WO2015152148A1 - 有機エレクトロルミネッセンス素子 - Google Patents

有機エレクトロルミネッセンス素子 Download PDF

Info

Publication number
WO2015152148A1
WO2015152148A1 PCT/JP2015/059911 JP2015059911W WO2015152148A1 WO 2015152148 A1 WO2015152148 A1 WO 2015152148A1 JP 2015059911 W JP2015059911 W JP 2015059911W WO 2015152148 A1 WO2015152148 A1 WO 2015152148A1
Authority
WO
WIPO (PCT)
Prior art keywords
organic
layer
organic layer
derivatives
electron transport
Prior art date
Application number
PCT/JP2015/059911
Other languages
English (en)
French (fr)
Inventor
起範 金
正剛 岩▲崎▼
Original Assignee
住友化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友化学株式会社 filed Critical 住友化学株式会社
Priority to JP2016511879A priority Critical patent/JPWO2015152148A1/ja
Publication of WO2015152148A1 publication Critical patent/WO2015152148A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/30Highest occupied molecular orbital [HOMO], lowest unoccupied molecular orbital [LUMO] or Fermi energy values
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/40Interrelation of parameters between multiple constituent active layers or sublayers, e.g. HOMO values in adjacent layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds

Definitions

  • the present invention relates to an organic electroluminescence element.
  • An organic electroluminescent element (hereinafter referred to as an organic EL element) includes a pair of electrodes including an anode and a cathode, and a light emitting layer provided between these electrodes.
  • An electron transport layer may be further provided between the light emitting layer and the cathode.
  • Patent Document 1 An organic EL element using a thin film layer made only of aluminum quinolate or lithium quinolate as an electron transport layer has been proposed (see Patent Document 1).
  • Organic EL elements are required to further improve luminance and further improve element lifetime. Accordingly, an object of the present invention is to provide an organic EL element having high luminance and a long element life.
  • the present invention is an organic EL device comprising a cathode, a first organic layer, a second organic layer and an anode, wherein the cathode, the first organic layer, the second organic layer and the anode are arranged in this order,
  • the first organic layer includes a first compound exhibiting electron transport properties and an alkali metal complex,
  • the second organic layer relates to an organic EL element containing a light emitting polymer compound.
  • the LUMO energy level of the light emitting polymer compound is E1 (eV)
  • the LUMO energy level of the alkali metal complex is E2 (eV)
  • the work function of the said cathode is set to E3 (eV)
  • the present invention also relates to the organic EL device, wherein the alkali metal complex is a complex represented by the following formula (1).
  • M represents Li, Na, K, Rb or Cs.
  • the present invention also relates to the organic EL device, wherein the LUMO energy level of the first compound is ⁇ 3.0 eV or more and the HOMO energy level is ⁇ 5.5 eV or less.
  • the present invention also relates to the organic EL device, wherein the alkali metal complex is an 8-quinolinol sodium complex.
  • the present invention also relates to the organic EL element, wherein a volume ratio of the alkali metal complex to a volume of the first organic layer is 50% to 99%.
  • an organic EL element having high luminance and a long element lifetime can be provided.
  • FIG. 1 is a cross-sectional view schematically showing an organic EL element according to an embodiment of the present invention.
  • FIG. 1 is a cross-sectional view schematically showing an organic EL element according to an embodiment of the present invention.
  • the organic EL element 10 of this embodiment includes a substrate 1, an anode 2, a hole injection layer 3, a hole transport layer 4, a light emitting layer 5 corresponding to a second organic layer, and an electron transport corresponding to a first organic layer.
  • a layer 6 and a cathode 7 are provided.
  • the substrate 1, the anode 2, the hole injection layer 3, the hole transport layer 4, the light emitting layer 5, the electron transport layer 6 and the cathode 7 are laminated in this order.
  • the substrate 1 may be a flexible substrate or a rigid substrate.
  • Examples of the substrate 1 include a glass plate, a plastic plate, a metal film, and a metal plate.
  • the substrate 1 When taking out the light radiated from the organic EL element 10 from the substrate 1 side, the substrate 1 is a substrate exhibiting optical transparency.
  • the substrate exhibiting optical transparency and the substrate not exhibiting optical transparency are used as substrates. Can be used.
  • the anode 2 can be a thin film containing one or more materials selected from the group including metal oxides, metal sulfides, metals, and the like. Specifically, from the group including indium oxide, zinc oxide, tin oxide, indium tin oxide (ITO), indium zinc oxide (IZO), gold, platinum, silver, copper, and the like A thin film containing one or more selected materials can be used. In the case of an organic EL element in which light emitted from the light emitting layer is emitted outside the organic EL element through the anode, an electrode exhibiting light transmittance is used for the anode.
  • hole injection layer A known hole injection material can be used for the hole injection layer 3.
  • hole injection materials include oxides such as vanadium oxide, molybdenum oxide, ruthenium oxide, and aluminum oxide, phenylamines, starburst amines, phthalocyanines, amorphous carbon, polyaniline, and polythiophene derivatives. Can do.
  • hole transport layer A known hole transport material can be used for the hole transport layer 4.
  • hole transport materials include polyvinylcarbazole and derivatives thereof, polysilane and derivatives thereof, polysiloxane derivatives having aromatic amines in the side chain or main chain, pyrazoline derivatives, arylamine derivatives, stilbene derivatives, triphenyldiamine derivatives, polyaniline And derivatives thereof, polythiophene and derivatives thereof, polyarylamine and derivatives thereof, polypyrrole and derivatives thereof, poly (p-phenylene vinylene) and derivatives thereof, and poly (2,5-thienylene vinylene) and derivatives thereof Can do.
  • the light emitting layer 5 corresponding to the second organic layer contains a light emitting polymer compound.
  • a conjugated polymer compound having a light-emitting ability is preferable.
  • the light emitting polymer compound include compounds containing, as a repeating unit, a group selected from the group consisting of an arylene group, a divalent heterocyclic group and a divalent aromatic amine group, and a polyfluorene derivative, a polyparaphenylene.
  • Polymer compounds having a conjugated system such as vinylene derivatives, polyphenylene derivatives, polyparaphenylene derivatives, polythiophene derivatives, polydialkylfluorenes, polyfluorenebenzothiadiazoles, and polyalkylthiophenes are suitable.
  • the polymer compound is a compound having a polystyrene-equivalent number average molecular weight of 1 ⁇ 10 3 to 1 ⁇ 10 7 , more preferably 1 ⁇ 10 4 to 5 ⁇ 10 6. is there.
  • the light-emitting layer 5 is a polymer dye compound such as perylene dye, coumarin dye, rhodamine dye, rubrene, perylene, 9,10-diphenylanthracene, tetraphenylbutadiene, Nile red, coumarin 6 Further, it may contain a low molecular dye compound such as quinacridone.
  • the light-emitting layer 5 includes naphthalene derivatives, anthracene and derivatives thereof, perylene and derivatives thereof, dyes such as polymethines, xanthenes, coumarins, and cyanines, metal complexes of 8-hydroxyquinoline and derivatives thereof, aromatic amines, It may contain at least one selected from tetraphenylcyclopentadiene and its derivatives, tetraphenylbutadiene and its derivatives, a metal complex emitting phosphorescence such as tris (2-phenylpyridine) iridium, and the like.
  • the electron transport layer 6 corresponding to the first organic layer contains a first compound exhibiting electron transport properties and an alkali metal complex.
  • first compound exhibiting electron transport properties As a 1st compound which shows electron transport property, the well-known compound which shows electron transport property generally used for an electron carrying layer is mentioned, for example.
  • the first compound include compounds having condensed aromatic rings such as naphthalene and anthracene and derivatives thereof, styryl aromatic ring derivatives represented by 4,4′-bis (diphenylethenyl) biphenyl, perylene derivatives, and perinone derivatives.
  • the electron-accepting nitrogen means a nitrogen atom that forms a multiple bond with an adjacent atom. Since the nitrogen atom has a high electronegativity, the multiple bond also has an electron-accepting property. Accordingly, a heteroaromatic ring having an electron-accepting nitrogen has a high electron affinity.
  • these compounds having a heteroaromatic ring structure having electron-accepting nitrogen include benzimidazole derivatives, benzoxazole derivatives, benzothiazole derivatives, oxadiazole derivatives, thiadiazole derivatives, triazole derivatives, pyridine derivatives, pyrazine derivatives. , Phenanthroline derivatives, quinoxaline derivatives, quinoline derivatives, benzoquinoline derivatives, oligopyridine derivatives such as bipyridine and terpyridine, and naphthyridine derivatives.
  • alkali metal complex examples include compounds represented by the following formulas (1) to (16).
  • M represents an alkali metal.
  • alkali metals include lithium (Li), sodium (Na), potassium (K), rubidium (Rb) and cesium (Cs).
  • the alkali metal represented by M is preferably lithium, sodium or cesium, and more preferably lithium or sodium.
  • At least one hydrogen atom bonded to the carbon atom constituting the five-membered or six-membered ring is an alkyl group having 1 to 12 carbon atoms. May be substituted.
  • Examples of the alkyl group having 1 to 12 carbon atoms that substitutes at least one hydrogen atom bonded to a carbon atom constituting a 5-membered ring or 6-membered ring include a methyl group, an ethyl group, a propyl group, or a t-butyl group Is preferred.
  • the alkali metal complex includes the formula (1), the formula (2), the formula (4), the formula (6), the formula (7), or the formula (9).
  • a compound represented by formula (1), formula (2) or formula (4) is more preferred.
  • alkali metal complex examples include 8-quinolinol lithium complex, 8-quinolinol sodium complex, 8-quinolinol potassium complex, 8-quinolinol rubidium complex, 8-quinolinol cesium complex, benzo-8-quinolinol lithium complex, benzo-8-quinolinol.
  • the volume ratio of the alkali metal complex to the volume of the first organic layer (in this embodiment, the electron transport layer 6) is preferably 1% to 99%, more preferably 25% to 99%, It is more preferably 50% to 99%, and particularly preferably 50% to 75%.
  • the material of the cathode 7 is preferably a material having a low work function, easy electron injection into the light emitting layer 5 and high electrical conductivity. Further, in the case where the light from the light emitting layer 5 is reflected by the cathode 7 to the anode 2 side, in the organic EL element that extracts light from the anode 2 side, the material of the cathode 7 is a material having a high visible light reflectance. preferable.
  • a material of the cathode 7 for example, an alkali metal, an alkaline earth metal, a transition metal, a group 13 metal of the periodic table, or the like can be used.
  • cathode materials include lithium, sodium, potassium, rubidium, cesium, beryllium, magnesium, calcium, strontium, barium, aluminum, scandium, vanadium, zinc, yttrium, indium, cerium, samarium, europium, terbium, and ytterbium.
  • An alloy, graphite, or a graphite intercalation compound can be used.
  • Examples of the alloy that may be used as the material of the cathode 7 include magnesium-silver alloy, magnesium-indium alloy, magnesium-aluminum alloy, indium-silver alloy, lithium-aluminum alloy, lithium-magnesium alloy, lithium-indium alloy, And calcium-aluminum alloy.
  • a transparent conductive electrode containing a conductive metal oxide and a conductive organic material can be used as the cathode 7, a transparent conductive electrode containing a conductive metal oxide and a conductive organic material.
  • examples of the conductive metal oxide include indium oxide, zinc oxide, tin oxide, ITO, and IZO
  • examples of the conductive organic substance include polyaniline and derivatives thereof, polythiophene and derivatives thereof, and the like. It is done.
  • the cathode 7 may be a laminate in which two or more layers are laminated.
  • the organic EL element 10 of the present embodiment has a LUMO (Lowest Unoccupied Molecular Orbital) energy level of the light emitting polymer compound as E1 (eV), and an LUMO (Lowest Unoccupied Molecular Orbital) energy level of the alkali metal complex as E2 (eV).
  • E3 (eV) is the work function ( ⁇
  • the vacuum level is zero (eV).
  • means a value obtained by multiplying the absolute value of E3 by minus one.
  • the first compound preferably has a LUMO energy level of ⁇ 3.0 eV or more and a HOMO energy level of ⁇ 5.5 eV or less.
  • the thickness of the anode is usually 10 nm to 200 nm, preferably 30 nm to 180 nm, and more preferably 40 nm to 150 nm.
  • the thickness of the hole injection layer is usually 10 nm to 200 nm, preferably 20 nm to 100 nm, and more preferably 35 nm to 65 nm.
  • the thickness of the hole transport layer is usually from 5 nm to 100 nm, preferably from 10 nm to 50 nm, and more preferably from 15 nm to 30 nm.
  • the thickness of the light emitting layer corresponding to the second organic layer is usually 20 nm to 200 nm, preferably 30 nm to 150 nm, and more preferably 30 nm to 120 nm.
  • the thickness of the electron transport layer corresponding to the first organic layer is usually 5 nm to 2100 nm, preferably 5 nm to 100 nm, and more preferably 5 nm to 30 nm.
  • the thickness of the cathode is usually 10 nm to 1000 nm, preferably 20 nm to 500 nm, and more preferably 30 nm to 120 nm.
  • the organic EL element 10 of the present embodiment can be formed by a method of laminating electrodes and layers sequentially on a substrate, a laminating method, or the like.
  • the electrode and each layer can be formed by a known method.
  • the method for forming the electrode and each layer include a vacuum deposition method, a sputtering method, an ion plating method, a plating method, and a coating method.
  • the coating method include spin coating, cap coating, slit coating, spray coating, ink jet printing, and nozzle printing.
  • the organic EL element 10 includes a substrate 1, an anode 2, a hole injection layer 3, a hole transport layer 4, a light emitting layer 5 corresponding to a second organic layer, and a first organic layer.
  • the electron transport layer 6 and the cathode 7 corresponding to are stacked in this order.
  • the organic EL element of the present invention is not limited to this configuration.
  • An example of a layer structure that can be taken by the organic EL element of the present embodiment is shown below.
  • anode / hole injection layer / light emitting layer (second organic layer) / electron transport layer (First organic layer) / cathode (Here, the symbol “/” indicates that the layers sandwiching the symbol “/” are in contact with each other. The same applies hereinafter.)
  • the organic EL element has a mode in which each layer is laminated on the substrate in order from the anode side and the cathode is finally formed, and conversely, a layer in which each layer is laminated on the substrate in order from the cathode and the anode is finally formed. Any form may be sufficient.
  • the electron transport layer 6 corresponding to the first organic layer is disposed in contact with the light emitting layer 5 and the cathode 7, but a hole blocking layer is provided between the electron transport layer and the light emitting layer. May be present, and an electron injection layer may be interposed between the electron transport layer and the cathode.
  • Known materials can be used for the hole blocking layer, the electron injection layer, and the electron transport layer.
  • Example 1 [Preparation of substrate] A glass substrate on which an ITO thin film (anode) was patterned was prepared.
  • the ITO thin film is formed by a sputtering method and has a thickness of 50 nm. This substrate was washed with an organic solvent, an alkaline detergent, and ultrapure water, dried with hot air at about 80 ° C. for about 4 hours or longer. Next, the surface of the glass substrate on which the ITO thin film was formed was subjected to UV-O 3 treatment using a UV-O 3 apparatus for about 10 minutes.
  • the hole transport material and xylene were mixed to obtain a composition for forming a hole transport layer in which the solid content concentration of the hole transport material was 0.6% by weight.
  • the obtained composition for forming a hole transport layer was applied onto the hole injection layer by a spin coating method to obtain a coating film having a thickness of 20 nm.
  • the substrate provided with this coating film was heated at 180 ° C. for 60 minutes in a nitrogen gas atmosphere to evaporate the solvent, and then naturally cooled to room temperature to form a hole transport layer.
  • the light-emitting conjugated polymer material 1 and xylene were mixed to obtain a composition for forming a light-emitting layer in which the solid content concentration of the light-emitting conjugated polymer material 1 was 1.3% by weight.
  • the obtained composition for forming a light emitting layer was applied onto the hole transport layer by a spin coating method to obtain a coating film having a thickness of 60 nm.
  • the substrate on which the coating film was formed was heated at 130 ° C. for 10 minutes in a nitrogen gas atmosphere to evaporate the solvent, and then naturally cooled to room temperature to form a light emitting layer.
  • the substrate was transferred to a vapor deposition chamber and evacuated until the degree of vacuum became 1 ⁇ 10 ⁇ 5 Pa or less, and then the electron transport material 1 (manufactured by Toray Industries, Inc .: TR-E314) and 8-quinolinol sodium complex ( Naq) was co-evaporated by a vacuum deposition method so that an electron transport layer was formed on the light emitting layer, thereby forming an electron transport layer (first organic layer) having a thickness of 5 nm.
  • the vapor deposition rates of the electron transport material 1 and Naq were each 0.5 ⁇ / sec. That is, the volume ratio of the electron transport material 1 and Naq in the electron transport layer is 1: 1. In other words, the volume ratio of Naq to the volume of the electron transport layer is 50%.
  • the substrate was taken out of the vapor deposition chamber without being exposed to the atmosphere, and the sealing glass coated with a UV curable resin was bonded to the carried-out substrate in an inert gas atmosphere. Next, the UV curable resin was cured by irradiating UV light, and the organic EL element was sealed with a glass substrate.
  • the cathode was formed by co-evaporation of Mg and Ag.
  • the deposition rate of Mg was 0.9 ⁇ / sec, and the deposition rate of Ag was 0.1 ⁇ / sec.
  • the thickness of the cathode was 1000 mm.
  • Example 3 An organic EL device was produced in the same manner as in Example 2 except that the electron transport layer (first organic layer) was formed at a deposition rate different from that in Example 2.
  • the deposition rate of the electron transport material 1 was 0.25 ⁇ / sec
  • the deposition rate of Naq was 0.75 ⁇ / sec.
  • the volume ratio of the electron transport material 1 and Naq in the electron transport layer is 1: 3. That is, the volume ratio of the electron transport material 1 and Naq in the electron transport layer was set to 25:75. In other words, the volume ratio of Naq to the volume of the electron transport layer is 75%.
  • Example 4 An organic EL element was produced in the same manner as in Example 2 except that the electron transport layer (first organic layer) was formed of a material different from that in Example 2.
  • an electron transport material 1 manufactured by Toray Industries, Inc .: TR-E3144 and 8-quinolinol lithium complex (Liq) are co-evaporated by a vacuum deposition method, and an electron transport layer (first Organic layer) was formed.
  • the vapor deposition rates of the electron transport material 1 and Liq were both 0.5 liter / sec. That is, the volume ratio of the electron transport material 1 and Liq in the electron transport layer is 1: 1. In other words, the volume ratio of Liq to the volume of the electron transport layer is 50%.
  • Example 1 An organic EL device was produced in the same manner as in Example 1 except that the electron transport layer (first organic layer) was formed using a material different from that in Example 1.
  • Example 2 An organic EL device was produced in the same manner as in Example 1 except that the electron transport layer (first organic layer) was formed using a material different from that in Example 1.
  • the HOMO energy level was measured with a work function measuring device (model number: AC-2, manufactured by Riken Keiki Co., Ltd.). Each material was analyzed with a spectrophotometer (model number: CARY-5E, manufactured by Varian), and the energy gap Eg was calculated from the position of the absorption edge. Furthermore, the LUMO energy level was calculated by adding the energy gap Eg to the HOMO energy level.
  • the work function of Mg—Ag is a literature value.
  • the current efficiency represents the light emission efficiency when a current of 10 mA flows
  • the drive voltage represents the voltage applied to the organic EL element when a current of 10 mA flows to the organic EL element
  • LT80 Represents the time from the start of driving until the luminance drops to 80% when the constant current driving is performed with the luminance at the start of driving set at 1000 cd / m 2 .

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

 輝度が高く、素子寿命の長い有機エレクトロルミネッセンス素子を提供する。有機エレクトロルミネッセンス素子(10)は、陰極(7)、第1の有機層(6)、第2の有機層(5)、陽極(2)を備え、陰極、第1の有機層、第2の有機層、陽極がこの順に配置され、第1の有機層は、電子輸送性を示す第1の化合物と、アルカリ金属錯体とを含み、第2の有機層は、発光性高分子化合物を含む。

Description

有機エレクトロルミネッセンス素子
 本発明は有機エレクトロルミネッセンス素子に関する。
 有機エレクトロルミネッセンス素子(Organic Electroluminescent Element)(以下有機EL素子という。)は、陽極および陰極からなる一対の電極と、これらの電極間に設けられる発光層とを備える。発光層と陰極との間には、さらに、電子輸送層が設けられることがある。
 電子輸送層として、アルミニウムキノレートまたはリチウムキノレートのみからなる薄膜層を用いた有機EL素子が提案されている(特許文献1参照。)。
特表2004-534102号公報
 有機EL素子には、輝度のさらなる向上と、素子寿命のさらなる向上とが求められている。したがって本発明の目的は、輝度が高く、素子寿命の長い有機EL素子を提供することにある。
 本発明は、陰極、第1の有機層、第2の有機層および陽極を備え、陰極、第1の有機層、第2の有機層および陽極がこの順に配置された有機EL素子であって、
 第1の有機層は、電子輸送性を示す第1の化合物と、アルカリ金属錯体とを含み、
 第2の有機層は、発光性高分子化合物を含む、有機EL素子に関する。
 また本発明は、前記発光性高分子化合物のLUMOエネルギー準位をE1(eV)とし、
前記アルカリ金属錯体のLUMOエネルギー準位をE2(eV)とし、
前記陰極の仕事関数をE3(eV)としたときに、E1、E2およびE3が下記式を満たす前記有機EL素子に関する。
式:E1-1.5≦E2≦-│E3│+2.0
 また本発明は、前記アルカリ金属錯体が下記式(1)で示される錯体である前記有機EL素子に関する。
Figure JPOXMLDOC01-appb-C000002
 
 (式中、MはLi、Na、K、RbまたはCsを表す。)
 また本発明は、前記第1の化合物のLUMOエネルギー準位が-3.0eV以上であり、かつHOMOエネルギー準位が-5.5eV以下である前記有機EL素子に関する。
 また本発明は、前記アルカリ金属錯体が、8-キノリノールナトリウム錯体である前記有機EL素子に関する。
 また本発明は、前記第1の有機層の体積に対する前記アルカリ金属錯体の体積割合が、50%~99%である前記有機EL素子に関する。
 本発明によれば、輝度が高く、素子寿命の長い有機EL素子を提供することができる。
図1は、本発明の一実施形態の有機EL素子を模式的に示す断面図である。
 以下、図面を参照して、本発明の実施形態について説明する。なお、図面は、発明が理解できる程度に、構成要素の形状、大きさ及び配置が概略的に示されているに過ぎない。本発明は以下の記述によって限定されるものではなく、各構成要素は本発明の要旨を逸脱しない範囲において適宜変更可能である。
 図1は本発明の一実施形態の有機EL素子を模式的に示す断面図である。本実施形態の有機EL素子10は、基板1、陽極2、正孔注入層3、正孔輸送層4、第2の有機層に相当する発光層5、第1の有機層に相当する電子輸送層6、および陰極7を備える。基板1、陽極2、正孔注入層3、正孔輸送層4、発光層5、電子輸送層6および陰極7はこの順に積層されている。
 以下、有機EL素子10を構成する各構成要素について順に説明する。
 <基板>
 基板1は、可撓性を有する基板であってもリジッドな基板であってもよい。基板1の例としては、ガラス板、プラスチック板、金属フィルム、および金属板などが挙げられる。
 有機EL素子10から放射される光を基板1側から取り出す場合には、基板1は光透過性を示す基板が用いられる。有機EL素子10から放射される光を基板1側とは反対側(本実施形態では陰極7側)から取り出す場合は、光透過性を示す基板および光透過性を示さない基板のいずれも基板として用いることができる。
 <陽極>
 陽極2には、金属酸化物、金属硫化物および金属などを含む群より選択される1種以上の材料を含む薄膜を用いることができる。具体的には酸化インジウム、酸化亜鉛、酸化スズ、インジウムスズ酸化物(Indium Tin Oxide:ITO)、インジウム亜鉛酸化物(Indium Zinc Oxide:IZO)、金、白金、銀、および銅などを含む群より選択される1種以上の材料を含む薄膜を用いることができる。発光層から放射される光が陽極を通って有機EL素子外に出射される有機EL素子の場合、陽極には光透過性を示す電極が用いられる。
 <正孔注入層>
 正孔注入層3には公知の正孔注入材料を用いることができる。正孔注入材料としては、たとえば酸化バナジウム、酸化モリブデン、酸化ルテニウム、および酸化アルミニウムなどの酸化物、フェニルアミン類、スターバースト型アミン類、フタロシアニン類、アモルファスカーボン、ポリアニリン、およびポリチオフェン誘導体などを挙げることができる。
 <正孔輸送層>
 正孔輸送層4には公知の正孔輸送材料を用いることができる。正孔輸送材料としては、たとえばポリビニルカルバゾールおよびその誘導体、ポリシランおよびその誘導体、側鎖若しくは主鎖に芳香族アミンを有するポリシロキサン誘導体、ピラゾリン誘導体、アリールアミン誘導体、スチルベン誘導体、トリフェニルジアミン誘導体、ポリアニリンおよびその誘導体、ポリチオフェンおよびその誘導体、ポリアリールアミンおよびその誘導体、ポリピロールおよびその誘導体、ポリ(p-フェニレンビニレン)およびその誘導体、ならびにポリ(2,5-チエニレンビニレン)およびその誘導体などを挙げることができる。
 <発光性高分子化合物>
 第2の有機層に相当する発光層5は発光性高分子化合物を含む。発光性高分子化合物としては、発光能を有する共役高分子化合物が好ましい。発光性高分子化合物としては、たとえばアリーレン基、2価の複素環基及び2価の芳香族アミン基からなる群から選ばれる基を繰り返し単位として含む化合物が挙げられ、ポリフルオレン誘導体、ポリパラフェニレンビニレン誘導体、ポリフェニレン誘導体、ポリパラフェニレン誘導体、ポリチオフェン誘導体、ポリジアルキルフルオレン、ポリフルオレンベンゾチアジアゾール、ポリアルキルチオフェン等の共役系を有する高分子化合物が好適である。
 ここで本明細書において高分子化合物とは、ポリスチレン換算の数平均分子量が1×10~1×10である化合物であり、より好ましくは1×10~5×10である化合物である。
 また、発光層5は発光性高分子化合物に加えて、ペリレン色素、クマリン色素、ローダミン色素などの高分子色素化合物、ルブレン、ペリレン、9,10-ジフェニルアントラセン、テトラフェニルブタジエン、ナイルレッド、クマリン6、キナクリドン等の低分子色素化合物を含有していてもよい。また発光層5は、ナフタレン誘導体、アントラセンおよびその誘導体、ペリレンおよびその誘導体、ポリメチン類、キサンテン類、クマリン類、シアニン類などの色素類、8-ヒドロキシキノリンおよびその誘導体の金属錯体、芳香族アミン、テトラフェニルシクロペンタジエンおよびその誘導体、テトラフェニルブタジエンおよびその誘導体、トリス(2-フェニルピリジン)イリジウムなどの燐光を発光する金属錯体などから選ばれる1種以上を含有してもよい。
 <電子輸送層>
 第1の有機層に相当する電子輸送層6は、電子輸送性を示す第1の化合物と、アルカリ金属錯体とを含む。
 (電子輸送性を示す第1の化合物)
 電子輸送性を示す第1の化合物としては、たとえば一般に電子輸送層に使用される、電子輸送性を示す公知の化合物が挙げられる。第1の化合物としては、たとえばナフタレン、アントラセンなどの縮合芳香環を有する化合物およびその誘導体、4,4’-ビス(ジフェニルエテニル)ビフェニルに代表されるスチリル系芳香環誘導体、ペリレン誘導体、ペリノン誘導体、クマリン誘導体、ナフタルイミド誘導体、アントラキノン、ナフトキノン、ジフェノキノン、アントラキノジメタン、テトラシアノアントラキノジメタンなどのキノン誘導体、リンオキサイド誘導体、カルバゾール誘導体、インドール誘導体、トリス(8-キノリノラート)アルミニウム(III)などのキノリノール錯体、ヒドロキシフェニルオキサゾール錯体などのヒドロキシアゾール錯体、アゾメチン錯体、トロポロン金属錯体、フラボノール金属錯体、ならびに電子受容性窒素を有するヘテロ芳香環を有する化合物などが挙げられる。
 本明細書において電子受容性窒素とは、隣接原子との間に多重結合を形成している窒素原子を意味している。窒素原子が高い電子陰性度を有することから、多重結合も電子受容的な性質を有する。従って、電子受容性窒素を有するヘテロ芳香環は、高い電子親和性を有する。これらの電子受容性窒素を有するヘテロ芳香環構造を有する化合物の好適な例としては、ベンゾイミダゾール誘導体、ベンゾオキサゾール誘導体、ベンゾチアゾール誘導体、オキサジアゾール誘導体、チアジアゾール誘導体、トリアゾール誘導体、ピリジン誘導体、ピラジン誘導体、フェナントロリン誘導体、キノキサリン誘導体、キノリン誘導体、ベンゾキノリン誘導体、ビピリジンおよびターピリジンなどのオリゴピリジン誘導体、ならびにナフチリジン誘導体が挙げられる。
 (アルカリ金属錯体)
 アルカリ金属錯体としては、たとえば下記式(1)~(16)で表される化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000003
 
Figure JPOXMLDOC01-appb-C000004
 
Figure JPOXMLDOC01-appb-C000005
 
Figure JPOXMLDOC01-appb-C000006
 
 式(1)~(16)中、Mはアルカリ金属を表す。アルカリ金属の例としては、リチウム(Li)、ナトリウム(Na)、カリウム(K)、ルビジウム(Rb)およびセシウム(Cs)が挙げられる。これらのなかでも、Mで表されるアルカリ金属としては、リチウム、ナトリウムまたはセシウムが好ましく、リチウムまたはナトリウムがさらに好ましい。
 式(1)~(16)で表される各アルカリ金属錯体において、五員環または六員環を構成する炭素原子に結合する少なくとも1つの水素原子は、炭素原子数1~12のアルキル基で置換されていてもよい。五員環または六員環を構成する炭素原子に結合する少なくとも1つの水素原子を置換している炭素原子数1~12のアルキル基としては、メチル基、エチル基、プロピル基またはt-ブチル基が好ましい。
 式(1)~(16)で表される化合物中、アルカリ金属錯体としては、式(1)、式(2)、式(4)、式(6)、式(7)または式(9)で表される化合物が好ましく、式(1)、式(2)または式(4)で表される化合物がさらに好ましい。
 アルカリ金属錯体としては、たとえば8-キノリノールリチウム錯体、8-キノリノールナトリウム錯体、8-キノリノールカリウム錯体、8-キノリノールルビジウム錯体、8-キノリノールセシウム錯体、ベンゾ-8-キノリノールリチウム錯体、ベンゾ-8-キノリノールナトリウム錯体、ベンゾ-8-キノリノールカリウム錯体、ベンゾ-8-キノリノールルビジウム錯体、ベンゾ-8-キノリノールセシウム錯体、2-メチル-8-キノリノールリチウム錯体、2-メチル-8-キノリノールナトリウム錯体、2-メチル-8-キノリノールカリウム錯体、2-メチル-8-キノリノールルビジウム錯体、および2-メチル-8-キノリノールセシウム錯体があげられ、これらの中でも8-キノリノールリチウム錯体、および8-キノリノールナトリウム錯体が好ましく、8-キノリノールナトリウム錯体がさらに好ましい。
 前記第1の有機層(本実施形態では電子輸送層6)の体積に対するアルカリ金属錯体の体積割合は、1%~99%であることが好ましく、25%~99%であることがより好ましく、50%~99%であることがさらに好ましく、50%~75%であることが特に好ましい。
 <陰極>
 陰極7の材料としては、仕事関数が小さく、発光層5への電子注入が容易であり、かつ電気伝導度が高い材料が好ましい。また発光層5からの光を陰極7で陽極2側に反射させる構成とする場合には、陽極2側から光を取出す有機EL素子では、陰極7の材料としては可視光反射率の高い材料が好ましい。陰極7の材料としては、例えばアルカリ金属、アルカリ土類金属、遷移金属および周期表の13族金属などを用いることができる。陰極の材料としては、たとえばリチウム、ナトリウム、カリウム、ルビジウム、セシウム、ベリリウム、マグネシウム、カルシウム、ストロンチウム、バリウム、アルミニウム、スカンジウム、バナジウム、亜鉛、イットリウム、インジウム、セリウム、サマリウム、ユーロピウム、テルビウム、イッテルビウムなどの金属、前記金属のうちの2種以上の合金、前記金属のうちの1種以上と、金、銀、白金、銅、マンガン、チタン、コバルト、ニッケル、タングステン、錫のうちの1種以上との合金、またはグラファイト若しくはグラファイト層間化合物などを用いることができる。陰極7の材料として用いられてもよい合金としては、たとえばマグネシウム-銀合金、マグネシウム-インジウム合金、マグネシウム-アルミニウム合金、インジウム-銀合金、リチウム-アルミニウム合金、リチウム-マグネシウム合金、リチウム-インジウム合金、およびカルシウム-アルミニウム合金などを挙げることができる。また、陰極7としては導電性金属酸化物および導電性有機物を含む透明導電性電極を用いることができる。具体的には、導電性金属酸化物としては、たとえば酸化インジウム、酸化亜鉛、酸化スズ、ITO、およびIZOが挙げられ、導電性有機物としては、たとえばポリアニリンおよびその誘導体、ポリチオフェンおよびその誘導体などが挙げられる。なお陰極7は、2層以上の層が積層された積層体であってもよい。
 <エネルギー準位の関係>
 本実施形態の有機EL素子10は、発光性高分子化合物のLUMO(Lowest Unoccupied Molecular Orbital)エネルギー準位をE1(eV)、アルカリ金属錯体のLUMO(Lowest Unoccupied Molecular Orbital)エネルギー準位をE2(eV)、陰極の仕事関数(-│フェルミ準位│)をE3(eV)とすると、E1、E2およびE3は、下記式を満たすことが好ましい。なお本明細書では真空準位を零(eV)とする。
 式:E1-1.5≦E2≦-│E3│+2.0
 上記式において、「-│E3│」はE3の絶対値に、マイナス1を掛け算した値を意味する。
 E1、E2およびE3が、上記式のような関係を満たすことで、陰極のフェルミ準位から発光性高分子化合物のLUMOエネルギー準位への電子注入が促進され、これによって有機EL素子10の高輝度化および長寿命化を実現することができる。
 また、第1の化合物は、そのLUMOエネルギー準位が-3.0eV以上であり、かつそのHOMOエネルギー準位が-5.5eV以下であることが好ましい。このような関係を満たすことで、陰極のフェルミ準位から発光性高分子化合物へのLUMOエネルギー準位への電子注入が促進され、また、第2の有機層(発光層)から第1の有機層(電子輸送層)への正孔の移動を抑制する効果が期待される。この効果によって、有機EL素子10の高輝度化および長寿命化の実現が期待される。
 <各層の厚さ>
 陽極の厚さは、通常、10nm~200nmであり、30nm~180nmであることが好ましく、40nm~150nmであることがさらに好ましい。
 正孔注入層の厚さは、通常、10nm~200nmであり、20nm~100nmであることが好ましく、35nm~65nmであることがさらに好ましい。
 正孔輸送層の厚さは、通常、5nm~100nmであり、10nm~50nmであることが好ましく、15nm~30nmであることがさらに好ましい。
 第2の有機層に相当する発光層の厚さは、通常、20nm~200nmであり、30nm~150nmであることが好ましく、30nm~120nmであることがさらに好ましい。
 第1の有機層に相当する電子輸送層の厚さは、通常、5nm~2100nmであり、5nm~100nmであることが好ましく、5nm~30nmであることがさらに好ましい。
 陰極の厚さは、通常、10nm~1000nmであり、20nm~500nmであることが好ましく、30nm~120nmであることがさらに好ましい。
 <製造方法>
 本実施形態の有機EL素子10は、電極および各層を順次基板上に積層する方法およびラミネート法などによって形成することができる。
 電極および各層は公知の方法によって形成することができる。電極および各層の形成方法としては、たとえば真空蒸着法、スパッタリング法、イオンプレーティング法、メッキ法、塗布法などを挙げることができる。塗布法としては、たとえばスピンコート法、キャップコート法、スリットコート法、スプレーコート法、インクジェット印刷法、ノズルプリンティング法などを挙げることができる。
 <他の実施形態>
 図1に示される実施形態では、有機EL素子10は、基板1、陽極2、正孔注入層3、正孔輸送層4、第2の有機層に相当する発光層5、第1の有機層に相当する電子輸送層6および陰極7がこの順に積層されている。しかしながら、本発明の有機EL素子はこの構成に限られない。
 本実施形態の有機EL素子のとりうる層構成の一例を以下に示す。
(1)陽極/発光層(第2の有機層)/電子輸送層(第1の有機層)/陰極
(2)陽極/正孔注入層/発光層(第2の有機層)/電子輸送層(第1の有機層)/陰極(ここで、記号「/」は、記号「/」を挟む各層が接するように配置されていることを示す。以下同じ。)
 なお有機EL素子は、陽極側から順に各層を基板上に積層して最後に陰極を形成する形態と、逆に、陰極から順に各層を基板上に積層して最後に陽極を形成する形態とのいずれの形態であってもよい。
 また上述の実施形態では第1の有機層に相当する電子輸送層6は、発光層5および陰極7に接して配置されているが、電子輸送層と発光層との間には正孔ブロック層が介在していてもよく、また電子輸送層と陰極との間には電子注入層が介在していてもよい。正孔ブロック層、電子注入層および電子輸送層には公知の材料を用いることができる。
 (実施例)
 以下に本発明の実施例を示すが、本発明は実施例に限られるものではない。
 (実施例1)
 [基板の準備]
 ITO薄膜(陽極)がパターニングされたガラス基板を用意した。ITO薄膜はスパッタリング法によって形成されており、その厚さは50nmである。この基板を、有機溶媒、アルカリ洗剤、超純水を用いて洗浄し、約80℃の温風で約4時間以上処理して乾燥させた。次に、ガラス基板のITO薄膜が形成された側の面に対して、UV-O装置を用いるUV-O処理を約10分間行った。
 [正孔注入層の形成]
 次に、正孔注入材料を含むインクを、スピンコート法によってITO薄膜上に塗布することにより、35nmの厚みの塗膜を形成した。次いで、塗膜が形成された基板を、大気中においてホットプレートを用いて50℃で10分間乾燥させた後、さらに230℃で15分間乾燥させることにより、正孔注入層を形成した。
 [正孔輸送層の形成]
 正孔輸送材料とキシレンとを混合し、正孔輸送材料の固形分濃度が0.6重量%である正孔輸送層形成用組成物を得た。得られた正孔輸送層形成用組成物を、スピンコート法により正孔注入層上に塗布し、厚さ20nmの塗膜を得た。この塗膜を設けた基板を窒素ガス雰囲気下、180℃で60分間加熱して溶媒を蒸発させた後、室温まで自然冷却し、正孔輸送層を形成した。
 [発光層(第2の有機層)の形成]
 発光性共役高分子材料1とキシレンとを混合し、発光性共役高分子材料1の固形分濃度が1.3重量%である発光層形成用組成物を得た。得られた発光層形成用組成物を、スピンコート法により正孔輸送層上に塗布し、厚さ60nmの塗膜を得た。次に、塗膜が形成された基板を窒素ガス雰囲気下、130℃で10分間加熱して溶媒を蒸発させた後、室温まで自然冷却し、発光層を形成した。
 [電子輸送層(第1の有機層)の形成]
 発光層形成後、蒸着チャンバーに基板を移し、真空度が1×10-5Pa以下になるまで排気した後、電子輸送材料1(東レ株式会社製:TR-E314)と8-キノリノールナトリウム錯体(Naq)とを、発光層上に電子輸送層が形成されるように真空蒸着法によって共蒸着し、厚さが5nmの電子輸送層(第1の有機層)を形成した。なお電子輸送材料1とNaqとの蒸着速度は、それぞれ0.5Å/secとした。つまり、電子輸送層中における電子輸送材料1とNaqとの体積比は、1:1である。換言すると、電子輸送層の体積に対するNaqの体積割合は、50%である。
 [陰極の形成]
 次に、真空蒸着法によって電子輸送層上にアルミニウムを蒸着して厚さが1000Åの陰極を形成した。なおアルミニウムの蒸着速度は2Å/secとした。
 [ガラス封止]
 陰極形成後、大気に曝露させることなく蒸着チャンバーから基板を搬出し、UV硬化樹脂を周囲に塗布した封止ガラスと、搬出した基板とを不活性ガス雰囲気下において貼り合わせた。次いでUV光を照射することでUV硬化樹脂を硬化して有機EL素子をガラス基板によって封止した。
 (実施例2)
 実施例1で陰極材料として使われたアルミニウムに代えてMg-Ag(合金)(Mg:Ag=9:1)を用いたこと以外は、実施例1と同様にして有機EL素子を作製した。
 陰極は、MgとAgとの共蒸着によって形成した。Mgの蒸着速度を0.9Å/secとし、Agの蒸着速度を0.1Å/secとした。また陰極の厚さは、1000Åとした。
 (実施例3)
 電子輸送層(第1の有機層)を実施例2とは異なる蒸着速度で形成した以外は実施例2と同様にして有機EL素子を作製した。本実施例3では電子輸送材料1の蒸着速度を0.25Å/secとし、Naqの蒸着速度を0.75Å/secとした。
 電子輸送層中における電子輸送材料1とNaqとの体積比は、1:3である。つまり、電子輸送層中における電子輸送材料1とNaqとの体積比を25:75とした。換言すると、電子輸送層の体積に対するNaqの体積割合は、75%である。
 (実施例4)
 実施例2とは異なる材料で電子輸送層(第1の有機層)を形成した以外は、実施例2と同様にして有機EL素子を作製した。
 本実施例では、電子輸送材料1(東レ株式会社製:TR-E314)と8-キノリノールリチウム錯体(Liq)とを真空蒸着法によって共蒸着し、厚さが5nmの電子輸送層(第1の有機層)を形成した。なお電子輸送材料1およびLiqの蒸着速度は、いずれも0.5Å/secとした。つまり、電子輸送層中における電子輸送材料1とLiqとの体積比は、1:1である。換言すると、電子輸送層の体積に対するLiqの体積割合は、50%である。
 (比較例1)
 実施例1とは異なる材料で電子輸送層(第1の有機層)を形成した以外は、実施例1と同様にして有機EL素子を作製した。
 本比較例では、電子輸送材料1(東レ株式会社製:TR-E314)のみを真空蒸着法によって発光層上に堆積させ(蒸着速度:1Å/sec)、厚さが5nmである電子輸送層(第1の有機層)を形成した。
 (比較例2)
 実施例1とは異なる材料で電子輸送層(第1の有機層)を形成した以外は、実施例1と同様にして有機EL素子を作製した。
 本比較例では、Naqのみを真空蒸着法によって発光層上に堆積させ(蒸着速度:1Å/sec)、厚さが5nmである電子輸送層(第1の有機層)を形成した。
 [材料のエネルギー準位]
 実施例、比較例で使用した材料のエネルギー準位を下記表1に示す。
Figure JPOXMLDOC01-appb-T000007
 なおHOMOエネルギー準位は仕事関数測定装置(型番:AC-2、理研計器株式会社製)によって測定した。また分光光度計(型番:CARY-5E、Varian社製)によって各材料を分析し、吸収端の位置からエネルギーギャップEgを算出した。さらに、HOMOエネルギー準位にエネルギーギャップEgを加算することで、LUMOエネルギー準位を算出した。なおMg-Agの仕事関数は文献値である。
 [有機EL素子の評価]
 実施例1、2、3、4および比較例1、2で作製した各有機EL素子に電圧を印加し、特性を評価した。評価結果を下記表2に示す。
Figure JPOXMLDOC01-appb-T000008
 表2において、電流効率は、10mAの電流を流したときの発光効率を表し、駆動電圧は、10mAの電流が有機EL素子に流れるときに当該有機EL素子に印加されている電圧を表し、LT80は、駆動開始時の輝度を1000cd/mに設定して定電流駆動したときに、駆動開始時から輝度が8割に低下するまでの時間を表している。
 表2から明らかな通り、実施例1、2、3、4の有機EL素子を、比較例1、2の有機EL素子と10mA/cmで駆動する時の条件で比較すると、電流効率が高いばかりでなく駆動電圧が低く、かつ寿命も長くなっている。
 1  基板
 2  陽極
 3  正孔注入層
 4  正孔輸送層
 5  発光層(第2の有機層)
 6  電子輸送層(第1の有機層)
 7  陰極
 10  有機EL素子

Claims (6)

  1.  陰極、第1の有機層、第2の有機層および陽極を備え、陰極、第1の有機層、第2の有機層および陽極がこの順に配置された有機エレクトロルミネッセンス素子であって、
     第1の有機層は、電子輸送性を示す第1の化合物と、アルカリ金属錯体とを含み、
     第2の有機層は、発光性高分子化合物を含む、有機エレクトロルミネッセンス素子。
  2.  前記発光性高分子化合物のLUMOエネルギー準位をE1(eV)とし、
     前記アルカリ金属錯体のLUMOエネルギー準位をE2(eV)とし、
     前記陰極の仕事関数をE3(eV)としたときに、E1、E2およびE3が、下記式を満たす、請求項1に記載の有機エレクトロルミネッセンス素子。
     式:E1-1.5≦E2≦-│E3│+2.0
  3.  前記アルカリ金属錯体が下記式(1)で示される錯体である、請求項1または2に記載の有機エレクトロルミネッセンス素子。
    Figure JPOXMLDOC01-appb-C000001
     
    (式中、MはLi、Na、K、RbまたはCsを表す。)
  4.  前記第1の化合物のLUMOエネルギー準位が-3.0eV以上であり、かつHOMOエネルギー準位が-5.5eV以下である、請求項1~3のいずれか1項に記載の有機エレクトロルミネッセンス素子。
  5.  前記アルカリ金属錯体が、8-キノリノールナトリウム錯体である、請求項1~4のいずれか1項に記載の有機エレクトロルミネッセンス素子。
  6.  前記第1の有機層の体積に対する前記アルカリ金属錯体の体積割合が、50%~99%である、請求項1~5のいずれか1項に記載の有機エレクトロルミネッセンス素子。
PCT/JP2015/059911 2014-03-31 2015-03-30 有機エレクトロルミネッセンス素子 WO2015152148A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016511879A JPWO2015152148A1 (ja) 2014-03-31 2015-03-30 有機エレクトロルミネッセンス素子

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014071725 2014-03-31
JP2014-071725 2014-03-31

Publications (1)

Publication Number Publication Date
WO2015152148A1 true WO2015152148A1 (ja) 2015-10-08

Family

ID=54240471

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/059911 WO2015152148A1 (ja) 2014-03-31 2015-03-30 有機エレクトロルミネッセンス素子

Country Status (2)

Country Link
JP (1) JPWO2015152148A1 (ja)
WO (1) WO2015152148A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115244598A (zh) * 2020-03-26 2022-10-25 夏普株式会社 发光元件、显示装置

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000150165A (ja) * 1998-11-12 2000-05-30 Samsung Sdi Co Ltd 有機電子発光素子
JP2001217078A (ja) * 2000-02-03 2001-08-10 Matsushita Electric Ind Co Ltd 有機発光素子及びその製造方法
JP2001323137A (ja) * 2000-05-12 2001-11-20 Chemiprokasei Kaisha Ltd 新規高分子緩衝剤およびそれを用いたエレクトロルミネッセント素子
JP2008211135A (ja) * 2007-02-28 2008-09-11 Sumitomo Chemical Co Ltd 有機発光素子およびその製造方法
JP2009514216A (ja) * 2005-10-26 2009-04-02 イーストマン コダック カンパニー 低電圧エレクトロルミネッセンス・デバイスのための有機素子
JP2010278376A (ja) * 2009-06-01 2010-12-09 Daiden Co Ltd 有機電子輸送材料、有機電子材料形成用組成物及び有機電界発光素子
JP2011204843A (ja) * 2010-03-25 2011-10-13 Toray Ind Inc 発光素子
JP2012212813A (ja) * 2011-03-31 2012-11-01 Dainippon Printing Co Ltd 有機エレクトロルミネッセンス素子、有機エレクトロルミネッセンス素子の製造方法および電子注入輸送層用塗工液
JP2013028600A (ja) * 2012-07-20 2013-02-07 Chemiprokasei Kaisha Ltd 新規な複素環含有ヒドロキシフェニル金属誘導体およびそれを用いた電子注入材料、電子輸送材料および有機エレクトロルミネッセンス素子
JP2015041698A (ja) * 2013-08-22 2015-03-02 国立大学法人山形大学 有機電子デバイス

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000150165A (ja) * 1998-11-12 2000-05-30 Samsung Sdi Co Ltd 有機電子発光素子
JP2001217078A (ja) * 2000-02-03 2001-08-10 Matsushita Electric Ind Co Ltd 有機発光素子及びその製造方法
JP2001323137A (ja) * 2000-05-12 2001-11-20 Chemiprokasei Kaisha Ltd 新規高分子緩衝剤およびそれを用いたエレクトロルミネッセント素子
JP2009514216A (ja) * 2005-10-26 2009-04-02 イーストマン コダック カンパニー 低電圧エレクトロルミネッセンス・デバイスのための有機素子
JP2008211135A (ja) * 2007-02-28 2008-09-11 Sumitomo Chemical Co Ltd 有機発光素子およびその製造方法
JP2010278376A (ja) * 2009-06-01 2010-12-09 Daiden Co Ltd 有機電子輸送材料、有機電子材料形成用組成物及び有機電界発光素子
JP2011204843A (ja) * 2010-03-25 2011-10-13 Toray Ind Inc 発光素子
JP2012212813A (ja) * 2011-03-31 2012-11-01 Dainippon Printing Co Ltd 有機エレクトロルミネッセンス素子、有機エレクトロルミネッセンス素子の製造方法および電子注入輸送層用塗工液
JP2013028600A (ja) * 2012-07-20 2013-02-07 Chemiprokasei Kaisha Ltd 新規な複素環含有ヒドロキシフェニル金属誘導体およびそれを用いた電子注入材料、電子輸送材料および有機エレクトロルミネッセンス素子
JP2015041698A (ja) * 2013-08-22 2015-03-02 国立大学法人山形大学 有機電子デバイス

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115244598A (zh) * 2020-03-26 2022-10-25 夏普株式会社 发光元件、显示装置
CN115244598B (zh) * 2020-03-26 2024-02-27 夏普株式会社 发光元件、显示装置

Also Published As

Publication number Publication date
JPWO2015152148A1 (ja) 2017-04-13

Similar Documents

Publication Publication Date Title
JP4957863B2 (ja) 正孔注入輸送層形成用遷移金属含有ナノ粒子及びその製造方法
US8969862B2 (en) Organic electroluminescent element, method for manufacturing organic electroluminescent element, and coating liquid for electron injection and transport layer
KR101688317B1 (ko) 저전압 구동 유기발광소자 및 이의 제조 방법
JP6060361B2 (ja) 有機発光素子
JP5151111B2 (ja) 有機エレクトロルミネッセンス素子
JPWO2004077889A1 (ja) 有機電界発光素子
JP5194414B2 (ja) 有機エレクトロルミネッセンス素子及びその製造方法
KR20170008683A (ko) 유기 el 소자
JP2002352961A (ja) 有機電界発光装置
US20110210323A1 (en) Organic electroluminescent element and display device
TWI692892B (zh) 有機el元件
JP5223163B2 (ja) 発光素子
CN102113148A (zh) 有机电致发光元件及其制造方法
WO2015152148A1 (ja) 有機エレクトロルミネッセンス素子
EP3435437A1 (en) Organic light-emitting element
WO2004052057A1 (ja) 有機電界発光素子
JP2004253373A (ja) 有機el素子
JP6833252B2 (ja) 有機発光素子およびその製造方法
JP7021906B2 (ja) 有機エレクトロルミネッセンス素子
JP2014017419A (ja) 有機電界発光素子
JP2010226145A (ja) 有機発光素子
JP2005339893A (ja) 有機el素子

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15774251

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016511879

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase
122 Ep: pct application non-entry in european phase

Ref document number: 15774251

Country of ref document: EP

Kind code of ref document: A1