US11175128B2 - Quality control of substrate coatings - Google Patents

Quality control of substrate coatings Download PDF

Info

Publication number
US11175128B2
US11175128B2 US16/622,092 US201816622092A US11175128B2 US 11175128 B2 US11175128 B2 US 11175128B2 US 201816622092 A US201816622092 A US 201816622092A US 11175128 B2 US11175128 B2 US 11175128B2
Authority
US
United States
Prior art keywords
coating
microprojection array
microprojections
patch
coated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
US16/622,092
Other versions
US20200182605A1 (en
Inventor
Michael Carl Junger
Christopher Flaim
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Vaxxas Pty Ltd
Original Assignee
Vaxxas Pty Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Vaxxas Pty Ltd filed Critical Vaxxas Pty Ltd
Priority to US16/622,092 priority Critical patent/US11175128B2/en
Assigned to VAXXAS PTY LIMITED reassignment VAXXAS PTY LIMITED ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: FLAIM, CHRISTOPHER, JUNGER, MICHAEL CARL
Publication of US20200182605A1 publication Critical patent/US20200182605A1/en
Application granted granted Critical
Publication of US11175128B2 publication Critical patent/US11175128B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/8422Investigating thin films, e.g. matrix isolation method
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/02Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness
    • G01B11/06Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness for measuring thickness ; e.g. of sheet material
    • G01B11/0616Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness for measuring thickness ; e.g. of sheet material of coating
    • G01B11/0625Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness for measuring thickness ; e.g. of sheet material of coating with measurement of absorption or reflection
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/02Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness
    • G01B11/06Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness for measuring thickness ; e.g. of sheet material
    • G01B11/0616Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness for measuring thickness ; e.g. of sheet material of coating
    • G01B11/0658Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness for measuring thickness ; e.g. of sheet material of coating with measurement of emissivity or reradiation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/47Scattering, i.e. diffuse reflection
    • G01N2021/4735Solid samples, e.g. paper, glass
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/8422Investigating thin films, e.g. matrix isolation method
    • G01N2021/8427Coatings
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence

Definitions

  • the present invention relates to devices and methods for detecting the amount of material coating a medical device or substrate, in particular the present invention relates to devices and methods for detecting the amount of vaccine material coating a microarray patch.
  • Medical devices may be coated with any number of biocompatible materials.
  • Therapeutic drugs, agents or compounds may be mixed with the biocompatible materials and affixed to at least a portion of the medical device. These therapeutic drugs, agents or compounds may be utilized to promote healing deliver drugs and provide pain relief.
  • Various materials and coating methodologies may be utilized to maintain the drugs, agents or compounds on the medical device until delivered and positioned.
  • Medical devices that may be coated with various compounds include stents, grafts, anastomotic devices, perivascular wraps, sutures, staples and microprojection arrays.
  • Microprojection arrays or micro array patches are an effective way of delivering therapeutic agents or biomarkers to patients as the patches induce minimal or no pain, induce little or no injury from the microneedles and reduce the possibility of cross infection.
  • the solid projections or needles on a patch can be coated with drugs or macromolecules. These can be subsequently delivered to a desired target by the penetration of the projections or needles into the skin.
  • the microprojections can be coated by the therapeutic agents using a variety of techniques such as dip coating, spray coating, gas jet drying, electrodynamic atomization and ink jet printing.
  • microprojections on the arrays it is useful to assess the amount of material coating the target delivery region of the microprojections which is often the upper 1 ⁇ 2 to 1 ⁇ 4 of the microprojections.
  • Several different techniques have been applied in an attempt to quantify the amount of material coated onto the microprojections.
  • One technique provides for dissolving the coating and quantifying the active material by high-performance liquid chromatography (Ma, et al. J. Pharm Sci. 2014 103(11): 3621-3630.
  • Other techniques to determine the loading of material onto microprojection arrays include determining the residual amount of material either on the microprojections after use or on the skin after the microprojection array has been removed.
  • Fluorescence microscopy can detect fluorescent materials on the microprojections or in the skin after the microprojection array has been removed. Scanning electron microscopy can be used to take images of the microprojections before and after coating. These techniques usually require destruction of the coating and/or are cumbersome and slow. There exists a need to assess each microprojection array at high speed in an aseptic manufacturing environment to determine that the dose and position of the coated material, such as a vaccine, on the projections is correct. Preferably, the method for assessing the dose and position of the coated material would not destroy the coating in the process.
  • the use of standard imaging techniques to establish contrast between the coating and the polymer is not straightforward. Furthermore, it is desirable to determine if the upper portions of the microprojections are coated as this is the portion of the microprojection that enters the skin to deliver the material to the subject. Coating of the lower portions of the microprojections and/or the base upon which the microprojections rest is a waste of valuable biological material. The determination of the loading of the coating should be performed in an aseptic, non-destructive and rapid fashion.
  • the present invention relates to devices and methods for detecting the amount of material coating a medical device or substrate.
  • the devices and methods of the present invention are able to detect the amount of vaccine material coating a microarray patch.
  • Uncoated substrate surfaces e.g. polymers
  • the devices and methods of the present invention enable the use of electromagnetic radiation directed onto an uncoated/coated microprojection array or micro array patch (MAP) to be reflected off the array or to induce an electromagnetic emission and detected to determine the extent of coating of the microprojections on the microprojection arrays.
  • MAP microprojection array
  • the use of a laser (or other illumination source with appropriate illumination filters), and an intensity sensor (with appropriately chosen collection filters) to measure the reflected or emitted intensity of the electromagnetic radiation from a coated MAP correlates with coating performance or transfer efficiency of the coating onto the microprojections.
  • Inkjet coating is an emerging technology that can aseptically coat biologics onto MAP's.
  • High speed reflectance measurement(s) allows a quantifiable value to ascertain whether the coating on the projection meets specification in terms of the mass of coated material and its position on the patch relative to base.
  • an aspect of the present invention seeks to provide a method for determining the amount (degree, extent) of coating on microprojections of a coated microprojection array, the method comprising: irradiating an uncoated microprojection array with an electromagnetic radiation source; measuring the reflected radiation from the uncoated microprojection array; irradiating an uncoated microprojection array with an electromagnetic radiation source; measuring the reflected radiation from the uncoated microprojection array; and determining the extent of coating on the microprojections by comparing the reflected radiation from the uncoated microprojection array to that of the coated microprojection array.
  • the measuring of the reflected radiation from the uncoated microprojection array and the measuring of the reflected radiation from the coated microprojection array is done simultaneously.
  • the measuring of the reflected radiation from the uncoated microprojection array and the measuring of the reflected radiation from the coated microprojection array is done sequentially.
  • an aspect of the present invention seeks to provide a method for determining the amount of coating on the microprojections of a coated microprojection array, the microprojection array comprising a base from which the microprojections project, the method comprising: irradiating the coated microprojection array with a light source; measuring the reflected radiation from the base of the coated microprojection array; and determining the amount of coating on the microprojections by comparing the reflected radiation from the coated microprojection array to that of an uncoated microprojection array.
  • the reflected radiation is measured by a sensor.
  • the number of sensors is four.
  • the sensors are at approximately 45 degree downward angle to the microprojections and at 45 degrees out of alignment with the rows of microprojections.
  • the electromagnetic radiation source is substantially perpendicular to the microprojection array.
  • the electromagnetic radiation source is at an angle relative to the microprojection array.
  • the electromagnetic radiation source is aligned over the microprojection array such that the angle relative to the microprojections is less than 5°.
  • the electromagnetic radiation source is aligned over the microprojection array such that the angle relative to the microprojections is less than about 20°.
  • the electromagnetic radiation source is aligned over the microprojection array such that the angle relative to the microprojections is less than about 45°.
  • an aspect of the present invention seeks to provide a device for measuring the coating on the microprojections on a microprojection array, the device comprising: an electromagnetic radiation source for illuminating the microprojection array; a microprojection array housing for mounting the microprojection array; and one or more sensors for detecting reflected radiation from the microprojection array.
  • the radiation source is a laser diode.
  • the radiation source is a laser diode which emits radiation from about 200 nm to 10000 nm.
  • the radiation source is a laser diode which emits radiation at 635 nm.
  • the senor is a silicon photodiode.
  • the silicon photodiode has a detection range of 200 to 1100 nm.
  • the device is confined in an aseptic housing.
  • the device further comprises a reference sensor.
  • the number of sensors is four.
  • the sensors are at approximately 45 degree downward angle to the microprojections and at 45 degrees out of alignment with the rows of microprojections.
  • the electromagnetic radiation source is substantially perpendicular to the microprojection array.
  • the electromagnetic radiation source is aligned over the microprojection array such that the angle relative to the microprojections is less than 5°.
  • an aspect of the present invention seeks to provide a device for measuring the coating on the microprojections on a microprojection array, the device comprising: a laser diode for illuminating the microprojection array; an aspheric lens; a beam shaping diffuser; a focusing lens wherein the aspheric lens is positioned between the laser diode and the beam shaping diffuser and the beam shaping diffuser is positioned between the aspheric lens and the focusing lens and the focusing lens is positioned between the beam shaping filter and the microprojection array housing; microprojection array housing for mounting a microprojection array; a bi-convex lens; a sensor for detecting reflected light from the microprojection array wherein the biconvex lens is positioned between the microprojection array housing and the receiver; and a power meter connected to the sensor.
  • the device further comprises a microarray mounting station.
  • the device further comprises one or more microarrays.
  • the laser diode emits electromagnetic radiation at bout 635 nm.
  • the device further comprises an aperture positioned between the focusing lens and the microprojection array housing.
  • the device further comprises a mirror positioned between the aperture and the microprojection array housing
  • the device further comprises a reference sensor.
  • the number of sensors is four.
  • the sensors are at approximately 45 degree downward angle to the microprojections and at 45 degrees out of alignment with the rows of microprojections.
  • the laser diode is substantially perpendicular to the microprojection array.
  • the laser diode is aligned over the microprojection array such that the angle relative to the microprojections is less than 5°.
  • an aspect of the present invention seeks to provide a method for determining the extent (degree, amount) of coating on microprojections of a coated microprojection array comprising: irradiating an uncoated microprojection array with an electromagnetic radiation source; measuring the emitted radiation from the uncoated microprojection array; irradiating a coated microprojection array with a light source; measuring the emitted radiation from the coated microprojection array; and determining the extent of coating on the microprojections by comparing the emitted radiation from the uncoated microprojection array to that of the coated microprojection array.
  • the emitted radiation is fluorescence
  • the electromagnetic radiation source emits at approximately 445 nm.
  • the fluorescence is detected by a sensor with a filter having a bandpass of between about 455 nm to 515 nm.
  • an aspect of the present invention seeks to provide a method for determining the extent (degree, amount) of coating on a substrate comprising: irradiating an uncoated microprojection array with a first electromagnetic radiation source which reflects off the substrate and a second electromagnetic radiation source which promotes fluorescence in either the substrate or the coating or both; measuring the reflected radiation from the uncoated microprojection array; measuring the emitted fluorescence radiation from the uncoated microprojection array; irradiating a coated microprojection array with a first electromagnetic radiation source which reflects off the substrate and a second electromagnetic radiation source which promotes fluorescence in either the substrate or the coating or both irradiating a coated microprojection array with a light source; measuring the reflected radiation from the coated microprojection array; measuring the emitted fluorescence radiation from the coated microprojection array; and determining the extent of coating on the microprojections by comparing the reflected radiation from the uncoated microprojection array to that of the coated microprojection array and by
  • an aspect of the present invention seeks to provide a method for controlling the quality of coated microprojection arrays, the method including: determining the amount (degree, extent) of coating on microprojections of a coated microprojection array using the method as described above; comparing the determined amount of coating to a coating specification; and rejecting the coated microprojection array if the determined amount of coating is outside of the coating specification.
  • an aspect of the present invention seeks to provide a system for controlling the quality of coated microprojection arrays, the system including a device as described above that determines the amount of coating on microprojections of a coated microprojection array; and a processing system configured to: receive, from the device, an indication of the determined amount of coating; compare the determined amount of coating to a coating specification; and determine that the coated microprojection array should be rejected if the determined amount of coating is outside of the coating specification.
  • FIG. 1A is a schematic diagram of a side view of the microprojection array and the relative position of the detector and illumination source relative to the microprojection array;
  • FIG. 1B is the image the detector would see given the orientation of the detector in accordance with FIG. 1A .
  • FIG. 2A is a schematic diagram of a side view of the microprojection array and the relative position of the detector at a 45 degree angle to the microprojection array
  • FIG. 2B is a schematic diagram of an overhead view of the detector direction relative to the microprojection array and the direction of the detector for detecting reflectance
  • FIG. 2C is the image the detector would see given the orientation of the detector in accordance with FIGS. 2A and 2B
  • FIG. 2D is a schematic diagram of a side view of the microprojection array and the relative position of the detector at a 45 degree angle to the microprojection array
  • FIG. 2E is a schematic diagram of an overhead view of the detector direction relative to the microprojection array and the direction of the detector for detecting reflectance
  • FIG. 3 is a schematic diagram of an overhead view of a microprojection array where the radiation illumination is from the top with little or no angle and the use of four detectors at approximately 45 degree downward angle and at 45 degrees out of alignment with the rows of microprojections.
  • FIGS. 4A-4D are schematic diagrams of an illumination scheme respectively, large spot reflectance, linear dot array, line scan array and two dimensional array.
  • FIG. 5A is a fluorescence image of dried vaccine on a flat polymer disc, to demonstrate the principle of fluorescence reduction.
  • the excitation wavelength is set at 445 nm and the emission filter is 455-530 nm.
  • the polymer surface fluoresces when excited with 445 nm light, and the dried vaccine reduces the measured intensity
  • FIG. 5B is a photograph of a polymer microprojection array coated with dried vaccine where the excitation wavelength is set at 405 nm and the emission filter is 495-515 nm.
  • the dried vaccine does not appear to significantly reduce the fluorescence intensity of the underlying polymer.
  • FIG. 6A-6C present data from FTIR scans of flat polymer discs with dried vaccine for the purpose of potentially identifying useful spectral features.
  • FIG. 6A is the spectra obtained from the polymer without dried vaccine.
  • FIGS. 6B and 6C are data from different regions within the dried vaccine drop (edge of dried drop, and center of dried drop). Spectral features in the wavenumber range from 1300 cm-1 to 1900 cm-1 are highlighted that seem to correlate with the presence of dried vaccine.
  • FIG. 7 is a schematic diagram of one embodiment of the equipment setup for reflectance detection of a coating on a substrate
  • FIG. 8A is a drawing of one embodiment of the equipment setup for detecting the coating on a coated substrate; and FIG. 8B is a drawing of an alternate embodiment of the equipment setup for detecting the coating.
  • FIG. 9 is a schematic diagram of one embodiment of the equipment setup for detecting the coating on a coated substrate.
  • FIG. 10 is a schematic diagram of one embodiment of the laser diode housing.
  • FIG. 11 is a schematic diagram of one embodiment of the receiver housing.
  • FIG. 12 is a schematic diagram of one embodiment of the patch mount.
  • FIG. 13 is a plot of normalized reflectance versus coating transfer efficiency.
  • FIG. 14 is a schematic diagram of one embodiment of the housing of the device.
  • FIG. 15 is a schematic diagram of one embodiment of the device as viewed through the housing of the device.
  • FIG. 16 is a schematic diagram of one embodiment of the device as viewed through the top of the housing of the device.
  • FIG. 17A is a schematic diagram of one embodiment of the device as viewed through the side of the housing of the device;
  • FIG. 17B is a schematic diagram of one embodiment of the device without the housing.
  • FIG. 18A is a plot of low dose total protein transfer ( ⁇ g) versus laser reflectance (%)
  • FIG. 18B is a plot of high dose total protein transfer ( ⁇ g) versus laser reflectance (%).
  • FIG. 19 is a table of laser acceptance criteria for low dose and high dose amounts.
  • FIG. 20A is a schematic of the coating percentages by quadrant for a microprojection array
  • FIG. 20B is a “heat map” representation of reflectance vs position data of the coating of the microprojection array.
  • Green color represents a high intensity (i.e. Significant tip coating) and red color is mapped to low intensity readings (i.e. With significant base coating).
  • FIG. 21A is top-down view of an illustrated example of a patch mat
  • FIG. 21B is a side-view of an illustrated example of a patch mat.
  • FIG. 22 is a schematic diagram of one embodiment of a quality control station where a mat of patches may be coated by multiple print heads and then conveyed to a quality control station where the patches can be checked for amount and position of coating on the microprojections.
  • FIG. 23 is a schematic of one system that provides feedback information so that the coating of the MAPs performed by the print heads can be monitored and adjusted based on the data.
  • the present invention relates to devices and methods for detecting the amount of material coating a medical device or substrate, in particular the present invention relates to devices and methods for detecting the amount of vaccine material coating a microarray patch in real time.
  • the patches take a variety of forms from metal formed patches to polymer molded patches to patch projections formed from the vaccine or pharmacological solution itself.
  • the manufacture of these patches relies on the ability to deposit a dried down drug solution or vaccine onto the tips of the microprojections with high throughput and high accuracy. Accurately coating the projections is important as the delivery of the coated material to the patient needs to be consistent. If too little material is delivered the efficacy of the treatment is compromised. Too much material could lead to overdosing or at a minimum wasting expensive vaccine or drug.
  • the ability to coat the patches quickly is necessary to producing a commercial product. Coating of a Micro Array Patch (MAP) and other vaccine and biologic platforms requires the precise dosing and allocation of biologics targeting each individual projection on the platform with a controlled dose.
  • MAP Micro Array Patch
  • a MAP (Micro Array Patch) platform has a length and a width of less than 20 mm and carries an evenly spaced two-dimensional array of projections.
  • the microprojections are situated on a substantially planar base.
  • the number of projections in either dimension may be less than 100. Therefore the projection density on the MAP is usually between 2,000 and 10,000 per cm 2 .
  • the total amount of pharmaceutical formulation such as a vaccine required to coat each projection is typically more than 500 picolitres and must be accurately measured both in terms of the applied dried volume of material and the position of the material on the microprojection. For example it would be informative to determine whether the material deposited on the microprojections was located on the top fourth of the microprojection or top half of the microprojection or whether the entire microprojection was coated.
  • each patch may need to be coated with one or more drops (e.g. 1-6 drops per microprojection or between 20 pl to 1 ⁇ L of material) in in a short time period (e.g. seconds). It is important to be able to quantify the amount of material that is distributed onto the microprojections in a manner that is preferably non-destructive and which does not contact the material or the microprojections. The method should be rapid enough to keep up with production levels of microprojection arrays which could number in the millions per week.
  • the devices and methods of the present invention provide the ability to determine the amount of material coated onto the microprojections of the MAP.
  • the devices and methods of the present invention can determine the amount of material deposited on a substrate where the substrate is made of both an area that is nominally “to be coated” and an area that is nominally “uncoated”.
  • the measurement of the coating distribution can in principle be made by the direct measurement of the material on the coated area of the substrate or inferred by the measurement of the absence of material in the nominally uncoated area of the substrate.
  • the coated area is the tips of the microprojections (preferably the top half of the microprojections) and the uncoated area is the base from which the microprojections arise (preferably the lower 50% of the projection).
  • the measurement of the material on the microprojections can be made either directly by determining the amount of material on the microprojections or by the measurement of material on the base from which the amount of material on the microprojections can be determined.
  • the devices and methods of the present invention enable the use of electromagnetic radiation directed onto an uncoated/coated microprojection array or micro array patch (MAP) to be reflected off the array or to induce an electromagnetic emission and detected to determine the extent of coating of the microprojections on the microprojection arrays.
  • the detection of the coating on the MAP may utilize one or more electromagnetic radiation wavelengths for reflectance measurements or fluorescence detection.
  • the devices and methods of the present invention may use reflectance measurements and fluorescence measurements alone or in combination either simultaneously or sequentially. Optics may be required for reflectance mode measurements to make sure illumination is collimated. Fluorescence mode illumination may not require collimated light.
  • the use of a laser (or other illumination source with appropriate illumination filters), and an intensity sensor (with appropriately chosen collection filters) to measure the reflected or emitted intensity of the electromagnetic radiation from a coated MAP correlates with coating performance or transfer efficiency of the coating onto the microprojections.
  • the sensor may ideally have optics for both reflectance and fluorescence mode measurements in order to maximize signal collection and directionality of photons.
  • the uncoated surfaces of the MAP e.g. a polymer microprojection array patch
  • the orientation of the sensor relative to the substrate surface being measured can assist in isolating signals that are primarily related to coating on either the base region, or the tip region (depending on the sensor configuration); coating on a surface is detected as a reduction in the signal intensity compared to the signal from a reference surface; the reference surface can be an uncoated patch or a measurement made at a wavelength where the coating is substantially transparent, and is thus representative of an uncoated patch.
  • the illumination source and sensor may be positioned such that if the patch were replaced by a mirror, the beam would reflect off the mirror and enter directly in alignment with the sensor optics detection path.
  • the illumination will, like the mirror, substantially reflect off of the base region of the patch. Regions of the patch, where there are microprojections, will not contribute a significant signal in the direction of the sensor since the microprojections are substantially orthogonal to the base of the patch. Therefore, the measured signal is primarily from the reflection of the electromagnetic radiation from the base.
  • the material will act to reduce the reflected signal (either from absorption by the material or by scattering). If the quantity of material deposited onto the patch is known and controlled, the amount of coating on the tips can then be inferred from the measured quantity on the base. In the case where material is substantially deposited on the tips with little material deposited on the base, the measured reflectance intensity signal will be high (ostensibly the same or similar as an uncoated patch). If material is instead deposited on the base, the reflected intensity will be reduced. Thus, if a high proportion of tip is coated the result will be the detector will observe a large signal, whereas a low proportion of tip coating will result in a small signal.
  • the device is comprised of a radiation (light) source, a coated microprojection array and a sensor for detecting radiation (light).
  • the radiation source illuminates the coated array and the sensor is positioned such that it can detect the radiation reflected from the coated array.
  • the value of reflected light derived from the sensor may be compared to the value of reflected light derived from the sensor when the same radiation source is reflected off an uncoated microprojection array.
  • a normalized reflectance diagram can be constructed (See FIG. 13 ) which correlates the normalized reflectance of the radiation with the transfer efficiency of the coating onto the microprojections.
  • Example 1 provides the details of the construction of the normalized reflectance diagram, but in essence several different coating amounts may be applied to several different microprojection arrays such that different transfer efficiency of the coating is achieved.
  • the transfer can be measured in a variety of ways including a membrane transfer method in which the material transferred to the membrane from the microprojections was quantified by using scintillation counting of 14 C or Ponseau S staining. While the initial transfer efficiency measurement may be made in a destructive fashion the measurements may be made with methods which are non-destructive.
  • These different microprojection arrays can then be subjected to irradiation by the radiation source and the reflected radiation measured by the sensor.
  • An uncoated microprojection array can then be tested and the normalized reflectance can be calculated by dividing the reflectance values obtained in the various coated microprojection array by the reflectance value obtained from the uncoated array. If all of the coating material is transferred to the microprojections then none of the material will be on the base of the array. Thus, the reflectance value of an array where none of the material is transferred to the base is the same as that of the uncoated array. Reflectance values of the coated array which are less that the reflectance values of the uncoated arrays indicate that some of the coating material was transferred to the microprojections. Once the correlation of the normalized reflectance and the transfer efficiency is established then the measurement of the transfer efficiency of any coated microprojection array can be ascertained. The transfer efficiency of the coated microprojection array can be determined in a non-destructive, real-time fashion.
  • the reflectance from the coated patch may be compared to the reflectance from the uncoated patch. This comparison could be accomplished by having an uncoated and coated patch illuminated simultaneously or sequentially. The comparison could also be accomplished by comparing a portion of a single patch which contains both coated and uncoated sections.
  • optical equipment and/or mechanical equipment may also be included in the devices and methods of the present invention.
  • Various lenses, filters and mirrors to optimize the illumination of the patch as well as providing optimal conditions for detection of the reflected light may be provided.
  • a housing that provides aseptic or sterile conditions for the microarray can also be part of the devices of the present invention. It is desirable to maintain an aseptic or sterile environment so that the microarrays are not contaminated as the coatings on the microprojections are to be inserted into patients.
  • various radiation sources may be used including but not limited to laser sources, infrared sources and fluorescence sources.
  • the wavelength of the radiation source may be at a wavelength or wavelengths at which the coating strongly absorbs.
  • the dried coating material may either strongly emit fluorescence in response to the excitation wavelength, or strongly absorb or scatter at the emitted fluorescence wavelength of the underlying polymer substrate.
  • the direction of the illumination source and the detector patch may influence the quality and information received, especially for detection based on reflectance.
  • the orientation of the sensor relative to the microprojection array surface being measured can assist in isolating signals that are primarily related to coating on either the base region, or the tip region (depending on the sensor configuration).
  • Illuminating near normal to patch surface results in a signal that is almost entirely due to the base reflectance (reflections from projections do not return to the sensor). Reflectance is reduced when coating is present, due to either absorbance by the coating, or scattering from the dried solids deposits. Placing the sensor at an angle such that tips of other projections in the array mask or shadow the base portion of the projections as well as the base of the patch coating on a surface is detected as a reduction (or increase in some cases) in the signal intensity compared to the signal from a reference surface. Illumination should be electromagnetic radiation source with a defined wavelength (or wavelengths if 2 or more are needed)
  • the orientation of the electromagnetic radiation source and the sensors influence the reflectance signal that registers with the detectors. For example, if the detector and illumination source are oriented as in FIG. 1A , the tips of the microprojections are visible, but they contribute little reflectance signal because the light from the tips is not directed towards the sensor.
  • the reflectance signal intensity is related to the light reflected from the base and if the coating material is coating the base rather than the tips of the microprojections the signal is reduced.
  • FIG. 1B shows the view that a sensor placed in the orientation in FIG. 1A would “see”.
  • FIG. 2C shows the view the detector “sees” if the detector is placed in the direction as shown in FIG. 2B and at the angle as shown in FIG. 2A .
  • FIG. 2F shows the view the detector “sees” if the detector is placed in the direction as shown in FIG. 2A and the angle as shown in FIG. 2E .
  • the tip of the microprojection is visible and the body of each microprojection is masked by the adjacent microprojections.
  • the base is also masked by adjacent microprojections. The received signal comes primarily from the projection tips, but only from the side of the projection facing the detector.
  • an alternate configuration may be used as in FIG. 3 , where the illumination is such that the use of four detectors at approximately 45 degree downward angle to the microprojections and at 45 degrees out of alignment with the rows of microprojections provides a signal primarily from the tips of the microprojection arrays.
  • the use of this geometric masking by having the detector detect signals from the upper coated portion of the microprojection rather than from the lower uncoated portion of the microprojection and uncoated base can isolate the signal from the coated portion of the microprojection.
  • the size of the area illuminating the substrate will also influence the quality of the data. For example if the area of illumination is a large area relative to the entirety of the substrate the information gathered from the reflectance data will relate to an average coating over the entire substrate. Smaller areas of illumination relative to the entirety of the substrate will provide more data about the coating of particular areas of the substrate. The smaller the area of illumination the greater the detail of the coating on the substrate. For example more detail will be gained by illuminating a single microprojection than illuminating the entire microprojection array.
  • FIG. 4 shows various configurations of illuminating a microprojection array.
  • the diameter of the illuminating spot can be as large as the diameter of the entire array or as small as an individual microprojection.
  • the diameter of the illumination spot may be 10 mm or less or 9 mm or less or 8 mm or less or 7 mm or less or 6 mm or less or 5 mm or less or 4 mm or less or 3 mm or less or 2 mm or less or 1 mm or less or 0.5 mm or less or 0.1 mm or less or 0.05 mm or less or 0.01 mm or less.
  • the use of fluorescence rather than reflectance may decrease the dependence of the signal on the geometry of the radiation source and the detectors as fluorescence emits in all directions.
  • the signal may be reduced by as much as 95% if the source of the radiation is normal to the patch.
  • the source of radiation is normal to the patch when using fluorescence detection, the signal is only marginally reduced.
  • a coating is coated onto a substrate such as on the microprojections of a microprojection array the wavelength for excitation and the wavelength range for an emission filter can provide scenarios where the coating such as a vaccine may either mask the fluorescence of the patch (polymer) or provide little or no masking of the fluorescence of the patch (polymer). For example, in FIG.
  • the excitation wavelength is set at 445 nm and the emission filter is 455-530 nm.
  • the vaccine coating on the polymer patch masks the fluorescence signal from the polymer thereby reducing the signal.
  • the excitation wavelength is set at 405 nm and the emission filter is 495-515 nm.
  • the vaccine coating on the polymer patch does not mask the fluorescence signal from the polymer and only reduces the signal marginally. This signal could thus potentially serve as a reference signal on a coated patch which might enhance the quality of the measurement and/or remove the need to measure the patch before it is coated.
  • FTIR Fourier Transform Infrared Spectroscopy
  • FTIR Spectral Imaging may assist in identifying strong absorbance peaks that are unique to the dried vaccine.
  • FIG. 7 is a schematic diagram of a device for measuring reflectance in which radiation is projected onto the patch and a receiver detects the reflected light which is communicated to a display device.
  • the radiation source can be any source that emits radiation.
  • Laser diodes are preferred as the radiation source as they have high intensity, narrow bandwidth, and are collimated, which simplifies the optical setup.
  • the laser diode may be a 4.5 mW laser diode that emits light at 635 nm and has adjustable focus.
  • the laser may be powered by a power supply such as a 5 VDC power supply.
  • a large range of wavelengths may be used in the methods and the devices of the present invention.
  • a wavelength between 200 nm to 10 ⁇ m may be used for illuminating the microprojection array.
  • 635 nm was utilized primarily to reduce the effect of background light (noise) from the room.
  • the intensity of room lighting at this wavelength is very low compared to the laser intensity.
  • Filters may be placed in front of the sensor to significantly remove the other wavelengths of light (primarily from room lighting) from striking the sensor.
  • the measured signal from the room lights was not detectable by the sensor which measures into the 100 picoWatt range (1010 Watts).
  • the signals from the laser are usually in the microwatt range ( 106 ), meaning that the signal detected by the sensor is about 1,000 to 10,000 times more intense than the background radiation.
  • the sensor can be a detector such as a photodiode including but not limited to silicon photodiodes preferably with a wavelength range 400-1100 nm, power range 500 pW-500 mW and coated with an ND reflective coating. Placing a filter in front of the sensor can be used to reduce stray signals from light coming from the production environment. A filter can filter out the excitation wavelength when a fluorescence signal is being measured. Additionally, optical elements placed in front of the sensor may assist is maximizing the specificity in directionality and signal amplitude.
  • the sensor can be directly read by a power meter console which is compatible with the receiver or a PLC system which reads the power sensor measurements, processes them, and feeds the information into the production system.
  • FIGS. 8A and 8B and FIG. 9 are schematic diagrams of alternative embodiments of the present invention that include the components in FIG. 7 but in addition may provide various lenses, filters and mirrors to optimize the illumination of the patch as well as providing optimal conditions for detection of the reflected light.
  • lenses can be convex/convex lenses with 350-700 nm wavelength. The lenses are typically uncoated. Bi-convex lenses are useful for many finite imaging applications. This type of lens is best suited for use in situations where the object and image are on opposite sides of the lens and the ratio of the image and object distances (conjugate ratio) is between 0.2 and 5.
  • Filters include bandpass filters which provide one of the simplest ways to transmit a well-defined wavelength band of light, while rejecting other unwanted radiation.
  • Their design is essentially that of a thin film Fabry-Perot Interferometer formed by vacuum deposition techniques and consists of two reflecting stacks, separated by an even-order spacer layer. These reflecting stacks are constructed from alternating layers of high and low refractive index materials, which can have a reflectance in excess of 99.99%. By varying the thickness of the spacer layer and/or the number of reflecting layers, the central wavelength and bandwidth of the filter can be altered. In one particular embodiment the filter permits transmission of 635 ⁇ 2 nm.
  • the design also may include the use of mirrors such as broadband dielectric mirror 400-750 nm.
  • FIG. 10 is a schematic diagram of one embodiment of the laser diode housing of the devices and methods of the present invention.
  • the design of the laser diode housing includes a laser diode housing, laser diode, an aspheric lens, a beam shaping diffuser and a focusing lens.
  • the aspheric lens will cause the beam coming from the laser diode to diverge and the beam shaping diffuser will shape the beam.
  • the focusing lens After passing through the beam shaping diffuser the focusing lens will focus the shaped beam onto the patch.
  • a diaphragm may be placed between the focusing lens and the patch.
  • FIG. 11 is a schematic diagram of one embodiment of the receiver housing of the devices and methods of the present invention.
  • the design of the receiver housing includes a receiver housing a biconvex lens and a receiver.
  • the biconvex lens causes the reflected light to converge at the receiver.
  • FIG. 12 is a schematic diagram of one embodiment of the patch mount of the devices and methods of the present invention where the patch is displayed on or in a patch housing.
  • the patch housing serves to hold the patch in place during the illumination of the patch.
  • the area of illumination of the patch may be the entire patch or alternatively some portion of the patch.
  • FIGS. 14-17 are schematic diagrams of different aspects of one embodiment of the devices of the present invention.
  • a reference sensor as shown in FIGS. 8A and 8B can be incorporated into the design as a reference sensor may provide extra information such as a signal that is due to scattering rather than reflected light. Additionally the reference sensor might provide a reference signal that is essentially a surrogate measure of the incident laser intensity. This would potentially help stabilize the readings over time if the laser intensity drifts, or the optics setup shifts over time or deteriorates and or provide the ability to replicate results from system to system.
  • the signals from the sensor are normalized by measuring a blank (uncoated) patch prior to or simultaneously with measuring the signal for coated patches. The ratio of the coated patch signal to the uncoated patch signal may then be calculated.
  • the radiation source is placed at an angle from the microarray patch such that the incident radiation hits the patch at angle where the light is reflected at an angle and detected by the sensor.
  • the angle of incidence of the radiation source with respect to the patch is 8°.
  • FIG. 8B shows an alternative embodiment where the radiation source is normal to the patch.
  • spectral measurement may be taken in which multiple wavelengths are monitored for intensity spectra which may be signatures of different components in the coating or the polymer patch.
  • the instruments, devices and methods of the present invention need to provide high throughput quality solutions for determining the coating on the microprojection arrays.
  • This includes having the patches that will be coated in a format where they can be coated, checked for quality and transported easily.
  • a method for providing patches that can be coated by commercial production is to interconnect the individual MAP's into compact mats that can be further stacked into a single compact body that requires minimal packaging ( FIGS. 21A and 21B ).
  • the mats can be individually manipulated in an aseptic environment.
  • the mat of patches can be coated as one unit thereby minimizing the instrument footprint.
  • the patch mats provide in-plane cohesion of the patches, while allowing slight individual freedom of movement of the patch out of plane which enables each patch to be perfectly mated to the coating base.
  • the patches can be individually detached from the mat by a pick-and-place robot.
  • the patches of the patch mat may be coated using print head designs that utilize a piezoelectric stack actuator as the driving component to push a membrane plate such that the fluid in the pumping chamber is dispensed though a two-dimensional array of nozzles.
  • the dispensed fluid is coated onto microprojections on a microprojection array as the nozzles are aligned with the microprojections on the array.
  • the print head functions in the following way.
  • the print head has a source of fluid from a reservoir which may be integral or externally located. Initially, the fluid from the reservoir to the nozzle is at a static condition, i.e., no flow.
  • each drop ejection cycle enable all the nozzles to simultaneously dispense a drop or a sequence of drops with a total volume in the range of 30 to 3000 picoLiters per nozzle.
  • the print head may provide that each drop ejection cycle enable a single nozzle or subset of nozzles to dispense a drop or a sequence of drops.
  • FIG. 22 shows one scheme by which the patches on the patch mat are coated by a printer and transferred to a conveyer where the patches may be tested for quality by the devices and methods of the present invention.
  • the sequence begins with the system start up for each print head in which a start priming sequence is initiated to expel air from the print circuit. Once primed, printer will idle (tickle). The print head will print a single dispense onto a hydrophobic surface, image system counts drops, measures drop diameter and aligns print head to X,Y, axis and rotation. Drop size can be adjusted via PZT voltage.
  • an array of patches (Mat) is aligned under the print head, each patch is imaged and the position of the patch relative to axis is determined.
  • Print head vision systems (P 1 to P 4 ) inspect patches and mark rejects (missing projections, no tips or damage). In addition periodic checks of drop mass dispense can be performed to confirm target dispense. The voltage supplied to PZT may be altered to achieve the mean dispensing value. Printing can then commence and a coating is built up on the microprojections by multiple passes depending on required dose. The printed mat of patches is then transferred to coating QC conveyor.
  • the mat patch passes under QC station and reflected light of various wavelengths may be used to collect data per patch.
  • data may include where the coating is positioned on projection and estimates of the dispensed mass per patch.
  • Mass may be calculated by reading fluorescence emitted from one component of a homogeneous coating material or the patch itself. This data from the fluorescence scan may be checked against the dispensed mass check for that print head to confirm the any deviations from the established protocol. Any out of specification patches are rejected at the patch insertion stage.
  • FIG. 23 is a schematic of one system that provides feedback information so that the coating of the MAPs performed by the print heads can be monitored and adjusted based on the data.
  • the system is designed to respond to out of specification data by purging the print head and printing a single array to check drop size as well as clearing nozzles and adjusting position.
  • PZT voltage can be adjusted to increase or decrease dispensed mass. If the position of the coating moves from a target value for a particular print head that print head will be asked to perform a calibration check.
  • a method for controlling the quality of coated microprojection arrays may include determining the amount of coating on microprojections of a coated microprojection array using the above described techniques, comparing the determined amount of coating to a coating specification; and rejecting the coated microprojection array if the determined amount of coating is outside of the coating specification.
  • a system for controlling the quality of coated microprojection arrays may include a device that determines the amount of coating on microprojections of a coated microprojection array as described above, together with a processing system configured to receive from the device an indication of the determined amount of coating, compare the determined amount of coating to a coating specification and determine that the coated microprojection array should be rejected if the determined amount of coating is outside of the coating specification.
  • any indication that a feature is optional is intended provide adequate support (e.g., under 35 U.S.C. 112 or Art. 83 and 84 of EPC) for claims that include closed or exclusive or negative language with reference to the optional feature.
  • Exclusive language specifically excludes the particular recited feature from including any additional subject matter. For example, if it is indicated that A can be drug X, such language is intended to provide support for a claim that explicitly specifies that A consists of X alone, or that A does not include any other drugs besides X. “Negative” language explicitly excludes the optional feature itself from the scope of the claims.
  • Non-limiting examples of exclusive or negative terms include “only,” “solely,” “consisting of,” “consisting essentially of,” “alone,” “without”, “in the absence of (e.g., other items of the same type, structure and/or function)” “excluding,” “not including”, “not”, “cannot,” or any combination and/or variation of such language.
  • a dog is intended to include support for one dog, no more than one dog, at least one dog, a plurality of dogs, etc.
  • qualifying terms that indicate singularity include “a single”, “one,” “alone”, “only one,” “not more than one”, etc.
  • qualifying terms that indicate (potential or actual) plurality include “at least one,” “one or more,” “more than one,” “two or more,” “a multiplicity,” “a plurality,” “any combination of,” “any permutation of,” “any one or more of,” etc.
  • a range of coating performance was obtained by creating three different groups of microprojection patch arrays. Each patch was coated with 6 drops of 14 C labelled vaccine per projection. The three groups were then manufactured as follows: In group I six drops were targeted to the tips of the microprojections; in group II, three drops were targeted to tips of the microprojections and three drops targeted to the base; and in group III, six drops were targeted to the base and no drops targeted to the micro projections. Multiple replicates of each group were manufactured. As the process for targeting the drops to particular portions of the array cannot as yet be perfectly replicated there was a spread of coating performance instead of simply three clusters at 0%, 50% and 100% coating. These microprojection arrays were made in duplicate (TN821 and TN 848). Both sets of microarrays were subjected to reflectance measurements as were microarrays which were uncoated.
  • the quantitation of the coating for a first set (TN 821) of microarrays was measured by a membrane transfer method where a porous 100 micron thick membrane is used to remove the coated material from the top 100 microns of the projections.
  • the membrane PVDF with 0.4 micron pores
  • the patch was placed with the projection side facing the membrane and a pneumatic press was used to press the projections into the membrane for 5 seconds at 40 PSI. Projections penetrate the membrane and stop when the microprojection tips reach the glass surface. Thus, the thickness of the membrane and the pressure (to some extent) control the penetration of the microprojections into the membrane.
  • the coating transfers to the membrane where it was retained due to the hydrophobic interactions between the coating and the membrane.
  • the membrane is hydrated and is a high protein binding membrane traditionally used in blotting techniques for protein analysis.
  • the remaining material was eluted from the patch and the material bound to the membrane was quantified by using scintillation counting.
  • the results of the reflectance studies are show in FIG. 13 .
  • the red squares correspond to TN 821 in which the reflectance was measured and normalized to a microarray having no coating and then the microarrays were subjected to membrane transfer.
  • the green squares correspond to TN 848 821 in which only the reflectance was measured and compared to the values generated for TN 821.
  • the plot demonstrates that the reflectance methods of the present invention may be used to quantitate the transfer of coating to microprojections.
  • MAPs were coated respectively with the following coatings: 30%, 60%, 80% and 100% high dose coating and 30%, 60%, 80% and 100% low dose coating.
  • a laser source illuminated a 7 mm spot on the microprojection array and reflectance was measured. The amount of coating was plotted versus reflectance as seen in FIGS. 18A and 18B .
  • a Laser Acceptance Threshold can be established by calculating a “mean+4 ⁇ standard deviation” (99.993% confidence interval) by bracketing the coating transfer specification limits which can be determined by the type of device used to coat the substrate and the amount of coating required for a particular purpose. In this example doses 5 and 7 were selected for the lower end and 6 and 8 were selected for the higher end.
  • FIG. 19 shows a table of the acceptance calculations.
  • a single MAP was coated with 4 different tip targeting accuracies as shown in FIG. 20A with one quadrant with 100% tip coating, a second quadrant with 66.7% tip coating, a third quadrant with 33.3% tip coating, and a fourth quadrant with 0% tip coating.
  • “Point-scan” Laser beam ( ⁇ 1 mm Dia.) scanned throughout patch and corresponding Laser reflectance measurements were made. The loss in laser reflectance is plotted in heat map as shown in FIG. 20B . Point-scan measurements are used to distinguish spatial coating variations within a single patch.

Abstract

The present invention relates to devices and methods for detecting the amount (degree, extent) of material coating a medical device or substrate, in particular the present invention relates to devices and methods for detecting the amount of vaccine material coating a microarray patch.

Description

FIELD OF THE INVENTION
The present invention relates to devices and methods for detecting the amount of material coating a medical device or substrate, in particular the present invention relates to devices and methods for detecting the amount of vaccine material coating a microarray patch.
BACKGROUND OF THE INVENTION
Medical devices may be coated with any number of biocompatible materials. Therapeutic drugs, agents or compounds may be mixed with the biocompatible materials and affixed to at least a portion of the medical device. These therapeutic drugs, agents or compounds may be utilized to promote healing deliver drugs and provide pain relief. Various materials and coating methodologies may be utilized to maintain the drugs, agents or compounds on the medical device until delivered and positioned. Medical devices that may be coated with various compounds include stents, grafts, anastomotic devices, perivascular wraps, sutures, staples and microprojection arrays. Microprojection arrays or micro array patches (MAPS) are an effective way of delivering therapeutic agents or biomarkers to patients as the patches induce minimal or no pain, induce little or no injury from the microneedles and reduce the possibility of cross infection. The solid projections or needles on a patch can be coated with drugs or macromolecules. These can be subsequently delivered to a desired target by the penetration of the projections or needles into the skin. The microprojections can be coated by the therapeutic agents using a variety of techniques such as dip coating, spray coating, gas jet drying, electrodynamic atomization and ink jet printing.
Regardless of the methods used for coating the microprojections on the arrays it is useful to assess the amount of material coating the target delivery region of the microprojections which is often the upper ½ to ¼ of the microprojections. Several different techniques have been applied in an attempt to quantify the amount of material coated onto the microprojections. One technique provides for dissolving the coating and quantifying the active material by high-performance liquid chromatography (Ma, et al. J. Pharm Sci. 2014 103(11): 3621-3630. Other techniques to determine the loading of material onto microprojection arrays include determining the residual amount of material either on the microprojections after use or on the skin after the microprojection array has been removed. Fluorescence microscopy can detect fluorescent materials on the microprojections or in the skin after the microprojection array has been removed. Scanning electron microscopy can be used to take images of the microprojections before and after coating. These techniques usually require destruction of the coating and/or are cumbersome and slow. There exists a need to assess each microprojection array at high speed in an aseptic manufacturing environment to determine that the dose and position of the coated material, such as a vaccine, on the projections is correct. Preferably, the method for assessing the dose and position of the coated material would not destroy the coating in the process.
As the dried vaccine on the microprojections appears optically “clear”, the use of standard imaging techniques to establish contrast between the coating and the polymer is not straightforward. Furthermore, it is desirable to determine if the upper portions of the microprojections are coated as this is the portion of the microprojection that enters the skin to deliver the material to the subject. Coating of the lower portions of the microprojections and/or the base upon which the microprojections rest is a waste of valuable biological material. The determination of the loading of the coating should be performed in an aseptic, non-destructive and rapid fashion.
The reference in this specification to any prior publication (or information derived from it), or to any matter which is known, is not, and should not be taken as an acknowledgment or admission or any form of suggestion that the prior publication (or information derived from it) or known matter forms part of the common general knowledge in the field of endeavor to which this specification relates.
SUMMARY OF THE INVENTION
The present invention relates to devices and methods for detecting the amount of material coating a medical device or substrate. In particular, the devices and methods of the present invention are able to detect the amount of vaccine material coating a microarray patch. Uncoated substrate surfaces (e.g. polymers) may have different reflectance and/or a fluorescence emission spectrum from a coated substrate when the substrate is irradiated with a radiation source. Often, the reflectance or fluorescence signal is reduced when the substrate is coated versus the uncoated substrate.
The devices and methods of the present invention enable the use of electromagnetic radiation directed onto an uncoated/coated microprojection array or micro array patch (MAP) to be reflected off the array or to induce an electromagnetic emission and detected to determine the extent of coating of the microprojections on the microprojection arrays. The use of a laser (or other illumination source with appropriate illumination filters), and an intensity sensor (with appropriately chosen collection filters) to measure the reflected or emitted intensity of the electromagnetic radiation from a coated MAP correlates with coating performance or transfer efficiency of the coating onto the microprojections.
Inkjet coating is an emerging technology that can aseptically coat biologics onto MAP's. High speed reflectance measurement(s) allows a quantifiable value to ascertain whether the coating on the projection meets specification in terms of the mass of coated material and its position on the patch relative to base.
In one broad form, an aspect of the present invention seeks to provide a method for determining the amount (degree, extent) of coating on microprojections of a coated microprojection array, the method comprising: irradiating an uncoated microprojection array with an electromagnetic radiation source; measuring the reflected radiation from the uncoated microprojection array; irradiating an uncoated microprojection array with an electromagnetic radiation source; measuring the reflected radiation from the uncoated microprojection array; and determining the extent of coating on the microprojections by comparing the reflected radiation from the uncoated microprojection array to that of the coated microprojection array.
In one embodiment, the measuring of the reflected radiation from the uncoated microprojection array and the measuring of the reflected radiation from the coated microprojection array is done simultaneously.
In one embodiment, the measuring of the reflected radiation from the uncoated microprojection array and the measuring of the reflected radiation from the coated microprojection array is done sequentially.
In another broad form, an aspect of the present invention seeks to provide a method for determining the amount of coating on the microprojections of a coated microprojection array, the microprojection array comprising a base from which the microprojections project, the method comprising: irradiating the coated microprojection array with a light source; measuring the reflected radiation from the base of the coated microprojection array; and determining the amount of coating on the microprojections by comparing the reflected radiation from the coated microprojection array to that of an uncoated microprojection array.
In one embodiment, the reflected radiation is measured by a sensor.
In one embodiment, the number of sensors is four.
In one embodiment, the sensors are at approximately 45 degree downward angle to the microprojections and at 45 degrees out of alignment with the rows of microprojections.
In one embodiment, the electromagnetic radiation source is substantially perpendicular to the microprojection array.
In one embodiment, the electromagnetic radiation source is at an angle relative to the microprojection array.
In one embodiment, the electromagnetic radiation source is aligned over the microprojection array such that the angle relative to the microprojections is less than 5°.
In one embodiment, the electromagnetic radiation source is aligned over the microprojection array such that the angle relative to the microprojections is less than about 20°.
In one embodiment, the electromagnetic radiation source is aligned over the microprojection array such that the angle relative to the microprojections is less than about 45°.
In another broad form, an aspect of the present invention seeks to provide a device for measuring the coating on the microprojections on a microprojection array, the device comprising: an electromagnetic radiation source for illuminating the microprojection array; a microprojection array housing for mounting the microprojection array; and one or more sensors for detecting reflected radiation from the microprojection array.
In one embodiment, the radiation source is a laser diode.
In one embodiment, the radiation source is a laser diode which emits radiation from about 200 nm to 10000 nm.
In one embodiment, the radiation source is a laser diode which emits radiation at 635 nm.
In one embodiment, the sensor is a silicon photodiode.
In one embodiment, the silicon photodiode has a detection range of 200 to 1100 nm.
In one embodiment, the device is confined in an aseptic housing.
In one embodiment, the device further comprises a reference sensor.
In one embodiment, the number of sensors is four.
In one embodiment, the sensors are at approximately 45 degree downward angle to the microprojections and at 45 degrees out of alignment with the rows of microprojections.
In one embodiment, the electromagnetic radiation source is substantially perpendicular to the microprojection array.
In one embodiment, the electromagnetic radiation source is aligned over the microprojection array such that the angle relative to the microprojections is less than 5°.
In another broad form, an aspect of the present invention seeks to provide a device for measuring the coating on the microprojections on a microprojection array, the device comprising: a laser diode for illuminating the microprojection array; an aspheric lens; a beam shaping diffuser; a focusing lens wherein the aspheric lens is positioned between the laser diode and the beam shaping diffuser and the beam shaping diffuser is positioned between the aspheric lens and the focusing lens and the focusing lens is positioned between the beam shaping filter and the microprojection array housing; microprojection array housing for mounting a microprojection array; a bi-convex lens; a sensor for detecting reflected light from the microprojection array wherein the biconvex lens is positioned between the microprojection array housing and the receiver; and a power meter connected to the sensor.
In one embodiment, the device further comprises a microarray mounting station.
In one embodiment, the device further comprises one or more microarrays.
In one embodiment, the laser diode emits electromagnetic radiation at bout 635 nm.
In one embodiment, the device further comprises an aperture positioned between the focusing lens and the microprojection array housing.
In one embodiment, the device further comprises a mirror positioned between the aperture and the microprojection array housing
In one embodiment, the device further comprises a reference sensor.
In one embodiment, the number of sensors is four.
In one embodiment, the sensors are at approximately 45 degree downward angle to the microprojections and at 45 degrees out of alignment with the rows of microprojections.
In one embodiment, the laser diode is substantially perpendicular to the microprojection array.
In one embodiment, the laser diode is aligned over the microprojection array such that the angle relative to the microprojections is less than 5°.
In another broad form, an aspect of the present invention seeks to provide a method for determining the extent (degree, amount) of coating on microprojections of a coated microprojection array comprising: irradiating an uncoated microprojection array with an electromagnetic radiation source; measuring the emitted radiation from the uncoated microprojection array; irradiating a coated microprojection array with a light source; measuring the emitted radiation from the coated microprojection array; and determining the extent of coating on the microprojections by comparing the emitted radiation from the uncoated microprojection array to that of the coated microprojection array.
In one embodiment, the emitted radiation is fluorescence.
In one embodiment, the electromagnetic radiation source emits at approximately 445 nm.
In one embodiment, the fluorescence is detected by a sensor with a filter having a bandpass of between about 455 nm to 515 nm.
In another broad form, an aspect of the present invention seeks to provide a method for determining the extent (degree, amount) of coating on a substrate comprising: irradiating an uncoated microprojection array with a first electromagnetic radiation source which reflects off the substrate and a second electromagnetic radiation source which promotes fluorescence in either the substrate or the coating or both; measuring the reflected radiation from the uncoated microprojection array; measuring the emitted fluorescence radiation from the uncoated microprojection array; irradiating a coated microprojection array with a first electromagnetic radiation source which reflects off the substrate and a second electromagnetic radiation source which promotes fluorescence in either the substrate or the coating or both irradiating a coated microprojection array with a light source; measuring the reflected radiation from the coated microprojection array; measuring the emitted fluorescence radiation from the coated microprojection array; and determining the extent of coating on the microprojections by comparing the reflected radiation from the uncoated microprojection array to that of the coated microprojection array and by comparing the reflected radiation from the uncoated microprojection array to that of the coated microprojection array.
In another broad form, an aspect of the present invention seeks to provide a method for controlling the quality of coated microprojection arrays, the method including: determining the amount (degree, extent) of coating on microprojections of a coated microprojection array using the method as described above; comparing the determined amount of coating to a coating specification; and rejecting the coated microprojection array if the determined amount of coating is outside of the coating specification.
In another broad form, an aspect of the present invention seeks to provide a system for controlling the quality of coated microprojection arrays, the system including a device as described above that determines the amount of coating on microprojections of a coated microprojection array; and a processing system configured to: receive, from the device, an indication of the determined amount of coating; compare the determined amount of coating to a coating specification; and determine that the coated microprojection array should be rejected if the determined amount of coating is outside of the coating specification.
It will be appreciated that the broad forms of the invention and their respective features can be used in conjunction, interchangeably and/or independently, and reference to separate broad forms is not intended to be limiting.
BRIEF DESCRIPTION OF THE DRAWINGS
Various examples and embodiments of the present invention will now be described with reference to the accompanying drawings, in which:
FIG. 1A is a schematic diagram of a side view of the microprojection array and the relative position of the detector and illumination source relative to the microprojection array; FIG. 1B is the image the detector would see given the orientation of the detector in accordance with FIG. 1A.
FIG. 2A is a schematic diagram of a side view of the microprojection array and the relative position of the detector at a 45 degree angle to the microprojection array; FIG. 2B is a schematic diagram of an overhead view of the detector direction relative to the microprojection array and the direction of the detector for detecting reflectance; FIG. 2C is the image the detector would see given the orientation of the detector in accordance with FIGS. 2A and 2B; FIG. 2D is a schematic diagram of a side view of the microprojection array and the relative position of the detector at a 45 degree angle to the microprojection array; FIG. 2E is a schematic diagram of an overhead view of the detector direction relative to the microprojection array and the direction of the detector for detecting reflectance; FIG. 2F is the image the detector would see given the orientation of the detector in accordance with FIGS. 2D and 2E; FIG. 3 is a schematic diagram of an overhead view of a microprojection array where the radiation illumination is from the top with little or no angle and the use of four detectors at approximately 45 degree downward angle and at 45 degrees out of alignment with the rows of microprojections.
FIGS. 4A-4D are schematic diagrams of an illumination scheme respectively, large spot reflectance, linear dot array, line scan array and two dimensional array.
FIG. 5A is a fluorescence image of dried vaccine on a flat polymer disc, to demonstrate the principle of fluorescence reduction. The excitation wavelength is set at 445 nm and the emission filter is 455-530 nm. The polymer surface fluoresces when excited with 445 nm light, and the dried vaccine reduces the measured intensity; FIG. 5B is a photograph of a polymer microprojection array coated with dried vaccine where the excitation wavelength is set at 405 nm and the emission filter is 495-515 nm. In this scenario, the dried vaccine does not appear to significantly reduce the fluorescence intensity of the underlying polymer. These conditions could potentially serve as a reference measurement that would be similar to an uncoated patch.
FIG. 6A-6C present data from FTIR scans of flat polymer discs with dried vaccine for the purpose of potentially identifying useful spectral features. FIG. 6A is the spectra obtained from the polymer without dried vaccine. FIGS. 6B and 6C are data from different regions within the dried vaccine drop (edge of dried drop, and center of dried drop). Spectral features in the wavenumber range from 1300 cm-1 to 1900 cm-1 are highlighted that seem to correlate with the presence of dried vaccine.
FIG. 7 is a schematic diagram of one embodiment of the equipment setup for reflectance detection of a coating on a substrate
FIG. 8A is a drawing of one embodiment of the equipment setup for detecting the coating on a coated substrate; and FIG. 8B is a drawing of an alternate embodiment of the equipment setup for detecting the coating.
FIG. 9 is a schematic diagram of one embodiment of the equipment setup for detecting the coating on a coated substrate.
FIG. 10 is a schematic diagram of one embodiment of the laser diode housing.
FIG. 11 is a schematic diagram of one embodiment of the receiver housing.
FIG. 12 is a schematic diagram of one embodiment of the patch mount.
FIG. 13 is a plot of normalized reflectance versus coating transfer efficiency.
FIG. 14 is a schematic diagram of one embodiment of the housing of the device.
FIG. 15 is a schematic diagram of one embodiment of the device as viewed through the housing of the device.
FIG. 16 is a schematic diagram of one embodiment of the device as viewed through the top of the housing of the device.
FIG. 17A is a schematic diagram of one embodiment of the device as viewed through the side of the housing of the device; FIG. 17B is a schematic diagram of one embodiment of the device without the housing.
FIG. 18A is a plot of low dose total protein transfer (μg) versus laser reflectance (%); FIG. 18B is a plot of high dose total protein transfer (μg) versus laser reflectance (%).
FIG. 19 is a table of laser acceptance criteria for low dose and high dose amounts.
FIG. 20A is a schematic of the coating percentages by quadrant for a microprojection array; FIG. 20B is a “heat map” representation of reflectance vs position data of the coating of the microprojection array. Green color represents a high intensity (i.e. Significant tip coating) and red color is mapped to low intensity readings (i.e. With significant base coating).
FIG. 21A is top-down view of an illustrated example of a patch mat; FIG. 21B is a side-view of an illustrated example of a patch mat.
FIG. 22 is a schematic diagram of one embodiment of a quality control station where a mat of patches may be coated by multiple print heads and then conveyed to a quality control station where the patches can be checked for amount and position of coating on the microprojections.
FIG. 23 is a schematic of one system that provides feedback information so that the coating of the MAPs performed by the print heads can be monitored and adjusted based on the data.
DETAILED DESCRIPTION OF THE INVENTION
The present invention relates to devices and methods for detecting the amount of material coating a medical device or substrate, in particular the present invention relates to devices and methods for detecting the amount of vaccine material coating a microarray patch in real time.
The patches take a variety of forms from metal formed patches to polymer molded patches to patch projections formed from the vaccine or pharmacological solution itself. The manufacture of these patches relies on the ability to deposit a dried down drug solution or vaccine onto the tips of the microprojections with high throughput and high accuracy. Accurately coating the projections is important as the delivery of the coated material to the patient needs to be consistent. If too little material is delivered the efficacy of the treatment is compromised. Too much material could lead to overdosing or at a minimum wasting expensive vaccine or drug. The ability to coat the patches quickly is necessary to producing a commercial product. Coating of a Micro Array Patch (MAP) and other vaccine and biologic platforms requires the precise dosing and allocation of biologics targeting each individual projection on the platform with a controlled dose. Typically, a MAP (Micro Array Patch) platform has a length and a width of less than 20 mm and carries an evenly spaced two-dimensional array of projections. The microprojections are situated on a substantially planar base. The number of projections in either dimension may be less than 100. Therefore the projection density on the MAP is usually between 2,000 and 10,000 per cm2. The total amount of pharmaceutical formulation such as a vaccine required to coat each projection is typically more than 500 picolitres and must be accurately measured both in terms of the applied dried volume of material and the position of the material on the microprojection. For example it would be informative to determine whether the material deposited on the microprojections was located on the top fourth of the microprojection or top half of the microprojection or whether the entire microprojection was coated. Furthermore, in order to accomplish large volume manufacturing of MAPs, each patch may need to be coated with one or more drops (e.g. 1-6 drops per microprojection or between 20 pl to 1 μL of material) in in a short time period (e.g. seconds). It is important to be able to quantify the amount of material that is distributed onto the microprojections in a manner that is preferably non-destructive and which does not contact the material or the microprojections. The method should be rapid enough to keep up with production levels of microprojection arrays which could number in the millions per week. The devices and methods of the present invention provide the ability to determine the amount of material coated onto the microprojections of the MAP.
The devices and methods of the present invention can determine the amount of material deposited on a substrate where the substrate is made of both an area that is nominally “to be coated” and an area that is nominally “uncoated”. The measurement of the coating distribution can in principle be made by the direct measurement of the material on the coated area of the substrate or inferred by the measurement of the absence of material in the nominally uncoated area of the substrate. For example with respect to microprojection arrays which are made of a base from which microprojections arise, the coated area is the tips of the microprojections (preferably the top half of the microprojections) and the uncoated area is the base from which the microprojections arise (preferably the lower 50% of the projection). Thus the measurement of the material on the microprojections can be made either directly by determining the amount of material on the microprojections or by the measurement of material on the base from which the amount of material on the microprojections can be determined. The devices and methods of the present invention enable the use of electromagnetic radiation directed onto an uncoated/coated microprojection array or micro array patch (MAP) to be reflected off the array or to induce an electromagnetic emission and detected to determine the extent of coating of the microprojections on the microprojection arrays. In the devices and methods of the present invention the detection of the coating on the MAP may utilize one or more electromagnetic radiation wavelengths for reflectance measurements or fluorescence detection. The devices and methods of the present invention may use reflectance measurements and fluorescence measurements alone or in combination either simultaneously or sequentially. Optics may be required for reflectance mode measurements to make sure illumination is collimated. Fluorescence mode illumination may not require collimated light.
The use of a laser (or other illumination source with appropriate illumination filters), and an intensity sensor (with appropriately chosen collection filters) to measure the reflected or emitted intensity of the electromagnetic radiation from a coated MAP correlates with coating performance or transfer efficiency of the coating onto the microprojections. The sensor may ideally have optics for both reflectance and fluorescence mode measurements in order to maximize signal collection and directionality of photons.
In the devices and the methods of the present invention the uncoated surfaces of the MAP (e.g. a polymer microprojection array patch) have different reflectance and/or fluorescence emission spectra from a polymer surface that is coated; the orientation of the sensor relative to the substrate surface being measured can assist in isolating signals that are primarily related to coating on either the base region, or the tip region (depending on the sensor configuration); coating on a surface is detected as a reduction in the signal intensity compared to the signal from a reference surface; the reference surface can be an uncoated patch or a measurement made at a wavelength where the coating is substantially transparent, and is thus representative of an uncoated patch. For example, in a reflectance configuration for measuring a signal related to the amount of base coating the illumination source and sensor may be positioned such that if the patch were replaced by a mirror, the beam would reflect off the mirror and enter directly in alignment with the sensor optics detection path. When the mirror is replaced with a microprojection patch, the illumination will, like the mirror, substantially reflect off of the base region of the patch. Regions of the patch, where there are microprojections, will not contribute a significant signal in the direction of the sensor since the microprojections are substantially orthogonal to the base of the patch. Therefore, the measured signal is primarily from the reflection of the electromagnetic radiation from the base. However, if a material such as a vaccine is present on the base, the material will act to reduce the reflected signal (either from absorption by the material or by scattering). If the quantity of material deposited onto the patch is known and controlled, the amount of coating on the tips can then be inferred from the measured quantity on the base. In the case where material is substantially deposited on the tips with little material deposited on the base, the measured reflectance intensity signal will be high (ostensibly the same or similar as an uncoated patch). If material is instead deposited on the base, the reflected intensity will be reduced. Thus, if a high proportion of tip is coated the result will be the detector will observe a large signal, whereas a low proportion of tip coating will result in a small signal.
In one embodiment of the devices of the present invention the device is comprised of a radiation (light) source, a coated microprojection array and a sensor for detecting radiation (light). The radiation source illuminates the coated array and the sensor is positioned such that it can detect the radiation reflected from the coated array. To determine the amount of coating on the microprojection array the value of reflected light derived from the sensor may be compared to the value of reflected light derived from the sensor when the same radiation source is reflected off an uncoated microprojection array. A normalized reflectance diagram can be constructed (See FIG. 13) which correlates the normalized reflectance of the radiation with the transfer efficiency of the coating onto the microprojections. Example 1 provides the details of the construction of the normalized reflectance diagram, but in essence several different coating amounts may be applied to several different microprojection arrays such that different transfer efficiency of the coating is achieved. The transfer can be measured in a variety of ways including a membrane transfer method in which the material transferred to the membrane from the microprojections was quantified by using scintillation counting of 14 C or Ponseau S staining. While the initial transfer efficiency measurement may be made in a destructive fashion the measurements may be made with methods which are non-destructive. These different microprojection arrays can then be subjected to irradiation by the radiation source and the reflected radiation measured by the sensor. An uncoated microprojection array can then be tested and the normalized reflectance can be calculated by dividing the reflectance values obtained in the various coated microprojection array by the reflectance value obtained from the uncoated array. If all of the coating material is transferred to the microprojections then none of the material will be on the base of the array. Thus, the reflectance value of an array where none of the material is transferred to the base is the same as that of the uncoated array. Reflectance values of the coated array which are less that the reflectance values of the uncoated arrays indicate that some of the coating material was transferred to the microprojections. Once the correlation of the normalized reflectance and the transfer efficiency is established then the measurement of the transfer efficiency of any coated microprojection array can be ascertained. The transfer efficiency of the coated microprojection array can be determined in a non-destructive, real-time fashion.
As described above the reflectance from the coated patch may be compared to the reflectance from the uncoated patch. This comparison could be accomplished by having an uncoated and coated patch illuminated simultaneously or sequentially. The comparison could also be accomplished by comparing a portion of a single patch which contains both coated and uncoated sections.
In addition to the basic scheme described above other optical equipment and/or mechanical equipment may also be included in the devices and methods of the present invention. Various lenses, filters and mirrors to optimize the illumination of the patch as well as providing optimal conditions for detection of the reflected light may be provided. A housing that provides aseptic or sterile conditions for the microarray can also be part of the devices of the present invention. It is desirable to maintain an aseptic or sterile environment so that the microarrays are not contaminated as the coatings on the microprojections are to be inserted into patients.
In the devices and methods of the present invention various radiation sources may be used including but not limited to laser sources, infrared sources and fluorescence sources. In some embodiments of the devices and methods of the present invention the wavelength of the radiation source may be at a wavelength or wavelengths at which the coating strongly absorbs. In other embodiments, the dried coating material may either strongly emit fluorescence in response to the excitation wavelength, or strongly absorb or scatter at the emitted fluorescence wavelength of the underlying polymer substrate. The direction of the illumination source and the detector patch may influence the quality and information received, especially for detection based on reflectance. the orientation of the sensor relative to the microprojection array surface being measured can assist in isolating signals that are primarily related to coating on either the base region, or the tip region (depending on the sensor configuration). Illuminating near normal to patch surface results in a signal that is almost entirely due to the base reflectance (reflections from projections do not return to the sensor). Reflectance is reduced when coating is present, due to either absorbance by the coating, or scattering from the dried solids deposits. Placing the sensor at an angle such that tips of other projections in the array mask or shadow the base portion of the projections as well as the base of the patch coating on a surface is detected as a reduction (or increase in some cases) in the signal intensity compared to the signal from a reference surface. Illumination should be electromagnetic radiation source with a defined wavelength (or wavelengths if 2 or more are needed)
The orientation of the electromagnetic radiation source and the sensors influence the reflectance signal that registers with the detectors. For example, if the detector and illumination source are oriented as in FIG. 1A, the tips of the microprojections are visible, but they contribute little reflectance signal because the light from the tips is not directed towards the sensor. The reflectance signal intensity is related to the light reflected from the base and if the coating material is coating the base rather than the tips of the microprojections the signal is reduced. FIG. 1B shows the view that a sensor placed in the orientation in FIG. 1A would “see”. For example, FIG. 2C shows the view the detector “sees” if the detector is placed in the direction as shown in FIG. 2B and at the angle as shown in FIG. 2A. The tip of the microprojection is visible while the body of each microprojection is masked by the adjacent microprojections. However in this case, the base is also visible between the rows of microprojections. Thus the signal received will be a combination of signals emanating from the base and the top half of each projection. FIG. 2F shows the view the detector “sees” if the detector is placed in the direction as shown in FIG. 2A and the angle as shown in FIG. 2E. In this case, the tip of the microprojection is visible and the body of each microprojection is masked by the adjacent microprojections. Importantly, the base is also masked by adjacent microprojections. The received signal comes primarily from the projection tips, but only from the side of the projection facing the detector. In order to maximize information collection from the entire tip surface, an alternate configuration may be used as in FIG. 3, where the illumination is such that the use of four detectors at approximately 45 degree downward angle to the microprojections and at 45 degrees out of alignment with the rows of microprojections provides a signal primarily from the tips of the microprojection arrays. The use of this geometric masking by having the detector detect signals from the upper coated portion of the microprojection rather than from the lower uncoated portion of the microprojection and uncoated base can isolate the signal from the coated portion of the microprojection.
The size of the area illuminating the substrate, such as a microprojection array will also influence the quality of the data. For example if the area of illumination is a large area relative to the entirety of the substrate the information gathered from the reflectance data will relate to an average coating over the entire substrate. Smaller areas of illumination relative to the entirety of the substrate will provide more data about the coating of particular areas of the substrate. The smaller the area of illumination the greater the detail of the coating on the substrate. For example more detail will be gained by illuminating a single microprojection than illuminating the entire microprojection array. FIG. 4 shows various configurations of illuminating a microprojection array. With respect to illumination of a microprojection array the diameter of the illuminating spot can be as large as the diameter of the entire array or as small as an individual microprojection. In some embodiments the diameter of the illumination spot may be 10 mm or less or 9 mm or less or 8 mm or less or 7 mm or less or 6 mm or less or 5 mm or less or 4 mm or less or 3 mm or less or 2 mm or less or 1 mm or less or 0.5 mm or less or 0.1 mm or less or 0.05 mm or less or 0.01 mm or less.
Alternatively the use of fluorescence rather than reflectance may decrease the dependence of the signal on the geometry of the radiation source and the detectors as fluorescence emits in all directions. In the case of reflectance the signal may be reduced by as much as 95% if the source of the radiation is normal to the patch. Conversely, if the source of radiation is normal to the patch when using fluorescence detection, the signal is only marginally reduced. If a coating is coated onto a substrate such as on the microprojections of a microprojection array the wavelength for excitation and the wavelength range for an emission filter can provide scenarios where the coating such as a vaccine may either mask the fluorescence of the patch (polymer) or provide little or no masking of the fluorescence of the patch (polymer). For example, in FIG. 5A, the excitation wavelength is set at 445 nm and the emission filter is 455-530 nm. In this case the vaccine coating on the polymer patch masks the fluorescence signal from the polymer thereby reducing the signal. In FIG. 5B, the excitation wavelength is set at 405 nm and the emission filter is 495-515 nm. In this case the vaccine coating on the polymer patch does not mask the fluorescence signal from the polymer and only reduces the signal marginally. This signal could thus potentially serve as a reference signal on a coated patch which might enhance the quality of the measurement and/or remove the need to measure the patch before it is coated.
The use of Fourier Transform Infrared Spectroscopy (FTIR) may be used to assist in identifying optimal wavelengths for detection of the coating on a substrate. To achieve maximum sensitivity, it may be desirable to select a wavelength where the dried vaccine absorbs strongly compared to the polymer (See FIG. 6). FTIR Spectral Imaging may assist in identifying strong absorbance peaks that are unique to the dried vaccine.
FIG. 7 is a schematic diagram of a device for measuring reflectance in which radiation is projected onto the patch and a receiver detects the reflected light which is communicated to a display device. The radiation source can be any source that emits radiation. Laser diodes are preferred as the radiation source as they have high intensity, narrow bandwidth, and are collimated, which simplifies the optical setup. In one embodiment the laser diode may be a 4.5 mW laser diode that emits light at 635 nm and has adjustable focus. The laser may be powered by a power supply such as a 5 VDC power supply. A large range of wavelengths may be used in the methods and the devices of the present invention. A wavelength between 200 nm to 10 μm may be used for illuminating the microprojection array. Wavelengths between 200 nm to 10000 nm or between 200 nm to 9000 nm or between 200 nm to 8000 nm or between 200 nm to 7000 nm or between 200 nm to 6000 nm or between 200 nm to 5000 nm or between 200 nm to 4000 nm or between 200 nm to 3000 nm or between 200 nm to 2000 nm or between 200 nm to 1000 nm or between 200 nm to 900 nm or between 200 nm to 800 nm or between 200 nm to 700 nm or between 200 nm to 600 nm or between 200 nm to 500 nm or between 200 nm to 400 nm or between 200 nm to 300 nm or between 300 nm to 10000 nm or between 300 nm to 9000 nm or between 300 nm to 8000 nm or between 300 nm to 7000 nm or between 300 nm to 6000 nm or between 300 nm to 5000 nm or between 300 nm to 4000 nm or between 300 nm to 3000 nm or between 300 nm to 2000 nm or between 300 nm to 1000 nm or between 300 nm to 900 nm or between 300 nm to 800 nm or between 300 nm to 700 nm or between 300 nm to 600 nm or between 300 nm to 500 nm or between 300 nm to 400 nm or between 400 nm to 10000 nm or between 400 nm to 9000 nm or between 400 nm to 8000 nm or between 400 nm to 7000 nm or between 400 nm to 6000 nm or between 400 nm to 5000 nm or between 400 nm to 4000 nm or between 400 nm to 3000 nm or between 400 nm to 2000 nm or between 400 nm to 1000 nm or between 400 nm to 900 nm or between 400 nm to 800 nm or between 400 nm to 700 nm or between 400 nm to 600 nm or between 400 nm to 500 nm or between 300 nm to 400 nm or between 500 nm to 10000 nm or between 500 nm to 9000 nm or between 500 nm to 8000 nm or between 500 nm to 7000 nm or between 500 nm to 6000 nm or between 500 nm to 5000 nm or between 500 nm to 4000 nm or between 500 nm to 3000 nm or between 500 nm to 2000 nm or between 500 nm to 1000 nm or between 500 nm to 900 nm or between 500 nm to 800 nm or between 500 nm to 700 nm or between 500 nm to 600 nm or between 600 nm to 10000 nm or between 600 nm to 9000 nm or between 600 nm to 8000 nm or between 600 nm to 7000 nm or between 600 nm to 6000 nm or between 600 nm to 5000 nm or between 600 nm to 4000 nm or between 600 nm to 3000 nm or between 600 nm to 2000 nm or between 600 nm to 1000 nm or between 600 nm to 900 nm or between 600 nm to 800 nm or between 700 nm to 10000 nm or between 700 nm to 9000 nm or between 700 nm to 8000 nm or between 700 nm to 7000 nm or between 700 nm to 6000 nm or between 700 nm to 5000 nm or between 700 nm to 4000 nm or between 700 nm to 3000 nm or between 700 nm to 2000 nm or between 700 nm to 1000 nm or between 700 nm to 900 nm or between 700 nm to 800 nm. In certain embodiments of the radiation sources used in the devices and methods of the present invention, 635 nm was utilized primarily to reduce the effect of background light (noise) from the room. At 635 nm the intensity of room lighting at this wavelength is very low compared to the laser intensity. Filters may be placed in front of the sensor to significantly remove the other wavelengths of light (primarily from room lighting) from striking the sensor. In certain embodiments the measured signal from the room lights was not detectable by the sensor which measures into the 100 picoWatt range (1010 Watts). The signals from the laser are usually in the microwatt range (106), meaning that the signal detected by the sensor is about 1,000 to 10,000 times more intense than the background radiation.
The sensor can be a detector such as a photodiode including but not limited to silicon photodiodes preferably with a wavelength range 400-1100 nm, power range 500 pW-500 mW and coated with an ND reflective coating. Placing a filter in front of the sensor can be used to reduce stray signals from light coming from the production environment. A filter can filter out the excitation wavelength when a fluorescence signal is being measured. Additionally, optical elements placed in front of the sensor may assist is maximizing the specificity in directionality and signal amplitude. The sensor can be directly read by a power meter console which is compatible with the receiver or a PLC system which reads the power sensor measurements, processes them, and feeds the information into the production system.
FIGS. 8A and 8B and FIG. 9 are schematic diagrams of alternative embodiments of the present invention that include the components in FIG. 7 but in addition may provide various lenses, filters and mirrors to optimize the illumination of the patch as well as providing optimal conditions for detection of the reflected light. In general lenses can be convex/convex lenses with 350-700 nm wavelength. The lenses are typically uncoated. Bi-convex lenses are useful for many finite imaging applications. This type of lens is best suited for use in situations where the object and image are on opposite sides of the lens and the ratio of the image and object distances (conjugate ratio) is between 0.2 and 5. Filters include bandpass filters which provide one of the simplest ways to transmit a well-defined wavelength band of light, while rejecting other unwanted radiation. Their design is essentially that of a thin film Fabry-Perot Interferometer formed by vacuum deposition techniques and consists of two reflecting stacks, separated by an even-order spacer layer. These reflecting stacks are constructed from alternating layers of high and low refractive index materials, which can have a reflectance in excess of 99.99%. By varying the thickness of the spacer layer and/or the number of reflecting layers, the central wavelength and bandwidth of the filter can be altered. In one particular embodiment the filter permits transmission of 635±2 nm. The design also may include the use of mirrors such as broadband dielectric mirror 400-750 nm.
FIG. 10 is a schematic diagram of one embodiment of the laser diode housing of the devices and methods of the present invention. The design of the laser diode housing includes a laser diode housing, laser diode, an aspheric lens, a beam shaping diffuser and a focusing lens. The aspheric lens will cause the beam coming from the laser diode to diverge and the beam shaping diffuser will shape the beam. After passing through the beam shaping diffuser the focusing lens will focus the shaped beam onto the patch. Optionally a diaphragm may be placed between the focusing lens and the patch.
FIG. 11 is a schematic diagram of one embodiment of the receiver housing of the devices and methods of the present invention. The design of the receiver housing includes a receiver housing a biconvex lens and a receiver. The biconvex lens causes the reflected light to converge at the receiver.
FIG. 12 is a schematic diagram of one embodiment of the patch mount of the devices and methods of the present invention where the patch is displayed on or in a patch housing. The patch housing serves to hold the patch in place during the illumination of the patch. The area of illumination of the patch may be the entire patch or alternatively some portion of the patch.
FIGS. 14-17 are schematic diagrams of different aspects of one embodiment of the devices of the present invention.
Optionally a reference sensor as shown in FIGS. 8A and 8B can be incorporated into the design as a reference sensor may provide extra information such as a signal that is due to scattering rather than reflected light. Additionally the reference sensor might provide a reference signal that is essentially a surrogate measure of the incident laser intensity. This would potentially help stabilize the readings over time if the laser intensity drifts, or the optics setup shifts over time or deteriorates and or provide the ability to replicate results from system to system.
In one embodiment the signals from the sensor are normalized by measuring a blank (uncoated) patch prior to or simultaneously with measuring the signal for coated patches. The ratio of the coated patch signal to the uncoated patch signal may then be calculated.
As shown in FIG. 7, in one embodiment of the devices and methods of the present invention the radiation source is placed at an angle from the microarray patch such that the incident radiation hits the patch at angle where the light is reflected at an angle and detected by the sensor. As shown in FIG. 8A the angle of incidence of the radiation source with respect to the patch is 8°. FIG. 8B shows an alternative embodiment where the radiation source is normal to the patch.
It is also possible to illuminate at an angle such that using the geometry of the patch a shadow could be cast on the lower part of the projection and leave a signal that is primarily from the tips of the microprojections rather than from the base.
In alternative embodiments of the present invention a “spectral” measurement may be taken in which multiple wavelengths are monitored for intensity spectra which may be signatures of different components in the coating or the polymer patch.
As described above, the instruments, devices and methods of the present invention need to provide high throughput quality solutions for determining the coating on the microprojection arrays. This includes having the patches that will be coated in a format where they can be coated, checked for quality and transported easily. A method for providing patches that can be coated by commercial production is to interconnect the individual MAP's into compact mats that can be further stacked into a single compact body that requires minimal packaging (FIGS. 21A and 21B). The mats can be individually manipulated in an aseptic environment. The mat of patches can be coated as one unit thereby minimizing the instrument footprint. The patch mats provide in-plane cohesion of the patches, while allowing slight individual freedom of movement of the patch out of plane which enables each patch to be perfectly mated to the coating base. The patches can be individually detached from the mat by a pick-and-place robot. The patches of the patch mat may be coated using print head designs that utilize a piezoelectric stack actuator as the driving component to push a membrane plate such that the fluid in the pumping chamber is dispensed though a two-dimensional array of nozzles. The dispensed fluid is coated onto microprojections on a microprojection array as the nozzles are aligned with the microprojections on the array. The print head functions in the following way. The print head has a source of fluid from a reservoir which may be integral or externally located. Initially, the fluid from the reservoir to the nozzle is at a static condition, i.e., no flow. Between the reservoir and the nozzle, there are microfluidic conduits and a pumping chamber. The microfluidic conduits are responsible for replenishing fluid from the reservoir to the pumping chamber. The pumping chamber is responsible for pumping fluid out from the nozzle. At the nozzle exit, there is a meniscus or liquid/air interface defined by the nozzle exit geometry, which is some embodiments forms a round meniscus. The print head device may provide that each drop ejection cycle enable all the nozzles to simultaneously dispense a drop or a sequence of drops with a total volume in the range of 30 to 3000 picoLiters per nozzle. The print head may provide that each drop ejection cycle enable a single nozzle or subset of nozzles to dispense a drop or a sequence of drops.
FIG. 22 shows one scheme by which the patches on the patch mat are coated by a printer and transferred to a conveyer where the patches may be tested for quality by the devices and methods of the present invention.
The sequence begins with the system start up for each print head in which a start priming sequence is initiated to expel air from the print circuit. Once primed, printer will idle (tickle). The print head will print a single dispense onto a hydrophobic surface, image system counts drops, measures drop diameter and aligns print head to X,Y, axis and rotation. Drop size can be adjusted via PZT voltage.
Next an array of patches (Mat) is aligned under the print head, each patch is imaged and the position of the patch relative to axis is determined. Print head vision systems (P1 to P4) inspect patches and mark rejects (missing projections, no tips or damage). In addition periodic checks of drop mass dispense can be performed to confirm target dispense. The voltage supplied to PZT may be altered to achieve the mean dispensing value. Printing can then commence and a coating is built up on the microprojections by multiple passes depending on required dose. The printed mat of patches is then transferred to coating QC conveyor.
The mat patch passes under QC station and reflected light of various wavelengths may be used to collect data per patch. Such data may include where the coating is positioned on projection and estimates of the dispensed mass per patch. Mass may be calculated by reading fluorescence emitted from one component of a homogeneous coating material or the patch itself. This data from the fluorescence scan may be checked against the dispensed mass check for that print head to confirm the any deviations from the established protocol. Any out of specification patches are rejected at the patch insertion stage.
FIG. 23 is a schematic of one system that provides feedback information so that the coating of the MAPs performed by the print heads can be monitored and adjusted based on the data. The system is designed to respond to out of specification data by purging the print head and printing a single array to check drop size as well as clearing nozzles and adjusting position. PZT voltage can be adjusted to increase or decrease dispensed mass. If the position of the coating moves from a target value for a particular print head that print head will be asked to perform a calibration check.
In view of the above, it will be appreciated that a method for controlling the quality of coated microprojection arrays may include determining the amount of coating on microprojections of a coated microprojection array using the above described techniques, comparing the determined amount of coating to a coating specification; and rejecting the coated microprojection array if the determined amount of coating is outside of the coating specification.
Similarly, it will be appreciated that a system for controlling the quality of coated microprojection arrays may include a device that determines the amount of coating on microprojections of a coated microprojection array as described above, together with a processing system configured to receive from the device an indication of the determined amount of coating, compare the determined amount of coating to a coating specification and determine that the coated microprojection array should be rejected if the determined amount of coating is outside of the coating specification.
Within this disclosure, any indication that a feature is optional is intended provide adequate support (e.g., under 35 U.S.C. 112 or Art. 83 and 84 of EPC) for claims that include closed or exclusive or negative language with reference to the optional feature. Exclusive language specifically excludes the particular recited feature from including any additional subject matter. For example, if it is indicated that A can be drug X, such language is intended to provide support for a claim that explicitly specifies that A consists of X alone, or that A does not include any other drugs besides X. “Negative” language explicitly excludes the optional feature itself from the scope of the claims. For example, if it is indicated that element A can include X, such language is intended to provide support for a claim that explicitly specifies that A does not include X. Non-limiting examples of exclusive or negative terms include “only,” “solely,” “consisting of,” “consisting essentially of,” “alone,” “without”, “in the absence of (e.g., other items of the same type, structure and/or function)” “excluding,” “not including”, “not”, “cannot,” or any combination and/or variation of such language.
Similarly, referents such as “a,” “an,” “said,” or “the,” are intended to support both single and/or plural occurrences unless the context indicates otherwise. For example “a dog” is intended to include support for one dog, no more than one dog, at least one dog, a plurality of dogs, etc. Non-limiting examples of qualifying terms that indicate singularity include “a single”, “one,” “alone”, “only one,” “not more than one”, etc. Non-limiting examples of qualifying terms that indicate (potential or actual) plurality include “at least one,” “one or more,” “more than one,” “two or more,” “a multiplicity,” “a plurality,” “any combination of,” “any permutation of,” “any one or more of,” etc. Claims or descriptions that include “or” between one or more members of a group are considered satisfied if one, more than one, or all of the group members are present in, employed in, or otherwise relevant to a given product or process unless indicated to the contrary or otherwise evident from the context.
Where ranges are given herein, the endpoints are included. Furthermore, it is to be understood that unless otherwise indicated or otherwise evident from the context and understanding of one of ordinary skill in the art, values that are expressed as ranges can assume any specific value or subrange within the stated ranges in different embodiments of the invention, to the tenth of the unit of the lower limit of the range, unless the context clearly dictates otherwise.
All publications and patents cited in this specification are herein incorporated by reference as if each individual publication or patent were specifically and individually indicated to be incorporated by reference. The citation of any publication is for its disclosure prior to the filing date and should not be construed as an admission that the present invention is not entitled to antedate such publication by virtue of prior invention.
Throughout this specification and claims which follow, unless the context requires otherwise, the word “comprise”, and variations such as “comprises” or “comprising”, will be understood to imply the inclusion of a stated integer or group of integers or steps but not the exclusion of any other integer or group of integers. As used herein and unless otherwise stated, the term “approximately” means ±20%.
While this invention has been particularly shown and described with references to example embodiments thereof, it will be understood by those skilled in the art that the various changes in form and details may be made therein without departing from the scope of the invention encompassed by the appended claims.
A better understanding of the present invention and of its many advantages will be had from the following examples, given by way of illustration.
EXAMPLES Example 1
Normalized Reflectance
A range of coating performance was obtained by creating three different groups of microprojection patch arrays. Each patch was coated with 6 drops of 14 C labelled vaccine per projection. The three groups were then manufactured as follows: In group I six drops were targeted to the tips of the microprojections; in group II, three drops were targeted to tips of the microprojections and three drops targeted to the base; and in group III, six drops were targeted to the base and no drops targeted to the micro projections. Multiple replicates of each group were manufactured. As the process for targeting the drops to particular portions of the array cannot as yet be perfectly replicated there was a spread of coating performance instead of simply three clusters at 0%, 50% and 100% coating. These microprojection arrays were made in duplicate (TN821 and TN 848). Both sets of microarrays were subjected to reflectance measurements as were microarrays which were uncoated.
The quantitation of the coating for a first set (TN 821) of microarrays was measured by a membrane transfer method where a porous 100 micron thick membrane is used to remove the coated material from the top 100 microns of the projections. The membrane (PVDF with 0.4 micron pores) was hydrated with ¼ strength phosphate buffer and placed against a rigid surface (e.g. glass slides). The patch was placed with the projection side facing the membrane and a pneumatic press was used to press the projections into the membrane for 5 seconds at 40 PSI. Projections penetrate the membrane and stop when the microprojection tips reach the glass surface. Thus, the thickness of the membrane and the pressure (to some extent) control the penetration of the microprojections into the membrane. The coating transfers to the membrane where it was retained due to the hydrophobic interactions between the coating and the membrane. The membrane is hydrated and is a high protein binding membrane traditionally used in blotting techniques for protein analysis. The remaining material (that was not transferred to the membrane) was eluted from the patch and the material bound to the membrane was quantified by using scintillation counting.
The results of the reflectance studies are show in FIG. 13. The red squares correspond to TN 821 in which the reflectance was measured and normalized to a microarray having no coating and then the microarrays were subjected to membrane transfer. The green squares correspond to TN 848 821 in which only the reflectance was measured and compared to the values generated for TN 821. The plot demonstrates that the reflectance methods of the present invention may be used to quantitate the transfer of coating to microprojections.
Example 2
Large Spot Reflectance
Eight MAPs were coated respectively with the following coatings: 30%, 60%, 80% and 100% high dose coating and 30%, 60%, 80% and 100% low dose coating. A laser source illuminated a 7 mm spot on the microprojection array and reflectance was measured. The amount of coating was plotted versus reflectance as seen in FIGS. 18A and 18B. A Laser Acceptance Threshold can be established by calculating a “mean+4×standard deviation” (99.993% confidence interval) by bracketing the coating transfer specification limits which can be determined by the type of device used to coat the substrate and the amount of coating required for a particular purpose. In this example doses 5 and 7 were selected for the lower end and 6 and 8 were selected for the higher end. FIG. 19 shows a table of the acceptance calculations.
Example 3
Spatially Resolved QC Measurements
A single MAP was coated with 4 different tip targeting accuracies as shown in FIG. 20A with one quadrant with 100% tip coating, a second quadrant with 66.7% tip coating, a third quadrant with 33.3% tip coating, and a fourth quadrant with 0% tip coating. “Point-scan” Laser beam (˜1 mm Dia.) scanned throughout patch and corresponding Laser reflectance measurements were made. The loss in laser reflectance is plotted in heat map as shown in FIG. 20B. Point-scan measurements are used to distinguish spatial coating variations within a single patch.

Claims (11)

The claims defining the invention are as follows:
1. A device for measuring the coating on microprojections on a microprojection array, the device comprising:
a microprojection array housing for mounting the microprojection array;
a laser diode for illuminating the microprojection array;
an aspheric lens;
a beam shaping diffuser;
a focusing lens wherein the aspheric lens is positioned between the laser diode and the beam shaping diffuser and the beam shaping diffuser is positioned between the aspheric lens and the focusing lens and the focusing lens is positioned between the beam shaping filter and the microprojection array housing;
a bi-convex lens;
one or more sensors for detecting reflected light from the microprojection array, wherein the bi-convex lens is positioned between the microprojection array housing and the one or more sensors; and
a power meter connected to the one or more sensors.
2. The device of claim 1, further comprising a microarray mounting station.
3. The device of claim 2, further comprising one or more microarrays.
4. The device of claim 1, wherein the laser diode emits electromagnetic radiation at about 635 nm.
5. The device of claim 1, further comprising an aperture positioned between the focusing lens and the microprojection array housing.
6. The device of claim 1, further comprising a mirror positioned between the aperture and the microprojection array housing.
7. The device of claim 1, further comprising a reference sensor.
8. The device of claim 1, wherein the number of sensors is four.
9. The device of claim 1, wherein the one or more sensors are at approximately 45 degree downward angle to the microprojections and at 45 degrees out of alignment with the rows of microprojections.
10. The device of claim 9, wherein the laser diode is substantially perpendicular to the microprojection array.
11. The device of claim 9, wherein the laser diode is aligned over the microprojection array such that the angle relative to the microprojections is less than 5°.
US16/622,092 2017-06-13 2018-06-13 Quality control of substrate coatings Active US11175128B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/622,092 US11175128B2 (en) 2017-06-13 2018-06-13 Quality control of substrate coatings

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201762603841P 2017-06-13 2017-06-13
US16/622,092 US11175128B2 (en) 2017-06-13 2018-06-13 Quality control of substrate coatings
PCT/AU2018/050586 WO2018227246A1 (en) 2017-06-13 2018-06-13 Quality control of substrate coatings

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
PCT/AU2018/050586 A-371-Of-International WO2018227246A1 (en) 2017-06-13 2018-06-13 Quality control of substrate coatings

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/323,671 Continuation US11828584B2 (en) 2017-06-13 2021-05-18 Quality control of substrate coatings

Publications (2)

Publication Number Publication Date
US20200182605A1 US20200182605A1 (en) 2020-06-11
US11175128B2 true US11175128B2 (en) 2021-11-16

Family

ID=64658796

Family Applications (2)

Application Number Title Priority Date Filing Date
US16/622,092 Active US11175128B2 (en) 2017-06-13 2018-06-13 Quality control of substrate coatings
US17/323,671 Active US11828584B2 (en) 2017-06-13 2021-05-18 Quality control of substrate coatings

Family Applications After (1)

Application Number Title Priority Date Filing Date
US17/323,671 Active US11828584B2 (en) 2017-06-13 2021-05-18 Quality control of substrate coatings

Country Status (5)

Country Link
US (2) US11175128B2 (en)
EP (1) EP3639010A4 (en)
AU (1) AU2018285954A1 (en)
CA (1) CA3065371A1 (en)
WO (1) WO2018227246A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017045031A1 (en) 2015-09-18 2017-03-23 Vaxxas Pty Limited Microprojection arrays with microprojections having large surface area profiles
US11175128B2 (en) 2017-06-13 2021-11-16 Vaxxas Pty Limited Quality control of substrate coatings
US11464957B2 (en) 2017-08-04 2022-10-11 Vaxxas Pty Limited Compact high mechanical energy storage and low trigger force actuator for the delivery of microprojection array patches (MAP)
US20220154339A1 (en) * 2020-11-19 2022-05-19 Korea Institute Of Science And Technology Thin film deposition apparatus mountable with analysis system

Citations (213)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2213830A (en) 1938-12-10 1940-09-03 Anastasi John Joseph Suturing and ligating instrument
US2881500A (en) 1958-07-03 1959-04-14 Charles W Furness Corneal clamp
EP0139286A2 (en) 1983-10-14 1985-05-02 Sumitomo Pharmaceuticals Company, Limited Prolonged sustained-release preparations
US4702799A (en) 1985-09-03 1987-10-27 Nestec S.A. Dryer and drying method
WO1991006571A1 (en) 1989-11-03 1991-05-16 Immulogic Pharmaceutical Corporation A human t cell reactive feline protein (trfp) isolated from house dust and uses therefor
US5017007A (en) * 1989-07-27 1991-05-21 Milne Christopher G Apparatus and microbase for surface-enhanced raman spectroscopy system and method for producing same
US5201992A (en) 1990-07-12 1993-04-13 Bell Communications Research, Inc. Method for making tapered microminiature silicon structures
US5353792A (en) 1992-09-25 1994-10-11 Avl Medical Instruments Ag Sensing device
WO1994024281A1 (en) 1993-04-14 1994-10-27 Immulogic Pharmaceutical Corporation T cell epitopes of the major allergens from dermatophagoides (house dust mite)
US5449064A (en) 1994-03-03 1995-09-12 University Of Kansas On-line interface and valve for capillary electophoresis system
US5457041A (en) 1994-03-25 1995-10-10 Science Applications International Corporation Needle array and method of introducing biological substances into living cells using the needle array
US5461482A (en) 1993-04-30 1995-10-24 Hewlett-Packard Company Electrical interconnect system for a printer
US5499474A (en) 1994-11-28 1996-03-19 Knooihuizen; Louis D. Method and apparatus for liquid application
US5527288A (en) 1990-12-13 1996-06-18 Elan Medical Technologies Limited Intradermal drug delivery device and method for intradermal delivery of drugs
EP0732208A1 (en) 1995-03-06 1996-09-18 Ngk Insulators, Ltd. Ink jet print head having ceramic ink pump member and metallic nozzle member bonded thereto
US5611806A (en) 1994-05-23 1997-03-18 Samsung Electro-Mechanics Co., Ltd. Skin perforating device for transdermal medication
US5657138A (en) 1991-10-13 1997-08-12 Lewis; Aaron Generating defined structures on materials using combined optical technologies for transforming the processing beam
WO1998028037A1 (en) 1996-12-20 1998-07-02 Alza Corporation Device and method for enhancing transdermal agent flux
WO1998028038A1 (en) 1996-12-24 1998-07-02 Alza Corporation Method and device for controlling mammalian reproductive cycle
US5859937A (en) 1997-04-04 1999-01-12 Neomecs Incorporated Minimally invasive sensor
WO1999002694A1 (en) 1997-07-09 1999-01-21 The University Of Queensland Nucleic acid sequence and method for selectively expressing a protein in a target cell or tissue
US5922356A (en) 1996-10-09 1999-07-13 Sumitomo Pharmaceuticals Company, Limited Sustained release formulation
US5928207A (en) 1997-06-30 1999-07-27 The Regents Of The University Of California Microneedle with isotropically etched tip, and method of fabricating such a device
US5943075A (en) 1997-08-07 1999-08-24 The Board Of Trustees Of The Leland Stanford Junior University Universal fluid droplet ejector
WO1999042564A2 (en) 1998-02-20 1999-08-26 The Rockefeller University Apoptotic cell-mediated antigen presentation to dendritic cells
WO1999064580A1 (en) 1998-06-10 1999-12-16 Georgia Tech Research Corporation Microneedle devices and methods of manufacture and use thereof
WO2000005339A1 (en) 1998-07-22 2000-02-03 The Secretary Of State For Defence Transferring materials into cells using porous silicon
US6052652A (en) 1997-04-22 2000-04-18 Lg Industrial Systems Co., Ltd. Method for analyzing strength of structure and apparatus using the same
WO2000042215A1 (en) 1999-01-08 2000-07-20 The University Of Queensland Method and polynucleotides for determining translational efficiency of a codon
WO2000074763A2 (en) 1999-06-04 2000-12-14 Georgia Tech Research Corporation Devices and methods for enhanced microneedle penetration of biological barriers
WO2000074764A1 (en) 1999-06-09 2000-12-14 The Procter & Gamble Company Method of manufacturing an intracutaneous microneedle array
WO2001033614A1 (en) 1999-11-02 2001-05-10 University Of Hawaii Method for fabricating arrays of micro-needles
US6233797B1 (en) 1999-07-13 2001-05-22 Groz Beckert Kg Felt needle
US6287556B1 (en) 1998-08-13 2001-09-11 The Regents Of The University Of California Intracellular delivery vehicles
US6299621B1 (en) 1999-06-18 2001-10-09 Novare Surgical Systems, Inc. Surgical clamp pads with elastomer impregnated mesh
WO2001085207A2 (en) 2000-05-05 2001-11-15 The Rockefeller University Modulation of antigen processing using phagocytic cells
US6334856B1 (en) 1998-06-10 2002-01-01 Georgia Tech Research Corporation Microneedle devices and methods of manufacture and use thereof
US20020008530A1 (en) 1998-10-01 2002-01-24 Amst Co., Ltd. Micro cantilever style contact pin structure for wafer probing
US20020016562A1 (en) 1996-06-18 2002-02-07 Michel J. N. Cormier Device and method for enhancing transdermal flux of agents being delivered or sampled
US6352697B1 (en) 1994-10-12 2002-03-05 Iscotec A.B. Saponin preparations and use thereof in iscoms
US20020032415A1 (en) 1999-12-10 2002-03-14 Trautman Joseph C. Device and method for enhancing skin piercing by microprotrusions
WO2002064193A2 (en) 2000-12-14 2002-08-22 Georgia Tech Research Corporation Microneedle devices and production thereof
US20020128599A1 (en) 2000-10-26 2002-09-12 Cormier Michel J.N. Transdermal drug delivery devices having coated microprotrusions
US20020133129A1 (en) 2001-03-14 2002-09-19 Francisco Arias Method of manufacturing microneedle structures using soft lithography and photolithography
US6454755B1 (en) 1995-05-22 2002-09-24 Silicon Microdevices Method and apparatus for transdermal delivery of compounds utilizing disruption of the epidermis
WO2002074173A1 (en) 2001-03-16 2002-09-26 Alza Corporation Method and apparatus for coating skin piercing microprojections
WO2002075794A2 (en) 2001-03-15 2002-09-26 Reflectivity, Inc. A method for making a micromechanical device by using a sacrificial substrate
US6463312B1 (en) 1998-02-16 2002-10-08 Stichting Voor Fundamenteel Onderzoek Der Materie Microdialysis-probe integrated with a si-chip
WO2002085447A2 (en) 2001-04-20 2002-10-31 Alza Corporation Microprojection array having a beneficial agent containing coating
WO2002085446A2 (en) 2001-04-20 2002-10-31 Alza Corporation Microprojection array immunization patch and method
US6478738B1 (en) 1998-03-25 2002-11-12 Hitachi, Ltd. Method of mass-analyzing body fluid and apparatus therefor
US20020169411A1 (en) 2001-05-11 2002-11-14 The Procter & Gamble Co. Portable interstitial fluid monitoring system
WO2002100476A2 (en) 2001-06-08 2002-12-19 Becton, Dickinson And Company Device for manipulating a needle or abrader array
US20030036710A1 (en) 2001-08-20 2003-02-20 Matriano James A. Method for transdermal nucleic acid sampling
WO2003020359A2 (en) 2001-09-05 2003-03-13 3M Innovative Properties Company Microneedle arrays and methods of manufacturing the same
US6533949B1 (en) 2000-08-28 2003-03-18 Nanopass Ltd. Microneedle structure and production method therefor
US6537242B1 (en) 2000-06-06 2003-03-25 Becton, Dickinson And Company Method and apparatus for enhancing penetration of a member for the intradermal sampling or administration of a substance
WO2003026732A2 (en) 2001-09-28 2003-04-03 Biovalve Technologies, Inc. Switchable microneedle arrays and systems and methods relating to same
US6558361B1 (en) 2000-03-09 2003-05-06 Nanopass Ltd. Systems and methods for the transport of fluids through a biological barrier and production techniques for such systems
US6557849B2 (en) 2001-06-21 2003-05-06 Da La Rue International Sheet handling apparatus
JP2003127430A (en) 2001-10-26 2003-05-08 Hitachi Koki Co Ltd Ink-jet printing apparatus
US6565532B1 (en) 2000-07-12 2003-05-20 The Procter & Gamble Company Microneedle apparatus used for marking skin and for dispensing semi-permanent subcutaneous makeup
WO2003048031A2 (en) 2001-11-30 2003-06-12 Alza Corporation Methods and apparatuses for forming microprojection arrays
WO2003053258A1 (en) 2001-12-20 2003-07-03 Alza Corporation Skin-piercing microprojections having piercing depth control
US6589202B1 (en) 2000-06-29 2003-07-08 Becton Dickinson And Company Method and apparatus for transdermally sampling or administering a substance to a patient
US6610382B1 (en) 1998-10-05 2003-08-26 3M Innovative Properties Company Friction control article for wet and dry applications
WO2003078925A2 (en) 2002-03-14 2003-09-25 Taylor Hobson Limited Surface profiling apparatus
US20030199811A1 (en) 1999-09-24 2003-10-23 Sage Burton H. Method and device for abrading skin
WO2003092785A1 (en) 2002-04-30 2003-11-13 Morteza Shirkhanzadeh Arrays of microneedles comprising porous calcium phosphate coating and bioactive agents
WO2004000389A2 (en) 2002-06-25 2003-12-31 Sung-Yun Kwon Rapidly dissolving micro-perforator for drug delivery and other applications
US20040002121A1 (en) 2001-11-06 2004-01-01 Regan Jeffrey F. High throughput methods and devices for assaying analytes in a fluid sample
US20040004649A1 (en) 2002-07-03 2004-01-08 Andreas Bibl Printhead
US20040008241A1 (en) 2002-05-13 2004-01-15 Seiko Epson Corporation Actuator device, liquid ejection head, and method of inspecting the same
US20040039397A1 (en) 2002-08-22 2004-02-26 Helmut Weber Medical tool
US20040049150A1 (en) 2000-07-21 2004-03-11 Dalton Colin Cave Vaccines
WO2004024224A1 (en) 2002-09-16 2004-03-25 Sung-Yun Kwon Solid micro-perforators and methods of use
US20040087992A1 (en) 2002-08-09 2004-05-06 Vladimir Gartstein Microstructures for delivering a composition cutaneously to skin using rotatable structures
US6743211B1 (en) 1999-11-23 2004-06-01 Georgia Tech Research Corporation Devices and methods for enhanced microneedle penetration of biological barriers
US6743581B1 (en) * 1999-01-25 2004-06-01 Ut-Battelle, Lc Multifunctional and multispectral biosensor devices and methods of use
US20040161470A1 (en) 2002-11-22 2004-08-19 Alexander Andrianov Preparation of polyphosphazene microspheres
US20050042866A1 (en) 2003-06-25 2005-02-24 Micronas Gmbh Method and coating apparatus for the manufacture of a microarray
US20050089553A1 (en) 2003-10-28 2005-04-28 Cormier Michel J. Method and apparatus for reducing the incidence of tobacco use
US20050089554A1 (en) 2003-10-24 2005-04-28 Cormier Michel J. Apparatus and method for enhancing transdermal drug delivery
WO2005049108A2 (en) 2003-11-13 2005-06-02 Alza Corporation System and method for transdermal delivery
US20050126710A1 (en) 2002-03-05 2005-06-16 Franz Laermer Device and method for anisotropically plasma etching of a substrate, particularly a silicon body
US6908453B2 (en) 2002-01-15 2005-06-21 3M Innovative Properties Company Microneedle devices and methods of manufacture
WO2005060621A2 (en) 2003-11-21 2005-07-07 The Regents Of The University Of California Method and/or apparatus for puncturing a surface for extraction, in situ analysis, and/or substance delivery using microneedles
US6923764B2 (en) 2000-06-27 2005-08-02 Rosedale Medical, Inc. Analyte monitor
WO2005069736A2 (en) 2004-01-25 2005-08-04 Transpharma Medical Ltd. Transdermal delivery system for polynucleotides
WO2005072630A1 (en) 2004-01-30 2005-08-11 Isis Innovation Limited Device for delivery of bioactive materials and other stimuli
US6931277B1 (en) 1999-06-09 2005-08-16 The Procter & Gamble Company Intracutaneous microneedle array apparatus
US6945952B2 (en) 2002-06-25 2005-09-20 Theraject, Inc. Solid solution perforator for drug delivery and other applications
US20050261632A1 (en) 2004-05-18 2005-11-24 Bai Xu High-Aspect-Ratio Microdevices and Methods for Transdermal Delivery and Sampling of Active Substances
WO2005123173A1 (en) 2004-06-10 2005-12-29 3M Innovative Properties Company Patch application device and kit
US20060000743A1 (en) 2003-01-03 2006-01-05 Ade, Inc. Suspension packages and systems, and methods of using same
US20060015061A1 (en) 2004-07-16 2006-01-19 Shih-Chi Kuo Microneedle array device and its fabrication method
US20060012780A1 (en) 2004-07-14 2006-01-19 Hidetoshi Nishiyama Method and apparatus for inspecting pattern defects
US20060055724A1 (en) 2004-09-10 2006-03-16 Krawczyk John W Fluid ejection device structures and methods therefor
US7022071B2 (en) 2001-07-06 2006-04-04 Lukas Schaupp Method for measuring the concentration of substances in living organisms using microdialysis and a device for carrying out said method
US7045069B2 (en) 2002-11-14 2006-05-16 Gennady Ozeryansky Microfabrication method based on metal matrix composite technology
US7048723B1 (en) 1998-09-18 2006-05-23 The University Of Utah Research Foundation Surface micromachined microneedles
WO2006055799A1 (en) 2004-11-18 2006-05-26 3M Innovative Properties Company Masking method for coating a microneedle array
WO2006055795A1 (en) 2004-11-18 2006-05-26 3M Innovative Properties Company Low-profile microneedle array applicator
US7097631B2 (en) 2003-10-31 2006-08-29 Alza Corporation Self-actuating applicator for microprojection array
US20060195125A1 (en) 2003-03-06 2006-08-31 Ghassan Sakakine Spring clip and method for assembling same
US20060202385A1 (en) 2003-11-10 2006-09-14 Agency For Science Technology And Research Microneedles and microneedle fabrication
WO2006101459A1 (en) 2005-03-23 2006-09-28 Agency For Science, Technology And Research Microneedles
WO2006108185A1 (en) 2005-04-07 2006-10-12 3M Innovative Properties Company System and method for tool feedback sensing
WO2006116281A2 (en) 2005-04-25 2006-11-02 Johnson & Johnson Consumer Companies, Inc. Method of treating acne with stratum corneum piercing device
US20060264782A1 (en) 2005-05-09 2006-11-23 Holmes Elizabeth A Point-of-care fluidic systems and uses thereof
WO2006138719A2 (en) 2005-06-17 2006-12-28 Georgia Tech Research Corporation Coated microstructures and method of manufacture thereof
WO2007002521A2 (en) 2005-06-27 2007-01-04 3M Innovative Properties Company Microneedle array applicator device
WO2007002123A2 (en) 2005-06-21 2007-01-04 Alza Corporation Method and device for coating a continuous strip of microprojection members
US7169600B2 (en) 1999-07-28 2007-01-30 Roche Diagnostics Gmbh Device for determining a glucose concentration in a tissue fluid
US20070027474A1 (en) 2005-07-15 2007-02-01 Jeffrey Lasner Pressure limiting forceps
WO2007012114A1 (en) 2005-07-25 2007-02-01 Nanotechnology Victoria Pty Ltd Microarray device
US20070060867A1 (en) 2005-05-18 2007-03-15 Bai Xu High-aspect-ratio microdevices and methods for transdermal delivery and sampling of active substances
WO2007030477A2 (en) 2005-09-06 2007-03-15 Theraject, Inc. Solid solution perforator containing drug particle and/or drug-adsorbed particles
US20070078376A1 (en) 2005-09-30 2007-04-05 Smith Gregory A Functionalized microneedles transdermal drug delivery systems, devices, and methods
WO2007054090A1 (en) 2005-11-09 2007-05-18 Pharmexa A/S Therapeutic vaccines targeting hmgb1
WO2007061781A1 (en) 2005-11-18 2007-05-31 3M Innovative Properties Company Coatable compositions, coatings derived therefrom and microarrays having such coatings
WO2007070004A2 (en) 2005-12-14 2007-06-21 Silex Microsystems Ab Methods for making micro needles and applications thereof
WO2007080427A2 (en) 2006-01-16 2007-07-19 Functional Microstructures Limited Method of making microneedles
US7250037B2 (en) 2002-07-22 2007-07-31 Becton, Dickinson And Company Patch-like infusion device
US20070224252A1 (en) 2006-03-27 2007-09-27 Trautman Joseph C Microprojections with capillary control features and method
JP2007260889A (en) 2006-03-02 2007-10-11 Toppan Printing Co Ltd Method of manufacturing needle-like body
WO2007124411A1 (en) 2006-04-20 2007-11-01 3M Innovative Properties Company Device for applying a microneedle array
WO2007127976A2 (en) 2006-05-01 2007-11-08 Georgia Tech Research Corporation Particle based molding
US20070264749A1 (en) 2006-05-15 2007-11-15 Dimatix, Inc. Multi-Post Structures
US20070270738A1 (en) 2005-04-25 2007-11-22 Wu Jeffrey M Method of treating ACNE with stratum corneum piercing patch
US20070293815A1 (en) 2006-04-25 2007-12-20 Alza Corporation Microprojection Array Application with Sculptured Microprojections for High Drug Loading
US20070299388A1 (en) 2006-04-25 2007-12-27 Alza Corporation Microprojection array application with multilayered microprojection member for high drug loading
US7316665B2 (en) 2004-08-25 2008-01-08 Becton, Dickinson And Company Method and device for the delivery of a substance including a covering
US20080009811A1 (en) 2004-11-18 2008-01-10 3M Innovative Properties Company Non-Skin-Contacting Microneedle Array Applicator
WO2008010681A1 (en) 2006-07-21 2008-01-24 Industry-Academic Cooperation Foundation, Yonsei University A solid type microneedle and methods for preparing it
WO2008011625A2 (en) 2006-07-21 2008-01-24 Georgia Tech Researh Corporation Microneedle devices and methods of drug delivery or fluid withdrawal
WO2008053481A1 (en) 2006-11-01 2008-05-08 Svip 6 Llc Microneedle arrays
EP1695734B1 (en) 2001-06-13 2008-06-04 Hospira, Inc. Microneedles for minimally invasive drug delivery or for diagnostic sampling
WO2008069566A1 (en) 2006-12-05 2008-06-12 Industry-Academic Cooperation Foundation, Yonsei University A microneedle device and methods for applicating it
US20080136874A1 (en) 2006-11-08 2008-06-12 Kiyoshi Tsukamura Liquid discharging head, liquid discharging device, and image forming apparatus
CN101214395A (en) 2008-01-02 2008-07-09 西南交通大学 Inorganic material surface biological method
WO2008083209A2 (en) 2006-12-29 2008-07-10 Amir Genosar Hypodermic drug delivery reservoir and apparatus
WO2008091602A2 (en) 2007-01-22 2008-07-31 Corium International, Inc. Applicators for microneedle arrays
US20080245764A1 (en) 2007-01-19 2008-10-09 Tjalf Pirk Method for producing a device including an array of microneedles on a support, and device producible according to this method
CN101297989A (en) 2008-06-19 2008-11-05 上海交通大学 Batch preparation of hollow micro-needle based on molding
US20080287858A1 (en) 2005-11-30 2008-11-20 Duan Daniel C Microneedle Arrays and Methods of Use Thereof
US20080312669A1 (en) 2004-03-31 2008-12-18 Vries Luc De Surgical instrument and method
US20090017210A1 (en) 2007-07-09 2009-01-15 Andrianov Alexander K Methods and systems for coating a microneedle with a dosage of a biologically active compound
US20090041810A1 (en) 2007-07-09 2009-02-12 Andrianov Alexander K Immunostimulating polyphosphazene compounds for intradermal immunization
WO2009040548A1 (en) 2007-09-28 2009-04-02 The Queen's University Of Belfast Delivery device and method
WO2009066763A1 (en) 2007-11-21 2009-05-28 Bioserentach Co., Ltd. Preparation for application to body surface and preparation holding sheet for application to body surface
WO2009079712A1 (en) 2007-12-24 2009-07-02 The University Of Queensland Coating method
WO2009081122A1 (en) 2007-12-21 2009-07-02 University College Cardiff Consultants Limited Monitoring system for microneedle drug delivery
WO2009097660A1 (en) 2008-02-07 2009-08-13 The University Of Queensland Patch production
US20090292254A1 (en) 2006-08-18 2009-11-26 Toppan Printing Co., Ltd. Micro-needle and micro-needle patch
WO2009140735A1 (en) 2008-05-23 2009-11-26 The University Of Queensland Analyte detection by microneedle patch with analyte selective reagents.
JP2010071845A (en) 2008-09-19 2010-04-02 Toppan Printing Co Ltd Inspection device
WO2010042996A1 (en) 2008-10-16 2010-04-22 The University Of Queensland A method and associated apparatus for coating projections on a patch assembly
US20100156998A1 (en) 2008-12-19 2010-06-24 Nobuo Matsumoto Method and apparatus for printing
WO2010071918A1 (en) 2008-12-22 2010-07-01 The University Of Queensland Patch production
US20100221314A1 (en) 2007-10-18 2010-09-02 Hisamitsu Pharmaceutical Co., Inc. Microneedle Device
WO2010109471A1 (en) 2009-03-27 2010-09-30 Technion Research & Development Foundation Ltd. Applicators for patches and adhesives
US20100256568A1 (en) 2005-06-27 2010-10-07 Frederickson Franklyn L Microneedle cartridge assembly and method of applying
US20110021996A1 (en) 2008-12-18 2011-01-27 Miti Systems Inc. Structure of micro-needle with side channel and manufacturing method thereof
EP2327419A1 (en) 2008-06-30 2011-06-01 Hisamitsu Pharmaceutical Co., Inc. Microneedle device, and method for enhancing the efficacy of influenza vaccine by using microneedle devive
WO2011105496A1 (en) 2010-02-24 2011-09-01 久光製薬株式会社 Micro-needle device
WO2011116388A1 (en) 2010-03-19 2011-09-22 Nanostar Health Corporation Body fluid sampling/fluid delivery device
US20110276027A1 (en) 2010-05-04 2011-11-10 Corium International, Inc. Applicators for microneedles
US20120041412A1 (en) 2010-01-29 2012-02-16 Noah Roth Biodegradable protrusions on inflatable device
US20120109065A1 (en) 2010-11-03 2012-05-03 Tyco Healthcare Group Lp Transdermal Fluid Delivery Device
US20120136312A1 (en) 2009-07-23 2012-05-31 Toppan Printing Co., Ltd. Microneedle array
US20120220981A1 (en) 2011-01-25 2012-08-30 The Regents Of The University Of California Transcutaneous Multimodal Delivery System (TMDS)
WO2012122162A1 (en) 2011-03-07 2012-09-13 3M Innovative Properties Company Microneedle devices and methods
WO2012119907A1 (en) 2011-03-09 2012-09-13 Rogier Biemans Method of protecting biologically active substances against denaturation
US20120265141A1 (en) 2011-04-18 2012-10-18 Medtronic, Inc. Detecting a full reservoir of an implantable infusion device
US20120277629A1 (en) 2011-04-29 2012-11-01 Seventh Sense Biosystems, Inc. Systems and methods for collection and/or manipulation of blood spots or other bodily fluids
EP2568174A1 (en) 2011-09-06 2013-03-13 Murata Manufacturing Co., Ltd. Fluid control device
US20130079666A1 (en) 2009-03-02 2013-03-28 Seventh Sense Biosystems, Inc. Delivering and/or receiving fluids
US8414548B2 (en) 2006-01-10 2013-04-09 Vadim V. Yuzhakov Method of making microneedle array and device for applying microneedle array to skin
WO2013055641A1 (en) 2011-10-12 2013-04-18 3M Innovative Properties Company Integrated microneedle array delivery system
WO2013053022A1 (en) 2011-10-12 2013-04-18 The University Of Queensland Delivery device
US20130131598A1 (en) 2009-04-24 2013-05-23 Corium International, Inc. Methods for manufacturing microprojection arrays
US20130150822A1 (en) 2010-04-28 2013-06-13 Russell Frederick Ross Method for increasing the permeability of an epithelial barrier
US20130158482A1 (en) 2010-07-26 2013-06-20 Seventh Sense Biosystems, Inc. Rapid delivery and/or receiving of fluids
US20130190794A1 (en) 2010-07-14 2013-07-25 The University Of Queensland Patch applying apparatus
US8540672B2 (en) 2010-12-22 2013-09-24 Valeritas, Inc. Microneedle patch applicator
US20140002763A1 (en) 2012-07-02 2014-01-02 Shijian Qin Array substrate, lcd device, and method for manufacturing array substrate
WO2014058746A1 (en) 2012-10-10 2014-04-17 3M Innovative Properties Company Force-controlled applicator for applying a microneedle device to skin
US20140243747A1 (en) 2011-10-06 2014-08-28 Hisamitsu Pharmaceutical Co., Inc. Applicator
US20140276378A1 (en) 2013-03-15 2014-09-18 Corium International, Inc. Microstructure array for delivery of active agents
EP2835147A1 (en) 2012-04-05 2015-02-11 Hisamitsu Pharmaceutical Co., Inc. Puncture device and method for manufacturing same
WO2015034924A1 (en) 2013-09-03 2015-03-12 Georgia Tech Research Corporation Thermally stable vaccine formulations and microneedles
US20150080844A1 (en) 2012-04-02 2015-03-19 Medtronic, Inc. Therapy for kidney disease and/or heart failure by intradermal infusion
US20160015952A1 (en) * 2013-03-12 2016-01-21 Takeda Pharmaceutical Company Limited A microneedle patch
WO2016123665A1 (en) 2015-02-02 2016-08-11 Vaxxas Pty Limited Microprojection array applicator and method
JP2016166769A (en) 2015-03-09 2016-09-15 富士フイルム株式会社 Method of inspecting microneedles
WO2016143514A1 (en) 2015-03-10 2016-09-15 富士フイルム株式会社 Measurement system, measurement method, and measurement program
US20160265733A1 (en) * 2013-10-25 2016-09-15 Zizala Lichtsysteme Gmbh Microprojection lighting module for a motor vehicle headlight
US20160310412A1 (en) 2013-12-16 2016-10-27 Takeda Pharmaceutical Company Limited Microneedle
WO2017123652A1 (en) 2016-01-11 2017-07-20 Verndari, Inc. Microneedle compositions and methods of using same
US20170239458A1 (en) 2014-11-06 2017-08-24 Toppan Printing Co., Ltd. Transdermal administration devices and methods for producing transdermal administration devices
US20170282417A1 (en) 2016-03-30 2017-10-05 Fujifilm Corporation Manufacturing method of sheet having needle-like protruding portions
US20170296465A1 (en) 2016-04-15 2017-10-19 Fujifilm Corporation Microneedle array
US20170361082A1 (en) 2015-03-10 2017-12-21 Fujifilm Corporation Method of producing transdermal absorption sheet
US20170368322A1 (en) 2015-03-18 2017-12-28 Toppan Printing Co., Ltd. Drug administration device, and manufacturing method for drug administration device
WO2018119174A1 (en) 2016-12-22 2018-06-28 Johnson & Johnson Consumer Inc. Microneedle arrays and methods for making and using
US20180263641A1 (en) 2015-09-18 2018-09-20 Vaxxas Pty Limited Microprojection arrays with microprojections having large surface area profiles
US20180264244A1 (en) 2015-09-28 2018-09-20 Vaxxas Pty Limited Microprojection arrays with enhanced skin penetrating properties and methods thereof
US20180326726A1 (en) 2017-03-31 2018-11-15 Vaxxas Pty Limited Device and method for coating surfaces
US20190046479A1 (en) 2013-03-14 2019-02-14 Pathak Holdings Llc Methods, compositions, and devices for drug / live cell microarrays
US10422881B1 (en) * 2018-12-07 2019-09-24 Didi Research America, Llc Mirror assembly for light steering
US20200246545A1 (en) 2019-02-01 2020-08-06 Massachusetts Institute Of Technology Systems and methods for liquid injection
US11029287B2 (en) * 2011-02-11 2021-06-08 California Institute Of Technology Multi-focus optical-resolution photoacoustic microscopy with ultrasonic array detection

Family Cites Families (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5870806A (en) 1998-03-18 1999-02-16 Black, Jr.; Robert P. Bistable member for ejecting snap fastener and spring latch assemblies
DE60007290T2 (en) 1999-01-28 2004-09-23 Cyto Pulse Sciences, Inc. INTRODUCTION OF MACROMOLECULES IN CELLS
US7828827B2 (en) 2002-05-24 2010-11-09 Corium International, Inc. Method of exfoliation of skin using closely-packed microstructures
JP3543790B2 (en) * 2001-06-25 2004-07-21 住友電気工業株式会社 Measuring method of surface micro-projections on tubular specimen
US20030090558A1 (en) 2001-11-15 2003-05-15 Coyle Anthony L. Package for printhead chip
US6704996B2 (en) 2002-04-30 2004-03-16 Lexmark International, Inc. Method for making ink jet printheads
US8042916B2 (en) 2007-03-31 2011-10-25 Micropoint Biosciences, Inc. Micromachined fluid ejector array
GB0724402D0 (en) 2007-12-14 2008-01-30 Univ Leiden Microneedle injecting apparatus and method
JP5272508B2 (en) * 2008-05-12 2013-08-28 凸版印刷株式会社 Optical sheet, backlight unit and display device
JP5231927B2 (en) * 2008-10-06 2013-07-10 株式会社日立ハイテクノロジーズ Microprojection inspection device
EP2211089A1 (en) * 2009-01-26 2010-07-28 GLP German Light Products GmbH Apparatus and method for outputting a mixed-colored light beam
US20120004626A1 (en) 2009-01-30 2012-01-05 Hisamitsu Pharmaceutical Co., Inc. Microneedle device
TW201039192A (en) * 2009-04-27 2010-11-01 Avermedia Information Inc Mouse pen and optical receiving module
US9199976B2 (en) 2010-06-01 2015-12-01 The University Of Queensland Haematopoietic-prostaglandin D2 synthase inhibitors
JP5050130B2 (en) 2010-10-25 2012-10-17 帝人化成株式会社 Micro needle
US20130158468A1 (en) 2011-12-19 2013-06-20 Seventh Sense Biosystems, Inc. Delivering and/or receiving material with respect to a subject surface
JP2013043034A (en) 2011-08-26 2013-03-04 Dainippon Printing Co Ltd Method for manufacturing microneedle device
US8469490B2 (en) 2011-10-26 2013-06-25 Eastman Kodak Company Ink tank configuration for inkjet printer
CN104027324B (en) 2013-03-06 2017-12-15 中国科学院理化技术研究所 A kind of soluble micropin vaccine paster and preparation method thereof
EP2968116A1 (en) 2013-03-15 2016-01-20 Corium International, Inc. Microarray with polymer-free microstructures, methods of making, and methods of use
CA2903459C (en) 2013-03-15 2024-02-20 Corium International, Inc. Multiple impact microprojection applicators and methods of use
JPWO2015152360A1 (en) 2014-04-04 2017-04-13 富士フイルム株式会社 Microneedle array preparation containing inactivated whole-particle vaccine and administration method thereof
CN112121302A (en) 2014-05-06 2020-12-25 穆医药有限公司 Non-invasive agent applicator
JP6207459B2 (en) 2014-05-15 2017-10-04 富士フイルム株式会社 Method for producing transdermal absorption sheet
JP6565906B2 (en) 2014-05-20 2019-08-28 凸版印刷株式会社 Needle-like body manufacturing method and needle-like body
WO2016090356A1 (en) * 2014-12-05 2016-06-09 Fluidigm Canada Inc. Mass cytometry imaging
US10441768B2 (en) 2015-03-18 2019-10-15 University of Pittsburgh—of the Commonwealth System of Higher Education Bioactive components conjugated to substrates of microneedle arrays
CN104706626B (en) 2015-03-25 2018-02-23 北京化工大学 A kind of microneedle patch for being easy to animal vaccine to be administered and preparation method thereof
JP6684992B2 (en) * 2015-06-25 2020-04-22 レーザーテック株式会社 Projection inspection device and bump inspection device
EP3351287A4 (en) 2015-09-17 2019-10-09 AOF Pte. Ltd. Micro-needle
EP3185179A1 (en) * 2015-12-22 2017-06-28 Delphi Technologies, Inc. Multiple imager vehicle optical sensor system
JP6983162B2 (en) 2015-12-28 2021-12-17 エンドダーマ カンパニー リミテッドEndoderma Co., Ltd. Microstructure for percutaneous absorption and its manufacturing method
KR101785930B1 (en) 2015-12-30 2017-10-16 주식회사 쿼드메디슨 Manufacturing of microneedle systems for inhibition of deformation in moisture environment
US11175128B2 (en) 2017-06-13 2021-11-16 Vaxxas Pty Limited Quality control of substrate coatings
US11464957B2 (en) 2017-08-04 2022-10-11 Vaxxas Pty Limited Compact high mechanical energy storage and low trigger force actuator for the delivery of microprojection array patches (MAP)
WO2019028526A1 (en) 2017-08-10 2019-02-14 Vaxxas Pty Limited Differential coating of microprojections and microneedles on arrays

Patent Citations (261)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2213830A (en) 1938-12-10 1940-09-03 Anastasi John Joseph Suturing and ligating instrument
US2881500A (en) 1958-07-03 1959-04-14 Charles W Furness Corneal clamp
EP0139286A2 (en) 1983-10-14 1985-05-02 Sumitomo Pharmaceuticals Company, Limited Prolonged sustained-release preparations
US4702799A (en) 1985-09-03 1987-10-27 Nestec S.A. Dryer and drying method
US5017007A (en) * 1989-07-27 1991-05-21 Milne Christopher G Apparatus and microbase for surface-enhanced raman spectroscopy system and method for producing same
WO1991006571A1 (en) 1989-11-03 1991-05-16 Immulogic Pharmaceutical Corporation A human t cell reactive feline protein (trfp) isolated from house dust and uses therefor
US5201992A (en) 1990-07-12 1993-04-13 Bell Communications Research, Inc. Method for making tapered microminiature silicon structures
US5527288A (en) 1990-12-13 1996-06-18 Elan Medical Technologies Limited Intradermal drug delivery device and method for intradermal delivery of drugs
US5657138A (en) 1991-10-13 1997-08-12 Lewis; Aaron Generating defined structures on materials using combined optical technologies for transforming the processing beam
US5353792A (en) 1992-09-25 1994-10-11 Avl Medical Instruments Ag Sensing device
WO1994024281A1 (en) 1993-04-14 1994-10-27 Immulogic Pharmaceutical Corporation T cell epitopes of the major allergens from dermatophagoides (house dust mite)
US5461482A (en) 1993-04-30 1995-10-24 Hewlett-Packard Company Electrical interconnect system for a printer
US5449064A (en) 1994-03-03 1995-09-12 University Of Kansas On-line interface and valve for capillary electophoresis system
US5457041A (en) 1994-03-25 1995-10-10 Science Applications International Corporation Needle array and method of introducing biological substances into living cells using the needle array
US5611806A (en) 1994-05-23 1997-03-18 Samsung Electro-Mechanics Co., Ltd. Skin perforating device for transdermal medication
US6352697B1 (en) 1994-10-12 2002-03-05 Iscotec A.B. Saponin preparations and use thereof in iscoms
US5499474A (en) 1994-11-28 1996-03-19 Knooihuizen; Louis D. Method and apparatus for liquid application
EP0732208A1 (en) 1995-03-06 1996-09-18 Ngk Insulators, Ltd. Ink jet print head having ceramic ink pump member and metallic nozzle member bonded thereto
CN1149018A (en) 1995-03-06 1997-05-07 日本碍子株式会社 Ink jet print head having ceramic ink pump member whose thin orifice plate is reinforced by thick reinforcing plate, and metallic nozzle member bonded to orifice or reinforcing plate
US6454755B1 (en) 1995-05-22 2002-09-24 Silicon Microdevices Method and apparatus for transdermal delivery of compounds utilizing disruption of the epidermis
US20020016562A1 (en) 1996-06-18 2002-02-07 Michel J. N. Cormier Device and method for enhancing transdermal flux of agents being delivered or sampled
US6537264B1 (en) 1996-06-18 2003-03-25 Alza Corp Device and method for enhancing transdermal flux of agents being sampled
US5922356A (en) 1996-10-09 1999-07-13 Sumitomo Pharmaceuticals Company, Limited Sustained release formulation
WO1998028037A1 (en) 1996-12-20 1998-07-02 Alza Corporation Device and method for enhancing transdermal agent flux
WO1998028038A1 (en) 1996-12-24 1998-07-02 Alza Corporation Method and device for controlling mammalian reproductive cycle
US5859937A (en) 1997-04-04 1999-01-12 Neomecs Incorporated Minimally invasive sensor
US6052652A (en) 1997-04-22 2000-04-18 Lg Industrial Systems Co., Ltd. Method for analyzing strength of structure and apparatus using the same
US5928207A (en) 1997-06-30 1999-07-27 The Regents Of The University Of California Microneedle with isotropically etched tip, and method of fabricating such a device
WO1999002694A1 (en) 1997-07-09 1999-01-21 The University Of Queensland Nucleic acid sequence and method for selectively expressing a protein in a target cell or tissue
US5943075A (en) 1997-08-07 1999-08-24 The Board Of Trustees Of The Leland Stanford Junior University Universal fluid droplet ejector
US6463312B1 (en) 1998-02-16 2002-10-08 Stichting Voor Fundamenteel Onderzoek Der Materie Microdialysis-probe integrated with a si-chip
WO1999042564A2 (en) 1998-02-20 1999-08-26 The Rockefeller University Apoptotic cell-mediated antigen presentation to dendritic cells
US6478738B1 (en) 1998-03-25 2002-11-12 Hitachi, Ltd. Method of mass-analyzing body fluid and apparatus therefor
US6334856B1 (en) 1998-06-10 2002-01-01 Georgia Tech Research Corporation Microneedle devices and methods of manufacture and use thereof
WO1999064580A1 (en) 1998-06-10 1999-12-16 Georgia Tech Research Corporation Microneedle devices and methods of manufacture and use thereof
US6503231B1 (en) 1998-06-10 2003-01-07 Georgia Tech Research Corporation Microneedle device for transport of molecules across tissue
WO2000005339A1 (en) 1998-07-22 2000-02-03 The Secretary Of State For Defence Transferring materials into cells using porous silicon
US6287556B1 (en) 1998-08-13 2001-09-11 The Regents Of The University Of California Intracellular delivery vehicles
US7048723B1 (en) 1998-09-18 2006-05-23 The University Of Utah Research Foundation Surface micromachined microneedles
US20020008530A1 (en) 1998-10-01 2002-01-24 Amst Co., Ltd. Micro cantilever style contact pin structure for wafer probing
US6610382B1 (en) 1998-10-05 2003-08-26 3M Innovative Properties Company Friction control article for wet and dry applications
WO2000042215A1 (en) 1999-01-08 2000-07-20 The University Of Queensland Method and polynucleotides for determining translational efficiency of a codon
US6743581B1 (en) * 1999-01-25 2004-06-01 Ut-Battelle, Lc Multifunctional and multispectral biosensor devices and methods of use
WO2000074763A2 (en) 1999-06-04 2000-12-14 Georgia Tech Research Corporation Devices and methods for enhanced microneedle penetration of biological barriers
US6931277B1 (en) 1999-06-09 2005-08-16 The Procter & Gamble Company Intracutaneous microneedle array apparatus
WO2000074764A1 (en) 1999-06-09 2000-12-14 The Procter & Gamble Company Method of manufacturing an intracutaneous microneedle array
US6299621B1 (en) 1999-06-18 2001-10-09 Novare Surgical Systems, Inc. Surgical clamp pads with elastomer impregnated mesh
US6233797B1 (en) 1999-07-13 2001-05-22 Groz Beckert Kg Felt needle
US7169600B2 (en) 1999-07-28 2007-01-30 Roche Diagnostics Gmbh Device for determining a glucose concentration in a tissue fluid
US20030199811A1 (en) 1999-09-24 2003-10-23 Sage Burton H. Method and device for abrading skin
WO2001033614A1 (en) 1999-11-02 2001-05-10 University Of Hawaii Method for fabricating arrays of micro-needles
US6551849B1 (en) 1999-11-02 2003-04-22 Christopher J. Kenney Method for fabricating arrays of micro-needles
US20050137531A1 (en) 1999-11-23 2005-06-23 Prausnitz Mark R. Devices and methods for enhanced microneedle penetration of biological barriers
US6743211B1 (en) 1999-11-23 2004-06-01 Georgia Tech Research Corporation Devices and methods for enhanced microneedle penetration of biological barriers
US20020032415A1 (en) 1999-12-10 2002-03-14 Trautman Joseph C. Device and method for enhancing skin piercing by microprotrusions
US6558361B1 (en) 2000-03-09 2003-05-06 Nanopass Ltd. Systems and methods for the transport of fluids through a biological barrier and production techniques for such systems
WO2001085207A2 (en) 2000-05-05 2001-11-15 The Rockefeller University Modulation of antigen processing using phagocytic cells
US6537242B1 (en) 2000-06-06 2003-03-25 Becton, Dickinson And Company Method and apparatus for enhancing penetration of a member for the intradermal sampling or administration of a substance
US6923764B2 (en) 2000-06-27 2005-08-02 Rosedale Medical, Inc. Analyte monitor
US6589202B1 (en) 2000-06-29 2003-07-08 Becton Dickinson And Company Method and apparatus for transdermally sampling or administering a substance to a patient
US6565532B1 (en) 2000-07-12 2003-05-20 The Procter & Gamble Company Microneedle apparatus used for marking skin and for dispensing semi-permanent subcutaneous makeup
US20050197308A1 (en) 2000-07-21 2005-09-08 Smithkline Beecham Biologicals S.A. Vaccines
US20040049150A1 (en) 2000-07-21 2004-03-11 Dalton Colin Cave Vaccines
US6533949B1 (en) 2000-08-28 2003-03-18 Nanopass Ltd. Microneedle structure and production method therefor
US20020128599A1 (en) 2000-10-26 2002-09-12 Cormier Michel J.N. Transdermal drug delivery devices having coated microprotrusions
WO2002064193A2 (en) 2000-12-14 2002-08-22 Georgia Tech Research Corporation Microneedle devices and production thereof
US20020133129A1 (en) 2001-03-14 2002-09-19 Francisco Arias Method of manufacturing microneedle structures using soft lithography and photolithography
WO2002075794A2 (en) 2001-03-15 2002-09-26 Reflectivity, Inc. A method for making a micromechanical device by using a sacrificial substrate
US6855372B2 (en) 2001-03-16 2005-02-15 Alza Corporation Method and apparatus for coating skin piercing microprojections
WO2002074173A1 (en) 2001-03-16 2002-09-26 Alza Corporation Method and apparatus for coating skin piercing microprojections
US20020177839A1 (en) 2001-04-20 2002-11-28 Cormier Michel J. N. Microprojection array having a beneficial agent containing coating
WO2002085446A2 (en) 2001-04-20 2002-10-31 Alza Corporation Microprojection array immunization patch and method
WO2002085447A2 (en) 2001-04-20 2002-10-31 Alza Corporation Microprojection array having a beneficial agent containing coating
US6591124B2 (en) 2001-05-11 2003-07-08 The Procter & Gamble Company Portable interstitial fluid monitoring system
US20020169411A1 (en) 2001-05-11 2002-11-14 The Procter & Gamble Co. Portable interstitial fluid monitoring system
WO2002100476A2 (en) 2001-06-08 2002-12-19 Becton, Dickinson And Company Device for manipulating a needle or abrader array
EP1695734B1 (en) 2001-06-13 2008-06-04 Hospira, Inc. Microneedles for minimally invasive drug delivery or for diagnostic sampling
US6557849B2 (en) 2001-06-21 2003-05-06 Da La Rue International Sheet handling apparatus
US7022071B2 (en) 2001-07-06 2006-04-04 Lukas Schaupp Method for measuring the concentration of substances in living organisms using microdialysis and a device for carrying out said method
US6749575B2 (en) 2001-08-20 2004-06-15 Alza Corporation Method for transdermal nucleic acid sampling
US20030036710A1 (en) 2001-08-20 2003-02-20 Matriano James A. Method for transdermal nucleic acid sampling
US6881203B2 (en) 2001-09-05 2005-04-19 3M Innovative Properties Company Microneedle arrays and methods of manufacturing the same
US20050143713A1 (en) 2001-09-05 2005-06-30 3M Innovative Properties Company Microneedle arrays and methods of manufacturing the same
WO2003020359A2 (en) 2001-09-05 2003-03-13 3M Innovative Properties Company Microneedle arrays and methods of manufacturing the same
WO2003026732A2 (en) 2001-09-28 2003-04-03 Biovalve Technologies, Inc. Switchable microneedle arrays and systems and methods relating to same
JP2003127430A (en) 2001-10-26 2003-05-08 Hitachi Koki Co Ltd Ink-jet printing apparatus
US20040002121A1 (en) 2001-11-06 2004-01-01 Regan Jeffrey F. High throughput methods and devices for assaying analytes in a fluid sample
US20030199810A1 (en) 2001-11-30 2003-10-23 Trautman Joseph Creagan Methods and apparatuses for forming microprojection arrays
WO2003048031A2 (en) 2001-11-30 2003-06-12 Alza Corporation Methods and apparatuses for forming microprojection arrays
WO2003053258A1 (en) 2001-12-20 2003-07-03 Alza Corporation Skin-piercing microprojections having piercing depth control
US6908453B2 (en) 2002-01-15 2005-06-21 3M Innovative Properties Company Microneedle devices and methods of manufacture
US20050126710A1 (en) 2002-03-05 2005-06-16 Franz Laermer Device and method for anisotropically plasma etching of a substrate, particularly a silicon body
WO2003078925A2 (en) 2002-03-14 2003-09-25 Taylor Hobson Limited Surface profiling apparatus
WO2003092785A1 (en) 2002-04-30 2003-11-13 Morteza Shirkhanzadeh Arrays of microneedles comprising porous calcium phosphate coating and bioactive agents
US20040008241A1 (en) 2002-05-13 2004-01-15 Seiko Epson Corporation Actuator device, liquid ejection head, and method of inspecting the same
US7211062B2 (en) 2002-06-25 2007-05-01 Theraject, Inc. Solid solution perforator for drug delivery and other applications
US6945952B2 (en) 2002-06-25 2005-09-20 Theraject, Inc. Solid solution perforator for drug delivery and other applications
WO2004000389A2 (en) 2002-06-25 2003-12-31 Sung-Yun Kwon Rapidly dissolving micro-perforator for drug delivery and other applications
US20040004649A1 (en) 2002-07-03 2004-01-08 Andreas Bibl Printhead
US7250037B2 (en) 2002-07-22 2007-07-31 Becton, Dickinson And Company Patch-like infusion device
US20040087992A1 (en) 2002-08-09 2004-05-06 Vladimir Gartstein Microstructures for delivering a composition cutaneously to skin using rotatable structures
US20040039397A1 (en) 2002-08-22 2004-02-26 Helmut Weber Medical tool
US8062573B2 (en) 2002-09-16 2011-11-22 Theraject, Inc. Solid micro-perforators and methods of use
WO2004024224A1 (en) 2002-09-16 2004-03-25 Sung-Yun Kwon Solid micro-perforators and methods of use
US7045069B2 (en) 2002-11-14 2006-05-16 Gennady Ozeryansky Microfabrication method based on metal matrix composite technology
US20040161470A1 (en) 2002-11-22 2004-08-19 Alexander Andrianov Preparation of polyphosphazene microspheres
US20060000743A1 (en) 2003-01-03 2006-01-05 Ade, Inc. Suspension packages and systems, and methods of using same
US20060195125A1 (en) 2003-03-06 2006-08-31 Ghassan Sakakine Spring clip and method for assembling same
US20050042866A1 (en) 2003-06-25 2005-02-24 Micronas Gmbh Method and coating apparatus for the manufacture of a microarray
US20050089554A1 (en) 2003-10-24 2005-04-28 Cormier Michel J. Apparatus and method for enhancing transdermal drug delivery
US20050089553A1 (en) 2003-10-28 2005-04-28 Cormier Michel J. Method and apparatus for reducing the incidence of tobacco use
US7097631B2 (en) 2003-10-31 2006-08-29 Alza Corporation Self-actuating applicator for microprojection array
US20060202385A1 (en) 2003-11-10 2006-09-14 Agency For Science Technology And Research Microneedles and microneedle fabrication
WO2005049108A2 (en) 2003-11-13 2005-06-02 Alza Corporation System and method for transdermal delivery
US7753888B2 (en) 2003-11-21 2010-07-13 The Regents Of The University Of California Method and/or apparatus for puncturing a surface for extraction, in situ analysis, and/or substance delivery using microneedles
WO2005060621A2 (en) 2003-11-21 2005-07-07 The Regents Of The University Of California Method and/or apparatus for puncturing a surface for extraction, in situ analysis, and/or substance delivery using microneedles
WO2005069736A2 (en) 2004-01-25 2005-08-04 Transpharma Medical Ltd. Transdermal delivery system for polynucleotides
US8052633B2 (en) 2004-01-30 2011-11-08 Mark Anthony Fernance Kendall Delivery device
US20110245776A1 (en) 2004-01-30 2011-10-06 Mark Anthony Fernance Kendall Delivery device
US20120083741A1 (en) 2004-01-30 2012-04-05 Mark Anthony Fernance Kendall Delivery device
US20120083762A1 (en) 2004-01-30 2012-04-05 Mark Anthony Fernance Kendall Method of delivering material or stimulus to a biological subject
US20170182301A1 (en) 2004-01-30 2017-06-29 The University Of Queensland Delivery device
US9888932B2 (en) 2004-01-30 2018-02-13 Vaxxas Pty Limited Method of delivering material or stimulus to a biological subject
WO2005072630A1 (en) 2004-01-30 2005-08-11 Isis Innovation Limited Device for delivery of bioactive materials and other stimuli
US20180161050A1 (en) 2004-01-30 2018-06-14 Vaxxas Pty Limited Method of delivering material or stimulus to a biological subject
US20080312669A1 (en) 2004-03-31 2008-12-18 Vries Luc De Surgical instrument and method
US20050261632A1 (en) 2004-05-18 2005-11-24 Bai Xu High-Aspect-Ratio Microdevices and Methods for Transdermal Delivery and Sampling of Active Substances
WO2005123173A1 (en) 2004-06-10 2005-12-29 3M Innovative Properties Company Patch application device and kit
US20060012780A1 (en) 2004-07-14 2006-01-19 Hidetoshi Nishiyama Method and apparatus for inspecting pattern defects
US20060015061A1 (en) 2004-07-16 2006-01-19 Shih-Chi Kuo Microneedle array device and its fabrication method
US7316665B2 (en) 2004-08-25 2008-01-08 Becton, Dickinson And Company Method and device for the delivery of a substance including a covering
US20060055724A1 (en) 2004-09-10 2006-03-16 Krawczyk John W Fluid ejection device structures and methods therefor
WO2006055799A1 (en) 2004-11-18 2006-05-26 3M Innovative Properties Company Masking method for coating a microneedle array
US20080009811A1 (en) 2004-11-18 2008-01-10 3M Innovative Properties Company Non-Skin-Contacting Microneedle Array Applicator
WO2006055795A1 (en) 2004-11-18 2006-05-26 3M Innovative Properties Company Low-profile microneedle array applicator
US8267889B2 (en) 2004-11-18 2012-09-18 3M Innovative Properties Company Low-profile microneedle array applicator
US20080114298A1 (en) 2004-11-18 2008-05-15 Cantor Adam S Low-Profile Microneedle Array Applicator
WO2006101459A1 (en) 2005-03-23 2006-09-28 Agency For Science, Technology And Research Microneedles
WO2006108185A1 (en) 2005-04-07 2006-10-12 3M Innovative Properties Company System and method for tool feedback sensing
US20070270738A1 (en) 2005-04-25 2007-11-22 Wu Jeffrey M Method of treating ACNE with stratum corneum piercing patch
WO2006116281A2 (en) 2005-04-25 2006-11-02 Johnson & Johnson Consumer Companies, Inc. Method of treating acne with stratum corneum piercing device
US20060264782A1 (en) 2005-05-09 2006-11-23 Holmes Elizabeth A Point-of-care fluidic systems and uses thereof
US20070060867A1 (en) 2005-05-18 2007-03-15 Bai Xu High-aspect-ratio microdevices and methods for transdermal delivery and sampling of active substances
WO2006138719A2 (en) 2005-06-17 2006-12-28 Georgia Tech Research Corporation Coated microstructures and method of manufacture thereof
WO2007002123A2 (en) 2005-06-21 2007-01-04 Alza Corporation Method and device for coating a continuous strip of microprojection members
US20100256568A1 (en) 2005-06-27 2010-10-07 Frederickson Franklyn L Microneedle cartridge assembly and method of applying
US20100222743A1 (en) 2005-06-27 2010-09-02 Frederickson Franklyn L Microneedle array applicator device and method of array application
WO2007002521A2 (en) 2005-06-27 2007-01-04 3M Innovative Properties Company Microneedle array applicator device
US20070027474A1 (en) 2005-07-15 2007-02-01 Jeffrey Lasner Pressure limiting forceps
WO2007012114A1 (en) 2005-07-25 2007-02-01 Nanotechnology Victoria Pty Ltd Microarray device
US20080312610A1 (en) 2005-07-25 2008-12-18 Peter Nicholas Binks Microarray Device
WO2007030477A2 (en) 2005-09-06 2007-03-15 Theraject, Inc. Solid solution perforator containing drug particle and/or drug-adsorbed particles
US20070078376A1 (en) 2005-09-30 2007-04-05 Smith Gregory A Functionalized microneedles transdermal drug delivery systems, devices, and methods
WO2007054090A1 (en) 2005-11-09 2007-05-18 Pharmexa A/S Therapeutic vaccines targeting hmgb1
WO2007061781A1 (en) 2005-11-18 2007-05-31 3M Innovative Properties Company Coatable compositions, coatings derived therefrom and microarrays having such coatings
US20080287858A1 (en) 2005-11-30 2008-11-20 Duan Daniel C Microneedle Arrays and Methods of Use Thereof
WO2007070004A2 (en) 2005-12-14 2007-06-21 Silex Microsystems Ab Methods for making micro needles and applications thereof
US8414548B2 (en) 2006-01-10 2013-04-09 Vadim V. Yuzhakov Method of making microneedle array and device for applying microneedle array to skin
WO2007080427A2 (en) 2006-01-16 2007-07-19 Functional Microstructures Limited Method of making microneedles
JP2007260889A (en) 2006-03-02 2007-10-11 Toppan Printing Co Ltd Method of manufacturing needle-like body
US20070224252A1 (en) 2006-03-27 2007-09-27 Trautman Joseph C Microprojections with capillary control features and method
US20090198189A1 (en) 2006-04-20 2009-08-06 3M Innovative Properties Company Device for applying a microneedle array
WO2007124411A1 (en) 2006-04-20 2007-11-01 3M Innovative Properties Company Device for applying a microneedle array
US20070293815A1 (en) 2006-04-25 2007-12-20 Alza Corporation Microprojection Array Application with Sculptured Microprojections for High Drug Loading
US20070299388A1 (en) 2006-04-25 2007-12-27 Alza Corporation Microprojection array application with multilayered microprojection member for high drug loading
WO2007127976A2 (en) 2006-05-01 2007-11-08 Georgia Tech Research Corporation Particle based molding
US20070264749A1 (en) 2006-05-15 2007-11-15 Dimatix, Inc. Multi-Post Structures
WO2008010681A1 (en) 2006-07-21 2008-01-24 Industry-Academic Cooperation Foundation, Yonsei University A solid type microneedle and methods for preparing it
WO2008011625A2 (en) 2006-07-21 2008-01-24 Georgia Tech Researh Corporation Microneedle devices and methods of drug delivery or fluid withdrawal
US20080108959A1 (en) 2006-07-21 2008-05-08 Industry-Academic Cooperation Foundation, Yonsei University Solid type microneedle and methods for preparing it
US20090292254A1 (en) 2006-08-18 2009-11-26 Toppan Printing Co., Ltd. Micro-needle and micro-needle patch
WO2008053481A1 (en) 2006-11-01 2008-05-08 Svip 6 Llc Microneedle arrays
US20080136874A1 (en) 2006-11-08 2008-06-12 Kiyoshi Tsukamura Liquid discharging head, liquid discharging device, and image forming apparatus
WO2008069566A1 (en) 2006-12-05 2008-06-12 Industry-Academic Cooperation Foundation, Yonsei University A microneedle device and methods for applicating it
WO2008083209A2 (en) 2006-12-29 2008-07-10 Amir Genosar Hypodermic drug delivery reservoir and apparatus
US20080245764A1 (en) 2007-01-19 2008-10-09 Tjalf Pirk Method for producing a device including an array of microneedles on a support, and device producible according to this method
WO2008091602A2 (en) 2007-01-22 2008-07-31 Corium International, Inc. Applicators for microneedle arrays
US20090041810A1 (en) 2007-07-09 2009-02-12 Andrianov Alexander K Immunostimulating polyphosphazene compounds for intradermal immunization
US20090017210A1 (en) 2007-07-09 2009-01-15 Andrianov Alexander K Methods and systems for coating a microneedle with a dosage of a biologically active compound
WO2009040548A1 (en) 2007-09-28 2009-04-02 The Queen's University Of Belfast Delivery device and method
US20100221314A1 (en) 2007-10-18 2010-09-02 Hisamitsu Pharmaceutical Co., Inc. Microneedle Device
WO2009066763A1 (en) 2007-11-21 2009-05-28 Bioserentach Co., Ltd. Preparation for application to body surface and preparation holding sheet for application to body surface
EP2213284A1 (en) 2007-11-21 2010-08-04 BioSerenTach Co., Ltd. Preparation for application to body surface and preparation holding sheet for application to body surface
US20110028905A1 (en) 2007-11-21 2011-02-03 Kanji Takada Preparation for body surface application and preparation for body surface application-holding sheet
WO2009081122A1 (en) 2007-12-21 2009-07-02 University College Cardiff Consultants Limited Monitoring system for microneedle drug delivery
US20110059150A1 (en) 2007-12-24 2011-03-10 The University Of Queensland Coating method
US20160058697A1 (en) 2007-12-24 2016-03-03 The University Of Queensland Coating method
US10022322B2 (en) 2007-12-24 2018-07-17 Vaxxas Pty Limited Coating method
WO2009079712A1 (en) 2007-12-24 2009-07-02 The University Of Queensland Coating method
CN101214395A (en) 2008-01-02 2008-07-09 西南交通大学 Inorganic material surface biological method
US9283365B2 (en) 2008-02-07 2016-03-15 The University Of Queensland Patch production
US8883015B2 (en) 2008-02-07 2014-11-11 The University Of Queensland Patch production
US20110223542A1 (en) 2008-02-07 2011-09-15 The University Of Queensland Patch production
US20160220803A1 (en) 2008-02-07 2016-08-04 The University Of Queensland Patch production
WO2009097660A1 (en) 2008-02-07 2009-08-13 The University Of Queensland Patch production
US20110160069A1 (en) 2008-05-23 2011-06-30 The University Of Queensland Analyte detection using a needle projection patch
WO2009140735A1 (en) 2008-05-23 2009-11-26 The University Of Queensland Analyte detection by microneedle patch with analyte selective reagents.
CN101297989A (en) 2008-06-19 2008-11-05 上海交通大学 Batch preparation of hollow micro-needle based on molding
EP2327419A1 (en) 2008-06-30 2011-06-01 Hisamitsu Pharmaceutical Co., Inc. Microneedle device, and method for enhancing the efficacy of influenza vaccine by using microneedle devive
JP2010071845A (en) 2008-09-19 2010-04-02 Toppan Printing Co Ltd Inspection device
US20110288484A1 (en) 2008-10-16 2011-11-24 The Univeristy Of Queensland Method and associated apparatus for coating projections on a patch assembly
WO2010042996A1 (en) 2008-10-16 2010-04-22 The University Of Queensland A method and associated apparatus for coating projections on a patch assembly
US20110021996A1 (en) 2008-12-18 2011-01-27 Miti Systems Inc. Structure of micro-needle with side channel and manufacturing method thereof
US20100156998A1 (en) 2008-12-19 2010-06-24 Nobuo Matsumoto Method and apparatus for printing
US20120027810A1 (en) 2008-12-22 2012-02-02 The University Of Queensland Patch production
US8734697B2 (en) 2008-12-22 2014-05-27 The University Of Queensland Patch production
WO2010071918A1 (en) 2008-12-22 2010-07-01 The University Of Queensland Patch production
US20130079666A1 (en) 2009-03-02 2013-03-28 Seventh Sense Biosystems, Inc. Delivering and/or receiving fluids
WO2010109471A1 (en) 2009-03-27 2010-09-30 Technion Research & Development Foundation Ltd. Applicators for patches and adhesives
US20130131598A1 (en) 2009-04-24 2013-05-23 Corium International, Inc. Methods for manufacturing microprojection arrays
US20120136312A1 (en) 2009-07-23 2012-05-31 Toppan Printing Co., Ltd. Microneedle array
US20120041412A1 (en) 2010-01-29 2012-02-16 Noah Roth Biodegradable protrusions on inflatable device
US20120330250A1 (en) 2010-02-24 2012-12-27 Hisamitsu Pharmaceutical Co., Inc. Micro-needle device
WO2011105496A1 (en) 2010-02-24 2011-09-01 久光製薬株式会社 Micro-needle device
WO2011116388A1 (en) 2010-03-19 2011-09-22 Nanostar Health Corporation Body fluid sampling/fluid delivery device
US20130150822A1 (en) 2010-04-28 2013-06-13 Russell Frederick Ross Method for increasing the permeability of an epithelial barrier
US20110276027A1 (en) 2010-05-04 2011-11-10 Corium International, Inc. Applicators for microneedles
US9943673B2 (en) 2010-07-14 2018-04-17 Vaxxas Pty Limited Patch applying apparatus
US20130190794A1 (en) 2010-07-14 2013-07-25 The University Of Queensland Patch applying apparatus
US20130158482A1 (en) 2010-07-26 2013-06-20 Seventh Sense Biosystems, Inc. Rapid delivery and/or receiving of fluids
US20120109065A1 (en) 2010-11-03 2012-05-03 Tyco Healthcare Group Lp Transdermal Fluid Delivery Device
US8540672B2 (en) 2010-12-22 2013-09-24 Valeritas, Inc. Microneedle patch applicator
US20120220981A1 (en) 2011-01-25 2012-08-30 The Regents Of The University Of California Transcutaneous Multimodal Delivery System (TMDS)
US11029287B2 (en) * 2011-02-11 2021-06-08 California Institute Of Technology Multi-focus optical-resolution photoacoustic microscopy with ultrasonic array detection
WO2012122162A1 (en) 2011-03-07 2012-09-13 3M Innovative Properties Company Microneedle devices and methods
US20130337150A1 (en) 2011-03-09 2013-12-19 Rogier Biemans Method of Protecting Biologically Active Substances against Denaturation
WO2012119907A1 (en) 2011-03-09 2012-09-13 Rogier Biemans Method of protecting biologically active substances against denaturation
US20120265141A1 (en) 2011-04-18 2012-10-18 Medtronic, Inc. Detecting a full reservoir of an implantable infusion device
US20120277629A1 (en) 2011-04-29 2012-11-01 Seventh Sense Biosystems, Inc. Systems and methods for collection and/or manipulation of blood spots or other bodily fluids
EP2568174A1 (en) 2011-09-06 2013-03-13 Murata Manufacturing Co., Ltd. Fluid control device
US20140243747A1 (en) 2011-10-06 2014-08-28 Hisamitsu Pharmaceutical Co., Inc. Applicator
US20140257188A1 (en) 2011-10-12 2014-09-11 The University Of Queensland Delivery device
WO2013055641A1 (en) 2011-10-12 2013-04-18 3M Innovative Properties Company Integrated microneedle array delivery system
WO2013053022A1 (en) 2011-10-12 2013-04-18 The University Of Queensland Delivery device
US20150080844A1 (en) 2012-04-02 2015-03-19 Medtronic, Inc. Therapy for kidney disease and/or heart failure by intradermal infusion
US20150057604A1 (en) 2012-04-05 2015-02-26 Hisamitsu Pharmaceutical Co., Inc. Puncture Device and Method for Manufacturing Same
EP2835147A1 (en) 2012-04-05 2015-02-11 Hisamitsu Pharmaceutical Co., Inc. Puncture device and method for manufacturing same
US20140002763A1 (en) 2012-07-02 2014-01-02 Shijian Qin Array substrate, lcd device, and method for manufacturing array substrate
WO2014058746A1 (en) 2012-10-10 2014-04-17 3M Innovative Properties Company Force-controlled applicator for applying a microneedle device to skin
US20160015952A1 (en) * 2013-03-12 2016-01-21 Takeda Pharmaceutical Company Limited A microneedle patch
US20190046479A1 (en) 2013-03-14 2019-02-14 Pathak Holdings Llc Methods, compositions, and devices for drug / live cell microarrays
US20140276378A1 (en) 2013-03-15 2014-09-18 Corium International, Inc. Microstructure array for delivery of active agents
WO2015034924A1 (en) 2013-09-03 2015-03-12 Georgia Tech Research Corporation Thermally stable vaccine formulations and microneedles
US20160265733A1 (en) * 2013-10-25 2016-09-15 Zizala Lichtsysteme Gmbh Microprojection lighting module for a motor vehicle headlight
US20160310412A1 (en) 2013-12-16 2016-10-27 Takeda Pharmaceutical Company Limited Microneedle
US20170239458A1 (en) 2014-11-06 2017-08-24 Toppan Printing Co., Ltd. Transdermal administration devices and methods for producing transdermal administration devices
WO2016123665A1 (en) 2015-02-02 2016-08-11 Vaxxas Pty Limited Microprojection array applicator and method
US20180015271A1 (en) 2015-02-02 2018-01-18 Vaxxas Pty Limited Microprojection array applicator and method
JP2016166769A (en) 2015-03-09 2016-09-15 富士フイルム株式会社 Method of inspecting microneedles
US20170361082A1 (en) 2015-03-10 2017-12-21 Fujifilm Corporation Method of producing transdermal absorption sheet
WO2016143514A1 (en) 2015-03-10 2016-09-15 富士フイルム株式会社 Measurement system, measurement method, and measurement program
US20170368322A1 (en) 2015-03-18 2017-12-28 Toppan Printing Co., Ltd. Drug administration device, and manufacturing method for drug administration device
US20180263641A1 (en) 2015-09-18 2018-09-20 Vaxxas Pty Limited Microprojection arrays with microprojections having large surface area profiles
US20180264244A1 (en) 2015-09-28 2018-09-20 Vaxxas Pty Limited Microprojection arrays with enhanced skin penetrating properties and methods thereof
WO2017123652A1 (en) 2016-01-11 2017-07-20 Verndari, Inc. Microneedle compositions and methods of using same
US20170282417A1 (en) 2016-03-30 2017-10-05 Fujifilm Corporation Manufacturing method of sheet having needle-like protruding portions
US20170296465A1 (en) 2016-04-15 2017-10-19 Fujifilm Corporation Microneedle array
WO2018119174A1 (en) 2016-12-22 2018-06-28 Johnson & Johnson Consumer Inc. Microneedle arrays and methods for making and using
US20180326726A1 (en) 2017-03-31 2018-11-15 Vaxxas Pty Limited Device and method for coating surfaces
US10422881B1 (en) * 2018-12-07 2019-09-24 Didi Research America, Llc Mirror assembly for light steering
US20200246545A1 (en) 2019-02-01 2020-08-06 Massachusetts Institute Of Technology Systems and methods for liquid injection

Non-Patent Citations (110)

* Cited by examiner, † Cited by third party
Title
Aichele et al., "Antiviral Cytotoxic T Cell Response Induced By In Vivo Priming With a Free Synthetic Peptide," J Exp. Med. 171:1815-1820, 1990.
Albert et al., "Dendritic cells acquire antigen from apoptotic cells and induce class I-restricted CTLs," Nature 392:86-89, 1998.
Albert et al., "Tumor-specific killer cells in paraneoplastic cerebellar degeneration," Nature Medicine 4(11):1321-1324, 1998.
Anderson, "Cutaneous Microdialysis: Is it Worth the Sweat?" Journal of Investigative Dermatology 126:1207-1209, 2006.
Athanasopoulos et al., "Gene therapy vectors based on adeno-associated virus: Characterstics and applications to acquired and inherited diseases (Review)," International Journal of Molecular Medicine 6:363-375, 2000.
Australian Examination Report dated Apr. 11, 2016 for Australian Application No. 2012323782, 3 pages.
Australian Examination Report dated Jan. 9, 2017 for Australian Application No. 2012323782, 4 pages.
Australian Examination Report dated Mar. 27, 2013 for Australian Application No. 2009212106, 5 pages.
Australian Examination Report No. 1 dated Oct. 9, 2020 for Australian Application No. 2016333148, 5 pages.
Bachmann et al., "Dendiritic cells process exogenous viral proteins and virus-like particles for class I presentation to CD8+ cytotoxic T lymphocytes," Eur. J. Immunol. 26:2595-2600, 1996.
Boehm et al., "Inkjet printing for pharmaceutical applications," Materials Today 17(5):247-252, 2014.
Camilli et al., "Listeria monocytogenes Mutants Lacking Phosphatidylinositol-specific Phospholipase C Are Avirulent," J. Exp. Med. 173:751-754, 1991.
Canadian Examination Report dated Apr. 23, 2015 for Canadian Application No. 2,749,347, 4 pages.
Canadian Examination Report dated Feb. 17, 2015 for Canadian Application No. 2,745,339, 4 pages.
Chinese Office Action dated Dec. 28, 2012 for Chinese Application No. 200980104635.3, 6 pages. (w/ English Translation).
Chinese Office Action dated Feb. 17, 2012 for Chinese Application No. 200980104635.3, 13 pages. (w/ English Translation).
Chinese Office Action dated Jan. 11, 2021 for Chinese Application No. 201880036675.8, 31 pages, (w/ machine translation).
Chinese Office Action dated Sep. 24, 2012 for Chinese Application No. 200980104635.3, 9 pages. (w/ English Translation).
Communication pursuant to Article 94(3) EPC, dated Jan. 19, 2021, for European Application No. 16 746 000.5, 4 pages.
Cormier et al., "Transdermal delivery of desmopressin using a coated microneedle array patch system," Journal of Controlled Release 97:503-511, 2004.
Cox et al., "Adjuvants—a classification and review of their modes of action," Vaccine 15(3):248-256, 1997.
Crichton et al., "The effect of strain rate on the precision of penetration of short densely-packed microprojection array patches coated with vaccine," Biomaterials 31:4562-4572, 2010.
Crichton et al., "The viscoelastic, hyperelastic and scale dependent behaviour of freshly excised individual skin layers," Biomaterials 32:4670-4681, 2011.
Desai et al., "Understanding release kinetics of biopolymer drug delivery microcapsules for biomedical applications," Materials Science and Engineering B 168:127-131, 2010.
Dreyer, "Microneedles:Microprocessing in Medicine," ENMA465 Project, May 10, 2004. (23 pages).
European Search Report dated Jul. 20, 2012 for European Application No. 09833918.7, 9 pages.
European Search Report dated Nov. 10, 2015 for European Application No. 12840561.0, 11 pages.
European Search Report dated Sep. 10, 2018, for European Application No. 16746000.5, 3 pages.
European Search Report dated Sep. 26, 2014 for European Application No. 09707729.1, 9 pages.
Extended European Search Report dated Feb. 15, 2021 for European Application No. 18 81 6698, 8 pages.
Extended European Search Report dated Nov. 30, 2020 for European Application No. 18 77 6793, 10 pages.
Feng et al., "Molecular Biomarkers for Cancer Detection in Blood and Bodily Fluids," Critical Reviews in Clinical Laboratory Sciences 43(5-6):497-560, 2006.
Fernando et al., "Influenza nucleoprotein DNA vaccination by a skin targeted, dry coated, densely packed microprojection array (Nanopatch) induces potent antibody and CD8+ T cell responses," Journal of Controlled Release 237:35-41, 2016.
Fernando et al., "Potent Immunity to Low Doses of Influenza Vaccine by Probabilistic Guided Micro-Targeted Skin Delivery in a Mouse Model," PLoS One 5(4):e10266, 2010. (11 pages).
Fernando et al., "Safety, tolerability, acceptability and immunogenicity of an influenza vaccine delivered to human skin by a novel high-density microprojection array patch (Nanopatch™)," Vaccine 36:3779-3788, 2018.
Gao et al., "Priming of Influenza Virus-Specific Cytotoxic T Lymphocytes Vivo By Short Synthetic Peptides," The Journal of Immunology 147(10):3268-3273, 1991.
Garafalo et al., "Histamine release and therapy of severe dermatographism, " J. Allergy Clin. Immunol. 68(2):103-105, 1981.
Gardeniers et al., "Silicon Micromachined Hollow Microneedles for Transdermal Liquid Transport," Journal of Microelectromechanical Systems 12(6):855-862, 2003.
Gill et al., "Coated microneedles for transdermal delivery," Journal of Controlled Release 117:227-237, 2007.
Gill et al., "Coating Formulations for Microneedles," Pharmaceutical Research 24(7):1369-1380, 2007.
Henry et al., "Microfabricated Microneedles: A Novel Approach to Transdermal Drug Delivery," Journal of Pharmaceutical Sciences 87(8):922-925, 1998.
International Preliminary Report on Patentability dated Feb. 4, 2020 for International Application No. PCT/AU2018/050810, 9 pages.
International Preliminary Report on Patentability dated Jun. 29, 2010 for International Application No. PCT/AU2008/001903, 7 pages.
International Preliminary Report on Patentability dated Jun. 7, 2006 for International Application No. PCT/GB2005/000336, 9 pages.
International Preliminary Report on Patentability dated Nov. 14, 2012 for International Application No. PCT/AU2011/000890, 6 pages.
International Search Report dated Aug. 1, 2018, for International Application No. PCT/AU2018/050586, 4 pages.
International Search Report dated Dec. 22, 2016 for International Application No. PCT/AU2016/050907, 5 pages.
International Search Report dated Dec. 6, 2016 for International Application No. PCT/AU2016/050867, 12 pages.
International Search Report dated Feb. 20, 2009, for International Application No. PCT/AU2008/001903, 5 pages.
International Search Report dated Feb. 20, 2013 for International Application No. PCT/AU2012/001289, 13 pages.
International Search Report dated Jul. 30, 2018, for International Application No. PCT/AU2018/050298, 6 pages.
International Search Report dated Mar. 7, 2016 for International Application No. PCT/AU2016/050056, 6 pages.
International Search Report dated May 25, 2020 for International Application No. PCT/AU2020/050296, 6 pages.
International Search Report dated Nov. 8, 2018, for International Application No. PCT/AU2018/050810, 8 pages.
International Search Report dated Oct. 25, 2011 for International Application No. PCT/AU2011/000890, 4 pages.
International Search Report dated Sep. 13, 2018, for International Application No. PCT/AU2018/050847, 4 pages.
Ito et al., "Evaluation of self-dissolving needles containing low molecular weight heparin (LMWH) in rats," International Journal of Pharmaceutics 349:124-129, 2008.
Ito et al., "Feasibility of microneedles for percutaneous absorption of insulin," European Journal of Pharmaceutical Sciences 29:82-88, 2006.
Ito et al., "Self-dissolving microneedles for the percutaneous absorption of EPO in mice," Journal of Drug Targeting 14(5):255-261, 2006.
Jondal et al., "MHC Class I-Restricted CTL Responses to Exogenous Antigens," Immunity 5:295-302, 1996.
Kay et al., "Viral vectors for gene therapy: the art of turning infectious agents into vehicles of therapeutics," Nature Medicine 7(1):33-40, 2001.
Kendall et al., "The mechanical properties of the skin epidermis in relation to targeted gene and drug delivery," Biomaterials 28:4968-4977, 2007.
Kuzu et al., "In vivo priming effect during various stages of ontogeny of an influenza A virus nucleoprotein peptide," Eur. J. Immunol. 23:1397-1400, 1993.
Kwon, "Acne Treatment by a Dissolvable Micro-Needle Patch," TheraJect Inc., 2006. (2 pages).
Kwon, "In Vitro Evaluation of Transdermal Drug Delivery by a Micro-needle Patch," Controlled Release Society 31st Annual Meeting Transactions #115, 2006. (2 pages).
Kwon, "In Vitro Modeling of Transdermal PTH Delivery by Dissovling Micro-needle Patch," TherJect Inc., 2007. (2 pages).
Kwon, "Rapid Intradermal Drug Delivery by a Dissovable Micro-Needle Patch," Controlled Release Society 32nd Annual Meeting & Exposition Transactions #306, 2005. (2 pages).
Lee et al., "Dissolving microneedles for transdermal drug delivery," Biomaterials 29:2113-2124, 2008.
Lin et al., "Silicon-Processed Microneedles," IEEE Journal of Microelectromechanical Systems 8(1):78-84, 1999.
Ma et al., "A PZT Insulin Pump Integrated with a Silicon Micro Needle Array for Transdermal Drug Delivery," IEEE 56th Electronic Components & Technology Conference, 2006. (5 pages).
Ma et al., "Coating solid dispersions on microneedles via a molten dip coating method: development and in vitro evaluation for transdermal delivery of a water insoluble drug," J Pharm Sci 103(11):3621-3630, 2014 (HHS Public Access Author manuscript, available in PMC Nov. 1, 2015)(21 pages).
Matriano et al., "Macroflux R Microprojection Array Patch Technology: A New and Efficient Approach for Intracutaneous Immunization," Pharmaceutical Research 19(1):63-70, 2002.
McAllister et al., "Microfabricated needles for transdermal delivery of macromolecules and nanoparticles: Fabrication methods and transport studies," PNAS 100(24):13755-13760, 2003.
Meléndez et al., "Thermal Inkjet Application in the Preparation of Oral Dosage Forms: Dispensing of Prednisolone Solutions and Polymorphic Characterization by Solid-State Spectroscopic Techniques," Journal of Pharmaceutical Sciences 97(7):2619-2636, 2008.
Mengaud et al., "Expression in Escherichia coli and Sequence Analysis of the Listeriolysin O Determinant of Listeria monocytogenes," Infection and Immunity 56(4):766-772, 1988.
Miyano et al., "Sugar Micro Needles as Transdermic Drug Delivery System," Biomedical Microdevices 7(3):185-188, 2005.
Miyano et al., Hydrolytic Microneedles as Transdermal Drug Delivery System, IEEE The 14th International Conference on Solid-State Sensors, Actuators and Microsyystems, Lyon, France, pp. 355-358, Jun. 10-14, 2007.
Moore et al., "Introduction of Soluble Protein into the Class I Pathway of Antigen Processing and Presentation," Cell 54:777-785, 1988.
Mukerjee et al., "Microneedle array for transdermal biological fluid extraction and in situ analysis," Sensors and Actuators A 114:267-275, 2004.
Muller et al., "High-density microprojection array delivery to rat skin of low doses of trivalent inactivated poliovirus vaccine elicits potent neutralising antibody responses," Scientific Reports 7:12644, 2017. (10 pages).
Ng et al., "Potent response of QS-21 as a vaccine adjuvant in the skin when delivered with the Nanopatch, resulted in adjuvant dose sparing," Scientific Reports 6:29368, 2016. (12 pages).
Oh et al., "Demonstration of Dose-controlled Delivery by Dissolvable Micro-needle Arrays," 34th Annual Presented at CRS conference, Jun. 2007. (2 pages).
Oh et al., "Intradermal influenza vaccine delivery using skin-penetrating dissolveable vaccine microneedles," AAPS Annual Meeting and Exposition, 2006. (1 page).
Palmer et al., "Streptolysin O: A Proposed Model of Allosteric Interaction between a Pore-Forming Protein and its Target Lipid Bilayer," Biochemistry 37:2378-2383, 1998.
Park et al., "Biodegradable polymer microneedles: Fabrication, mechanics and transdermal drug delivery," Journal of Controlled Release 104:51-66, 2005.
Park et al., "Polymer Microneedles for Controlled-Release Drug Delivery," Pharmaceutical Research 23(5):1008-1019, 2006.
Park et al., "Towards the silicon nanowire-based sensor for intracellular biochemical detection," Biosensors and Bioelectronics 22:2065-2070, 2007.
Portnoy et al., "Capacity of Listeriolysin O, Streptolysin O, and Perfringolysin O to Mediate Growth of Bacillus subtilis within Mammalian Cells," Infection & Immunity 60(7):2710-2717, 1992.
Radulescu et al., "Uniform Paclitaxel-Loaded Biodegradable Microspheres Manufactured by Ink-Jet Technology," Proc., the Winter Symposium and 11th International Symposium on Recent Advantages in Drug-Delivery Systems, Controlled Release Society, Salt Lake City, Utah, 2003, 5 pages.
Rossjohn et al., "Structure of a Cholestrol-Binding, Thiol-Activated Cytolysin and a Model of its Membrane Form," Cell 89:685-692, 1997.
Sandler et al., "Inkjet Printing of Drug Substances and Use of Porous Substrates—Towards Individualized Dosing," Journal of Pharmaceutical Sciences 100(8):3386-3395, 2011.
Schulz et al., "Peptide-induced antiviral protection by cytotoxic T cells," Proc. Natl. Acad. Sci. USA 88:991-993, 1991.
Scoutaris et al., "Current Trends on Medical and Pharmaceutical Applications of Inkjet Printing Technology," Pharm Res. 33:1799-1816, 2016.
Scoutaris et al., "ToF-SIMS analysis of chemical heterogenities in inkjet micro-array printed drug/polymer formulations," J Mater Sci: Mater Med 23:385-391, 2012.
Silver et al., "Viscoelastic Properties of Young and Old Human Dermis: A Proposed Molecular Mechanism for Elastic Energy Storage in Collagen and Elastin," Journal of Applied Polymer Science 86:1978-1985, 2002.
Stoeber et al., "Arrays of Hollow Out-of-Plane Microneedles for Drug Delivery," Journal of Microelectromechanical Systems 14(3):472-479, 2005.
Sullivan et al., "Minimally Invasive Protein Delivery with Rapidly Dissolving Polymer Microneedles," Adv. Mater. 20:933-938, 2008.
Tao et al., "A systematic study of dry etch process for profile control of silicon tips," Microelectronic Engineering 78-79:147-151, 2005.
Tarcha et al., "The Application of Ink-Jet Technology for the Coating and Loading of Drug-Eluting Stents," Annals of Biomedical Engineering 35(10):1791-1799, 2007.
Tsuchiya et al., "Development of Blood Extraction System for Health Monitoring System," Biomedcal Microdevices 7(4):347-353, 2005.
Tyagi et al., "Molecular Beacons: Probes that Fluoresce upon Hybridization," Nature Biotechnology 14:303-308, 1996.
Vigna et al., "Lentiviral vectors: excellent tools for experimental gene transfer and promising candidates for gene therapy," The Journal of Gene Medicine, 2:308-316, 2000.
Walther et al., "Viral Vectors for Gene Transfer," Drugs 60(2):249-271, 2000.
Wang et al., "Label-free hybridization detection of a single nucleotide mismatch by immobilization of molecular beacons on an agarose film," Nucleic Acids Research 30(12):e61, 2002. (9 pages).
Widera et al., "Effect of delivery parameters on immunization to ovalbumin following intracutaneous administration by a coated microneedle array patch system," Vaccine 24:1653-1664, 2006.
Wu et al., "Production of viral vectors for gene therapy applications," Current Opinion in Biotechnology 11:205-208, 2000.
Wu et al., "Solid free-form fabrication of drug delivery devices," Journal of Controlled Release 40:77-87, 1996.
Yuan et al., "Measuring microelastic properties of stratum corneum," Colloids and Surfaces B: Biointerfaces 48:6-12, 2006.
Zheng et al., "Multiplexed electrical detection of cancer markers with nanowire sensor Arrays," Nature Biotechnology 23(10):1294-1301, 2005.
Zhou et al., "Liposome-Mediated Cytoplasmic Delivery of Proteins: An Effective Means of Accessing the MHC Class I-Restricted Antigen Presentation Pathway," Immunomethods 4:229-235, 1994.

Also Published As

Publication number Publication date
EP3639010A1 (en) 2020-04-22
US11828584B2 (en) 2023-11-28
EP3639010A4 (en) 2021-03-17
CA3065371A1 (en) 2018-12-20
WO2018227246A1 (en) 2018-12-20
AU2018285954A1 (en) 2019-12-19
US20200182605A1 (en) 2020-06-11
US20210270599A1 (en) 2021-09-02

Similar Documents

Publication Publication Date Title
US11828584B2 (en) Quality control of substrate coatings
JP4945025B2 (en) Scanning microscope method with high axial resolution
CN1924774B (en) Method and device for optical displacement detection over varied surfaces
EP2499480B1 (en) Optical sensor system based on attenuated total reflection
EP2235502B1 (en) Fluid-borne particle detector
US20050206893A1 (en) Quantified fluorescence microscopy
US20050046847A1 (en) Active sensor and method for optical illumination and detection
US20070262265A1 (en) Polymer biochip for detecting fluorescence
US8449823B2 (en) Diagnostic tape unit
JP7369236B2 (en) Optical systems and methods for sample separation
CN103718022A (en) Drug detection device and drug detection method
US20130188782A1 (en) Optical adjustment device
EP2507659A1 (en) Variable penetration depth biosensor and methods
JP2021015122A (en) Chromatic confocal measuring device
US6624885B1 (en) Method and device for non-destructive analysis of perforation in a material
JP6915240B2 (en) Particle counting device and particle counting method, as well as droplet forming device and dispensing device
EP4239318A2 (en) Apparatuses, systems, and methods for sample testing
US11156551B2 (en) Device and method for observing the radiation backscattered by an object
JP5387598B2 (en) Evaluation method
US9182340B2 (en) Optical measuring apparatus and optical measuring method
JP6484234B2 (en) Equipment for confocal observation of samples
US20200340912A1 (en) Chemical complementary metal-oxide semiconductor (ccmos) colorimetric sensors for multiplex detection and analysis
CN109154568A (en) The mancarried device for being used to detect explosive substance of device including the transmitting for generating and measuring indicator
US20020182111A1 (en) Method and apparatus for visible spectrum imaging
US20210109020A1 (en) Multiplexed Surface Plasmon Resonance Sensing of Analytes in Liquid Sample

Legal Events

Date Code Title Description
FEPP Fee payment procedure

Free format text: ENTITY STATUS SET TO UNDISCOUNTED (ORIGINAL EVENT CODE: BIG.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

AS Assignment

Owner name: VAXXAS PTY LIMITED, AUSTRALIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:JUNGER, MICHAEL CARL;FLAIM, CHRISTOPHER;SIGNING DATES FROM 20200218 TO 20200219;REEL/FRAME:051968/0380

STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: NOTICE OF ALLOWANCE MAILED -- APPLICATION RECEIVED IN OFFICE OF PUBLICATIONS

STPP Information on status: patent application and granting procedure in general

Free format text: PUBLICATIONS -- ISSUE FEE PAYMENT VERIFIED

STCF Information on status: patent grant

Free format text: PATENTED CASE

CC Certificate of correction