produced by the method. In addition, the present invention relates to a method for controlling the antibody sugar chain content, comprising culturing the antibody-expressing cells in a medium containing glycerol as an additive for controlling the antibody sugar chain content. In addition, the present invention relates to a medium composition for adjusting the antibody sugar chain content, comprising glycerol as an additive for controlling the antibody sugar chain content.
  • antibody therapeutics such as monoclonal antibodies (mAbs) and Fc fusion proteins are dominant.
  • ADCC Antibody Dependent Cell-mediated Cytotoxicity
  • CDC Complement Dependent Cytotoxicity
  • galactosylation It is the galactosylation of the Fc portion that affects the CDC of the antibody, and galactose is a building block of the glycosylation chain reaction in the galactosylation mechanism.
  • N-acetylglucosamine is attached next to sugar, and uridine is converted to UTP (uridine triphosphate) by uridine kinase, and then galactose-1 phosphate (galactose). -1-P) to form UDP-galactose, a galactosylation precursor.
  • Manganese (Mn 2+ ) is a cofactor of galactosyl transferase and enhances enzyme performance.
  • Typical fufucosylation-related enzyme genes are the GMD (GDP-mannose 4, 6-dehyratase) gene and the FUT8 (Alpha-1,6-fucosyltransferase) gene, which decrease the expression of these two genes or at the gene level.
  • GMD GDP-mannose 4, 6-dehyratase
  • FUT8 Alpha-1,6-fucosyltransferase
  • YAMANE-OHNUKI et al. "Establishment of FUT8 knockout Chinese hamster ovary cells: an ideal host cell line for producing completely defucosylated antibodies with a knock-out CHO host. enhanced antibody-dependent cellular cytotoxicity. ", BIOTECHNOLOGY AND BIOENGINEERING, 2004, p614-622).
  • Another method of inhibiting jufucosylation is to add a glycosidase inhibitor on the glycosylation pathway (FIG. 2, Hossler et al., “ Optimal and consistent protein glycosylation in mammalian cell culture ", Glycobiology, 2009, p939).
  • glycoproteins move from ER to Golgi and undergo high mannose trimming by glucosidase and mannosidases.
  • Another fucosylation control method is to control the osmotic pressure in the culture process.
  • the present inventors Under the background of a great demand for the development of a technique for enhancing ADCC activity through the regulation of sugar chains of antibodies, the present inventors have made diligent efforts to develop a method for maintaining a constant sugar chain content in a purified product during the production of biosimilar antibody pharmaceuticals. As a result, the present invention was completed by developing a method for consistently producing a high-quality or equivalent antibody population by adjusting the sugar chain content of the antibody to a desired ratio by developing a culture process additive.
  • the present inventors attempted to increase the ADCC activity of the antibody through the method of controlling the sugar chain content (galactosylation, afucosylation) of the antibody by adjusting the additives and conditions in the culture process in the production of the recombinant antibody, glycerol bifuco It was confirmed that the level of fucosylation can be increased and that the biosimilar development can be increased to a level similar to that of the reference drug. In addition, it was confirmed that glycerol, manganese, and uridine can be used as additives, and that the additives and conditions were controlled by controlling the sugar chain content of the antibody by confirming that they had a similar effect in the old and newly optimized processes using different media. It was confirmed that it can be widely used as a method of manufacturing.
  • One object of the present invention is to provide a method for producing an antibody having a controlled sugar chain content, comprising culturing the antibody-expressing cells in a medium containing glycerol as an additive for adjusting the antibody sugar chain content.
  • Another object of the present invention is to provide a population of antibodies with controlled sugar chain content prepared by the above method.
  • Another object of the present invention is to provide a method for controlling the antibody sugar chain content, comprising culturing the antibody-expressing cells in a medium containing glycerol as an additive for controlling the antibody sugar chain content.
  • Another object of the present invention to provide a medium composition for adjusting the antibody sugar chain content, comprising glycerol as an additive for controlling the antibody sugar chain content.
  • the sugar chain content of the antibody can be controlled to consistently produce a high quality target antibody population.
  • the control method becomes simple and timely. And high in economical efficiency it can be widely used in the field of antibody production.
  • 1 is a schematic diagram of an enzyme or precursor that is directly involved in the biosynthesis process of GDP-fucose, the building block of the fucosylation pathway, and the main fucosylation of antibodies.
  • FIG. 2 is a schematic diagram illustrating a glycosylation pathway.
  • 3 is a diagram measuring the non-fucosylation induced additive conditions experimental cell growth curve.
  • Figure 5 is a diagram measuring the final expression of the non-fucosylation induction additive condition experiment.
  • Figure 6 is a graph showing the relative content of galactoxylation glycoform of the antibody produced in the non-fucosylation induction additive condition experiment.
  • FIG. 7 is a graph showing the relative content of the afucosylation glycoform of the antibody produced in the non-fucosylation induction additive condition experiment.
  • M manganese
  • Urd uridine
  • FIG. 10 is a diagram measuring cell viability in manganese (M), galactose, uridine (Urd) individual or mixed addition experiments.
  • 11 is a diagram measuring the final expression in the manganese (M), galactose, uridine (Urd) individual or mixed addition conditions experiment.
  • FIG. 12 is a graph showing galactosylated content in a manganese (M), galactose, uridine (Urd) individual or mixed addition experiment.
  • FIG. 14 is a graph showing a result of comparing and analyzing the degree of increase and decrease of galactosylated and non-fucosylated antibodies compared to the control (Control) which is not added condition.
  • Figure 15 is a graph showing the results of measuring the (A) cell growth curve and (B) cell survival rate according to the concentration of glycerol added.
  • 16 is a diagram measuring the final antibody expression according to the concentration of glycerol added.
  • FIG. 17 is a diagram illustrating (A) galactosylation and (B) nonfucosylated sugar chain contents as a result of analyzing sugar chain contents according to glycerol addition concentration.
  • FIG. 18 is a graph showing results of measuring (A) cell growth curve and (B) cell viability in an additive-mixed flask culture experiment for simultaneous induction of galactosylation and afucosylation of a new process.
  • 19 is a diagram measuring the final antibody expression in the additive mixing flask culture experiment for the simultaneous induction of galactosylation and afucosylation of the new process.
  • 20 is a diagram measuring the (A) galactosylation and (B) non-fucosylated sugar chain content as a result of the sugar chain content analysis in the additive mixing flask culture experiment for the simultaneous induction of galactosylation and non-fucosylation of the new process.
  • Figure 21 is a diagram measuring the galactosylation / non-fucosylation difference (percent change) as a result of the sugar chain content analysis in the additive mixing flask culture experiment for the simultaneous induction of galactosylation and non-fucosylation of the new process.
  • FIG. 22 is a graph showing results of measuring (A) cell growth curve and (B) cell viability of a bioreactor culture experiment according to the concentration of glycerol added.
  • FIG. 23 is a diagram measuring the final antibody expression in the bioreactor culture experiment according to the concentration of glycerol addition.
  • FIG. 24 is a diagram illustrating sugar chain content analysis results of (A) galactosylation and (B) non-fucosylated sugar chains in a bioreactor culture experiment according to the concentration of glycerol.
  • FIG. 25 is a diagram illustrating galactosylation / non-fucosylation difference (percent change) as a result of analyzing the sugar chain content of a bioreactor culture experiment according to the concentration of glycerol.
  • FIG. 26 is a graph showing results of measuring (A) cell growth curve and (B) cell viability of final selection of new process additives and 3 batches bioreactor experiments.
  • FIG. 27 is a diagram illustrating final antibody expression in final selection of new process additives and 3 batches bioreactor experiments.
  • FIG. 28 is a diagram illustrating (A) galactosylation and (B) nonfucosylated sugar chain contents as a result of sugar chain content analysis of a final process of a new process additive and a 3-batch bioreactor experiment.
  • FIG. 29 is a diagram illustrating galactosylation / nonfucosylation difference (percent change) as a result of the final selection of the new process additive and the sugar chain content analysis of the three batches bioreactor experiment.
  • Fig. 30 is a graph showing results of measuring (A) cell growth curve and (B) cell viability of the old step (clinical phase 1 step) application effect confirmation experiment of the additive composition.
  • Figure 31 is a diagram measuring the final antibody expression amount of the experiment confirming the effect of applying the old step (clinical phase 1 step) of the additive composition.
  • 33 is a diagram measuring the galactosylation / non-fucosylation difference (percent change) compared to the control group as a result of the analysis of the sugar chain content of the old process (clinical phase 1 process) application effect confirmation experiment of the additive composition.
  • FIG. 34 is a diagram measuring the percent galactosylation / non-fucosylation synergistic effect compared to the old process sample as a result of sugar chain analysis of the addition effect confirmation experiment compared to the old process (clinical 1-phase process) of the additive composition.
  • FIG. 35 is a diagram illustrating (A) galactosylation and (B) nonfucosylated sugar chain contents as a result of analysis of sugar chain content in a three batches bioreactor experiment in a flask culture experiment for selecting afucosylation-inducing additives.
  • FIG. 35 is a diagram illustrating (A) galactosylation and (B) nonfucosylated sugar chain contents as a result of analysis of sugar chain content in a three batches bioreactor experiment in a flask culture experiment for selecting afucosylation-inducing additives.
  • the present invention provides a method for consistently producing a high-quality or equivalence antibody population, by adding an additive to the culture medium to adjust the sugar chain content of the antibody It provides a method for producing an antibody population comprising an antibody having a desired sugar chain content, in particular, the control of the sugar chain content of the antibody may be to control galactosylation or afucosylation.
  • the present invention is added to the culture medium during the production of the antibody to the culture medium by adding one or more additives selected from the group consisting of glycerol, manganese and uridine to increase the galactosylated, non-fucosylated or galactosylated / non-fucosylated content of the antibody
  • It may be to control, in particular may be a method for producing a sugar chain content-adjusted antibody, comprising culturing the antibody-expressing cells in a medium containing glycerol as an additive for adjusting the antibody sugar chain content.
  • the medium may further include one or more selected from the group consisting of manganese and uridine as glycerol as well as additives for adjusting the antibody sugar chain content.
  • the term "antibody” refers to a substance that is produced by stimulation of an antigen in the immune system, and specifically binds to a specific antigen, which floats lymph and blood to generate an antigen-antibody reaction.
  • the antibody of the present invention is not limited thereto, but may preferably include all therapeutic antibodies commonly used in the art, and more preferably, targets Human Epidermal Growth Factor Receptor 2 (HER-2).
  • the antibody may be trastuzumab or pertuzumab, most preferably trastuzumab.
  • trastuzumab also known as Herceptin, is a humanized antibody against HER2 developed by Genentech in the United States, which is known as an antibody therapeutic against HER2 / neu mainly expressed in breast cancer cells.
  • Antibody expressing cells in the present invention include without limitation natural or transformed cells expressing the antibody of interest.
  • the purposes of the present invention may be a cell expressing an antibody that is the target of sugar chain content control, in one embodiment of the present invention HD201 cell line expressing trastuzumab (Accession No .: KCTC 12164BP, Deposited: 2012.03.19, Deposited Location: Korea Research Institute of Bioscience and Biotechnology).
  • the cells capable of producing the antibody may preferably be animal cells, for example the Chinese hamster ovary cell line (CHO) or the mouse myeloma cell line (NSO).
  • the term "transfection” refers to a method of directly introducing DNA into a culture animal cell to change the genotype of the cell, and generally using a method of introducing a target gene into a medium such as a plasmid. do.
  • the transformation may be carried out according to a conventional method in the art, and examples thereof include calcium phosphate co-precipitation, DEAE-textlan treatment, electroporation, redistribution, and the like.
  • the term "a population of antibodies" refers to an antibody group including antibodies that may vary in sugar chain content, and for the purposes of the present invention, the antibody population refers to galactosylated antibodies, nonfucosylated antibodies.
  • the antibody group which includes an antibody and galactosylated / non-fucosylated antibody in a desired ratio is meant.
  • the antibody population includes both antibody groups that contain only one type of antibody, or include both non-galactosylated and non-fucosylated and non-antibodies.
  • the antibody population preferably refers to a group of antibodies whose sugar chain content is controlled through the production method of the present invention.
  • the sugar chain content may be at least one content selected from the group consisting of galactosylation content and afucosylation content.
  • the galactosyl content refers to the content of an antibody having a sugar chain to which galactose is bound
  • the non-fucosyl content refers to the content of an antibody having a sugar chain in which a fucosyl residue is removed.
  • Galactosylation and afucosylation are widely known as important modifications that have a significant effect on the ADCC and CDC of antibodies.
  • N-glycan galactosylation and afucosylation of a recombinant protein expressed using the gene of Trastuzumab and a control product (original product)
  • the present invention starts from the low level of 60 ⁇ 80% of the reference drug as a result of measuring the ADCC (Antibody Dependent Cell-mediated Cytotoxicity) activity of the antibody produced during the development of a new process.
  • ADCC Antibody Dependent Cell-mediated Cytotoxicity
  • the afucosylation level which plays an important role in ADCC activity, was determined by N-glycan analysis, and the reference drug ranged from 8% to 10% and the HD201 antibody ranged from 5% to 7%. Only confirmed. Accordingly, the present inventors conducted experiments to increase the galactosyl content and the non-fucosyl content.
  • manganese (Mn 2+) and by the addition of non-Foucault misfire induced additive to the conditions added to the galactose conditions and manganese (Mn 2+) and conditions without addition of the galactose of the invention As a result of the experiment by dividing the additives into the conditions, it was confirmed that the addition of two raw materials, manganese (Mn 2+ ) and galactose, was required to meet the level of galactosylation with the reference drug, and glycerol affected the afucosylation. It confirmed that it gives. Techniques related to glycerol and afucosylation effects have not been known and were first developed by the inventors.
  • uridine was selected as a candidate and then experimented.
  • manganese was the main factor for galactosylation in the new process because the G0F ratio and G1F ratio of the manganese addition conditions were closer to those of the control than the galactose and uridine addition conditions. I could confirm it.
  • galactosyl content increased as the concentration increased, but growth inhibition and expression decrease were observed under high concentration (8 mM).
  • Manganese, galactose and uridine addition conditions of the new process confirmed that manganese is the most important factor for galactosylation of antibodies, and improved process in terms of galactosylation and afucosylation when galactose was replaced with uridine. We found the possibility to design. Therefore, the present inventors experimented by applying manganese, uridine and glycerol mixed conditions to increase the affinity of galactosylation as well as non-fucosylation with the reference drug.
  • the experiment was performed to combine the results of the additive condition experiments so far to control the antibody (Trastuzumab) to the galactosylation and fucosylation pattern most similar to the reference drug (Herceptin ® ).
  • As an additive for controlling sugar chain content of antibody manganese, a major factor additive for improving galactosylation, glycerol, a non-fucosylation-inducing additive, can be substituted for galactose, and uridine, a cofactor additive for galactosylation and afucosylation.
  • the experiment was designed using.
  • bioreactor culture experiments showed that adding 2% glycerol rather than 1% to the main culture medium showed a high similarity to the reference drug (Herceptin ® ) in terms of non-fucosylation.
  • the reference drug Herceptin ®
  • the non-fucosylated ratio of the old process sample was 0.43
  • the condition of adding 2% glycerol was 0.86, which was slightly lower than the control drug, but increased twice as much as the old process sample. It was confirmed.
  • glycerol in order to increase the effect of the addition of glycerol, 2% glycerol was added to the feed medium (feed media) to feed.
  • feed media feed media
  • uridine it was added to replace galactose to increase the galactosylation effect, and the concentration was increased from 4 mM to 8 mM.
  • the pH of the culture was measured in the Flask experiment with uridine, the pH was found to be pH 6.9, so the culture pH was adjusted from pH 6.8 to pH 6.9 after uridine was added.
  • the experiment was designed to proceed with the culture by adding uridine (Urd) 8mM on the 5th day of the main culture.
  • uridine Urd
  • a new process was designed under the condition of adding 8 mM uridine to the 5th day of culture based on 40 ⁇ M manganese and 2% glycerol.
  • the glycosylation content of the antibody produced through the three batches bioreactor culture under the same conditions was confirmed.In each batch, the N-glycan profile of the 8th day sample was compared with the old process, resulting in HD201P-1102 ref.
  • the reference product was a Lactobacillus misfire% ground of (Herceptin ®) results the reference product (Herceptin ® Lot.H0717) is done compared to less than 2% difference from Lactobacillus misfire% ground in batches new process 3 in 43%, non-Foucault misfire 8.9% Since the difference with the new process was less than 2%, the effect was confirmed in terms of equivalence with the reference drug.
  • the reference drug was 1.7%, and the oligo-mannose type (4%) of the new process was about 2% higher.
  • glycosylation profile (galactosylation) was applied to the Fc N-glycan quality improvement additives (manganese, glycerol, uridine) designed in the new process simultaneously in the old process (different medium environment) in a small scale bioreactor. / afucosylation) was confirmed to be controlled.
  • Fc N-glycan quality improvement additives manganesese, glycerol, uridine
  • the galactosylation% increased by 1% to 43.8% and 43%, respectively. It was confirmed. In the case of non-fucosylated%, it was confirmed that the additive addition conditions increased by about 2 times to 18.7% and the unadded conditions to 9.1%. In addition, as a result of comparing the additive addition condition and the non-addition condition in the new process, it was confirmed that the galactosylation% increased by 8% to 40.5% and 31.8%, respectively. In the case of non-fucosylated%, the additive addition condition was 14.1%, and the non-addition condition was 6.1%.
  • ADCC activity analysis of the HD201 antibody was performed according to the antibody-dependent cytotoxicity assay SOP [HD201 antibody-dependent cytotoxicity assay].
  • the ADCC activity of the antibody prepared by adding the sugar chain content adjusting additive (manganese, glycerol, uridine) of the present invention was measured by a relative ADCC assay, which is an in vitro activity assay.
  • a relative ADCC assay As reference material (control) of ADCC activity, the original product (Herceptin ® ) currently sold is used. Test results are shown in relative ADCC activity% (B) with the relative activity ratio which is calculated by relative ADCC% (A) and PLA s / w with the same EC 50 values and the old, the resulting value and PLA using the EC 50 Although the results were slightly different, the overall tendency was found to be the same.
  • the additive addition condition showed 217.5% of ADCC activity compared to the reference drug, and the unadded condition showed 78.7%, which was lower than the control drug. Therefore, when Fc N-glycan quality improvement additives (manganese, glycerol, uridine) are added to the old process, the afucosylation ratio can be doubled, resulting in ADCC activity 100 could improve more than%.
  • the additive addition condition showed 130% ADCC activity compared to the reference drug, and the unadded condition was 42.7%, showing the lowest activity compared to the reference drug.
  • the new process can double the afucosylation rate by adding Fc N-glycan quality improvement additives (manganese, glycerol, uridine), as in the other processes using other media.
  • Fc N-glycan quality improvement additives manganese, glycerol, uridine
  • ADCC activity could be improved by more than 80% compared to no addition condition.
  • the trastuzumab manufacturing process using the sugar chain content adjusting additive of the present invention was confirmed, it was confirmed that sufficient control of the sugar chain content of the antibody was possible.
  • the case of glycerol has not been reported in studies or literature related to the afucosylation effect in Korea or foreign countries, the present inventors for the first time developed a method for producing an antibody by controlling the sugar chain content using glycerol based on the above experimental results.
  • the culture may be performed by a method well known to those skilled in the art at appropriate temperature, medium, and gas conditions depending on the antibody-expressing cells, and applied to the method for producing an antibody of the present invention, such as batch culture, fed-batch culture, continuous culture, or a combination thereof. It is not limited to possible methods.
  • the production method of the present invention comprises the steps of (a) culturing the antibody-expressing cells in a medium containing glycerol and manganese; And, (b) culturing the cells cultured through step (a) with a medium further comprising uridine, and in particular, (c) glycerol for the cells cultured in step (b). And it may further comprise the step of culturing by adding a low-value medium containing manganese.
  • the step (a) may be made for 3 days to 8 days, in one embodiment of the present invention was treated with uridine on the fifth day of culture.
  • the production method of the present invention comprises the steps of (a) culturing the antibody-expressing cells in a medium containing glycerol and manganese; (b) culturing the cells cultured through step (a) with a medium containing uridine; And (c) may be comprising the step of cultivating the oil in a medium containing glycerol and manganese.
  • step (a) and (b) may be made in a batch culture
  • step (c) may be made of fed-batch culture, but is not limited thereto.
  • the production method of the present invention may further comprise the step of purifying the antibody from the cell culture, the method for purifying the antibody is a variety of methods well known in the art, for example, protein A / G column, HPLC, etc. It can be done through the method.
  • the medium of the present invention may be one containing glycerol in the range of 0 to 10%, or 0.1 to 5% (v / v) concentration, in particular in the concentration range of 0.5 to 3% (v / v).
  • the medium may be one containing manganese in the concentration range of 0 to 250 ⁇ M, or 10 to 200 ⁇ M, in particular may be included in the concentration range of 20 to 120 ⁇ M.
  • the medium may be one containing uridine in a concentration range of 0 to 20 mM, or 1 to 10 mM, in particular may be included in a concentration range of 4 to 8 mM.
  • the medium of the present invention may be one containing glycerol within a concentration range of 0.5 to 3% (v / v), containing manganese within a concentration range of 20 to 120 ⁇ M, and containing uridine within a concentration range of 3 to 10 mM. have.
  • Manganese of the present invention is not limited to abnormal forms that are harmless to the human body, but may be, for example, manganese chloride.
  • the additive for controlling sugar chain content included in the medium of the present invention has a ratio of glycerol (%, v / v): manganese ( ⁇ M) based on the final concentration of the medium is 0.5: 20, 1: 20, 2: 20, 3 : 20, 0.5: 40, 1: 40, 2: 40, 3: 40, 0.5: 80, 1: 80, 2: 80, 3: 80, 0.5: 120, 1: 120, 2: 120 or 3: 120 Can be.
  • the uridine may be 2 to 8 mM based on the final concentration of the medium included in the medium of the present invention and constituting the additive for controlling sugar chain content.
  • the additive for controlling sugar chain content of the present invention has a ratio of glycerol (%, v / v): manganese ( ⁇ M): uridine (mM) based on the final medium concentration of 1.0: 40: 80 or 2.0 : It was confirmed that 40: 80 may have a sugar chain content similar to that of the conventional reference Herceptin ® .
  • the sugar chain content of the antibody prepared by the production method may be in the range of 35 to 50% of the galactosyl content, and the content of the non-fucosyl content in the range of 8 to 20%.
  • the present invention provides a population of antibodies with controlled sugar chain content prepared by the above method.
  • the method, antibody population and antibody population with controlled sugar chain content are as described above.
  • the present invention provides a method for controlling the antibody sugar chain content, comprising culturing the antibody-expressing cells in a medium containing glycerol as an additive for controlling the antibody sugar chain content, the medium is an additive for controlling the sugar chain content And may further include one or more selected from the group consisting of manganese and uridine.
  • the sugar chain content, the antibody, antibody-expressing cells, culture and the like are as described above.
  • Another object of the present invention to provide a medium composition for adjusting the antibody sugar chain content, comprising glycerol as an additive for controlling the antibody sugar chain content.
  • the sugar chain content, the antibody and the like are as described above.
  • the antibody sugar chain content adjusting medium composition of the present invention may further include one or more selected from the group consisting of manganese and uridine as the additive for adjusting the antibody sugar chain content.
  • the term "medium” broadly refers to a nutrient-containing solution that nourishes proliferative cells, which solutions generally contain essential and non-essential amino acids, vitamins, carbon sources, lipids that are necessary for the cells to proliferate and / or survive. And trace elements and the like, but is not limited thereto.
  • the medium is preferably prepared in a pH and salt concentration that is optimal for cell survival and proliferation according to the cell type to be cultured, a substance widely used in the art as a component for increasing proliferation and / or survival, including hormones and growth factors It may further include.
  • the components included in the medium of the present invention except for the antibody sugar chain content adjustment additive may include any component widely used in the production of antibodies in the art, which can be easily configured by those skilled in the art by common sense or experimentation. can do.
  • the additives were cultured based on Media A, and in the fed-batch culture, the additives were cultured based on Feed C.
  • Galactose was used to prepare a 200 g / L stock, manganese chloride, 4 water (Mn 2 + ) was used to prepare a 40 mM stock.
  • Manganese and galactose added to the production media were added by diluting the concentration based on 35 mL of the flask main culture volume, and the feed medium was further subdivided into 20 mL for each condition and 20 mL. Diluted stocks by volume were added.
  • Glucosamine and N-acetylglucosamine which are non-fucosylation induction additives, were used to prepare 1M stock, respectively, and glycerol was added at a volume ratio (v / v,%) considering 100% of the stock solution.
  • Sodium butyrate Sodium butyrate
  • lactose Lactose
  • Kifunensine an alpha-mannosidase I inhibitor
  • a concentration of 100 ⁇ g / mL a known substance (Qun Zhou et al., 2008; US 2007 / 0092521 A1).
  • Cell growth profile, cell viability profile, and final expression profile were measured in flask culture for selection of non-fucosylated inducible additives.
  • N-glycan analysis was performed to analyze the sugar chain content of the antibody. Specifically, N-glycan analysis was performed by analyzing PNGase from the antibody according to the HD201 N-glycan test SOP [N-glycan NP-UPLC test method of HD201] to separate only the N-glycan structure. Galactoxylation and afucosylation glycoforms were analyzed and the calculated relative contents of each were shown graphically (FIGS. 6 and 7). In addition, the results of comparing and analyzing the galactosylation and non-fucosylation increase and decrease compared to the control (control) which is not added condition is also shown in the graph (Fig. 8)
  • a method using manganese and galactose has been disclosed as a method for controlling the sugar chain content of existing antibodies (eg, Abbott US 2012/0276631; WO 2012/149197). In this experiment, the experiment was conducted to find a substitute for the two raw materials with other materials besides manganese and galactose.
  • the old process was created for the production of clinical phase 1 samples during the early stage of development, and the new process was developed for the clinical phase 3 process through process improvement.
  • the culture medium and the fed medium are different, and the additive of this patent was intended to increase the activity of the antibody by making the sugar chain formation pattern, especially the non-fucosylation content, similar to that of the original product during the new process development process.
  • Galactose was used to prepare a 200 g / L stock, manganese chloride, 4 water (Mn 2 + ) was used to prepare a 40 mM stock.
  • Manganese and galactose added to the production media were added by diluting the concentration based on 35 mL of the flask main culture volume, and the feed medium was further subdivided into 20 mL for each condition and 20 mL. Diluted stocks by volume were added.
  • the cell growth profile showed similar tendency under manganese- and galactose-added conditions as a result of the flask culture. Highest.
  • uridine (Urd) addition conditions growth inhibition was observed from the beginning of culture at 8 mM concentration, and in the case of 4 mM addition condition, the decrease in cell concentration was large at the end of the culture.
  • the manganese addition conditions had a relative content ratio of 0.9 to 1.1 compared to the unadded condition (Control), and the relative content ratio of galactose addition conditions was 0.9 to 1.0 level.
  • the relative content ratio compared to the non-added (Control) was confirmed to drop to 0.36. This was judged to be a decrease in expression amount following cell growth inhibition. Therefore, it was confirmed that the addition of manganese in the concentration range of 40 ⁇ M to 120 ⁇ M has no effect on the process.
  • the content of 40 ⁇ M manganese and 2 g / L galactose was the same as that of the control group (not added), and the three raw materials were added alone.
  • the manganese-added groups showed higher values than the galactose and uridine-added groups, thus confirming that manganese functions as a major factor of galactosylation in the new process.
  • the galactosylation content increased as the concentration increased, but growth inhibition and expression decrease were observed in the high concentration condition (8 mM). The addition of uridine was considered unsuitable for the new process.
  • the new manganese, galactose and uridine addition condition experiments confirmed that manganese is the most important factor for galactosylation of antibodies, and it will be improved in terms of galactosylation and afucosylation when galactose is replaced with uridine. Confirmed that it can.
  • the selected glycerol (glycerol, Gcr) was added to each concentration through a non-fucosylation-inducing additive selection experiment to confirm the effect.
  • Glycerol is a substance well known as an anti-freezing agent and protein stabilizer. It is mentioned that increased expression of recombinant protein is mentioned or increased sialic acid content (Rodriguez et al. 2005, Chi-Hsien Liu 2007). In addition, there was no mention in terms of non-fucosylation of the antibody related to the present invention.
  • the experiment was carried out to determine the effect of glycerol on the non-fucosylation of the antibody, specifically, the amount of glycerol added to 0, 0.5, 1 or 2% (v / v) to measure the glycerol addition and non-fucosylation content It was.
  • M manganese
  • Gcr glycerol
  • Urd cofactors for galactosylation and afucosylation added to replace galactose
  • glycerol was added only to the main culture medium at concentrations of 1% and 2%, respectively, in which the effect was confirmed in the addition concentration experiment (Examples 1-6).
  • the cell growth profile showed a similar tendency in the case of adding manganese (M), but in the case of adding glycerol In the case of 2% addition was confirmed that the cell growth rate is lower than when adding 1%.
  • the peak cell density of the glycerol-free condition 40 ⁇ M manganese + 2.0 g / L galactose
  • the 1% glycerol addition condition is similar, the addition of 1% glycerol affects the cell growth efficiency of the existing process. It was judged that there would be no.
  • Uridine was added to the 5th day of the main culture and growth inhibition problem did not occur at the beginning of the culture, but after the addition of uridine, it was confirmed that the decrease in cell viability was increased compared to the unadded condition.
  • the galactosylated and non-fucosylated sugar chain content according to the additive mixing conditions under the conditions of Table 4 was measured. Specifically, the area values of the N-glycan analysis peak profile were quantified by galactosylation and nonfucosylation contents.
  • the galactosylation content was increased compared to the uridine-free condition under the conditions in which uridine was added on the 5th day of culture based on the 40 ⁇ M manganese + 1% glycerol combination.
  • the addition of 4 mM uridine was confirmed to increase the content of non-fucosylation compared to the non-addition conditions.
  • the galactosylated content was increased compared to the uridine-free condition of the uridine-added condition on the fifth day of culture.
  • the galactosylation / nonfucosylation difference according to the addition of manganese, glycerol and uridine was confirmed using the condition of adding only 2.0 g / L of galactose to the new process, as shown in FIG. 21.
  • the galactosylation effect was increased to 6 to 13%, and the addition of glycerol was confirmed to increase the non-fucosylated content to 1.5 to 4%.
  • the glycerol addition concentration was the same as in Example 1-6 to add 1% and 2% (v / v) shown in Table 5 only to the main culture medium. Glycerol added to the main culture medium was added by diluting the stock solution (100%) with a concentration of 3.5L of the reactor main culture volume, and no glycerol was added to the fed-batch medium. During the new process development, additive experiments such as manganese and glycerol were conducted to adjust the galactosylated and nonfucosylated contents to levels similar to those of the reference drug (Herceptin ® ).
  • the cell growth profile was better than the condition in which 1% glycerol was added 2%. (A difference of about 10% based on peak cell density), and similar to no addition condition.
  • the final relative expression level of the glycerol-added group was higher than that of the non-added control group based on the last day of the culture.
  • the galactosylated and non-fucosylated sugar chain content according to the additive mixing conditions under the conditions of Table 5 was measured. Specifically, the results of N-glycan analysis in the recovery solution incubated for 8 days in a 2 unit (1% or 2% glycerol) bioreactor were converted into galactosylated content (A) and nonfucosylated content (B). Digitized.
  • Example 2-2 As confirmed in Example 2-2, when 2% of glycerol was added, there was an improvement in non-fucosylation compared to the non-added condition on the N-glycan profile, and as a result of Example 1, manganese and uridine were added. When galactosylation was effective.
  • the reference drug Herceptin ®
  • glycerol was added to the main culture medium and the fed-up medium, respectively, and 3 batches repeated cultures were carried out under the conditions of adding uridine at the concentration of 8 mM on the 5th day of culture. It was.
  • the cell growth profile is about 18 to 24 x 10 6 cells / mL based on the peak cell density.
  • the distribution of was confirmed to be a similar level compared to the unadded control.
  • the additive composition (manganese, glycerol, uridine) developed in the new process was applied to the old process in a small scale bioreactor to determine whether the desired glycosylation profile (galactosylation / nonfucosylation) is controlled. In addition, it was confirmed that the effects of additives in the old process are similar to the new process.
  • the peak cell density reference difference between the no additive and the new additive in the cell growth profile was 24%. It was confirmed that cell growth inhibition occurred by the addition of the additive to the extent. In addition, it was confirmed that the growth inhibition caused by the addition of additives occurred in the same process. This is interpreted as the effect of the addition of 3% glycerol in the additives, the existing experiments confirmed the tendency to increase the degree of cell growth inhibition as the concentration of glycerol addition increases.
  • the difference of the cell growth profile of the new and old process was confirmed by comparing the old process with no additives and the new process without additives, and the comparison of the old process with the additive addition and the new process with the additives. At the% level, the new process showed a large cell mass. In addition, the peak cell density difference of the additive addition condition was 28%, the new process was high. In the case of the old process, 7-day culture was performed in the small scale batch because 7-day culture was performed in the main culture.
  • the cell survival rate (B) maintained over 80% survival rate at the end of the cultivation for both additive and non-additive conditions. In the case of the old process without additives, the rate of survival decrease after the 5th day of culture was high. It was judged to be the cause.
  • the galactosylated and nonfucosylated sugar chain contents of the antibodies produced by culturing under the conditions of Table 7 were measured. This experiment was conducted to compare the conditions of adding the quality improvement additives (manganese, glycerol, uridine) to the new process and the old process, respectively.
  • the quality improvement additives manganese, glycerol, uridine
  • the result of confirming the glycosylation content (glycosylation quality) of the result of the bioreactor culture sample by N-glycan analysis is a result of the galactosylation and non-fucosylation content.
  • the galactosylation content (%) was 43.8% for additive addition and 43% for no addition. It confirmed that it increased.
  • the additive addition conditions increased by about 18.7% and the unadded conditions 9.1%.
  • the experimental results confirm that the addition of the additives for adjusting the antibody sugar chain content of manganese, glycerol and uridine of the present invention has a similar effect not only in the new process but also in the old process using a different medium, the additive is a medium It is confirmed that it can be used in any process without limitation.
  • ADCC activity analysis of the HD201 antibody was performed according to the antibody-dependent cytotoxicity assay SOP [HD201 antibody-dependent cytotoxicity assay].
  • ADCC activity of antibodies prepared by the addition of Fc N-glycan quality improvement additives was measured by relative ADCC assay.
  • Fc N-glycan quality improvement additives manganese, glycerol, uridine
  • control As reference material (control) of ADCC activity, the original product (Herceptin ® H4158B03 150 mg) currently sold was used.
  • the additive addition condition showed 217.5% of ADCC activity compared to the reference drug, and the unadded condition showed 78.7%, which was lower than the control drug. Therefore, when Fc N-glycan quality improvement additives (manganese, glycerol, uridine) are added to the old process, the afucosylation ratio can be doubled, resulting in ADCC activity 100 could improve more than%.
  • the additive addition condition showed 130% ADCC activity compared to the reference drug, and the unadded condition was 42.7%, showing the lowest activity compared to the reference drug.
  • the new process can double the afucosylation rate by adding Fc N-glycan quality improvement additives (manganese, glycerol, uridine), as in the other processes using other media.
  • Fc N-glycan quality improvement additives manganese, glycerol, uridine
  • ADCC activity could be improved by more than 80% compared to no addition condition.
  • the present invention was confirmed for the first time that the non-fucosylated content of the antibody can be enhanced by using glycerol, including the development of a process for controlling the sugar chain content of the antibody using manganese and uridine. It was confirmed that.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Genetics & Genomics (AREA)
  • Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • Molecular Biology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Wood Science & Technology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Biophysics (AREA)
  • Microbiology (AREA)
  • Zoology (AREA)
  • Biotechnology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Epidemiology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • General Engineering & Computer Science (AREA)
  • Mycology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oncology (AREA)
  • Virology (AREA)
  • Endocrinology (AREA)
  • Biomedical Technology (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
  • Peptides Or Proteins (AREA)

Abstract

본 발명은 글리세롤을 항체 당쇄 함량 조절용 첨가물로 포함하는 배지에서 항체 발현 세포를 배양하는 단계를 포함하는, 당쇄 함량이 조절된 항체의 제조 방법, 항체의 당 함량을 목표하는 함량으로 조절하여 고품질의 항체 집단(population of antibodies)을 제조하는 방법 및 상기 방법으로 제조된 항체 집단에 관한 것이다. 또한, 글리세롤을 항체 당쇄 함량 조절용 첨가물로 포함하는 배지에서 항체 발현 세포를 배양하는 단계를 포함하는, 항체 당쇄 함량을 조절하는 방법에 관한 것이다. 아울러, 본 발명은 글리세롤을 항체 당쇄 함량 조절용 첨가물로 포함하는, 항체 당쇄 함량 조절용 배지에 관한 것이다. 본 발명에 따른 항체의 제조 방법을 이용하면, 항체의 당쇄 함량을 조절하여 고품질의 목적하는 항체 집단을 일관적으로 제조할 수 있다. 또한, 바이오 시밀러 개발 측면에서도 본 발명에 의한 방법으로 항체의 당쇄 함량을 조절함으로써 대조약과 동등성을 높인 품질을 갖는 항체를 제조할 수 있으며, 이를 배지 조성물을 통하여 조절함에 따라 조절 방법이 간단해지고 시간적 및 경제적 측면에서 효용성이 높아 항체 제조 분야에서 널리 사용될 수 있다.

Description

항체의 당 함량 조절을 통한 항체의 제조 방법
본 발명은 글리세롤을 항체 당쇄 함량 조절용 첨가물로 포함하는 배지에서 항체 발현 세포를 배양하는 단계를 포함하는, 당쇄 함량이 조절된 항체의 제조 방법, 항체의 당 함량을 목표하는 함량으로 조절하여 고품질의 항체 집단(population of antibodies)을 제조하는 방법 및 상기 방법으로 제조된 항체 집단에 관한 것이다. 또한, 글리세롤을 항체 당쇄 함량 조절용 첨가물로 포함하는 배지에서 항체 발현 세포를 배양하는 단계를 포함하는, 항체 당쇄 함량을 조절하는 방법에 관한 것이다. 아울러, 본 발명은 글리세롤을 항체 당쇄 함량 조절용 첨가물로 포함하는, 항체 당쇄 함량 조절용 배지 조성물에 관한 것이다.
최근의 재조합 단백질 의약품 시장에서는 항체 치료제, 즉 단클론 항체(mAbs)와 Fc 융합 단백질이 대세를 이루고 있다.
이러한 항체 관련 약물의 치료 효과는 목적 세포의 신호 전달 체계를 저해하여 세포사멸(apoptosis)을 직접 유도되거나, ADCC(Antibody Dependent Cell-mediated Cytotoxicity) 또는 CDC(Complement Dependent Cytotoxicity)와 같은 간접 면역 메커니즘을 통해 유도될 수 있으며, 이런 두 가지 간접 면역 메커니즘을 항체의 "작용 기능(effector functions)"이라고 지칭한다. 신규 항체뿐만 아니라 바이오 베터, 바이오 시밀러 분야에서도 작용 기능은 중요한 이슈이기 때문에 기능 최적화 혹은 작용 기능의 in-vitro 유사성 확보를 위한 연구가 계속 진행되고 있다.
항체의 CDC에 영향을 주는 것은 Fc 부분의 갈락토실화(galactosylation)이며, 갈락토실화 메커니즘에서 갈락토즈(Galactose)는 글리코실화 연쇄 반응(glycosylation chain reaction)의 building block으로 갈락토실 전이효소(galactosyltransferase)에 의해 N-아세틸글루코사민(N-acetylglucosamine) 당 다음에 붙게 되며, 우리딘(Uridine)은 우리딘 인산화효소(uridine kinase)에 의해 UTP(uridine triphosphate)로 전환된 후 갈락토즈-1인산(galactose-1-P)과 결합하여 갈락토실화 전구체인 UDP-갈락토즈(UDP-galactose)가 된다. 망간(Manganese, Mn2+)는 갈락토실 전이효소의 조효소(cofactor)로 효소의 성능을 향상시키는 역할을 수행한다.
항체의 ADCC를 향상시키기 위한 연구는 크게 항체의 Fc 영역 자체의 engineering과 Fc 영역의 당사슬 변형으로 나눌 수 있다. 본 발명자들은 후자인 Fc 영역의 당사슬 변형에 중점적으로 연구하여, 당 함량을 조절하고자 하였다. 다국적 제약회사 및 선진 바이오 업체들은 당사슬 변형 기술들을 활용하여 effector functions 및 지속성이 향상된 차세대 버전을 출시하여 계속해서 시장을 점유하려는 노력을 기울이고 있는 반면 동종 업계 후발 업체들은 바이오 시밀러 시대에 발맞춰 오리지날 제품과 물리화학적 특성뿐만 아니라 당사슬까지 유사한 바이오 시밀러 제품을 만들고자 노력을 기울이고 있다. 그 이유는 당사슬의 성분 및 구조가 치료 효능과 인체 내 체류 시간, 약리 활성 및 면역 반응 등에 큰 영향을 미치게 되기 때문이다. 이에 바이오 시밀러 제품을 개발하고자 하는 업체들은 오리지날 제품의 당사슬 구조와 가능한 한 유사하게 만들어 동등한 치료 효능과 안정성을 나타내며, 면역 반응과 같은 부작용을 줄이려는 연구를 활발히 진행하고 있다.
이미 여러 문헌들에서 재조합 항체의 Fc region의 당사슬에서 core fucosylation이 ADCC에 중요한 영향을 준다는 보고들이 있으며, 많은 연구자들이 주푸코실화(core fucosylation)를 조절할 수 있는 방법들을 연구하고 있으며, 대표적인 연구 성과는 다음과 같다.
푸코실화 경로(fucosylation pathway)의 전구체(building block)인 GDP-푸코즈(GDP-fucose)의 생합성 과정 및 항체의 주푸코실화에 직접적으로 연관된 효소나 전구체에 대해서는 도 1(Sawa et al., "Glycoproteomic probes for fluorescent imaging of fucosylated glycans in vivo", PNAS, 2006, p12372)에 나타난 바와 같다. 이러한 푸코실화와 직접적으로 연관된 효소나 전구체의 합성을 저해시킴으로써 주푸코실화를 조절하는 방법이 연구되어 왔다.
대표적으로 알려진 주푸코실화 관련 효소 유전자는 GMD(GDP-mannose 4, 6-dehyratase) 유전자와 FUT8(Alpha-1,6-fucosyltransferase) 유전자로, 이 두 유전자의 발현을 저하시키거나, 유전자 수준에서 FUT8 knock-out 시킨 CHO host를 만들어 주푸코실화를 조절하는 방법이 소개된 바 있다((YAMANE-OHNUKI et al., "Establishment of FUT8 knockout Chinese hamster ovary cells: an ideal host cell line for producing completely defucosylated antibodies with enhanced antibody-dependent cellular cytotoxicity.", BIOTECHNOLOGY AND BIOENGINEERING, 2004, p614 ~ 622).
주푸코실화를 억제시키는 다른 방법으로는 글리코실화 경로(glycosylation pathway) 상에서 글리코시다제(glycosidase) 류의 억제제(inhibitor)를 첨가하는 방법이 있다(도 2, Hossler et al., "Optimal and consistent protein glycosylation in mammalian cell culture", Glycobiology, 2009, p939). 즉, 당단백질들이 세포 내 ER에서 Golgi로 이동하면서 글루코시다제들과 만노시다제(mannosidase)들에 의해 high mannose trimming 과정을 거치게 되는데, 이때 Kifunensine과 같은 alpha-mannosidase I inhibitor를 첨가하여 oligo-mannose type의 당단백질을 만듦으로써 푸코실화를 억제시키는 방법이다. 이 방법은 세포주 구축 등, 유전자 수준의 조절 방법보다 간단하고, 시간 및 비용 측면에서도 장점이 있다.
또 다른 푸코실화 조절(fucosylation control) 방법으로는 배양 공정에서 삼투압을 조절하는 것으로 YB2/0 세포주에서 삼투압이 높을수록 defucosylation level(deFuc%)이 감소시키는 방법(Yoshinobu et al., Cytotechnology, 2012, p249 ~ 265)이 개시되어 있으며, CHO 세포주의 경우 삼투압이 높고 배양 기간이 길어짐에 따라 mannose 5 glycoform이 증가(Efren Pacis et al., BIOTECHNOLOGY AND BIOENGINEERING, 2011, p1078 ~ 1088)한다는 보고가 있다. Mannose 5 glycoform이 증가한다는 것은 defucosylation level이 증가한다는 의미와 같다.
한편, 애보트(Abbott) 사의 아달리무맙(adalimumab) 특허 (US 2012/0276631 및 WO 2012/149197)에 망간과 갈락토즈를 이용하는 항체 당쇄 조절에 대한 내용이 개시되어 있으며, 우리딘의 경우 갈락토실화 관련 기 공지된 문헌들은 있으나, 여전히 당쇄 조절에서는 원하는 목표 함량으로의 항체 제조에는 어려움이 있었다.
항체의 당쇄 조절을 통하여 ADCC 활성을 높이는 기술에 대한 개발이 크게 요구되고 있는 배경 하에, 본 발명자들은 바이오 시밀러 항체 의약품 제조시 정제 산물에 항체의 당쇄 함량이 일정하게 유지되는 방법을 개발하고자 예의 노력한 결과, 배양 공정 첨가물을 개발하여 항체의 당쇄 함량을 원하는 비율로 조절하여 고품질 또는 동등성이 확보된 항체 집단을 일관되게 제조할 수 있는 방법을 개발하여 본 발명을 완성하였다.
구체적으로, 본 발명자들은 재조합 항체의 생산에 있어서 배양 공정에 첨가물 및 조건을 조절하여 항체의 당쇄 함량(galactosylation, afucosylation)을 조절하는 방법을 통해 항체의 ADCC 활성을 높이고자 한 결과, 글리세롤이 비푸코실화 수준(fucosylation level)을 높이고, 바이오 시밀러 개발의 경우 대조약과 유사한 수준으로 높일 수 있음을 확인하였다. 또한 첨가물로 글리세롤, 망간 및 우리딘을 이용할 수 있음을 확인하고, 다른 배지를 사용하는 구공정 및 새로 최적화한 공정에서도 유사한 효과가 있음을 확인함으로써 상기 첨가물 및 조건이 항체의 당쇄 함량을 조절하여 항체를 제조하는 방법으로 널리 활용될 수 있음을 확인하였다.
본 발명의 하나의 목적은 글리세롤을 항체 당쇄 함량 조절용 첨가물로 포함하는 배지에서 항체 발현 세포를 배양하는 단계를 포함하는, 당쇄 함량이 조절된 항체의 제조 방법을 제공하는 것이다.
본 발명의 다른 하나의 목적은 상기 방법에 의해 제조된 당쇄 함량이 조절된 항체 집단을 제공하는 것이다.
본 발명의 또 다른 하나의 목적은 글리세롤을 항체 당쇄 함량 조절용 첨가물로 포함하는 배지에서 항체 발현 세포를 배양하는 단계를 포함하는, 항체 당쇄 함량을 조절하는 방법을 제공하는 것이다.
본 발명의 또 다른 하나의 목적은 글리세롤을 항체 당쇄 함량 조절용 첨가물로 포함하는, 항체 당쇄 함량 조절용 배지 조성물을 제공하는 것이다.
본 발명에 따른 항체의 제조 방법을 이용하면, 항체의 당쇄 함량을 조절하여 고품질의 목적하는 항체 집단을 일관적으로 제조할 수 있다. 또한, 바이오 시밀러 개발 측면에서도 본 발명에 의한 방법으로 항체의 당쇄 함량을 조절함으로써 대조약과 동등성을 높인 품질을 갖는 항체를 제조할 수 있으며, 이를 배지 조성물을 통하여 조절함에 따라 조절 방법이 간단해지고 시간적 및 경제적 측면에서 효용성이 높아 항체 제조 분야에서 널리 사용될 수 있다.
도 1은 푸코실화 경로(fucosylation pathway)의 전구체(building block)인 GDP-푸코즈(GDP-fucose)의 생합성 과정 및 항체의 주푸코실화에 직접적으로 연관된 효소나 전구체에 대한 모식도이다.
도 2는 글리코실화 경로(glycosylation pathway)를 개시하고 있는 모식도이다.
도 3은 비푸코실화 유도 첨가물 조건 실험 세포 성장 곡선을 측정한 도이다.
도 4는 비푸코실화 유도 첨가물 조건 실험 세포 생존율을 측정한 도이다.
도 5는 비푸코실화 유도 첨가물 조건 실험 최종 발현량을 측정한 도이다.
도 6은 비푸코실화 유도 첨가물 조건 실험에서 생산된 항체의 갈락토실화(galactoxylation) glycoform의 상대 함량을 그래프로 나타낸 도이다.
도 7은 비푸코실화 유도 첨가물 조건 실험에서 생산된 항체의 비푸코실화(afucosylation) glycoform의 상대 함량을 그래프로 나타낸 도이다.
도 8은 미첨가 조건인 대조군(Control) 대비 갈락토실화 및 비푸코실화 항체의 증감 정도를 비교 분석한 결과를 그래프로 나타낸 도이다.
도 9는 망간(M), 갈락토즈, 우리딘(Urd) 개별 또는 혼합 첨가 조건 실험에서 세포 성장 곡선을 측정한 도이다.
도 10은 망간(M), 갈락토즈, 우리딘(Urd) 개별 또는 혼합 첨가 조건 실험에서 세포 생존율을 측정한 도이다.
도 11은 망간(M), 갈락토즈, 우리딘(Urd) 개별 또는 혼합 첨가 조건 실험에서 최종 발현량을 측정한 도이다.
도 12는 망간(M), 갈락토즈, 우리딘(Urd) 개별 또는 혼합 첨가 조건 실험에서 갈락토실화 함량을 계산하여 나타낸 그래프이다.
도 13은 망간(M), 갈락토즈, 우리딘(Urd) 개별 또는 혼합 첨가 조건 실험에서 비푸코실화 함량을 계산하여 나타낸 그래프이다.
도 14는 미첨가 조건인 대조군(Control) 대비 갈락토실화 및 비푸코실화 항체의 증감 정도를 비교 분석한 결과를 그래프로 나타낸 도이다.
도 15는 글리세롤 첨가 농도에 따른 (A) 세포 성장 곡선과 (B) 세포 생존율을 측정한 결과를 그래프로 나타낸 도이다.
도 16은 글리세롤 첨가 농도에 따른 최종 항체 발현량을 측정한 도이다.
도 17은 글리세롤 첨가 농도에 따른 당쇄 함량 분석 결과로 (A) 갈락토실화 및 (B) 비푸코실화 당쇄 함량을 측정한 도이다.
도 18은 신공정의 갈락토실화 및 비푸코실화 동시 유도를 위한 첨가물 혼합 플라스크 배양 실험에서 (A) 세포 성장 곡선과 (B) 세포 생존율을 측정한 결과를 그래프로 나타낸 도이다.
도 19는 신공정의 갈락토실화 및 비푸코실화 동시 유도를 위한 첨가물 혼합 플라스크 배양 실험에서 최종 항체 발현량을 측정한 도이다.
도 20은 신공정의 갈락토실화 및 비푸코실화 동시 유도를 위한 첨가물 혼합 플라스크 배양 실험에서 당쇄 함량 분석 결과로 (A) 갈락토실화 및 (B) 비푸코실화 당쇄 함량을 측정한 도이다.
도 21은 신공정의 갈락토실화 및 비푸코실화 동시 유도를 위한 첨가물 혼합 플라스크 배양 실험에서 당쇄 함량 분석 결과로 갈락토실화/ 비푸코실화 차이(percent change)를 측정한 도이다.
도 22는 글리세롤 첨가 농도에 따른 생물반응기(Bioreactor) 배양 실험의 (A) 세포 성장 곡선과 (B) 세포 생존율을 측정한 결과를 그래프로 나타낸 도이다.
도 23은 글리세롤 첨가 농도에 따른 생물반응기(Bioreactor) 배양 실험의 최종 항체 발현량을 측정한 도이다.
도 24는 글리세롤 첨가 농도에 따른 생물반응기(Bioreactor) 배양 실험의 당쇄 함량 분석 결과로 (A) 갈락토실화 및 (B) 비푸코실화 당쇄 함량을 측정한 도이다.
도 25는 글리세롤 첨가 농도에 따른 생물반응기(Bioreactor) 배양 실험의 당쇄 함량 분석 결과로 갈락토실화/ 비푸코실화 차이(percent change)를 측정한 도이다.
도 26은 신공정 첨가물 최종 선정 및 3 batches 생물 반응기 실험의 (A) 세포 성장 곡선과 (B) 세포 생존율을 측정한 결과를 그래프로 나타낸 도이다.
도 27은 신공정 첨가물 최종 선정 및 3 batches 생물 반응기 실험의 최종 항체 발현량을 측정한 도이다.
도 28은 신공정 첨가물 최종 선정 및 3 batches 생물 반응기 실험의 당쇄 함량 분석 결과로 (A) 갈락토실화 및 (B) 비푸코실화 당쇄 함량을 측정한 도이다.
도 29는 신공정 첨가물 최종 선정 및 3 batches 생물 반응기 실험의 당쇄 함량 분석 결과로 갈락토실화/ 비푸코실화 차이(percent change)를 측정한 도이다.
도 30은 첨가물 구성의 구공정(임상 1상 공정) 적용 효과 확인 실험의 (A) 세포 성장 곡선과 (B) 세포 생존율을 측정한 결과를 그래프로 나타낸 도이다.
도 31은 첨가물 구성의 구공정(임상 1상 공정) 적용 효과 확인 실험의 최종 항체 발현량을 측정한 도이다.
도 32는 첨가물 구성의 구공정(임상 1상 공정) 적용 효과 확인 실험의 당쇄 함량 분석 결과로 (A) 갈락토실화 및 (B) 비푸코실화 당쇄 함량을 측정한 도이다.
도 33은 첨가물 구성의 구공정(임상 1상 공정) 적용 효과 확인 실험의 당쇄 함량 분석 결과로 대조군 대비 갈락토실화/ 비푸코실화 차이(percent change)를 측정한 도이다.
도 34는 첨가물 구성의 구공정(임상 1상 공정) 대비 첨가 효과 확인 실험의 당쇄 함량 분석 결과로 구공정 시료 대비 갈락토실화/ 비푸코실화 상승 효과를(percent change) 측정한 도이다.
도 35는 비푸코실화(afucosylation) 유도 첨가물 선별을 위한 플라스크 배양 실험에서의 3 batches 생물 반응기 실험의 당쇄 함량 분석 결과로 (A) 갈락토실화 및 (B) 비푸코실화 당쇄 함량을 측정한 도이다.
상기의 목적을 달성하기 위한 하나의 양태로서, 본 발명은 고품질 또는 동등성이 확보된 항체 집단을 일관되게 제조할 수 있는 방법을 제공하는 것으로, 배양 배지에 첨가물을 첨가하여 항체의 당쇄 함량을 조절하여 원하는 당쇄 함량을 가지는 항체를 포함하는 항체 집단을 제조하는 방법을 제공하며, 특히 상기 항체의 당쇄 함량의 조절은 갈락토실화(galactosylation) 또는 비푸코실화(afucosylation)을 조절하는 것일 수 있다.
구체적으로, 본 발명은 항체의 생산 공정 중 배양 배지에 글리세롤, 망간 및 우리딘으로 이루어진 군으로부터 선택된 하나 이상의 첨가물을 첨가하여 항체의 갈락토실화, 비푸코실화 또는 갈락토실화/비푸코실화 함량을 조절하는 것일 수 있으며, 특히 글리세롤을 항체 당쇄 함량 조절용 첨가물로 포함하는 배지에서 항체 발현 세포를 배양하는 단계를 포함하는, 당쇄 함량이 조절된 항체의 제조 방법일 수 있다. 또한, 본 발명에서 배지는 글리세롤 뿐 아니라 항체 당쇄 함량 조절용 첨가물로 망간 및 우리딘으로 이루어진 군으로부터 선택된 하나 이상을 추가로 포함하는 것일 수 있다.
본 발명에서 용어, "항체"는 면역계 내에서 항원의 자극에 의하여 만들어지는 물질로서, 특정한 항원과 특이적으로 결합하여 림프와 혈액을 떠돌며 항원항체 반응을 일으키는 물질을 의미한다. 본 발명의 항체는 이에 제한되지는 않으나, 바람직하게는 당해 분야에서 통상적으로 사용되는 치료용 항체를 모두 포함할 수 있으며, 보다 바람직하게는 HER-2(Human Epidermal Growth Factor Receptor 2)를 표적으로 하는 항체인 트라스투주맙(trastuzumab) 또는 퍼투주맙(pertuzumab)일 수 있으며, 가장 바람직하게는 트라스투주맙(trastuzumab)일 수 있다. 상기 트라스투주맙은 허셉틴(Herceptin)이라고도 하며, 유방암 세포에서 주로 발현되는 HER2/neu에 대한 항체치료제로 알려져 있는 미국 Genentech사에서 개발한 HER2에 대한 인간화 항체이다.
본 발명에서 항체 발현 세포는 목적하는 항체를 발현하는 천연형 또는 형질전환 세포를 제한없이 포함한다. 본 발명의 목적상 당쇄 함량 조절의 대상이 되는 항체를 발현하는 세포일 수 있으며, 본 발명의 일 실시예에서는 트라스투주맙을 발현하는 HD201 세포주(기탁번호: KCTC 12164BP, 기탁일: 2012.03.19, 기탁장소: 한국생명공학연구원/미생물자원센터)일 수 있다. 상기 항체를 생산할 수 있는 세포는 바람직하게는 동물세포일 수 있으며, 예를 들어 중국 햄스터 난소 세포주(CHO)이거나 마우스 골수종 세포주(NSO)일 수 있다.
본 발명에서 용어, "형질전환(transfection)"은 배양 동물 세포에 DNA를 직접 도입하여 세포의 유전형질을 변이시키는 방법으로서, 일반적으로 목적으로하는 유전자를 플라스미드 등의 매개체에 넣어 도입하는 방법을 사용한다. 상기 형질전환은 당 분야의 통상적인 방법에 따라 실시될 수 있으며, 바람직하게는 그 예로 인산칼슘공침법, DEAE-텍스트란처리법, 전기천공법, 재분포법 등이 있다.
본 발명에서 용어, "항체 집단(a population of antibodies)"은 당쇄 함량이 다양할 수 있는 항체들을 포함하는 항체 군을 의미하며, 본 발명의 목적상 상기 항체 집단은 갈락토실화 항체, 비푸코실화 항체, 갈락토실화/비푸코실화 항체를 목적하는 비율로 포함하는 항체 군을 의미한다. 상기 항체 집단은 한 종류의 항체만을 포함하거나, 갈락토실화가 되거나 되지 않은 항체 및 비푸코실화 된 항체나 되지 않은 항체를 모두 포함하는 항체 군을 모두 포함한다. 본 발명의 목적상 상기 항체 집단은 바람직하게는 본 발명의 제조 방법을 통하여 당쇄 함량 조절된 항체 군을 의미한다.
본 발명에서 당쇄 함량은 갈락토실(Galactosylation) 함량 및 비푸코실(afucosylation) 함량으로 이루어진 군으로부터 선택된 하나 이상의 함량일 수 있다.
본 발명에서 갈락토실 함량이란 갈락토즈가 결합된 당쇄를 가지는 항체의 함량을 의미하며 비푸코실 함량이란 푸코실 잔기가 제거된 상태의 당쇄를 가지는 항체의 함량을 의미한다. 갈락토실화와 비푸코실화는 항체의 ADCC 및 CDC에 큰 영향을 미치는 중요한 modification으로 널리 알려져 있다.
바이오 시밀러(Biosimilar)를 개발하기 위해서는 quality(당쇄 함량) 측면에서 대조약과 높은 동등성을 갖는 결과물을 제조하는 것이 가장 중요한 개발 point 중 하나이다.
본 발명자들은 트라스투주맙(Trastuzumab)의 유전자를 이용하여 발현 수득한 재조합 단백질과 대조약(오리지날사 제품)과의 N-글리칸(N-glycan; 갈락토실화 및 비푸코실화, galactosylation and afucosylation)의 유사성을 높이기 위한 연구를 지속적으로 추진하였다. 트라스투주맙을 제조할 경우 배양조건에 따라 N-글리칸들의 함량, 특히 갈락토실 함량 및 비푸코실 함량이 상대적으로 대조약보다 낮은 분포를 가지는 것을 확인하였다. 특히 비푸코실 함량은 항체의 활성(ADCC)에 매우 중요한 지표이기 때문에 비푸코실 함량을 상승시켜 대조약과 동등한 품질로 맞추기 위한 배양 공정 첨가물 연구를 진행하였다.
구체적으로, 본 발명은 신공정 개발 과정에서 생산된 항체의 ADCC(Antibody Dependent Cell-mediated Cytotoxicity) 활성을 측정해 본 결과 대조약의 60~80% 수준으로 낮은 것에서 시작되었다. 위에서 언급한 바와 같이 ADCC 활성에 중요한 역할을 하는 비푸코실화 수준(afucosylation level)을 N-글리칸 분석을 통해 확인해본 결과 대조약은 8~10% 범위였고, HD201 항체는 5~7% 범위에 불과한 것을 확인하였다. 이에 따라 본 발명자들은 갈락토실 함량과 비푸코실 함량을 증대하기 위하여 실험을 진행하였다.
본 발명에 앞서 갈락토실화를 유도하기 위해 당전구체를 첨가한 조건 실험을 진행한 결과 분석 결과에서 갈락토실화 효과는 크지 않았지만, 비푸코실화 함량이 높게 나타난 갈락토즈 + 망간(Mn2+) 조건을 바탕으로 하여 다른 조건에 변화를 주어 당쇄 함량(quality) 변화를 확인하고자 하였다.
이에 따라, 본 발명의 구체적인 일 실시예에서는 망간(Mn2+)과 갈락토즈를 첨가한 조건에 비푸코실화 유도 첨가물을 첨가한 조건과 망간(Mn2+)과 갈락토즈를 첨가하지 않은 조건에 첨가물을 첨가한 조건으로 나누어 실험을 진행해 본 결과 대조약과의 갈락토실화 수준을 맞추기 위해서는 망간(Mn2+)과 갈락토즈, 두 원료의 첨가가 필요함을 확인하였으며, 글리세롤이 비푸코실화에 영향을 준다는 것을 확인하였다. 글리세롤과 비푸코실화 현상(afucosylation effect)와 관련된 기술은 기존에 알려진 바 없으며 본 발명자들이 최초로 개발한 것이다.
글리세롤 첨가 적정 농도를 결정하기 위해 0~3.0%(v/v)까지의 농도 범위에서 실험을 실시하였고, 글리세롤 첨가 농도가 증가될수록 항체의 비푸코실화 함량이 함께 증가된다는 것을 확인하였다. 특히 상대적으로 비푸코실 함량은 높이면서, 미첨가 조건 대비 배양 성능은 유사한 농도 범위를 시험한 결과, 글리세롤 농도 범위 1% 내지 2%에서 우수한 효과를 가지는 것을 확인되었다.
또한, 본 발명의 구체적인 일 실시예에서는 상기 갈락토즈 함량을 증진시키기 위한 첨가물로 망간과 갈락토즈 외에 대체 가능한 물질을 탐색하여 우리딘을 후보에 선택한 후 실험을 진행하였다. 각각 세 원료들을 단독으로 첨가한 조건들 중에는 망간 첨가 조건들의 G0F ratio와 G1F ratio가 갈락토즈, 우리딘 단독 첨가 조건보다 대조약에 가까운 값을 나타냈기 때문에 망간이 신공정에서 갈락토실화의 주요인자임을 확인할 수 있었다. 한편 우리딘 단독 첨가 조건의 경우 첨가 농도가 증가할수록 갈락토실 함량이 증가하는 것을 확인할 수 있었으나, 고농도 첨가 조건(8 mM)에서 성장 저해 현상 및 발현량 저하 현상이 확인되었기 때문에 배양 초기에 고농도의 우리딘을 첨가하는 것은 신공정에 부적합한 것으로 판단되었다. 비푸코실화 관점에서 망간, 갈락토즈 그리고 우리딘 세 원료를 비교해 본 결과 망간과 갈락토즈는 연관성이 별로 없었으며, 우리딘의 경우 첨가 농도가 증가할수록 비푸코실 함량이 증가하는 것을 확인할 수 있었다.
신공정의 망간, 갈락토즈 및 우리딘 첨가 조건 실험을 통하여 항체의 갈락토실화에 가장 중요한 인자는 망간임을 확인하였으며, 갈락토즈를 우리딘으로 대체하였을 때 갈락토실화와 비푸코실화 측면에서 개선된 공정을 설계할 수 있는 가능성을 발견하였다. 따라서 본 발명자들는 대조약과 갈락토실화 뿐만 아니라 비푸코실화 동등성도 높이기 위해 망간, 우리딘 및 글리세롤 혼합 첨가 조건들을 적용하여 실험하였다.
본 발명의 구체적인 일 실시예에서는 지금까지 진행된 첨가물 조건 실험들의 결과를 조합하여 항체(Trastuzumab)가 대조약(Herceptin®)과 가장 유사한 갈락토실화와 푸코실화 패턴이 되도록 조절하기 위하여 실험을 수행하였다. 항체의 당쇄 함량 조절용 첨가물로 갈락토실화 향상의 주요인자 첨가물인 망간과 비푸코실화 유도 첨가물인 글리세롤, 마지막으로 갈락토즈를 대체할 수 있으며, 갈락토실화와 비푸코실화의 보조인자 첨가물인 우리딘을 이용하여 실험을 설계하였다.
우리딘의 경우 고농도로 첨가하면 비푸코실화를 촉진하는 반면 성장 저해에 의한 발현량 저하라는 단점을 확인하였는바, 배양 5일차에 우리딘을 별도로 첨가하여 성장 저해 및 고 만노즈 생성(Growth inhibition 및 high mannose form) 증가를 최소화할 수 있도록 하였다.
망간의 경우 갈락토실화를 촉진하는 효과가 가장 큰 것을 확인하였고, 20 ~ 120μM 농도 범위에서 유사한 효과를 확인하였다. 또한, 글리세롤은 비푸코실화 효과가 확인된 1% 내지 3% 농도 범위에서 첨가 농도에 비례하는 효과를 확인하였다.
세 가지의 요소를 혼합하여 첨가물을 처리한 결과 우리딘의 경우 갈락토실화을 향상시키는 효과가 확인되어 갈락토즈 대체가 가능할 것으로 판단되었으며, 작지만 비푸코실화를 향상시키는 결과도 확인하였다. 한편, 플라스크 배양 실험에서 대조약(Herceptin® H0717)과 가장 유사한 조건은 40μM 망간 + 1% 글리세롤 조합을 바탕으로 우리딘을 첨가(배양 5일차)하는 조건인 것을 확인하였다.
반면 생물반응기(bioreactor) 배양 실험 결과 본배양 배지에 1%보다는 2% 글리세롤을 첨가해 주는 것이 비푸코실화 관점에서 대조약(Herceptin®)과의 유사성이 높다는 것을 확인할 수 있었다. 비푸코실화 비율에서 대조약을 '1'로 볼 때 구공정 시료의 비푸코실화 비율은 0.43이고, 2% 글리세롤 첨가 조건은 0.86으로 대조약 대비로는 약간 낮으나, 구공정 시료보다 무려 2배 증가한 것을 확인하였다.
당쇄 조절(galactosylation and afucosylation) 개선 첨가물 생물반응기 조건 실험들의 결과에서 글리세롤 2%를 첨가하였을 때, N-글리칸 profile 상에서 구공정 시료 대비 비푸코실 비율을 높이는데 효과가 있었고, 갈락토실화 측면에서는 망간과 우리딘을 첨가했을 때 갈락토실화 개선 효과를 확인하였다. 그러나 대조약(Herceptin® )과의 완전한 동일성을 보이는 것은 아니므로 글리세롤과 우리딘의 첨가 농도 및 방법을 변경하여 보았다.
우선 글리세롤의 경우 첨가의 효과를 높이기 위하여 유가 배지(feed media)에도 2% 글리세롤을 첨가하여 feeding 하고자 하였다. 우리딘의 경우 갈락토즈를 대체하여 첨가하는 것으로 갈락토실화 효과를 높이기 위하여 첨가하는 농도를 4mM에서 8mM로 높여 첨가하였다. 또한 우리딘을 첨가한 Flask 실험에서 배양 최종일 pH를 측정해본 결과 pH 6.9 수준으로 나타났기 때문에 우리딘 첨가 이후 배양 pH를 pH 6.8에서 pH 6.9로 조절해 주었다. 생물반응기에서는 pH 6.8을 유지하기 위하여 CO2 gas를 공급해주기 때문에 배양 4일차부터 pCO2가 지속적으로 증가하는 경향성이 있으며, 배양 5일차에 100 mmHg 이상으로 급격하게 증가함을 확인한바, pCO2가 높으면 glycosylation에 부정적인 영향을 준다는 문헌(Kimura R, 1997)을 참고하여 배양 5일차에 본배양 pH를 pH 6.9로 높이면 pCO2양이 감소시켰다. 이러한 사항을 반영하여 신공정의 첨가물에 대한 선정으로 3 batches 모두 동일하게 본배양 배지에 당쇄 함량 조절용(quality improvement) 첨가물인 40μM 망간(M) 및 2%(v/v) 글리세롤(Gcr)을 첨가하였으며, 본배양 5일차에 우리딘(Urd) 8mM을 첨가하여 배양을 진행하도록 실험을 설계하였다. 그 결과 40μM 망간과 2% 글리세롤을 바탕으로 8mM 우리딘을 배양 5일차에 첨가하는 조건으로 신공정을 설계하였다. 또한 동일한 조건으로 3 batches 생물반응기 배양을 통해 생산되는 항체의 글리코실화 함량을 확인하였으며, 각 batch 별로 본배양 8일차 시료의 N-글리칸 profile을 구공정과 비교해본 결과 HD201P-1102 ref.(In-house standard)의 갈락토실화(Sum of all oligosaccharide with galactose) %는 33.9%였고, 신공정 3 batches의 갈락토실화 %는 41.8 ~ 42.2%로 8% 정도 높은 수치를 나타내었다. 또한 비푸코실화(Sum of all oligosaccharide without fucose) %의 경우 HD201P-1102 시료가 3.8%였고, 신공정 3 batches는 9.1 ~ 9.5%로 6% 정도 향상된 수치를 나타내었다. 대조약(Herceptin®)과 비교해본 결과 대조약(Herceptin® Lot.H0717)의 갈락토실화 %는 43%로 신공정 3 batches의 갈락토실화 %와의 차이가 2% 미만이었고, 비푸코실화 % 는 8.9%로 신공정과의 차이가 2% 미만으로 나타났기 때문에 대조약과의 동등성 측면에서 그 효과를 확인할 수 있었다. Oligo-mannose type(Sum of all oligosaccharide with mannose)의 경우 대조약은 1.7%로, 신공정의 oligo-mannose type(4%)이 2%가량 높은 것을 확인할 수 있었다.
추가적으로 신공정에서 설계한 당쇄 함량 조절용(Fc N-glycan quality improvement) 첨가물(망간, 글리세롤, 우리딘)에 대하여 small scale 생물 반응기에서 구공정(서로 다른 배지 환경)에 동시에 적용하여, 글리코실화 profile (galactosylation /afucosylation)이 조절되는지를 확인하였다. 글리세롤의 경우 신공정에서 본배양 배지와 유가 배지에 모두 2% 글리세롤을 첨가하였으나 이번 실험에서는 글리세롤첨가 농도를 3%로 높여 첨가하였다. 생물반응기 본배양 회수 시료 중 구공정에 첨가물 첨가 조건과 미첨가 조건의 N-글리칸 profile을 비교해본 결과 갈락토실화 %는 첨가물 첨가 조건이 43.8%, 미첨가 조건이 43%로 1%정도 증가한 것을 확인하였다. 비푸코실화 %의 경우 첨가물 첨가 조건이 18.7%, 미첨가 조건이 9.1%로 2배 가량 증가한 것을 확인하였다. 또한, 신공정에 첨가물 첨가 조건과 미첨가 조건을 비교해본 결과 갈락토실화 %는 첨가물 첨가 조건이 40.5%, 미첨가 조건이 31.8%로 8%정도 증가한 것을 확인하였다. 비푸코실화 %의 경우 첨가물 첨가 조건이 14.1%, 미첨가 조건이 6.1%로 구공정과 유사하게 2배 이상 증가한 것을 확인하였다.
본 발명에서 개발한 당쇄 함량 조절용(Fc N-glycan quality improvement) 첨가물(망간, 글리세롤, 우리딘)을 첨가하는 공정이 신공정뿐만 아니라 구공정에도 유사한 효과가 있음을 확인하였다.
HD201 항체의 ADCC 활성 분석은 항체의존 세포독성 분석 시험법 SOP[HD201 항체의존 세포독성 분석 assay]에 따라 분석을 수행하였다.
또한, 본 발명의 구체적인 일 실시예에서는 본 발명의 당쇄 함량 조절용 첨가물(망간, 글리세롤, 우리딘)을 첨가하여 제조한 항체의 ADCC 활성을 In vitro 활성 측정법인 relative ADCC assay를 통하여 측정하였다. ADCC 활성의 기준 물질(대조약)은 현재 판매되고 있는 오리지날 사 제품(Herceptin®)을 사용하였다. 시험 결과는 기존과 동일한 EC50값을 통한 relative ADCC%(A) 및 PLA s/w로 계산되는 relative activity ratio를 사용한 relative ADCC activity%(B)로 나타내었으며, EC50를 사용한 결과값과 PLA를 사용한 결과값에 약간의 차이는 있으나 전체적인 경향성은 동일한 것을 알 수 있었다.
Small scale 구공정의 경우 첨가물 첨가 조건은 대조약 대비 217.5%의 ADCC 활성을 나타내었으며, 미첨가 조건은 78.7%로 대조약 대비 낮을 활성을 나타내었다. 따라서 당쇄 함량 조절용(Fc N-glycan quality improvement) 첨가물(망간, 글리세롤, 우리딘)를 구공정에 첨가할 경우 비푸코실화 비율을 두 배까지 높일 수 있으며, 이로 인한 ADCC 활성을 미첨가 조건 대비 100% 이상 향상시킬 수 있었다. 신공정은 첨가물 첨가 조건은 대조약 대비 130%의 ADCC 활성을 나타내었으며, 미첨가 조건은 42.7%로 대조약 대비 가장 낮은 활성을 나타내었다. 신공정은 다른 배지를 사용하는 구공정에서와 마찬가지로 당쇄 함량 조절용(Fc N-glycan quality improvement) 첨가물(망간, 글리세롤, 우리딘)를 첨가할 경우 비푸코실화 비율을 두 배까지 높일 수 있으며, 이로 통해 ADCC 활성을 미첨가 조건 대비 80% 이상 향상시킬 수 있었다.
본 발명의 실시예에서 확인한 바와 같이 본 발명의 당쇄 함량 조절용 첨가물을 이용한 트라스투주맙 제조공정을 진행할 경우 항체의 당쇄 함량 조절이 충분히 가능함을 확인하였다. 특히 글리세롤의 경우 국내 또는 외국에서도 afucosylation effect 관련 연구나 문헌으로 보고된 적이 없는 바, 본 발명자들은 상기 실험 결과들을 바탕으로 글리세롤을 이용한 당쇄 함량 조절을 통한 항체 제조하는 방법을 처음으로 개발하였다.
본 발명에서 배양은 항체 발현 세포에 따라 적절한 온도, 배지, 기체 조건으로 당업자에게 널리 알려진 방법으로 이루어질 수 있으며, 회분 배양, 유가 배양, 연속식 배양 또는 이들의 조합 등 본 발명의 항체 제조 방법에 적용 가능한 방법에 제한되지 않는다.
본 발명의 제조 방법은 (a) 글리세롤 및 망간을 포함하는 배지에서 항체 발현 세포를 배양하는 단계; 및, (b) 상기 (a) 단계를 통해 배양한 세포를 우리딘을 추가로 포함하는 배지로 배양하는 단계를 포함하는 것일 수 있으며, 특히 (c) 상기 (b) 단계에서 배양된 세포를 글리세롤 및 망간을 포함하는 유가배지를 첨가하여 배양하는 단계를 추가로 포함하는 것일 수 있다. 상기 (a) 단계는 3일 내지 8일 동안 이루어지는 것일 수 있으며, 본 발명의 일 실시예에서는 배양 5일차에 우리딘을 처리하였다.
또한, 본 발명의 제조 방법은 (a) 글리세롤 및 망간을 포함하는 배지에 항체 발현 세포를 배양하는 단계; (b) 상기 (a) 단계 통해 배양한 세포를 우리딘을 포함하는 배지로 배양하는 단계; 및 (c) 글리세롤 및 망간을 포함하는 배지로 유가 배양하는 단계를 포함하는 것일 수 있다.
한편, 상기 (a) 및 (b) 단계를 회분식 배양으로 이루어질 수 있고, 상기 (c) 단계는 유가식 배양으로 이루어질 수 있으나, 이에 제한되지 않는다.
또한, 본 발명의 제조 방법은 세포 배양액으로부터 항체를 정제하는 단계를 추가로 포함하는 것일 수 있으며, 항체를 정제하는 방법은 당업계에 널리 알려진 다양한 방법, 예를 들어 protein A/G 컬럼, HPLC 등의 방법을 통하여 이루어질 수 있다.
본 발명의 배지는 글리세롤을 0 내지 10%, 혹은 0.1 내지 5%(v/v) 농도 범위 내로 포함하는 것일 수 있고, 특히 0.5 내지 3%(v/v) 농도 범위 내로 포함하는 것일 수 있다. 또한, 상기 배지는 망간을 0 내지 250 μM, 혹은 10 내지 200 μM 농도 범위 내로 포함하는 것일 수 있고, 특히 20 내지 120 μM 농도 범위 내로 포함하는 것일 수 있다. 아울러, 상기 배지는 우리딘을 0 내지 20 mM, 혹은 1 내지 10 mM 농도 범위 내로 포함하는 것일 수 있으며, 특히 4 내지 8 mM 농도 범위 내로 포함하는 것일 수 있다.
특히, 본 발명의 배지는 글리세롤을 0.5 내지 3%(v/v) 농도 범위 내로 포함하고, 망간을 20 내지 120 μM 농도 범위 내로 포함하고, 우리딘을 3 내지 10 mM 농도 범위 내로 포함하는 것일 수 있다.
본 발명의 망간은 인체에 무해한 이상 형태에 제한되지 않으나 예를 들어 염화 망간(Maganese chloride)일 수 있다.
본 발명에서 본 발명의 배지에 포함되는 당쇄 함량 조절용 첨가물은 배지 최종 농도를 기준으로 글리세롤 (%, v/v) : 망간 (μM)의 비는 0.5 : 20, 1 : 20, 2: 20, 3 : 20, 0.5 : 40, 1 : 40, 2 : 40, 3 : 40, 0.5 : 80, 1 : 80, 2 : 80, 3 : 80, 0.5 : 120, 1 : 120, 2 : 120 또는 3 : 120일 수 있다. 또한, 본 발명에서 본 발명의 배지에 포함되고 당쇄 함량 조절용 첨가물을 구성하는 배지 최종 농도를 기준으로 우리딘은 2 내지 8 mM일 수 있다.
본 발명의 구체적인 일 실시예에서는 본 발명의 당쇄 함량 조절용 첨가물은 배지 최종 농도를 기준으로 글리세롤 (%, v/v) : 망간 (μM) : 우리딘 (mM)의 비가 1.0 : 40 : 80 또는 2.0 : 40 : 80의 경우에 기존 대조약 Herceptin®과 유사한 정도의 당쇄 함량을 가질 수 있음을 확인한 바 있다.
본 발명의 제조 방법은 해당 제조 방법에 의해 제조된 항체의 당쇄 함량이 갈락토실 함량이 35 내지 50% 범위 내이고, 비푸코실 함량이 8 내지 20% 범위 내인 것일 수 있다.
또 하나의 양태로서, 본 발명은 상기 방법으로 제조된, 당쇄 함량이 조절된 항체 집단을 제공한다.
상기 방법, 항체 집단 및 당쇄 함량이 조절된 항체 집단에 대해서는 상기에서 설명한 바와 같다.
또 하나의 양태로서, 본 발명은 글리세롤을 항체 당쇄 함량 조절용 첨가물로 포함하는 배지에서 항체 발현 세포를 배양하는 단계를 포함하는, 항체 당쇄 함량을 조절하는 방법을 제공하며, 상기 배지는 당쇄 함량 조절용 첨가물로 망간 및 우리딘으로 이루어진 군으로부터 선택된 하나 이상을 추가로 포함하는 것일 수 있다.
상기 당쇄 함량, 항체, 항체 발현 세포, 배양 등은 상기에서 설명한 바와 같다.
본 발명의 또 다른 하나의 목적은 글리세롤을 항체 당쇄 함량 조절용 첨가물로 포함하는, 항체 당쇄 함량 조절용 배지 조성물을 제공하는 것이다.
상기 당쇄 함량, 항체 등은 상기에서 설명한 바와 같다.
본 발명의 항체 당쇄 함량 조절용 배지 조성물에서 상기 항체 당쇄 함량 조절용 첨가물로 망간 및 우리딘으로 이루어진 군으로부터 선택된 하나 이상을 추가로 포함하는 것일 수 있다.
본 발명의 용어, "배지"는 증식성 세포에 영양을 공급하는 영양소 함유 용액을 폭넓게 의미하며, 이러한 용액은 일반적으로 세포가 증식 및/또는 생존하는데 필요한 필수 및 비필수 아미노산, 비타민, 탄소원, 지질 및 미량 원소 등을 포함하나, 이에 제한되지는 않는다. 상기 배지는 배양하고자 하는 세포 종류에 따라 세포 생존 및 증식에 최적인 pH 및 염농도로 제조되는 것이 바람직하며, 호르몬 및 성장인자를 비롯하여 증식 및/또는 생존을 증가시키는 성분으로 당업계에서 널리 사용되는 물질을 추가로 포함할 수 있다.
또한, 본 발명의 배지에 항체 당쇄 함량 조절용 첨가물을 제외한 포함되는 성분은 당업계에서 항체 생산에 널리 사용되는 임의의 성분을 포함할 수 있으며, 이는 당업자가 당업계의 상식 또는 실험에 의하여 용이하게 구성할 수 있다.
본 발명의 구체적인 일 실시예에서는 본배양에서는 Media A를 기반으로 첨가물을 조절하여 배양하였고, 유가 배양에서는 Feed C를 기반으로 첨가물을 조절하여 배양하였다.
이하, 본 발명을 실시예를 통하여 보다 상세하게 설명한다. 그러나 이들 실시예는 본 발명을 예시적으로 설명하기 위한 것으로, 본 발명의 범위가 이들 실시예에 한정되는 것은 아니다.
실시예 1: 항체의 당쇄 조절을 위한 첨가물 실험
1-1. 비푸코실화(afucosylation) 유도 첨가물 선별을 위한 플라스크 배양 실
갈락토실화를 유도하기 위해 당 전구체(glucosamine, N-acetylglucosamine, N-acetylmannosamine , galactose, uridine Manganese(Mn2+), glycerol)를 첨가한 조건에서 실험을 진행하였다. 그 결과 도 35의 실험 데이터 분석 결과에서 확인할 수 있듯이 갈락토실화 효과는 크지 않았지만, 비푸코실화 함량이 높게 나타났다. 상기 결과를 바탕으로 이후 연구에서 갈락토실화 관련 효과가 알려진 갈락토즈 + 망간(Mn2+) 조건에 첨가물을 병용 투여해보는 실험을 통하여 변화를 확인하고자 하였다. 또한, 단독으로 효과가 있는 인자의 발견을 위해 갈락토즈 + 망간(Mn2+)을 뺀 조건을 parallel하게 진행하였다.
구체적으로는, 망간(Mn2+)과 갈락토즈를 첨가한 조건에 비푸코실화 유도 첨가물을 처리한 조건과 망간(Mn2+)과 갈락토즈를 첨가하지 않은 조건에 비푸코실화 유도 첨가물을 처리한 조건으로 나누어 실험을 진행해보고자 하였다.
갈락토즈는 200 g/L stock을 제조하여 사용하였으며, 염화망간·4수(Mn2+)는 40 mM stock을 제조하여 사용하였다. 본배양 배지(production media)에 첨가되는 망간과 갈락토즈는 플라스크 본 배양 부피인 35 mL 기준으로 농도를 희석하여 첨가하였으며, 유가 배지(feed media)는 각 조건당 20 mL씩 별도로 소분한 후 20 mL 부피 기준으로 stock들을 희석하여 첨가하였다.
비푸코실화 유도 첨가물들인 글루코사민(glucosamine)과 N-아세틸글루코사민(N-acetylglucosamine)은 각각 1M stock을 제조하여 사용하였으며, 글리세롤은 원액을 100%로 간주하여 부피비(v/v, %)로 첨가해 주었고, 소디움 부티레이트(Sodium butyrate)는 50 mM stock, 락토즈(Lactose)는 50 g/L stock으로 각각 제조하여 1/100로 희석하여 사용하였다. Kifunensine의 경우 α-만노시다제 Ⅰ 억제제(alpha-mannosidase Ⅰ inhibitor)로 비푸코실화 효과가 기존에 알려진 물질로 100 ㎍/mL 농도로 제조하여 사용하였다(Qun Zhou et al., 2008; US 2007/0092521 A1).
상기 실험한 조건을 정리하면 하기 표 1과 같다.
표 1 비푸코실화 첨가물 플라스크 배양 실험 조건
실험군 배지 2.0 g/L 갈락토즈 +40μM Mn2+ 당 전구체
M(40), Gal(2.0) Media A 첨가 무첨가;음성 대조군
M(40), Gal(2.0), Glucosamine(10) Media A 첨가 Glucosamine(10 mM)
M(40), Gal(2.0), N-acetylglucosamine(10) Media A 첨가 N-acetylglucosamine(10 mM)
M(40), Gal(2.0), Glycerol(1) Media A 첨가 1%(v/v) Glycerol
M(40), Gal(2.0), Sodium butyrate(0.5) Media A 첨가 Sodium butyrate(0.5 mM)
M(40), Gal(2.0), Lactose(0.5) Media A 첨가 Lactose(0.5 g/L)
M(40), Gal(2.0), Kifunensine(10) Media A 첨가 Kifunensine(10 ng/mL); 양성 대조군
Control Media A 무첨가 무첨가;음성 대조군
Glucosamine(10) Media A 무첨가 Glucosamine(10 mM)
N-acetylglucosamine(10) Media A 무첨가 N-acetylglucosamine(10 mM)
Glycerol(1) Media A 무첨가 1%(v/v) Glycerol
Sodium butyrate(0.5) Media A 무첨가 Sodium butyrate(0.5 mM)
Lactose(0.5) Media A 무첨가 Lactose(0.5 g/L)
Kifunensine(10) Media A 무첨가 Kifunensine(10 ng/mL); 양성 대조
1-2. 비푸코실화 유도 첨가물 플라스크 배양 실험 세포 배양 결과
비푸코실화 유도 첨가물 선별을 위한 플라스크 배양에서 세포 성장 profile, 세포 생존율 profile, 최종 발현량 profile(titer profile)을 측정하였다.
도 3에서 볼 수 있듯이 세포 성장 profile을 측정한 결과 망간과 갈락토즈 미첨가 조건(Control)이 가장 좋았으며, 0.5 mM 소디움 부티레이트 첨가할 경우에는 성장 저해(growth inhibition) 현상이 관찰되었다.
도 4에서 볼 수 있듯이 세포 생존율 profile을 측정한 결과에서도 소티움 부티레이트 첨가 조건의 경우 배양 종료 시점에서의 생존율이 80% 이하로 떨어졌으며, Kifunensine 10 ng/mL과 망간과 갈락토즈를 같이 첨가한 조건에서는 생존율이 배양 종료일까지 77 %까지 떨어지는 것을 확인하였다. 그 외의 첨가물들의 조건에서 세포 성장 profile과 세포 생존율 profile은 유사한 경향성을 나타내었다.
한편, 비푸코실화 유도 첨가물 조건 실험에서 대조군(control) 대비 최종 발현량(titer profile)을 측정한 결과, 글루코사민 첨가, N-아세틸글루코사민 첨가, 또는 글리세롤 첨가 조건에서 대조군 대비 1.1 배 수준으로 증가하는 것을 확인하였다. 반면, 소디움 부티레이트 첨가한 경우에는 발현량이 0.8 배 수준으로 다른 조건들 대비 낮았으며, 이것은 상기 세포 성장 및 세포 생존율의 감소에 따른 발현량 저하에 인한 것으로 판단된다.
1-3. 항체의 당쇄 함량 분석
항체의 당쇄 함량을 분석하기 위하여 항체 N-글리칸(N-glycan) 분석을 수행하였다. 구체적으로 N-글리칸 분석은 HD201 N-글리칸 시험법 SOP[HD201의 N-글리칸 NP-UPLC 시험법]에 따라 항체에서 PNGase를 처리하여 N-글리칸 구조체만을 분리하여 분석을 진행하였다. 갈락토실화(galactoxylation)과 비푸코실화(afucosylation) glycoform 들을 분석하였으며, 각각의 계산된 상대 함량을 그래프로 나타내었다(도 6 및 도 7). 또한 추가적으로 미첨가 조건인 대조군(control) 대비 갈락토실화 및 비푸코실화 증감 정도를 비교 분석한 결과도 그래프로 나타내었다(도 8)
그 결과 도 6 내지 도 8에서 확인할 수 있듯이, 망간과 갈락토즈를 첨가한 조건과 미첨가한 조건 간의 가장 큰 차이는 갈락토실화 함량의 차이로, 두 원료를 첨가한 조건에서 미첨가한 대조군보다 갈락토실화 상대 함량이 대부분 높은 것을 확인할 수 있었다. 반면, 두 원료를 첨가하지 않은 경우에는 대조군 대비 유사하거나 낮은 것을 확인할 수 있었다. 이 결과로 볼 때 갈락토실화 함량을 높이기 위해 망간과 갈락토즈 두 원료의 첨가가 필요함을 다시 확인할 수 있었다.
1-4. 망간(M), Galactose, Uridine(Urd) 개별 또는 혼합 첨가에 따른 항체의 당쇄 변화 확인 실험
기존 항체의 당쇄 함량의 조절을 위한 방법(예를 들어, Abbott사 US 2012/0276631; WO 2012/149197)으로 망간과 갈락토즈를 이용하는 방법이 개시되어 있었다. 본 실험에서는 망간과 갈락토즈 외에 다른 물질로 두 원료에 대해 대체 가능한 물질을 찾고자 실험을 진행하였다.
구공정은 개발 초기 임상 1상 시료 생산을 위해 만들어진 공정이며, 신공정은 공정 개선을 통해 임상 3상 공정을 목표로 개발된 공정이다. 신공정과 구공정은 본 배양 배지와 유가 배지가 다르며, 또한 본 특허의 첨가물은 신공정 개발 과정에서 오리지날사 제품 대비 당쇄 형성 패턴, 특히 비푸코실화 함량을 유사하게 만들어 항체의 활성을 증가시키고자 하였다.
갈락토즈는 200 g/L stock을 제조하여 사용하였으며, 염화망간·4수(Mn2+)는 40 mM stock을 제조하여 사용하였다. 본배양 배지(production media)에 첨가되는 망간과 갈락토즈는 플라스크 본 배양 부피인 35 mL 기준으로 농도를 희석하여 첨가하였으며, 유가 배지(feed media)는 각 조건당 20 mL씩 별도로 소분한 후 20 mL 부피 기준으로 stock들을 희석하여 첨가하였다.
실험을 진행한 조건은 하기 표 2와 같다.
표 2 망간(Mn2+), 갈락토즈(Gal) 및 우리딘(Urd) 첨가 조건
실험군 본배양 배지 유가 배지
대조군(미첨가) Media A Feed C
M(40), Gal(2) Media A + Gal 2g/L + 40μM Mn2+ Feed C + Gal 2g/L + 40μM Mn2+
Gal(2), Urd(2) Media A + Gal 2g/L + 2mM Uridine Feed C + Gal 2g/L + 2mM Uridine
Gal(2) Media A + Gal 2g/L Feed C + Gal 2g/L
Gal(4) Media A + Gal 4g/L Feed C + Gal 4g/L
Gal(8) Media A + Gal 8g/L Feed C + Gal 8g/L
M(40) Media A + 40μM Mn2+ Feed C + 40μM Mn2+
M(80) Media A + 80μM Mn2+ Feed C + 80μM Mn2+
M(120) Media A + 120μM Mn2+ Feed C + 120μM Mn2+
Urd(2) Media A + 2mM Uridine Feed C + 2mM Uridine
Urd(4) Media A + 4mM Uridine Feed C + 4mM Uridine
Urd(8) Media A + 8mM Uridine Feed C + 8mM Uridine
그 결과 도 9에서 확인할 수 있듯이 플라스크 배양 결과 망간과 갈락토즈 첨가한 조건에서 세포 성장 profile은 대부분 유사한 경향성을 나타내었으며, 첨가물 미첨가 조건(Control)가 망간만 40 μM 첨가한 조건의 peak cell density가 가장 높았다. 우리딘(Urd) 첨가 조건들의 경우 8 mM 농도 조건에서 배양 초기부터 성장 저해(growth inhibition) 현상을 관찰할 수 있었고, 4 mM 첨가 조건의 경우 배양 후반에 세포 농도의 감소폭이 컸다.
세포 생존율 profile(Viability profile, 도 10)에서도 우리딘 8 mM 첨가 조건에서 생존율 급격히 감소하였으며, 그 외에는 유사한 경향성을 나타내었다.
항체 발현량 profile(titer profile)을 측정한 결과 도 11에서 확인할 수 있듯이, 망간 첨가 조건들은 미첨가 조건(Control) 대비 상대 함량비가 0.9 ~ 1.1 수준이었으며, 갈락토즈 첨가 조건들의 상대 함량비는 0.9 ~ 1.0 수준이었다. 우리딘 첨가 조건들의 경우 첨가 농도가 높을수록 미첨가 조건(Control) 대비 발현량 저하 현상을 확인하였으며, 8 mM 농도 조건에서는 미첨가 조건(Control) 대비 상대 함량비가 0.36까지 떨어지는 것을 확인하였다. 이것은 세포 성장 저해에 따르는 발현량 저하로 판단되었다. 따라서 망간의 경우 40μM ~ 120μM 농도 구간에서 첨가하여도 공정에는 영향이 없다는 것을 확인하였다.
1-5. 항체의 당쇄 함량 분석
상기 표 2의 조건, 즉 망간, 갈락토즈 및 우리딘을 각각 농도별로 플라스크에 첨가하여 배양한 산물의 당쇄 함량(glycosylation quality)을 확인하였다. 구체적으로 갈락토실화(galactoxylation)과 비푸코실화(afucosylation) glycoform 들을 분석하였으며, 각각의 계산된 상대 함량을 그래프로 나타내었다(도 12 및 도 13). 또한 추가적으로 미첨가 조건인 대조군(control) 대비 갈락토실화 및 비푸코실화 증감 정도를 비교 분석한 결과도 그래프로 나타내었다(도 14)
갈락토실화 함량을 계산한 결과 도 12에서 확인할 수 있듯이, 40μM 망간과 2g/L 갈락토즈가 동시에 첨가된 조건에서 대조군(미첨가 조건) 대비 가장 높은 함량을 나타내었으며, 각각 세 원료들을 단독으로 첨가한 조건들 중에는 망간 첨가 실험군들이 갈락토즈, 우리딘 단독 첨가 실험군들 보다 높은 값을 나타냈기 때문에 신공정에서 망간이 갈락토실화의 주요인자 기능을 함을 확인할 수 있었다. 한편, 우리딘 단독 첨가 조건의 경우 첨가 농도가 증가할수록 갈락토실화 함량이 증가하는 것을 확인할 수 있었으나, 고농도 첨가 조건(8 mM)에서 성장 저해 및 발현량 저하 현상이 확인되었기 때문에 배양 초기에 고농도의 우리딘을 첨가하는 것은 신공정에 부적합한 것으로 판단되었다.
비푸코실화 함량을 계산한 결과 도 13에서 확인할 수 있듯이, 망간, 갈락토즈 그리고 우리딘 세 원료를 비교해 본 결과 망간과 갈락토즈는 효과가 없었으며, 우리딘의 경우 첨가 농도가 증가할수록 비푸코실화 효과가 증가하는 것을 확인할 수 있었다. 미첨가군 대비 갈락토실화/비푸코실화 차이를 확인한 그래프(도 14)에서 망간을 첨가한 경우 미첨가군 대비 10% 이상의 갈락토실화 증진 효과를 확인할 수 있었으며, 우리딘 첨가 농도가 증가할수록 미첨가군 대비 비푸코실화 증진 효과가 있는 것을 확인할 수 있었다.
이번 신공정의 망간, 갈락토즈 및 우리딘 첨가 조건 실험을 통하여 항체의 갈락토실화에 가장 중요한 인자는 망간임을 확인하였으며, 갈락토즈를 우리딘으로 대체하였을 때 갈락토실화와 비푸코실화 측면에서 개선될 수 있음을 확인하였다.
이후 실험에서는 바이오 시밀러 개발 관점에서 상용 의약품인 대조약(Herceptin®)과의 갈락토실화/비푸코실화 동등성을 높이기 위해 망간, 우리딘 및 글리세롤 혼합 첨가 조건들을 적용하여 실험해보았다.
1-6. 글리세롤 첨가에 따른 당쇄 변화 플라스크 배양 실험
본 실험에서는 망간과 갈락토즈 외에 추가로 비푸코실화 유도 첨가물 선별 실험을 통하여 선택된 글리세롤(glycerol, Gcr)을 농도별로 첨가하여 그 효과를 확인하였다.
글리세롤은 항-응결제(anti-freezing agent) 및 단백질 안정화제로 많이 알려진 물질로 재조합 단백질의 발현량 증과 관련 내용이 언급되거나 시알산 함량을 증가시킨다는 문헌(Rodriguez et al. 2005, Chi-Hsien Liu 2007)이 있었을 뿐, 이외에 본 발명과 관련된 항체의 비푸코실화 관점에서는 어떠한 언급도 없었다.
이에 글리세롤이 항체의 비푸코실화에 미치는 영향을 확인하기 위하여 실험을 진행하였으며 구체적으로, 글리세롤 첨가량을 0, 0.5, 1 또는 2 %(v/v)로 첨가하여 글리세롤 첨가와 비푸코실화 함량을 측정하였다.
상기 실험을 진행한 조건은 하기 표 3과 같다.
표 3 비푸코실화 첨가물인 글리세롤 첨가 플라스크 배양 실험 조건
실험군 본배양 배지 (A) 유가 배지 (C)
M(40), Gal(2), Gcr(0) Media A + Galactose 2g/L+ 40μM Mn2+ Feed C + Galactose 2g/L+ 40μM Mn2+
M(40), Gal(2), Gcr(0.5) Media A + Galactose 2g/L+ 40μM Mn2+ + 0.5 % glycerol Feed C + Galactose 2g/L+ 40μM Mn2+
M(40), Gal(2), Gcr(1.0) Media A + Galactose 2g/L+ 40μM Mn2+ + 1 % glycerol Feed C + Galactose 2g/L+ 40μM Mn2+
M(40), Gal(2), Gcr(2.0) Media A + Galactose 2g/L+ 40μM Mn2+ + 2 % glycerol Feed C + Galactose 2g/L+ 40μM Mn2+
글리세롤 첨가 농도에 따른 세포 성장 profile과 세포 생존율 profile을 측정하였다. 그 결과 도 15에서 확인할 수 있듯이 글리세롤 첨가 및 미첨가 조건에서 세포 성장과 세포 생존율은 유사한 것을 확인하였다. 세포 생존율은 배양 최종일에 미첨가 조건 대비 약간 낮은 경향성을 확인할 수 있었다.
또한 최종 항체 발현량을 측정한 결과 도 16에서 확인할 수 있듯이 글리세롤 첨가 농도가 증가할수록 미첨가 조건 대비 높아지는 것을 확인하였으며, 2.0% 첨가 조건의 발현량이 1.1배 이상으로 가장 높은 상대 함량비를 기록하였다.
1-7. 항체의 당쇄 함량 분석
상기 표 3의 조건으로 글리세롤 첨가 조건 농도에 따른 갈락토실화 및 비푸코실화 당쇄 함량을 측정하였다.
그 결과 도 17에서 확인할 수 있듯이 글리세롤 첨가 농도가 증가함에 따라 갈락토실화는 경미하게 감소하는 현상을 보이긴 했으나, 갈락토실화 항체 함량이 모두 40% 이상으로 유지되어 큰 영향을 주진 못했으며(도 17 (A)), 비푸코실화 효과 측면에서는 글리세롤 첨가 농도가 증가함에 따라 대조군(미첨가) 대비 비푸코실화 항체 함량이 현저히 증가하는 것을 확인할 수 있었다(도 17 (B)).
1-8. 신공정의 갈락토실화 및 비푸코실화 동시 유도를 위한 첨가물 혼합 플라스크 배양 실험
상기 실시예에서 진행된 첨가물 조건 실험들의 결과를 조합하여 최종 제조된 항체 집단이 대조약(Herceptin®)과 가장 유사한 당쇄 함량, 즉 갈락토실화와 비푸코실화 함량을 가질 수 있도록 조절하는 조건을 확인하기 위하여 수행되었다.
이에 본 실험에는 첨가물로 갈락토실화 향상의 주요인자인 망간(M)과 비푸코실화 유도 첨가물인 글리세롤(Gcr), 마지막으로 갈락토즈를 대체하기 위하여 첨가된 갈락토실화와 비푸코실화의 보조인자인 우리딘(Urd)을 사용하였다.
한편, 우리딘의 경우 이전 실험(실시예 1-4)에서 4 mM 농도 이상을 첨가하면 비푸코실화 현상이 있는 반면 성장 저해 현상에 의한 발현량 저하라는 단점을 확인하였다. 이에 본 실험에서는 하기 표 4의 실험 조건과 같이 본 배양 5일차 진행 중에 우리딘을 4 mM 농도로 별도 첨가하여 성장 저해 및 고 만노즈 생성(high mannose form) 증가를 최소화하고자 하였다.
망간(M)의 경우 이전 실험(실시예 1-4)에서 갈락토실화 현상이 가장 큰 것을 확인하였고, 40 내지 120 μM 농도 범위에서 유사한 효과를 확인하였기 때문에 이번 실험에서는 40 μM과 그 이하의 농도를 선정하여 본배양 배지 및 유가 배지에 첨가하였다.
마지막으로 글리세롤은 첨가 농도 실험(실시예 1-6)에서 효과가 확인된 1 %와 2% 농도로 각각 본배양 배지에만 첨가하였다.
상기와 같은 실험 조건을 정리하면 하기 표 4와 같다.
표 4 신공정 갈락토실화 및 비푸코실화 유도를 위한 첨가물 혼합 플라스크 배양 조건
실험군 본배양 배지(A) 우리딘 유가 배지(C)
첨가물 글리세롤(Gcr, v/v %)
M(40), Galactose(2.0) Galactose 2g/L+40μM 망간 n/a n/a Galactose 2g/L+40μM 망간
M(40), Gcr(1) 40μM 망간 1 % n/a 40μM 망간
M(40), Gcr(1), Urd(4) 40μM 망간 1 % 배양 5일차4mM 농도 첨가 40μM 망간
M(40), Gcr(2) 40μM 망간 2 % n/a 40μM 망간
M(40), Gcr(2), Urd(4) 40μM 망간 2 % 배양 5일차4mM 농도 첨가 40μM 망간
M(20), Gcr(1) 20μM 망간 1 % n/a 20μM 망간
M(20), Gcr(1), Urd(4) 20μM 망간 1 % 배양 5일차4mM 농도 첨가 20μM 망간
M(20), Gcr(2) 20μM 망간 2 % n/a 20μM 망간
M(20), Gcr(2), Urd(4) 20μM 망간 2 % 배양 5일차4mM 농도 첨가 20μM 망간
상기 표 4의 조건으로 플라스크 배양하여 세포 성장 profile 및 세포 생존율 profile을 측정한 결과 도 18에서 확인할 수 있듯이, 망간(M) 첨가한 경우에서 세포 성장 profile은 대부분 유사한 경향을 나타내었으나, 글리세롤 첨가한 경우에서는 2% 첨가시 1% 첨가시보다 세포 성장율이 낮은 것을 확인할 수 있었다. 글리세롤 미첨가 조건(40μM 망간 + 2.0g/L 갈락토즈)과 1% 글리세롤 첨가 조건의 세포 성장 효율(peak cell density)은 유사한 것으로 판단해 볼 때 글리세롤 1% 첨가는 기존 공정의 세포 성장 효율에 영향이 없을 것으로 판단되었다. 우리딘은 본배양 5일차에 첨가해 주어 배양 초반부의 성장 저해 문제는 발생하지 않았으나, 우리딘 첨가 이후 미첨가 조건 대비 세포 생존율 감소 폭이 커지는 것을 확인하였다.
최종 발현량 결과(도 19), 글리세롤 및 우리딘 미첨가 조건(40μM 망간 + 2.0 g/L 갈락토즈) 대비 나머지 조건들은 모두 유사하거나 높은 것을 확인할 수 있었다.
1-9. 항체의 당쇄 함량 분석
상기 표 4의 조건으로 첨가물 혼합 조건에 따른 갈락토실화 및 비푸코실화 당쇄 함량을 측정하였다. 구체적으로, N-글리칸 분석 peak profile의 넓이(area) 값들을 갈락토실화와 비푸코실화 함량으로 수치화하였다.
그 결과 도 20에서 확인할 수 있듯이 40μM 망간 + 1% 글리세롤 조합을 바탕으로 우리딘을 배양 5일차에 첨가한 조건들에서 우리딘 미첨가 조건 대비 갈락토실화 함량 증가를 확인하였다. 비푸코실화 측면에서 4 mM 우리딘 첨가조건들의 경우 미첨가 조건 대비 비푸코실화 함량 증가를 확인하였다. 40μM 망간 + 2% 글리세롤 조합을 바탕으로 우리딘을 배양 5일차에 첨가한 조건들의 우리딘 미첨가 조건 대비 갈락토실화 함량 증가를 확인하였다. 비푸코실화 측면에서 4 mM 우리딘 첨가 조건은 미첨가 조건 대비 비푸코실화 함량이 증가하였다. 특히 글리세롤 첨가량이 높을수록 비푸코실화 함량은 비례해서 높아지는 것을 확인할 수 있었다..
20μM 망간 + 1% 글리세롤 조합을 바탕으로 우리딘을 배양 5일차에 첨가한 조건들에서도 우리딘 미첨가 조건 대비 갈락토실화 함량 증가를 확인하였으며, 비푸코실화 측면에서도 우리딘 미첨가 조건 대비 비푸코실화 함량이 증가된 결과를 확인하였다. 20μM 망간 + 2% 글리세롤 조합을 바탕으로 우리딘을 첨가한 조건에서도 유사한 경향성을 확인하였다.
위 결과들을 종합적으로 판단해 볼 때 신공정에 우리딘을 첨가할 경우 갈락토실화를 향상시키는 효과가 확인되어 갈락토즈의 대체가 가능할 것으로 판단되었으며, 작지만 비푸코실화를 향상시키는 결과도 확인하였다.
신공정에 갈락토즈 만 2.0g/L를 첨가한 조건을 대조군으로 하여 망간, 글리세롤 및 우리딘 첨가에 따른 갈락토실화/ 비푸코실화 차이(percent change)를 확인한 결과 도 21에서 확인할 수 있듯이, 망간을 첨가하면 갈락토실화 효과가 6 ~ 13%까지 높아졌으며, 글리세롤을 첨가하면 비푸코실화 함량이 1.5 ~ 4%까지 상승하는 것을 확인하였다.
실시예 2: 당쇄 조절을 위한 생물반응기(Bioreactor) 수준의 첨가물 실험
상기 실시예 1에서 실시한 플라스크 배양 실험 결과를 바탕으로 반응기(bioreactor)를 이용한 항체 당쇄 조절이 가능한지를 확인하고자 하였다.
2-1. 글리세롤 첨가 농도 조건 별 생물반응기(bioreactor) 실험
본 실험은 앞선 실시예 1-6의 플라스크 배양 실험 결과와 같이 글리세롤을 첨가한 배양 조건에서 비푸코실화를 증가시키는 효과를 확인하여기 때문이다, 반응기 수준에서 재현성을 확인해보고자 하였다.
글리세롤 첨가 농도는 실시예 1-6과 동일하게 하기 표 5에 개시된 1%와 2%(v/v)를 본배양 배지에만 첨가하도록 하였다. 본배양 배지에 첨가되는 글리세롤은 반응기 본배양 부피인 3.5L 기준으로 농도를 원액(100%)을 희석하여 첨가하였으며, 유가 배지에는 글리세롤을 첨가하지 않았다. 신공정 개발 과정에서 갈락토실화 및 비푸코실화 함량을 대조약(Herceptin®)과 유사한 수준으로 맞추기 위하여 망간, 글리세롤과 같은 첨가물 실험을 진행하게 되었다.
상기 반응기 수준의 실험 조건을 정리하면 하기 표 5와 같다.
표 5 글리세롤 첨가 농도를 달리한 반응기 실험 조건
실험군 본배양 배지 (A) 유가 배지 (C)
첨가물 글리세롤(Gcr, v/v %)
대조군 (Control) n/a n/a n/a
글리세롤 (1) 갈락토즈 2 g/L +40 μM 망간 1 % 갈락토즈 2 g/L +40 μM 망간
글리세롤 (2) 갈락토즈 2 g/L +40 μM 망간 2 % 갈락토즈 2 g/L +40 μM 망간
상기 표 5의 조건으로 반응기(bioreactor)에서 배양하여 세포 성장 profile 및 세포 생존율 profile을 측정한 결과 도 22에서 확인할 수 있듯이, 세포 성장 profile은 글리세롤을 1% 첨가한 조건이 2% 첨가한 조건보다 좋았으며(peak cell density 기준 10% 정도의 차이), 미첨가 조건과 유사하였다.
최종 상대 발현량 결과(도 23), 본배양 최종일 기준으로 미첨가 대조군과 비교하여 글리세롤 첨가군이 최종 상대 발현량이 모두 높은 것을 확인할 수 있었다.
2-2. 항체의 당쇄 함량 분석
상기 표 5의 조건으로 첨가물 혼합 조건에 따른 갈락토실화 및 비푸코실화 당쇄 함량을 측정하였다. 구체적으로 2 unit(글리세롤 1% 또는 2% 첨가)의 반응기(bioreactor)에서 8일 동안 배양한 회수액에서의 N-글리칸 분석 결과를 갈락토실화 함량(A) 및 비푸코실화 함량(B)로 수치화하였다.
도 24에서 확인할 수 있듯이 반응기 배양 실험 결과 본배양 배지에 글리세롤을 1% 첨가하였을 때 보다 2% 첨가하였을 때 비푸코실화 함량이 증가하는 것을 확인하였다.
또한, 도 25에서 확인할 수 있듯이 대조군(망간, 갈락토즈 및 글리세롤 미첨가) 대비 갈락토실화/비푸코실화 상대 함량 측정한 결과, 미첨가 대조군 대비하여 첨가물들을 첨가하였을 때 갈락토실화는 12% 이상 증가하였으며 비푸코실화도 1.5%까지 증가하는 긍정적인 효과를 확인하였다. 이러한 비푸코실화 함량 증가 효과는 도 34에서 확인할 수 있듯이 이전 임상 1상 시료의 비푸코실화 함량에 비교하여 2배 가량 증가한 수치이다.
실시예 2-3. 신공정 첨가물 최종 선정 및 3 batches 생물 반응기 실험
상기 실시예 2-2에서 확인한 결과, 글리세롤 2 %를 첨가하였을 때, N-글리칸 profile 상에서 미첨가 조건 대비 비푸코실화 개선 효과가 있었고, 상기 실시예 1에서 확인한 결과 망간과 우리딘을 첨가했을 때 갈락토실화 개선 효과가 있었다. 대조약(Herceptin®)과의 동등성 측면을 고려하여 글리세롤은 본배양 배지와 유가 배지에 각각 첨가하였으며, 우리딘을 배양 5일 차에 8 mM 농도로 첨가하는 조건을 설정하여 3 batches 반복 배양을 진행하였다.
구체적으로는 우선 글리세롤의 경우 이전 실험(실시예 2-1)에서 본배양 배지에만 첨가했었는데 첨가의 효과를 높이기 위하여 유가 배지에도 2% 글리세롤을 첨가하여 feeding 하고자 하였다. 이것은 처음부터 높게 첨가하였을 때 성장 저하의 우려가 있기 때문에 유가 배지에도 2% 글리세롤을 동일하게 첨가하여 feeding에 의한 희석 효과를 없애는 전략으로 접근하였다.
우리딘의 경우 망간와 갈락토즈 중 갈락토즈를 대체하여 첨가하는 것으로 갈락토실화 효과를 높이기 위하여 첨가하는 양을 4 mM에서 8 mM로 높여 첨가하였다. 또한 우리딘을 첨가한 플라스크 실험에서 배양 최종일 pH를 측정해본 결과 pH 6.9 수준으로 나타났기 때문에 이번 실험에서는 우리딘 첨가 이후 배양 pH를 pH 6.8에서 pH 6.9로 이동해 주었다. 이것은 pH 가 플라스크와 생물반응기 간 첨가물 농도에 의한 효과 차이를 만드는 원인일 가능성이 있기 때문이다.
반응기에서는 pH 6.8을 유지하기 위하여 배양 4일차부터 pCO2가 지속적으로 증가하는 경향성이 있으며, 배양 5차에 100 mmHg 이상으로 급격하게 증가하였기 때문에 배양 5일차에 본배양 pH를 pH 6.9로 높이면 pCO2양이 감소할 것으로 기대하였다. pCO2가 높으면 글리코실화에 부정적인 영향을 준다는 문헌(Kimura R, 1997)을 참고하였다.
상기 사항을 고려한 실험 조건을 정리하면 하기 표 6과 같다. 하기 조건에 관하여 3 batches 모두 동일하게 본배양 배지(media A)에 당쇄 함량 조절용(quality improvement) 첨가물인 40μM 망간(M) 및 2%(v/v) 글리세롤(Gcr)을 첨가하였으며, 본배양 5일 차에 우리딘(Urd) 8 mM을 첨가하여 배양하도록 실험을 설계하였다.
표 6 신공정 첨가물 최종 선정 및 3 batches 생물 반응기 실험 조건
실험군 본배양 배지 Urd 유가 배지
신공정 대조군 Media A n/a Feed C
신공정 batch #1신공정 batch #2신공정 batch #3 Media A + Glycerol 2%(v/v) + 40μM 망간 5일차 8 mM 첨가 Feed C + Glycerol 2%(v/v) + 40μM 망간
상기 표 6의 조건으로 반응기(bioreactor)에서 배양하여 세포 성장 profile 및 세포 생존율 profile을 측정한 결과 도 26에서 확인할 수 있듯이, 세포 성장 profile은 peak cell density 기준으로 18 내지 24 x 106 cells/mL 정도의 분포로 미첨가 대조군 대비 유사한 수준임을 확인하였다.
최종 상대 발현량 결과(도 27), 본배양 최종일 기준으로 미첨가 대조군과 비교하여 1.05 수준으로 약간 높거나 유사한 경향성을 나타냈다.
2-4. 항체의 당쇄 함량 분석
상기 표 6의 40μM 망간과 2% 글리세롤을 바탕으로 8 mM 우리딘을 배양 5일차에 첨가하는 조건으로 신공정 조건으로 동일하게 3 batches 생물 반응기 배양하여 생산한 HD201 항체의 갈락토실화 및 비푸코실화 당쇄 함량을 측정하였다. 구체적으로 각 batch 별로 본배양 8일차 시료의 N-글리칸 profile을 미첨가 대조군과 비교해본 결과 대조군의 갈락토실화(Sum of all oligosaccharide with galactose) %는 31.8%였고, 신공정 3 batches의 갈락토실화 %는 41.8 내지 42.2%로 10% 정도 증가된 수치를 나타내었다. 또한 비푸코실화(Sum of all oligosaccharide without fucose) %의 경우 미첨가 대조군 시료가 6.1%였고, 신공정 3 batches는 9.1 ~ 9.5%로 3% 정도 향상된 수치를 나타내었다.
이를 대조약(Herceptin®)과 비교해본 결과 대조약(Herceptin® Lot.H0717)의 갈락토실화 %는 43%로 신공정 3 batches의 갈락토실화 %와의 차이가 2% 미만이었고, 비푸코실화 % 는 8.9%로 신공정과의 차이가 1% 미만으로 나타났기 때문에 대조약과의 동등성 측면이 현저히 우수해진 효과를 확인할 수 있었다.
2-5. 첨가물 구성의 구공정 적용 효과 확인
상기 실시예들에 의하여 신공정에서 개발한 첨가물 조성(망간, 글리세롤, 우리딘)에 대하여 small scale bioreactor에서 구공정에 적용하여 목적하는 글리코실화 profile(갈락토실화/비푸코실화)이 조절되는지 확인하여, 구공정에서도 첨가물들의 효과가 신공정과 유사하게 나타나는지를 확인하였다.
글리세롤의 경우 신공정에서는 본배양 배지와 유가 배지에 2% 농도로 첨가하였으나, 구공정에서는 글리세롤 첨가 농도를 3 %로 높여 첨가함으로써 글리세롤 첨가 농도 증가에 따른 비푸코실화 함량의 증가 효과를 확인하였다. 한편,망간과 우리딘의 경우 신공정에서 개발한 첨가 농도를 동일하게 사용하였다.
구체적으로, small scale의 임상 1상 공정은 본배양 배지(media D)에 당쇄 함량 조절용 첨가물(quality improvement additives)인 40μM 망간(M) 및 3%(v/v) 글리세롤(Gcr)을 첨가하였으며, 유가 배지(Feed A)에도 본배양 배지와 동일한 농도로 망간과 글리세롤을 첨가해 주었다. 신공정의 경우 본배양 배지(media A)와 유가 배지(Feed C)에 당쇄 함량 조절용(Fc N-glycan quality improvement) 첨가물인 40μM 망간(M) 및 3%(v/v) 글리세롤(Gcr)을 각각 첨가하였으며, 구공정 및 신공정 모두 본배양 5일차에 우리딘(Urd) 8 mM을 동일하게 첨가하여 배양한 실험군과 당쇄 함량 조절용(Fc N-glycan quality improvement) 첨가물을 첨가하지 않은 대조군과의 비교하였다.
상기 실험 조건을 정리하면 하기 표 7과 같다.
표 7 첨가물의 신공정 및 구공정 적용 조건
실험군 본배양 배지 Urd 유가 배지
신공정 without Gcr, M, Urd Media A n/a Feed C
신공정 with Gcr(3), M(40), Urd(8) Media A+ Glycerol 3%(v/v) + 40μM 망간 5일차 8 mM Feed C+ Glycerol 3%(v/v) + 40μM 망간
구공정(P I) without Gcr, M, Urd Media D n/a Feed A
구공정(P I) with Gcr(3), M(40), Urd(8) Media D+ Glycerol 3%(v/v) + 40μM 망간 5일차 8 mM Feed A+ Glycerol 3%(v/v) + 40μM 망간
상기 표 7의 조건으로 반응기(bioreactor) 배양하여 세포 성장 profile 및 세포 생존율 profile을 측정한 결과 도 30에서 확인할 수 있듯이, 세포 성장 profile상 첨가물 미첨가 신공정과 첨가 신공정의 peak cell density 기준 차이는 24% 정도로 첨가물 첨가에 의한 세포 성장 저해가 일어나는 것을 확인하였다. 또한, 구공정에서도 동일하게 첨가물 첨가에 따른 성장 저해가 일어나는 것을 확인할 수 있었다. 이것은 첨가물 중 3% 글리세롤 첨가의 영향으로 해석되며, 기존 실험들에서 글리세롤 첨가 농도가 증가할수록 세포 성장 저해 정도도 증가하는 경향성을 확인하였다.
신공정과 구공정의 세포 성장 profile의 차이는 첨가물 미첨가 구공정과 첨가물 미첨가 신공정의 비교 및 첨가물 첨가 구공정과 첨가물 첨가 신공정의 비교를 통해 확인하였으며, 미첨가 조건들의 peak cell density의 차이는 34% 수준으로 신공정이 cell mass가 큰 것을 확인할 수 있었다. 또한, 첨가물 첨가 조건의 peak cell density 차이는 28% 수준으로 신공정이 높았다. 구공정의 경우 본배양에서 7일 배양을 수행하였기 때문에 small scale batch 에서도 7일 배양을 수행하였다.
세포 생존율(B)은 첨가물 첨가 조건과 미첨가 조건 모두 배양 종료시에 80% 이상의 생존율을 유지하였으며, 첨가물 미첨가 구공정 조건의 경우 배양 5일차 이후 생존율 감소 속도가 큰 것은 배양 3일차 이후 글루코즈 고갈이 원인으로 판단되었다.
최종 상대 발현량 결과(도 31), 구공정은 첨가물 첨가 유무와 관계없이 배양 7일차 회수 기준 유사한 경향성을 나타낸 반면, 신공정의 경우 첨가물 미첨가 조건의 발현량 대비 첨가 조건의 발현량은 13% 낮은 것을 확인할 수 있었다. 구공정 대비 신공정의 상대 발현량은 1.8로 80% 이상의 생산성이 증가한 것을 확인하였다.
2-6. 항체의 당쇄 함량 분석
상기 표 7의 조건으로 배양하여 생산한 항체의 갈락토실화 및 비푸코실화 당쇄 함량을 측정하였다. 본 실험은 신공정과 구공정에 각각 당쇄 함량 조절용(quality improvement) 첨가물(망간, 글리세롤, 우리딘)을 첨가한 조건과 미첨가 조건 비교를 목적으로 진행되었다.
구체적으로 생물 반응기 배양 시료의 결과물에 대한 글리코실화 함량(glycosylation quality)을 N-글리칸 분석으로 확인한 결과를 갈락토실화 및 비푸코실화 함량을 도식화한 결과이다. 본배양 회수 시료 중 구공정에 첨가물 첨가 조건과 미첨가 조건의 N-글리칸 profile을 비교해본 결과 갈락토실화 함량(%)은 첨가물 첨가 조건이 43.8%, 미첨가 조건이 43%로 1%정도 증가한 것을 확인하였다. 비푸코실화 함량(%)의 경우 첨가물 첨가 조건이 18.7%, 미첨가 조건이 9.1%로 두 배 가량 증가한 것을 확인하였다.
신공정에 첨가물 첨가 조건과 미첨가 조건을 비교해본 결과 갈락토실화 함량%는 첨가물 첨가 조건이 40.5%, 미첨가 조건이 31.8%로 8%정도 증가한 것을 확인하였다. 비푸코실화 함량%의 경우 첨가물 첨가 조건이 14.1%, 미첨가 조건이 6.1%로 구공정과 유사하게 두 배 이상 증가한 것을 확인하였다.
상기 실험 결과는 본 발명의 망간, 글리세롤 및 우리딘으로 이루어진 항체 당쇄 함량 조절용 첨가물을 첨가하는 공정을 통하여 신공정 뿐만 아니라 서로 다른 배지를 사용하는 구공정에도 유사한 효과가 있음을 확인한 것으로, 해당 첨가물은 배지 제한없이 어느 공정에도 사용될 수 있음을 확인한 것이다.
실시예 3. ADCC 활성 확인
HD201 항체의 ADCC 활성 분석은 항체의존 세포독성 분석 시험법 SOP[HD201 항체의존 세포독성 분석 assay ]에 따라 분석을 수행하였다.
Small scale 구공정 및 신공정에서의 당쇄 함량 조절용(Fc N-glycan quality improvement) 첨가물(망간, 글리세롤, 우리딘) 첨가하여 제조한 항체의 ADCC 활성을 In vitro 활성 측정법인 relative ADCC assay를 통하여 측정하였다. ADCC 활성의 기준 물질(대조약)은 현재 판매되고 있는 오리지날 사 제품(Herceptin® H4158B03 150mg)을 사용하였다.
표 8 HD201 항체의 ADCC 활성 분석
RUN 샘플 EC50 상대 활성 비율 (by PLA s/w)
EC50(ng/mL) Relative % 활성 비율 상대 비율
1 Herceptin H4158B03 22.6 100.0 n/a 100.0
New Process with Fc N-glycan quality improvement additives 20.6 109.7 1.3 130.0
2 Herceptin H4158B03 22.9 100.0 n/a 100.0
Phase I Process with Fc N-glycan quality improvement additives 14.5 157.9 2.2 217.5
3 Herceptin H4158B03 18.4 100.0 n/a 100.0
Phase I Process with Fc N-glycan quality improvement additives 25.5 72.2 0.8 78.7
4 Herceptin H4158B03 19.7 100.0 n/a 100.0
New Process without Fc N-glycan quality improvement additives 32.7 60.2 0.4 42.7
시험 결과는 기존과 동일한 EC50값을 통한 relative ADCC%(A) 및 PLA s/w로 계산되는 relative activity ratio를 사용한 relative ADCC activity%(B)로 나타내었으며, EC50를 사용한 결과값과 PLA를 사용한 결과값에 약간의 차이는 있으나 전체적인 경향성은 동일한 것을 알 수 있었다.
Small scale 구공정의 경우 첨가물 첨가 조건은 대조약 대비 217.5%의 ADCC 활성을 나타내었으며, 미첨가 조건은 78.7%로 대조약 대비 낮을 활성을 나타내었다. 따라서 당쇄 함량 조절용(Fc N-glycan quality improvement) 첨가물(망간, 글리세롤, 우리딘)를 구공정에 첨가할 경우 비푸코실화 비율을 두 배까지 높일 수 있으며, 이로 인한 ADCC 활성을 미첨가 조건 대비 100% 이상 향상시킬 수 있었다. 신공정은 첨가물 첨가 조건은 대조약 대비 130%의 ADCC 활성을 나타내었으며, 미첨가 조건은 42.7%로 대조약 대비 가장 낮은 활성을 나타내었다. 신공정은 다른 배지를 사용하는 구공정에서와 마찬가지로 당쇄 함량 조절용(Fc N-glycan quality improvement) 첨가물(망간, 글리세롤, 우리딘)를 첨가할 경우 비푸코실화 비율을 두 배까지 높일 수 있으며, 이로 통해 ADCC 활성을 미첨가 조건 대비 80% 이상 향상시킬 수 있었다.
상기 결과를 종합하면, 본 발명에서 글리세롤을 이용하여 항체의 비푸코실화 함량을 증진시킬 수 있음을 최초로 확인하였으며, 이를 포함하여 망간과 우리딘을 이용하여 항체의 당쇄 함량을 조절하는 공정을 개발한 것임을 확인하였다.
이상의 설명으로부터, 본 발명이 속하는 기술분야의 당업자는 본 발명이 그 기술적 사상이나 필수적 특징을 변경하지 않고서 다른 구체적인 형태로 실시될 수 있다는 것을 이해할 수 있을 것이다. 이와 관련하여, 이상에서 기술한 실시 예들은 모든 면에서 예시적인 것이며 한정적인 것이 아닌 것으로서 이해해야만 한다. 본 발명의 범위는 상기 상세한 설명보다는 후술하는 특허 청구범위의 의미 및 범위 그리고 그 등가 개념으로부터 도출되는 모든 변경 또는 변형된 형태가 본 발명의 범위에 포함되는 것으로 해석되어야 한다.

Claims (20)

  1. 글리세롤을 항체 당쇄 함량 조절용 첨가물로 포함하는 배지에서 항체 발현 세포를 배양하는 단계를 포함하는, 당쇄 함량이 조절된 항체의 제조 방법.
  2. 제1항에 있어서, 상기 배지는 항체 당쇄 함량 조절용 첨가물로 망간 및 우리딘으로 이루어진 군으로부터 선택된 하나 이상을 추가로 포함하는 것인, 제조 방법.
  3. 제1항에 있어서, 상기 당쇄 함량은 갈락토실(galactosylation) 함량 및 비푸코실(afucosylation) 함량으로 이루어진 군으로부터 선택된 하나 이상의 함량인 것인, 제조 방법.
  4. 제1항에 있어서, 상기 항체는 트라스투주맙(Trastzumab)인 것인, 제조 방법.
  5. 제1항에 있어서, 상기 배양은 본배양 단계 및 유가 배양 단계로 이루어지는 것인, 제조 방법.
  6. 제1항에 있어서, 상기 제조 방법은
    (a) 글리세롤 및 망간을 포함하는 배지에서 항체 발현 세포를 배양하는 단계; 및,
    (b) 상기 (a) 단계를 통해 배양한 세포를 우리딘을 추가로 포함하는 배지로 배양하는 단계를 포함하는, 제조 방법.
  7. 제6항에 있어서, 상기 (a) 단계는 3일 내지 8일 동안 이루어지는 것인, 제조 방법.
  8. 제6항에 있어서, (c) 상기 (b) 단계에서 배양된 세포를 글리세롤 및 망간을 포함하는 유가배지를 첨가하여 배양하는 단계를 추가로 포함하는, 제조 방법.
  9. 제8항에 있어서, 상기 (c) 배양하는 단계는 유가 배양인 것인, 제조 방법.
  10. 제1항에 있어서, 상기 배지는 글리세롤을 0.1 내지 5 %(v/v) 농도로 포함된 것인, 제조 방법.
  11. 제2항에 있어서, 상기 배지는 망간은 10 내지 200 μM 농도로 포함하거나, 우리딘은 1 내지 10 mM 농도로 포함하는 것인, 제조 방법.
  12. 제2항에 있어서, 상기 망간은 염화망간(manganese chloride)인 것인, 제조 방법.
  13. 제1항에 있어서, 상기 제조 방법에 의해 제조된 항체의 당쇄 함량은 갈락토실 함량이 35 내지 50% 범위 내이고, 비푸코실 함량이 8 내지 20% 범위 내인 것인, 제조 방법.
  14. (a) 글리세롤 및 망간을 포함하는 배지에 항체 발현 세포를 배양하는 단계;
    (b) 상기 (a) 단계 통해 배양한 세포를 우리딘을 포함하는 배지로 배양하는 단계; 및
    (c) 글리세롤 및 망간을 포함하는 배지로 유가 배양하는 단계를 포함하는, 당쇄 함량이 조절된 항체의 제조 방법.
  15. 제14항에 있어서, 상기 배지는 글리세롤을 0.5 내지 3 %(v/v) 농도 범위 내로 포함하고, 망간을 20 내지 120 μM 농도 범위 내로 포함하고, 우리딘을 3 내지 10 mM 농도 범위 내로 포함하는 것인, 제조 방법.
  16. 제1항 내지 제15항 중 어느 한 항의 방법에 의해 제조된, 당쇄 함량이 조절된 항체 집단.
  17. 글리세롤을 항체 당쇄 함량 조절용 첨가물로 포함하는 배지에서 항체 발현 세포를 배양하는 단계를 포함하는, 항체 당쇄 함량을 조절하는 방법.
  18. 제17항에 있어서, 상기 배지는 항체 당쇄 함량 조절용 첨가물로 망간 및 우리딘으로 이루어진 군으로부터 선택된 하나 이상을 추가로 포함하는 것인, 항체 당쇄 함량을 조절하는 방법.
  19. 글리세롤을 항체 당쇄 함량 조절용 첨가물로 포함하는, 항체 당쇄 함량 조절용 배지 조성물.
  20. 제19항에 있어서, 상기 항체 당쇄 함량 조절용 첨가물은 망간 및 우리딘으로 이루어진 군으로부터 선택된 하나 이상을 추가로 포함하는 것인 항체 당쇄 함량 조절용 배지.
PCT/KR2015/003310 2014-04-02 2015-04-02 항체의 당 함량 조절을 통한 항체의 제조 방법 WO2015152658A1 (ko)

Priority Applications (6)

Application Number Priority Date Filing Date Title
US15/300,710 US10808272B2 (en) 2014-04-02 2015-04-02 Method for preparing antibody through regulation of sugar content of antibody
CN201580023733.XA CN106459185B (zh) 2014-04-02 2015-04-02 通过调节抗体的含糖量制备抗体的方法
DK15773537.4T DK3127917T3 (da) 2014-04-02 2015-04-02 Fremgangsmåde til fremstilling af antistof gennem regulering af sukkerindhold i antistof
EP15773537.4A EP3127917B1 (en) 2014-04-02 2015-04-02 Method for preparing antibody through regulation of sugar content of antibody
ES15773537T ES2893536T3 (es) 2014-04-02 2015-04-02 Método para preparar anticuerpo mediante la regulación del contenido de azúcares del anticuerpo
JP2016559960A JP6389530B2 (ja) 2014-04-02 2015-04-02 抗体の糖含量の調節を通じた抗体の製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020140039307A KR101660580B1 (ko) 2014-04-02 2014-04-02 항체의 당 함량 조절을 통한 항체의 제조 방법
KR10-2014-0039307 2014-04-02

Publications (1)

Publication Number Publication Date
WO2015152658A1 true WO2015152658A1 (ko) 2015-10-08

Family

ID=54240880

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2015/003310 WO2015152658A1 (ko) 2014-04-02 2015-04-02 항체의 당 함량 조절을 통한 항체의 제조 방법

Country Status (9)

Country Link
US (1) US10808272B2 (ko)
EP (1) EP3127917B1 (ko)
JP (1) JP6389530B2 (ko)
KR (1) KR101660580B1 (ko)
CN (1) CN106459185B (ko)
DK (1) DK3127917T3 (ko)
ES (1) ES2893536T3 (ko)
PT (1) PT3127917T (ko)
WO (1) WO2015152658A1 (ko)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019514383A (ja) * 2016-04-26 2019-06-06 タンベックス バイオファーマ ユーエスエー,インコーポレイティド 細胞培養培地
CN114990049A (zh) * 2022-04-26 2022-09-02 鼎康(武汉)生物医药有限公司 一种同时调节细胞表达产物的糖型和电荷异质性的方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3880824A4 (en) * 2018-11-13 2022-08-10 Janssen Biotech, Inc. REGULATION OF TRACE METALS DURING ANTI-CD38 ANTIBODY PRODUCTION
CN111321188A (zh) * 2018-12-17 2020-06-23 嘉和生物药业有限公司 一种抗体糖型改造的配方、细胞培养方法以及在工业化生产中的应用
US20220153829A1 (en) * 2019-03-14 2022-05-19 Janssen Biotech, Inc. Methods for Producing Anti-TNF Antibody Compositions
CN116590371B (zh) * 2023-07-13 2023-10-17 智享生物(苏州)有限公司 一种降低中华仓鼠卵巢细胞中抗体高甘露糖型的细胞培养方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08336389A (ja) * 1995-06-14 1996-12-24 Mitsui Toatsu Chem Inc 糖蛋白質の糖鎖構造を制御する方法
US7439043B2 (en) * 2001-10-10 2008-10-21 Neose Technologies, Inc. Galactosyl nucleotide sugars
JP4368530B2 (ja) * 1999-04-09 2009-11-18 協和発酵キリン株式会社 免疫機能分子の活性を調節する方法
KR20130102936A (ko) * 2012-03-08 2013-09-23 한화케미칼 주식회사 재조합 단백질의 생산성 향상을 위한 배양용 배지 첨가용 조성물

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1254216B1 (en) * 2000-02-08 2006-06-07 Genentech, Inc. Improved galactosylation of recombinant glycoproteins
JP4102752B2 (ja) 2001-08-14 2008-06-18 ベリシティー デザイン, インコーポレイテッド Vcd−オン−デマンドのシステムおよび方法
CA2553731A1 (en) * 2004-01-21 2005-08-04 Novozymes A/S Production of a monoclonal antibody in a heterokaryon fungus or in a fungal host cell
CN1918179A (zh) * 2004-01-21 2007-02-21 诺和酶股份有限公司 在异核体真菌或真菌宿主细胞中产生单克隆抗体
AU2011205185B2 (en) * 2004-04-15 2013-05-09 Glycofi, Inc. Production of galactosylated glycoproteins in lower eukaryotes
PL1945665T3 (pl) 2005-10-21 2012-02-29 Genzyme Corp Leki oparte na przeciwciałach z ulepszoną aktywnością adcc
EP4155385A1 (en) * 2005-12-08 2023-03-29 Amgen Inc. Improved production of glycoproteins using manganese
KR101491867B1 (ko) * 2007-01-31 2015-02-10 피페넥스 인크. 증가된 발현을 위한 박테리아 리더 서열
EP2430164B1 (en) * 2009-05-11 2017-07-19 Pfenex, Inc. Production of recombinant proteins utilizing non-antibiotic selection methods and the incorporation of non-natural amino acids therein
BR112012030179A8 (pt) * 2010-05-27 2023-03-14 Merck Sharp & Dohme Polipeptídeo contendo fc
WO2012115904A2 (en) 2011-02-25 2012-08-30 Merck Sharp & Dohme Corp. Production of n- and o-sialylated tnfrii-fc fusion protein in yeast
EP2702077A2 (en) 2011-04-27 2014-03-05 AbbVie Inc. Methods for controlling the galactosylation profile of recombinantly-expressed proteins
KR20130057959A (ko) 2011-11-24 2013-06-03 한화케미칼 주식회사 항 her2 단일클론항체와 il-2를 포함하는 융합 단일클론 항체 및 이를 포함하는 암치료용 조성물
US10059770B2 (en) * 2012-01-30 2018-08-28 Dr. Reddy's Laboratories Limited Process of modulating man5 and/or afucosylation content of a glycoprotein composition
CN103320388B (zh) * 2012-03-20 2015-10-28 无锡药明康德生物技术股份有限公司 提高抗体表达量和改良糖基化水平的细胞培养方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08336389A (ja) * 1995-06-14 1996-12-24 Mitsui Toatsu Chem Inc 糖蛋白質の糖鎖構造を制御する方法
JP4368530B2 (ja) * 1999-04-09 2009-11-18 協和発酵キリン株式会社 免疫機能分子の活性を調節する方法
US7439043B2 (en) * 2001-10-10 2008-10-21 Neose Technologies, Inc. Galactosyl nucleotide sugars
KR20130102936A (ko) * 2012-03-08 2013-09-23 한화케미칼 주식회사 재조합 단백질의 생산성 향상을 위한 배양용 배지 첨가용 조성물

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019514383A (ja) * 2016-04-26 2019-06-06 タンベックス バイオファーマ ユーエスエー,インコーポレイティド 細胞培養培地
CN114990049A (zh) * 2022-04-26 2022-09-02 鼎康(武汉)生物医药有限公司 一种同时调节细胞表达产物的糖型和电荷异质性的方法
CN114990049B (zh) * 2022-04-26 2024-01-16 鼎康(武汉)生物医药有限公司 一种同时调节细胞表达产物的糖型和电荷异质性的方法

Also Published As

Publication number Publication date
JP2017511137A (ja) 2017-04-20
ES2893536T3 (es) 2022-02-09
CN106459185B (zh) 2021-05-07
US20170107551A1 (en) 2017-04-20
KR20150115066A (ko) 2015-10-14
PT3127917T (pt) 2021-10-15
JP6389530B2 (ja) 2018-09-12
US10808272B2 (en) 2020-10-20
CN106459185A (zh) 2017-02-22
EP3127917A1 (en) 2017-02-08
KR101660580B1 (ko) 2016-09-28
EP3127917A4 (en) 2017-04-26
DK3127917T3 (da) 2021-09-20
EP3127917B1 (en) 2021-09-01

Similar Documents

Publication Publication Date Title
WO2015152658A1 (ko) 항체의 당 함량 조절을 통한 항체의 제조 방법
US11267899B2 (en) Afucosylated protein, cell expressing said protein and associated methods
Hossler et al. Optimal and consistent protein glycosylation in mammalian cell culture
KR101402634B1 (ko) 항-노화 화합물을 이용한 단백질 제조 방법
WO2015115849A1 (ko) 배양배지의 최적화를 통한 재조합 단백질의 갈락토오스화를 조절하는 방법
US20120258496A1 (en) Production of low fucose antibodies in h4-ii-e rat cells
van Berkel et al. N‐linked glycosylation is an important parameter for optimal selection of cell lines producing biopharmaceutical human IgG
Mimura et al. Enhanced sialylation of a human chimeric IgG1 variant produced in human and rodent cell lines
WO2006013964A1 (ja) 糖蛋白質組成物の製造法
WO2013114164A1 (en) Method for obtaining glycoprotein composition with increased afucosylation content
WO2010036443A1 (en) Cell lines and proteins with variant glycosylation pattern
WO2014142453A1 (ko) 램프 기능이 포함된 범용 단백질 과발현 태그와 그 활용
Nadeem et al. Glycosylation of recombinant anticancer therapeutics in different expression systems with emerging technologies
Wang et al. Strategies for engineering protein N-glycosylation pathways in mammalian cells
Van Berkel et al. Rapid production of recombinant human IgG with improved ADCC effector function in a transient expression system
WO2015128793A1 (en) A process for modifying high mannose and galactosylation content of a glycoprotein composition
KR20210089220A (ko) 세포 배양에서 생산된 재조합 당단백질의 글리코실화 프로파일의 변형 방법
Levanon et al. An efficient method to control high mannose and core fucose levels in glycosylated antibody production using deoxymannojirimycin
WO2005035740A1 (ja) 無血清馴化したゲノム改変細胞
EP3110941A1 (en) Process for modifying galactosylation and g0f content of a glycoprotein composition by glutamine supplementation
WO2022031093A1 (ko) 재조합 히알루로니다제의 생산 방법
Ogorek et al. Fucose-targeted glycoengineering of pharmaceutical cell lines
Rameez et al. Modulation of high mannose levels in N‐linked glycosylation through cell culture process conditions to increase antibody‐dependent cell‐mediated cytotoxicity activity for an antibody biosimilar
CN110373374B (zh) 一种降低抗体核心岩藻糖基化的方法和组合物
WO2012105699A1 (ja) 補体依存性生物活性の高い抗体の産生法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15773537

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016559960

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15300710

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2015773537

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015773537

Country of ref document: EP

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112016022936

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112016022936

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20161003