WO2015151330A1 - スジムラ補正装置およびスジムラ補正方法 - Google Patents

スジムラ補正装置およびスジムラ補正方法 Download PDF

Info

Publication number
WO2015151330A1
WO2015151330A1 PCT/JP2014/080878 JP2014080878W WO2015151330A1 WO 2015151330 A1 WO2015151330 A1 WO 2015151330A1 JP 2014080878 W JP2014080878 W JP 2014080878W WO 2015151330 A1 WO2015151330 A1 WO 2015151330A1
Authority
WO
WIPO (PCT)
Prior art keywords
image
halftone
density
recording
corrected
Prior art date
Application number
PCT/JP2014/080878
Other languages
English (en)
French (fr)
Inventor
水野 知章
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Publication of WO2015151330A1 publication Critical patent/WO2015151330A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N1/00Scanning, transmission or reproduction of documents or the like, e.g. facsimile transmission; Details thereof
    • H04N1/40Picture signal circuits
    • H04N1/407Control or modification of tonal gradation or of extreme levels, e.g. background level
    • H04N1/4076Control or modification of tonal gradation or of extreme levels, e.g. background level dependent on references outside the picture
    • H04N1/4078Control or modification of tonal gradation or of extreme levels, e.g. background level dependent on references outside the picture using gradational references, e.g. grey-scale test pattern analysis
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N1/00Scanning, transmission or reproduction of documents or the like, e.g. facsimile transmission; Details thereof
    • H04N1/40Picture signal circuits
    • H04N1/405Halftoning, i.e. converting the picture signal of a continuous-tone original into a corresponding signal showing only two levels

Definitions

  • the present invention relates to a streak correction device and a streak correction method, and more particularly to a streak correction device and a streak correction method for correcting streak in a recorded image in which a target image is recorded by an ink jet recording apparatus.
  • unevenness of a recorded image by an ink jet recording apparatus is caused by a variation amount of the ejection characteristics of a plurality of recording nozzles that eject ink, for example, a variation amount such as an ink ejection amount and an ink density. Therefore, it has been attempted to correct the non-uniformity of the recorded image by measuring the density of the recorded image recorded by the ink jet recording apparatus and giving an input signal corrected based on the density to the recording nozzle.
  • Patent Document 1 discloses a correction value calculation method that performs unevenness correction without causing a difference between an input tone value and an output tone value.
  • a density measurement test pattern is output onto a recording medium by a recording head, the output density measurement test pattern is measured, a plurality of gradation values of the density measurement test pattern, and From the measured values for the plurality of measured gradation values, a characteristic function is calculated for each recording element that receives the gradation values and outputs the measurement values.
  • a reference characteristic function is calculated by inputting a measured value from the inverse function of the characteristic function and outputting an average output gradation value, and the recording element is calculated from the inverse function of the reference characteristic function value and the inverse function of the characteristic function for each recording element
  • the unevenness correction value for each is calculated.
  • the correction value calculation method disclosed in Patent Document 1 is for correcting a contone image having gradation values.
  • a recorded image is recorded by an ink jet recording apparatus using the contone image
  • the recorded image is recorded.
  • unevenness can be suppressed
  • a recorded image is recorded using only a halftone image
  • a recorded image in which unevenness is suppressed cannot be obtained.
  • the process of recording a recorded image with an inkjet recording apparatus has been divided into labor, and there are many situations in which a recorded image is generated using only halftone image data in a situation where the contone image data of the input image is not available. . For this reason, it is difficult for the correction value calculation method of Patent Document 1 to cope with a situation in which a recorded image is generated using only halftone image data.
  • the present invention has been made to solve the above-described conventional problems, and suppresses unevenness occurring in a recorded image when an intended recording image is recorded by an ink jet recording apparatus using only halftone image data.
  • An object of the present invention is to provide a stripe unevenness correction apparatus and a stripe unevenness correction method that can perform the above correction.
  • a streak correction device records a reference recording image by ejecting ink from a plurality of recording nozzles by an ink jet recording apparatus based on a reference halftone image obtained by halftoning a reference image.
  • a non-uniformity correction apparatus that corrects non-uniformity occurring in a recorded image recorded by an inkjet recording apparatus due to a variation amount of ejection characteristics of ink ejected from a plurality of recording nozzles based on the gradation information of
  • a variation amount calculation unit that calculates a variation amount of gradation information of a recorded image corresponding to each of the plurality of recording nozzles, and a variation amount of gradation information of the reference recording image calculated by the variation amount calculation unit is canceled out.
  • a correction value calculation unit that calculates a correction value for correcting gradation information of the reference image corresponding to each of the plurality of nozzles, and a half-toner of the target image.
  • the target halftone image which is an image, is input, and the gradation information of the target image is extracted by combining the distribution of halftone dots in the target halftone image.
  • a correction image generation unit that generates a correction halftone image obtained by correcting gradation information of the target image extracted from the target halftone image, and ejects the correction halftone image from a plurality of recording nozzles by inputting the correction halftone image to the ink jet recording apparatus. In this way, the amount of variation in the ejection characteristics of the ink is canceled, and the unevenness occurring in the recorded image is corrected.
  • the fluctuation amount calculation unit calculates the fluctuation amount of the density of the reference recording image as the fluctuation amount of the gradation information of the reference recording image, and the correction value calculation unit cancels the fluctuation amount of the density of the reference recording image. It is preferable to calculate a correction value for correcting the density of the reference image.
  • the corrected image generation unit generates a pseudo continuous tone image by performing halftone reverse processing on the target halftone image and composites the distribution of halftone dots, and pseudo continuous tone image generation.
  • the corrected continuous tone image obtained by extracting the density of the pseudo continuous tone image generated by the unit as gradation information of the target image and correcting the density of the pseudo continuous tone image based on the correction value calculated by the correction value calculation unit. It is preferable to include a corrected continuous tone image generation unit to be generated and a halftone image generation unit that performs a halftone process on the corrected continuous tone image generated by the corrected continuous tone image generation unit to generate a corrected halftone image.
  • the halftone process is preferably dither conversion
  • the halftone reverse process is preferably dither reverse conversion
  • the correction value calculation unit can have a density correction lookup table indicating the relationship between the density of the reference image and the correction value.
  • the fluctuation amount calculation unit calculates a correction value by calculating a halftone dot density fluctuation amount in a recording halftone image obtained by halftoning the reference recording image as a gradation information fluctuation amount of the reference recording image.
  • the unit can also calculate a correction value for correcting the density of halftone dots in the reference halftone image so that the fluctuation amount of the density of halftone dots in the recorded halftone image is canceled out.
  • the corrected image generation unit calculates the density of the halftone dots in the target halftone image, combines the distribution of the halftone dots, and extracts the density of the halftone dots as gradation information of the target image for correction.
  • a corrected halftone image in which the density of halftone dots in the target halftone image is corrected based on the correction value calculated by the value calculation unit can also be generated.
  • the correction value calculation unit represents the correction value with chromaticity or brightness according to the density of halftone dots to be corrected, and the correction image generation unit has chromaticity or brightness according to the density of halftone dots in the target halftone image.
  • the pseudo continuous tone image generation unit Based on the correction value calculated by the correction value calculation unit and the pseudo continuous tone image generation unit that generates a pseudo continuous tone image displaying nozzle regions respectively corresponding to a plurality of recording nozzles, the pseudo continuous tone image generation unit A corrected continuous tone image generation unit that generates a corrected continuous tone image in which the chromaticity or brightness of the generated pseudo continuous tone image is corrected, and the chromaticity or brightness of the corrected continuous tone image generated by the corrected continuous tone image generation unit.
  • a halftone image generation unit that generates a corrected halftone image in which halftone dots are arranged so as to have a corresponding density.
  • the correction value calculation unit can have a density correction look-up table showing the relationship between the density of halftone dots and the correction value in the reference halftone image.
  • an image reading unit that reads a reference recording image recorded by the ink jet recording apparatus, and calculates gradation information from the reference image and also calculates gradation information from the reference recording image that is read by the image reading unit.
  • a gradation information calculation unit that outputs the gradation information of the reference recording image and the gradation information of the reference recording image to the fluctuation amount calculation unit.
  • a method for correcting streaks wherein a reference recording image is recorded by ejecting ink from a plurality of recording nozzles by an ink jet recording apparatus based on a reference halftone image obtained by halftoning a reference image.
  • the variation amount of the gradation information of the recorded image is calculated corresponding to each of the plurality of recording nozzles, and the gradation information of the reference image is corrected so that the calculated variation amount of the gradation information of the reference recording image is canceled out.
  • a correction value is calculated for each of the plurality of nozzles, and halftone dots in the target halftone image, which is a halftone image of the target image, are calculated.
  • the tone information of the target image is extracted by compositing the cloth, and the corrected halftone image is generated by correcting the tone information of the target image extracted from the target halftone image based on the correction value.
  • the gradation information of the target image extracted by correcting the halftone dot distribution in the target halftone image is corrected to generate a corrected halftone image, so that only the halftone image data is used.
  • FIG. 1 is a block diagram showing a configuration of an ink jet recording system having a stripe unevenness correction apparatus according to Embodiment 1 of the present invention.
  • FIG. It is a figure which shows the method of calculating the correction value by which the variation
  • 3 is a diagram illustrating a configuration of a corrected image generation unit according to Embodiment 1.
  • FIG. 6 is a diagram illustrating a method for generating a corrected halftone image from a target halftone image in Embodiment 1.
  • FIG. 6 is a diagram illustrating a configuration of a corrected image generation unit according to Embodiment 2.
  • FIG. 10 is a diagram showing a method for generating a corrected halftone image from a target halftone image in Embodiment 2.
  • FIG. 1 shows the configuration of an ink jet recording system including a stripe unevenness correction apparatus according to Embodiment 1 of the present invention.
  • the ink jet recording system includes an ink jet recording apparatus 1 and a stripe unevenness correction apparatus 2, records a reference image by the ink jet recording apparatus 1, acquires a reference recording image R, and based on gradation information of the reference recording image R.
  • the streak-like density unevenness generated in the recorded image when the target image is recorded by the inkjet recording apparatus 1, that is, so-called unevenness is corrected by the unevenness correcting device 2.
  • the ink jet recording apparatus 1 includes a drive signal generation unit 3 and a recording head 4 connected to the drive signal generation unit 3.
  • the drive signal generation unit 3 receives halftone image data, for example, a reference halftone image obtained by halftoning a reference image (contone image) to be described later, and the like according to the image signal value of the halftone image.
  • a drive signal value for driving the recording head 4 is generated so that ink is ejected from the recording head 4 with the discharged amount.
  • the contone image is an image having gradation
  • the halftone image is an image obtained by converting the contone image into a dot image so that it can be recorded by the inkjet recording apparatus 1.
  • the recording head 4 is a so-called ink jet recording head that discharges ink by using, for example, an expansion / contraction operation of a piezoelectric element, and records a recording image by discharging ink onto the recording medium M.
  • four recording heads 4 respectively corresponding to black (K), cyan (C), magenta (M), and yellow (Y) inks can be arranged.
  • a plurality of recording nozzles 5 are arranged in a direction intersecting the conveyance direction of the recording medium M, and ink is supplied from each recording nozzle 5 to the corresponding nozzle region N on the recording medium M. Discharged.
  • the recording medium M is not particularly limited as long as the recording image can be recorded by ejecting ink from the recording head 4, and for example, a paper material and a resin material (polyethylene terephthalate or the like) can be used.
  • the unevenness correction apparatus 2 includes an image reading unit 6, and a gradation information calculation unit 7, a fluctuation amount calculation unit 8, a correction value calculation unit 9, and a correction image generation unit 10 are sequentially connected to the image reading unit 6.
  • the corrected image generation unit 10 is connected to the drive signal generation unit 3 of the inkjet recording apparatus 1.
  • the image reading unit 6 reads the reference recording image R recorded on the recording medium M by inputting the reference halftone image to the ink jet recording apparatus 1, and includes, for example, a scanner.
  • the reference recording image R is a recording image recorded by the ink jet recording apparatus 1 in order to calculate a variation amount of gradation information for each nozzle region N corresponding to each of the plurality of recording nozzles 5.
  • a reference image a test chart in which a plurality of density patches whose density is constant in the nozzle row direction and whose density is changed stepwise in the conveyance direction of the recording medium M is used, and ink jet is performed based on the reference image.
  • the gradation information is information serving as an index representing the gradation value of the contone image, and in this embodiment, indicates the density of the image.
  • the gradation information calculation unit 7 receives a reference image, which is a contone image for recording the reference recording image R by the inkjet recording apparatus 1, and the reference recording image R, which is a contone image read by the image reading unit 6. Is entered.
  • the gradation information calculation unit 7 calculates the density of the input reference image and calculates the density of the reference recording image R read by the image reading unit 6 to calculate the density of the reference image and the density of the reference recording image R. It outputs to the fluctuation amount calculation unit 8.
  • the fluctuation amount calculation unit 8 calculates the fluctuation amount of the density of the reference recording image R for each nozzle region N corresponding to each of the plurality of recording nozzles 5.
  • the fluctuation amount calculation unit 8 can calculate the fluctuation amount of the actual density value with respect to the expected density value of the reference recording image R, for example.
  • the correction value calculation unit 9 calculates a correction value for correcting the density of the reference image for each nozzle region N corresponding to each of the plurality of recording nozzles 5 so that the variation amount of the density of the reference recording image is canceled, and the correction is performed.
  • the value is output to the corrected image generation unit 10.
  • the correction image generation unit 10 receives the target halftone image, which is a halftone image of the target image, and the correction value calculated by the correction value calculation unit 9.
  • the correction image generation unit 10 extracts the density of the target image by combining the distribution of halftone dots in the target halftone image, and based on the correction value calculated by the correction value calculation unit 9, A corrected halftone image in which the density of the target image is corrected is generated.
  • the amount of variation in the ejection characteristics of the ink ejected from the plurality of recording nozzles 5 is canceled and the uneven streaks S generated in the recorded image are corrected. can do.
  • the fluctuation amount calculation unit 8 calculates the average density of each density patch P for the reference print image R, and each density patch P for each nozzle region N corresponding to each print nozzle 5. The average density in the divided area is calculated. Subsequently, the fluctuation amount calculation unit 8 is based on the image signal value of the reference image (scale value corresponding to the density value) and the average density value (expected density value) of each density patch P of the reference recording image R. A conversion function f1 indicating the relationship between the image signal value of the reference image and the expected density value of the reference recorded image R is calculated.
  • the expected density value of the reference recording image R represents the density value when no streaks occur in the reference recording image R.
  • the fluctuation amount calculating unit 8 averages the average density value (expected density value) of each density patch P of the reference recording image R and the average in the divided area obtained by dividing each density patch P of the reference recording image R for each nozzle area N. Based on the density value (actual density value), a smoothing correction function f2 indicating the relationship between the expected density value of the reference recorded image R and the actual density value of the reference recorded image R is calculated.
  • the actual density value of the reference recording image R represents the density value of the reference recording image R in which unevenness actually occurs.
  • the smoothing correction function f2 is generated corresponding to each of the plurality of recording nozzles 5, that is, generated for each nozzle region N. In FIG.
  • the three stripe unevenness correction functions f2 corresponding to the three recording nozzles 5 show different distributions, and the deviation of the distribution of the stripe unevenness correction function f2 shows the stripe unevenness generated in the reference print image R. That is, when ink is ejected from the plurality of recording nozzles 5 based on the predetermined signal value a of the reference image, the actual density value of the reference recording image R is not the expected density value b, but the respective non-uniformity correction functions f2. Is output as an actual density value c according to the difference between the actual density values c.
  • the correction value calculation unit 9 calculates the signal value d of the reference image in which the actual density value becomes the expected density value b as the correction value of the signal value a based on the conversion function f1 and the non-uniformity correction function f2, that is, the signal of the reference image A correction value for correcting the density according to the value d to the density according to the signal value a is calculated.
  • this correction value is corrected to a signal value d having a density value lower than the density value corresponding to the signal value a, and compared with the expected density value b.
  • the correction value calculation unit 9 can calculate a correction value for correcting the density of the reference image so that the fluctuation amount of the density of the reference recorded image R is cancelled.
  • the correction value calculator 9 can also generate and store in advance a density correction lookup table (LUT) in which the calculated correction value is associated with the signal value a corresponding to the density of the reference image.
  • LUT density correction lookup table
  • the corrected image generation unit 10 includes a pseudo continuous tone image generation unit 11 to which a target halftone image is input.
  • the pseudo continuous tone image generation unit 11 includes a corrected continuous tone image generation unit 12, A halftone image generation unit 13 is sequentially connected.
  • the correction value calculation unit 9 is connected to the corrected continuous tone image generation unit 12, and the inkjet recording apparatus 1 is connected to the halftone image generation unit 13.
  • the pseudo continuous tone image generation unit 11 generates a pseudo continuous tone image Ga by subjecting the target halftone image Ha to halftone reverse processing and combining the halftone dot distribution.
  • the pseudo continuous tone image Ga is obtained by converting the target halftone image Ha into an image having a pseudo gradation so that the gradation information of the target image can be obtained from the target halftone image Ha. That is, the pseudo continuous tone image Ga includes gradation information of the target image extracted from the target halftone image Ha.
  • the halftone reverse processing is not particularly limited as long as the target halftone image Ha can be converted into the pseudo continuous tone image Ga. For example, it is preferable to perform dither reverse conversion, and Gaussian after the dither reverse conversion is performed. More preferably, the smoothing process is performed using a filter or the like.
  • the corrected continuous tone image generation unit 12 extracts the density of the pseudo continuous tone image Ga generated by the pseudo continuous tone image generation unit 11 as a density index of the target image, and sets the correction value calculated by the correction value calculation unit 9. Based on this, a corrected continuous tone image Gb in which the density of the pseudo continuous tone image Ga is corrected is generated. At this time, the corrected continuous tone image generation unit 12 preferably corrects the density of the pseudo continuous tone image Ga using the density correction LUT generated by the correction value calculation unit 9. As a result, in the corrected continuous tone image Gb, the correction stripe unevenness M1 for canceling the stripe unevenness occurring in the recorded image is generated.
  • the halftone image generation unit 13 performs a halftone process on the corrected continuous tone image Gb generated by the corrected continuous tone image generation unit 12 to generate a corrected halftone image Hb. Also in the corrected halftone image Hb, a correction stripe unevenness M2 corresponding to the correction stripe unevenness M1 of the correction continuous tone image Gb is generated.
  • the halftone process is not particularly limited as long as the corrected continuous tone image Gb can be converted into the corrected halftone image Hb. For example, dither conversion is preferable.
  • a reference halftone image obtained by halftoning a reference image is input to the drive signal generation unit 3 of the inkjet recording apparatus 1.
  • the drive signal generation unit 3 generates a drive signal corresponding to the signal value a of the input reference halftone image and outputs the drive signal to the recording head 4.
  • the reference recording image R recorded by the ink jet recording apparatus 1 is transferred to the non-uniformity correction apparatus 2, read by the image reading unit 6, and then output to the gradation information calculation unit 7.
  • the gradation information calculation unit 7 receives the reference recording image R read by the image reading unit 6 and the reference image that is the original image data of the reference recording image R.
  • the gradation information calculation unit 7 calculates the densities of the reference image and the reference recording image R, and outputs these densities to the fluctuation amount calculation unit 8.
  • the fluctuation amount calculation unit 8 converts the relationship between the image signal value of the reference image and the expected density value of the reference recording image R based on the density of the reference image and the density of the reference recording image R.
  • a function f1 is calculated, and a non-uniformity correction function f2 indicating the relationship between the expected density value of the reference recorded image R and the actual density value of the reference recorded image R is calculated.
  • the conversion function f1 and the smoothing correction function f2 the signal value of the reference image, the expected density value of the reference recorded image R, and the actual density value of the reference recorded image R can be associated with each other. it can.
  • the non-uniformity correction function f2 is calculated corresponding to each recording nozzle 5.
  • the plurality of stripe unevenness correction functions f2 calculated corresponding to the plurality of recording nozzles 5 show different distributions.
  • the deviation of the distribution of the plurality of non-uniformity correction functions f2 is such that when the ink is ejected from the plurality of recording nozzles 5 based on the predetermined signal value a of the reference image, the reference recording image R is recorded with different actual density values c. In other words, the unevenness occurring in the reference recording image R is shown.
  • the amount of density fluctuation in the reference recorded image R can be expressed by the non-uniformity correction function f2, and the non-uniformity correction function f2 is output to the correction value calculation unit 9 together with the conversion function f1.
  • the correction value calculation unit 9 calculates the signal value d of the reference image in which the actual density value becomes the expected density value b as the correction value of the signal value a based on the input conversion function f1 and non-uniformity correction function f2. Subsequently, the correction value calculation unit 9 generates a density correction LUT that associates the calculated correction value with the density (signal value a) of the reference image, and generates the corrected continuous tone image of the correction image generation unit 10. To the unit 12. In this way, before the target image is recorded by the ink jet recording apparatus 1, a correction value for correcting the unevenness occurring in the recorded image is calculated.
  • the target halftone image Ha that is a halftone image of the target image is converted into a pseudo continuous tone of the corrected image generation unit 10.
  • the pseudo continuous tone image generation unit 11 performs a half tone reverse process on the input target half tone image Ha to generate a pseudo continuous tone image Ga.
  • the pseudo continuous tone image Ga is preferably adjusted to data corresponding to the scale value of the reference recording image R read by the image reading unit 6. For example, based on the average signal value of each density patch P of the reference halftone image and the average signal value of each density patch P of the reference recording image R read by the image reading unit 6, both scale values are converted. A signal value conversion LUT is created in advance, and the pseudo continuous tone image Ga can be adjusted to data corresponding to the scale value of the reference recording image R after being read by the image reading unit 6 based on the signal value conversion LUT.
  • the correction value calculated by the correction value calculation unit 9 is obtained by calculating the expected density value and the actual density value from the reference recording image R read by the image reading unit 6, as shown in FIG.
  • the signal value of the reference recording image R read by the image reading unit 6 may not change linearly with respect to the signal value of the reference image due to the influence of the gamma value and the like of the image reading unit 6. . Therefore, it is possible to perform highly accurate correction by matching the scale value of the pseudo continuous tone image Ga obtained from the target halftone image with the scale value of the expected density value and the actual density value when calculating the correction value. it can.
  • the density index of the target image can be obtained only from the target halftone image Ha without using the contone image information of the target image.
  • the pseudo continuous tone image generation unit 11 outputs the generated pseudo continuous tone image Ga to the corrected continuous tone image generation unit 12, and the corrected continuous tone image generation unit 12 calculates the density of the pseudo continuous tone image Ga and corrects it.
  • a corrected continuous tone image Gb in which the density of the pseudo continuous tone image Ga is corrected based on the density correction LUT input from the value calculation unit 9 is generated.
  • the corrected continuous tone image Gb has a corrected streak unevenness in which the density of the nozzle region having a higher actual density value c than the expected density value b in the reference recording image R is lower than that in the pseudo continuous tone image Ga.
  • M1 occurs, and for the nozzle area having the actual density value c lower than the expected density value b in the reference recording image R, a correction stripe unevenness M1 having a density higher than that of the pseudo continuous tone image Ga is generated.
  • the corrected continuous tone image Gb is output to the halftone image generation unit 13 and converted into a corrected halftone image Hb. Then, the halftone image generation unit 13 outputs the corrected halftone image Hb to the drive signal generation unit 3 of the inkjet recording apparatus 1, and the drive signal generation unit 3 records a drive signal according to the signal value of the correction halftone image Hb. Output to the head 4.
  • the ink ejection amount is weakened for the recording head 4 that generates a higher actual density value c than the expected density value b, and the recording head 4 that generates a lower actual density value c than the expected density value b.
  • the ink discharge amount is increased, and the variation in the discharge characteristics of the ink discharged from the plurality of recording nozzles 5 can be canceled to correct the unevenness generated in the recorded image.
  • the present embodiment it is possible to suppress unevenness that occurs in a recorded image when an intended recording image is recorded by an ink jet recording apparatus using only a halftone image.
  • the pseudo continuous tone image Ga is converted so as to be closer to the target image, it is possible to perform the stripe unevenness correction with high accuracy.
  • the stripe unevenness generated in the target recorded image is corrected based on the density of the reference recorded image.
  • the stripe unevenness generated in the target recorded image can be corrected based on the gradation information of the reference recorded image. It is not limited. For example, it is possible to correct the unevenness occurring in the target recording image based on the density of halftone dots in the halftone image information of the reference recording image.
  • FIG. 5 shows a configuration of the stripe unevenness correction apparatus 21 according to the second embodiment.
  • This stripe unevenness correction device 21 is the same as the stripe unevenness correction device 2 according to the first embodiment, except that the gradation information calculation unit 7, the fluctuation amount calculation unit 8, the correction value calculation unit 9, and the correction image generation unit 10 are replaced with gradation information.
  • a calculation unit 22, a fluctuation amount calculation unit 23, a correction value calculation unit 24, and a corrected image generation unit 25 are arranged.
  • the gradation information calculation unit 22 receives the reference image and the reference recording image R read by the image reading unit 6, and performs halftone processing on the reference image and the reference recording image R, respectively.
  • a reference halftone image that is a halftone image and a recording halftone image that is a halftone image of the reference recording image R are generated.
  • the generated reference halftone image and recorded halftone image are output to the fluctuation amount calculation unit 23.
  • the reference recording image R is recorded by the inkjet recording apparatus 1 in order to calculate the amount of change in gradation information for each nozzle region N corresponding to each of the plurality of recording nozzles 5. Recorded images.
  • a test chart in which a plurality of density patches in which the density of halftone dots is constant in the nozzle row direction and the density of halftone dots is changed stepwise in the conveyance direction of the recording medium M is used.
  • the reference halftone image recorded by the inkjet recording apparatus 1 can be used as the reference recorded image R.
  • the gradation information is information serving as an index representing the gradation value of the contone image, and in the present embodiment, indicates the density of halftone dots in the halftone image.
  • the fluctuation amount calculation unit 23 calculates the fluctuation amount of the density of halftone dots in the recorded halftone image. For example, it is possible to calculate the fluctuation amount of the halftone dot density in the recording halftone image with respect to the halftone dot density in the reference halftone image. As shown in FIG. 6, with respect to the reference halftone image and the recording halftone image, each halftone dot patch P is divided for each nozzle area N corresponding to each recording nozzle 5, and the halftone dots in the divided area are divided. Calculate the density.
  • the recorded halftone image with respect to the density of halftone dots in the reference halftone image is subtracted from the halftone dot density of each divided area in the recorded halftone image from the density of halftone dots in each divided area in the reference halftone image.
  • the amount of change in the density of halftone dots at is calculated.
  • the correction value calculation unit 24 calculates a correction value for correcting the density of halftone dots in the reference halftone image so that the variation in the density of halftone dots in the recorded halftone image is canceled out. That is, when the density of halftone dots of the recording halftone image is higher than that of the reference halftone image, the correction value calculation unit 24 determines the density of the halftone dots of the reference halftone image. A correction value that reduces the variation amount is calculated, and when the halftone dot density of the recorded halftone image is lower than the reference halftone image, the halftone dot density of the reference halftone image is set to the halftone dot of the recorded halftone image. A correction value for increasing the density fluctuation amount is calculated.
  • the correction value calculation unit 24 represents the calculated correction value with chromaticity or lightness corresponding to the value (correction amount).
  • the correction value calculation unit 24 can also generate and store in advance a density correction lookup table (LUT) in which the correction value is associated with the density of halftone dots in the reference halftone image.
  • LUT density correction lookup table
  • the corrected image generation unit 25 includes a pseudo continuous tone image generation unit 26 to which a target halftone image is input, and the pseudo continuous tone image generation unit 26 includes a corrected continuous tone image generation unit 27, The halftone image generation unit 28 is sequentially connected. Further, the correction value calculation unit 24 is connected to the corrected continuous tone image generation unit 27, and the inkjet recording apparatus 1 is connected to the halftone image generation unit 28.
  • the corrected image generation unit 25 calculates the density of halftone dots in the target halftone image and combines it with the distribution of halftone dots, and extracts the calculated halftone dot density as gradation information of the target image, thereby correcting the correction value. Based on the correction value calculated by the calculation unit 24, a corrected halftone image is generated by correcting the density of halftone dots in the target halftone image.
  • the pseudo continuous tone image generation unit 25 performs pseudo continuation processing on the target halftone image Ha, and generates a halftone dot for the target halftone image Ha for each nozzle region N corresponding to each of a plurality of recording nozzles. Is calculated, the halftone dot distribution in the target halftone image Ha is combined, and a pseudo continuous tone image Ga displayed with chromaticity or lightness corresponding to the density of the halftone dot is generated.
  • the quasi-continuous processing means that the density of halftone dots in the target halftone image Ha is set as a pseudo gradation for each nozzle region N so that the gradation information of the target image can be obtained from the target halftone image Ha.
  • This is a process of converting into the represented pseudo continuous tone image Ga. That is, the pseudo continuous tone image Ga includes gradation information of the target image extracted from the target halftone image Ha.
  • the nozzle region N which is a range for calculating the density of halftone dots in the target halftone image, is preferably set to a pixel range corresponding to a dither mask, specifically, a range of about 16 pix to 512 pix.
  • the corrected continuous tone image generation unit 26 extracts the chromaticity or brightness of the pseudo continuous tone image Ga generated by the pseudo continuous tone image generation unit 25 as gradation information of the target image, and is calculated by the correction value calculation unit 24.
  • the corrected continuous tone image generation unit 26 preferably corrects the chromaticity or lightness of the pseudo continuous tone image Ga using the density correction LUT generated by the correction value calculation unit 24.
  • the corrected continuous tone image Gb the correction stripe unevenness M1 for canceling the stripe unevenness occurring in the recorded image is generated.
  • the pseudo continuous reverse processing unit 27 performs a pseudo continuous reverse process on the corrected continuous tone image Gb generated by the corrected continuous tone image generating unit 26 to generate a corrected halftone image Hb.
  • the quasi-continuous reverse processing is the color of the nozzle region N in which the pseudo-continuous processing applied to the target halftone image Ha is reverse-processed in the pseudo-continuous tone image generation unit 25 and the correction stripe unevenness M1 is generated. This is a process for replenishing or removing the halftone dot M2 according to the degree or brightness.
  • the nozzle area N for replenishing the halftone dot M2 that is, in the nozzle area N where the density of the halftone dot of the recording halftone image is low with respect to the reference halftone image, the vicinity of the location where the halftone dots are concentrated exists It is preferable to replenish the nozzle area N where the halftone dot M2 is removed, that is, in the nozzle area N where the density of halftone dots of the recording halftone image is higher than the reference halftone image, Is preferably removed.
  • the present embodiment it is possible to suppress unevenness that occurs in a recorded image when an intended recording image is recorded by an ink jet recording apparatus using only a halftone image.
  • correction is performed based on the halftone image, there are few steps that increase the amount of calculation such as image conversion, and it is possible to perform smoothing correction quickly.
  • the corrected image generation unit 25 corrects the density of halftone dots in the target halftone image based on the correction value represented by chromaticity or brightness.
  • a corrected halftone image obtained by extracting the density of halftone dots in the tone image as gradation information of the target image and correcting the density of halftone dots in the target halftone image based on the correction value calculated by the correction value calculation unit 24 is obtained. It is only necessary that it can be generated, and the present invention is not limited to this.
  • the corrected image generation unit 25 can generate a corrected halftone image in which the density of halftone dots in the target halftone image is corrected based on the numerical value of the correction value calculated by the correction value calculation unit 24.
  • 1 Inkjet recording device 2, 21 Unevenness correction device, 3 Drive signal generation unit, 4 Recording head, 5 Recording nozzles, 6 Image reading unit, 7, 22 Gradation information calculation unit, 8, 23 Fluctuation amount calculation unit, 9, 24 correction value calculation unit, 10, 25 correction image generation unit, 11, 26 pseudo continuous tone image generation unit, 12, 27 correction continuous tone image generation unit, 13, 28 halftone image generation unit, M recording medium, S Unevenness, N nozzle area, R reference recording image, P density patch, f1 conversion function, f2 nonuniformity correction function, a, d reference image signal value, b expected density value, c, b actual density value, Ha target halftone image , Hb corrected halftone image, Ga pseudo continuous tone image, Gb corrected continuous tone image, M1, M2 streaks for correction.

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Ink Jet (AREA)
  • Particle Formation And Scattering Control In Inkjet Printers (AREA)

Abstract

 本発明に係るスジムラ補正装置は、変動量算出部8が基準記録画像Rの階調情報の変動量を複数の記録ノズル5のそれぞれに対応して算出し、基準記録画像Rの階調情報の変動量が打ち消されるように補正値算出部9が基準画像の階調情報を補正する補正値を複数のノズル5のそれぞれに対応して算出し、補正画像生成部10が目的ハーフトーン画像Haにおける網点の分布を複合化することにより目的画像の階調情報を抽出して、補正値算出部9で算出された補正値に基づいて目的ハーフトーン画像Haから抽出した目的画像の階調情報を補正した補正ハーフトーン画像Hbを生成する。

Description

スジムラ補正装置およびスジムラ補正方法
 この発明は、スジムラ補正装置およびスジムラ補正方法に係り、特に、目的画像をインクジェット記録装置により記録した記録画像に生じるスジムラを補正するスジムラ補正装置およびスジムラ補正方法に関する。
 従来から、インクジェット記録装置によりインクを吐出して記録画像を記録する際にスジ状の濃度ムラ(スジムラ)が記録画像に生じることが問題となっており、この記録画像に生じるスジムラを補正するスジムラ補正装置が提案されている。
 一般的に、インクジェット記録装置による記録画像のスジムラは、インクを吐出する複数の記録ノズルの吐出特性の変動量、例えばインクの吐出量およびインクの濃度などの変動量に起因して生じる。
 そこで、インクジェット記録装置により記録された記録画像の濃度を測定し、その濃度に基づいて補正した入力信号を記録ノズルに与えることにより、記録画像のスジムラを補正することが試みられている。
 例えば、特許文献1には、入力階調値と出力階調値との差異が生じないムラ補正を行う補正値算出方法が開示されている。この補正値算出方法は、濃度測定用テストパターンを記録ヘッドにより記録媒体上に出力して、その出力された濃度測定用テストパターンを測定し、濃度測定用テストパターンの複数の階調値と、測定された複数の階調値に対する測定値とから、階調値を入力、測定値を出力とする記録素子毎の特性関数を算出する。続いて、特性関数の逆関数から測定値を入力、平均出力階調値を出力とする基準特性関数を算出し、基準特性関数値の逆関数及び記録素子毎の特性関数の逆関数から記録素子毎のムラ補正値を算出する。このように、測定値を基準として階調値の平均値を算出するため、ムラ補正後の出力階調値に対して基準とした測定値の濃度を反映させることができる。
特開2012-66516号公報
 しかしながら、特許文献1で示される補正値算出方法は、階調値を有するコントーン画像を補正するためのものであり、コントーン画像を用いてインクジェット記録装置により記録画像を記録する場合には記録画像のスジムラを抑制することができるが、ハーフトーン画像のみを用いて記録画像を記録する場合にはスジムラが抑制された記録画像を得ることができなかった。近年、インクジェット記録装置により記録画像を記録する工程は分業化が進んでおり、入力画像のコントーン画像データが入手できない状況下でハーフトーン画像データのみを用いて記録画像を生成する事態が多く存在する。このため、特許文献1の補正値算出方法では、ハーフトーン画像データのみを用いて記録画像を生成する状況に対応することが困難であった。
 この発明は、このような従来の問題点を解消するためになされたもので、ハーフトーン画像データのみを用いてインクジェット記録装置により目的の記録画像を記録する際に記録画像に生じるスジムラを抑制することができるスジムラ補正装置およびスジムラ補正方法を提供することを目的とする。
 この発明に係るスジムラ補正装置は、基準画像をハーフトーン処理して得られる基準ハーフトーン画像に基づいてインクジェット記録装置により複数の記録ノズルからインクが吐出されて基準記録画像を記録し、基準記録画像の階調情報に基づいて、複数の記録ノズルから吐出されるインクの吐出特性の変動量に起因してインクジェット記録装置により記録される記録画像に生じるスジムラを補正するスジムラ補正装置であって、基準記録画像の階調情報の変動量を複数の記録ノズルのそれぞれに対応して算出する変動量算出部と、変動量算出部で算出された基準記録画像の階調情報の変動量が打ち消されるように基準画像の階調情報を補正する補正値を複数のノズルのそれぞれに対応して算出する補正値算出部と、目的画像のハーフトーン画像である目的ハーフトーン画像が入力され、目的ハーフトーン画像における網点の分布を複合化することにより目的画像の階調情報を抽出して、補正値算出部で算出された補正値に基づいて目的ハーフトーン画像から抽出した目的画像の階調情報を補正した補正ハーフトーン画像を生成する補正画像生成部とを備え、補正ハーフトーン画像をインクジェット記録装置に入力することにより複数の記録ノズルから吐出されるインクの吐出特性の変動量が打ち消されて記録画像に生じるスジムラを補正するものである。
 ここで、変動量算出部は、基準記録画像の階調情報の変動量として基準記録画像の濃度の変動量を算出し、補正値算出部は、基準記録画像の濃度の変動量が打ち消されるように基準画像の濃度を補正する補正値を算出することが好ましい。
 また、補正画像生成部は、目的ハーフトーン画像にハーフトーン逆処理を施して網点の分布を複合化することにより疑似連続調画像を生成する疑似連続調画像生成部と、疑似連続調画像生成部により生成された疑似連続調画像の濃度を目的画像の階調情報として抽出して、補正値算出部で算出された補正値に基づいて疑似連続調画像の濃度を補正した補正連続調画像を生成する補正連続調画像生成部と、補正連続調画像生成部で生成された補正連続調画像にハーフトーン処理を施して補正ハーフトーン画像を生成するハーフトーン画像生成部とを有することが好ましい。
 また、ハーフトーン処理はディザ変換であり、ハーフトーン逆処理はディザ逆変換であることが好ましい。
 また、補正値算出部は、基準画像の濃度と補正値との関係を示す濃度補正ルックアップテーブルを有することができる。
 また、変動量算出部は、基準記録画像の階調情報の変動量として、基準記録画像をハーフトーン処理して得られる記録ハーフトーン画像における網点の密度の変動量を算出し、補正値算出部は、記録ハーフトーン画像における網点の密度の変動量が打ち消されるように基準ハーフトーン画像における網点の密度を補正する補正値を算出することもできる。
 また、補正画像生成部は、目的ハーフトーン画像における前記網点の密度を算出して前記網点の分布を複合化すると共に前記網点の密度を目的画像の階調情報として抽出して、補正値算出部で算出された補正値に基づいて目的ハーフトーン画像における網点の密度を補正した補正ハーフトーン画像を生成することもできる。
 また、補正値算出部は、補正される網点の密度に応じた色度または明度で補正値を表し、補正画像生成部は、目的ハーフトーン画像における網点の密度に応じた色度または明度で複数の記録ノズルにそれぞれ対応するノズル領域を表示した疑似連続調画像を生成する疑似連続調画像生成部と、補正値算出部で算出された補正値に基づいて、疑似連続調画像生成部により生成された疑似連続調画像の色度または明度を補正した補正連続調画像を生成する補正連続調画像生成部と、補正連続調画像生成部で生成された補正連続調画像の色度または明度に応じた密度となるように網点を配置した補正ハーフトーン画像を生成するハーフトーン画像生成部とを有することができる。
 また、補正値算出部は、基準ハーフトーン画像における網点の密度と補正値との関係を示す密度補正ルックアップテーブルを有することができる。
 また、インクジェット記録装置により記録された基準記録画像を読み取る画像読取部と、基準画像から階調情報を算出すると共に画像読取部により読み取られた基準記録画像から階調情報を算出して、基準画像の階調情報と基準記録画像の階調情報を変動量算出部に出力する階調情報算出部とをさらに備えることができる。
 この発明に係るスジムラ補正方法は、基準画像をハーフトーン処理して得られる基準ハーフトーン画像に基づいてインクジェット記録装置により複数の記録ノズルからインクが吐出されて基準記録画像を記録し、基準記録画像の階調情報に基づいて、複数の記録ノズルから吐出されるインクの吐出特性の変動量に起因してインクジェット記録装置により記録される記録画像に生じるスジムラを補正するスジムラ補正方法であって、基準記録画像の階調情報の変動量を複数の記録ノズルのそれぞれに対応して算出し、算出された基準記録画像の階調情報の変動量が打ち消されるように基準画像の階調情報を補正する補正値を複数のノズルのそれぞれに対応して算出し、目的画像のハーフトーン画像である目的ハーフトーン画像における網点の分布を複合化することにより目的画像の階調情報を抽出して、補正値に基づいて目的ハーフトーン画像から抽出した目的画像の階調情報を補正した補正ハーフトーン画像を生成し、補正ハーフトーン画像をインクジェット記録装置に入力することにより複数の記録ノズルから吐出されるインクの吐出特性の変動量が打ち消されて記録画像に生じるスジムラを補正するものである。
 この発明によれば、目的ハーフトーン画像における網点の分布を複合化することにより抽出した目的画像の階調情報を補正して補正ハーフトーン画像を生成するので、ハーフトーン画像データのみを用いてインクジェット記録装置により目的の記録画像を記録する際に記録画像に生じるスジムラを抑制することが可能となる。
この発明の実施の形態1に係るスジムラ補正装置を有するインクジェット記録システムの構成を示すブロック図である。 基準記録画像の濃度の変動量が打ち消される補正値を算出する方法を示す図である。 実施の形態1における補正画像生成部の構成を示す図である。 実施の形態1において目的ハーフトーン画像から補正ハーフトーン画像を生成する方法を示す図である。 この発明の実施の形態2に係るスジムラ補正装置の構成を示すブロック図である。 記録ハーフトーン画像における網点の密度の変動量が打ち消される補正値を算出する方法を示す図である。 実施の形態2における補正画像生成部の構成を示す図である。 実施の形態2において目的ハーフトーン画像から補正ハーフトーン画像を生成する方法を示す図である。
 実施の形態1
 以下、この発明の実施の形態1を添付図面に基づいて説明する。
 図1に、この発明の実施の形態1に係るスジムラ補正装置を含むインクジェット記録システムの構成を示す。インクジェット記録システムは、インクジェット記録装置1と、スジムラ補正装置2とを有し、基準画像をインクジェット記録装置1により記録して基準記録画像Rを取得し、基準記録画像Rの階調情報に基づいて、目的画像をインクジェット記録装置1により記録する際に記録画像に生じるスジ状の濃度ムラ、いわゆるスジムラをスジムラ補正装置2により補正するものである。
 インクジェット記録装置1は、駆動信号生成部3と、駆動信号生成部3に接続された記録ヘッド4とを有する。
 駆動信号生成部3は、ハーフトーン画像データが入力、例えば後述する基準画像(コントーン画像)をハーフトーン処理して得られる基準ハーフトーン画像などが入力され、このハーフトーン画像の画像信号値に応じた吐出量で記録ヘッド4からインクが吐出されるように、記録ヘッド4を駆動するための駆動信号値を生成する。ここで、コントーン画像とは階調を有する画像であり、ハーフトーン画像とはコントーン画像をインクジェット記録装置1により記録できるようにドット画像に変換したものである。
 記録ヘッド4は、例えば圧電素子の伸縮動作を利用してインクを吐出する、いわゆるインクジェット方式の記録ヘッドであり、記録媒体M上にインクを吐出して記録画像を記録する。例えば、黒(K)、シアン(C)、マゼンタ(M)、およびイエロー(Y)の各インクにそれぞれ対応した4つの記録ヘッド4を配置することができる。各記録ヘッド4には、記録媒体Mの搬送方向に対して交差する方向に複数の記録ノズル5が配列されており、それぞれの記録ノズル5から対応する記録媒体M上のノズル領域Nにインクが吐出される。この複数の記録ノズル5から吐出されるインクの吐出特性、例えばインクの吐出量およびインクの濃度などが記録ノズル5毎に変動することにより、記録画像にスジムラSが生じることになる。
 記録媒体Mは、記録ヘッド4からインクを吐出して記録画像を記録することができれば特に限定されるものではなく、例えば、紙材および樹脂材(ポリエチレンテレフタレートなど)を用いることができる。
 スジムラ補正装置2は、画像読取部6を備え、この画像読取部6に階調情報算出部7と、変動量算出部8と、補正値算出部9と、補正画像生成部10とが順次接続されている。また、補正画像生成部10は、インクジェット記録装置1の駆動信号生成部3に接続されている。
 画像読取部6は、インクジェット記録装置1に基準ハーフトーン画像を入力することより記録媒体M上に記録された基準記録画像Rを読み取るもので、例えばスキャナなどから構成される。
 ここで、基準記録画像Rとは、複数の記録ノズル5にそれぞれ対応するノズル領域N毎に階調情報の変動量を算出するためにインクジェット記録装置1により記録された記録画像である。例えば、基準画像として、ノズル列方向に濃度がそれぞれ一定で且つ記録媒体Mの搬送方向に段階的に濃度を変化させた複数の濃度パッチを配置したテストチャートを用い、この基準画像に基づいてインクジェット記録装置1により記録したものを基準記録画像Rとすることができる。また、階調情報とは、コントーン画像の階調値を表す指標となる情報であり、本実施の形態では画像の濃度を示す。
 階調情報算出部7は、基準記録画像Rをインクジェット記録装置1で記録するためのコントーン画像である基準画像が入力されると共に、画像読取部6で読み取られたコントーン画像である基準記録画像Rが入力される。階調情報算出部7は、入力された基準画像の濃度を算出すると共に画像読取部6により読み取られた基準記録画像Rの濃度を算出して、基準画像の濃度と基準記録画像Rの濃度を変動量算出部8に出力する。
 変動量算出部8は、基準記録画像Rの濃度の変動量を複数の記録ノズル5のそれぞれに対応するノズル領域N毎に算出する。変動量算出部8は、例えば、基準記録画像Rの期待濃度値に対する現実濃度値の変動量を算出することができる。
 補正値算出部9は、基準記録画像の濃度の変動量が打ち消されるように基準画像の濃度を補正する補正値を複数の記録ノズル5のそれぞれに対応するノズル領域N毎に算出し、その補正値を補正画像生成部10に出力する。
 補正画像生成部10は、目的画像のハーフトーン画像である目的ハーフトーン画像が入力されると共に補正値算出部9で算出された補正値が入力される。補正画像生成部10は、目的ハーフトーン画像における網点の分布を複合化することにより目的画像の濃度を抽出して、補正値算出部9で算出された補正値に基づいて目的ハーフトーン画像における目的画像の濃度を補正した補正ハーフトーン画像を生成する。この補正ハーフトーン画像をインクジェット記録装置1の駆動信号生成部3に入力することにより、複数の記録ノズル5から吐出されるインクの吐出特性の変動量が打ち消されて記録画像に生じるスジムラSを補正することができる。
 次に、変動量算出部8における基準記録画像Rの濃度の変動量の算出と、補正値算出部9における補正値の算出について詳細に説明する。
 図2に示すように、変動量算出部8は、基準記録画像Rについて、各濃度パッチPの平均濃度を算出すると共に、それぞれの濃度パッチPを各記録ノズル5に対応するノズル領域N毎に区分けした区分領域における平均濃度を算出する。続いて、変動量算出部8は、基準画像の画像信号値(濃度値に応じたスケール値)と、基準記録画像Rの各濃度パッチPの平均濃度値(期待濃度値)とに基づいて、基準画像の画像信号値と基準記録画像Rの期待濃度値との関係を示す変換関数f1を算出する。ここで、基準記録画像Rの期待濃度値は、基準記録画像Rにスジムラが生じていない時の濃度値を表すものである。
 さらに、変動量算出部8は、基準記録画像Rの各濃度パッチPの平均濃度値(期待濃度値)と、基準記録画像Rの各濃度パッチPをノズル領域N毎に区分けした区分領域における平均濃度値(現実濃度値)とに基づいて、基準記録画像Rの期待濃度値と基準記録画像Rの現実濃度値との関係を示すスジムラ補正関数f2を算出する。ここで、基準記録画像Rの現実濃度値は、現実にスジムラが生じている基準記録画像Rの濃度値を表すものである。
 スジムラ補正関数f2は、複数の記録ノズル5のそれぞれに対応して生成、すなわち各ノズル領域N毎に生成される。図2では、3つの記録ノズル5に対応する3つのスジムラ補正関数f2が互いに異なる分布を示しており、このスジムラ補正関数f2の分布のずれが基準記録画像Rに生じたスジムラを示している。すなわち、基準画像の所定の信号値aに基づいて複数の記録ノズル5からインクが吐出された場合に、基準記録画像Rの現実濃度値は、期待濃度値bではなく、それぞれのスジムラ補正関数f2に応じた現実濃度値cとして出力されており、この現実濃度値cの違いが基準記録画像Rのスジムラとなる。
 補正値算出部9は、変換関数f1とスジムラ補正関数f2に基づいて、現実濃度値が期待濃度値bとなる基準画像の信号値dを信号値aの補正値として算出、すなわち基準画像の信号値dに応じた濃度を信号値aに応じた濃度に補正する補正値を算出する。この補正値は、期待濃度値bと比べて高い現実濃度値cが出力される場合には信号値aに応じた濃度値より低い濃度値の信号値dに補正し、期待濃度値bと比べて低い現実濃度値cが出力される場合には信号値aに応じた濃度値より高い濃度値の信号値dに補正するものである。
 このようにして、補正値算出部9は、基準記録画像Rの濃度の変動量が打ち消されるように基準画像の濃度を補正する補正値を算出することができる。
 なお、補正値算出部9は、算出した補正値を基準画像の濃度に応じた信号値aと関連付けた濃度補正ルックアップテーブル(LUT)を予め生成して保管しておくこともできる。
 次に、補正画像生成部10の構成を詳細に説明する。
 図3に示すように、補正画像生成部10は、目的ハーフトーン画像が入力される疑似連続調画像生成部11を備え、この疑似連続調画像生成部11に補正連続調画像生成部12と、ハーフトーン画像生成部13とが順次接続されている。また、補正連続調画像生成部12には補正値算出部9が接続され、ハーフトーン画像生成部13にはインクジェット記録装置1が接続されている。
 疑似連続調画像生成部11は、図4に示すように、目的ハーフトーン画像Haにハーフトーン逆処理を施して前記網点の分布を複合化することにより疑似連続調画像Gaを生成する。
 ここで、疑似連続調画像Gaとは、目的ハーフトーン画像Haから目的画像の階調情報が得られるように、目的ハーフトーン画像Haを疑似的に階調を有する画像に変換したものである。すなわち、疑似連続調画像Gaは、目的ハーフトーン画像Haから抽出された目的画像の階調情報を含んでいることになる。
 また、ハーフトーン逆処理は、目的ハーフトーン画像Haを疑似連続調画像Gaに変換することができればよく特に限定されるものではないが、例えばディザ逆変換を行うことが好ましく、ディザ逆変換後にガウシアンフィルタなどを用いて平滑化処理を行うことがさらに好ましい。
 補正連続調画像生成部12は、疑似連続調画像生成部11により生成された疑似連続調画像Gaの濃度を目的画像の濃度指標として抽出して、補正値算出部9で算出された補正値に基づいて疑似連続調画像Gaの濃度を補正した補正連続調画像Gbを生成する。この時、補正連続調画像生成部12は、補正値算出部9において生成された濃度補正LUTを用いて疑似連続調画像Gaの濃度を補正することが好ましい。これにより、補正連続調画像Gbには、記録画像に生じるスジムラを打ち消すための補正用スジムラM1が生じることになる。
 ハーフトーン画像生成部13は、補正連続調画像生成部12で生成された補正連続調画像Gbにハーフトーン処理を施して補正ハーフトーン画像Hbを生成する。この補正ハーフトーン画像Hbにおいても、補正連続調画像Gbの補正用スジムラM1に対応する補正用スジムラM2が生じている。ここで、ハーフトーン処理は、補正連続調画像Gbを補正ハーフトーン画像Hbに変換することができればよく特に限定されるものではないが、例えばディザ変換などが好ましい。
 次に、実施の形態1の動作について説明する。
 まず、図1に示すように、基準画像をハーフトーン処理して得られた基準ハーフトーン画像が、インクジェット記録装置1の駆動信号生成部3に入力される。駆動信号生成部3は、入力された基準ハーフトーン画像の信号値aに応じた駆動信号を生成し、その駆動信号を記録ヘッド4に出力する。
 記録ヘッド4に駆動信号が入力されると、駆動信号に応じて駆動する複数の記録ノズル5からインクが吐出されて記録媒体M上に基準記録画像Rが記録される。ここで、複数の記録ノズルから吐出されるインクの吐出特性の変動量に起因して、基準記録画像RにはスジムラSが生じる。
 このようにして、インクジェット記録装置1により記録された基準記録画像Rは、スジムラ補正装置2に移されて画像読取部6により読み取られた後、階調情報算出部7に出力される。
 階調情報算出部7には、画像読取部6で読み取られた基準記録画像Rが入力されると共に、基準記録画像Rの元画像データである基準画像が入力される。階調情報算出部7は、基準画像と基準記録画像Rの濃度をそれぞれ算出して、これらの濃度を変動量算出部8に出力する。
 変動量算出部8は、図2に示すように、基準画像の濃度と基準記録画像Rの濃度に基づいて、基準画像の画像信号値と基準記録画像Rの期待濃度値との関係を示す変換関数f1を算出すると共に、基準記録画像Rの期待濃度値と基準記録画像Rの現実濃度値との関係を示すスジムラ補正関数f2を算出する。このように、変換関数f1とスジムラ補正関数f2とを算出することにより、基準画像の信号値と、基準記録画像Rの期待濃度値と、基準記録画像Rの現実濃度値とを互いに対応付けることができる。
 ここで、スジムラ補正関数f2は、それぞれの記録ノズル5に対応して算出される。図2に示すように、複数の記録ノズル5にそれぞれ対応して算出された複数のスジムラ補正関数f2は、互いに異なる分布を示す。この複数のスジムラ補正関数f2の分布のズレは、基準画像の所定の信号値aに基づいて複数の記録ノズル5からインクを吐出した場合に、互いに異なる現実濃度値cで基準記録画像Rが記録される、すなわち基準記録画像Rに生じたスジムラを示している。
 このように、基準記録画像Rにおける濃度の変動量をスジムラ補正関数f2で表すことができ、スジムラ補正関数f2は変換関数f1と共に補正値算出部9に出力される。
 補正値算出部9は、入力された変換関数f1とスジムラ補正関数f2に基づいて、現実濃度値が期待濃度値bとなる基準画像の信号値dを信号値aの補正値として算出する。続いて、補正値算出部9は、算出した補正値を基準画像の濃度(信号値a)と関係付ける濃度補正LUTを生成し、この濃度補正LUTを補正画像生成部10の補正連続調画像生成部12に出力する。
 このようにして、目的画像をインクジェット記録装置1で記録する前に、記録画像に生じるスジムラを補正するための補正値が算出される。
 続いて、目的画像をインクジェット記録装置1で記録する際には、図3および4に示すように、目的画像のハーフトーン画像である目的ハーフトーン画像Haが、補正画像生成部10の疑似連続調画像生成部11に入力される。疑似連続調画像生成部11は、入力された目的ハーフトーン画像Haにハーフトーン逆処理を施して疑似連続調画像Gaを生成する。
 ここで、疑似連続調画像Gaは、画像読取部6により読み取られた基準記録画像Rのスケール値相当のデータに調整することが好ましい。例えば、基準ハーフトーン画像の各濃度パッチPの平均信号値と、画像読取部6により読み取られた基準記録画像Rの各濃度パッチPの平均信号値とに基づいて、両者のスケール値を変換する信号値変換LUTを予め作成し、この信号値変換LUTに基づいて疑似連続調画像Gaを画像読取部6により読み取られた後の基準記録画像Rのスケール値相当のデータに調整することができる。
 補正値算出部9において算出される補正値は、図2に示すように、画像読取部6により読み取られた基準記録画像Rから期待濃度値および現実濃度値を算出して得られる。ここで、画像読取部6により読み取られた基準記録画像Rの信号値は、画像読取部6が有するガンマ値などの影響により、基準画像の信号値に対して線形な変化を生じないおそれがある。そこで、目的ハーフトーン画像から得られた疑似連続調画像Gaのスケール値を、補正値を算出する際の期待濃度値および現実濃度値のスケール値に合わせることで、精度の高い補正を行うことができる。
 このようにして、疑似連続調画像Gaを生成することにより、目的画像のコントーン画像情報を用いることなく、目的ハーフトーン画像Haのみから目的画像の濃度指標を得ることができる。
 疑似連続調画像生成部11は、生成した疑似連続調画像Gaを補正連続調画像生成部12に出力し、補正連続調画像生成部12が、疑似連続調画像Gaの濃度を算出して、補正値算出部9から入力された濃度補正LUTに基づいて疑似連続調画像Gaの濃度を補正した補正連続調画像Gbを生成する。この補正により補正連続調画像Gbには、基準記録画像Rにおいて期待濃度値bと比べて高い現実濃度値cを有するノズル領域に対しては疑似連続調画像Gaより濃度を減少させた補正用スジムラM1が生じ、基準記録画像Rにおいて期待濃度値bと比べて低い現実濃度値cを有するノズル領域に対しては疑似連続調画像Gaより濃度を増加させた補正用スジムラM1が生じている。
 補正連続調画像Gbは、ハーフトーン画像生成部13に出力されて補正ハーフトーン画像Hbに変換される。そして、ハーフトーン画像生成部13が補正ハーフトーン画像Hbをインクジェット記録装置1の駆動信号生成部3に出力し、駆動信号生成部3が補正ハーフトーン画像Hbの信号値に応じた駆動信号を記録ヘッド4に出力する。
 これにより、期待濃度値bと比べて高い現実濃度値cを生じさせる記録ヘッド4についてはインクの吐出量が弱められ、期待濃度値bと比べて低い現実濃度値cを生じさせる記録ヘッド4についてはインクの吐出量が強められ、複数の記録ノズル5から吐出されるインクの吐出特性の変動を打ち消して記録画像に生じるスジムラを補正することができる。
 本実施の形態によれば、ハーフトーン画像のみを用いてインクジェット記録装置により目的の記録画像を記録する際に記録画像に生じるスジムラを抑制することができる。また、疑似連続調画像Gaは、目的画像により近づくように変換されているため、スジムラ補正を高精度に行うことができる。
 実施の形態2
 実施の形態1では、基準記録画像の濃度に基づいて目的の記録画像に生じるスジムラを補正したが、基準記録画像の階調情報に基づいて目的の記録画像に生じるスジムラを補正できればよく、これに限られるものではない。例えば、基準記録画像のハーフトーン画像情報における網点の密度に基づいて目的の記録画像に生じるスジムラを補正することもできる。
 図5に、実施の形態2に係るスジムラ補正装置21の構成を示す。このスジムラ補正装置21は、実施の形態1に係るスジムラ補正装置2において、階調情報算出部7、変動量算出部8、補正値算出部9および補正画像生成部10に換えて、階調情報算出部22、変動量算出部23、補正値算出部24および補正画像生成部25が配置されている。
 階調情報算出部22は、基準画像が入力されると共に画像読取部6で読み取られた基準記録画像Rが入力され、この基準画像と基準記録画像Rにそれぞれハーフトーン処理を施して基準画像のハーフトーン画像である基準ハーフトーン画像と、基準記録画像Rのハーフトーン画像である記録ハーフトーン画像とを生成する。生成された基準ハーフトーン画像と記録ハーフトーン画像は、変動量算出部23に出力される。
 ここで、基準記録画像Rとは、実施の形態1と同様に、複数の記録ノズル5にそれぞれ対応するノズル領域N毎に階調情報の変動量を算出するためにインクジェット記録装置1により記録された記録画像である。例えば、基準ハーフトーン画像として、ノズル列方向に網点の密度がそれぞれ一定で且つ記録媒体Mの搬送方向に段階的に網点の密度を変化させた複数の密度パッチを配置したテストチャートを用い、この基準ハーフトーン画像をインクジェット記録装置1により記録したものを基準記録画像Rとすることができる。また、階調情報とは、コントーン画像の階調値を表す指標となる情報であり、本実施の形態ではハーフトーン画像における網点の密度を示す。
 変動量算出部23は、記録ハーフトーン画像における網点の密度の変動量を算出する。例えば、基準ハーフトーン画像における網点の密度に対する記録ハーフトーン画像における網点の密度の変動量を算出することができる。図6に示すように、基準ハーフトーン画像と記録ハーフトーン画像について、それぞれの網点パッチPを各記録ノズル5に対応するノズル領域N毎に区分けし、この区分けされた区分領域における網点の密度を算出する。続いて、基準ハーフトーン画像における各区分領域の網点の密度から記録ハーフトーン画像における各区分領域の網点の密度を減算することにより、基準ハーフトーン画像における網点の密度に対する記録ハーフトーン画像における網点の密度の変動量を算出する。
 補正値算出部24は、記録ハーフトーン画像における網点の密度の変動量が打ち消されるように基準ハーフトーン画像における網点の密度を補正する補正値を算出する。すなわち、補正値算出部24は、基準ハーフトーン画像に対して記録ハーフトーン画像の網点の密度が高い場合には基準ハーフトーン画像の網点の密度を記録ハーフトーン画像の網点の密度の変動量だけ低下させる補正値を算出し、基準ハーフトーン画像に対して記録ハーフトーン画像の網点の密度が低い場合には基準ハーフトーン画像の網点の密度を記録ハーフトーン画像の網点の密度の変動量だけ増加させる補正値を算出する。続いて、補正値算出部24は、算出した補正値をその値(補正量)に応じた色度または明度で表す。
 なお、補正値算出部24は、補正値を基準ハーフトーン画像における網点の密度と関連付けた密度補正ルックアップテーブル(LUT)を予め生成して保管しておくこともできる。
 補正画像生成部25は、図7に示すように、目的ハーフトーン画像が入力される疑似連続調画像生成部26を備え、この疑似連続調画像生成部26に補正連続調画像生成部27と、ハーフトーン画像生成部28とが順次接続されている。また、補正連続調画像生成部27には補正値算出部24が接続され、ハーフトーン画像生成部28にはインクジェット記録装置1が接続されている。この補正画像生成部25は、目的ハーフトーン画像における網点の密度を算出して網点の分布と複合化すると共に算出された網点の密度を目的画像の階調情報として抽出し、補正値算出部24で算出された補正値に基づいて目的ハーフトーン画像における網点の密度を補正した補正ハーフトーン画像を生成するものである。
 疑似連続調画像生成部25は、図8に示すように、目的ハーフトーン画像Haに疑似連続化処理を施し、複数の記録ノズルにそれぞれ対応するノズル領域N毎に目的ハーフトーン画像Haを網点の密度を算出して目的ハーフトーン画像Haにおける網点の分布を複合化し、この網点の密度に応じた色度または明度で表示した疑似連続調画像Gaを生成する。
 ここで、疑似連続化処理とは、目的ハーフトーン画像Haから目的画像の階調情報が得られるように、目的ハーフトーン画像Haにおける網点の密度をノズル領域N毎に疑似的な階調として表した疑似連続調画像Gaに変換する処理である。すなわち、疑似連続調画像Gaは、目的ハーフトーン画像Haから抽出された目的画像の階調情報を含んでいることになる。
 なお、目的ハーフトーン画像における網点の密度を算出する範囲であるノズル領域Nは、ディザマスク相当のピクセル範囲、具体的には16pix~512pix程度の範囲に設定することが好ましい。
 補正連続調画像生成部26は、疑似連続調画像生成部25により生成された疑似連続調画像Gaの色度または明度を目的画像の階調情報として抽出して、補正値算出部24で算出された補正値に基づいて疑似連続調画像Gaの色度または明度を補正、すなわち網点の密度を補正した補正連続調画像Gbを生成する。この時、補正連続調画像生成部26は、補正値算出部24において生成された密度補正LUTを用いて疑似連続調画像Gaの色度または明度を補正することが好ましい。
 これにより、補正連続調画像Gbには、記録画像に生じるスジムラを打ち消すための補正用スジムラM1が生じることになる。
 疑似連続化逆処理部27は、補正連続調画像生成部26で生成された補正連続調画像Gbに疑似連続化逆処理を施して補正ハーフトーン画像Hbを生成する。ここで、疑似連続化逆処理とは、疑似連続調画像生成部25において目的ハーフトーン画像Haに施された疑似連続化処理を逆処理すると共に補正用スジムラM1が生じているノズル領域Nの色度または明度に応じて網点M2を補充または除去する処理である。この時、網点M2を補充するノズル領域N、すなわち基準ハーフトーン画像に対して記録ハーフトーン画像の網点の密度が低いノズル領域Nには、網点が集中して存在する箇所の近傍に補充することが好ましく、網点M2を除去するノズル領域N、すなわち基準ハーフトーン画像に対して記録ハーフトーン画像の網点の密度が高いノズル領域Nには、ノズル領域Nにおいて網点が少ない箇所から除去することが好ましい。
 本実施の形態によれば、ハーフトーン画像のみを用いてインクジェット記録装置により目的の記録画像を記録する際に記録画像に生じるスジムラを抑制することができる。また、ハーフトーン画像に基づいて補正を行うため、画像変換などの計算量が増加する工程が少なく、スジムラ補正を迅速に行うことができる。
 なお、実施の形態2では、補正画像生成部25が色度または明度で表された補正値に基づいて目的ハーフトーン画像における網点の密度を補正したが、補正画像生成部25は、目的ハーフトーン画像における網点の密度を目的画像の階調情報として抽出して、補正値算出部24で算出された補正値に基づいて目的ハーフトーン画像における網点の密度を補正した補正ハーフトーン画像を生成することができればよく、これに限られるものではない。例えば、補正画像生成部25は、補正値算出部24で算出された補正値の数値に基づいて目的ハーフトーン画像における網点の密度を補正した補正ハーフトーン画像を生成することができる。
 1 インクジェット記録装置、2,21 スジムラ補正装置、3 駆動信号生成部、4 記録ヘッド、5 複数の記録ノズル、6 画像読取部、7,22 階調情報算出部、8,23 変動量算出部、9,24 補正値算出部、10,25 補正画像生成部、11,26 疑似連続調画像生成部、12,27 補正連続調画像生成部、13,28 ハーフトーン画像生成部、M 記録媒体、S スジムラ、N ノズル領域、R 基準記録画像、P 濃度パッチ、f1 変換関数、f2 スジムラ補正関数、a,d 基準画像の信号値、b 期待濃度値、c,b 現実濃度値、Ha 目的ハーフトーン画像、Hb 補正ハーフトーン画像、Ga 疑似連続調画像、Gb 補正連続調画像、M1,M2 補正用スジムラ。

Claims (11)

  1.  基準画像をハーフトーン処理して得られる基準ハーフトーン画像に基づいてインクジェット記録装置により複数の記録ノズルからインクが吐出されて基準記録画像を記録し、前記基準記録画像の階調情報に基づいて、前記複数の記録ノズルから吐出されるインクの吐出特性の変動量に起因して前記インクジェット記録装置により記録される記録画像に生じるスジムラを補正するスジムラ補正装置であって、
     前記基準記録画像の階調情報の変動量を前記複数の記録ノズルのそれぞれに対応して算出する変動量算出部と、
     前記変動量算出部で算出された前記基準記録画像の前記階調情報の変動量が打ち消されるように前記基準画像の前記階調情報を補正する補正値を前記複数のノズルのそれぞれに対応して算出する補正値算出部と、
     目的画像のハーフトーン画像である目的ハーフトーン画像が入力され、前記目的ハーフトーン画像における網点の分布を複合化することにより前記目的画像の階調情報を抽出して、前記補正値算出部で算出された前記補正値に基づいて前記目的ハーフトーン画像から抽出した前記目的画像の前記階調情報を補正した補正ハーフトーン画像を生成する補正画像生成部と
     を備え、
     前記補正ハーフトーン画像を前記インクジェット記録装置に入力することにより前記複数の記録ノズルから吐出されるインクの吐出特性の変動量が打ち消されて記録画像に生じるスジムラを補正するスジムラ補正装置。
  2.  前記変動量算出部は、前記基準記録画像の前記階調情報の変動量として前記基準記録画像の濃度の変動量を算出し、
     前記補正値算出部は、前記基準記録画像の前記濃度の変動量が打ち消されるように前記基準画像の前記濃度を補正する前記補正値を算出する請求項1に記載のスジムラ補正装置。
  3.  前記補正画像生成部は、
     前記目的ハーフトーン画像にハーフトーン逆処理を施して前記網点の分布を複合化することにより疑似連続調画像を生成する疑似連続調画像生成部と、
     前記疑似連続調画像生成部により生成された前記疑似連続調画像の濃度を前記目的画像の前記階調情報として抽出して、前記補正値算出部で算出された前記補正値に基づいて前記疑似連続調画像の前記濃度を補正した補正連続調画像を生成する補正連続調画像生成部と、
     前記補正連続調画像生成部で生成された前記補正連続調画像にハーフトーン処理を施して前記補正ハーフトーン画像を生成するハーフトーン画像生成部と
     を有する請求項2に記載のスジムラ補正装置。
  4.  前記ハーフトーン処理はディザ変換であり、前記ハーフトーン逆処理はディザ逆変換である請求項3に記載のスジムラ補正装置。
  5.  前記補正値算出部は、前記基準画像の濃度と前記補正値との関係を示す濃度補正ルックアップテーブルを有する請求項2~4のいずれか一項に記載のスジムラ補正装置。
  6.  前記変動量算出部は、前記基準記録画像の前記階調情報の変動量として、前記基準記録画像をハーフトーン処理して得られる記録ハーフトーン画像における網点の密度の変動量を算出し、
     前記補正値算出部は、前記記録ハーフトーン画像における前記網点の密度の変動量が打ち消されるように前記基準ハーフトーン画像における前記網点の密度を補正する前記補正値を算出する請求項1に記載のスジムラ補正装置。
  7.  前記補正画像生成部は、前記目的ハーフトーン画像における前記網点の密度を算出して前記網点の分布を複合化すると共に前記網点の密度を前記目的画像の前記階調情報として抽出して、前記補正値算出部で算出された前記補正値に基づいて前記目的ハーフトーン画像における網点の密度を補正した前記補正ハーフトーン画像を生成する請求項6に記載のスジムラ補正装置。
  8.  前記補正値算出部は、補正される網点の密度に応じた色度または明度で前記補正値を表し、
     前記補正画像生成部は、
     前記目的ハーフトーン画像における網点の密度に応じた色度または明度で前記複数の記録ノズルにそれぞれ対応するノズル領域を表示した疑似連続調画像を生成する疑似連続調画像生成部と、
     前記補正値算出部で算出された前記補正値に基づいて、前記疑似連続調画像生成部により生成された前記疑似連続調画像の前記色度または前記明度を補正した補正連続調画像を生成する補正連続調画像生成部と、
     前記補正連続調画像生成部で生成された前記補正連続調画像の前記色度または前記明度に応じた密度となるように網点を配置した前記補正ハーフトーン画像を生成するハーフトーン画像生成部と
     を有する請求項7に記載のスジムラ補正装置。
  9.  前記補正値算出部は、前記基準ハーフトーン画像における網点の密度と前記補正値との関係を示す密度補正ルックアップテーブルを有する請求項6~8のいずれか一項に記載のスジムラ補正装置。
  10.  前記インクジェット記録装置により記録された前記基準記録画像を読み取る画像読取部と、
     前記基準画像から前記階調情報を算出すると共に前記画像読取部により読み取られた前記基準記録画像から前記階調情報を算出して、前記基準画像の前記階調情報と前記基準記録画像の前記階調情報を前記変動量算出部に出力する階調情報算出部と
     をさらに備える請求項1~9のいずれか一項に記載のスジムラ補正装置。
  11.  基準画像をハーフトーン処理して得られる基準ハーフトーン画像に基づいてインクジェット記録装置により複数の記録ノズルからインクが吐出されて基準記録画像を記録し、前記基準記録画像の階調情報に基づいて、前記複数の記録ノズルから吐出されるインクの吐出特性の変動量に起因して前記インクジェット記録装置により記録される記録画像に生じるスジムラを補正するスジムラ補正方法であって、
     前記基準記録画像の階調情報の変動量を前記複数の記録ノズルのそれぞれに対応して算出し、
     算出された前記基準記録画像の前記階調情報の変動量が打ち消されるように前記基準画像の前記階調情報を補正する補正値を前記複数のノズルのそれぞれに対応して算出し、
     目的画像のハーフトーン画像である目的ハーフトーン画像における網点の分布を複合化することにより前記目的画像の階調情報を抽出して、前記補正値に基づいて前記目的ハーフトーン画像から抽出した前記目的画像の前記階調情報を補正した補正ハーフトーン画像を生成し、
     前記補正ハーフトーン画像を前記インクジェット記録装置に入力することにより前記複数の記録ノズルから吐出されるインクの吐出特性の変動量が打ち消されて記録画像に生じるスジムラを補正するスジムラ補正方法。
PCT/JP2014/080878 2014-03-31 2014-11-21 スジムラ補正装置およびスジムラ補正方法 WO2015151330A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-074530 2014-03-31
JP2014074530A JP6109110B2 (ja) 2014-03-31 2014-03-31 スジムラ補正装置およびスジムラ補正方法

Publications (1)

Publication Number Publication Date
WO2015151330A1 true WO2015151330A1 (ja) 2015-10-08

Family

ID=54239687

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/080878 WO2015151330A1 (ja) 2014-03-31 2014-11-21 スジムラ補正装置およびスジムラ補正方法

Country Status (2)

Country Link
JP (1) JP6109110B2 (ja)
WO (1) WO2015151330A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9561644B1 (en) * 2016-03-18 2017-02-07 Xerox Corporation System and method for compensating for malfunctioning inkjets
CN109715406A (zh) * 2016-09-14 2019-05-03 柯尼卡美能达株式会社 喷墨记录装置以及不良喷嘴的检测方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000052571A (ja) * 1998-08-11 2000-02-22 Olympus Optical Co Ltd 画像形成装置
JP2009274233A (ja) * 2008-05-12 2009-11-26 Seiko Epson Corp 液体吐出装置
JP2010228227A (ja) * 2009-03-26 2010-10-14 Seiko Epson Corp 画素データの補正方法、及び、流体噴射装置
JP2011056866A (ja) * 2009-09-11 2011-03-24 Seiko Epson Corp 印刷装置、及び、印刷方法
JP2011073286A (ja) * 2009-09-30 2011-04-14 Fujifilm Corp 画像記録装置及び画像記録方法
JP2011143721A (ja) * 2011-02-04 2011-07-28 Seiko Epson Corp 印刷方法、印刷装置およびプログラム
JP2011218577A (ja) * 2010-04-05 2011-11-04 Seiko Epson Corp 濃度補正方法、及び、印刷装置
JP2012066516A (ja) * 2010-09-24 2012-04-05 Fujifilm Corp 画像記録装置、補正値算出装置及び方法、並びにプログラム
JP2013141123A (ja) * 2012-01-04 2013-07-18 Fujifilm Corp 画素データの補正方法、画像処理装置、プログラム並びに画像形成装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6163629A (en) * 1998-01-30 2000-12-19 Compaq Computer Corporation Method for low complexity low memory inverse dithering
JP2007060464A (ja) * 2005-08-26 2007-03-08 Meiji Univ 中間調画像の推定方法及びシステム

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000052571A (ja) * 1998-08-11 2000-02-22 Olympus Optical Co Ltd 画像形成装置
JP2009274233A (ja) * 2008-05-12 2009-11-26 Seiko Epson Corp 液体吐出装置
JP2010228227A (ja) * 2009-03-26 2010-10-14 Seiko Epson Corp 画素データの補正方法、及び、流体噴射装置
JP2011056866A (ja) * 2009-09-11 2011-03-24 Seiko Epson Corp 印刷装置、及び、印刷方法
JP2011073286A (ja) * 2009-09-30 2011-04-14 Fujifilm Corp 画像記録装置及び画像記録方法
JP2011218577A (ja) * 2010-04-05 2011-11-04 Seiko Epson Corp 濃度補正方法、及び、印刷装置
JP2012066516A (ja) * 2010-09-24 2012-04-05 Fujifilm Corp 画像記録装置、補正値算出装置及び方法、並びにプログラム
JP2011143721A (ja) * 2011-02-04 2011-07-28 Seiko Epson Corp 印刷方法、印刷装置およびプログラム
JP2013141123A (ja) * 2012-01-04 2013-07-18 Fujifilm Corp 画素データの補正方法、画像処理装置、プログラム並びに画像形成装置

Also Published As

Publication number Publication date
JP2015196294A (ja) 2015-11-09
JP6109110B2 (ja) 2017-04-05

Similar Documents

Publication Publication Date Title
JP4614076B2 (ja) 画像形成装置及び画像処理方法
US11192386B2 (en) Image processing apparatus, image processing method and storage medium
JP5780736B2 (ja) 画像処理装置および画像処理方法
JP2021084298A (ja) 画像処理装置、画像形成システム、画像処理方法、画像形成システムの制御方法及びプログラム
US7898690B2 (en) Evaluation of calibration precision
JP5780735B2 (ja) 画像処理装置および画像処理方法
US11090932B2 (en) Image processing apparatus, image processing method and storage medium
CN116940470A (zh) 有缺陷喷嘴校正机构
JP7475928B2 (ja) 画像処理装置、その制御方法及びプログラム
US11636297B2 (en) Image processing apparatus, image processing method, and storage medium
JP2009089080A (ja) 画像処理方法および画像処理装置
JP6109110B2 (ja) スジムラ補正装置およびスジムラ補正方法
JP2008018632A (ja) 印刷装置、印刷装置制御プログラム、当該プログラムを記憶した記憶媒体及び印刷装置制御方法、画像処理装置、画像処理プログラム、当該プログラムを記憶した記憶媒体及び画像処理方法、並びに補正領域情報生成装置、補正領域情報生成プログラム、当該プログラムを記憶した記憶媒体及び補正領域情報生成方法
WO2022025179A1 (ja) 画像処理装置、画像処理方法、プログラム、及び画像形成装置
JP4189674B2 (ja) 色修正データ作成装置、色修正データ作成方法、色修正データ作成プログラム、印刷制御装置、印刷制御方法および印刷制御プログラム
EP3957484B1 (en) Streakiness reduction in inkjet printing
JP2022027605A (ja) 画像処理装置、画像処理方法、プログラム、及び画像形成装置
JP2013059938A (ja) 画像処理装置、画像処理方法、及び画像処理プログラム
JP6194825B2 (ja) 記録装置および記録方法
JP2012166346A (ja) 画像処理装置及び画像記録装置並びに画像処理方法
JP5574847B2 (ja) 画像処理装置、インクジェット記録装置、および画像処理方法
US11601569B2 (en) Image processing device, image forming system, image processing method, and non-transitory computer-readable storage medium
US11936835B2 (en) Image processing apparatus, image processing method, and storage medium which reduce a color difference and a frequency difference between two images
JP6007471B2 (ja) 画像処理装置、画像処理方法、及び液体吐出装置
JP5738253B2 (ja) 画像形成装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14887890

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase
122 Ep: pct application non-entry in european phase

Ref document number: 14887890

Country of ref document: EP

Kind code of ref document: A1