WO2015151465A1 - 調光装置 - Google Patents
調光装置 Download PDFInfo
- Publication number
- WO2015151465A1 WO2015151465A1 PCT/JP2015/001711 JP2015001711W WO2015151465A1 WO 2015151465 A1 WO2015151465 A1 WO 2015151465A1 JP 2015001711 W JP2015001711 W JP 2015001711W WO 2015151465 A1 WO2015151465 A1 WO 2015151465A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- voltage
- circuit
- capacitor
- terminals
- zero cross
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B45/00—Circuit arrangements for operating light-emitting diodes [LED]
- H05B45/30—Driver circuits
- H05B45/37—Converter circuits
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B39/00—Circuit arrangements or apparatus for operating incandescent light sources
- H05B39/04—Controlling
- H05B39/041—Controlling the light-intensity of the source
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B39/00—Circuit arrangements or apparatus for operating incandescent light sources
- H05B39/04—Controlling
- H05B39/041—Controlling the light-intensity of the source
- H05B39/044—Controlling the light-intensity of the source continuously
- H05B39/048—Controlling the light-intensity of the source continuously with reverse phase control
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B45/00—Circuit arrangements for operating light-emitting diodes [LED]
- H05B45/10—Controlling the intensity of the light
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B45/00—Circuit arrangements for operating light-emitting diodes [LED]
- H05B45/30—Driver circuits
- H05B45/37—Converter circuits
- H05B45/3725—Switched mode power supply [SMPS]
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02B—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
- Y02B20/00—Energy efficient lighting technologies, e.g. halogen lamps or gas discharge lamps
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02B—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
- Y02B20/00—Energy efficient lighting technologies, e.g. halogen lamps or gas discharge lamps
- Y02B20/30—Semiconductor lamps, e.g. solid state lamps [SSL] light emitting diodes [LED] or organic LED [OLED]
Definitions
- the present invention relates to a light control device configured to dim a lighting load, that is, to adjust a light output of the lighting load.
- Document 1 a dimming device configured to dimm an illumination load
- the dimming device described in Literature 1 includes a pair of terminals, a control circuit unit, a control power supply unit that supplies control power to the control circuit unit, and a dimming operation unit that sets the dimming level of the lighting load. I have.
- the control circuit section and the control power supply section are connected in parallel between the pair of terminals.
- a series circuit of an AC power source and a lighting load is connected between the pair of terminals.
- the illumination load includes a plurality of LED (Light-Emitting-Diode) elements and a power supply circuit that lights each LED element.
- the power supply circuit includes a smoothing circuit of a diode and an electrolytic capacitor.
- the control circuit unit includes a switch unit that controls the phase of the AC voltage supplied to the lighting load, a switch drive unit that drives the switch unit, and a control unit that controls the switch drive unit and the control power supply unit.
- the control power supply is connected in parallel to the switch.
- the control power supply unit converts the AC voltage of the AC power supply into a control power supply.
- the control power supply unit includes an electrolytic capacitor that stores the control power supply.
- the control unit is supplied with control power from the control power unit through an electrolytic capacitor.
- the control unit includes a microcomputer.
- the microcomputer performs anti-phase control for cutting off the power supply to the illumination load during the period of every half cycle of the AC voltage according to the dimming level set by the dimming operation unit.
- Document 2 a two-wire anti-phase control device has been proposed as this type of light control device (for example, see Japanese Patent Application Publication No. 2011-238353, hereinafter referred to as “Document 2”).
- the 2-wire antiphase control device described in Document 2 includes a main current switching circuit, a dimming variable pulse delay circuit, and a DC power supply generation circuit.
- the main current switching circuit includes a main current circuit and two MOSFETs connected in reverse series. Two MOSFETs connected in reverse series are connected in parallel with a series circuit of an AC power source and a lighting load.
- the dimming variable pulse delay circuit is configured to determine the timing for discharging the gate charge of each MOSFET.
- the DC power supply generation circuit is configured by an integration circuit of a resistor and a capacitor.
- the direct current power generation circuit is configured to supply the direct current power generated at the voltage across the capacitor to the dimming variable pulse delay circuit.
- the microcomputer of the control part in the light control apparatus described in the literature 1 carries out antiphase control of the illumination load. Therefore, in the light control device, when the absolute value of the AC voltage of the AC power supply is other than zero, the switch unit is switched from the conductive state to the cut-off state, and the predetermined period of the period from the switch unit to the conductive state is cut off. In addition, the control power is stored in the electrolytic capacitor of the control power supply unit. Further, in the two-wire antiphase control device described in Document 2, the capacitor of the DC power supply generation circuit is charged in the entire period until each MOSFET changes from the cutoff state to the conductive state.
- the dimming device of Document 1 when a series circuit of an AC power source and a lighting load is connected between a pair of terminals, a smoothing circuit is provided in the lighting load. Depending on the conduction angle of the part, current may not flow to the lighting load, and the control power supply may not be sufficiently stored in the electrolytic capacitor. As a result, in the light control device, the operation of controlling the switch drive unit by the control unit may become unstable, and the lighting state of the illumination load may not be maintained.
- An object of the present invention is to provide a light control device capable of maintaining the lighting state of a lighting load more stably.
- the light control device includes first and second terminals, a switch unit, an adjustment unit, a power supply unit, and a control unit.
- the first and second terminals are configured such that a series circuit of an AC power source and a lighting load is connected therebetween.
- the switch unit includes a normally-off type switching element connected between the first and second terminals.
- the adjustment unit is configured to vary a conduction angle of the switch unit.
- the power supply unit is connected between the first and second terminals, and includes a rectifier circuit, a constant voltage circuit, and a capacitor.
- the rectifier circuit is configured to full-wave rectify the voltage between the first and second terminals.
- the constant voltage circuit is configured to generate a DC voltage from the voltage that is full-wave rectified by the rectifier circuit.
- the capacitor is configured to be charged by the constant voltage circuit.
- the control unit is configured to control the switch unit by being supplied with electric power from the capacitor of the power supply unit, and includes a zero-cross detection circuit, a detection circuit, a control circuit, and a drive circuit.
- the zero cross detection circuit is configured to detect a zero cross of a voltage between the first and second terminals when the series circuit is connected between the first and second terminals.
- the detection circuit is configured to detect a voltage across the capacitor.
- the control circuit is configured to generate a PWM signal having an on-duty ratio corresponding to the conduction angle obtained from the adjustment unit.
- the drive circuit is configured to drive the switching element according to the PWM signal.
- the control unit is configured to control the switch unit according to the conduction angle obtained from the adjustment unit so that the switching element is turned on and then cut off during an AC voltage half cycle of the AC power supply.
- the control circuit further includes a determination circuit that determines whether a voltage across the capacitor detected by the detection circuit is less than a threshold value.
- the control circuit detects the zero-crossing of the voltage between the first and second terminals by the zero-crossing detection circuit, and determines that the voltage across the capacitor has become equal to or higher than the threshold by the determination circuit.
- the generation of a pulse for turning on the switching element is included, and the generation of the pulse is stopped when a time corresponding to the conduction angle has elapsed from the start of the generation of the pulse. ,It is configured.
- the light control device 10 is, for example, a light control device.
- the dimmer is configured to be attached to a mounting frame for an embedded wiring device.
- the light control device 10 is configured to control the first and second terminals 1 and 2, the switch unit 3 electrically connected between the first and second terminals 1 and 2, and the switch unit 3.
- a control unit 4, a power supply unit 5 configured to supply power to the control unit 4, and an adjustment unit 6 configured to vary the conduction angle (phase angle) of the switch unit 3 are provided.
- the conduction angle of the switch unit 3 corresponds to a period during which the switch unit 3 is in a conduction state.
- the power supply unit 5 is electrically connected between the first and second terminals 1 and 2.
- the power supply unit 5 is a constant voltage source.
- a series circuit of the AC power supply 30 and the illumination load 31 can be electrically connected between the first and second terminals 1 and 2.
- the AC power supply 30 is, for example, a commercial power supply, and is used to apply an AC voltage Va to the illumination load 31 via the light control device 10.
- the illumination load 31 is, for example, an LED illumination device.
- the LED lighting device may be, for example, an LED bulb.
- the dimmer 10 does not include the AC power supply 30 and the illumination load 31 as constituent requirements.
- the LED light bulb is used as an LED lighting apparatus, it is not restricted to this.
- the LED lighting device may be, for example, a downlight, a ceiling light, or the like.
- the switch unit 3 includes a plurality (two in this embodiment) of normally-off type switching elements 7.
- Each switching element 7 is, for example, an n-channel MOSFET (Metal
- each switching element 7 is connected in reverse series by connecting the source electrodes to each other.
- the light control apparatus 10 uses n channel MOSFET as each switching element 7, it is not restricted to this.
- Each switching element 7 may be, for example, an IGBT (Insulated Gate Gate Bipolar Transistor).
- the control unit 4 is configured to drive the illumination load 31 by control similar to reverse phase control or reverse phase control by controlling the switch unit 3.
- each switching element 7 is turned on from the OFF state when the AC voltage Va of the AC power supply 30 is zero, and each switching element 7 is turned on when the AC voltage Va of the AC power supply 30 is other than zero. It means that the current flowing through the lighting load 31 (the power supplied to the lighting load 31) is controlled by turning it off.
- each switching element 7 is turned on for a variable period (ON period) shorter than the half cycle from the start of each AC voltage half cycle, and from the end of the variable period. Blocked until the end of the half cycle.
- the control unit 4 includes, for example, a microcomputer on which an appropriate program is mounted.
- the program is stored in a memory provided in advance in the microcomputer.
- the power supply unit 5 includes a rectifier circuit 12 configured to full-wave rectify the voltage V1 between the first and second terminals 1 and 2, a capacitor 14, and a DC voltage from a voltage rectified by the rectifier circuit 12. (Hereinafter referred to as “first DC voltage”) and a constant voltage circuit 13 configured to apply the first DC voltage to the capacitor 14.
- the capacitor 14 is, for example, an electrolytic capacitor.
- the rectifier circuit 12 is, for example, a diode bridge.
- One of the pair of input ends of the diode bridge is electrically connected to the first terminal (first input terminal) 1, while the other is electrically connected to the second terminal (second input terminal) 2. It is connected.
- One of the pair of output terminals in the diode bridge (positive output terminal in the example of FIG. 1) is electrically connected to the zero cross detection circuit 9.
- a pair of output terminals of the diode bridge are electrically connected to the input part of the constant voltage circuit 13.
- the constant voltage circuit 13 is, for example, a three-terminal regulator.
- the input terminal and common terminal (ground terminal) of the three-terminal regulator are electrically connected to the positive output terminal and the negative output terminal of the diode bridge, respectively.
- the positive electrode and the negative electrode of capacitor 14 (the positive output terminal and the negative output terminal of power supply unit 5) are electrically connected to the output terminal and the ground terminal of the three-terminal regulator, respectively.
- the ground terminal of the three-terminal regulator is electrically connected to the source electrode of each switching element 7.
- the dimmer 10 uses a three-terminal regulator as the constant voltage circuit 13, but is not limited thereto.
- the constant voltage circuit 13 may be a DC-DC converter, for example.
- the positive output terminal of the power supply unit 5 (the positive electrode of the capacitor 14) is electrically connected to the control unit 4. That is, the control unit 4 is configured to operate with power from the power supply unit 5 (voltage across the capacitor 14). Further, the positive output terminal of the power supply unit 5 (the positive electrode of the capacitor 14) is electrically connected to the adjustment unit 6.
- the control unit 4 includes a drive circuit 8, a zero cross detection circuit 9, a detection circuit 21, and a control circuit 11.
- the drive circuit 8 is configured to drive the two switching elements 7.
- the zero cross detection circuit 9 is configured to detect a zero cross of the voltage V1 between the first and second terminals 1 and 2.
- the detection circuit 21 is configured to detect the voltage V2 across the capacitor 14.
- the control circuit 11 is configured to supply a PWM (Pulse Width Modulation) signal S ⁇ b> 1 to the drive circuit 8.
- the drive circuit 8 is configured to turn on and off each switching element 7 in accordance with the PWM signal S 1 from the control circuit 11. For this reason, the drive circuit 8 is electrically connected to the gate electrode of each switching element 7.
- the drive circuit 8 is electrically connected to the positive output terminal of the power supply unit 5 (the positive electrode of the capacitor 14). Further, the drive circuit 8 is electrically connected to the source electrode of each switching element 7.
- the zero cross detection circuit 9 is electrically connected to the positive output terminal of the power supply unit 5 (the positive electrode of the capacitor 14). Further, the zero cross detection circuit 9 is electrically connected to the control circuit 11. Further, the zero cross detection circuit 9 is electrically connected to the source electrode of each switching element 7. The zero cross detection circuit 9 is connected between a pair of output terminals of the rectifier circuit 12 (diode bridge). The zero cross detection circuit 9 detects the zero cross of the voltage V1 between the first and second terminals 1 and 2 by detecting the zero cross of the voltage between the pair of output terminals of the rectifier circuit 12.
- the detection circuit 21 is electrically connected to the positive output terminal of the power supply unit 5 (the positive electrode of the capacitor 14).
- the detection circuit 21 is electrically connected to the control circuit 11. Furthermore, the detection circuit 21 is electrically connected to the source electrode of each switching element 7.
- the detection circuit 21 is configured to detect the voltage V2 across the capacitor 14.
- the control circuit 11 is electrically connected to the positive output terminal of the power supply unit 5 (the positive electrode of the capacitor 14) and the adjustment unit 6, respectively.
- the control circuit 11 is electrically connected to the drive circuit 8. Furthermore, the control circuit 11 is electrically connected to the source electrode of each switching element 7.
- control unit 4 may include, for example, a control IC (Integrated Circuit). Moreover, you may comprise the control part 4 combining a discrete component, for example.
- the adjustment unit 6 includes a variable resistor 20 and an operation unit attached to the volume of the variable resistor 20.
- the variable resistor 20 is configured to vary the resistance value for generating a DC voltage (hereinafter, “second DC voltage”) corresponding to the conduction angle of the switch unit 3.
- the variable resistor 20 is, for example, a potentiometer having three terminals.
- the potentiometer is used as a voltage divider. In the potentiometer, two terminals (hereinafter, a first terminal and a second terminal) are connected to both ends of the resistance element, and the remaining terminals (hereinafter, a third terminal) can be mechanically moved along the resistance element. Connected to sliding contact.
- the first terminal of the potentiometer is electrically connected to the positive output terminal of the power supply unit 5 (the positive electrode of the capacitor 14).
- the second terminal of the potentiometer is electrically connected to the negative output terminal (source electrode of each switching element 7) of the power supply unit 5.
- the third terminal of the potentiometer is electrically connected to the control circuit 11.
- the value of the second DC voltage (voltage value) is set by the resistance value of the variable resistor 20. That is, in the dimming device 10, the conduction angle of the switch unit 3 is adjusted by the resistance value of the variable resistor 20.
- the plurality of second DC voltage values and the plurality of PWM signals S ⁇ b> 1 associated with the plurality of second DC voltage values are stored in the memory.
- a data table including the duty ratio is stored.
- the on-duty ratio is the ratio of the pulse width (on period) Ton to the pulse period PC.
- the pulse period PC corresponds to an AC voltage half cycle of the AC power supply 30.
- the control circuit 11 turns on the switching element 7 included in the PWM signal S1 (conducts the switch unit 3) at the time when the voltage V2 across the capacitor 14 becomes equal to or higher than the threshold value or after that.
- the start times t1 and t11 of the on period Ton of the PWM signal S1 do not necessarily coincide with the start times t0 and t10 of the AC voltage half cycle of the AC power supply 30.
- the maximum value among the plurality of second DC voltage values corresponds to the maximum value of the second DC voltage varied by the adjusting unit 6, and the minimum value among the plurality of second DC voltage values is determined by the adjusting unit 6. This corresponds to the minimum value of the variable second DC voltage.
- the control circuit 11 is configured to determine the on-duty ratio of the PWM signal S1 corresponding to the value of the second DC voltage from the adjustment unit 6 based on the data table.
- the control circuit 11 is configured to supply the drive circuit 8 with a PWM signal S1 whose on-duty ratio corresponds to the value of the second DC voltage. In short, the control circuit 11 is configured to supply the drive circuit 8 with the PWM signal S1 having an on-duty ratio corresponding to the conduction angle of the switch unit 3 set by the adjustment unit 6.
- the data table is included in a plurality of PWM signals S1 respectively associated with a plurality of second DC voltage values and a plurality of second DC voltage values (for example, one-to-one). And a pulse width (ON period) of a pulse for turning on the switching element 7.
- the control circuit 11 generates a PWM signal S1 having a pulse width corresponding to the conduction angle of the switch unit 3 whose cycle PC corresponds to the cycle of the AC voltage half cycle and whose ON period Ton is set by the adjustment unit 6. 8 is configured to supply to 8.
- the resistance value of the variable resistor 20 is changed by operating the operation unit.
- size of the conduction angle of the switch part 3 is changed by operating the said operation part.
- variable resistor 20 In the light control device 10, a rotary potentiometer is used as the variable resistor 20.
- the variable resistor 20 may be a linear potentiometer, for example.
- the control circuit 11 includes a determination circuit 22 configured to determine whether or not the voltage V2 across the capacitor 14 detected by the detection circuit 21 is less than a preset threshold value.
- the determination circuit 22 is, for example, a comparator.
- the threshold value is stored in the memory, for example. That is, the determination circuit 22 compares (continuously) the voltage V2 across the capacitor 14 with a threshold value.
- the control circuit 11 After the control circuit 11 detects that the zero cross of the voltage V1 between the first and second terminals 1 and 2 is detected by the zero cross detection circuit 9, and the determination circuit 22 determines that the voltage V2 across the capacitor 14 is equal to or higher than the threshold, Generation of a pulse included in the PWM signal S1 for turning on the switching element 7 is started. For example, after the determination circuit 22 determines that the voltage V2 across the capacitor 14 is less than the threshold value, the control circuit 11 detects the zero cross of the voltage V1 between the first and second terminals 1 and 2 by the zero cross detection circuit 9.
- control circuit 11 is configured to stop the generation of the pulse when a time corresponding to the conduction angle obtained from the adjusting unit 6 (on time Ton) has elapsed since the start of the generation of the pulse. ing.
- FIG. 2 shows an example of the waveform of the AC voltage Va of the AC power supply 30 and the waveform of the PWM signal S1 from the control circuit 11.
- the control circuit 11 detects when the zero-crossing of the voltage V1 between the first and second terminals 1 and 2 is detected by the zero-crossing detection circuit 9 and the voltage V2 across the capacitor 14 becomes equal to or higher than the threshold value.
- the generation of a pulse included in the PWM signal S1 for turning on the switching element 7 (conducting the switch unit 3) is started.
- the control circuit 11 stops the generation of the pulse included in the PWM signal S1 for turning on the switching element 7, and when both the first condition and the second condition are satisfied, It is configured to start generation of the next pulse.
- the first condition is that the zero cross of the voltage V1 between the first and second terminals 1 and 2 is detected by the zero cross detection circuit 9.
- the second condition is that the determination circuit 22 determines that the voltage V2 across the capacitor 14 is greater than or equal to a threshold value.
- Va on the vertical axis represents the AC voltage of the AC power supply 30.
- S1 on the vertical axis in FIG. 2 represents the PWM signal from the control circuit 11.
- Each horizontal axis in FIG. 2 represents time.
- t0 and t10 represent times when the zero cross of the voltage V1 between the first and second terminals 1 and 2 is detected by the zero cross detection circuit 9.
- T1 and t11 in FIG. 2 represent the time when the voltage V2 across the capacitor 14 becomes equal to or higher than the threshold value.
- the control circuit 11 starts generating a pulse for turning on the switching element 7 (making the switch unit 3 conductive) when the voltage V2 across the capacitor 14 becomes equal to or higher than the threshold value.
- t1 and t11 also represent a point in time when the switch unit 3 is switched from the cutoff state to the conductive state.
- T2 and t12 in FIG. 2 represent the time when the switch unit 3 is switched from the conductive state to the blocked state.
- the determination circuit 22 once determines that the voltage V2 across the capacitor 14 is less than the threshold value, the voltage V1 between the first and second terminals 1 and 2 from the point in time when the voltage V1 between the first and second terminals crosses zero.
- switch part 3 changes from a cutoff state to a conduction state. That is, in the light control device 10, when the voltage V2 across the capacitor 14 is less than the threshold value, the voltage V2 across the capacitor 14 exceeds the threshold value even if the voltage V1 between the first and second terminals 1 and 2 crosses zero.
- the switch unit 3 does not go from the cut-off state to the conductive state until In other words, in the light control device 10, when the voltage V2 across the capacitor 14 is less than the threshold, even if the voltage V1 between the first and second terminals 1 and 2 crosses zero, the voltage V2 across the capacitor 14 exceeds the threshold. Since the switch unit 3 is in the cut-off state until the voltage becomes, the capacitor 14 is charged by the constant voltage circuit 13. Thereby, in the light modulation apparatus 10, when the switch part 3 changes from the interruption
- the light control apparatus 10 it becomes possible to maintain the lighting state of the illumination load 31 more stably as compared with the light control apparatus of Document 1. Moreover, in the light modulation apparatus 10, since the lighting state of the illumination load 31 can be maintained more stably compared with the light modulation apparatus of literature 1, the kind of the illumination load 31 which can maintain a lighting state is increased. Is possible.
- the determination circuit 22 detects the voltage across the capacitor 14 during a period after the zero cross of the voltage V1 between the first and second terminals 1 and 2 is detected by the zero cross detection circuit 9 in an AC voltage half cycle with the AC power supply 30. It is preferably configured to determine whether V2 is less than a threshold value. When the determination circuit 22 determines that the voltage V2 across the capacitor 14 is equal to or greater than the threshold value in the AC voltage half cycle, the control circuit 11 uses the first and second terminals 1 and 2 as the start time of the next AC voltage half cycle. When the zero cross detection circuit 9 detects the next zero cross of the voltage V1 between two, it is preferable that the generation of a pulse included in the PWM signal S1 is started.
- the control circuit 11 determines that the voltage across the capacitor 14 is detected by the determination circuit 22 immediately before the zero cross of the voltage V1 between the first and second terminals 1 and 2 is detected by the zero cross detection circuit 9.
- the generation of the pulse included in the PWM signal S1 is started when the zero crossing of the voltage V1 between the first and second terminals 1 and 2 is detected.
- the dimmer 10 detects the occurrence of a pulse after detecting that the voltage V2 across the capacitor 14 is equal to or higher than the threshold after the zero crossing of the voltage V1 between the first and second terminals 1 and 2 is detected.
- the switch unit 3 can be switched in the vicinity of the zero cross where the current flowing through the illumination load 31 is small compared to the case of starting the operation, it is possible to reduce the noise.
- “When the determination circuit 22 determines that the voltage V2 across the capacitor 14 is greater than or equal to the threshold” means the time when the determination circuit 22 determines that the voltage V2 across the capacitor 14 is greater than or equal to the threshold, but is not limited thereto. . “When the determination circuit 22 determines that the voltage V2 across the capacitor 14 is equal to or greater than the threshold”, for example, from when the determination circuit 22 determines that the voltage V2 across the capacitor 14 is equal to or greater than the threshold until a predetermined period elapses. It may be a point in time. Similarly, “when the zero crossing of the voltage V1 between the first and second terminals is detected” means the time point when the voltage V1 between the first and second terminals crosses zero, but is not limited thereto. “When the zero crossing of the voltage V1 between the first and second terminals is detected” means, for example, a point in time from when the voltage V1 between the first and second terminals crosses zero until a predetermined period elapses. There may be.
- the determination circuit 22 determines whether or not the voltage V2 across the capacitor 14 is less than the threshold (continuously). ) Preferably configured to determine.
- the control circuit 11 is preferably configured to start generating a pulse included in the PWM signal S1 when the determination circuit 22 determines that the voltage V2 across the capacitor 14 is equal to or greater than the threshold value.
- the determination circuit 22 determines whether or not the voltage V2 across the capacitor 14 is less than the threshold before the zero cross of the voltage V1 between the first and second terminals 1 and 2 is detected by the zero cross detection circuit 9 (continuous). Preferably) is configured to determine. Further, when the determination circuit 22 determines that the voltage V2 across the capacitor 14 is equal to or higher than the threshold before the zero cross of the voltage V1 between the first and second terminals 1 and 2 is detected, the zero cross detection circuit 9 It is preferable that the determination as to whether or not the voltage V2 across the capacitor 14 is less than the threshold value is stopped after the zero crossing of the voltage V1 between the first and second terminals 1 and 2 is detected. .
- the control circuit 11 is configured to start generating a pulse included in the PWM signal S1 when the zero-cross detection circuit 9 detects a zero-cross of the voltage V1 between the first and second terminals 1 and 2. It is preferable.
- the period until the voltage V1 between the two terminals 1 and 2 crosses zero becomes longer. Since the capacitor 14 is charged during this period, in the above case, the voltage V2 across the capacitor 14 is greater than the threshold before the zero crossing of the voltage V1 between the first and second terminals 1 and 2 is detected. It has become. Therefore, in the light control device 10, when the light control level of the illumination load 31 is low, the pulse for turning on the switching element 7 when the zero cross of the voltage V1 between the first and second terminals 1 and 2 is detected. Can be started.
- the switch unit 3 can be switched from the cut-off state to the conductive state, and the voltage V1 between the first and second terminals 1 and 2 is increased. Compared to the case where the generation of a pulse is started after detecting that the voltage V2 across the capacitor 14 is equal to or higher than the threshold after the zero cross is detected, it is possible to reduce the noise.
- an LED illumination device is used as the illumination load 31, but this is not a limitation.
- the illumination load 31 may be, for example, an incandescent bulb.
- the incandescent light bulb may be, for example, a halogen light bulb or a krypton light bulb.
- the light control device 10 includes the first and second terminals 1 and 2, the switch unit 3, the adjustment unit 6, the power supply unit 5, and the control unit 4.
- the first and second terminals 1 and 2 are configured such that a series circuit of the AC power supply 30 and the illumination load 31 is connected therebetween.
- the switch unit 3 includes (at least one) normally-off type switching element 7 connected between the first and second terminals 1 and 2.
- the adjustment unit 6 is configured to vary the conduction angle of the switch unit 3.
- the power supply unit 5 is connected between the first and second terminals 1 and 2, and includes a rectifier circuit 12, a constant voltage circuit 13, and a capacitor 14.
- the rectifier circuit 12 is configured to full-wave rectify the voltage V1 between the first and second terminals 1 and 2.
- the constant voltage circuit 13 is configured to generate a DC voltage (first DC voltage) from the voltage that has been full-wave rectified by the rectifier circuit 12.
- the capacitor 14 is configured to be charged by the constant voltage circuit 13.
- the control unit 4 is configured to control the switch unit 3 by being supplied with power from the capacitor 14 of the power supply unit 5, and includes a zero-cross detection circuit 9, a detection circuit 21, a control circuit 11, and a drive circuit 8. ing.
- the zero cross detection circuit 9 is configured to detect a zero cross of the voltage V1 between the first and second terminals 1 and 2 when the series circuit is connected between the first and second terminals 1 and 2.
- the detection circuit 21 is configured to detect the voltage V2 across the capacitor 14.
- the control circuit 11 is configured to generate a PWM signal S1 having an on-duty ratio (Ton / PC) corresponding to the conduction angle obtained from the adjustment unit 6.
- the drive circuit 8 is configured to drive the switching element 7 in accordance with the PWM signal S1.
- the control unit 4 switches the switching unit 3 so that the switching element 7 is turned on and then cut off during the AC voltage half cycle of the AC power supply 30 (see PC in FIG. 2). Is configured to control.
- the control circuit 11 further includes a determination circuit 22 that determines whether or not the voltage V2 across the capacitor 14 detected by the detection circuit 21 is less than a preset threshold value.
- the control circuit 11 After the control circuit 11 detects that the zero cross of the voltage V1 between the first and second terminals 1 and 2 is detected by the zero cross detection circuit 9, and the determination circuit 22 determines that the voltage V2 across the capacitor 14 is equal to or higher than the threshold value, The generation of a pulse included in the PWM signal S1 for turning on the switching element 7 (conducting the switch unit 3) is started.
- the control circuit 11 is configured to stop the generation of the pulse when the time corresponding to the conduction angle (on period Ton) elapses from the time when the generation of the pulse is started.
- the control circuit 11 detects the zero cross of the voltage V1 between the first and second terminals 1 and 2 by the zero cross detection circuit 9, and the voltage V2 across the capacitor 14 is detected by the determination circuit 22. After it is determined that the threshold value is exceeded, generation of a pulse included in the PWM signal S1 for turning on the switching element 7 is started. That is, in the dimming device 10 of the present embodiment, even after the control circuit 11 once determines that the voltage V2 across the capacitor 14 is less than the threshold value by the determination circuit 22, the zero-cross detection circuit 9 causes the first and second terminals.
- the both-end voltage V2 becomes equal to or higher than the threshold value, and generation of a pulse included in the PWM signal S1 for turning on the switching element 7 is started. It is configured.
- condenser 14 is the said.
- a current flows through the illumination load 31 until the threshold value is exceeded, and this current can be supplied to the power supply unit 5.
- the determination circuit 22 is in a period after the zero cross of the voltage V1 between the first and second terminals 1 and 2 is detected by the zero cross detection circuit 9 in an AC voltage half cycle of the AC power supply 30. It is configured to determine whether or not the voltage V2 across the capacitor 14 is less than the threshold value. In addition, when the determination circuit 22 determines that the voltage V2 across the capacitor 14 is equal to or higher than the threshold value in the AC voltage half cycle, the control circuit 11 uses the first and second terminals as the start points of the next AC voltage half cycle. When the zero cross detection circuit 9 detects the next zero cross of the voltage between 1 and 2, the generation of the pulse included in the PWM signal S1 is started.
- production of the pulse for turning on the switching element 7 is started immediately after the zero crossing of the voltage V1 between the 1st and 2nd terminals 1 and 2 is detected, for example. It becomes possible. Therefore, the dimmer 10 starts generating a pulse after detecting that the voltage V2 across the capacitor 14 is equal to or higher than the threshold after the zero crossing of the voltage V1 between the first and second terminals 1 and 2 is detected. Compared with the case where it does, it becomes possible to shorten time from the time of detecting the zero crossing of the voltage V1 to the time of outputting a pulse from the control circuit 11.
- the dimmer 10 generates a pulse after detecting that the voltage V2 across the capacitor 14 has exceeded the threshold after the zero crossing of the voltage V1 between the first and second terminals 1 and 2 is detected. Since the switch unit 3 can be switched in the vicinity of the zero cross where the current flowing through the illumination load 31 is small compared to the case of starting, the noise can be reduced.
- the determination circuit 22 determines whether or not the voltage V2 across the capacitor 14 is less than the threshold value. It is comprised so that it may determine.
- the control circuit 11 is configured to start generating a pulse included in the PWM signal S1 when the determination circuit 22 determines that the voltage across the capacitor 14 is equal to or higher than the threshold value.
- the determination circuit 22 determines whether the voltage V2 across the capacitor 14 is less than the threshold before the zero-cross detection circuit 9 detects the zero-cross of the voltage V1 between the first and second terminals 1 and 2. It is comprised so that it may determine. When the determination circuit 22 determines that the voltage V2 across the capacitor 14 is equal to or higher than the threshold value, the zero cross of the voltage V1 between the first and second terminals 1 and 2 is detected by the zero cross detection circuit 9. It is configured to stop determining whether or not the voltage V2 across the capacitor 14 is less than the threshold value later.
- the control circuit 11 detects that the zero cross of the voltage V1 between the first and second terminals 1 and 2 is detected by the zero cross detection circuit 9. Is detected, the generation of a pulse included in the PWM signal S1 is started.
- the light control device 10 for example, when the light control level of the lighting load 31 is low, the voltage V1 between the first and second terminals 1 and 2 is zero-crossed from the time when the switch unit 3 is switched from the conductive state to the cut-off state. The period until is longer. Since the capacitor 14 is charged during this period, in the above case, the voltage V2 across the capacitor 14 is greater than the threshold before the zero crossing of the voltage V1 between the first and second terminals 1 and 2 is detected. It has become. Therefore, in the light control device 10, when the light control level of the illumination load 31 is low, the pulse for turning on the switching element 7 when the zero cross of the voltage V1 between the first and second terminals 1 and 2 is detected. Can be started.
- the switch unit 3 can be switched from the cut-off state to the conductive state, and the voltage V1 between the first and second terminals 1 and 2 is increased. As compared with the case where the generation of a pulse is started after detecting that the voltage across the capacitor 14 is equal to or higher than the threshold after the zero cross is detected, it is possible to reduce the noise.
Landscapes
- Circuit Arrangement For Electric Light Sources In General (AREA)
Abstract
調光装置(10)は、スイッチング素子(7)を含むスイッチ部(3)、制御部(4)、電源部(5)を備える。電源部(5)は、定電圧回路(13)により充電されるコンデンサ(14)を備える。制御部(4)は、駆動回路(8)、ゼロクロス検出回路(9)、検出回路(21)、制御回路(11)を備え、コンデンサ(14)から電力を供給される。駆動回路(8)は、PWM信号(S1)に従って、スイッチング素子(7)を駆動する。制御回路(11)は、ゼロクロス検出回路(9)によりゼロクロスが検出され、コンデンサ(14)の両端電圧(V2)が閾値以上になった後、PWM信号(S1)に含まれる、スイッチング素子(7)をオンするためのパルスの発生を開始する。
Description
本発明は、照明負荷を調光する、すなわち照明負荷の光出力を調整するように構成される調光装置に関する。
従来、照明負荷を調光するように構成される調光装置が知られている(例えば、日本国特許出願公開番号2013-149498参照、以下“文献1”という)。
文献1に記載された調光装置は、一対の端子と、制御回路部と、制御回路部に制御電源を供給する制御電源部と、照明負荷の調光レベルを設定する調光操作部とを備えている。
一対の端子間には、制御回路部および制御電源部それぞれが並列に接続されている。また、一対の端子間には、交流電源と照明負荷との直列回路が接続される。照明負荷は、複数のLED(Light Emitting Diode)素子と、各LED素子を点灯させる電源回路とを備えている。電源回路は、ダイオードと電解コンデンサとの平滑回路を備えている。
制御回路部は、照明負荷に供給する交流電圧を位相制御するスイッチ部と、スイッチ部を駆動するスイッチドライブ部と、スイッチドライブ部および制御電源部を制御する制御部とを備えている。
制御電源部は、スイッチ部に並列に接続されている。制御電源部は、交流電源の交流電圧を制御電源に変換する。制御電源部は、制御電源を蓄積する電解コンデンサを備えている。
制御部は、制御電源部から電解コンデンサを通じて制御電源が供給される。制御部は、マイクロコンピュータを備えている。マイクロコンピュータは、調光操作部で設定された調光レベルに応じて、交流電圧の半サイクル毎の期間途中で、照明負荷への給電を遮断する逆位相制御を行う。
また、従来、この種の調光装置として、2線式逆位相制御装置が提案されている(例えば、日本国特許出願公開番号2011-238353参照、以下“文献2”という)。
文献2に記載された2線式逆位相制御装置は、主電流スイッチング回路と、調光可変パルス遅延回路と、直流電源生成回路とを備えている。
主電流スイッチング回路は、主電流回路と、逆直列接続された2つのMOSFETとを備えている。逆直列接続された2つのMOSFETは、交流電源と照明負荷との直列回路と並列に接続される。調光可変パルス遅延回路は、各MOSFETのゲート電荷を放電するタイミングを決定するように構成されている。直流電源生成回路は、抵抗とコンデンサとの積分回路により構成されている。また、直流電源生成回路は、コンデンサの両端電圧に生成された直流電源を調光可変パルス遅延回路に供給するように構成されている。
文献1に記載された調光装置における制御部のマイクロコンピュータは、照明負荷を逆位相制御する。そのため、調光装置では、交流電源の交流電圧の絶対値がゼロ以外のときに、スイッチ部が導通状態から遮断状態となり、スイッチ部が遮断状態から導通状態となるまでの期間のうちの所定期間に、制御電源部の電解コンデンサに制御電源が蓄積される。また、文献2に記載された2線式逆位相制御装置では、各MOSFETが遮断状態から導通状態になるまでの全期間で、直流電源生成回路のコンデンサが充電される。
しかしながら、文献1の調光装置では、交流電源と照明負荷との直列回路を一対の端子間に接続すると、照明負荷に平滑回路が設けられているため、スイッチ部が遮断状態のときに、スイッチ部の導通角によっては照明負荷に電流が流れない場合があり、電解コンデンサに制御電源が十分に蓄積されていない可能性がある。これにより、調光装置では、制御部によりスイッチドライブ部を制御する動作が、不安定になる可能性があり、照明負荷の点灯状態を維持できない可能性がある。
本発明の目的は、照明負荷の点灯状態を、より安定して維持することが可能な調光装置を提供することにある。
本発明の一態様の調光装置は、第1および第2端子と、スイッチ部と、調整部と、電源部と、制御部とを備える。前記第1および第2端子は、交流電源と照明負荷との直列回路が間に接続されるように構成される。前記スイッチ部は、前記第1および第2端子間に接続されたノーマリオフ型のスイッチング素子を備える。前記調整部は、前記スイッチ部の導通角を可変するように構成される。前記電源部は、前記第1および第2端子間に接続され、整流回路と、定電圧回路と、コンデンサとを備える。前記整流回路は、前記第1および第2端子間の電圧を全波整流するように構成される。前記定電圧回路は、前記整流回路により全波整流された電圧から直流電圧を生成するように構成される。前記コンデンサは、前記定電圧回路によって充電されるように構成される。前記制御部は、前記電源部の前記コンデンサから電力を供給されて前記スイッチ部を制御するように構成され、ゼロクロス検出回路と、検出回路と、制御回路と、駆動回路とを備える。前記ゼロクロス検出回路は、前記直列回路が前記第1および第2端子間に接続されたときに前記第1および第2端子間の電圧のゼロクロスを検出するように構成される。前記検出回路は、前記コンデンサの両端電圧を検出するように構成される。前記制御回路は、前記調整部から得られる前記導通角に対応するオンデューティ比のPWM信号を生成するように構成される。前記駆動回路は、前記PWM信号に従って、前記スイッチング素子を駆動するように構成される。前記制御部は、前記調整部から得られる前記導通角に従って、前記交流電源の交流電圧半サイクルの間に、前記スイッチング素子が導通し次いで遮断するように、前記スイッチ部を制御するように構成される。前記制御回路は、前記検出回路により検出された前記コンデンサの両端電圧が閾値未満であるか否かを判定する判定回路をさらに備える。前記制御回路は、前記ゼロクロス検出回路により前記第1および第2端子間の電圧のゼロクロスが検出され、前記判定回路により前記コンデンサの両端電圧が前記閾値以上になったと判定された後、前記PWM信号に含まれる、前記スイッチング素子をオンするためのパルスの発生を開始し、前記パルスの発生を開始した時点から前記導通角に対応する時間が経過した時点で、前記パルスの発生を停止するように、構成されている。
以下、本実施形態の調光装置10について、図1および図2を参照しながら説明する。
調光装置10は、例えば、調光器である。調光器は、埋込型配線器具用の取付枠に取り付けられるように構成されている。
調光装置10は、第1および第2端子1,2と、第1および第2端子1,2間に電気的に接続されたスイッチ部3と、スイッチ部3を制御するように構成される制御部4と、制御部4に電力を供給するように構成される電源部5と、スイッチ部3の導通角(位相角)を可変するように構成される調整部6とを備えている。スイッチ部3の導通角は、スイッチ部3が導通状態である期間に相当する。
第1および第2端子1,2間には、電源部5が電気的に接続されている。図1の例では、電源部5は定電圧源になっている。また、第1および第2端子1,2間には、交流電源30と照明負荷31との直列回路を電気的に接続することができる。交流電源30は、例えば、商用電源であり、調光装置10を介して照明負荷31に交流電圧Vaを印加するのに使用されている。照明負荷31は、例えば、LED照明装置である。LED照明装置は、例えば、LED電球であってもよい。なお、調光装置10は、交流電源30と照明負荷31とを構成要件として含まない。また、調光装置10では、LED照明装置としてLED電球を用いているが、これに限らない。LED照明装置は、例えば、ダウンライト、シーリングライトなどであってもよい。
スイッチ部3は、ノーマリオフ型のスイッチング素子7を複数(本実施形態では、2つ)備えている。各スイッチング素子7は、例えば、nチャネルMOSFET(Metal Oxide Semiconductor Field Effect Transistor)である。
調光装置10では、2つのスイッチング素子7,7が、互いのソース電極同士を接続して逆直列に接続されている。また、調光装置10は、各スイッチング素子7としてnチャネルMOSFETを用いているが、これに限らない。各スイッチング素子7は、例えば、IGBT(Insulated Gate Bipolar Transistor)であってもよい。
制御部4は、スイッチ部3を制御することで、照明負荷31を逆位相制御または逆位相制御に類似する制御で駆動するように構成されている。逆位相制御とは、交流電源30の交流電圧Vaがゼロのときに各スイッチング素子7をオフ状態からオン状態にし、交流電源30の交流電圧Vaがゼロ以外のときに各スイッチング素子7をオン状態からオフ状態にすることによって照明負荷31に流れる電流(照明負荷31に供給される電力)を制御することを意味する。逆位相制御の一具体例では、各スイッチング素子7は、各交流電圧半サイクルの開始時点からその半サイクルよりも短い可変期間(オン期間)の間、導通され、その可変期間の終了時点からその半サイクルの終了時点までの間、遮断される。
制御部4は、例えば、適宜のプログラムが搭載されたマイクロコンピュータを含む。プログラムは、例えば、マイクロコンピュータに予め設けられたメモリに記憶されている。
電源部5は、第1および第2端子1,2間の電圧V1を全波整流するように構成される整流回路12と、コンデンサ14と、整流回路12により全波整流された電圧から直流電圧(以下、「第1直流電圧」)を生成し、第1直流電圧をコンデンサ14に印加するように構成される定電圧回路13とを備えている。コンデンサ14は、例えば、電解コンデンサである。
整流回路12は、例えば、ダイオードブリッジである。ダイオードブリッジにおける一対の入力端のうちの一方は、第1端子(第1入力端子)1と電気的に接続されている一方、他方は、第2端子(第2入力端子)2と電気的に接続されている。ダイオードブリッジにおける一対の出力端のうちの一方(図1の例では正極出力端子)は、ゼロクロス検出回路9と電気的に接続されている。ダイオードブリッジにおける一対の出力端は、定電圧回路13の入力部と電気的に接続されている。
定電圧回路13は、例えば、3端子レギュレータである。3端子レギュレータの入力端子および共通端子(グランド端子)は、それぞれ、ダイオードブリッジの正極出力端子および負極出力端子と電気的に接続されている。コンデンサ14の正電極および負電極(電源部5の正出力端子および負出力端子)は、それぞれ、3端子レギュレータの出力端子およびグランド端子と電気的に接続されている。また本実施形態では、3端子レギュレータのグランド端子は、各スイッチング素子7のソース電極と電気的に接続されている。なお、調光装置10は、定電圧回路13として3端子レギュレータを用いているが、これに限らない。定電圧回路13は、例えば、DC-DCコンバータであってもよい。
電源部5の正出力端子(コンデンサ14の正電極)は、制御部4と電気的に接続されている。つまり、制御部4は、電源部5からの電力(コンデンサ14の両端電圧)で動作するように構成されている。また、電源部5の正出力端子(コンデンサ14の正電極)は、調整部6と電気的に接続されている。
制御部4は、駆動回路8と、ゼロクロス検出回路9と、検出回路21と、制御回路11とを備えている。駆動回路8は、2つのスイッチング素子7,7を駆動するように構成される。ゼロクロス検出回路9は、第1および第2端子1,2間の電圧V1のゼロクロスを検出するように構成される。検出回路21は、コンデンサ14の両端電圧V2を検出するように構成される。制御回路11は、PWM(Pulse Width Modulation)信号S1を駆動回路8へ供給するように構成される。
要するに、駆動回路8は、制御回路11からのPWM信号S1に従って、各スイッチング素子7をオンおよびオフするように構成されている。このため、駆動回路8は、各スイッチング素子7のゲート電極と電気的に接続されている。また、駆動回路8は、電源部5の正出力端子(コンデンサ14の正電極)と電気的に接続されている。さらに、駆動回路8は、各スイッチング素子7のソース電極と電気的に接続されている。
ゼロクロス検出回路9は、電源部5の正出力端子(コンデンサ14の正電極)と電気的に接続されている。また、ゼロクロス検出回路9は、制御回路11と電気的に接続されている。さらに、ゼロクロス検出回路9は、各スイッチング素子7のソース電極と電気的に接続されている。ゼロクロス検出回路9は、整流回路12(ダイオードブリッジ)の一対の出力端間に接続されている。ゼロクロス検出回路9は、整流回路12の一対の出力端間の電圧のゼロクロスを検出することで、第1および第2端子1,2間の電圧V1のゼロクロスを検出する。
検出回路21は、電源部5の正出力端子(コンデンサ14の正電極)と電気的に接続されている。また、検出回路21は、制御回路11と電気的に接続されている。さらに、検出回路21は、各スイッチング素子7のソース電極と電気的に接続されている。検出回路21は、コンデンサ14の両端電圧V2を検出するように構成される。
制御回路11は、電源部5の正出力端子(コンデンサ14の正電極)および調整部6それぞれと電気的に接続されている。また、制御回路11は、駆動回路8と電気的に接続されている。さらに、制御回路11は、各スイッチング素子7のソース電極と電気的に接続されている。
なお、調光装置10では、制御部4にマイクロコンピュータを用いているが、これに限らない。制御部4は、例えば、制御用IC(Integrated Circuit)を含んでもよい。また、制御部4は、例えば、ディスクリート部品を組み合わせて構成してもよい。
調整部6は、可変抵抗器20と、可変抵抗器20のボリュームに取り付けられた操作部とを備えている。可変抵抗器20は、スイッチ部3の導通角に対応する直流電圧(以下、「第2直流電圧」)を発生するための抵抗値を可変とするように構成されている。可変抵抗器20は、例えば、3つの端子を備えたポテンショメータである。ポテンショメータは、分圧器として使用される。ポテンショメータは、2つの端子(以下、第1端子と第2端子)が抵抗素子の両端に接続され、残りの端子(以下、第3端子)が抵抗素子に沿って機械的に移動することができる摺動接点に接続されている。
ポテンショメータの第1端子は、電源部5の正出力端子(コンデンサ14の正電極)と電気的に接続されている。ポテンショメータの第2端子は、電源部5の負出力端子(各スイッチング素子7のソース電極)と電気的に接続されている。ポテンショメータの第3端子は、制御回路11と電気的に接続されている。調光装置10では、可変抵抗器20の抵抗値によって、第2直流電圧の値(電圧値)が設定される。つまり、調光装置10では、可変抵抗器20の抵抗値によって、スイッチ部3の導通角の大きさが調整される。
調光装置10では、上記メモリに、複数の第2直流電圧の値と、その複数の第2直流電圧の値とそれぞれ(例えば1対1で)対応付けられた複数の、PWM信号S1のオンデューティ比とを含むデータテーブルが、記憶されている。図2の例では、オンデューティ比は、パルス周期PCに対するパルス幅(オン期間)Tonの割合である。また、本実施形態では、パルス周期PCは、交流電源30の交流電圧半サイクルに対応する。ただし、後述するように制御回路11は、コンデンサ14の両端電圧V2が閾値以上となった時点或いはそれ以降に、PWM信号S1に含まれる、スイッチング素子7をオンする(スイッチ部3を導通させる)ためのパルスの発生を開始するので、PWM信号S1のオン期間Tonの開始時点t1,t11と、交流電源30の交流電圧半サイクルの開始時点t0,t10とは、必ずしも一致しない。複数の第2直流電圧の値のうち最大値は、調整部6によって可変される第2直流電圧の最大値に対応し、複数の第2直流電圧の値のうち最小値は、調整部6によって可変される第2直流電圧の最小値に対応する。制御回路11は、データテーブルに基づいて、調整部6からの第2直流電圧の値に対応するPWM信号S1のオンデューティ比を決定するように構成されている。また、制御回路11は、オンデューティ比が第2直流電圧の値に対応するPWM信号S1を、駆動回路8へ供給するように構成されている。要するに、制御回路11は、調整部6により設定されたスイッチ部3の導通角に対応するオンデューティ比のPWM信号S1を駆動回路8へ供給するように構成されている。
別例において、データテーブルは、複数の第2直流電圧の値と、その複数の第2直流電圧の値とそれぞれ(例えば1対1で)対応付けられた複数の、PWM信号S1に含まれる、スイッチング素子7をオンするためのパルスのパルス幅(オン期間)と、を含む。制御回路11は、その周期PCが交流電圧半サイクルの周期に対応し且つそのオン期間Tonが調整部6により設定されたスイッチ部3の導通角に対応するパルス幅のPWM信号S1を、駆動回路8へ供給するように構成されている。
調光装置10では、上記操作部が操作されることによって、可変抵抗器20の抵抗値が変更される。言い換えれば、調光装置10では、上記操作部が操作されることによって、スイッチ部3の導通角の大きさが変更される。
なお、調光装置10では、可変抵抗器20としてロータリーポテンショメータを用いているが、これに限らない。可変抵抗器20は、例えば、リニアポテンショメータであってもよい。
制御回路11は、検出回路21により検出されたコンデンサ14の両端電圧V2が予め設定された閾値未満であるか否かを判定するように構成される判定回路22を備えている。判定回路22は、例えば、コンパレータである。閾値は、例えば、上記メモリに記憶されている。つまり判定回路22は、コンデンサ14の両端電圧V2を閾値と(継続的に)比較する。
制御回路11は、ゼロクロス検出回路9により第1および第2端子1,2間の電圧V1のゼロクロスが検出され、判定回路22によりコンデンサ14の両端電圧V2が閾値以上になったと判定された後、PWM信号S1に含まれる、スイッチング素子7をオンするためのパルスの発生を開始する。例えば制御回路11は、判定回路22によりコンデンサ14の両端電圧V2が閾値未満であると判定された後には、ゼロクロス検出回路9により第1および第2端子1,2間の電圧V1のゼロクロスが検出されてからコンデンサ14の両端電圧V2が閾値以上になった後、PWM信号S1に含まれる、スイッチング素子7をオンする(スイッチ部3を導通させる)ためのパルスの発生を開始するように構成されている。また、制御回路11は、前記パルスの発生を開始した時点から調整部6から得られる導通角に対応する時間(オン時間Ton)が経過した時点で、前記パルスの発生を停止するように構成されている。
図2に、交流電源30の交流電圧Vaの波形と制御回路11からのPWM信号S1の波形と、の一例を示す。図2の例では、制御回路11は、ゼロクロス検出回路9により第1および第2端子1,2間の電圧V1のゼロクロスが検出された後にコンデンサ14の両端電圧V2が閾値以上になった時点で、PWM信号S1に含まれる、スイッチング素子7をオンする(スイッチ部3を導通させる)ためのパルスの発生を開始するように構成されている。言い換えれば、制御回路11は、PWM信号S1に含まれる、スイッチング素子7をオンするためのパルスの発生を停止した後において、第1の条件と第2の条件とがともに満たされた時点で、次のパルスの発生を開始するように構成される。第1の条件は、ゼロクロス検出回路9により第1および第2端子1,2間の電圧V1のゼロクロスが検出されるという条件である。第2の条件は、判定回路22によりコンデンサ14の両端電圧V2が閾値以上であると判定されるという条件である。
図2中の縦軸のVaは、交流電源30の交流電圧を表している。図2中の縦軸のS1は、制御回路11からのPWM信号を表している。図2中の各横軸は、時間を表している。図2中のt0,t10は、ゼロクロス検出回路9により第1および第2端子1,2間の電圧V1のゼロクロスが検出された時点を表している。図2中のt1,t11は、コンデンサ14の両端電圧V2が閾値以上になった時点を表している。なお、図2の例では、制御回路11は、コンデンサ14の両端電圧V2が閾値以上になった時点で、スイッチング素子7をオンする(スイッチ部3を導通させる)ためのパルスの発生を開始するように構成されているので、t1,t11は、スイッチ部3が遮断状態から導通状態になった時点も表している。図2中のt2,t12は、スイッチ部3が導通状態から遮断状態になった時点を表している。
調光装置10では、判定回路22によりコンデンサ14の両端電圧V2が閾値未満であると一旦判定された後には、第1および第2端子1,2間の電圧V1がゼロクロスする時点からコンデンサ14の両端電圧V2が閾値以上になった後、スイッチ部3が遮断状態から導通状態となる。つまり、調光装置10では、コンデンサ14の両端電圧V2が閾値未満の場合に、第1および第2端子1,2間の電圧V1がゼロクロスしたとしても、コンデンサ14の両端電圧V2が閾値以上になるまでスイッチ部3が遮断状態から導通状態にならない。言い換えれば、調光装置10では、コンデンサ14の両端電圧V2が閾値未満の場合に、第1および第2端子1,2間の電圧V1がゼロクロスしたとしても、コンデンサ14の両端電圧V2が閾値以上になるまでスイッチ部3が遮断状態であるため、コンデンサ14が定電圧回路13により充電される。これにより、調光装置10では、スイッチ部3が遮断状態から導通状態になるとき、文献1に記載された調光装置に比べて、制御部4の動作を安定させることが可能となる。よって、調光装置10では、文献1の調光装置に比べて、照明負荷31の点灯状態を、より安定して維持することが可能となる。また、調光装置10では、文献1の調光装置に比べて、照明負荷31の点灯状態を、より安定して維持することができるので、点灯状態を維持できる照明負荷31の種類を増やすことが可能となる。
判定回路22は、交流電源30のある交流電圧半サイクルにおいて、ゼロクロス検出回路9により第1および第2端子1,2間の電圧V1のゼロクロスが検出された後の期間に、コンデンサ14の両端電圧V2が閾値未満であるか否かを判定するように構成されていることが好ましい。そして制御回路11は、前記交流電圧半サイクルにおいて判定回路22によりコンデンサ14の両端電圧V2が閾値以上と判定されていた場合、次の交流電圧半サイクルの開始時点として第1および第2端子1,2間の電圧V1の次のゼロクロスを、ゼロクロス検出回路9により検出したときに、PWM信号S1に含まれるパルスの発生を開始するように構成されていることが好ましい。
具体的には例えば、制御回路11は、ゼロクロス検出回路9により第1および第2端子1,2間の電圧V1のゼロクロスが検出されたときの直前に、判定回路22によりコンデンサ14の両端電圧が閾値以上であると判定されていた場合、第1および第2端子1,2間の電圧V1のゼロクロスを検出したときに、PWM信号S1に含まれるパルスの発生を開始するように構成されている。
これにより、調光装置10では、例えば、コンデンサ14の両端電圧V2が閾値以上である場合に、第1および第2端子1,2間の電圧V1がゼロクロスすると、第1および第2端子1,2間の電圧V1のゼロクロスが検出された直後(時点)に、スイッチング素子7をオンするためのパルスの発生を開始することが可能となる。よって、調光装置10では、第1および第2端子1,2間の電圧V1のゼロクロスが検出されてからコンデンサ14の両端電圧V2が閾値以上になったことを検出した後に、パルスの発生を開始する場合に比べて、電圧V1のゼロクロスを検出した時点から、制御回路11からパルスが出力される時点までの時間を、短くすることが可能となる。しかして、調光装置10では、第1および第2端子1,2間の電圧V1のゼロクロスが検出されてからコンデンサ14の両端電圧V2が閾値以上になったことを検出した後に、パルスの発生を開始する場合に比べて、照明負荷31に流れる電流が少ないゼロクロス近傍でスイッチ部3をスイッチングさせることができるため、低ノイズ化を図ることが可能となる。「判定回路22によりコンデンサ14の両端電圧V2が閾値以上と判定されたとき」とは、判定回路22によりコンデンサ14の両端電圧V2が閾値以上と判定された時点を意味するが、これに限らない。「判定回路22によりコンデンサ14の両端電圧V2が閾値以上と判定されたとき」とは、例えば、判定回路22によりコンデンサ14の両端電圧V2が閾値以上と判定された時点から所定期間が経過するまでの間における時点であってもよい。同様に、「第1及び第2端子間の電圧V1のゼロクロスが検出されたとき」とは、第1及び第2端子間の電圧V1がゼロクロスした時点を意味するが、これに限らない。「第1及び第2端子間の電圧V1のゼロクロスが検出されたとき」とは、例えば、第1及び第2端子間の電圧V1がゼロクロスした時点から所定期間が経過するまでの間における時点であってもよい。
判定回路22は、ゼロクロス検出回路9により第1および第2端子1,2間の電圧V1のゼロクロスが検出された後に、コンデンサ14の両端電圧V2が閾値未満であるか否かを(継続的に)判定するように構成されていることが好ましい。制御回路11は、判定回路22によりコンデンサ14の両端電圧V2が前記閾値以上と判定されたときに、PWM信号S1に含まれるパルスの発生を開始するように構成されていることが好ましい。
判定回路22は、ゼロクロス検出回路9により第1および第2端子1,2間の電圧V1のゼロクロスが検出される前に、コンデンサ14の両端電圧V2が閾値未満であるか否かを(継続的に)判定するように構成されていることが好ましい。また、判定回路22は、第1および第2端子1,2間の電圧V1のゼロクロスが検出される前にコンデンサ14の両端電圧V2が閾値以上であると判定していた場合、ゼロクロス検出回路9により第1および第2端子1,2間の電圧V1のゼロクロスが検出された後にはコンデンサ14の両端電圧V2が閾値未満であるか否かの判定を停止するように構成されていることが好ましい。また、制御回路11は、ゼロクロス検出回路9により第1および第2端子1,2間の電圧V1のゼロクロスが検出されたときに、PWM信号S1に含まれるパルスの発生を開始するように構成されていることが好ましい。
調光装置10では、例えば、照明負荷31の調光レベルが低い(照明負荷31の明るさが相対的に暗い)場合、スイッチ部3が導通状態から遮断状態になった時点から第1および第2端子1,2間の電圧V1がゼロクロスする時点までの期間が長くなる。この期間にコンデンサ14は充電されるため、上記の場合には、第1および第2端子1,2間の電圧V1のゼロクロスが検出される前に、コンデンサ14の両端電圧V2が閾値よりも大きくなっている。よって、調光装置10では、照明負荷31の調光レベルが低い場合、第1および第2端子1,2間の電圧V1のゼロクロスが検出されたときに、スイッチング素子7をオンするためのパルスの発生を開始することが可能となる。そのため、調光装置10では、例えば、照明負荷31に流れる電流が小さいときに、スイッチ部3を遮断状態から導通状態にすることが可能となり、第1および第2端子1,2間の電圧V1のゼロクロスが検出されてからコンデンサ14の両端電圧V2が閾値以上になったことを検出した後にパルスの発生を開始する場合に比べて、低ノイズ化を図ることが可能となる。
調光装置10では、照明負荷31としてLED照明装置を用いているが、これに限らない。照明負荷31は、例えば、白熱電球であってもよい。白熱電球は、例えば、ハロゲン電球、クリプトン電球などであってもよい。
以上説明した本実施形態の調光装置10は、第1および第2端子1,2と、スイッチ部3と、調整部6と、電源部5と、制御部4とを備える。第1および第2端子1,2は、交流電源30と照明負荷31との直列回路が間に接続されるように構成される。スイッチ部3は、第1および第2端子1,2間に接続された(少なくとも1つの)ノーマリオフ型のスイッチング素子7を備えている。調整部6は、スイッチ部3の導通角を可変するように構成される。電源部5は、第1および第2端子1,2間に接続され、整流回路12と、定電圧回路13と、コンデンサ14とを備える。整流回路12は、第1および第2端子1,2間の電圧V1を全波整流するように構成される。定電圧回路13は、整流回路12により全波整流された電圧から直流電圧(第1直流電圧)を生成するように構成される。コンデンサ14は、定電圧回路13によって充電されるように構成される。制御部4は、電源部5のコンデンサ14から電力を供給されてスイッチ部3を制御するように構成され、ゼロクロス検出回路9と、検出回路21と、制御回路11と、駆動回路8とを備えている。ゼロクロス検出回路9は、上記直列回路が第1および第2端子1,2間に接続されたときに第1および第2端子1,2間の電圧V1のゼロクロスを検出するように構成される。検出回路21は、コンデンサ14の両端電圧V2を検出するように構成される。制御回路11は、調整部6から得られる導通角に対応するオンデューティ比(Ton/PC)のPWM信号S1を生成するように構成される。駆動回路8は、PWM信号S1に従って、スイッチング素子7を駆動するように構成される。制御部4は、調整部6から得られる前記導通角に従って、交流電源30の交流電圧半サイクル(図2のPC参照)の間に、スイッチング素子7が導通し次いで遮断するように、スイッチ部3を制御するように構成されている。制御回路11は、検出回路21により検出されたコンデンサ14の両端電圧V2が予め設定された閾値未満であるか否かを判定する判定回路22をさらに備えている。制御回路11は、ゼロクロス検出回路9により第1および第2端子1,2間の電圧V1のゼロクロスが検出され、判定回路22によりコンデンサ14の両端電圧V2が前記閾値以上になったと判定された後、PWM信号S1に含まれる、スイッチング素子7をオンする(スイッチ部3を導通させる)ためのパルスの発生を開始するように構成されている。また、制御回路11は、前記パルスの発生を開始した時点から、導通角に対応する時間(オン期間Ton)が経過した時点で、前記パルスの発生を停止するように構成されている。
本実施形態の調光装置10では、制御回路11が、ゼロクロス検出回路9により第1および第2端子1,2間の電圧V1のゼロクロスが検出され、判定回路22によりコンデンサ14の両端電圧V2が前記閾値以上になったと判定された後、PWM信号S1に含まれる、スイッチング素子7をオンするためのパルスの発生を開始するように構成されている。つまり本実施形態の調光装置10では、制御回路11が、判定回路22によりコンデンサ14の両端電圧V2が閾値未満であると一旦判定された後でも、ゼロクロス検出回路9により第1および第2端子1,2間の電圧V1のゼロクロスが検出されてから前記両端電圧V2が前記閾値以上になった後、PWM信号S1に含まれる、スイッチング素子7をオンするためのパルスの発生を開始するように構成されている。これにより、本実施形態の調光装置10では、例えば、交流電源30と照明負荷31との直列回路を第1および第2端子1,2間に接続する場合、コンデンサ14の両端電圧V2が前記閾値以上になるまで照明負荷31に電流が流れ、この電流を電源部5に供給することが可能となる。これにより、本実施形態の調光装置10では、文献1の調光装置に比べて、制御部4の動作を安定させることが可能となり、照明負荷31の点灯状態を、より安定して維持することが可能となる。
一実施形態において、判定回路22は、交流電源30のある交流電圧半サイクルにおいて、ゼロクロス検出回路9により第1及び第2端子1,2間の電圧V1のゼロクロスが検出された後の期間に、コンデンサ14の両端電圧V2が前記閾値未満であるか否かを判定するように構成されている。また、制御回路11は、前記交流電圧半サイクルにおいて判定回路22によりコンデンサ14の両端電圧V2が前記閾値以上と判定されていた場合、次の交流電圧半サイクルの開始時点として第1および第2端子1,2間の電圧の次のゼロクロスを、ゼロクロス検出回路9により検出したときに、PWM信号S1に含まれるパルスの発生を開始するように構成されている。
これにより、調光装置10では、例えば、第1および第2端子1,2間の電圧V1のゼロクロスが検出された直後(時点)に、スイッチング素子7をオンするためのパルスの発生を開始することが可能となる。よって、調光装置10では、第1および第2端子1,2間の電圧V1のゼロクロスが検出されてからコンデンサ14の両端電圧V2が閾値以上になったことを検出した後にパルスの発生を開始する場合に比べて、電圧V1のゼロクロスを検出した時点から制御回路11からパルスが出力される時点までの時間を、短くすることが可能となる。しかして、調光装置10では、第1および第2端子1,2間の電圧V1のゼロクロスが検出されてからコンデンサ14の両端電圧V2が閾値以上になったことを検出した後にパルスの発生を開始する場合に比べて、照明負荷31に流れる電流が少ないゼロクロス近傍でスイッチ部3をスイッチングさせることができるため、低ノイズ化を図ることが可能となる。
一実施形態において、判定回路22は、ゼロクロス検出回路9により第1および第2端子1,2間の電圧V1のゼロクロスが検出された後に、コンデンサ14の両端電圧V2が前記閾値未満であるか否かを判定するように構成されている。また、制御回路11は、判定回路22によりコンデンサ14の両端電圧が前記閾値以上と判定されたときに、PWM信号S1に含まれるパルスの発生を開始するように構成されている。
一実施形態において、判定回路22は、ゼロクロス検出回路9により第1および第2端子1,2間の電圧V1のゼロクロスが検出される前にコンデンサ14の両端電圧V2が前記閾値未満であるか否かを判定するように構成されている。また、判定回路22は、コンデンサ14の両端電圧V2が前記閾値以上であると判定していた場合、ゼロクロス検出回路9により第1および第2端子1,2間の電圧V1のゼロクロスが検出された後にコンデンサ14の両端電圧V2が前記閾値未満であるか否かの判定を停止するように構成されている。また、制御回路11は、判定回路22によりコンデンサ14の両端電圧V2が前記閾値以上であると判定されていた場合、ゼロクロス検出回路9により第1および第2端子1,2間の電圧V1のゼロクロスが検出されたときに、PWM信号S1に含まれるパルスの発生を開始するように構成されている。
調光装置10では、例えば、照明負荷31の調光レベルが低い場合、スイッチ部3が導通状態から遮断状態になった時点から第1および第2端子1,2間の電圧V1がゼロクロスする時点までの期間が長くなる。この期間にコンデンサ14は充電されるため、上記の場合には、第1および第2端子1,2間の電圧V1のゼロクロスが検出される前に、コンデンサ14の両端電圧V2が閾値よりも大きくなっている。よって、調光装置10では、照明負荷31の調光レベルが低い場合、第1および第2端子1,2間の電圧V1のゼロクロスが検出されたときに、スイッチング素子7をオンするためのパルスの発生を開始することが可能となる。そのため、調光装置10では、例えば、照明負荷31に流れる電流が小さいときに、スイッチ部3を遮断状態から導通状態にすることが可能となり、第1および第2端子1,2間の電圧V1のゼロクロスが検出されてからコンデンサ14の両端電圧が閾値以上になったことを検出した後にパルスの発生を開始する場合に比べて、低ノイズ化を図ることが可能となる。
Claims (4)
- 交流電源と照明負荷との直列回路が間に接続されるように構成される第1および第2端子と、
前記第1および第2端子間に接続されたノーマリオフ型のスイッチング素子を備えるスイッチ部と、
前記スイッチ部の導通角を可変するように構成される調整部と、
前記第1および第2端子間の電圧を全波整流するように構成される整流回路と、前記整流回路により全波整流された電圧から直流電圧を生成するように構成される定電圧回路と、前記定電圧回路によって充電されるように構成されるコンデンサとを備え、前記第1および第2端子間に接続される電源部と、
前記直列回路が前記第1および第2端子間に接続されたときに前記第1および第2端子間の電圧のゼロクロスを検出するように構成されるゼロクロス検出回路と、前記コンデンサの両端電圧を検出する検出回路と、前記調整部から得られる前記導通角に対応するオンデューティ比のPWM信号を生成するように構成される制御回路と、前記PWM信号に従って、前記スイッチング素子を駆動するように構成される駆動回路とを備え、前記電源部の前記コンデンサから電力を供給されて前記スイッチ部を制御するように構成される制御部と、
を備え、
前記制御部は、前記調整部から得られる前記導通角に従って、前記交流電源の交流電圧半サイクルの間に前記スイッチング素子が導通し次いで遮断するように前記スイッチ部を制御するように構成され、
前記制御回路は、前記検出回路により検出された前記コンデンサの両端電圧が閾値未満であるか否かを判定する判定回路をさらに備え、
前記制御回路は、
前記ゼロクロス検出回路により前記第1および第2端子間の電圧のゼロクロスが検出され、前記判定回路により前記コンデンサの両端電圧が前記閾値以上になったと判定された後、前記PWM信号に含まれる、前記スイッチング素子をオンするためのパルスの発生を開始し、
前記パルスの発生を開始した時点から前記導通角に対応する時間が経過した時点で、前記パルスの発生を停止する
ように構成されている
ことを特徴とする調光装置。 - 前記判定回路は、前記ゼロクロス検出回路により前記第1および第2端子間の電圧のゼロクロスが検出された後に、前記コンデンサの両端電圧が前記閾値未満であるか否かを判定するように構成され、
前記制御回路は、前記判定回路により前記コンデンサの両端電圧が前記閾値以上と判定されたときに、前記PWM信号に含まれる前記パルスの発生を開始するように構成されている
ことを特徴とする請求項1記載の調光装置。 - 前記判定回路は、
前記ゼロクロス検出回路により前記第1及び第2端子間の電圧のゼロクロスが検出される前に、前記コンデンサの両端電圧が前記閾値未満であるか否かを判定し、
前記コンデンサの両端電圧が前記閾値以上であると判定していた場合、前記ゼロクロス検出回路により前記第1および第2端子間の電圧のゼロクロスが検出された後に前記コンデンサの両端電圧が前記閾値未満であるか否かの判定を停止する
ように構成され、
前記制御回路は、前記判定回路により前記コンデンサの両端電圧が前記閾値以上であると判定されていた場合、前記ゼロクロス検出回路により前記第1および第2端子間の電圧のゼロクロスが検出されたときに、前記PWM信号に含まれる前記パルスの発生を開始するように構成されている
ことを特徴とする請求項2記載の調光装置。 - 前記判定回路は、前記交流電源のある交流電圧半サイクルにおいて、前記ゼロクロス検出回路により前記第1及び第2端子間の電圧のゼロクロスが検出された後の期間に、前記コンデンサの両端電圧が前記閾値未満であるか否かを判定するように構成され、
前記制御回路は、前記交流電圧半サイクルにおいて前記判定回路により前記コンデンサの両端電圧が前記閾値以上と判定されていた場合、次の交流電圧半サイクルの開始時点として前記第1および第2端子間の電圧の次のゼロクロスを、前記ゼロクロス検出回路により検出したときに、前記PWM信号に含まれる前記パルスの発生を開始するように構成されている
ことを特徴とする請求項1記載の調光装置。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US15/300,089 US9801247B2 (en) | 2014-04-03 | 2015-03-26 | Light-dimming device |
CN201580017842.0A CN106165548B (zh) | 2014-04-03 | 2015-03-26 | 调光装置 |
EP15772974.0A EP3128815B1 (en) | 2014-04-03 | 2015-03-26 | Light-dimming device |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014077194A JP6195200B2 (ja) | 2014-04-03 | 2014-04-03 | 調光装置 |
JP2014-077194 | 2014-04-03 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2015151465A1 true WO2015151465A1 (ja) | 2015-10-08 |
Family
ID=54239812
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2015/001711 WO2015151465A1 (ja) | 2014-04-03 | 2015-03-26 | 調光装置 |
Country Status (6)
Country | Link |
---|---|
US (1) | US9801247B2 (ja) |
EP (1) | EP3128815B1 (ja) |
JP (1) | JP6195200B2 (ja) |
CN (1) | CN106165548B (ja) |
TW (1) | TWI544835B (ja) |
WO (1) | WO2015151465A1 (ja) |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6195199B2 (ja) * | 2014-04-03 | 2017-09-13 | パナソニックIpマネジメント株式会社 | 調光装置 |
JP6195200B2 (ja) * | 2014-04-03 | 2017-09-13 | パナソニックIpマネジメント株式会社 | 調光装置 |
