WO2015152360A1 - 不活化全粒子ワクチンを含有するマイクロニードルアレイ製剤およびその投与方法 - Google Patents
不活化全粒子ワクチンを含有するマイクロニードルアレイ製剤およびその投与方法 Download PDFInfo
- Publication number
- WO2015152360A1 WO2015152360A1 PCT/JP2015/060427 JP2015060427W WO2015152360A1 WO 2015152360 A1 WO2015152360 A1 WO 2015152360A1 JP 2015060427 W JP2015060427 W JP 2015060427W WO 2015152360 A1 WO2015152360 A1 WO 2015152360A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- microneedle array
- needle
- vaccine
- inactivated whole
- administration
- Prior art date
Links
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/0012—Galenical forms characterised by the site of application
- A61K9/0019—Injectable compositions; Intramuscular, intravenous, arterial, subcutaneous administration; Compositions to be administered through the skin in an invasive manner
- A61K9/0021—Intradermal administration, e.g. through microneedle arrays, needleless injectors
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K39/12—Viral antigens
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K39/12—Viral antigens
- A61K39/145—Orthomyxoviridae, e.g. influenza virus
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P31/00—Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
- A61P31/12—Antivirals
- A61P31/14—Antivirals for RNA viruses
- A61P31/16—Antivirals for RNA viruses for influenza or rhinoviruses
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K2039/51—Medicinal preparations containing antigens or antibodies comprising whole cells, viruses or DNA/RNA
- A61K2039/525—Virus
- A61K2039/5252—Virus inactivated (killed)
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K2039/545—Medicinal preparations containing antigens or antibodies characterised by the dose, timing or administration schedule
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2760/00—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssRNA viruses negative-sense
- C12N2760/00011—Details
- C12N2760/16011—Orthomyxoviridae
- C12N2760/16111—Influenzavirus A, i.e. influenza A virus
- C12N2760/16134—Use of virus or viral component as vaccine, e.g. live-attenuated or inactivated virus, VLP, viral protein
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2760/00—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssRNA viruses negative-sense
- C12N2760/00011—Details
- C12N2760/16011—Orthomyxoviridae
- C12N2760/16211—Influenzavirus B, i.e. influenza B virus
- C12N2760/16234—Use of virus or viral component as vaccine, e.g. live-attenuated or inactivated virus, VLP, viral protein
Definitions
- the present invention relates to a microneedle array containing an inactivated whole particle influenza vaccine.
- Influenza is an acute infectious respiratory disease caused by an influenza virus that spreads through respiratory droplet infection. Influenza influenza vaccination is considered effective for preventing influenza, and recently, prepandemic vaccines that are especially compatible with new influenza are being developed.
- Influenza vaccines are classified into three types: live attenuated vaccines, inactivated whole particle vaccines, and inactivated split vaccines. Currently, inactivated split vaccines are widely used in Japan.
- Patent Document 1 discloses a transdermal delivery device and administration method for influenza vaccine.
- Patent Document 2 discloses a microneedle device comprising a polylactic acid microneedle coated with an influenza vaccine comprising an antigen comprising an A type (H1N1) strain, an A type (H3N2) strain and a B type strain as an active ingredient. ing.
- Non-Patent Document 3 a skin-dissolving microneedle loaded with a trivalent seasonal influenza HA antigen is prepared, and immunity induction characteristics in humans are evaluated.
- Inactivated split vaccine is widely used in Japan, but its effectiveness is low. In addition, when an influenza pandemic is assumed, it is important to elicit many human immunity with a small amount of vaccine, and an efficient and simple administration method of the vaccine is required.
- Patent Document 1 does not confirm the correlation between the dose of the influenza vaccine transdermal delivery device and the amount of antibody produced. Further, in Patent Document 2 and Non-Patent Document 3, as described above, a method for administering an influenza vaccine using a microneedle array has been studied, but split vaccine is used, and the production of antibodies against the dose of vaccine is performed. The amount was not enough. Therefore, there is a strong demand for the development of an even better microneedle array that can efficiently and easily administer influenza vaccines.
- An object of the present invention is to provide a microneedle array that can improve antibody production ability and can be easily administered with an influenza vaccine.
- the present inventors have administered a microneedle array in which a needle part containing an inactivated whole-particle influenza vaccine and a sheet part are administered, thereby producing an antibody-producing ability.
- the present invention was completed.
- a microneedle array including a needle part containing an inactivated whole-particle influenza vaccine and a sheet part.
- the microneedle array according to [1] wherein the needle part contains a water-soluble polymer and dissolves after being inserted into the body.
- the water-soluble polymer is at least one selected from the group consisting of hydroxyethyl starch, dextran, sodium chondroitin sulfate, sodium hyaluronate, carboxymethyl cellulose, polyvinyl pyrrolidone, polyoxyethylene polyoxypropylene glycol, and polyethylene glycol.
- the influenza vaccine is at least one selected from the group consisting of A / H1N1, A / H3N2, A / H5N1, and B, [1] to [3] Microneedle array.
- [5] The amount according to any one of [1] to [4], wherein 90% by mass or more with respect to the total mass of the inactivated whole-particle influenza vaccine is contained within 80% from the tip with respect to the height of the needle part.
- Microneedle array Microneedle array.
- An administration method in which the microneedle array according to any one of [1] to [6] is administered, and then the second administration is performed at intervals of 24 hours or more and less than 2 months.
- an inactivated whole-particle influenza vaccine can be administered by a simple operation compared to administration by injection.
- antibody production ability can be improved with a small amount of vaccine compared to administration by injection.
- FIG. 1 is a sectional view showing an example of the microneedle array of the present invention.
- the microneedle array of the present invention is formed of a needle part 11 and a sheet part 12 that contain an inactivated whole-particle influenza vaccine.
- the microneedle array of the present invention contains an inactivated whole particle influenza vaccine.
- the inactivated whole-particle influenza vaccine means virus particles that are inactivated while retaining the virus form from the virus suspension obtained by culturing influenza virus, and does not include split vaccines.
- Influenza vaccines are not limited to that type, but include types A and B, including seasonal vaccines and pandemic vaccines.
- There are subtypes of influenza A virus that are a combination of a type selected from H1-16 and a type selected from N1-9. In the present invention, at least one selected from the group consisting of A / H1N1, A / H3N2, A / H5N1, and B types is preferred.
- the microneedle array of the present invention includes a needle part.
- the needle part contains an inactivated whole-particle influenza vaccine, and the needle part is punctured into the skin or mucous membrane, whereby transdermal or transmucosal administration is possible.
- the shape of the needle part is not particularly limited as long as it is a convex structure having a tip, and includes a needle shape having a sharp tip and a shape having a sharp tip, but a shape having a sharp tip is preferred.
- Specific examples include a pyramidal structure such as a conical structure, a triangular pyramid structure, and a quadrangular pyramidal structure, a truncated cone structure, a triangular frustum structure, a quadrangular frustum structure, and the like.
- a structure, a triangular pyramid structure, and a quadrangular pyramid structure are preferable, and a conical structure is more preferable.
- the needle portions of the microneedle array of the present invention include two needle portions 21 and 22 in FIG. 2, and needle portions 31 to 34 in FIG. It can take a multilayer structure of layers or more.
- the needle part first layer and the needle part second layer are called in order from the layer including the tip of the needle.
- the angle ⁇ 2 formed by the side surface in one layer in the case of the second needle layer 22 in FIG. 2 and the third needle layer 33 in FIG. 3
- the angle formed by the intersection when extending in the needle tip direction is the needle portion.
- the needle part of the microneedle array of the present invention can also have a structure in which the angle formed by the side surfaces is continuously changed as shown by the needle part 41 in FIG.
- the needle part of the microneedle array of the present invention preferably concentrates the inactivated whole-particle influenza vaccine efficiently on the upper end part of the needle part as shown in the upper end part 51 of the needle part in FIG. Thereby, administration efficiency can further be improved. Moreover, since manufacturing efficiency improves by selecting the same material for the lower end part of a needle part and a sheet
- the height of the needle part is represented by the length of a perpendicular line dropped from the tip of the needle to the sheet part as indicated by H in FIG.
- the height of the needle part is preferably 50 ⁇ m or more and 2000 ⁇ m or less, more preferably 100 ⁇ m or more and 1500 ⁇ m or less, and further preferably 200 ⁇ m or more and 1000 ⁇ m or less. If it is 50 ⁇ m or more, it becomes possible to administer inactivated whole-particle influenza vaccine transdermally, and if it is 2000 ⁇ m or less, the Langerhans cells effective for immunity induction can be efficiently recognized as an antigen vaccine.
- the width of the basal portion of the needle portion is represented by the distance between the farthest points in the basal portion of one needle, as indicated by W in FIGS.
- the width of the base portion of the needle portion is preferably 50 ⁇ m or more and 2000 ⁇ m or less, more preferably 100 ⁇ m or more and 1500 ⁇ m or less, and further preferably 200 ⁇ m or more and 1000 ⁇ m or less.
- 1 to 2000 needle portions are preferably arranged per microneedle array, more preferably 3 to 1000 needle portions, and even more preferably 5 to 500 needle portions.
- the interval between the needle portions is represented by the distance between the legs of the perpendicular line that is lowered from the tip of the needle portion to the sheet portion as indicated by D in FIG.
- the interval between the arranged needle parts is the distance between the needles closest to each of the needle parts, and the perpendicular foot descending from the tip to the sheet part. The distance between them is obtained and expressed as an average value.
- an embodiment like D in FIGS. 6 and 7 can be mentioned.
- the interval between the needle portions is preferably from 0.1 mm to 10 mm, more preferably from 0.2 mm to 5 mm, and still more preferably from 0.3 mm to 3 mm.
- the area occupied by the needle portion per microneedle array includes the basal portions of all the needles as indicated by S in FIGS. 6 and 7, and the area is minimized at the tangent to the basal portion of the outermost needle. It is expressed by the area of the figure configured as described above.
- the area occupied by the needle portion is preferably 0.005 to 1000 mm 2 , more preferably 0.05 to 500 mm 2 , and even more preferably 0.1 to 300 mm 2 .
- the density of the needle parts is represented by a value obtained by dividing the number of needle parts of one microneedle array by the area occupied by the needle parts.
- the density of the needle part is preferably 0.01 to 10 needles per 1 mm 2, more preferably 0.05 to 5, and still more preferably 0.1 to 5.
- the needle part is preferably dissolved after being inserted into the body after puncturing the skin or mucous membrane. Therefore, the material constituting the needle part is preferably a water-soluble polymer, more preferably a polysaccharide, hydroxyethyl starch, dextran, sodium chondroitin sulfate, sodium hyaluronate, carboxymethyl cellulose, polyvinyl pyrrolidone, polyoxyethylene. More preferred is at least one selected from the group consisting of polyoxypropylene glycol and polyethylene glycol.
- the microneedle array of the present invention has a sheet portion that supports the needle portion.
- the user applies a force to the sheet part, whereby the inactivated whole-particle influenza vaccine contained in the needle part can be administered from the skin.
- a method for applying force to the needle portion is not particularly limited.
- the thickness of the sheet portion is represented by the distance between the surface in contact with the needle and the opposite surface, as indicated by T in FIGS.
- the thickness of the sheet portion is preferably 1 ⁇ m or more and 1200 ⁇ m, more preferably 3 ⁇ m or more and 600 ⁇ m or less, and further preferably 5 ⁇ m or more and 400 ⁇ m.
- the material constituting the sheet part is preferably a water-soluble polymer, more preferably a polysaccharide, hydroxyethyl starch, dextran, sodium chondroitin sulfate, sodium hyaluronate, carboxymethyl cellulose, polyvinyl pyrrolidone, polyoxyethylene polyoxy More preferred is at least one selected from the group consisting of propylene glycol and polyethylene glycol.
- the material constituting the seat part may be the same as or different from the material constituting the needle part.
- the microneedle array of the present invention can include a support in a part of the sheet part.
- the support By including the support, the strength of the sheet portion is increased, and the microneedle array can be punctured into the skin or mucous membrane more easily.
- a support body From the simplicity of puncture, a polyethylene terephthalate, a polyethylene naphthalate, etc. are mentioned.
- the thickness of the support is preferably from 10 ⁇ m to 1000 ⁇ m, more preferably from 30 ⁇ m to 500 ⁇ m, still more preferably from 50 ⁇ m to 300 ⁇ m.
- 90% by mass or more based on the total mass of the inactivated whole particle influenza vaccine included in the microneedle array of the present invention is preferably contained within 80% from the tip with respect to the height of the needle part, and within 60% More preferably, it is contained within 40%. Moreover, it is preferable that 90 mass% or more with respect to the total mass of the inactivated whole particle influenza vaccine included in the microneedle array of the present invention is contained within 500 ⁇ m from the tip of the needle part, and more preferably within 350 ⁇ m. Preferably, it is contained within 200 ⁇ m.
- the administration time of the microneedle array of the present invention is preferably within 1 hour, more preferably within 30 minutes, from the viewpoint of improving compliance.
- the number of administration is preferably twice from the viewpoint of improving antibody production ability.
- the administration interval is preferably about 24 hours to 2 months, more preferably about 3 days to 1.5 months, and further preferably about 1 week to 4 weeks.
- the microneedle array of the present invention can stimulate an immune response in the skin and improve antibody production ability. Specifically, the IgG antibody titer in serum can be increased. In addition, the microneedle array of the present invention showed an increase in antibody titer against other types of influenza viruses when administered twice.
- microneedle array of the present invention will be described more specifically with reference to examples.
- present invention is not limited to the following examples.
- Example 1 Preparation of whole particle influenza vaccine-containing microneedle array A / PR / 8/1934 (H1N1) strain of influenza virus was treated with formalin to obtain an inactivated whole particle vaccine.
- the 14.4 mass% hydroxyethyl starch solution to which the inactivated whole particle vaccine was added was filled into a mold having a conical recess and dried. Thereafter, 40% by mass of sodium chondroitin sulfate was filled in the mold and dried to form the rest of the needle part and the sheet part (including polyethylene terephthalate as a support), which was removed from the mold.
- a microneedle array having a needle layer height of about 580 ⁇ m and containing an inactivated whole particle vaccine (needle portion first layer: conical structure having a height of about 460 ⁇ m and a bottom surface diameter of about 270 ⁇ m; second needle portion)
- Layer a truncated cone structure having a height of about 120 ⁇ m, an upper base diameter of about 270 ⁇ m, and a lower base diameter of about 460 ⁇ m; a width of a base portion of a needle portion of about 460 ⁇ m;
- the number of the needles was 9; the interval between the needles was about 1 mm; the area occupied by the needles was about 6 mm 2 ; the needle density was about 1.5 / mm 2 .
- the vaccine content is equivalent to hemagglutinin-containing value of 0.67 ng, 1.3 ng, 2.7 ng, respectively.
- Microneedle arrays of 5.4 ng, 11 ng, 21 ng, 0.11 ⁇ g, and 0.54 ⁇ g were prepared.
- the distribution of the inactivated whole particle vaccine in the needle part of the prepared microneedle array was estimated by the following method.
- a microneedle array was made in the same manner as described above, except that a 14.4 wt% hydroxyethyl starch solution with 0.1 wt% Evans blue dye was used instead of the inactivated whole particle vaccine.
- the distribution ratio of the dye to the part including the needle tip was measured. The ratio was 45%.
- the distribution ratio of the dye to the portion including the needle tip when cut at 200, 260, and 330 ⁇ m from the tip of the needle was measured in the same manner. They were 90%, 100%, and 100%, respectively.
- Example 1 and Comparative Example 1 Vaccine administration test to mice using microneedle array
- Mice (Balb / c (Claire Japan), female, 7 weeks old) were purchased, and after habituation for 1 week, an influenza vaccine administration test was performed.
- the microneedle array was punctured for 4 minutes with the skin stretched. Both Example 1 and Comparative Example 1 were carried out with 4 animals.
- Vaccine administration test by mouse subcutaneous injection test (Comparative Examples 2 and 3) As Comparative Examples 2 and 3, vaccine was administered by subcutaneous injection to mice under the same conditions as in Example 1 and Comparative Example 1.
- 100 ⁇ L of the inactivated whole-particle vaccine prepared in Example 1 diluted with water for injection was 2.7 ng, 5.4 ng, 11 ng, 21 ng, 43 ng, 0.21 ⁇ g in terms of hemagglutinin-containing equivalent values, respectively. 1.1 ⁇ g was administered.
- Comparative Example 3 100 ng of the vaccine prepared by diluting the split vaccine prepared in Comparative Example 1 to each dose with water for injection was administered in an amount corresponding to hemagglutinin content of 43 ng, 0.21 ⁇ g, and 1.1 ⁇ g, respectively. Both Comparative Example 2 and Comparative Example 3 were carried out with 4 animals.
- mice bred for 4 weeks were opened under anesthesia, and blood was collected from the posterior vena cava. Serum was obtained by centrifuging the blood left at room temperature and collecting the supernatant. The amount of antibody (IgG) specific to influenza contained in the obtained serum was measured by the following method. (Measurement of IgG antibody production) 50 ⁇ L / well of the virus antigen inactivated for ELISA was dispensed into NUNC immunoplate maxisorp (C bottom, 96 well) and allowed to stand overnight at 4 ° C. with a seal.
- NUNC immunoplate maxisorp C bottom, 96 well
- FIG. 8 shows the evaluation of the production amount of IgG antibody in the serum of mice by administration of Example 1 and Comparative Examples 1 to 3. Surprisingly, it was found that the group administered with the vaccine according to Example 1 produced more IgG antibody even at low doses compared to the group administered with the vaccine according to Comparative Examples 1-3. .
- Example 2 Preparation of microparticle array containing whole particle influenza vaccine Inactivation of influenza virus of A / PR / 8/1934 (H1N1) strain having a vaccine content equivalent to hemagglutinin content of 0.01 ⁇ g in the same manner as in Example 1. A microneedle array containing the whole particle vaccine was prepared.
- Comparative Example 4 Preparation of a split influenza vaccine-containing microneedle array
- an influenza virus split vaccine of A / PR / 8/1934 (H1N1) strain having a vaccine content equivalent to a hemagglutinin-containing value of 0.01 ⁇ g was prepared.
- a microneedle array to be included was prepared.
- Example 2 and Comparative Example 4 Vaccine administration test to mice using microneedle array
- Mice (Balb / c (Claire Japan), female, 7 weeks old) were purchased, and after habituation for 1 week, an influenza vaccine administration test was performed.
- hair was removed from the back of the mouse under anesthesia, and then the microneedle array was punctured for 4 minutes with the skin stretched. Both Example 3 and Comparative Example 4 were performed with 6 animals.
- Vaccine administration test by subcutaneous injection test in mice (Comparative Example 5 and Comparative Example 6) As Comparative Example 5 and Comparative Example 6, vaccine administration by subcutaneous injection was performed on mice under the same conditions as in Example 2 and Comparative Example 4.
- 100 ⁇ L of the inactivated whole particle vaccine prepared in Example 2 diluted with physiological saline was administered in an amount of 0.01 ⁇ g corresponding to hemagglutinin content.
- 100 ⁇ L of the vaccine prepared by diluting the split vaccine prepared in Comparative Example 4 to each dose with water for injection was administered in an amount of 0.01 ⁇ g corresponding to hemagglutinin.
- Comparative Example 5 and Comparative Example 6 were both performed with 6 animals.
- MDCK cells were seeded in a 12-well plate and incubated at 37 ° C. for 2 days so as to cover the entire bottom surface.
- 100 ⁇ L of lung emulsion diluted 10-fold in increments of 10 to 1000000 in 1 ⁇ MEM buffer was added to each 12-well plate in which MDCK cells were cultured, and incubated at 35 ° C. for 1 hour.
- 1 mL of a mixture of 1 ⁇ MEM buffer and 1% agarose at 42 ° C. was added to each well and allowed to cool to room temperature for gelation.
- the 12-well plate was incubated at 35 ° C. for 2 days.
- the virus titer is expressed as a plaque forming unit (log (pfu / g)) per 1 g of the lung emulsion. (K ⁇ 10 (n + 2) ) Calculated with
- Example 2 The results of measuring the viral load in the lungs by administration of Example 2 and Comparative Examples 4 to 6 are shown in FIG. It was found that the group administered with the vaccine according to Example 2 had a smaller amount of virus and had a higher virus growth inhibitory effect in the lungs than the group administered with the vaccine according to Comparative Examples 4-6.
- Needle portion 12 Sheet portion 13 Base portion 21 Needle portion first layer 22 Needle portion second layer 31 Needle portion first layer 32 Needle portion second layer 33 Needle portion third layer 34 Needle portion fourth layer 41 Needle portion 51 Needle Upper end part 52 Sheet part 53 Support 61 Conical needle part tip 71 Square pyramid needle part tip D Distance between needle part and needle part H Needle part height S Needle part occupation area T Sheet part part Thickness W Needle base width ⁇ 1 Angle formed by side of needle layer first layer ⁇ 2 Angle formed by side of needle layer second layer or third layer
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Virology (AREA)
- Public Health (AREA)
- Pharmacology & Pharmacy (AREA)
- Chemical & Material Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Veterinary Medicine (AREA)
- Medicinal Chemistry (AREA)
- Epidemiology (AREA)
- Dermatology (AREA)
- Microbiology (AREA)
- Immunology (AREA)
- Mycology (AREA)
- Pulmonology (AREA)
- Oncology (AREA)
- Communicable Diseases (AREA)
- Molecular Biology (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Organic Chemistry (AREA)
- Medicinal Preparation (AREA)
- Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
- Media Introduction/Drainage Providing Device (AREA)
Abstract
Description
本発明の目的は、抗体産生能を向上させることができ、簡便にインフルエンザワクチンを投与することのできるマイクロニードルアレイを提供することにある。
[1] 不活化全粒子インフルエンザワクチンを内包する針部と、シート部と、を含むマイクロニードルアレイ。
[2] 針部が水溶性高分子を含み、体内に挿入された後に溶解する[1]に記載のマイクロニードルアレイ。
[3] 水溶性高分子が、ヒドロキシエチルデンプン、デキストラン、コンドロイチン硫酸ナトリウム、ヒアルロン酸ナトリウム、カルボキシメチルセルロース、ポリビニルピロリドン、ポリオキシエチレンポリオキシプロピレングリコール、ポリエチレングリコールからなる群より選択される少なくとも1種である[2]に記載のマイクロニードルアレイ。
[4] インフルエンザワクチンがA/H1N1型、A/H3N2型、A/H5N1型、およびB型からなる群より選択される少なくとも1種である[1]~[3]のいずれか1つに記載のマイクロニードルアレイ。
[5] 不活化全粒子インフルエンザワクチンの全質量に対する90質量%以上が、針部の高さに対して先端から80%以内に含まれる[1]~[4]のいずれか1つに記載のマイクロニードルアレイ。
[6] 不活化全粒子インフルエンザワクチンの全質量に対する90質量%以上が、針部の先端から500μm以内に含まれる[1]~[4]のいずれか1つに記載のマイクロニードルアレイ。
[7] [1]~[6]のいずれか1つに記載のマイクロニードルアレイを投与した後、24時間以上2ヶ月未満の間隔をあけて2回目の投与を行う投与方法。
不活化全粒子インフルエンザワクチンとは、インフルエンザウイルスを培養して得られたウイルス浮遊液からウイルスの形態を保持したままで不活化されたウイルス粒子を意味し、スプリットワクチンは含まれない。
インフルエンザワクチンは、その型に限定されるものではなく、A型、B型を含み、シーズン性ワクチンおよびパンデミックワクチンを含む。A型インフルエンザウイルスは、H1~16から選ばれる型と、N1~9から選ばれる型との組み合わせによる亜型が存在する。本発明においては、A/H1N1型、A/H3N2型、A/H5N1型、およびB型からなる群より選択される少なくとも1種が好ましい。
本発明のマイクロニードルアレイの針部は、側面のなす角度を、図4の針部41に示すように、連続的に変化させた構造をとることもできる。
針部は、1つのマイクロニードルアレイあたり1~2000本配置されることが好ましく、3~1000本配置されることがより好ましく、5~500本配置されることがさらに好ましい。1つのマイクロニードルアレイあたり2本の針部を含む場合、針部の間隔は、図1におけるDのように針部の先端からシート部へ下した垂線の足の間の距離で表す。1つのマイクロニードルアレイあたり3本以上の針部を含む場合、配列される針部の間隔は、全ての針部においてそれぞれ最も近接した針部に対して先端からシート部へ下した垂線の足の間の距離を求め、その平均値で表す。例えば、針部が等間隔で配列している場合は、図6および図7におけるDのような態様が挙げられる。針部の間隔は、0.1mm以上10mm以下であることが好ましく、0.2mm以上5mm以下であることがより好ましく、0.3mm以上3mm以下であることがさらに好ましい。
1つのマイクロニードルアレイあたりの針部の占有面積は、図6および図7におけるSのように、全ての針の基底部を含み、かつ最外周の針の基底部の接線で面積が最小になるように構成された図形の面積で表す。針部の占有面積は0.005~1000mm2であることが好ましく、0.05~500mm2がより好ましく、0.1~300mm2であることがさらに好ましい。
1つのマイクロニードルアレイあたり2本以上の針部を含む場合、針部の密度は、1つのマイクロニードルアレイの針部の本数を針部の占有面積で割った値で表す。針部の密度は、1mm2当たり0.01~10本の針密度が好ましく、0.05~5本であることがより好ましく、0.1~5本であることがさらに好ましい。
針部を皮膚または粘膜に穿刺する際に、使用者がシート部に力を加えることで針部に内包される不活化全粒子インフルエンザワクチンの経皮からの投与が可能となる。
針部に力を加える方法としては、特に限定されない。
シート部を構成する材料としては、水溶性高分子が好ましく、多糖類であることがより好ましく、ヒドロキシエチルデンプン、デキストラン、コンドロイチン硫酸ナトリウム、ヒアルロン酸ナトリウム、カルボキシメチルセルロース、ポリビニルピロリドン、ポリオキシエチレンポリオキシプロピレングリコール、ポリエチレングリコールからなる群より選択される少なくとも1種がさらに好ましい。
シート部を構成する材料は、針部を構成する材料と同一であっても、異なっていてもよい。
支持体の材料としては特に限定されないが、穿刺の簡便さから、ポリエチレンテレフタラート、ポリエチレンナフタレートなどが挙げられる。
支持体の厚さは、10μm以上1000μm以下が好ましく、30μm以上500μm以下がより好ましく、50μm以上300μm以下がさらに好ましい。
また、本発明のマイクロニードルアレイに内包される不活化全粒子インフルエンザワクチンの全質量に対する90質量%以上が、針部の先端から500μm以内に含まれることが好ましく、350μm以内に含まれることがより好ましく、200μm以内に含まれることがさらに好ましい。
投与回数は、抗体産生能向上の観点から2回投与することが好ましい。投与間隔としては、24時間~2ヶ月程度が好ましく、3日~1.5ヶ月程度がより好ましく、1週間~4週間程度がさらに好ましい。
また、本発明のマイクロニードルアレイは2回投与を行うことによって、他型のインフルエンザウイルスに対しても抗体価の上昇が見られた。
全粒子インフルエンザワクチン含有マイクロニードルアレイの調製
A/PR/8/1934(H1N1)株のインフルエンザウイルスをホルマリンによって処理し、不活化全粒子ワクチンを得た。その不活化全粒子ワクチンを添加した14.4質量%ヒドロキシエチルデンプン溶液を円錐形状の凹部を持つ鋳型に充填し、乾燥させた。
その後、40質量%コンドロイチン硫酸ナトリウムを鋳型に充填し、乾燥させることで、針部の残りとシート部(支持体としてポリエチレンテレフタラートを含む)を形成し、型から抜くことで、実施例1の不活化全粒子ワクチンを内包させた、針部の高さが約580μmの二層構成のマイクロニードルアレイ(針部第一層:高さ約460μm、底面直径約270μmの円錐構造;針部第二層:高さ約120μm、上底面直径約270μm、下底面直径約460μmの円錐台構造;針部の基底部の幅約460μm;シート部厚さ約205μm(このうちポリエチレンテレフタラート約175μm);針本数9本;針の間隔約1mm;針部専有面積約6mm2;針密度約1.5本/mm2)を調製した。鋳型への充填量に合わせてヒドロキシエチルデンプン溶液に添加する不活化全粒子ワクチンの量を変えることで、ワクチン含有量がヘマグルチニン含有相当値でそれぞれ、0.67ng、1.3ng、2.7ng、5.4ng、11ng、21ng、0.11μg、0.54μgのマイクロニードルアレイを作製した。
不活化全粒子ワクチンの代わりに0.1質量%のエバンスブルー色素を有する14.4質量%ヒドロキシエチルデンプン溶液を使用する他は、上記と同じ方法でマイクロニードルアレイを作製した。針部の先端から140μmの箇所でシート部と水平にカットし、カットした針先端を含む部分、および残りの針部とシート部を併せた部分を別々に水に溶解し、吸光度測定することで色素の針先端を含む部分への分配比率を測定した。比率は45%であった。針部の先端から200、260、330μmの箇所でそれぞれカットした時の色素の針先端を含む部分への分配比率を同様に測定した。それぞれ、90%、100%、100%であった。
スプリットインフルエンザワクチン含有マイクロニードルアレイの調製
A/PR/8/1934(H1N1)株のインフルエンザウイルスをエーテルによって処理し、スプリットワクチンを得た。その後、実施例1と同様の操作で、不活化全粒子ワクチンに代えてスプリットワクチンを用いて調製し、比較例1を得た。鋳型への充填量に合わせてヒドロキシエチルデンプン溶液に添加するスプリットワクチンの量を変えることで、ワクチン含有量がヘマグルチニン含有相当値でそれぞれ、21ng、0.11μg、0.54μgのマイクロニードルアレイを作製した。
マウス(Balb/c(日本クレア社)、メス、7週齢)を購入し、1週間の馴化の後、インフルエンザワクチンの投与試験を行った。実施例1および比較例1では、麻酔下でマウスの背面を除毛した後、皮膚を引き伸ばした状態でマイクロニードルアレイを4分間穿刺した。実施例1および比較例1は、ともに4匹で実施した。
比較例2および3として、実施例1および比較例1と同様の条件でマウスに対して、皮下注射によるワクチン投与を実施した。比較例2では、実施例1で調製した不活化全粒子ワクチンを、注射用水で希釈したワクチン100μLをヘマグルチニン含有相当値でそれぞれ2.7ng、5.4ng、11ng、21ng、43ng、0.21μg、1.1μg投与した。比較例3では、比較例1で調製したスプリットワクチンを注射用水で各用量に希釈したワクチン100μLをヘマグルチニン含有相当値でそれぞれ43ng、0.21μg、1.1μg投与した。比較例2および比較例3は、ともに4匹で実施した。
投与後、4週間飼育したマウスを麻酔下で開腹し、後部大静脈より採血を行った。室温で静置した血液を遠心分離にかけ、上清を採取することで血清を得た。得られた血清中に含まれるインフルエンザに特異的な抗体(IgG)の量を、下記の手法で測定した。
(IgG抗体産生量の測定)
NUNC immunoplate maxisorp(C bottom,96well)に、ELISA用として不活化させたウイルス抗原を50μL/well分注し、シールにて4℃で終夜静置した。静置後、PBST(Gibco PBS+0.1% Tween)で4回洗浄した。その後、ブロッキング液(50mM Tris(pH8.0),1%BSA)を200μL/well滴下し、室温で30分静置した。静置後、PBST(Gibco PBS+0.1% Tween)で4回洗浄した。洗浄後、希釈液(50mM Tris(pH8.0),1%BSA,0.1%Tween)で約10,000倍に希釈したサンプルを100μL/well滴下し、室温で1時間静置した。静置後、同様にPBST(Gibco PBS+0.1% Tween)で4回洗浄した。
次に、希釈液(50mM Tris(pH8.0),1%BSA,0.1%Tween)で希釈したHRP標識抗mouse IgG抗体(500倍)を100μL/well滴下し、室温で1時間静置した。静置後、同様にPBST(Gibco PBS+0.1% Tween)で4回洗浄した。
さらに、基質反応として、TMB 100μL/well滴下し、遮光下室温で15分間静置した。その後、ストップ液(1mol/L HCl)100μL/wellを滴下した。
滴下後、λ=450nmの吸光度(リファレンス620nm)を測定することにより、吸光度の大きさでIgG抗体産生量を相対評価した。
比較例1~3によってワクチンを投与された群に比べて、実施例1によってワクチンを投与された群は、予想外なことに低投与量でもIgG抗体がより多く産生されていることが判明した。
全粒子インフルエンザワクチン含有マイクロニードルアレイの調製
実施例1と同様の方法にて、ワクチン含有量がヘマグルチニン含有相当値で0.01μgのA/PR/8/1934(H1N1)株のインフルエンザウイルスの不活化全粒子ワクチンを内包するマイクロニードルアレイを作製した。
スプリットインフルエンザワクチン含有マイクロニードルアレイの調製
比較例1と同様の方法にて、ワクチン含有量がヘマグルチニン含有相当値で0.01μgのA/PR/8/1934(H1N1)株のインフルエンザウイルスのスプリットワクチンを内包するマイクロニードルアレイを作製した。
マウス(Balb/c(日本クレア社)、メス、7週齢)を購入し、1週間の馴化の後、インフルエンザワクチンの投与試験を行った。実施例2および比較例4では、麻酔下でマウスの背面を除毛した後、皮膚を引き伸ばした状態でマイクロニードルアレイを4分間穿刺した。実施例3および比較例4は、ともに6匹で実施した。
比較例5及び比較例6として、実施例2および比較例4と同様の条件でマウスに対して、皮下注射によるワクチン投与を実施した。比較例5では、実施例2で調製した不活化全粒子ワクチンを、生理食塩水で希釈したワクチン100μLをヘマグルチニン含有相当値で0.01μg投与した。比較例6では、比較例4で調製したスプリットワクチンを注射用水で各用量に希釈したワクチン100μLをヘマグルチニン含有相当値で0.01μg投与した。比較例5および比較例6は、ともに6匹で実施した。
投与後、4週間飼育したマウスに対し、PBSで希釈した300μLのA/PR/8/1934(H1N1)株のインフルエンザウイルス(ウイルス力価 104pfu)を麻酔下で経鼻投与した。投与3日後のマウスを麻酔下で肺を摘出し、肺乳剤に対して1×MEM/BSA/抗生物質を含む培地を1:9の割合で加えてマルチビーズショッカーにより粉砕処理し、10%肺乳剤を得た。
MDCK細胞を12穴プレートに撒き、37℃で2日間インキュベートすることで底面一面に覆うように培養した。肺乳剤を1×MEMバッファーにて10倍~1000000倍まで10倍刻みで希釈したものの100μLを、MDCK細胞を培養した12穴プレートへそれぞれ1mLずつ添加し、35℃で1時間インキュベートした。肺乳剤を洗浄した後、42℃の1×MEMバッファーおよび1%アガロースの混合液1mLを各穴に加え、室温まで冷まし、ゲル化させた。12穴プレートは35℃で2日間インキュベートした。その後、0.005%ニュートラルレッドを含む42℃の1×MEMバッファーおよび1%アガロースの混合液1mLを各穴に加え、さらに35℃で1日間インキュベートした。その後、ライトテーブルの上で12穴プレートを裏返して置き、ウイルスによるプラック(感染して死滅した細胞の痕)をカウントした。1つの穴あたりプラック数が10以上100未満になった希釈倍率を用いて判定した。10のn乗の希釈倍率で添加した穴に対してk個のプラックが出た場合、ウイルス力価は肺乳剤1gあたりのプラック形成ユニット(log(pfu/g))として以下の式
T=log(k×10(n+2))
で算出した。
比較例4~6によってワクチンを投与された群に比べて、実施例2によってワクチンを投与された群は、ウイルスの量が少なく、肺中でのウイルス増殖抑制効果が高いことが判明した。
12 シート部
13 基底部
21 針部第一層
22 針部第二層
31 針部第一層
32 針部第二層
33 針部第三層
34 針部第四層
41 針部
51 針部上端部
52 シート部
53 支持体
61 円錐状の針部の先端
71 四角錘状の針部の先端
D 針部と針部の間隔
H 針部の高さ
S 針部の占有面積
T シート部の厚さ
W 針部基底部の幅
θ1 針部第一層の側面のなす角
θ2 針部第二層または第三層の側面のなす角
Claims (7)
- 不活化全粒子インフルエンザワクチンを内包する針部と、シート部と、を含むマイクロニードルアレイ。
- 針部が水溶性高分子を含み、体内に挿入された後に溶解する請求項1に記載のマイクロニードルアレイ。
- 水溶性高分子が、ヒドロキシエチルデンプン、デキストラン、コンドロイチン硫酸ナトリウム、ヒアルロン酸ナトリウム、カルボキシメチルセルロース、ポリビニルピロリドン、ポリオキシエチレンポリオキシプロピレングリコール、ポリエチレングリコールからなる群より選択される少なくとも1種である請求項2に記載のマイクロニードルアレイ。
- インフルエンザワクチンがA/H1N1型、A/H3N2型、A/H5N1型、およびB型からなる群より選択される少なくとも1種である請求項1~3のいずれか1項に記載のマイクロニードルアレイ。
- 不活化全粒子インフルエンザワクチンの全質量に対する90質量%以上が、針部の高さに対して先端から80%以内に含まれる請求項1~4のいずれか1項に記載のマイクロニードルアレイ。
- 不活化全粒子インフルエンザワクチンの全質量に対する90質量%以上が、針部の先端から500μm以内に含まれる請求項1~4のいずれか1項に記載のマイクロニードルアレイ。
- 請求項1~6のいずれか1項に記載のマイクロニードルアレイを投与した後、24時間以上2ヶ月未満の間隔をあけて2回目の投与を行う投与方法。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016511994A JPWO2015152360A1 (ja) | 2014-04-04 | 2015-04-02 | 不活化全粒子ワクチンを含有するマイクロニードルアレイ製剤およびその投与方法 |
EP15774458.2A EP3127552B1 (en) | 2014-04-04 | 2015-04-02 | Inactivated whole virion vaccine-containing microneedle array preparation and method for administering the same |
US15/281,325 US10166182B2 (en) | 2014-04-04 | 2016-09-30 | Inactivated whole virion vaccine-containing microneedle array preparation and method for administering the same |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014077603 | 2014-04-04 | ||
JP2014-077603 | 2014-04-04 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/281,325 Continuation US10166182B2 (en) | 2014-04-04 | 2016-09-30 | Inactivated whole virion vaccine-containing microneedle array preparation and method for administering the same |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2015152360A1 true WO2015152360A1 (ja) | 2015-10-08 |
Family
ID=54240668
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2015/060427 WO2015152360A1 (ja) | 2014-04-04 | 2015-04-02 | 不活化全粒子ワクチンを含有するマイクロニードルアレイ製剤およびその投与方法 |
Country Status (4)
Country | Link |
---|---|
US (1) | US10166182B2 (ja) |
EP (1) | EP3127552B1 (ja) |
JP (2) | JPWO2015152360A1 (ja) |
WO (1) | WO2015152360A1 (ja) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20170296465A1 (en) * | 2016-04-15 | 2017-10-19 | Fujifilm Corporation | Microneedle array |
WO2020196810A1 (ja) * | 2019-03-28 | 2020-10-01 | 富士フイルム株式会社 | インフルエンザワクチンを含有するマイクロニードルアレイ及びマイクロニードルアレイの製造方法 |
WO2021045073A1 (ja) * | 2019-09-03 | 2021-03-11 | デンカ株式会社 | 鼻腔にウイルス特異的抗体を誘導可能な季節性インフルエンザワクチン |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB0402131D0 (en) | 2004-01-30 | 2004-03-03 | Isis Innovation | Delivery method |
CA2975275C (en) | 2015-02-02 | 2023-08-29 | Vaxxas Pty Limited | Microprojection array applicator and method |
US11103259B2 (en) * | 2015-09-18 | 2021-08-31 | Vaxxas Pty Limited | Microprojection arrays with microprojections having large surface area profiles |
EP3355981A4 (en) | 2015-09-28 | 2019-05-22 | Vaxxas Pty Limited | MICROPROJECTION ARRANGEMENTS WITH IMPROVED SKIN-IMPROPER PROPERTIES AND METHOD THEREFOR |
US11175128B2 (en) | 2017-06-13 | 2021-11-16 | Vaxxas Pty Limited | Quality control of substrate coatings |
EP4218893A1 (en) | 2017-08-04 | 2023-08-02 | Vaxxas Pty Limited | Compact high mechanical energy storage and low trigger force actuator for the delivery of microprojection array patches (map) |
TW202103731A (zh) * | 2019-02-27 | 2021-02-01 | 日商富士軟片股份有限公司 | 微針陣列及微針陣列之製造方法 |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012041329A (ja) * | 2010-07-22 | 2012-03-01 | Kosumedei Seiyaku Kk | 抗原を含有する経皮免疫製剤およびその製造方法 |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CA2562932A1 (en) | 2004-04-01 | 2005-10-27 | Alza Corporation | Apparatus and method for transdermal delivery of influenza vaccine |
AU2005306426B2 (en) * | 2004-11-18 | 2011-04-28 | 3M Innovative Properties Company | Masking method for coating a microneedle array |
US9114238B2 (en) * | 2007-04-16 | 2015-08-25 | Corium International, Inc. | Solvent-cast microprotrusion arrays containing active ingredient |
US9028463B2 (en) | 2008-06-30 | 2015-05-12 | Hisamitsu Pharmaceutical Co., Inc. | Microneedle device, and method for enhancing the efficacy of influenza vaccine by using microneedle device |
WO2012023044A1 (en) * | 2010-08-20 | 2012-02-23 | Novartis Ag | Soluble needle arrays for delivery of influenza vaccines |
JP5558311B2 (ja) * | 2010-10-27 | 2014-07-23 | 株式会社バイオセレンタック | ワクチン抗原表皮デリバリー用溶解性3層マイクロニードル・アレイ・パッチ |
US20140037694A1 (en) | 2011-02-25 | 2014-02-06 | Hisamitsu Pharmaceutical Co., Inc. | Adjuvant for transdermal or transmucosal administration and pharmaceutical preparation containing same |
GB201119999D0 (en) * | 2011-11-20 | 2012-01-04 | Glaxosmithkline Biolog Sa | Vaccine |
JP5472770B2 (ja) * | 2012-02-17 | 2014-04-16 | コスメディ製薬株式会社 | 短時間溶解型マイクロニードル |
-
2015
- 2015-04-02 JP JP2016511994A patent/JPWO2015152360A1/ja active Pending
- 2015-04-02 EP EP15774458.2A patent/EP3127552B1/en active Active
- 2015-04-02 WO PCT/JP2015/060427 patent/WO2015152360A1/ja active Application Filing
-
2016
- 2016-09-30 US US15/281,325 patent/US10166182B2/en active Active
-
2017
- 2017-11-29 JP JP2017228800A patent/JP6389559B2/ja active Active
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012041329A (ja) * | 2010-07-22 | 2012-03-01 | Kosumedei Seiyaku Kk | 抗原を含有する経皮免疫製剤およびその製造方法 |
Non-Patent Citations (2)
Title |
---|
NAOKI OKADA: "From Basic Principles to Clinical Applications on Transcutaneous Vaccine", JOURNAL OF THE PHARMACEUTICAL SOCIETY OF JAPAN, vol. 133, no. 12, 2013, pages 1363 - 72, XP055319493 * |
SHOHEI KOYAMA ET AL.: "Plasmacytoid dendritic cells delineate immunogenicity of influenza vaccine subtypes", SCI TRANSL MED, vol. 2, no. 25, 2010, pages 25ra24, 1 - 8, XP055229166, ISSN: 1945-6234 * |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20170296465A1 (en) * | 2016-04-15 | 2017-10-19 | Fujifilm Corporation | Microneedle array |
WO2020196810A1 (ja) * | 2019-03-28 | 2020-10-01 | 富士フイルム株式会社 | インフルエンザワクチンを含有するマイクロニードルアレイ及びマイクロニードルアレイの製造方法 |
WO2021045073A1 (ja) * | 2019-09-03 | 2021-03-11 | デンカ株式会社 | 鼻腔にウイルス特異的抗体を誘導可能な季節性インフルエンザワクチン |
JP2021038167A (ja) * | 2019-09-03 | 2021-03-11 | デンカ株式会社 | 鼻腔にウイルス特異的抗体を誘導可能な季節性インフルエンザワクチン |
JP7475828B2 (ja) | 2019-09-03 | 2024-04-30 | デンカ株式会社 | 鼻腔にウイルス特異的抗体を誘導可能な季節性インフルエンザワクチン |
Also Published As
Publication number | Publication date |
---|---|
EP3127552B1 (en) | 2019-01-23 |
EP3127552A4 (en) | 2017-03-22 |
JP6389559B2 (ja) | 2018-09-12 |
JP2018039839A (ja) | 2018-03-15 |
US20170014336A1 (en) | 2017-01-19 |
JPWO2015152360A1 (ja) | 2017-04-13 |
EP3127552A1 (en) | 2017-02-08 |
US10166182B2 (en) | 2019-01-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6389559B2 (ja) | 不活化全粒子ワクチンを含有するマイクロニードルアレイ製剤およびその投与方法 | |
Wang et al. | Pulmonary surfactant–biomimetic nanoparticles potentiate heterosubtypic influenza immunity | |
Quan et al. | Intradermal vaccination with influenza virus-like particles by using microneedles induces protection superior to that with intramuscular immunization | |
Hellfritzsch et al. | Mucosal vaccination via the respiratory tract | |
Mato | Nasal route for vaccine and drug delivery: Features and current opportunities | |
Saboo et al. | Optimized formulation of a thermostable spray-dried virus-like particle vaccine against human papillomavirus | |
US9028463B2 (en) | Microneedle device, and method for enhancing the efficacy of influenza vaccine by using microneedle device | |
Vassilieva et al. | Improved immunogenicity of individual influenza vaccine components delivered with a novel dissolving microneedle patch stable at room temperature | |
Moser et al. | Influenza virosomes as a vaccine adjuvant and carrier system | |
Zhu et al. | Immunization by vaccine-coated microneedle arrays protects against lethal influenza virus challenge | |
Kim et al. | Stability kinetics of influenza vaccine coated onto microneedles during drying and storage | |
Choi et al. | Stability of influenza vaccine coated onto microneedles | |
Wu et al. | Thermal-sensitive hydrogel as adjuvant-free vaccine delivery system for H5N1 intranasal immunization | |
Kim et al. | Enhanced memory responses to seasonal H1N1 influenza vaccination of the skin with the use of vaccine-coated microneedles | |
Koutsonanos et al. | Delivery of subunit influenza vaccine to skin with microneedles improves immunogenicity and long-lived protection | |
Dhakal et al. | Liposomal nanoparticle-based conserved peptide influenza vaccine and monosodium urate crystal adjuvant elicit protective immune response in pigs | |
Minne et al. | The delivery site of a monovalent influenza vaccine within the respiratory tract impacts on the immune response | |
JPH06507404A (ja) | 感染性の呼吸性疾患の治療方法 | |
Sun et al. | Progress in the development of universal influenza vaccines | |
Baz et al. | Effects of different adjuvants in the context of intramuscular and intranasal routes on humoral and cellular immune responses induced by detergent-split A/H3N2 influenza vaccines in mice | |
JPWO2014103488A1 (ja) | 経鼻インフルエンザワクチン組成物 | |
Koutsonanos et al. | Targeting the skin for microneedle delivery of influenza vaccine | |
Vassilieva et al. | cGAMP/saponin adjuvant combination improves protective response to influenza vaccination by microneedle patch in an aged mouse model | |
Shakya et al. | Microneedle-mediated allergen-specific immunotherapy for the treatment of airway allergy in mice | |
Zhu et al. | Enhanced immune responses conferring cross-protection by skin vaccination with a tri-component influenza vaccine using a microneedle patch |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15774458 Country of ref document: EP Kind code of ref document: A1 |
|
REEP | Request for entry into the european phase |
Ref document number: 2015774458 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2015774458 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 2016511994 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |