WO2015151982A1 - 併走作業システム - Google Patents

併走作業システム Download PDF

Info

Publication number
WO2015151982A1
WO2015151982A1 PCT/JP2015/059264 JP2015059264W WO2015151982A1 WO 2015151982 A1 WO2015151982 A1 WO 2015151982A1 JP 2015059264 W JP2015059264 W JP 2015059264W WO 2015151982 A1 WO2015151982 A1 WO 2015151982A1
Authority
WO
WIPO (PCT)
Prior art keywords
work vehicle
work
control device
vehicle
headland
Prior art date
Application number
PCT/JP2015/059264
Other languages
English (en)
French (fr)
Inventor
横山 和寿
中川 渉
Original Assignee
ヤンマー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ヤンマー株式会社 filed Critical ヤンマー株式会社
Priority to CN201580018288.8A priority Critical patent/CN106455480A/zh
Priority to US15/129,610 priority patent/US20170177003A1/en
Priority to EP15772652.2A priority patent/EP3127413A4/en
Priority to KR1020167030203A priority patent/KR20160140832A/ko
Publication of WO2015151982A1 publication Critical patent/WO2015151982A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0276Control of position or course in two dimensions specially adapted to land vehicles using signals provided by a source external to the vehicle
    • G05D1/0278Control of position or course in two dimensions specially adapted to land vehicles using signals provided by a source external to the vehicle using satellite positioning signals, e.g. GPS
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01BSOIL WORKING IN AGRICULTURE OR FORESTRY; PARTS, DETAILS, OR ACCESSORIES OF AGRICULTURAL MACHINES OR IMPLEMENTS, IN GENERAL
    • A01B69/00Steering of agricultural machines or implements; Guiding agricultural machines or implements on a desired track
    • A01B69/007Steering or guiding of agricultural vehicles, e.g. steering of the tractor to keep the plough in the furrow
    • A01B69/008Steering or guiding of agricultural vehicles, e.g. steering of the tractor to keep the plough in the furrow automatic
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01BSOIL WORKING IN AGRICULTURE OR FORESTRY; PARTS, DETAILS, OR ACCESSORIES OF AGRICULTURAL MACHINES OR IMPLEMENTS, IN GENERAL
    • A01B69/00Steering of agricultural machines or implements; Guiding agricultural machines or implements on a desired track
    • A01B69/003Steering or guiding of machines or implements pushed or pulled by or mounted on agricultural vehicles such as tractors, e.g. by lateral shifting of the towing connection
    • A01B69/004Steering or guiding of machines or implements pushed or pulled by or mounted on agricultural vehicles such as tractors, e.g. by lateral shifting of the towing connection automatic
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01BSOIL WORKING IN AGRICULTURE OR FORESTRY; PARTS, DETAILS, OR ACCESSORIES OF AGRICULTURAL MACHINES OR IMPLEMENTS, IN GENERAL
    • A01B69/00Steering of agricultural machines or implements; Guiding agricultural machines or implements on a desired track
    • A01B69/003Steering or guiding of machines or implements pushed or pulled by or mounted on agricultural vehicles such as tractors, e.g. by lateral shifting of the towing connection
    • A01B69/005Steering or guiding of machines or implements pushed or pulled by or mounted on agricultural vehicles such as tractors, e.g. by lateral shifting of the towing connection by an additional operator
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0268Control of position or course in two dimensions specially adapted to land vehicles using internal positioning means
    • G05D1/0274Control of position or course in two dimensions specially adapted to land vehicles using internal positioning means using mapping information stored in a memory device
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0287Control of position or course in two dimensions specially adapted to land vehicles involving a plurality of land vehicles, e.g. fleet or convoy travelling
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0287Control of position or course in two dimensions specially adapted to land vehicles involving a plurality of land vehicles, e.g. fleet or convoy travelling
    • G05D1/0291Fleet control
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0287Control of position or course in two dimensions specially adapted to land vehicles involving a plurality of land vehicles, e.g. fleet or convoy travelling
    • G05D1/0291Fleet control
    • G05D1/0295Fleet control by at least one leading vehicle of the fleet

Definitions

  • the present invention relates to a control device for a work vehicle, and when the work is performed by an unmanned first work vehicle that travels autonomously and a manned second work vehicle that travels along with the first work vehicle, the second work
  • the present invention relates to a control technique for a vehicle to perform work by traveling ahead of a first work vehicle.
  • the master vehicle is operated by an operator
  • the slave vehicle is an unmanned vehicle
  • the master vehicle and the slave vehicle are each equipped with a control device, and communication between the vehicles is possible by radio
  • the slave vehicle is operated in parallel to the master vehicle.
  • a program that can do this is provided.
  • the technique which adjusts so that the distance between a master vehicle and a slave vehicle may be provided with a distance measuring apparatus in a master vehicle and a slave vehicle may become well-known (for example, refer patent document 1).
  • the traveling direction of the slave vehicle is also distorted when the traveling direction of the master vehicle is distorted.
  • the present invention has been made in view of the above situation, and when two or more operations are performed by a manned work vehicle and an unmanned work vehicle, the work in the back stroke is more accurate than the work in the previous stroke.
  • the manned work vehicle works first, and then the unmanned first work vehicle travels in the process so as to be able to work.
  • the present invention is a side-by-side operation system in which a first work vehicle traveling forward in the front-rear direction and a second work vehicle traveling rearward of the first work vehicle perform work while traveling in the same direction,
  • the control device for the first work vehicle and the control device for the second work vehicle can communicate with each other via a communication device, and the first work vehicle and the second work vehicle are each provided with a headland turning detection means.
  • the first work vehicle enters the headland turning region, the first work vehicle is controlled to stop running and work.
  • the present invention when the second work vehicle finishes the headland turn, the travel is stopped, and a headland turn end signal of the second work vehicle is transmitted to the control device of the first work vehicle, Turn is permitted.
  • a headland turn end signal is transmitted to the control device of the second work vehicle, and the second work vehicle is permitted to run and resume work. is there.
  • the present invention is a parallel work system that performs work by a manned second work vehicle that performs a preceding process work in advance and an unmanned first work vehicle that performs a subsequent process work.
  • a marker serving as a mark in the traveling direction of the work vehicle is provided.
  • the marker is attached to both the left and right sides of the first work vehicle so that it can be extended and stored.
  • the control device for the first work vehicle temporarily stops when the first work vehicle reaches the end of the field, and after the second work vehicle turns the headland, When reaching the front side, the marker protrudes toward the second vehicle.
  • the first work vehicle is equipped with the first satellite positioning system
  • the remote control device brought into the second work vehicle is equipped with the second satellite positioning system with lower accuracy than the first satellite positioning system. Then, the current positions of the first work vehicle and the second work vehicle are measured by the first satellite positioning system and the second satellite positioning system, and the positions of the first work vehicle and the second work vehicle are displayed on the display device.
  • the first work vehicle can work by traveling on an accurate route after the second work vehicle has worked, and the second work vehicle is substantially accurate with the marker as a mark. You can travel to.
  • Control block diagram. The flowchart figure which shows headland turning control.
  • the figure which shows the state after a 2nd work vehicle turns at the agricultural field end of 2nd embodiment of parallel running.
  • the figure which shows the state after a 1st work vehicle turns at the agricultural field end of 2nd embodiment of parallel running.
  • a parallel operation system in which a first work vehicle traveling in the front side and a second work vehicle traveling in the rear side of the first work vehicle travel in the same direction, with the traveling direction of the aircraft as the front-rear direction.
  • the tractor is a first work vehicle 1 that can be unmanned and automatically traveled, and a manned second work vehicle 100 that is operated by the operator along with the first work vehicle.
  • An embodiment in which a rotary tiller 24 is mounted as a work machine of the first work vehicle 1 and a cultivator 140 is mounted as a work machine in the second work vehicle 100 will be described. That is, the tilling operation is performed after shallow plowing with the front cultivator 140 with the longitudinal direction of the field H as the front-rear direction.
  • the work vehicle is not limited to a tractor, and may be a combine.
  • the work machine is not limited to a rotary tiller.
  • the steering wheel 4 is rotated to rotate the front wheels 9 and 9 through the steering device.
  • the steering direction of the first work vehicle 1 is detected by the steering sensor 20.
  • the steering sensor 20 is composed of an angle sensor such as a rotary encoder, and is disposed at the rotation base of the front wheel 9.
  • the detection configuration of the steering sensor 20 is not limited as long as the steering direction is recognized, and the rotation of the steering handle 4 may be detected or the operation amount of the power steering may be detected.
  • the detection value obtained by the steering sensor 20 is input to the control device 30.
  • the control device 30 includes a CPU (central processing unit), a storage device 30m such as a RAM and a ROM, an interface, and the like, and the storage device 30m stores a program, data, and the like for operating the first work vehicle 1.
  • a driver's seat 5 is disposed behind the steering handle 4 and a mission case 6 is disposed below the driver's seat 5.
  • Rear axle cases 8 and 8 are connected to the left and right sides of the transmission case 6, and rear wheels 10 and 10 are supported on the rear axle cases 8 and 8 via axles.
  • the power from the engine 3 is shifted by a transmission (a main transmission or an auxiliary transmission) in the mission case 6 so that the rear wheels 10 and 10 can be driven.
  • the transmission is constituted by, for example, a hydraulic continuously variable transmission, and the movable swash plate of a variable displacement hydraulic pump is operated by a transmission means 44 such as a motor so that the transmission can be changed.
  • the speed change means 44 is connected to the control device 30.
  • the rotational speed of the rear wheel 10 is detected by the vehicle speed sensor 27 and is input to the control device 30 as the traveling speed.
  • the vehicle speed detection method and the arrangement position of the vehicle speed sensor 27 are not limited.
  • the transmission case 6 houses a PTO clutch and a PTO transmission.
  • the PTO clutch is turned on and off by a PTO on / off means 45.
  • the PTO on / off means 45 is connected to the control device 30 to connect and disconnect the power to the PTO shaft. It can be controlled.
  • a front axle case 7 is supported on a front frame 13 that supports the engine 3, front wheels 9 and 9 are supported on both sides of the front axle case 7, and power from the transmission case 6 can be transmitted to the front wheels 9 and 9. It is configured.
  • the front wheels 9 and 9 are steered wheels, which can be turned by turning the steering handle 4, and the front wheels 9 and 9 are steered left and right by a steering actuator 40 comprising a power steering cylinder as a driving means of the steering device. It can be turned.
  • the steering actuator 40 is connected to the control device 30 and is controlled and driven by automatic traveling means.
  • the controller 30 is connected to an engine controller 60 serving as an engine rotation control means, and the engine controller 60 is connected to an engine speed sensor 61, a water temperature sensor, a hydraulic pressure sensor, and the like so that the state of the engine can be detected.
  • the engine controller 60 detects the load from the set rotational speed and the actual rotational speed and controls it so as not to be overloaded, and transmits the state of the engine 3 to the remote operation device 112 described later so that it can be displayed on the display 113. Yes.
  • the fuel tank 15 disposed below the step is provided with a level sensor 29 for detecting the fuel level and is connected to the control device 30.
  • the display means 49 provided on the dashboard of the first work vehicle 1 has a fuel level 15.
  • a fuel gauge for displaying the remaining amount is provided and connected to the control device 30. Then, information regarding the remaining amount of fuel is transmitted from the control device 30 to the remote operation device 112, and the remaining fuel amount and workable time are displayed on the display 113 of the remote operation device 112.
  • display means 49 for displaying an engine tachometer, a fuel gauge, a hydraulic pressure, etc., a monitor indicating an abnormality, a set value, and the like are arranged.
  • a rotary tiller 24 is installed as a work implement on the rear side of the tractor body via the work implement mounting device 23 so as to be able to move up and down to perform the tilling work.
  • An elevating cylinder 26 is provided on the transmission case 6, and the elevating arm 26 constituting the work implement mounting device 23 is rotated by moving the elevating cylinder 26 to extend and lower the rotary tiller 24.
  • the lift cylinder 26 is expanded and contracted by the operation of the lift actuator 25, and the lift actuator 25 is connected to the control device 30.
  • a mobile communication device 33 constituting a satellite positioning system is connected to the control device 30.
  • a mobile GPS antenna 34 and a data receiving antenna 38 are connected to the mobile communication device 33, and the mobile GPS antenna 34 and the data receiving antenna 38 are provided on the cabin 11.
  • the mobile communicator 33 is provided with a position calculating means for transmitting latitude and longitude to the control device 30 so that the current position can be grasped.
  • GPS United States
  • high-precision positioning can be performed by using a satellite positioning system (GNSS) such as a quasi-zenith satellite (Japan) or a Glonus satellite (Russia). In this embodiment, GPS is used. explain.
  • the first work vehicle 1 includes a gyro sensor 31 for obtaining attitude change information of the airframe, and an orientation sensor 32 for detecting a traveling direction, and is connected to the control device 30.
  • the traveling direction can be calculated from the GPS position measurement, the direction sensor 32 can be omitted.
  • the gyro sensor 31 detects the angular velocity of the tilt (pitch) in the longitudinal direction of the first work vehicle 1, the angular velocity of the tilt (roll) in the horizontal direction of the fuselage, and the angular velocity of turning (yaw). By integrating the three angular velocities, it is possible to obtain the tilt angle and the turning angle of the body of the first work vehicle 1 in the front-rear direction and the left-right direction.
  • the gyro sensor 31 include a mechanical gyro sensor, an optical gyro sensor, a fluid gyro sensor, and a vibration gyro sensor.
  • the gyro sensor 31 is connected to the control device 30 and inputs information relating to the three angular velocities to the control device 30.
  • the direction sensor 32 detects the direction (traveling direction) of the first work vehicle 1.
  • a specific example of the direction sensor 32 includes a magnetic direction sensor.
  • the direction sensor 32 is connected to the control device 30 and inputs information related to the orientation of the aircraft to the control device 30.
  • control device 30 calculates the signals acquired from the gyro sensor 31 and the azimuth sensor 32 by the attitude / azimuth calculation means, and the attitude (direction, tilt in the longitudinal direction of the aircraft, the tilt in the lateral direction of the aircraft, the turning direction). )
  • GPS global positioning system
  • GPS was originally developed as a navigation support system for aircraft, ships, etc., and is composed of 24 GPS satellites (four on six orbital planes) orbiting about 20,000 kilometers above the sky. It consists of a control station that performs tracking and control, and a user communication device that performs positioning.
  • Various positioning methods using GPS include single positioning, relative positioning, DGPS (differential GPS) positioning, RTK-GPS (real-time kinematics-GPS) positioning, and any of these methods can be used.
  • the RTK-GPS positioning method (first satellite positioning system) with high measurement accuracy is adopted, and the current position of the first work vehicle 1 is measured.
  • the operator enters the second work vehicle with the remote control device 112, and the remote control device 112 is provided with a communication device 333, a GPS antenna 334, and a data communication antenna 338 for relative positioning (D-GPS positioning, A two-satellite positioning system), which enables the relative position between the first work vehicle 1 and the remote control device 112 to be detected with an inexpensive D-GPS sensor, although the accuracy is lower than the RTK-GPS positioning method.
  • D-GPS positioning A two-satellite positioning system
  • RTK-GPS real-time kinematics-GPS positioning is performed by simultaneously performing GPS observations on a reference station whose position is known and a mobile station whose position is to be obtained. Is transmitted in real time, and the position of the mobile station is obtained in real time based on the position result of the reference station.
  • a mobile communication device 33 serving as a mobile station, a mobile GPS antenna 34, and a data reception antenna 38 are disposed in the first work vehicle 1, and a fixed communication device 35 serving as a reference station, a fixed GPS antenna 36, and a data transmission antenna. 39 is disposed at a predetermined position that does not interfere with the work in the field.
  • the phase is measured (relative positioning) at both the reference station and the mobile station, and the data measured by the fixed communication device 35 of the reference station is transmitted from the data transmission antenna 39. Transmit to the data receiving antenna 38.
  • the mobile GPS antenna 34 arranged in the first work vehicle 1 receives signals from GPS satellites 37, 37. This signal is transmitted to the mobile communication device 33 for positioning. At the same time, signals from GPS satellites 37, 37... Are received by a fixed GPS antenna 36 serving as a reference station, measured by a fixed communication device 35, transmitted to the mobile communication device 33, and the observed data is analyzed and moved. Determine the station location. The position information obtained in this way is transmitted to the control device 30.
  • the control device 30 in the first work vehicle 1 is provided with automatic traveling means for automatically traveling.
  • the automatic traveling means receives radio waves transmitted from the GPS satellites 37, 37... And is set in the mobile communication device 33.
  • the position information of the aircraft is obtained at time intervals, the displacement information and the orientation information of the aircraft are obtained from the gyro sensor 31 and the orientation sensor 32, and along the set route R preset by the aircraft based on the position information, the displacement information, and the orientation information.
  • the steering actuator 40, the speed change means 44, the lifting / lowering actuator 25, the PTO on / off means 45, the engine controller 60, etc. are controlled so as to automatically run and work automatically.
  • position information (map information) on the outer periphery of the field H which is the work range, is also set in advance by a known method and stored in the storage device 30m.
  • the D-GPS positioning between the remote control device 112 and the mobile station is performed independently at both points, the positioning error is obtained at the reference station, and the correction information is sent to the remote control device 112 via the data communication antenna 338.
  • the position of the remote control device 112 is obtained by correction.
  • the position of the remote operation device 112 and the position of the autonomous traveling work vehicle 1 can be displayed on the display device 113 or the display means 49, and the distance between them is calculated.
  • the relative position of 100 can be easily recognized.
  • an obstacle sensor 41 is disposed and connected to the control device 30 so as not to contact the obstacle.
  • the obstacle sensor 41 is composed of a laser sensor or an ultrasonic sensor, and is arranged at the front, side, or rear of the aircraft and connected to the control device 30, and there are obstacles at the front, side, or rear of the aircraft Whether or not an obstacle approaches within a set distance is controlled to stop traveling.
  • the first work vehicle 1 is mounted with a camera 42 for photographing the front, rear, and work machine, and is connected to the control device 30.
  • the video imaged by the camera 42 is displayed on the display 113 of the remote control device 112 provided in the second work vehicle 100.
  • the display screen of the display 113 is small, it is displayed on another large display, the camera image is always or selectively displayed on another dedicated display, or the display means 49 provided in the first work vehicle 1 is used. It is also possible to display it.
  • a plurality of cameras 42 are arranged at the front, rear, or four corners of the aircraft.
  • the configuration for photographing the surroundings is not limited.
  • markers 70L and 70R are arranged on the left and right sides of the rotary tiller 24 as a work machine so that it can be overhanged and stored. That is, the markers 70L and 70R have actuators 71L in which the bases of the rod-like bodies 70a and 70a are pivotally supported on the left and right beams of the rotary tiller 24 or the left and right sides of the tillage cover, and the rod-like bodies 70a and 70a are constituted by electric cylinders or the like. -It is connected to 71R, and the markers 70L and 70R can be moved up and down by operating the actuators 71L and 71R.
  • the actuators 71L and 71R are connected to the control device 30 and are driven up and down during the headland turning described later.
  • a weight 70b is provided at the tip of each of the rod-like bodies 70a and 70a so that it can be easily seen by an operator.
  • the attachment positions of the markers 70L and 70R are not limited to the work machine 140, and can be attached to the front frame 13 or the fender on the machine side.
  • the remote operation device 112 sets the travel route R of the first work vehicle 1, remotely operates the first work vehicle 1, monitors the travel state of the first work vehicle 1 and the operating state of the work implement, It stores work data.
  • the second work vehicle 100 which is a manned traveling vehicle, is operated and operated by an operator, and the first work vehicle 1 can be operated by mounting the remote operation device 112 on the second work vehicle 100. Since the basic configuration of the second work vehicle 100 is substantially the same as that of the first work vehicle 1, detailed description thereof is omitted.
  • the second work vehicle 100 may be configured to include a GPS mobile communication device 33 and a mobile GPS antenna 34.
  • the remote operation device 112 can be attached to and detached from an operation unit such as a dashboard of the second work vehicle 100 and the first work vehicle 1.
  • the remote control device 112 can be operated while attached to the dashboard of the second work vehicle 100, or it can be taken out of the second work vehicle 100 and carried around, or attached to the dashboard of the first work vehicle 1. Can be operated.
  • the remote operation device 112 can be configured by, for example, a notebook or tablet personal computer. In this embodiment, a tablet computer is used.
  • the remote operation device 112 and the first work vehicle 1 are configured to be able to communicate with each other wirelessly, and the first work vehicle 1 and the remote operation device 112 are provided with transceivers 110 and 111 for communication, respectively. ing.
  • the transceiver 111 is configured integrally with the remote operation device 112.
  • the communication means is configured to be able to communicate with each other via a wireless LAN such as WiFi.
  • the remote operation device 112 is provided with a display 113 as a touch panel type operation screen that can be operated by touching the screen on the surface of the housing, and a transceiver 111, a CPU, a storage device, a battery, and the like are housed in the housing.
  • the display 113 can display surrounding images taken by the camera 42, the state of the first work vehicle 1, the state of work, information on GPS, an operation screen, and the like so that the operator can monitor them.
  • the first work vehicle 1 travels along the set travel route R, the second work vehicle 100 travels diagonally behind the first work vehicle 1, and the second work vehicle 100 monitors the first work vehicle 1.
  • the first work vehicle 1 can be remotely operated by a remote operation device 112.
  • the remote control device 112 the first work vehicle 1 can be operated for emergency stop, temporary stop, re-start, change of vehicle speed, change of engine speed, raising / lowering of the work machine, turning on / off of the PTO clutch, etc. Yes.
  • the operator can easily remotely control the first work vehicle 1 by controlling the accelerator actuator, the speed change means 44, the PTO on / off means 45, and the like from the remote operation device 112 via the transceiver 111, the transceiver 110, and the control device 30. It can be done.
  • the second work vehicle 100 is provided with a control device 130, and the control device 130 can communicate with the remote operation device 112 via the communication device 133.
  • the second work vehicle 100 is provided with a steering sensor 120 configured in the same manner as the steering sensor 20 of the first work vehicle 1 and is connected to the control device 130.
  • the control device 130 transmits a steering operation signal from the steering sensor 120 to the remote operation device 112 via the communication device 133, and the control device 130 of the remote operation device 112 turns the headland from the steering operation signal.
  • the headland turning is determined by the detected value of the steering sensor as the headland turning detection means is a first embodiment).
  • the headland turning can be easily recognized as a headland turning because the direction of the body is changed 180 degrees while returning the steering wheel by turning the steering handle to the maximum and traveling a predetermined distance.
  • the steering sensor 120 is composed of an angle sensor such as a rotary encoder, and is used for a steering device for a front wheel 9, a knuckle arm or a steering handle 4 party.
  • the present invention is not limited as long as the rotation is detected or the operation amount of the power steering is detected and the steering direction is recognized.
  • the end of the headland turning of the second work vehicle 100 may be determined by the control device 30 or the control device 130.
  • the structure which equips the 2nd work vehicle 100 with the direction sensor 132 (the case where headland turning is determined by the detection value of a direction sensor as a headland turning detection means is 1st). Two examples).
  • the direction sensor 132 is connected to the control device 130.
  • the bearing of the traveling direction is detected by the bearing sensor 132 and input to the control device 130.
  • an azimuth signal is transmitted to the remote control device 112 via the communication means, and the control device of the remote control device 112 determines from the azimuth signal whether the aircraft has turned the headland.
  • the direction sensor 132 can be easily recognized as a headland turn by changing the direction of the aircraft gradually and changing the direction by 180 degrees.
  • the camera 42 provided in the first work vehicle 1 may be used to photograph the second work vehicle 100 and determine whether the headland has been turned from the image (headland turning).
  • the case where headland turning is determined by the detection value of the camera as the detection means is a third embodiment).
  • the camera 42 may be provided in the upper part of the cabin 11 of the second work vehicle 100 so as to photograph obliquely forward, or the camera 42 may be disposed at the center of the body and rotated to photograph the outer periphery.
  • the image taken by the camera 42 is input to the control device 30, and the control device 30 has the second work vehicle 100 diagonally forward.
  • the control device 30 of the first work vehicle 1 determines that the first work vehicle 1 is stopped by the image processing. Judgment that the headland turn of has ended.
  • a working machine lifting / lowering detecting means for detecting the lifting / lowering of the working machine 140 of the second work vehicle 100 is provided, and the fact that the working machine is lowered after the headland turning is regarded as the end of the headland turning. It is also possible to determine (the case where the headland turning is determined by the detection value of the work implement lifting detection means as the headland turning detection means is a fourth embodiment). That is, the working machine lifting detection means of the second work vehicle 100 includes an elevation switch, an angle sensor 121 that detects the rotation of the work machine mounting device (lift arm or lower link), and the like. When it reaches the end, it raises the work implement and lowers the work implement after turning the headland.
  • the work machine ascending signal and the descending signal are transmitted to the control device 30 of the first work vehicle 1, and the first work vehicle 1 determines that the headland turn has been completed by lowering the work machine of the second work vehicle 100.
  • a PTO on / off detecting means 124 for detecting the on / off of the PTO of the work implement is provided instead of raising and lowering the work implement, and the end of the headland turn is determined by the on / off signal. It may be judged (when the headland turning is judged based on the detection value of the PTO on / off detection means as the headland turning detection means).
  • a vehicle speed sensor 127 is provided as a traveling speed detecting means for detecting the traveling speed of the second work vehicle 100, and the end of the headland turning is determined from the increase or decrease of the vehicle speed or the vehicle speed.
  • the sixth embodiment is the case where the headland turning detection is determined by the detected value of the traveling speed detection means as the headland turning detection means). That is, when the second work vehicle 100 approaches the end of the field, the traveling speed is reduced (or further stopped), the work implement is raised and turned at a low speed (set headland turning speed), and stopped when the headland turning ends. Then lower the work equipment and accelerate to work speed to resume work. Thus, the end of the headland turning can be determined.
  • a shift position detecting means 122 for detecting the shift position of the second work vehicle 100 is provided instead of the traveling speed detecting means, and the end of the headland turning is ended by a change in the shift position signal.
  • a seventh embodiment The case where the headland turning is determined by the detection value of the shift position detecting means as the headland turning detecting means is referred to as a seventh embodiment.
  • an engine speed detecting means 123 for detecting the engine speed of the second work vehicle 100 is provided instead of the work traveling speed, and the headland is increased or decreased by increasing or decreasing the speed.
  • the end of the turn may be determined (the case where the headland turn is determined based on the detection value of the engine speed detection means as the headland turn detection means is the eighth embodiment).
  • the second work vehicle 100 is provided with a mobile receiver, a mobile GPS antenna, and a data reception antenna, and the position information of the second work vehicle 100 is detected by the satellite positioning system, and this position information is used to detect the headland turning. It is also possible to determine that the position where the headland turn has ended is the end of the headland turn (the case where the headland turn detection is determined based on the position information by the satellite positioning system as the headland turn detection means) ).
  • the second work vehicle 100 first completes one reciprocating operation and then turns the headland and stops at the farm field end. Then, the first work vehicle 1 is caused to enter the field H and stopped at the work start position. At this time, the first work vehicle 1 is positioned in front of the second work vehicle 100, and is set to a position that does not hit the second work vehicle 100 when the marker 70R is projected. At the positions of both the vehicles, the operator gets into the second work vehicle 100 and operates the work start switch to start the parallel work by the first work vehicle 1 and the second work vehicle 100. Note that the tip of the marker 70 ⁇ / b> R is located at the left and right center of the second work vehicle 100.
  • the stop of the work is a control in which the control device 30 operates the PTO on / off means 45 to cut off the power to the PTO shaft, and the lift of the work machine is performed by the control device 30 operating the lift actuator 25.
  • the control for extending the cylinder 26 is a control for stopping the travel
  • the control device 30 is a control for operating the speed change means 44 and the braking device 46 to reduce the travel speed to zero. This is control for operating the actuator 25 to reduce the lifting cylinder 26, and the following operations are stopped, the working machine is raised, the working machine is lowered, and the traveling is stopped (both in the first work vehicle 1 and the second work vehicle 100). Is controlled.
  • the work machine 140 When the second work vehicle 100 enters the headland turning area U while continuing the work, the work machine 140 is raised to turn the headland. Judgment of the end of turning of the second work vehicle 100 will be described as a case where the headland turning is detected by the steering sensor 120 provided in the second work vehicle 100 as a first embodiment. As for the other second to ninth embodiments, the headland turning can be judged and replaced as described above. A signal from the steering sensor 120 is transmitted to the remote operation device 112 via the control device 130 and the communication devices 133 and 111, and it is determined whether the control device of the remote operation device 112 has turned the headland (S4).
  • the turning end confirmation switch 114 is provided on the dashboard of the second work vehicle 100 or the remote control device 112.
  • a restart signal is transmitted to the first work vehicle 1 and the first work vehicle 1 is turned on.
  • the control device 30 of the single work vehicle 1 determines that the headland turn has been completed.
  • the turning end confirmation switch 114 is operated by an operator arbitrarily to start turning of the first work vehicle 1. For example, before the second work vehicle 100 finishes turning or during turning.
  • the turning end confirmation switch 114 is turned on to forcibly determine that the turning has ended, and the first work vehicle 1 is turned. Thus, it is possible to reduce the work time by omitting the time that the first work vehicle 1 waits.
  • the first work vehicle 1 starts turning (S6), and when the turn ends as shown in FIG. 6 (S7).
  • the work is resumed (S8) and travels a set distance (S9)
  • the marker 70L on the second work vehicle 100 side is projected (S10). That is, the second work vehicle 100 is overtaken, and the marker 70L is rotated downward and projected at a position where the marker 70L does not hit the second work vehicle 100. Then, the second work vehicle 100 travels with the marker 70L as a target and resumes work.
  • the travel start is control in which the control device 30 releases the braking of the braking device 46 and operates the speed change means 44 to increase the travel speed to the set work speed. Is a control for transmitting the power to the PTO shaft by operating the PTO on / off means 45.
  • the same control is performed for the start of travel and the start / restart of work (both the first work vehicle 1 and the second work vehicle 100). Is done.
  • the first work vehicle 1 Is provided with a control device 30 for positioning the body using a satellite positioning system and automatically traveling along the set travel route R.
  • the first work vehicle 1 traveling obliquely forward is disposed obliquely backward. Since the markers 70R and 70L are provided as markers for the traveling direction of the manned work vehicle that travels, the operator can work while simultaneously operating two units, the work time can be reduced, and the manned work vehicle 100 can be operated with the marker 70R. ⁇ Aiming at 70L, you can drive and work accurately.
  • the tractor that has been conventionally owned is hardly changed, and by adding the autonomous traveling work vehicle 1 and the remote control device 112, two can be operated by one person and work efficiency can be improved. it can.
  • the markers 70R and 70L are attached to both the left and right sides of the first work vehicle 1 so as to be able to be extended and stored, the markers 70R and 70L are stored at the time of turning or other than work and are not disturbed. It can be set as a travel target of the work vehicle 100.
  • control device 30 of the first work vehicle 1 stops once reaching the end of the field, and after the manned work vehicle turns headland, turns the headland and moves to the front side of the manned work vehicle, the marker 70R. -Since 70L protrudes to the manned work vehicle side, the operator does not need to operate the markers 70R and 70L, and the work efficiency can be improved.
  • a headland turning region U is set on the field end side of the set travel route R in the storage device 30 m of the control device 30.
  • the control device 30 of the first work vehicle 1 The braking device 46 is operated to stop traveling, the PTO on / off means 45 is operated to stop the work, and the lifting actuator 25 is operated to raise the rotary tiller 24.
  • the marker 70 is also stored. Whether or not the first work vehicle 1 has entered the headland turning region U (whether it has come out) can be determined from the position information of the first work vehicle 1 of the satellite positioning system.
  • the second work vehicle 100 turns the headland and, when finished, the second work vehicle 100 stops traveling as shown in FIG.
  • the second work vehicle 100 stops within the headland turning area U.
  • the headland turn end signal of the second work vehicle 100 is transmitted to the control device 30 of the first work vehicle 1, the headland turn of the first work vehicle 1 is permitted, and the first work vehicle 1 operates the speed change means 44. Let the headland turn at the turning speed.
  • the end of the headland turning of the second work vehicle 100 is determined by the detection means of the first to ninth embodiments. For example, in the first embodiment, the steering sensor 120 determines that the headland turning is finished when the straight traveling continues for a set distance.
  • the lift actuator 25 is operated to lower the rotary tiller 24, and a marker on the left and right opposite side (second work vehicle 100 side). Overhang 70L.
  • the control device 30 transmits a headland turning end signal to the second work vehicle 100 and the remote control device 112 via the communication device 110 to allow the second work vehicle 100 to travel and work, 100 resumes running and work.
  • the headland turning control is performed every time the headland is reached.
  • ⁇ Third embodiment> When the first work vehicle 1 and the second work vehicle 100 travel on the same set travel route R and perform the same work or another work, the first work vehicle 1 is unmanned and the second work vehicle 100 is unmanned or manned.
  • a third embodiment of the turning control will be described.
  • the first work vehicle 1 and the second work vehicle 100 are provided with mobile receivers 33 and 233, mobile GPS antennas 34 and 234, and data reception antennas 38 and 238, respectively. The position information of each of the one work vehicle 1 and the second work vehicle 100 can be detected.
  • the second work vehicle 100 can also detect the lift actuator 125, the travel stop means 143, the transmission means 144, The steering actuator 240 and the PTO on / off means 245 are provided and connected to the control device 130 so that the first work vehicle 1 and the second work vehicle 100 can be automatically turned without being operated by the operator at the time of turning. .
  • the first work vehicle 1 when work is started by the first work vehicle 1 and the second work vehicle 100 and the first work vehicle 1 enters the headland turning region U at the end of the field, the first work vehicle 1 is the same as in the second embodiment.
  • the control device 30 operates the speed change means 44 and the braking device 46 to stop traveling, operates the PTO on / off means 45 to stop the operation, and operates the lifting actuator 25 to raise the rotary tiller 24. .
  • the marker 70 is also stored.
  • the second work vehicle 100 When the first work vehicle 1 is stopped, the second work vehicle 100 continues the work, and when the second work vehicle 100 enters the headland turning area U, as shown in FIG. Stop and raise work implement 140.
  • the second work vehicle 100 makes a headland turn and ends, as shown in FIG. 12, the second work vehicle 100 stops traveling at a work start position (a position that has left the headland turn area U). Then, the work machine 140 is lowered.
  • the headland turn end signal of the second work vehicle 100 is transmitted to the control device 30 of the first work vehicle 1, the headland turn of the first work vehicle 1 is permitted, and the first work vehicle 1 operates the speed change means 44. Let the headland turn at the turning speed.
  • the end of the headland turning of the second work vehicle 100 is determined by the detection means of any one of the first to ninth embodiments.
  • the traveling is stopped, the lifting actuator 25 is operated to lower the rotary tiller 24, and the work is resumed simultaneously with the start of traveling. .
  • the marker 70 is projected.
  • the control device 30 transmits a second work vehicle 100 overtaking signal via the communication device 110 to allow the second work vehicle 100 to travel and work, and the second work vehicle 100 resumes running and work.
  • the travel is stopped and the work is also stopped. Moreover, after leaving the headland turning area U, the travel is stopped and the work implement is lowered, and then the travel is started simultaneously with the start of the work. Therefore, when a seeding machine, a spreader, or the like is mounted as a work machine, seeds, drugs, etc. are scattered at the entry position to the headland turning area U and the starting position from the headland turning area U. To avoid inaccurate work.
  • the present invention can be used for a remote operation device for remotely operating a construction machine or an agricultural work vehicle that can be remotely operated.

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • General Physics & Mathematics (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Environmental Sciences (AREA)
  • Soil Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Guiding Agricultural Machines (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Abstract

 有人走行作業車両が先行して作業し、第一作業車両1が後行程を第二作業車両100よりも前を走行して作業ができるように、先行して前工程の作業を行う有人作業車両100と、後工程作業を行う無人の第一作業車両1とにより作業を行う併走作業システムであって、前記第一作業車両1には、衛星測位システムを利用して機体の位置を測位し、設定走行経路Rに沿って自動走行させる制御装置30が備えられ、斜め前方を走行する第一作業車両1には、斜め後方を走行する有人作業車両の進行方向の目印となるマーカー70R・70Lが備えられる。

Description

併走作業システム
 本発明は、作業車両の制御装置に関し、自律走行する無人の第一作業車両と、この第一作業車両に随伴して走行する有人の第二作業車両とにより作業を行う場合において、第二作業車両が第一作業車両よりも先行して走行して作業を行うための制御技術に関する。
 従来、マスター車両がオペレータにより運転操作され、スレーブ車両が無人車両として、マスター車両及びスレーブ車両はそれぞれ制御装置を備え、無線により車両間の連絡を可能とし、スレーブ車両はマスター車両に対して平行運転が可能なプログラムが備えられている。そして、マスター車両とスレーブ車両には距離測定装置を備え、マスター車両とスレーブ車両の間の距離が所定距離となるように調整される技術が公知となっている(例えば、特許文献1参照)。
特表2001-507843号公報
 前記技術において、マスター車両に対してスレーブ車両が設定距離を保ち走行するように制御するため、マスター車両の進行方向が歪むとスレーブ車両の進行方向も歪んでしまう。
 本発明は以上の如き状況に鑑みてなされたものであり、二つ以上の作業を有人作業車両と無人作業車両の二台で行う場合、前行程の作業よりも後行程の作業のほうが正確に進行させたい場合、有人作業車両が先行して作業し、その後行程を無人の第一作業車両が走行して作業ができるようにしようとする。
 本発明の解決しようとする課題は以上の如くであり、次にこの課題を解決するための手段を説明する。
 即ち、本発明は、前後方向で前側を進行する第一作業車両と、第一作業車両の後側を進行する第二作業車両が同一方向に走行しながら作業を行う併走作業システムであって、前記第一作業車両の制御装置と前記第二作業車両の制御装置は通信装置を介して通信可能とするとともに、前記第一作業車両と第二作業車両にはそれぞれ枕地旋回検知手段が設けられ、前記第一作業車両が、枕地旋回領域に入ると、第一作業車両は走行及び作業を停止するように制御するものである。
 本発明は、前記第二作業車両が枕地旋回を終了すると走行を停止するとともに、前記第二作業車両の枕地旋回終了信号が第一作業車両の制御装置に送信され、第一作業車両は旋回が許可されるものである。
 本発明は、前記第一作業車両が枕地旋回を終了すると、枕地旋回終了信号が第二作業車両の制御装置に送信され、第二作業車両は走行及び作業の再開が許可されるものである。
 本発明は、先行して前工程の作業を行う有人の第二作業車両と、後工程作業を行う無人の第一作業車両とにより作業を行う併走作業システムであって、前記第一作業車両には、衛星測位システムを利用して機体の位置を測位し、設定走行経路に沿って自動走行させる制御装置が備えられ、斜め前方を走行する第一作業車両には、斜め後方を走行する第二作業車両の進行方向の目印となるマーカーが備えられるものである。
 本発明は、前記マーカーは第一作業車両の左右両側に張出・収納可能に取り付けられるものである。
 本発明は、前記第一作業車両の制御装置は、第一作業車両が圃場端に至ると一旦停止し、第二作業車両が枕地旋回した後に、枕地旋回して第二作業車両よりも前側に至ると前記マーカーを第二車両側に突出するものである。
 前記併走作業システムにおいて、第一作業車両には第一衛星測位システムを搭載し、第二作業車両に持ち込む遠隔操作装置には前記第一衛星測位システムよりも精度の低い第二衛星測位システムを搭載し、第一衛星測位システムと第二衛星測位システムにより、第一作業車両と第二作業車両の現在位置を測位して、第一作業車両第二作業車両の位置を表示装置に表示する。
 以上のような手段を用いることにより、第二作業車両が作業した後で第一作業車両が正確な経路を走行して作業を行うことができ、第二作業車両はマーカーを目印にして略正確に走行することができる。
第一作業車両とGPS衛星と基準局を示す概略側面図。 制御ブロック図。 枕地旋回制御を示すフローチャート図。 併走作業開始時の圃場の状態を示す図。 併走作業の圃場端での旋回前の状態を示す図。 併走作業の圃場端での旋回後の状態を示す図。 併走作業の第二実施形態の圃場端で第一作業車両が停止した状態を示す図。 併走作業の第二実施形態の圃場端で第二作業車両が旋回した後の状態を示す図。 併走作業の第二実施形態の圃場端で第一作業車両が旋回した後の状態を示す図。 他の実施形態の制御ブロック図。 併走作業の第三実施形態の圃場端で第二作業車両が旋回前で停止した状態を示す図。 併走作業の第三実施形態の圃場端で第二作業車両が旋回後に停止した状態を示す図。 併走作業の第三実施形態の圃場端で第一作業車両が旋回後に停止した状態を示す図。
 機体の進行方向を前後方向とし、で前側を進行する第一作業車両と、第一作業車両の後側を進行する第二作業車両が同一方向に走行しながら作業を行う併走作業システムであって、無人で自動走行可能な第一作業車両1、及び、この第一作業車両に随伴してオペレータが搭乗して操向操作する有人の第二作業車両100をトラクタとする。第一作業車両1の作業機としてロータリ耕耘装置24が装着され、第二作業車両100には作業機としてカルチベータ140が装着されている実施例について説明する。つまり、圃場Hの長手方向を前後方向として前側のカルチベータ140で浅耕した後に耕耘作業を行う。但し、作業車両はトラクタに限定するものではなく、コンバイン等でもよく、また、作業機はロータリ耕耘装置に限定するものではなく、畝立て機や草刈機やレーキや播種機や施肥機やワゴン等であってもよい。
 図1、図2において、第一作業車両1となるトラクタの全体構成について説明する。ボンネット2内にエンジン3が内設され、該ボンネット2の後部のキャビン11内にダッシュボード14が設けられ、ダッシュボード14上に操向操作手段となるステアリングハンドル4が設けられている。該ステアリングハンドル4の回動により操舵装置を介して前輪9・9の向きが回動される。第一作業車両1の操舵方向は操向センサ20により検知される。操向センサ20はロータリエンコーダ等の角度センサからなり、前輪9の回動基部に配置される。但し、操向センサ20の検知構成は限定するものではなく操舵方向が認識されるものであればよく、ステアリングハンドル4の回動を検知したり、パワーステアリングの作動量を検知してもよい。操向センサ20により得られた検出値は制御装置30に入力される。制御装置30はCPU(中央演算処理装置)やRAMやROM等の記憶装置30mやインターフェース等を備え、記憶装置30mには第一作業車両1を動作させるためのプログラムやデータ等が記憶される。
 前記ステアリングハンドル4の後方に運転席5が配設され、運転席5下方にミッションケース6が配置される。ミッションケース6の左右両側にリアアクスルケース8・8が連設され、該リアアクスルケース8・8には車軸を介して後輪10・10が支承される。エンジン3からの動力はミッションケース6内の変速装置(主変速装置や副変速装置)により変速されて、後輪10・10を駆動可能としている。変速装置は例えば油圧式無段変速装置で構成して、可変容量型の油圧ポンプの可動斜板をモータ等の変速手段44により作動させて変速可能としている。変速手段44は制御装置30と接続されている。後輪10の回転数は車速センサ27により検知され、走行速度として制御装置30に入力される。但し、車速の検知方法や車速センサ27の配置位置は限定するものではない。
 ミッションケース6内にはPTOクラッチやPTO変速装置が収納され、PTOクラッチはPTO入切手段45により入り切りされ、PTO入切手段45は制御装置30と接続され、PTO軸への動力の断接を制御可能としている。
 前記エンジン3を支持するフロントフレーム13にはフロントアクスルケース7が支持され、該フロントアクスルケース7の両側に前輪9・9が支承され、前記ミッションケース6からの動力が前輪9・9に伝達可能に構成している。前記前輪9・9は操舵輪となっており、ステアリングハンドル4の回動操作により回動可能とするとともに、操舵装置の駆動手段となるパワステシリンダからなる操舵アクチュエータ40により前輪9・9が左右操舵回動可能となっている。操舵アクチュエータ40は制御装置30と接続され、自動走行手段により制御されて駆動される。
 制御装置30にはエンジン回転制御手段となるエンジンコントローラ60が接続され、エンジンコントローラ60にはエンジン回転数センサ61や水温センサや油圧センサ等が接続され、エンジンの状態を検知できるようにしている。エンジンコントローラ60では設定回転数と実回転数から負荷を検出し、過負荷とならないように制御するとともに、後述する遠隔操作装置112にエンジン3の状態を送信してディスプレイ113で表示できるようにしている。
 また、ステップ下方に配置した燃料タンク15には燃料の液面を検知するレベルセンサ29が配置されて制御装置30と接続され、第一作業車両1のダッシュボードに設ける表示手段49には燃料の残量を表示する燃料計が設けられ制御装置30と接続されている。そして、制御装置30から遠隔操作装置112に燃料残量に関する情報が送信されて、遠隔操作装置112のディスプレイ113に燃料残量と作業可能時間が表示される。
 前記ダッシュボード14上にはエンジンの回転計や燃料計や油圧等や異常を示すモニタや設定値等を表示する表示手段49が配置されている。
 また、トラクタ機体後方に作業機装着装置23を介して作業機としてロータリ耕耘装置24が昇降自在に装設させて耕耘作業を行うように構成している。前記ミッションケース6上に昇降シリンダ26が設けられ、該昇降シリンダ26を伸縮させることにより、作業機装着装置23を構成する昇降アームを回動させてロータリ耕耘装置24を昇降できるようにしている。昇降シリンダ26は昇降アクチュエータ25の作動により伸縮され、昇降アクチュエータ25は制御装置30と接続されている。
 制御装置30には衛星測位システムを構成する移動通信機33が接続されている。移動通信機33には移動GPSアンテナ34とデータ受信アンテナ38が接続され、移動GPSアンテナ34とデータ受信アンテナ38は前記キャビン11上に設けられる。該移動通信機33には、位置算出手段を備えて緯度と経度を制御装置30に送信し、現在位置を把握できるようにしている。なお、GPS(米国)に加えて準天頂衛星(日本)やグロナス衛星(ロシア)等の衛星測位システム(GNSS)を利用することで精度の高い測位ができるが、本実施形態ではGPSを用いて説明する。
 第一作業車両1は、機体の姿勢変化情報を得るためにジャイロセンサ31、および進行方向を検知するために方位センサ32を具備し制御装置30と接続されている。但し、GPSの位置計測から進行方向を算出できるので、方位センサ32を省くことができる。
 ジャイロセンサ31は第一作業車両1の機体前後方向の傾斜(ピッチ)の角速度、機体左右方向の傾斜(ロール)の角速度、および旋回(ヨー)の角速度、を検出するものである。該三つの角速度を積分計算することにより、第一作業車両1の機体の前後方向および左右方向への傾斜角度、および旋回角度を求めることが可能である。ジャイロセンサ31の具体例としては、機械式ジャイロセンサ、光学式ジャイロセンサ、流体式ジャイロセンサ、振動式ジャイロセンサ等が挙げられる。ジャイロセンサ31は制御装置30に接続され、当該三つの角速度に係る情報を制御装置30に入力する。
 方位センサ32は第一作業車両1の向き(進行方向)を検出するものである。方位センサ32の具体例としては磁気方位センサ等が挙げられる。方位センサ32は制御装置30に接続され、機体の向きに係る情報を制御装置30に入力する。
 こうして制御装置30は、上記ジャイロセンサ31、方位センサ32から取得した信号を姿勢・方位演算手段により演算し、第一作業車両1の姿勢(向き、機体前後方向及び機体左右方向の傾斜、旋回方向)を求める。
 次に、第一作業車両1の位置情報をGPS(グローバル・ポジショニング・システム)を用いて取得する方法について説明する。
 GPSは、元来航空機・船舶等の航法支援用として開発されたシステムであって、上空約二万キロメートルを周回する二十四個のGPS衛星(六軌道面に四個ずつ配置)、GPS衛星の追跡と管制を行う管制局、測位を行うための利用者の通信機で構成される。
 GPSを用いた測位方法としては、単独測位、相対測位、DGPS(ディファレンシャルGPS)測位、RTK-GPS(リアルタイムキネマティック-GPS)測位など種々の方法が挙げられ、これらいずれの方法を用いることも可能であるが、本実施形態では測定精度の高いRTK-GPS測位方式(第一衛星測位システム)を採用し、第一作業車両1の現在位置を測位する。また、第二作業車両にはオペレータが遠隔操作装置112を持って乗り込み、遠隔操作装置112には通信機333とGPSアンテナ334とデータ通信アンテナ338が備えられ、相対測位(D-GPS測位、第二衛星測位システム)を可能として、安価なD-GPSセンサで前記RTK-GPS測位方式より精度は落ちるが第一作業車両1と遠隔操作装置112との間の相対位置を検出できるようにし、遠隔操作装置112の表示装置113で表示できるようにして、遠隔操作装置112を操作しながら、第一作業車両1と第二作業車両100との間の相対位置を把握して、近づき過ぎや離れ過ぎ等を容易に認識できるようにしている。
 RTK-GPS測位の方法について図1、図2より説明する。
 RTK-GPS(リアルタイムキネマティック-GPS)測位は、位置が判っている基準局と、位置を求めようとする移動局とで同時にGPS観測を行い、基準局で観測したデータを無線等の方法で移動局にリアルタイムで送信し、基準局の位置成果に基づいて移動局の位置をリアルタイムに求める方法である。
 本実施形態においては、第一作業車両1に移動局となる移動通信機33と移動GPSアンテナ34とデータ受信アンテナ38が配置され、基準局となる固定通信機35と固定GPSアンテナ36とデータ送信アンテナ39が圃場の作業の邪魔にならない所定位置に配設される。本実施形態のRTK-GPS(リアルタイムキネマティック-GPS)測位は、基準局および移動局の両方で位相の測定(相対測位)を行い、基準局の固定通信機35で測位したデータをデータ送信アンテナ39からデータ受信アンテナ38に送信する。
 第一作業車両1に配置された移動GPSアンテナ34はGPS衛星37・37・・・からの信号を受信する。この信号は移動通信機33に送信され測位される。そして、同時に基準局となる固定GPSアンテナ36でGPS衛星37・37・・・からの信号を受信し、固定通信機35で測位し移動通信機33に送信し、観測されたデータを解析して移動局の位置を決定する。こうして得られた位置情報は制御装置30に送信される。
 こうして、この第一作業車両1における制御装置30は自動走行させる自動走行手段を備えて、自動走行手段はGPS衛星37・37・・・から送信される電波を受信して移動通信機33において設定時間間隔で機体の位置情報を求め、ジャイロセンサ31及び方位センサ32から機体の変位情報および方位情報を求め、これら位置情報と変位情報と方位情報に基づいて機体が予め設定した設定経路Rに沿って走行するように、操舵アクチュエータ40、変速手段44、昇降アクチュエータ25、PTO入切手段45、エンジンコントローラ60等を制御して自動走行し自動で作業できるようにしている。なお、作業範囲となる圃場Hの外周の位置情報(地図情報)も周知の方法によって予め設定され、記憶装置30mに記憶されている。
 また、遠隔操作装置112と移動局との間でのD-GPS測位は、両点で単独測位が行われ、基準局において測位誤差を求め、その補正情報を遠隔操作装置112にデータ通信アンテナ338を介して送信し、補正して遠隔操作装置112の位置を求める。この遠隔操作装置112の位置と自律走行作業車両1の位置を表示装置113や表示手段49で表示できるようにし、相互の離間距離を演算するようにして、自律走行作業車両1と随伴走行作業車両100の相対位置を容易に認識できるようにしている。
 また、第一作業車両1には障害物センサ41が配置されて制御装置30と接続され、障害物に当接しないようにしている。例えば、障害物センサ41はレーザセンサや超音波センサで構成して機体の前部や側部や後部に配置して制御装置30と接続し、機体の前方や側方や後方に障害物があるかどうかを検出し、障害物が設定距離以内に近づくと走行を停止させるように制御する。
 また、第一作業車両1には前方や後方や作業機を撮影するカメラ42が搭載され制御装置30と接続されている。カメラ42で撮影された映像は第二作業車両100に備えられた遠隔操作装置112のディスプレイ113に表示されるようにしている。ただし、ディスプレイ113の表示画面が小さい場合は大きい別のディスプレイで表示したり、カメラ映像は別の専用のディスプレイで常時または選択的に表示したり、第一作業車両1に設けた表示手段49で表示したりすることも可能である。また、前記カメラ42は一つのカメラ42を機体中心に配置して鉛直軸を中心に回転させて周囲を撮影しても、複数のカメラ42を機体の前部や後部または四隅に配置して機体周囲を撮影する構成であってもよく限定するものではない。
 また、作業機となるロータリ耕耘装置24の左右両側にはマーカー70L・70Rが配置され、張出・収納可能としている。即ち、マーカー70L・70Rは棒状体70a・70aの基部がロータリ耕耘装置24の左右のビームまたは耕耘カバーの左右側部に枢支され、棒状体70a・70aが電動シリンダ等で構成されたアクチュエータ71L・71Rと連結されて、該アクチュエータ71L・71Rを作動させることによりマーカー70L・70Rを昇降回動可能としている。アクチュエータ71L・71Rは制御装置30と接続され、後述する枕地旋回時に昇降駆動される。棒状体70a・70aの先端には目安となり作業者が容易に視認できるように錘体70bが設けられている。但し、マーカー70L・70Rの取付位置は作業機140に限定するものではなく、本機側のフロントフレーム13やフェンダー等に取り付けることも可能である。
 遠隔操作装置112は前記第一作業車両1の走行経路Rを設定したり、第一作業車両1を遠隔操作したり、第一作業車両1の走行状態や作業機の作動状態を監視したり、作業データを記憶したりするものである。
 有人走行車両となる第二作業車両100はオペレータが乗車して運転操作するとともに、第二作業車両100に遠隔操作装置112を搭載して第一作業車両1を操作可能としている。第二作業車両100の基本構成は第一作業車両1と略同じ構成であるので詳細な説明は省略する。なお、第二作業車両100にはGPS用の移動通信機33や移動GPSアンテナ34を備える構成とすることも可能である。
 遠隔操作装置112は、第二作業車両100及び第一作業車両1のダッシュボード等の操作部に着脱可能としている。遠隔操作装置112は第二作業車両100のダッシュボードに取り付けたまま操作することも、第二作業車両100の外に持ち出して携帯して操作することも、第一作業車両1のダッシュボードに取り付けて操作可能としている。遠隔操作装置112は例えばノート型やタブレット型のパーソナルコンピュータで構成することができる。本実施形態ではタブレット型のコンピュータで構成している。
 さらに、遠隔操作装置112と第一作業車両1は無線で相互に通信可能に構成しており、第一作業車両1と遠隔操作装置112には通信するための送受信機110・111がそれぞれ設けられている。送受信機111は遠隔操作装置112に一体的に構成されている。通信手段は例えばWiFi等の無線LANで相互に通信可能に構成されている。遠隔操作装置112は画面に触れることで操作可能なタッチパネル式の操作画面としたディスプレイ113を筐体表面に設け、筐体内に送受信機111やCPUや記憶装置やバッテリ等を収納している。該ディスプレイ113には、前記カメラ42で撮影した周囲の画像や第一作業車両1の状態や作業の状態やGPSに関する情報や操作画面等を表示できるようにし、オペレータが監視できるようにしている。
 図5に示すように、第一作業車両1は設定走行経路Rに沿って走行し、その斜め後方を第二作業車両100が走行して、第二作業車両100が第一作業車両1を監視しながら作業を行う。
 また、前記第一作業車両1は遠隔操作装置112により遠隔操作可能としている。例えば、遠隔操作装置112の操作により第一作業車両1の緊急停止や一時停止や再発進や車速の変更やエンジン回転数の変更や作業機の昇降やPTOクラッチの入り切り等を操作できるようにしている。つまり、遠隔操作装置112から送受信機111、送受信機110、制御装置30を介してアクセルアクチュエータや変速手段44やPTO入切手段45等を制御し作業者が容易に第一作業車両1を遠隔操作できるのである。
 また、第二作業車両100には、制御装置130が備えられ、該制御装置130は遠隔操作装置112と通信装置133を介して通信可能としている。また、第二作業車両100には前記第一作業車両1の操向センサ20と同様に構成した操向センサ120が設けられ制御装置130と接続されている。こうして、第二作業車両100のステアリングハンドルの操向操作が操向センサ120により検知され、制御装置130に入力される。制御装置130からは、通信装置133を介して遠隔操作装置112に操向センサ120からの操向操作信号が送信され、遠隔操作装置112の制御装置130は操向操作信号から機体が枕地旋回したか判断する(枕地旋回検知手段として操向センサの検出値で枕地旋回を判断する場合を第一実施例とする)。例えば、枕地旋回は、ステアリングハンドルを最大限回動して所定距離走行すると戻しながら180度機体の方向を変更するので、容易に枕地旋回と認識できる。なお、この操向センサ120は、前記第一作業車両1の操向センサ20と同様に、ロータリエンコーダ等の角度センサで構成して、前輪9やナックルアームやステアリングハンドル4党の操向装置の回動を検知したり、パワーステアリングの作動量を検知するように構成しており、操舵方向が認識されるものであれば限定するものではない。ただし、第二作業車両100の枕地旋回の終了の判断は制御装置30が行っても制御装置130が行ってもよい。
 また、枕地旋回を判断するために、第二作業車両100に方位センサ132を備える構成であってもよい(枕地旋回検知手段として方位センサの検出値で枕地旋回を判断する場合を第二実施例とする)。方位センサ132は制御装置130と接続されている。こうして、第二作業車両100が旋回して進行方向が変更されると、方位センサ132により進行方向の方位が検知され、制御装置130に入力される。制御装置130からは、通信手段を介して遠隔操作装置112に方位信号が送信され、遠隔操作装置112の制御装置は方位信号から機体が枕地旋回したか判断する。例えば、方位センサ132が機体の方向が徐々に変更され180度向きが変更されたことにより容易に枕地旋回と認識できる。
 また、枕地旋回を判断するために、第一作業車両1に設けたカメラ42により、第二作業車両100を撮影し、その映像から枕地旋回したかを判断してもよい(枕地旋回検知手段としてカメラの検出値で枕地旋回を判断する場合を第三実施例とする)。カメラ42は、第二作業車両100のキャビン11上部に設けて斜め前方を撮影するように配置し、または、カメラ42を機体中心に配置して回転させて外周を撮影するようにしてもよい。こうして、第一作業車両1が枕地手前に到着し停止した状態において、カメラ42により撮影した画像が制御装置30に入力され、制御装置30は斜め前方に第二作業車両100が存在しているか画像処理して判断し、第一作業車両1が枕地で停止した状態で、第二作業車両100の映像が前後逆向きとなると、第一作業車両1の制御装置30は第二作業車両100の枕地旋回が終了したと判断する。
 また、枕地旋回を判断するために、第二作業車両100の作業機140の昇降を検知する作業機昇降検知手段を設けて、枕地旋回後に作業機を下げたことを枕地旋回終了と判断することも可能である(枕地旋回検知手段として作業機昇降検知手段の検出値で枕地旋回を判断する場合を第四実施例とする)。つまり、第二作業車両100の作業機昇降検知手段としては、昇降スイッチや作業機装着装置(リフトアームやロアリンク)の回動を検知する角度センサ121等であり、第二作業車両100が圃場端に至ると作業機を上昇させ、枕地旋回後に作業機を下げる。この作業機の上昇信号と下降信号を第一作業車両1の制御装置30に送信し、第一作業車両1が第二作業車両100の作業機の下げにより枕地旋回が終了したと判断する。
 また、枕地旋回を判断するために、作業機の昇降の代わりに作業機のPTOの入切を検知するPTO入切検知手段124を設けて、その入切の信号により枕地旋回の終了を判断してもよい(枕地旋回検知手段としてPTO入切検知手段の検出値で枕地旋回を判断する場合を第五実施例とする)。
 また、枕地旋回を判断するために、第二作業車両100の走行速度を検知する走行速度検知手段として車速センサ127を設けて、車速または車速の増減から枕地旋回の終了を判断してもよい(枕地旋回検知手段として走行速度検知手段の検出値で枕地旋回を判断する場合を第六実施例とする)。つまり、第二作業車両100が圃場端に近づくと走行速度を落とし(または更に停止し)、作業機を上げて低速(設定した枕地旋回速度)で旋回し、枕地旋回が終了すると停止して作業機を下げて作業速度に加速して作業を再開する。こうして、枕地旋回の終了を判断できる。
 また、枕地旋回を判断するために、走行速度検知手段の代わりに第二作業車両100の変速位置を検知する変速位置検出手段122を設けて、その変速位置信号の変化により枕地旋回の終了を判断してもよい(枕地旋回検知手段として変速位置検出手段の検出値で枕地旋回を判断する場合を第七実施例とする)。
 また、枕地旋回を判断するために、作業走行速度の代わりに第二作業車両100のエンジン回転数を検知するエンジン回転数検知手段123を設けて、その回転数または回転数の増減により枕地旋回の終了を判断してもよい(枕地旋回検知手段としてエンジン回転数検知手段の検出値で枕地旋回を判断する場合を第八実施例とする)。
 また、第二作業車両100に移動受信機、移動GPSアンテナ、データ受信アンテナを設けて、衛星測位システムにより第二作業車両100の位置情報を検出し、この位置情報を枕地旋回を検知する手段とすることもでき、枕地旋回が終了した位置が枕地旋回の終了と判断する(枕地旋回検知手段として衛星測位システムによる位置情報で枕地旋回を判断する場合を第九実施例とする)。
 次に、併走作業時について図3乃至図6より説明する。
 まず、図4に示すように、第二作業車両100は先行して1往復作業を終了させた後に枕地旋回して、圃場端で停止する。そして、第一作業車両1を圃場H内に進入させて作業開始位置に停止させる。このとき、第一作業車両1は第二作業車両100よりも前方に位置させ、マーカー70Rを張り出したときに第二作業車両100に当たらない位置とする。この両車両の位置で、オペレータは第二作業車両100に乗り込み、作業開始スイッチを操作して、第一作業車両1及び第二作業車両100による併走作業を開始する。なお、マーカー70Rの先端は第二作業車両100の左右中央に位置する。
 次に、併走作業時の枕地旋回の制御について図3及び図5、図6より説明する。
 作業が進んで、図5に示すように第一作業車両1が圃場端に至ると(S1)、作業を停止して、ロータリ耕耘装置24を上昇させ(S2)、一旦停止する(S3)。このロータリ耕耘装置24を上昇させると同時にマーカー70L・70Rも上昇させて収納させ、第二作業車両100の走行の邪魔にならないようにする。そして、走行を停止した待機位置において第二作業車両100の旋回終了を待つ。これは、先に第一作業車両1が枕地旋回して次の開始位置で停止すると、第二作業車両100が枕地旋回する手前で作業機同士が当接するおそれがあるためである。なお、前記作業の停止は、制御装置30がPTO入切手段45を作動させてPTO軸への動力を絶つ制御であり、前記作業機の上昇は制御装置30が昇降アクチュエータ25を作動させて昇降シリンダ26を伸長させる制御であり、前記走行停止は、制御装置30が変速手段44及び制動装置46を作動させて走行速度を0にする制御であり、作業機の下降は、制御装置30が昇降アクチュエータ25を作動させて昇降シリンダ26を縮小させる制御であり、以下作業の停止と作業機の上昇と作業機の下降と走行の停止は(第一作業車両1も第二作業車両100も)同様の制御が行われる。
 第二作業車両100は作業を続けながら枕地旋回領域Uに入ると、作業機140を上昇させ枕地旋回を行う。第二作業車両100の旋回終了の判断は、第一実施例として、枕地旋回を第二作業車両100に設けた操向センサ120により検知する場合について説明する。他の第二実施例から第九実施例については前述のとおり同様に枕地旋回を判断でき、置き換えることができる。操向センサ120からの信号は制御装置130、通信装置133・111を介して遠隔操作装置112に送信され、遠隔操作装置112の制御装置が枕地旋回したか判断する(S4)。
 枕地旋回していない場合は第二作業車両100のオペレータが終了信号を発したか判断する(S5)。つまり、第二作業車両100のダッシュボードまたは遠隔操作装置112に旋回終了確認スイッチ114が設けられ、オペレータが旋回終了確認スイッチ114をオンすることにより再開信号が第一作業車両1に送信されて第一作業車両1の制御装置30は枕地旋回が終了したと判断する。なお、旋回終了確認スイッチ114は、オペレータが任意に操作して第一作業車両1の旋回を開始させるようにするものであり、例えば、第二作業車両100が旋回終了する前や、旋回途中であっても、両作業車が干渉するおそれがなければ、旋回終了確認スイッチ114をオンすることで、強制的に旋回終了と判断させ、第一作業車両1を旋回させる。こうして第一作業車両1が待つ時間を省き作業時間の短縮化を図ることができる。
 第二作業車両100の枕地旋回が終了して停止し作業再開信号が送信されると、第一作業車両1は旋回を開始し(S6)、図6に示すように旋回が終了すると(S7)作業を再開し(S8)、設定距離走行すると(S9)、第二作業車両100側のマーカー70Lを張り出す(S10)。つまり、第二作業車両100を追い抜いてマーカー70Lが第二作業車両100に当たらない位置でマーカー70Lを下降回動させて張り出す。そして、第二作業車両100はこのマーカー70Lを目標にして走行して作業を再開する。なお、走行開始は、制御装置30が制動装置46の制動を解除して変速手段44を作動させて走行速度を設定作業速度まで増速させる制御であり、作業の開始または再開は、制御装置30がPTO入切手段45を作動させてPTO軸への動力を伝達する制御であり、以下、走行開始と作業の開始・再開は(第一作業車両1も第二作業車両100も)同様の制御が行われる。
 以上のように、先行して前工程の作業を行う有人作業車両100と、後工程作業を行う無人の第一作業車両1とにより作業を行う併走作業システムであって、前記第一作業車両1には、衛星測位システムを利用して機体の位置を測位し、設定走行経路Rに沿って自動走行させる制御装置30が備えられ、斜め前方を走行する第一作業車両1には、斜め後方を走行する有人作業車両の進行方向の目印となるマーカー70R・70Lが備えられるので、オペレータは二台同時に操作しながら作業ができ、作業の時間短縮を図ることができ、有人作業車両100はマーカー70R・70Lを目標として、正確に走行して作業ができる。また、従来から所有するするトラクタは殆ど変更することなく、自律走行作業車両1及び遠隔操作装置112を追加するだけで、一人で二台を操作することができ、作業の効率を向上することができる。
 また、前記マーカー70R・70Lは第一作業車両1の左右両側に張出・収納可能に取り付けられるので、マーカー70R・70Lは旋回時や作業以外の時に収納して邪魔にならず、作業時には有人作業車両100の走行目標とすることができる。
 また、前記第一作業車両1の制御装置30は、圃場端に至ると一旦停止し、有人作業車両が枕地旋回した後に、枕地旋回して有人作業車両よりも前側に至ると前記マーカー70R・70Lを有人作業車両側に突出するので、オペレータはマーカー70R・70Lの操作が不要で作業効率を向上できる。
<第二実施形態>
 第一作業車両1と第二作業車両100による旋回制御の第二実施形態について説明する。図7に示すように、制御装置30の記憶装置30mには、設定走行経路Rの圃場端側に枕地旋回領域Uが設定されている。第一作業車両1と第二作業車両100により作業が開始され、第一作業車両1が圃場端の枕地旋回領域Uに入ると、第一作業車両1の制御装置30は、変速手段44と制動装置46を作動させて走行を停止し、PTO入切手段45を作動させて作業を停止し、昇降アクチュエータ25を作動させてロータリ耕耘装置24を上昇させる。この時マーカー70も収納される。なお、第一作業車両1が枕地旋回領域Uに入ったかどうか(出たかどうか)は、衛星測位システムの第一作業車両1の位置情報から判断できる。
 第一作業車両1が停止の状態で、第二作業車両100は枕地旋回を行い、終了すると、図8に示すように、第二作業車両100は走行を停止する。なお、第二作業車両100は枕地旋回領域U内で停止する。
 前記第二作業車両100の枕地旋回終了信号は第一作業車両1の制御装置30に送信され、第一作業車両1の枕地旋回が許可され、第一作業車両1は変速手段44を作動させて旋回速度で枕地旋回を開始する。前記第二作業車両100の枕地旋回の終了の判断は、前記第一実施例から第九実施例の検出手段で行われる。例えば、第一実施例では操向センサ120により、直進走行が設定距離続くと枕地旋回終了と判断される。
 図9に示すように、第一作業車両1が枕地旋回領域Uを出ると、昇降アクチュエータ25を作動させてロータリ耕耘装置24を下降し、左右反対側(第二作業車両100側)のマーカー70Lを張り出す。同時に、制御装置30は通信装置110を介して第二作業車両100及び遠隔操作装置112に枕地旋回終了信号が送信されて、第二作業車両100の走行と作業を許可し、第二作業車両100は走行と作業を再開する。こうして、枕地に到達する毎に前記枕地旋回制御が行われる。
<第三実施形態>
 第一作業車両1と第二作業車両100が同じ設定走行経路Rを走行して、同じ作業または別の作業を行う場合で、第一作業車両1は無人で第二作業車両100は無人または有人とする旋回制御の第三実施形態について説明する。
図10に示すように、第一作業車両1と第二作業車両100にはそれぞれ移動受信機33・233、移動GPSアンテナ34・234、データ受信アンテナ38・238を設けて、衛星測位システムにより第一作業車両1と第二作業車両100のそれぞれの位置情報を検出できるようにし、第二作業車両100にも第一作業車両1と同様に、昇降アクチュエータ125、走行停止手段143、変速手段144、操舵アクチュエータ240、PTO入切手段245を設けて制御装置130と接続し、旋回時にオペレータが操作することなく、自動で第一作業車両1と第二作業車両100を旋回させるようにすることもできる。
 即ち、第一作業車両1と第二作業車両100により作業が開始され、第一作業車両1が圃場端の枕地旋回領域Uに入ると、第二実施形態と同様に、第一作業車両1の制御装置30は、変速手段44と制動装置46を作動させて走行を停止し、PTO入切手段45を作動させて作業を停止し、昇降アクチュエータ25を作動させてロータリ耕耘装置24を上昇させる。この時マーカー70も収納される。
 第一作業車両1が停止の状態で、第二作業車両100は作業を続行し、第二作業車両100が枕地旋回領域Uに入ると、図11に示すように、走行を停止し作業も停止させて作業機140を上昇させる。次に、第二作業車両100が枕地旋回を行い、終了すると、図12に示すように、第二作業車両100は作業開始位置(枕地旋回領域Uを出た位置)で走行を停止し、作業機140を下降させる。
 前記第二作業車両100の枕地旋回終了信号は第一作業車両1の制御装置30に送信され、第一作業車両1の枕地旋回が許可され、第一作業車両1は変速手段44を作動させて旋回速度で枕地旋回を開始する。前記第二作業車両100の枕地旋回の終了の判断は、前記第一実施例から第九実施例のいずれかの検出手段で行われる。
 図13に示すように、第一作業車両1が枕地旋回領域Uを出ると、走行を停止し、昇降アクチュエータ25を作動させてロータリ耕耘装置24を下降し、走行開始と同時に作業を再開する。そして、第一作業車両1が第二作業車両100を追い越すと(図6参照)マーカー70を張り出す。制御装置30は通信装置110を介して第二作業車両100追い越し信号が送信されて、第二作業車両100の走行と作業を許可し、第二作業車両100は走行と作業を再開する。
 このように、第三実施形態では、第一作業車両1と第二作業車両100は枕地旋回領域Uに入ると、走行を停止し、作業も停止させる。また、枕地旋回領域Uを出ると走行を停止し作業機を下降させてから、作業開始と同時に走行を開始させる。従って、作業機として播種機や散布機等が装着されたたときに、枕地旋回領域Uへの進入位置と、枕地旋回領域Uを出た出発位置で、種子や薬剤等を撒き散らかすような不正確な作業とならないようにしている。
 本発明は、遠隔操作可能な建設機械や農用作業車等を遠隔操作する遠隔操作装置に利用可能である。
 1   第一作業車両
 30  制御装置
 40  操舵アクチュエータ
 42  カメラ
 100 第二作業車両
 

Claims (7)

  1.  前後方向で前側を進行する第一作業車両と、第一作業車両の後側を進行する第二作業車両が同一方向に走行しながら作業を行う併走作業システムであって、前記第一作業車両の制御装置と前記第二作業車両の制御装置は通信装置を介して通信可能とするとともに、前記第一作業車両と第二作業車両にはそれぞれ枕地旋回検知手段が設けられ、前記第一作業車両が、枕地旋回領域に入ると、第一作業車両は走行及び作業を停止するように制御することを特徴とする併走作業システム。
  2.  前記第二作業車両が枕地旋回を終了すると走行を停止するとともに、前記第二作業車両の枕地旋回終了信号が第一作業車両の制御装置に送信され、第一作業車両は旋回が許可されることを特徴とする請求項1に記載の併走作業システム。
  3.  前記第一作業車両が枕地旋回を終了すると、枕地旋回終了信号が第二作業車両の制御装置に送信され、第二作業車両は走行及び作業の再開が許可されることを特徴とする請求項1または請求項2に記載の併走作業システム。
  4.  先行して前工程の作業を行う有人の第二作業車両と、後工程作業を行う無人の第一作業車両とにより作業を行う併走作業システムであって、前記第一作業車両には、衛星測位システムを利用して機体の位置を測位し、設定走行経路に沿って自動走行させる制御装置が備えられ、斜め前方を走行する第一作業車両には、斜め後方を走行する第二作業車両の進行方向の目印となるマーカーが備えられることを特徴とする併走作業システム。
  5.  前記マーカーは第一作業車両の左右両側に張出・収納可能に取り付けられることを特徴とする請求項4に記載の併走作業システム。
  6.  前記第一作業車両の制御装置は、第一作業車両が圃場端に至ると一旦停止し、第二作業車両が枕地旋回した後に、枕地旋回して第二作業車両よりも前側に至ると前記マーカーを第二車両側に突出することを特徴とする請求項4に記載の併走作業システム。
  7.  請求項1乃至請求項6に記載の併走作業システムにおいて、第一作業車両には第一衛星測位システムを搭載し、第二作業車両に持ち込む遠隔操作装置には前記第一衛星測位システムよりも精度の低い第二衛星測位システムを搭載し、第一衛星測位システムと第二衛星測位システムにより、第一作業車両と第二作業車両の現在位置を測位して、第一作業車両第二作業車両の位置を表示装置に表示することを特徴とする作業車両の制御装置。
     
PCT/JP2015/059264 2014-03-31 2015-03-25 併走作業システム WO2015151982A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201580018288.8A CN106455480A (zh) 2014-03-31 2015-03-25 并行作业系统
US15/129,610 US20170177003A1 (en) 2014-03-31 2015-03-25 Coordinated travel work system
EP15772652.2A EP3127413A4 (en) 2014-03-31 2015-03-25 Coordinated travel work system
KR1020167030203A KR20160140832A (ko) 2014-03-31 2015-03-25 병주 작업 시스템

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2014073716 2014-03-31
JP2014-073716 2014-03-31
JP2014135417A JP6339427B2 (ja) 2014-03-31 2014-06-30 併走作業システム
JP2014-135417 2014-06-30

Publications (1)

Publication Number Publication Date
WO2015151982A1 true WO2015151982A1 (ja) 2015-10-08

Family

ID=54240308

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/059264 WO2015151982A1 (ja) 2014-03-31 2015-03-25 併走作業システム

Country Status (6)

Country Link
US (1) US20170177003A1 (ja)
EP (1) EP3127413A4 (ja)
JP (1) JP6339427B2 (ja)
KR (1) KR20160140832A (ja)
CN (1) CN106455480A (ja)
WO (1) WO2015151982A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10551832B2 (en) 2017-08-29 2020-02-04 Cnh Industrial America Llc Method and system for transporting an autonomous agricultural vehicle

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6219790B2 (ja) * 2014-07-29 2017-10-25 株式会社クボタ 作業車協調システム
US20170090740A1 (en) * 2015-09-30 2017-03-30 Agco Corporation User Interface for Mobile Machines
WO2017079803A1 (en) * 2015-11-12 2017-05-18 Boyle Norman An unmanned roadside signage vehicle system
JP2017127292A (ja) * 2016-01-22 2017-07-27 ヤンマー株式会社 農業用作業車両
US10031528B2 (en) * 2016-02-01 2018-07-24 Komatsu Ltd. Work machine control system, work machine, and work machine management system
JP6607085B2 (ja) * 2016-02-29 2019-11-20 井関農機株式会社 作業車両
KR102079890B1 (ko) 2016-05-10 2020-02-20 얀마 가부시키가이샤 자율 주행 경로 생성 시스템
JP6870287B2 (ja) * 2016-11-17 2021-05-12 井関農機株式会社 作業車両
US11221630B2 (en) 2017-01-20 2022-01-11 Kubota Corporation Work vehicle
US10742494B2 (en) * 2017-04-27 2020-08-11 Veoneer Us, Inc. System and method for configuring at least one sensor system of a vehicle
JP2019004792A (ja) * 2017-06-26 2019-01-17 株式会社クボタ 作業場の走行管理システム
JP6892364B2 (ja) 2017-10-06 2021-06-23 ヤンマーパワーテクノロジー株式会社 作業車両
JP6881233B2 (ja) * 2017-10-27 2021-06-02 井関農機株式会社 作業車両
JP7039406B2 (ja) * 2018-07-11 2022-03-22 株式会社クボタ 作業車両
JP2020095420A (ja) * 2018-12-12 2020-06-18 日立造船株式会社 車両伴走システムおよび車両伴走方法
AU2019100368B4 (en) 2019-01-25 2019-11-28 Norman BOYLE A driverless impact attenuating traffic management vehicle
JP7259484B2 (ja) * 2019-03-29 2023-04-18 井関農機株式会社 作業車両
DK180574B1 (en) * 2019-04-04 2021-08-04 Farmdroid Aps Procedure for weeding and weeding rod
JP7151659B2 (ja) * 2019-08-01 2022-10-12 井関農機株式会社 走行作業機
JP2019213557A (ja) * 2019-09-12 2019-12-19 ヤンマー株式会社 作業経路生成システム
AU2019250202A1 (en) 2019-10-17 2021-05-06 Caterpillar Underground Mining Pty Ltd System and method for changing orientation of machines

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05158537A (ja) * 1991-12-03 1993-06-25 Yanmar Agricult Equip Co Ltd 移動農機の走行制御システム
JPH1139036A (ja) * 1997-07-23 1999-02-12 Kubota Corp 作業車の走行制御装置
US20020165649A1 (en) * 2001-05-07 2002-11-07 The Board Of Trustees Of The Leland Stanford Junior University Method and apparatus for vehicle control, navigation and positioning
US20070233348A1 (en) * 2006-03-30 2007-10-04 Norbert Diekhans Method for controlling agricultural machine systems
JP2011517400A (ja) * 2008-03-20 2011-06-09 ディーア・アンド・カンパニー 第1の農業機械と並行して田畑一面を走行するように操縦することができる第2の農業機械を操縦するための方法および装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL1007225C2 (nl) 1997-10-08 1999-04-09 Maasland Nv Voertuigcombinatie.
DE10224939B4 (de) * 2002-05-31 2009-01-08 Deere & Company, Moline Triebachs-Anhänger
JP4543247B2 (ja) * 2003-12-25 2010-09-15 井関農機株式会社 田植機
KR100609791B1 (ko) * 2004-03-30 2006-08-08 가부시끼 가이샤 구보다 작업차
US8738238B2 (en) * 2009-11-12 2014-05-27 Deere & Company Coordination of vehicle movement in a field
US8510029B2 (en) * 2011-10-07 2013-08-13 Southwest Research Institute Waypoint splining for autonomous vehicle following
JP5768689B2 (ja) * 2011-12-01 2015-08-26 井関農機株式会社 乗用管理機

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05158537A (ja) * 1991-12-03 1993-06-25 Yanmar Agricult Equip Co Ltd 移動農機の走行制御システム
JPH1139036A (ja) * 1997-07-23 1999-02-12 Kubota Corp 作業車の走行制御装置
US20020165649A1 (en) * 2001-05-07 2002-11-07 The Board Of Trustees Of The Leland Stanford Junior University Method and apparatus for vehicle control, navigation and positioning
US20070233348A1 (en) * 2006-03-30 2007-10-04 Norbert Diekhans Method for controlling agricultural machine systems
JP2011517400A (ja) * 2008-03-20 2011-06-09 ディーア・アンド・カンパニー 第1の農業機械と並行して田畑一面を走行するように操縦することができる第2の農業機械を操縦するための方法および装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3127413A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10551832B2 (en) 2017-08-29 2020-02-04 Cnh Industrial America Llc Method and system for transporting an autonomous agricultural vehicle

Also Published As

Publication number Publication date
EP3127413A4 (en) 2018-01-10
US20170177003A1 (en) 2017-06-22
EP3127413A1 (en) 2017-02-08
KR20160140832A (ko) 2016-12-07
CN106455480A (zh) 2017-02-22
JP2015201155A (ja) 2015-11-12
JP6339427B2 (ja) 2018-06-06

Similar Documents

Publication Publication Date Title
JP6339427B2 (ja) 併走作業システム
JP6368964B2 (ja) 作業車両の制御装置
KR102287412B1 (ko) 병주 작업 시스템
JP6239441B2 (ja) 作業車両併走システム
JP6450948B2 (ja) 自律走行作業車両
JP6078025B2 (ja) 併走作業システム
JP6163460B2 (ja) 随伴作業システム
JP2016093125A (ja) 走行経路設定装置
JP6267627B2 (ja) 操作端末
JP6296926B2 (ja) 併走作業システム
JP6267586B2 (ja) ディスプレイ装置
JP2015222499A (ja) 緊急停止装置
JP2016095659A (ja) 複数台併走作業システム
JP6297436B2 (ja) 併走作業システム
JP2015222503A (ja) 自律走行作業車両
JP7065170B2 (ja) 自律走行システム
JP2015221614A (ja) モニタ装置
JP2015222500A (ja) 緊急停止装置
JP6258781B2 (ja) 緊急停止装置
JP2015222502A (ja) 緊急停止装置
JP6618056B2 (ja) 作業システム
JP7060497B2 (ja) 農業用自律走行作業車両
JP2018050632A (ja) 走行経路設定装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15772652

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15129610

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2015772652

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015772652

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20167030203

Country of ref document: KR

Kind code of ref document: A