US10531545B2 (en) | 2014-08-11 | 2020-01-07 | RAB Lighting Inc. | Commissioning a configurable user control device for a lighting control system |
US10039174B2 (en) | 2014-08-11 | 2018-07-31 | RAB Lighting Inc. | Systems and methods for acknowledging broadcast messages in a wireless lighting control network |
US10085328B2 (en) | 2014-08-11 | 2018-09-25 | RAB Lighting Inc. | Wireless lighting control systems and methods |
TWI597930B (zh) * | 2015-02-06 | 2017-09-01 | Use to change the conduction angle as the control command of the control device | |
US10856382B2 (en) * | 2017-05-11 | 2020-12-01 | ERP Power, LLC | Active preload for TRIAC dimmers |
CN108631690A (zh) * | 2018-05-12 | 2018-10-09 | 广东希塔变频技术有限公司 | 变频控制电路、变频空调器控制电路及变频空调器 |
US10517164B1 (en) | 2019-05-09 | 2019-12-24 | RAB Lighting Inc. | Universal phase control dimmer for wireless lighting control |
JP2021002983A (ja) * | 2019-06-24 | 2021-01-07 | ルネサスエレクトロニクス株式会社 | 半導体装置 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010146527A (ja) * | 2008-12-22 | 2010-07-01 | Panasonic Electric Works Co Ltd | 負荷制御装置 |
JP2011050149A (ja) * | 2009-08-26 | 2011-03-10 | Panasonic Electric Works Co Ltd | 負荷制御装置 |
JP2011087260A (ja) * | 2009-10-19 | 2011-04-28 | Panasonic Electric Works Co Ltd | 負荷制御装置 |
Family Cites Families (23)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3630019B2 (ja) | 1999-06-25 | 2005-03-16 | 松下電工株式会社 | 2線式配線器具 |
JP4748024B2 (ja) * | 2006-10-16 | 2011-08-17 | パナソニック電工株式会社 | 2線式スイッチ装置 |
US7667408B2 (en) * | 2007-03-12 | 2010-02-23 | Cirrus Logic, Inc. | Lighting system with lighting dimmer output mapping |
JP5294903B2 (ja) * | 2008-08-21 | 2013-09-18 | パナソニック株式会社 | 負荷制御装置及びそれを備えた負荷制御システム |
SG172384A1 (en) * | 2008-12-22 | 2011-07-28 | Panasonic Elec Works Co Ltd | Load control device |
US8222832B2 (en) * | 2009-07-14 | 2012-07-17 | Iwatt Inc. | Adaptive dimmer detection and control for LED lamp |
JP5361610B2 (ja) | 2009-08-26 | 2013-12-04 | パナソニック株式会社 | 負荷制御装置 |
KR101379157B1 (ko) * | 2009-08-26 | 2014-03-28 | 파나소닉 주식회사 | 부하 제어 장치 |
US8242766B2 (en) * | 2010-04-20 | 2012-08-14 | Power Integrations, Inc. | Dimming control for a switching power supply |
JP2011238353A (ja) * | 2010-04-30 | 2011-11-24 | Jimbo Electric Co Ltd | 2線式逆位相制御装置 |
JP5645109B2 (ja) * | 2010-07-27 | 2014-12-24 | パナソニックIpマネジメント株式会社 | 2線式負荷制御装置 |
US8310163B2 (en) * | 2010-08-24 | 2012-11-13 | Chia-Teh Chen | Microcontroller-based lighting control system and method for lighting control |
CN103270681B (zh) * | 2010-11-04 | 2016-09-07 | 皇家飞利浦有限公司 | 利用多个受控功率耗散电路在照明系统中的热管理 |
WO2012061769A2 (en) * | 2010-11-04 | 2012-05-10 | Cirrus Logic, Inc. | Controlled power dissipation in a switch path in a lighting system |
CN102769960A (zh) * | 2011-05-06 | 2012-11-07 | 欧司朗股份有限公司 | 可调光led驱动器及其控制方法 |
JP5776360B2 (ja) | 2011-06-17 | 2015-09-09 | 東芝ライテック株式会社 | 逆位相制御装置 |
CN102958218B (zh) * | 2011-08-17 | 2015-01-14 | 浙江英飞特节能技术有限公司 | 光源控制方法、装置及系统 |
JP5768979B2 (ja) * | 2012-01-19 | 2015-08-26 | 東芝ライテック株式会社 | 調光装置 |
US9307588B2 (en) * | 2012-12-17 | 2016-04-05 | Ecosense Lighting Inc. | Systems and methods for dimming of a light source |
CN106105400B (zh) * | 2014-03-11 | 2018-09-07 | 松下知识产权经营株式会社 | 调光装置 |
JP6195200B2 (ja) * | 2014-04-03 | 2017-09-13 | パナソニックIpマネジメント株式会社 | 調光装置 |
JP6195199B2 (ja) * | 2014-04-03 | 2017-09-13 | パナソニックIpマネジメント株式会社 | 調光装置 |
US9215772B2 (en) * | 2014-04-17 | 2015-12-15 | Philips International B.V. | Systems and methods for minimizing power dissipation in a low-power lamp coupled to a trailing-edge dimmer |
-
2014
- 2014-04-03 JP JP2014077194A patent/JP6195200B2/ja active Active
-
2015
- 2015-03-26 US US15/300,089 patent/US9801247B2/en not_active Expired - Fee Related
- 2015-03-26 WO PCT/JP2015/001711 patent/WO2015151465A1/ja active Application Filing
- 2015-03-26 CN CN201580017842.0A patent/CN106165548B/zh active Active
- 2015-03-26 EP EP15772974.0A patent/EP3128815B1/en active Active
- 2015-03-27 TW TW104109908A patent/TWI544835B/zh not_active IP Right Cessation
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010146527A (ja) * | 2008-12-22 | 2010-07-01 | Panasonic Electric Works Co Ltd | 負荷制御装置 |
JP2011050149A (ja) * | 2009-08-26 | 2011-03-10 | Panasonic Electric Works Co Ltd | 負荷制御装置 |
JP2011087260A (ja) * | 2009-10-19 | 2011-04-28 | Panasonic Electric Works Co Ltd | 負荷制御装置 |
Also Published As
Publication number | Publication date |
---|---|
EP3128815A4 (en) | 2017-04-05 |
JP6195200B2 (ja) | 2017-09-13 |
CN106165548A (zh) | 2016-11-23 |
EP3128815B1 (en) | 2020-04-29 |
US20170150569A1 (en) | 2017-05-25 |
EP3128815A1 (en) | 2017-02-08 |
US9801247B2 (en) | 2017-10-24 |
JP2015198075A (ja) | 2015-11-09 |
CN106165548B (zh) | 2018-12-25 |
TWI544835B (zh) | 2016-08-01 |
TW201601591A (zh) | 2016-01-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2015151465A1 (ja) | 調光装置 | |
JP6712767B2 (ja) | 調光装置 | |
JP6195199B2 (ja) | 調光装置 | |
JP5975375B2 (ja) | 2線式調光スイッチ | |
CN108243545B (zh) | 负载控制装置 | |
US10070492B2 (en) | Dimming device | |
JP2017050258A (ja) | 調光装置 | |
TW201603645A (zh) | 調光裝置 | |
JP6653452B2 (ja) | 調光装置の保護回路、及び調光装置 | |
JP5967513B2 (ja) | 調光器 | |
CN108029183B (zh) | 调光装置 | |
JP6618014B2 (ja) | 調光装置及び照明制御システム | |
JP2017084622A (ja) | 調光装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15772974 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 15300089 Country of ref document: US |
|
REEP | Request for entry into the european phase |
Ref document number: 2015772974 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2015772974 Country of ref document: EP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |