WO2015147124A1 - Laminated body - Google Patents

Laminated body Download PDF

Info

Publication number
WO2015147124A1
WO2015147124A1 PCT/JP2015/059288 JP2015059288W WO2015147124A1 WO 2015147124 A1 WO2015147124 A1 WO 2015147124A1 JP 2015059288 W JP2015059288 W JP 2015059288W WO 2015147124 A1 WO2015147124 A1 WO 2015147124A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
silver
ink composition
carbon atoms
examples
Prior art date
Application number
PCT/JP2015/059288
Other languages
French (fr)
Japanese (ja)
Inventor
久美 廣瀬
Original Assignee
トッパン・フォームズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トッパン・フォームズ株式会社 filed Critical トッパン・フォームズ株式会社
Priority to JP2016510464A priority Critical patent/JPWO2015147124A1/en
Publication of WO2015147124A1 publication Critical patent/WO2015147124A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/02Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of metals or alloys

Definitions

  • the present invention relates to a laminate.
  • This application claims priority based on Japanese Patent Application No. 2014-070354 for which it applied to Japan on March 28, 2014, and uses the content here.
  • Metallic silver is widely used as a recording material, a printing plate material, and a highly conductive material because of its excellent conductivity.
  • a general method for producing metallic silver for example, a method using organic acid silver such as silver behenate, silver stearate, silver ⁇ -ketocarboxylate and silver ⁇ -ketocarboxylate has been disclosed.
  • silver ⁇ -ketocarboxylate quickly forms metallic silver even when heat-treated at a low temperature of about 210 ° C. or lower (see Patent Document 1).
  • metallic silver when metallic silver is applied to an antenna of an electronic device or the like, metallic silver having a surface roughness comparable to that of metallic silver described in Patent Document 1 and exhibiting a reduced volume resistivity is desired. May be.
  • the present invention is a laminate comprising a base material and a metallic silver layer formed on the base material, and can be produced without performing a heat treatment at a high temperature.
  • An object of the present invention is to provide a laminate exhibiting sufficiently reduced volume resistivity and surface roughness with good reproducibility.
  • the present invention comprises a base material and a metal silver layer formed on the base material, the volume resistivity of the metal silver layer is 5 ⁇ ⁇ cm or less, and the surface roughness of the metal silver layer is 70 nm or less.
  • a laminate is provided.
  • the metallic silver layer is formed by solidifying a silver ink composition deposited on the substrate, and the silver ink composition has a carboxylic acid having a group represented by the formula “—COOAg”.
  • One or more nitrogen-containing compounds selected from the group consisting of silver, an amine compound having 25 or less carbon atoms, a quaternary ammonium salt having 25 or less carbon atoms, ammonia and an ammonium salt obtained by reacting the amine compound or ammonia with an acid.
  • HC ( ⁇ O) —R 21 (5) (Wherein R 21 represents an alkyl group having 20 or less carbon atoms, an alkoxy group, or an N, N-dialkylamino group, a hydroxyl group, or an amino group.)
  • the stirring blade includes a drive shaft, a forced flow generating blade portion having an outer side that rotates and moves in the vicinity of the inner peripheral surface of the stirring tank, and a connecting portion that connects the drive shaft and the forced flow generating blade portion. It may be provided.
  • the substrate may have a thickness of 10 to 5000 ⁇ m.
  • the metal silver layer may have a thickness of 0.5 to 20 ⁇ m.
  • the laminate of the present invention comprises a substrate and a metal silver layer formed on the substrate, and can be produced without performing a heat treatment at a high temperature, and the metal silver layer is sufficiently reproducible. Shows the reduced volume resistivity and surface roughness.
  • the present invention comprises a base material and a metal silver layer formed on the base material, the volume resistivity of the metal silver layer is 5 ⁇ ⁇ cm or less, and the surface roughness of the metal silver layer is 70 nm or less.
  • a laminate is provided.
  • the metal silver layer of the laminate is mainly composed of metal silver.
  • “having metallic silver as a main component” means that the ratio of metallic silver is sufficiently high so that it can be regarded as being composed solely of metallic silver.
  • the metallic silver in the metallic silver layer The ratio is preferably 99% by mass or more.
  • the upper limit of the ratio of the metallic silver in the metallic silver layer is, for example, 99.9% by mass, 99.8% by mass, 99.7% by mass, 99.6% by mass, 99.5% by mass, 99.4% by mass. %, 99.3% by mass, 99.2% by mass, and 99.1% by mass.
  • the metallic silver layer can be formed, for example, by attaching and solidifying a silver ink composition described later on a substrate.
  • solidification of the silver ink composition means reducing or removing volatile components from the silver ink composition, and appropriately performing post-treatment such as drying treatment or heating (firing) treatment. You may choose.
  • the heat treatment may be performed also as a drying treatment.
  • the substrate is preferably in the form of a film or a sheet, and preferably has a thickness of 10 to 5000 ⁇ m.
  • the material of the base material may be appropriately selected according to the purpose and is not particularly limited, but specific examples of preferable materials include polyethylene (PE), polypropylene (PP), polyvinyl chloride (PVC), and polyvinylidene chloride ( PVDC), polymethylpentene (PMP), polycycloolefin, polystyrene (PS), polyvinyl acetate (PVAc), acrylic resin such as polymethyl methacrylate (PMMA), AS resin, ABS resin, polyamide (PA), polyimide , Polyamideimide (PAI), polyacetal, polyethylene terephthalate (PET), polybutylene terephthalate (PBT), polytrimethylene terephthalate (PTT), polyethylene naphthalate (PEN), polybutylene naphthalate (PBN), polyphenylene sulfide (PPS), polysulfone (PSF), polyethersulfone (PES), polyetherketone (PEK), polyetheretherketone (PEEK), poly
  • the substrate may be composed of a single layer, or may be composed of two or more layers.
  • a base material consists of multiple layers
  • these multiple layers may be the same as or different from each other. That is, all the layers may be the same, all the layers may be different, or only some of the layers may be different. And when several layers differ from each other, the combination of these several layers is not specifically limited.
  • the plurality of layers being different from each other means that at least one of the material and the thickness of each layer is different from each other.
  • a base material consists of multiple layers, it is good to make it the total thickness of each layer be the thickness of said preferable base material.
  • a silver ink composition can be made to adhere on a base material by well-known methods, such as a printing method, the apply
  • the printing method include screen printing method, flexographic printing method, offset printing method, dip printing method, ink jet printing method, dispenser printing method, gravure printing method, gravure offset printing method, pad printing method and the like.
  • the coating method include spin coaters, air knife coaters, curtain coaters, die coaters, blade coaters, roll coaters, gate roll coaters, bar coaters, rod coaters, gravure coaters, and other methods such as wire bars. It can be illustrated.
  • the silver ink composition may be dried by a known method.
  • the silver ink composition may be dried under normal pressure, reduced pressure, or air blowing conditions, and may be performed in the air or in an inert gas atmosphere. Good.
  • the drying temperature is not particularly limited, and may be either heat drying or room temperature drying. As a preferable drying method when the heat treatment is unnecessary, a method of drying in the atmosphere at 18 to 30 ° C. can be exemplified.
  • the conditions may be adjusted as appropriate according to the type of compounding component of the silver ink composition.
  • the heating temperature is preferably 60 to 200 ° C, more preferably 70 to 180 ° C.
  • the heating time may be adjusted according to the heating temperature, but usually it is preferably 0.2 to 12 hours, more preferably 0.4 to 10 hours.
  • the silver carboxylate, particularly silver ⁇ -ketocarboxylate (1) is different from the metal silver forming material such as silver oxide, for example, using a reducing agent known in the art. Even if not, it decomposes at low temperature.
  • the silver ink composition can form metallic silver at an extremely lower temperature than the conventional one as described above.
  • the heating temperature is preferably less than 130 ° C, more preferably 125 ° C or less, and 120 ° C. It is particularly preferred that
  • the method for heat treatment of the silver ink composition is not particularly limited, and for example, heating by an electric furnace, heating by a thermal head, heating by far infrared irradiation, or the like can be performed. Further, the heat treatment of the silver ink composition may be performed in the air, in an inert gas atmosphere, or may be performed under humidified conditions. And you may carry out under any of normal pressure, pressure reduction, and pressurization.
  • humidity means that the humidity is artificially increased unless otherwise specified, and the relative humidity is preferably 5% or more. At the time of heat treatment, since the humidity in the treatment environment becomes extremely low due to the high treatment temperature, it can be said that the relative humidity of 5% is clearly artificially increased.
  • the relative humidity when the heat treatment of the silver ink composition is performed under humidified conditions is preferably 10% or more, more preferably 30% or more, further preferably 50% or more, and 70%. It is particularly preferable that it be 90% or more, or 100%. And you may perform the heat processing under humidification conditions by spraying the high pressure steam heated to 100 degreeC or more. Thus, by heat-processing under humidification conditions, highly pure metallic silver can be formed in a short time.
  • the heat treatment of the silver ink composition may be performed in two stages.
  • the first stage heat treatment there is exemplified a method in which the silver ink composition is mainly dried rather than the formation of metal silver, and the formation of metal silver is completed in the second stage heat treatment.
  • the heating temperature may be appropriately adjusted according to the type of compounding component of the silver ink composition, but is preferably 60 to 110 ° C, more preferably 70 to 90 ° C. preferable.
  • the heating time may be adjusted according to the heating temperature, but it is usually preferably 5 seconds to 12 hours, and more preferably 30 seconds to 2 hours.
  • the heating temperature may be appropriately adjusted according to the type of compounding component of the silver ink composition so that metallic silver is favorably formed, but it should be 60 to 200 ° C. Preferably, it is 70 to 180 ° C.
  • the heating time may be adjusted according to the heating temperature, but it is usually preferably 1 minute to 12 hours, and more preferably 1 minute to 10 hours.
  • the heating temperature in the first stage and second stage heat treatment is preferably less than 130 ° C.
  • the temperature is more preferably 125 ° C. or lower, and particularly preferably 120 ° C. or lower.
  • the heat treatment of the silver ink composition is not the formation of metallic silver as described above under non-humidified conditions in the first stage heat treatment. It is particularly preferable to perform drying in a two-stage method in which the formation of metallic silver is performed to the end as described above under humidified conditions in the second-stage heat treatment.
  • non-humidification means that the above “humidification” is not performed, that is, the humidity is not artificially increased, and preferably the relative humidity is less than 5%. .
  • the heating temperature during the heat treatment under the first non-humidifying condition is preferably 60 to 110 ° C., more preferably 70 to 90 ° C. preferable.
  • the heating time is preferably 5 seconds to 3 hours, more preferably 30 seconds to 2 hours, and particularly preferably 30 seconds to 1 hour.
  • the heating temperature during the heat treatment under the second-stage humidification condition is preferably 60 to 180 ° C, more preferably 70 to 160 ° C. .
  • the heating time is preferably 1 minute to 2 hours, more preferably 1 minute to 1 hour, and particularly preferably 1 minute to 30 minutes.
  • the heating temperature in is preferably less than 130 ° C., more preferably 125 ° C. or less, and particularly preferably 120 ° C. or less.
  • the above heat treatment conditions are merely examples.
  • the temperature during the heat treatment can be preferably 100 ° C. or lower, more preferably 90 ° C. or lower.
  • the lower limit of the temperature at the time of heat processing is not specifically limited as long as metallic silver can be formed efficiently, it is preferable that it is 50 degreeC.
  • the heating time may be appropriately adjusted according to the heating temperature, and may be, for example, 0.1 to 6 hours.
  • the laminate of the present invention can sufficiently reduce the thickness of the metal silver layer.
  • the thickness of the metallic silver layer is preferably 20 ⁇ m or less, more preferably 10 ⁇ m or less, and particularly preferably 2 ⁇ m or less.
  • the lower limit of the thickness of the metallic silver layer is not particularly limited, but the thickness of the metallic silver layer is preferably 0.5 ⁇ m or more, more preferably 0.7 ⁇ m or more, and particularly preferably 0.9 ⁇ m or more. It is.
  • a metal silver layer has more excellent electroconductivity because the thickness of a metal silver layer is more than the said lower limit.
  • the laminate of the present invention can sufficiently narrow the line width.
  • the line width of the metal silver layer in the cross section in the direction perpendicular to the line length direction of the linear metal silver layer is preferably 1000 ⁇ m or less, more preferably 800 ⁇ m or less, and particularly preferably 600 ⁇ m or less.
  • the lower limit of the line width of the metallic silver layer in the cross section is not particularly limited, but the line width is preferably 0.5 ⁇ m or more, more preferably 1 ⁇ m or more, and particularly preferably 2 ⁇ m or more.
  • the line width may be appropriately selected according to the use of the laminate.
  • the volume resistivity of the metallic silver layer of the laminate is sufficiently reduced.
  • the volume resistivity of the metallic silver layer is 5 ⁇ ⁇ cm or less, preferably 4.9 ⁇ ⁇ cm or less, and can be 4.8 ⁇ ⁇ cm or less.
  • the lower limit of the volume resistivity of the metallic silver layer is preferably as small as possible, and is not particularly limited. For example, it can be preferably 3 ⁇ ⁇ cm.
  • the surface roughness of the metal silver layer of the laminate is sufficiently reduced.
  • the surface roughness of the metallic silver layer is 70 nm or less, preferably 69 nm or less, and can be 65 nm or less or 60 nm or less.
  • the lower limit of the surface roughness of the metallic silver layer is not particularly limited, but is preferably 35 nm, for example.
  • surface roughness means arithmetic average roughness (Ra), and only the reference length is extracted from the roughness curve in the direction of the average line, and the direction of the average line of the extracted portion.
  • the laminate according to the present invention can be manufactured without performing heat treatment at high temperature, the thickness of the metal silver layer can be sufficiently reduced, and the volume resistivity and surface roughness are sufficiently reduced. Therefore, it is particularly suitable as a wiring board for communication equipment.
  • the silver ink composition preferably contains a metallic silver forming material.
  • the metal silver forming material may be any material that has silver atoms (elements) and generates metallic silver by structural change such as decomposition, and is a silver salt, a silver complex, an organic silver compound (a compound having a silver-carbon bond) ) Etc. can be illustrated.
  • the silver salt and the silver complex may be either a silver compound having an organic group or a silver compound having no organic group.
  • the metal silver forming material is preferably a silver salt.
  • the material for forming metallic silver is preferably silver carboxylate having a group represented by the formula “—COOAg” (hereinafter sometimes simply referred to as “silver carboxylate”).
  • the silver ink composition preferably contains silver carboxylate, a nitrogen-containing compound, and one or both of a reducing compound and an alcohol, and contains silver carboxylate, a nitrogen-containing compound, and a reducing compound. More preferably, and those obtained by blending silver carboxylate, nitrogen-containing compound, reducing compound and alcohol.
  • the nitrogen-containing compound is one or more selected from the group consisting of an amine compound having 25 or less carbon atoms, a quaternary ammonium salt having 25 or less carbon atoms, ammonia and an ammonium salt obtained by reacting the amine compound or ammonia with an acid. It is.
  • the reducing compound is at least one selected from the group consisting of oxalic acid, hydrazine and a compound represented by the following general formula (5) (hereinafter sometimes abbreviated as “compound (5)”).
  • compound (5) a compound represented by the following general formula (5)
  • the silver ink composition can more easily form metallic silver.
  • metallic silver (conductor) having sufficient conductivity can be formed even by heat treatment at a low temperature.
  • silver carboxylate may be used individually by 1 type, and may use 2 or more types together. When using 2 or more types together, the combination and ratio can be adjusted arbitrarily.
  • the silver carboxylate is not particularly limited as long as it has a group represented by the formula “—COOAg”.
  • the number of groups represented by the formula “—COOAg” may be one, or two or more.
  • the position of the group represented by the formula “—COOAg” in the silver carboxylate is not particularly limited.
  • the silver carboxylate is represented by the following general formula (1) ⁇ -ketocarboxylate silver (hereinafter sometimes abbreviated as “ ⁇ -ketocarboxylate (1)”) and the following general formula (4). It is preferably one or more selected from the group consisting of silver carboxylates (hereinafter sometimes abbreviated as “silver carboxylate (4)”).
  • ⁇ -ketocarboxylate (1) ⁇ -ketocarboxylate (4)
  • silver carboxylate (4) silver carboxylate (4)
  • the simple description of “silver carboxylate” is not limited to “silver ⁇ -ketocarboxylate (1)” and “silver carboxylate (4)”, unless otherwise specified. It is intended to mean “silver carboxylate having a group represented by the formula“ —COOAg ””.
  • R represents an aliphatic hydrocarbon group having 1 to 20 carbon atoms in which one or more hydrogen atoms may be substituted with a substituent, a phenyl group, a hydroxyl group, an amino group, or a group represented by the general formula “R 1 -CY 1 2- ",” CY 1 3- “,” R 1 -CHY 1- ",” R 2 O- “,” R 5 R 4 N- “,” (R 3 O) 2 CY 1- "or” R 6 —C ( ⁇ O) —CY 1 2 — ”;
  • Y 1 is each independently a fluorine atom, a chlorine atom, a bromine atom or a hydrogen atom;
  • R 1 is an aliphatic hydrocarbon group having 1 to 19 carbon atoms or a phenyl group;
  • R 2 is an aliphatic having 1 to 20 carbon atoms
  • R 3 is an aliphatic hydrocarbon group having 1 to 16 carbon atoms;
  • R 4 and R 5 are each independently an alipha
  • R 8 is an aliphatic hydrocarbon group having 1 to 19 carbon atoms, a carboxy group, or a group represented by the formula “—C ( ⁇ O) —OAg”, wherein the aliphatic hydrocarbon group is a methylene group. And one or more of the methylene groups may be substituted with a carbonyl group.
  • the silver ⁇ -ketocarboxylate (1) is represented by the general formula (1).
  • R is an aliphatic hydrocarbon group having 1 to 20 carbon atoms, a phenyl group, a hydroxyl group, an amino group, or a group represented by the general formula “R 1 -CY 1 ” in which one or more hydrogen atoms may be substituted with a substituent.
  • the aliphatic hydrocarbon group having 1 to 20 carbon atoms in R may be any of linear, branched and cyclic (aliphatic cyclic group), and may be monocyclic or polycyclic when cyclic. . Further, the aliphatic hydrocarbon group may be either a saturated aliphatic hydrocarbon group or an unsaturated aliphatic hydrocarbon group. The aliphatic hydrocarbon group preferably has 1 to 10 carbon atoms, and more preferably 1 to 6 carbon atoms. Preferred examples of the aliphatic hydrocarbon group for R include an alkyl group, an alkenyl group, and an alkynyl group.
  • Examples of the linear or branched alkyl group in R include a methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, sec-butyl group, tert-butyl group, n -Pentyl group, isopentyl group, neopentyl group, tert-pentyl group, 1-methylbutyl group, 2-methylbutyl group, n-hexyl group, 1-methylpentyl group, 2-methylpentyl group, 3-methylpentyl group, 4- Methylpentyl group, 1,1-dimethylbutyl group, 2,2-dimethylbutyl group, 3,3-dimethylbutyl group, 2,3-dimethylbutyl group, 1-ethylbutyl group, 2-ethylbutyl group, 3-ethylbutyl group 1-ethyl-1-methylpropyl group,
  • Examples of the cyclic alkyl group in R include cyclopropyl group, cyclobutyl group, cyclopentyl group, cyclohexyl group, cycloheptyl group, cyclooctyl group, cyclononyl group, cyclodecyl group, norbornyl group, isobornyl group, 1-adamantyl group, 2- Examples thereof include an adamantyl group and a tricyclodecyl group.
  • alkenyl group in R examples include a vinyl group (ethenyl group, —CH ⁇ CH 2 ), an allyl group (2-propenyl group, —CH 2 —CH ⁇ CH 2 ), and a 1-propenyl group (—CH ⁇ CH—CH).
  • one single bond (C—C) between carbon atoms of the alkyl group in R such as ethynyl group (—C ⁇ CH), propargyl group (—CH 2 —C ⁇ CH), etc. ) Is substituted with a triple bond (C ⁇ C).
  • one or more hydrogen atoms may be substituted with a substituent, and preferred examples of the substituent include a fluorine atom, a chlorine atom, and a bromine atom.
  • the number and position of substituents are not particularly limited. When the number of substituents is plural, the plural substituents may be the same as or different from each other. That is, all the substituents may be the same, all the substituents may be different, or only some of the substituents may be different.
  • one or more hydrogen atoms may be substituted with a substituent.
  • the substituent include a saturated or unsaturated monovalent aliphatic hydrocarbon group having 1 to 16 carbon atoms.
  • a monovalent group formed by bonding the aliphatic hydrocarbon group to an oxygen atom, a fluorine atom, a chlorine atom, a bromine atom, a hydroxyl group (—OH), a cyano group (—C ⁇ N), a phenoxy group (—O—), C 6 H 5 ) and the like can be exemplified, and the number and position of substituents are not particularly limited.
  • the plural substituents may be the same as or different from each other.
  • Examples of the aliphatic hydrocarbon group that is a substituent include the same aliphatic hydrocarbon groups as those described above for R except that the number of carbon atoms is 1 to 16.
  • Y 1 in R is independently a fluorine atom, a chlorine atom, a bromine atom or a hydrogen atom.
  • a plurality of Y 1 may be the same as each other. May be different.
  • R 1 in R is an aliphatic hydrocarbon group having 1 to 19 carbon atoms or a phenyl group (C 6 H 5 —), and the aliphatic hydrocarbon group in R 1 has 1 to 19 carbon atoms. Except for this point, the same aliphatic hydrocarbon groups as those in R can be exemplified.
  • R 2 in R is an aliphatic hydrocarbon group having 1 to 20 carbon atoms, and examples thereof are the same as the aliphatic hydrocarbon group in R.
  • R 3 in R is an aliphatic hydrocarbon group having 1 to 16 carbon atoms, and examples thereof are the same as the aliphatic hydrocarbon group in R except that the carbon number is 1 to 16.
  • R 4 and R 5 in R are each independently an aliphatic hydrocarbon group having 1 to 18 carbon atoms. That is, R 4 and R 5 may be the same as or different from each other, and examples thereof are the same as the aliphatic hydrocarbon group for R except that the number of carbon atoms is 1 to 18.
  • R 6 in R is an aliphatic hydrocarbon group having 1 to 19 carbon atoms, a hydroxyl group or a group represented by the formula “AgO—”. The aliphatic hydrocarbon group in R 6 has 1 to Except for being 19, the same aliphatic hydrocarbon groups as those described above for R can be exemplified.
  • R is a linear or branched alkyl group, a group represented by the general formula “R 6 —C ( ⁇ O) —CY 1 2 —”, a hydroxyl group, or a phenyl group. preferable.
  • R 6 represents a linear or branched alkyl group, or a group represented by a hydroxyl group or a formula "AgO-”.
  • each X 1 independently represents a hydrogen atom, an aliphatic hydrocarbon group having 1 to 20 carbon atoms, a halogen atom, a phenyl group in which one or more hydrogen atoms may be substituted with a substituent, or A benzyl group (C 6 H 5 —CH 2 —), a cyano group, an N-phthaloyl-3-aminopropyl group, a 2-ethoxyvinyl group (C 2 H 5 —O—CH ⁇ CH—), or the general formula “R 7 O— ”,“ R 7 S— ”,“ R 7 —C ( ⁇ O) — ”or“ R 7 —C ( ⁇ O) —O— ”.
  • Examples of the aliphatic hydrocarbon group having 1 to 20 carbon atoms in X 1 include those similar to the aliphatic hydrocarbon group in R.
  • Examples of the halogen atom in X 1 include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom.
  • the substituent include a halogen atom (a fluorine atom, a chlorine atom, a bromine atom, an iodine atom), A nitro group (—NO 2 ) and the like can be exemplified, and the number and position of substituents are not particularly limited. When the number of substituents is plural, the plural substituents may be the same as or different from each other.
  • R 7 in X 1 represents an aliphatic hydrocarbon group having 1 to 10 carbon atoms, a thienyl group (C 4 H 3 S—), a phenyl group in which one or more hydrogen atoms may be substituted with a substituent, or A diphenyl group (biphenyl group, C 6 H 5 —C 6 H 4 —);
  • Examples of the aliphatic hydrocarbon group for R 7 include those similar to the aliphatic hydrocarbon group for R except that the aliphatic hydrocarbon group has 1 to 10 carbon atoms.
  • halogen atom fluorine atom, chlorine atom, bromine atom, iodine atom
  • R 7 is a thienyl group or a diphenyl group
  • the bonding position of these groups with an adjacent group or atom oxygen atom, sulfur atom, carbonyl group, carbonyloxy group
  • the thienyl group may be either a 2-thienyl group or a 3-thienyl group.
  • two X 1 s may be bonded as one group through a double bond with a carbon atom sandwiched between two carbonyl groups.
  • Examples thereof include a group represented by the formula “ ⁇ CH—C 6 H 4 —NO 2 ”.
  • X 1 is preferably a hydrogen atom, a linear or branched alkyl group, a benzyl group, or a group represented by the general formula “R 7 —C ( ⁇ O) —” among the above. It is preferable that at least one X 1 is a hydrogen atom.
  • ⁇ -ketocarboxylate (1) can further reduce the concentration of the remaining raw materials and impurities in the conductor (metal silver) formed by post-treatment such as drying treatment or heating (firing) treatment.
  • post-treatment such as drying treatment or heating (firing) treatment.
  • silver ⁇ -ketocarboxylate (1) is decomposed at a low temperature of preferably 60 to 210 ° C., more preferably 60 to 200 ° C. without using a reducing compound known in the art. It is possible to form metallic silver. And by using together with a reducing compound, it decomposes
  • the reducing compound will be described later.
  • silver ⁇ -ketocarboxylate (1) may be used alone or in combination of two or more. When using 2 or more types together, the combination and ratio can be adjusted arbitrarily.
  • the silver carboxylate (4) is represented by the general formula (4).
  • R 8 is an aliphatic hydrocarbon group having 1 to 19 carbon atoms, a carboxy group (—COOH), or a group represented by the formula “—C ( ⁇ O) —OAg”.
  • Examples of the aliphatic hydrocarbon group for R 8 include those similar to the aliphatic hydrocarbon group for R except that the aliphatic hydrocarbon group has 1 to 19 carbon atoms. However, the aliphatic hydrocarbon group for R 8 preferably has 1 to 15 carbon atoms, and more preferably 1 to 10 carbon atoms.
  • the aliphatic hydrocarbon group for R 8 has a methylene group (—CH 2 —)
  • one or more of the methylene groups may be substituted with a carbonyl group.
  • the number and position of the methylene groups that may be substituted with a carbonyl group are not particularly limited, and all methylene groups may be substituted with a carbonyl group.
  • the “methylene group” is not only a single group represented by the formula “—CH 2 —” but also one of alkylene groups in which a plurality of groups represented by the formula “—CH 2 —” are linked. And a group represented by the formula “—CH 2 —”.
  • Silver carboxylate (4) includes silver pyruvate (CH 3 —C ( ⁇ O) —C ( ⁇ O) —OAg), silver acetate (CH 3 —C ( ⁇ O) —OAg), silver butyrate (CH 3 — (CH 2 ) 2 —C ( ⁇ O) —OAg), silver isobutyrate ((CH 3 ) 2 CH—C ( ⁇ O) —OAg), silver 2-ethylhexanoate (CH 3 — (CH 2 ) 3 —CH (CH 2 CH 3 ) —C ( ⁇ O) —OAg), silver neodecanoate (CH 3 — (CH 2 ) 5 —C (CH 3 ) 2 —C ( ⁇ O) —OAg), Shu It is preferably silver oxide (AgO—C ( ⁇ O) —C ( ⁇ O) —OAg) or silver malonate (AgO—C ( ⁇ O) —CH 2 —C ( ⁇ O) —OAg).
  • silver oxalate (AgO—C ( ⁇ O) —C ( ⁇ O) —OAg) and silver malonate (AgO—C ( ⁇ O) —CH 2 —C ( ⁇ O) —OAg)
  • silver oxalate (AgO—C ( ⁇ O) —C ( ⁇ O) —OAg)
  • silver malonate (AgO—C ( ⁇ O) —CH 2 —C ( ⁇ O) —OAg)
  • —COOAg one of the groups represented by the formula “—COOH” (HO—C ( ⁇ O) —C ( ⁇ O) —OAg, HO)
  • —C ( ⁇ O) —CH 2 —C ( ⁇ O) —OAg is —COOH
  • the silver carboxylate (4) is also used for the remaining raw materials and impurities in the conductor (metal silver) formed by post-treatment such as drying treatment or heating (firing) treatment.
  • the concentration can be further reduced.
  • the silver carboxylate (4) may be used alone or in combination of two or more. When using 2 or more types together, the combination and ratio can be adjusted arbitrarily.
  • the silver carboxylate is silver 2-methylacetoacetate, silver acetoacetate, silver 2-ethylacetoacetate, silver propionylacetate, silver isobutyrylacetate, silver pivaloylacetate, silver caproylacetate, silver 2-n-butylacetoacetate, 2-benzylacetoacetate Silver acetate, silver benzoyl acetate, silver pivaloyl acetoacetate, silver isobutyryl acetoacetate, silver acetone dicarboxylate, silver pyruvate, silver acetate, silver butyrate, silver isobutyrate, silver 2-ethylhexanoate, silver neodecanoate, silver It is preferably at least one selected from the group consisting of silver oxide and silver malonate.
  • silver 2-methylacetoacetate and silver acetoacetate are excellent in compatibility with a nitrogen-containing compound (particularly an amine compound) described later, and are particularly suitable for increasing the concentration of silver ink compositions. It is mentioned as a thing.
  • the content of silver derived from the metal silver forming material is preferably 5% by mass or more, and more preferably 10% by mass or more. By being in such a range, the formed conductor (metal silver) becomes superior in quality.
  • the upper limit of the silver content is not particularly limited as long as the effects of the present invention are not impaired, but it is preferably 25% by mass in consideration of handling properties and the like.
  • silver derived from a metallic silver forming material means silver in the metallic silver forming material blended during the production of the silver ink composition, unless otherwise specified. It is a concept that includes both silver constituting the metal silver forming material after blending, and silver and silver itself in the decomposition product generated by decomposition of the metal silver forming material after blending.
  • the nitrogen-containing compound is an amine compound having 25 or less carbon atoms (hereinafter sometimes abbreviated as “amine compound”), a quaternary ammonium salt having 25 or less carbon atoms (hereinafter abbreviated as “quaternary ammonium salt”).
  • Ammonia an ammonium salt formed by reacting an amine compound having 25 or less carbon atoms with an acid (hereinafter sometimes abbreviated as “ammonium salt derived from an amine compound”), and ammonia reacting with an acid.
  • ammonium salt derived from an amine compound an acid
  • ammonium salts derived from ammonia an acid
  • the amine compound has 1 to 25 carbon atoms, and may be any of primary amine, secondary amine, and tertiary amine.
  • the quaternary ammonium salt has 4 to 25 carbon atoms.
  • the amine compound and the quaternary ammonium salt may be either chain or cyclic. Further, the number of nitrogen atoms constituting the amine moiety or ammonium salt moiety (for example, the nitrogen atom constituting the amino group (—NH 2 ) of the primary amine) may be one, or two or more.
  • Examples of the primary amine include monoalkylamines, monoarylamines, mono (heteroaryl) amines, and diamines in which one or more hydrogen atoms may be substituted with a substituent.
  • the alkyl group constituting the monoalkylamine may be linear, branched or cyclic, and examples thereof are the same as the alkyl group in R, and are linear or branched having 1 to 19 carbon atoms. It is preferably a chain alkyl group or a cyclic alkyl group having 3 to 7 carbon atoms.
  • Specific examples of preferable monoalkylamine include n-butylamine, n-hexylamine, n-octylamine, n-dodecylamine, n-octadecylamine, sec-butylamine, tert-butylamine, isobutylamine, and 3-amino.
  • Examples include pentane, 3-methylbutylamine, 2-heptylamine (2-aminoheptane), 2-aminooctane, 2-ethylhexylamine, and 1,2-dimethyl-n-propylamine.
  • aryl group constituting the monoarylamine examples include a phenyl group, a 1-naphthyl group, a 2-naphthyl group, and the like, and preferably has 6 to 10 carbon atoms.
  • the heteroaryl group constituting the mono (heteroaryl) amine has a heteroatom as an atom constituting the aromatic ring skeleton, and the heteroatom includes a nitrogen atom, a sulfur atom, an oxygen atom, and a boron atom. Can be illustrated.
  • the number of the said hetero atom which comprises an aromatic ring frame is not specifically limited, One may be sufficient and two or more may be sufficient. When there are two or more, these heteroatoms may be the same or different from each other. That is, these heteroatoms may all be the same, may all be different, or may be partially different.
  • the heteroaryl group may be either monocyclic or polycyclic, and the number of ring members (the number of atoms constituting the ring skeleton) is not particularly limited, but is preferably a 3- to 12-membered ring.
  • Examples of the monoaryl group having 1 to 4 nitrogen atoms as the heteroaryl group include pyrrolyl group, pyrrolinyl group, imidazolyl group, pyrazolyl group, pyridyl group, pyrimidyl group, pyrazinyl group, pyridazinyl group, triazolyl group, tetrazolyl group A pyrrolidinyl group, an imidazolidinyl group, a piperidinyl group, a pyrazolidinyl group, and a piperazinyl group, which are preferably 3- to 8-membered rings, and more preferably 5- to 6-membered rings.
  • Examples of the monoaryl group having one oxygen atom as the heteroaryl group include a furanyl group, preferably a 3- to 8-membered ring, and more preferably a 5- to 6-membered ring.
  • Examples of the monoaryl group having one sulfur atom as the heteroaryl group include a thienyl group, preferably a 3- to 8-membered ring, and more preferably a 5- to 6-membered ring.
  • Examples of the monoaryl group having 1 to 2 oxygen atoms and 1 to 3 nitrogen atoms as the heteroaryl group include an oxazolyl group, an isoxazolyl group, an oxadiazolyl group, and a morpholinyl group.
  • it is a 5- to 6-membered ring.
  • the monoaryl group having 1 to 2 sulfur atoms and 1 to 3 nitrogen atoms as the heteroaryl group include a thiazolyl group, a thiadiazolyl group, and a thiazolidinyl group, and is a 3- to 8-membered ring.
  • a 5- to 6-membered ring is preferable.
  • Examples of the polyaryl having 1 to 5 nitrogen atoms as the heteroaryl group include indolyl group, isoindolyl group, indolizinyl group, benzimidazolyl group, quinolyl group, isoquinolyl group, indazolyl group, benzotriazolyl group, tetra Examples thereof include a zolopyridyl group, a tetrazolopyridazinyl group, and a dihydrotriazolopyridazinyl group, preferably a 7-12 membered ring, and more preferably a 9-10 membered ring.
  • Examples of the polyaryl group having 1 to 3 sulfur atoms as the heteroaryl group include a dithiaphthalenyl group and a benzothiophenyl group, preferably a 7 to 12 membered ring, preferably a 9 to 10 membered ring. More preferably, it is a ring.
  • Examples of the polyaryl group having 1 to 2 oxygen atoms and 1 to 3 nitrogen atoms as the heteroaryl group include a benzoxazolyl group and a benzooxadiazolyl group. Preferably, it is a 9 to 10 membered ring.
  • Examples of the polyaryl group having 1 to 2 sulfur atoms and 1 to 3 nitrogen atoms as the heteroaryl group include a benzothiazolyl group and a benzothiadiazolyl group, and is a 7 to 12 membered ring. Preferably, it is a 9 to 10 membered ring.
  • the diamine only needs to have two amino groups, and the positional relationship between the two amino groups is not particularly limited.
  • the preferred diamine in the monoalkylamine, monoarylamine or mono (heteroaryl) amine, one hydrogen atom other than the hydrogen atom constituting the amino group (—NH 2 ) is substituted with an amino group.
  • the diamine preferably has 1 to 10 carbon atoms, and more preferable examples include ethylenediamine, 1,3-diaminopropane, and 1,4-diaminobutane.
  • secondary amine examples include dialkylamine, diarylamine, di (heteroaryl) amine and the like in which one or more hydrogen atoms may be substituted with a substituent.
  • the alkyl group constituting the dialkylamine is the same as the alkyl group constituting the monoalkylamine, and is a linear or branched alkyl group having 1 to 9 carbon atoms, or having 3 to 7 carbon atoms.
  • a cyclic alkyl group is preferred.
  • Two alkyl groups in one molecule of dialkylamine may be the same as or different from each other.
  • Specific examples of preferable dialkylamines include N-methyl-n-hexylamine, diisobutylamine, and di (2-ethylhexyl) amine.
  • the aryl group constituting the diarylamine is the same as the aryl group constituting the monoarylamine, and preferably has 6 to 10 carbon atoms. Two aryl groups in one molecule of diarylamine may be the same as or different from each other.
  • the heteroaryl group constituting the di (heteroaryl) amine is the same as the heteroaryl group constituting the mono (heteroaryl) amine, and is preferably a 6-12 membered ring.
  • Two heteroaryl groups in one molecule of di (heteroaryl) amine may be the same or different from each other.
  • tertiary amine examples include trialkylamine and dialkylmonoarylamine in which one or more hydrogen atoms may be substituted with a substituent.
  • the alkyl group constituting the trialkylamine is the same as the alkyl group constituting the monoalkylamine, and is a linear or branched alkyl group having 1 to 19 carbon atoms, or 3 to 7 carbon atoms.
  • the cyclic alkyl group is preferably.
  • the three alkyl groups in one molecule of trialkylamine may be the same as or different from each other. That is, all three alkyl groups may be the same, all may be different, or only a part may be different.
  • Preferable examples of the trialkylamine include N, N-dimethyl-n-octadecylamine and N, N-dimethylcyclohexylamine.
  • the alkyl group constituting the dialkyl monoarylamine is the same as the alkyl group constituting the monoalkylamine, and is a linear or branched alkyl group having 1 to 6 carbon atoms, or 3 to 3 carbon atoms. 7 is a cyclic alkyl group. Two alkyl groups in one molecule of dialkyl monoarylamine may be the same or different from each other.
  • the aryl group constituting the dialkyl monoarylamine is the same as the aryl group constituting the monoarylamine, and preferably has 6 to 10 carbon atoms.
  • examples of the quaternary ammonium salt include halogenated tetraalkylammonium, in which one or more hydrogen atoms may be substituted with a substituent.
  • the alkyl group constituting the halogenated tetraalkylammonium is the same as the alkyl group constituting the monoalkylamine, and preferably has 1 to 19 carbon atoms.
  • the four alkyl groups in one molecule of the tetraalkylammonium halide may be the same as or different from each other. That is, all four alkyl groups may be the same, all may be different, or only a part may be different.
  • halogen constituting the halogenated tetraalkylammonium examples include fluorine, chlorine, bromine and iodine.
  • Specific examples of the preferred tetraalkylammonium halide include dodecyltrimethylammonium bromide.
  • the chain amine compound and the quaternary organic ammonium salt have been mainly described.
  • the nitrogen atom constituting the amine moiety or the ammonium salt moiety is a ring skeleton structure ( A heterocyclic compound which is a part of a heterocyclic skeleton structure) may be used. That is, the amine compound may be a cyclic amine, and the quaternary ammonium salt may be a cyclic ammonium salt.
  • the ring (ring containing the nitrogen atom constituting the amine moiety or ammonium salt moiety) structure may be either monocyclic or polycyclic, and the number of ring members (number of atoms constituting the ring skeleton) is also particularly limited. Any of an aliphatic ring and an aromatic ring may be sufficient. If it is a cyclic amine, a pyridine can be illustrated as a preferable thing.
  • the “hydrogen atom optionally substituted with a substituent” means a nitrogen atom constituting an amine moiety or an ammonium salt moiety.
  • the number of substituents at this time is not particularly limited, and may be one or two or more, and all of the hydrogen atoms may be substituted with a substituent.
  • the plural substituents may be the same as or different from each other. That is, the plurality of substituents may all be the same, may all be different, or only some may be different. Further, the position of the substituent is not particularly limited.
  • Examples of the substituent in the amine compound and the quaternary ammonium salt include an alkyl group, an aryl group, a halogen atom, a cyano group, a nitro group, a hydroxyl group, and a trifluoromethyl group (—CF 3 ).
  • examples of the halogen atom include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom.
  • the alkyl group constituting the monoalkylamine has a substituent
  • the alkyl group has an aryl group as a substituent, a linear or branched alkyl group having 1 to 9 carbon atoms, or a substituent
  • a cyclic alkyl group having 3 to 7 carbon atoms having an alkyl group having 1 to 5 carbon atoms is preferable, and a monoalkylamine having such a substituent is specifically 2-phenylethylamine. , Benzylamine, and 2,3-dimethylcyclohexylamine.
  • aryl group and the alkyl group which are substituents may further have one or more hydrogen atoms substituted with halogen atoms, and as monoalkylamines having such substituents substituted with halogen atoms, And 2-bromobenzylamine.
  • the halogen atom include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom.
  • the aryl group constituting the monoarylamine has a substituent
  • the aryl group is preferably an aryl group having 6 to 10 carbon atoms having a halogen atom as the substituent, and the monoaryl having such a substituent
  • Specific examples of the amine include bromophenylamine.
  • examples of the halogen atom include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom.
  • the alkyl group constituting the dialkylamine has a substituent
  • the alkyl group is preferably a linear or branched alkyl group having 1 to 9 carbon atoms and having a hydroxyl group or an aryl group as a substituent.
  • Specific examples of the dialkylamine having such a substituent include diethanolamine and N-methylbenzylamine.
  • the amine compound includes n-propylamine, n-butylamine, n-hexylamine, n-octylamine, n-dodecylamine, n-octadecylamine, sec-butylamine, tert-butylamine, isobutylamine, 3-aminopentane, 3-methylbutylamine, 2-heptylamine, 2-aminooctane, 2-ethylhexylamine, 2-phenylethylamine, ethylenediamine, 1,3-diaminopropane, 1,4-diaminobutane, N-methyl-n-hexylamine, Diisobutylamine, N-methylbenzylamine, di (2-ethylhexyl) amine, 1,2-dimethyl-n-propylamine, N, N-dimethyl-n-octadecylamine or N, N-dimethylcyclo
  • 2-ethylhexylamine is excellent in compatibility with the above-mentioned silver carboxylate, particularly suitable for increasing the concentration of the silver ink composition, and particularly for reducing the surface roughness of silver fine wires.
  • suitable 2-ethylhexylamine
  • the ammonium salt derived from the amine compound is an ammonium salt obtained by reacting the amine compound with an acid
  • the acid may be an inorganic acid such as hydrochloric acid, sulfuric acid or nitric acid, or an organic acid such as acetic acid.
  • the type of acid is not particularly limited.
  • the ammonium salt derived from the amine compound include, but are not limited to, n-propylamine hydrochloride, N-methyl-n-hexylamine hydrochloride, N, N-dimethyl-n-octadecylamine hydrochloride and the like. .
  • ammonium salt derived from ammonia is an ammonium salt obtained by reacting ammonia with an acid, and examples of the acid include the same ones as in the case of the ammonium salt derived from the amine compound.
  • examples of the ammonium salt derived from ammonia include ammonium chloride, but are not limited thereto.
  • the amine compound, the quaternary ammonium salt, the ammonium salt derived from the amine compound and the ammonium salt derived from ammonia may be used singly or in combination of two or more. .
  • the combination and ratio can be adjusted arbitrarily.
  • you may use individually by 1 type selected from the group which consists of said amine compound, quaternary ammonium salt, ammonium salt derived from an amine compound, and ammonium salt derived from ammonia More than one species may be used in combination.
  • the combination and ratio can be adjusted arbitrarily.
  • the compounding amount of the nitrogen-containing compound is preferably 0.3 to 15 mol, more preferably 0.3 to 5 mol, per mol of the metal silver forming material. preferable.
  • the blending amount of the nitrogen-containing compound is within such a range, the silver ink composition is further improved in stability and the quality of the conductor (metal silver) is further improved. Furthermore, the conductor can be formed more stably without performing heat treatment at a high temperature.
  • the silver ink composition further contains a reducing compound, so that the silver ink composition can form metallic silver more easily. For example, heat treatment at a low temperature is sufficient. It is possible to form a conductive material (metallic silver) having excellent conductivity.
  • the reducing compound is one or more selected from the group consisting of oxalic acid (HOOC-COOH), hydrazine (H 2 N—NH 2 ), and a compound represented by the following general formula (5) (compound (5)). It is. That is, the reducing compound to be blended may be one kind or two or more kinds. When two or more kinds are used in combination, the combination and ratio can be arbitrarily adjusted.
  • HC ( O) -R 21 (5) (Wherein R 21 represents an alkyl group having 20 or less carbon atoms, an alkoxy group, or an N, N-dialkylamino group, a hydroxyl group, or an amino group.)
  • the alkyl group having 20 or less carbon atoms in R 21 has 1 to 20 carbon atoms and may be linear, branched or cyclic, and is the same as the alkyl group in R in the general formula (1) The thing can be illustrated.
  • the alkoxy group having 20 or less carbon atoms in R 21 has 1 to 20 carbon atoms, and examples thereof include monovalent groups in which the alkyl group in R 21 is bonded to an oxygen atom.
  • the N, N-dialkylamino group having 20 or less carbon atoms in R 21 has 2 to 20 carbon atoms, and the two alkyl groups bonded to the nitrogen atom may be the same as or different from each other. Each alkyl group has 1 to 19 carbon atoms. However, the total value of the carbon number of these two alkyl groups is 2 to 20.
  • the alkyl group bonded to the nitrogen atom may be linear, branched or cyclic, respectively, and the alkyl group in R of the general formula (1) except that it has 1 to 19 carbon atoms. The thing similar to group can be illustrated.
  • hydrazine may be monohydrate (H 2 N—NH 2 .H 2 O).
  • formic acid esters such as butyl format
  • the compounding amount of the reducing agent is preferably 0.04 to 3.5 mol, and preferably 0.06 to 2.5 mol per mol of the metal silver forming material. Is more preferable.
  • the silver ink composition can form a conductor (metal silver) more easily and more stably.
  • the alcohol is preferably an acetylene alcohol represented by the following general formula (2) (hereinafter sometimes abbreviated as “acetylene alcohol (2)”).
  • R ′ and R ′′ are each independently an alkyl group having 1 to 20 carbon atoms, or a phenyl group in which one or more hydrogen atoms may be substituted with a substituent.
  • the acetylene alcohol (2) is represented by the general formula (2).
  • R ′ and R ′′ are each independently an alkyl group having 1 to 20 carbon atoms or a phenyl group in which one or more hydrogen atoms may be substituted with a substituent.
  • the alkyl group having 1 to 20 carbon atoms in R ′ and R ′′ may be linear, branched or cyclic, and when it is cyclic, it may be monocyclic or polycyclic. Examples of the alkyl group in R ′ and R ′′ include the same alkyl groups as in R.
  • Examples of the substituent in which the hydrogen atom of the phenyl group in R ′ and R ′′ may be substituted include a saturated or unsaturated monovalent aliphatic hydrocarbon group having 1 to 16 carbon atoms, the aliphatic carbon Examples thereof include a monovalent group formed by bonding a hydrogen group to an oxygen atom, a fluorine atom, a chlorine atom, a bromine atom, a hydroxyl group, a cyano group, a phenoxy group, and the like, and the hydrogen atom of the phenyl group in R may be substituted. This is the same as the substituent. And the number and position of a substituent are not specifically limited, When there are two or more substituents, these several substituents may mutually be same or different.
  • R ′ and R ′′ are preferably an alkyl group having 1 to 20 carbon atoms, and more preferably a linear or branched alkyl group having 1 to 10 carbon atoms.
  • Examples of preferable acetylene alcohol (2) include 3,5-dimethyl-1-hexyn-3-ol, 3-methyl-1-butyn-3-ol, and 3-methyl-1-pentyn-3-ol.
  • the amount of acetylene alcohol (2) in the silver ink composition is preferably 0.03 to 0.7 mol per mol of the metal silver forming material. 0.05 to 0.3 mol is more preferable. When the blending amount of acetylene alcohol (2) is within such a range, the stability of the silver ink composition is further improved.
  • the alcohol may be used alone or in combination of two or more. When using 2 or more types together, the combination and ratio can be adjusted arbitrarily.
  • the silver ink composition may contain other components other than the metallic silver forming material, nitrogen-containing compound, reducing agent, and alcohol.
  • the other components in the silver ink composition can be arbitrarily selected according to the purpose, and are not particularly limited. Preferred examples thereof include solvents other than alcohol, and can be arbitrarily selected according to the type and amount of compounding components. it can.
  • One of these other components in the silver ink composition may be used alone, or two or more thereof may be used in combination. When using 2 or more types together, the combination and ratio can be adjusted arbitrarily.
  • the ratio of the blending amount of the other components to the total blending component is preferably 10% by mass or less, more preferably 5% by mass or less, and 0% by mass, ie, other Even if the component is not blended, the silver ink composition exhibits its effect sufficiently.
  • all the compounding components may be dissolved, or some or all of the components may be dispersed without dissolving, but it is preferable that all the compounding components are dissolved.
  • the undissolved component is preferably dispersed uniformly.
  • the silver ink composition can be obtained, for example, by blending one or both of silver carboxylate, nitrogen-containing compound, reducing compound and alcohol, and other components as required. After the blending of each component, the resulting product may be used as it is as a silver ink composition, or a product obtained by performing a known purification operation as necessary may be used as a silver ink composition.
  • impurities that inhibit conductivity are not generated, or the amount of such impurities generated can be suppressed to an extremely small amount, so that it is not necessary to perform a purification operation.
  • a metallic silver layer having excellent conductivity can be obtained.
  • all the components may be added and then mixed, or some components may be mixed while being added sequentially, or all components may be mixed while being added sequentially. Good.
  • the mixing method is not particularly limited, a method of mixing by rotating a stirrer or a stirring blade; a method of mixing using a mixer, a three-roller, a kneader, a bead mill or the like; a method of mixing by adding ultrasonic waves, etc. What is necessary is just to select suitably from a well-known method.
  • a method of rotating and mixing the stirring blade in the stirring vessel is preferable, and the stirring blade is preferably in an anchor shape.
  • stirring efficiency is high, and it is considered that the material of the silver ink composition can be reacted efficiently.
  • FIG. 1 is a schematic diagram showing an anchor-shaped stirring blade 100.
  • the stirring blade 100 includes a drive shaft 110, a forced flow generating blade portion 120 having an outer side 120a that rotates in the vicinity of the inner peripheral surface of the stirring tank (beaker), the drive shaft 110, and the forced flow generating blade portion 120. And a connecting portion 130 for connecting the two.
  • the forced flow generating blade part 120 preferably extends in the depth direction of the stirring tank (in a direction parallel to the drive shaft 110). In this case, the forced flow generating blade portion 120 may extend linearly in parallel with the drive shaft 110 as shown in FIG.
  • wing part 120 may be extended in the depth direction of a stirring tank, for example, twisting helically.
  • the diameter of the stirring blade (the distance from one outer side 120a to the other outer periphery 120a in FIG. 1) with respect to the inner diameter (diameter) of the stirring tank is preferably 85 to 95%.
  • FIG. 3 is a schematic view showing another stirring blade 300 having an anchor shape.
  • a stirring blade 300 shown in FIG. 3 is a Max Blend type, and includes a drive shaft 310, a forced flow generation blade portion 320 having an outer side 320a that rotates around the inner peripheral surface of a stirring tank (beaker), and the drive.
  • the stirring blade 300 includes a third connection portion 350 that connects the first connection portion 330 and the second connection portion 340 at a position between the drive shaft 310 and the forced flow generation blade portion 320. ing.
  • the agitating blade 300 shown in FIG. 3 includes the first connecting portion 330 and the second connecting portion 340 for connecting the drive shaft 310 and the forced flow generating blade portion 320, and further connecting the connecting portions to each other. Except for the point provided with the 3rd connection part 350 connected, it is the same as that of the stirring blade 100 shown in FIG.
  • the widths of the first connection part 330 and the second connection part 340 are not particularly limited.
  • the first connection part 330 may be wider than the second connection part 340.
  • the second connecting part 340 may be wider than the first connecting part 330, and the first connecting part 330 and the second connecting part 340 may have the same width.
  • the forced flow generating blade portion 320 may be wider than the third connecting portion 350 as shown in FIG.
  • the third connecting part 350 may be wider than the forced flow generating blade part 320, and the forced flow generating blade part 320 and the third connecting part 350 may have the same width.
  • the silver ink composition is prepared by rotating a stirring blade in a stirring tank of the silver carboxylate, the nitrogen-containing compound, and the reducing compound and / or a mixture (formulation) of alcohol. What was manufactured by the manufacturing method including the process of stirring is preferable.
  • the rotation speed when mixing the components of the silver ink composition by rotating the anchor-shaped stirring blade is, for example, 100 to 500 rpm when the total of the materials of the silver ink composition is about 30 to 300 g. preferable.
  • all of the compounding components may be dissolved, or a part of the components may be dispersed without dissolving, but it is preferable that all of the compounding components are dissolved, It is preferable that the components which are not dissolved are uniformly dispersed. In the case of uniformly dispersing the undissolved component, for example, it is preferable to apply a method of dispersing using the above-described three-roll, kneader or bead mill.
  • the temperature at the time of compounding is not particularly limited as long as each compounding component does not deteriorate, but it is preferably ⁇ 5 to 60 ° C. And the temperature at the time of mixing
  • the resulting mixture (silver ink composition) is relatively easy to generate heat. And, when the temperature at the time of blending these is high, this mixture will be in the same state as at the time of heat treatment of the silver ink composition to be described later, so by the decomposition promoting action of the silver carboxylate by the reducing compound, It is speculated that the formation of metallic silver may be initiated in at least part of the silver carboxylate.
  • a silver ink composition containing metallic silver can form a metallic silver layer by performing post-treatment under milder conditions than a silver ink composition not containing metallic silver during the production of the laminate. is there.
  • a metallic silver layer may be formed by performing post-treatment under the same mild conditions.
  • the metal silver layer can be obtained by a heat treatment at a lower temperature or only by a drying treatment at room temperature without performing the heat treatment. Can be formed.
  • the silver ink composition containing such metal silver can be handled in the same manner as the silver ink composition not containing metal silver, and the handleability is not particularly inferior.
  • the reducing compound is blended to produce the silver ink composition, the dripping of the reducing compound is blended.
  • the surface roughness of the metallic silver layer tends to be further reduced by suppressing fluctuations in the dropping speed.
  • the silver ink composition may be further supplied with carbon dioxide.
  • a silver ink composition has a high viscosity.
  • a flexographic printing method, a screen printing method, a gravure printing method, a gravure offset printing method, a pad printing method, etc. Suitable for application.
  • Carbon dioxide may be supplied at any time during the production of the silver ink composition.
  • a silver ink composition is obtained by supplying carbon dioxide to a first mixture in which silver carboxylate and a nitrogen-containing compound are blended to form a second mixture, and further blending a reducing compound in the second mixture.
  • blending the said alcohol or another component these can be mix
  • the first mixture can be produced by the same method as the above silver ink composition except that the blending components are different.
  • the first mixture may have all of the compounding components dissolved, or may be in a state of being dispersed without dissolving some of the components, but preferably all of the compounding components are dissolved and dissolved. It is preferable that the components not dispersed are uniformly dispersed.
  • the compounding temperature at the time of producing the first mixture is not particularly limited as long as each compounding component does not deteriorate, but it is preferably ⁇ 5 to 60 ° C.
  • the blending time may be appropriately adjusted according to the type of blending component and the temperature at the blending, and is, for example, 10 minutes to 36 hours, for example 0.5 to 12 hours.
  • Carbon dioxide (CO 2 ) supplied to the first mixture may be either gaseous or solid (dry ice), or both gaseous and solid. By supplying carbon dioxide, it is estimated that this carbon dioxide dissolves in the first mixture and acts on the components in the first mixture, thereby increasing the viscosity of the obtained second mixture.
  • the carbon dioxide gas may be supplied by various known methods for blowing gas into the liquid, and a suitable supply method may be selected as appropriate. For example, a method in which one end of a pipe is immersed in the first mixture, the other end is connected to a carbon dioxide gas supply source, and the carbon dioxide gas is supplied to the first mixture through the pipe. At this time, the carbon dioxide gas may be supplied directly from the end of the pipe. For example, a plurality of voids that can serve as gas flow paths, such as a porous one, are provided to diffuse the introduced gas. A gas diffusion member that can be discharged as minute bubbles may be connected to the end of the pipe, and the carbon dioxide gas may be supplied through the gas diffusion member. Moreover, you may supply a carbon dioxide gas, stirring the 1st mixture by the method similar to the time of manufacture of a 1st mixture. By doing in this way, carbon dioxide can be supplied efficiently.
  • the supply amount of carbon dioxide gas is not particularly limited, and may be appropriately adjusted according to the amount of the first mixture at the supply destination and the viscosity of the target silver ink composition or the second mixture.
  • the supply amount of carbon dioxide gas is not particularly limited, and may be appropriately adjusted according to the amount of the first mixture at the supply destination and the viscosity of the target silver ink composition or the second mixture.
  • VISCOMATE VM-10A an ultrasonic viscometer
  • the viscosity at 20 to 25 ° C. of the silver ink composition has been described here, the temperature at the time of using the silver ink composition is not limited to 20 to 25 ° C. and can be arbitrarily selected.
  • the flow rate of carbon dioxide gas may be appropriately adjusted in consideration of the required supply amount of carbon dioxide gas, but is preferably 0.5 mL / min or more per 1 g of the first mixture, and is 1 mL / min or more. It is more preferable that The upper limit value of the flow rate is not particularly limited, but is preferably 40 mL / min per 1 g of the mixture in consideration of handling properties and the like.
  • the carbon dioxide gas supply time may be appropriately adjusted in consideration of the required supply amount and flow rate of carbon dioxide gas.
  • the temperature of the first mixture at the time of supplying carbon dioxide gas is preferably 5 to 70 ° C, more preferably 7 to 60 ° C, and particularly preferably 10 to 50 ° C.
  • carbon dioxide can be supplied more efficiently, and when the temperature is equal to or lower than the upper limit value, a silver ink composition having better quality with fewer impurities can be obtained.
  • the flow rate and supply time of carbon dioxide gas, and the temperature at the time of supplying carbon dioxide gas may be adjusted to a suitable range while considering each value. For example, even if the temperature is set lower, the carbon dioxide gas flow rate is set higher, the carbon dioxide gas supply time is set longer, or both are performed efficiently. Can supply carbon. Moreover, even if the flow rate of carbon dioxide gas is set to a small value, the carbon dioxide gas can be efficiently produced by increasing the temperature, setting the carbon dioxide gas supply time longer, or both. Can supply. That is, a silver ink of good quality can be obtained by flexibly combining the numerical values in the above numerical range exemplified as the flow rate of carbon dioxide gas and the temperature at the time of carbon dioxide gas supply while considering the supply time of carbon dioxide gas. A composition is obtained efficiently.
  • the carbon dioxide gas is preferably supplied while stirring the first mixture. By doing in this way, the supplied carbon dioxide gas diffuses more uniformly in the first mixture, and carbon dioxide can be supplied more efficiently.
  • the stirring method at this time may be the same as in the case of the mixing method at the time of producing the above silver ink composition not using carbon dioxide.
  • the supply of dry ice may be performed by adding dry ice to the first mixture.
  • the total amount of dry ice may be added all at once, or may be added stepwise (continuously across a time zone during which no addition is performed). What is necessary is just to adjust the usage-amount of dry ice in consideration of the supply amount of said carbon dioxide gas.
  • the first mixture is preferably stirred.
  • the first mixture is preferably stirred in the same manner as in the production of the above silver ink composition without using carbon dioxide. By doing in this way, carbon dioxide can be supplied efficiently.
  • the temperature at the time of stirring may be the same as that at the time of supplying carbon dioxide gas.
  • stirring time suitably according to stirring temperature.
  • the viscosity of the second mixture may be appropriately adjusted according to the purpose, such as a method for handling the silver ink composition or the second mixture, and is not particularly limited.
  • the viscosity of the second mixture at 20 to 25 ° C. is 3 Pa ⁇ s or more. It is preferable.
  • the viscosity of the second mixture at 20 to 25 ° C. has been described, but the temperature at the time of use of the second mixture is not limited to 20 to 25 ° C. and can be arbitrarily selected.
  • a reductive compound is mix
  • the silver ink composition at this time can be manufactured by the same method as the above silver ink composition not using carbon dioxide except that the blending components are different.
  • the obtained silver ink composition may have all of the compounding components dissolved therein or may be in a state where some of the components are dispersed without dissolving, but all of the compounding components are dissolved.
  • the undissolved component is preferably dispersed uniformly.
  • the temperature at the time of compounding the reducing compound is not particularly limited as long as each compounding component does not deteriorate, but it is preferably ⁇ 5 to 60 ° C. And the temperature at the time of mixing
  • the blending time may be appropriately adjusted according to the type of blending component and the temperature at the blending, and is, for example, 10 minutes to 36 hours, for example 0.5 to 12 hours.
  • the other components may be blended during the production of either the first mixture or the second mixture, or may be blended during the production of both. That is, in the process of producing the silver ink composition through the first mixture and the second mixture, the ratio of the blended amount of the other components to the total amount of blended components other than carbon dioxide ([other components (mass)] / [Silver carboxylate, nitrogen-containing compound, reducing compound, alcohol, and other components (mass)] ⁇ 100) is preferably 10% by mass or less, more preferably 5% by mass or less, Even if 0% by mass, that is, no other components are blended, the silver ink composition exhibits its effect sufficiently.
  • the silver ink composition to which carbon dioxide is supplied is, for example, a viscosity at 20 to 25 ° C. when the silver ink composition is applied to a printing method using a high viscosity ink such as a screen printing method or a flexographic printing method. Is preferably 1 Pa ⁇ s or more.
  • Example 1 to 3 (Preparation of silver ink composition) Silver 2-methylacetoacetate (38.0 g) was added to 2-ethylhexylamine (22.0 g) in a 200 mL beaker so that the liquid temperature was 50 ° C. or lower, and the mixture was stirred for 15 minutes using a mechanical stirrer. As a result, a liquid material was obtained.
  • FIG. 1 is a schematic diagram showing an anchor-shaped stirring blade 100.
  • the stirring blade 100 includes a drive shaft 110, a forced flow generating blade portion 120 having an outer side 120a that rotates in the vicinity of the inner peripheral surface of the stirring tank (beaker), the drive shaft 110, and the forced flow generating blade portion 120. And a connecting portion 130 for connecting the two.
  • the stirring blade 100 had a stirring blade diameter of about 95% with respect to the inner diameter (diameter) of the beaker, and the distance between the inner peripheral surface of the beaker and the outer side 120a of the forced flow generation blade portion 120 was about 2 mm. .
  • the rotation speed of the stirring blade 100 was set to 300 rpm.
  • Formic acid (6.3 g) was added dropwise to the above-mentioned liquid over 30 minutes so that the temperature of the reaction solution was 50 ° C. or lower. After the formic acid was dropped, the reaction solution was further stirred at 25 ° C. for 1.5 hours to obtain a silver ink composition.
  • the blending amounts of 2-ethylhexylamine and formic acid per 1 mole of silver 2-methylacetoacetate were 1 mole and 0.8 mole, respectively.
  • Example 1 the laminate of Example 1 was obtained.
  • the production of the silver ink composition and the laminate was repeated, and the laminates of Examples 2 and 3 were obtained.
  • FIG. 2 is a schematic diagram showing a propeller-shaped stirring blade 200.
  • the stirring blade 200 includes a drive shaft 210 and a propeller-like forced flow generation blade portion 220.
  • the rotation speed of the stirring blade was set to 300 rpm.
  • Formic acid (6.3 g) was added dropwise to the above-mentioned liquid over 30 minutes so that the temperature of the reaction solution was 50 ° C. or lower. After the formic acid was dropped, the reaction solution was further stirred at 25 ° C. for 1.5 hours to obtain a silver ink composition.
  • the blending amounts of 2-ethylhexylamine and formic acid per 1 mole of silver 2-methylacetoacetate were 1 mole and 0.8 mole, respectively.
  • Comparative Example 1 was obtained.
  • the production of the silver ink composition and the laminate was repeated, and the laminates of Comparative Examples 2 and 3 were obtained.
  • the metal silver layer was able to achieve a volume resistivity of 5 ⁇ ⁇ cm or less and a surface roughness of 70 nm or less with good reproducibility.
  • the metal silver layer could not achieve a volume resistivity of 5 ⁇ ⁇ cm or less and a surface roughness of 70 nm or less.
  • Example 4 (Preparation of silver ink composition) A silver ink composition was prepared in the same manner as in Example 1 except that each component and the blending amount thereof at the time of preparing the silver ink composition were as shown in Table 3. The amount (number of moles) of silver carboxylate was the same as in Example 1. The results are shown in Table 4. In Table 3, “-” in the column of the blending component means that the component is not blended.
  • nitrogen-containing compound (molar ratio) means the compounding amount (number of moles) of nitrogen-containing compound per mole of silver carboxylate ([number of moles of nitrogen-containing compound] / [carvone] Number of moles of acid silver]).
  • the “reducing compound (molar ratio)” is also the blending amount (number of moles) of the reducing compound per mole of silver carboxylate (number of moles of reducing compound) / [number of moles of silver carboxylate].
  • “And” alcohol (molar ratio) means the blending amount (number of moles) of alcohol per mole of silver carboxylate ([number of moles of alcohol] / [number of moles of silver carboxylate]).
  • Example 5 (Preparation of silver ink composition) The blending amount of each component at the time of preparing the silver ink composition is as shown in Table 3, and the stirring shape of the mechanical stirrer is replaced with the anchor shape shown in FIG. A silver ink composition was prepared in the same manner as in Example 1 except that the type) was used.
  • FIG. 3 is a schematic diagram showing an anchor-shaped (max blend type) stirring blade 300. The amount (number of moles) of silver carboxylate was the same as in Example 1. The results are shown in Table 4.
  • the stirring blade 300 shown in FIG. 3 has a stirring blade diameter of about 95% with respect to the inner diameter (diameter) of the beaker, and the distance between the inner peripheral surface of the beaker and the outer side 320a of the forced flow generation blade portion 320 is about It was 2 mm. Moreover, the rotation speed of the stirring blade 300 was set to 300 rpm.
  • Example 8 (Preparation of silver ink composition) Add 2-methylacetoacetic acid silver to 2-ethylhexylamine (1.5-fold molar amount with respect to silver 2-methylacetoacetate described later) in a beaker so that the liquid temperature is 50 ° C. or less. The mixture was stirred for 15 minutes to obtain a liquid material. As the stirring blade of the mechanical stirrer, the same anchor shape as in Example 1 was used. To this liquid, formic acid (0.4 times molar amount with respect to silver 2-methylacetoacetate) was added dropwise over 30 minutes so that the temperature of the reaction solution was 50 ° C. or lower. After completion of the formic acid dropwise addition, the reaction solution was further stirred at 25 ° C.
  • Example 5 (Production and evaluation of laminate) The same as Example 1 except that the silver ink composition obtained above was used, and that it was baked (heated) at 120 ° C. for 1 hour instead of baked (heated) at 80 ° C. for 1 hour. Then, a laminate was prepared and evaluated. The results are shown in Table 5.
  • Example 9 (Preparation of silver ink composition, preparation and evaluation of laminate) A silver ink composition was produced, and a laminate was produced and evaluated in the same manner as in Example 8 except that the components and the blending amounts thereof when producing the silver ink composition were as shown in Table 3. The results are shown in Table 5.
  • the silver ink composition was prepared using stirring blades having different anchor shapes. In both cases, the metallic silver layer was able to achieve a volume resistivity of 5 ⁇ ⁇ cm or less and a surface roughness of 70 nm or less.
  • a laminate comprising a substrate and a metallic silver layer formed on the substrate, which can be produced without performing a heat treatment at a high temperature, It is possible to provide a laminate that exhibits sufficiently reduced volume resistivity and surface roughness with good reproducibility.

Abstract

In the present invention, a laminated body is provided with a substrate and a metal silver layer formed on top of the substrate, and is configured so that the volume resistivity of the metal silver layer is no more than 5μΩ·cm, and the surface roughness of the metal silver layer is no more than 70nm.

Description

積層体Laminated body
 本発明は、積層体に関する。
 本願は、2014年3月28日に日本に出願された特願2014-070354号に基づき優先権を主張し、その内容をここに援用する。
The present invention relates to a laminate.
This application claims priority based on Japanese Patent Application No. 2014-070354 for which it applied to Japan on March 28, 2014, and uses the content here.
 金属銀は、記録材料や印刷刷版の材料として、また、導電性に優れることから高導電性材料として幅広く使用されている。
 これまでに金属銀の一般的な製造方法としては、例えば、ベヘン酸銀、ステアリン酸銀、α-ケトカルボン酸銀、β-ケトカルボン酸銀等の有機酸銀を用いる方法が開示されている。例えば、β-ケトカルボン酸銀は、約210℃以下の低温で加熱処理しても速やかに金属銀を形成する(特許文献1参照)。このような優れた特性を生かして、β-ケトカルボン酸銀を溶媒に溶解させて銀インク組成物を調製し、これを基材上に付着させて加熱処理することで、金属銀を形成する方法が開示されている(特許文献1参照)。
Metallic silver is widely used as a recording material, a printing plate material, and a highly conductive material because of its excellent conductivity.
So far, as a general method for producing metallic silver, for example, a method using organic acid silver such as silver behenate, silver stearate, silver α-ketocarboxylate and silver β-ketocarboxylate has been disclosed. For example, silver β-ketocarboxylate quickly forms metallic silver even when heat-treated at a low temperature of about 210 ° C. or lower (see Patent Document 1). Utilizing such excellent characteristics, a method of forming silver metal by dissolving silver β-ketocarboxylate in a solvent to prepare a silver ink composition, adhering the silver ink composition onto a substrate and heat-treating it Is disclosed (see Patent Document 1).
 しかしながら、例えば電子機器等のアンテナに金属銀を適用する場合には、特許文献1に記載の金属銀と同程度の表面粗さを有し、更に低減された体積抵抗率を示す金属銀が望まれる場合がある。 However, for example, when metallic silver is applied to an antenna of an electronic device or the like, metallic silver having a surface roughness comparable to that of metallic silver described in Patent Document 1 and exhibiting a reduced volume resistivity is desired. May be.
特開2014-49644号公報JP 2014-49644 A
 そこで、本発明は、基材と前記基材上に形成された金属銀層とを備えた積層体であって、高温での加熱処理を行うことなく製造可能であり、上記の金属銀層が、再現性良く十分に低減された体積抵抗率及び表面粗さを示す、積層体を提供することを目的とする。 Therefore, the present invention is a laminate comprising a base material and a metallic silver layer formed on the base material, and can be produced without performing a heat treatment at a high temperature. An object of the present invention is to provide a laminate exhibiting sufficiently reduced volume resistivity and surface roughness with good reproducibility.
 本発明は、基材と前記基材上に形成された金属銀層とを備え、前記金属銀層の体積抵抗率が5μΩ・cm以下であり、前記金属銀層の表面粗さが70nm以下である、積層体を提供する。 The present invention comprises a base material and a metal silver layer formed on the base material, the volume resistivity of the metal silver layer is 5 μΩ · cm or less, and the surface roughness of the metal silver layer is 70 nm or less. A laminate is provided.
 前記金属銀層は、前記基材上に付着された銀インク組成物を固化して形成されたものであり、前記銀インク組成物は、式「-COOAg」で表される基を有するカルボン酸銀と、炭素数25以下のアミン化合物、炭素数25以下の第4級アンモニウム塩、アンモニア及び前記アミン化合物又はアンモニアが酸と反応してなるアンモニウム塩からなる群から選択される一種以上の含窒素化合物と、シュウ酸、ヒドラジン及び下記一般式(5)で表される化合物からなる群から選択される一種以上の還元性化合物、及びアルコールのいずれか一方又は両方と、の混合物を、撹拌槽内で撹拌翼を回転させることにより撹拌する工程を含む製造方法により製造されたものであってもよい。
 H-C(=O)-R21…(5)
 (式中、R21は、炭素数20以下のアルキル基、アルコキシ基若しくはN,N-ジアルキルアミノ基、水酸基又はアミノ基である。)
The metallic silver layer is formed by solidifying a silver ink composition deposited on the substrate, and the silver ink composition has a carboxylic acid having a group represented by the formula “—COOAg”. One or more nitrogen-containing compounds selected from the group consisting of silver, an amine compound having 25 or less carbon atoms, a quaternary ammonium salt having 25 or less carbon atoms, ammonia and an ammonium salt obtained by reacting the amine compound or ammonia with an acid. A mixture of the compound and one or both of oxalic acid, hydrazine and one or more reducing compounds selected from the group consisting of compounds represented by the following general formula (5), and alcohol, in a stirring tank It may be manufactured by a manufacturing method including a step of stirring by rotating the stirring blade.
HC (═O) —R 21 (5)
(Wherein R 21 represents an alkyl group having 20 or less carbon atoms, an alkoxy group, or an N, N-dialkylamino group, a hydroxyl group, or an amino group.)
 前記撹拌翼は、駆動軸と、撹拌槽の内周面の近傍を回転移動する外側辺を有する強制流動発生翼部と、前記駆動軸と前記強制流動発生翼部とを連結する連結部とを備えるものであってもよい。
 前記基材の厚さは、10~5000μmであってもよい。
 前記金属銀層の厚さは、0.5~20μmであってもよい。
The stirring blade includes a drive shaft, a forced flow generating blade portion having an outer side that rotates and moves in the vicinity of the inner peripheral surface of the stirring tank, and a connecting portion that connects the drive shaft and the forced flow generating blade portion. It may be provided.
The substrate may have a thickness of 10 to 5000 μm.
The metal silver layer may have a thickness of 0.5 to 20 μm.
 本発明の積層体は、基材と前記基材上に形成された金属銀層とを備え、高温での加熱処理を行うことなく製造可能であり、上記の金属銀層が、再現性良く十分に低減された体積抵抗率及び表面粗さを示す。 The laminate of the present invention comprises a substrate and a metal silver layer formed on the substrate, and can be produced without performing a heat treatment at a high temperature, and the metal silver layer is sufficiently reproducible. Shows the reduced volume resistivity and surface roughness.
アンカー形状の撹拌翼を示す模式図である。It is a schematic diagram which shows the stirring blade of an anchor shape. プロペラ形状の撹拌翼を示す模式図である。It is a schematic diagram which shows the propeller-shaped stirring blade. アンカー形状の他の撹拌翼を示す模式図である。It is a schematic diagram which shows the other stirring blade of an anchor shape.
 本発明の積層体の好ましい例について以下に説明する。ただし、本発明はこれら例のみに限定されることはなく、例えば、本発明の趣旨を逸脱しない範囲で、追加、省略、置換、及びその他の変更(量、数、位置、サイズなど)が可能である。 Preferred examples of the laminate of the present invention will be described below. However, the present invention is not limited to these examples. For example, additions, omissions, substitutions, and other changes (amount, number, position, size, etc.) are possible without departing from the spirit of the present invention. It is.
<積層体>
 本発明は、基材と前記基材上に形成された金属銀層とを備え、前記金属銀層の体積抵抗率が5μΩ・cm以下であり、前記金属銀層の表面粗さが70nm以下であることを特徴とする、積層体を提供する。
<Laminate>
The present invention comprises a base material and a metal silver layer formed on the base material, the volume resistivity of the metal silver layer is 5 μΩ · cm or less, and the surface roughness of the metal silver layer is 70 nm or less. A laminate is provided.
 積層体の金属銀層は、金属銀を主成分とする。ここで、「金属銀を主成分とする」とは、金属銀の比率が、見かけ上金属銀だけからなるとみなし得る程度に十分に高いことを意味し、例えば、金属銀層中の金属銀の比率は、好ましくは99質量%以上である。金属銀層中の金属銀の比率の上限値は、例えば、99.9質量%、99.8質量%、99.7質量%、99.6質量%、99.5質量%、99.4質量%、99.3質量%、99.2質量%及び99.1質量%のいずれかから選択できる。 The metal silver layer of the laminate is mainly composed of metal silver. Here, “having metallic silver as a main component” means that the ratio of metallic silver is sufficiently high so that it can be regarded as being composed solely of metallic silver. For example, the metallic silver in the metallic silver layer The ratio is preferably 99% by mass or more. The upper limit of the ratio of the metallic silver in the metallic silver layer is, for example, 99.9% by mass, 99.8% by mass, 99.7% by mass, 99.6% by mass, 99.5% by mass, 99.4% by mass. %, 99.3% by mass, 99.2% by mass, and 99.1% by mass.
 前記金属銀層は、例えば、基材上に後述する銀インク組成物を付着させ、固化させることで形成することができる。なお、本明細書において、「銀インク組成物の固化」とは、銀インク組成物から揮発性成分を低減又は除去することを意味し、乾燥処理や加熱(焼成)処理等の後処理を適宜選択して行ってもよい。加熱処理は、乾燥処理を兼ねて行ってもよい。
 基材は、フィルム状又はシート状であることが好ましく、厚さが10~5000μmであることが好ましい。
The metallic silver layer can be formed, for example, by attaching and solidifying a silver ink composition described later on a substrate. In the present specification, “solidification of the silver ink composition” means reducing or removing volatile components from the silver ink composition, and appropriately performing post-treatment such as drying treatment or heating (firing) treatment. You may choose. The heat treatment may be performed also as a drying treatment.
The substrate is preferably in the form of a film or a sheet, and preferably has a thickness of 10 to 5000 μm.
 基材の材質は、目的に応じて適宜選択すればよく、特に限定されないが、好ましいものとして具体的には、ポリエチレン(PE)、ポリプロピレン(PP)、ポリ塩化ビニル(PVC)、ポリ塩化ビニリデン(PVDC)、ポリメチルペンテン(PMP)、ポリシクロオレフィン、ポリスチレン(PS)、ポリ酢酸ビニル(PVAc)、ポリメタクリル酸メチル(PMMA)等のアクリル樹脂、AS樹脂、ABS樹脂、ポリアミド(PA)、ポリイミド、ポリアミドイミド(PAI)、ポリアセタール、ポリエチレンテレフタレート(PET)、ポリブチレンテレフタレート(PBT)、ポリトリメチレンテレフタレート(PTT)、ポリエチレンナフタレート(PEN)、ポリブチレンナフタレート(PBN)、ポリフェニレンスルファイド(PPS)、ポリスルホン(PSF)、ポリエーテルスルホン(PES)、ポリエーテルケトン(PEK)、ポリエーテルエーテルケトン(PEEK)、ポリカーボネート(PC)、ポリウレタン、ポリフェニレンエーテル(PPE)、変性ポリフェニレンエーテル(m-PPE)、ポリアリレート、エポキシ樹脂、メラミン樹脂、フェノール樹脂、尿素樹脂等の合成樹脂が例示できる。
 また、基材の材質としては、上記以外にも、ガラス、シリコン等のセラミックスや、紙が例示できる。
 また、基材は、ガラスエポキシ樹脂、ポリマーアロイ等の、二種以上の材質からなるものでもよい。
The material of the base material may be appropriately selected according to the purpose and is not particularly limited, but specific examples of preferable materials include polyethylene (PE), polypropylene (PP), polyvinyl chloride (PVC), and polyvinylidene chloride ( PVDC), polymethylpentene (PMP), polycycloolefin, polystyrene (PS), polyvinyl acetate (PVAc), acrylic resin such as polymethyl methacrylate (PMMA), AS resin, ABS resin, polyamide (PA), polyimide , Polyamideimide (PAI), polyacetal, polyethylene terephthalate (PET), polybutylene terephthalate (PBT), polytrimethylene terephthalate (PTT), polyethylene naphthalate (PEN), polybutylene naphthalate (PBN), polyphenylene sulfide (PPS), polysulfone (PSF), polyethersulfone (PES), polyetherketone (PEK), polyetheretherketone (PEEK), polycarbonate (PC), polyurethane, polyphenylene ether (PPE), modified polyphenylene ether (m- PPE), polyarylate, epoxy resin, melamine resin, phenol resin, urea resin, and other synthetic resins can be exemplified.
In addition to the above, the material of the substrate can be exemplified by ceramics such as glass and silicon, and paper.
The base material may be made of two or more kinds of materials such as glass epoxy resin and polymer alloy.
 基材は、単層からなるものでもよいし、二層以上の複数層からなるものでもよい。基材が複数層からなる場合、これら複数層は、互いに同一でも異なっていてもよい。すなわち、すべての層が同一であってもよいし、すべての層が異なっていてもよく、一部の層のみが異なっていてもよい。そして、複数層が互いに異なる場合、これら複数層の組み合わせは特に限定されない。ここで、複数層が互いに異なるとは、各層の材質及び厚さの少なくとも一方が互いに異なることを意味する。
 なお、基材が複数層からなる場合には、各層の合計の厚さが、上記の好ましい基材の厚さとなるようにするとよい。
The substrate may be composed of a single layer, or may be composed of two or more layers. When a base material consists of multiple layers, these multiple layers may be the same as or different from each other. That is, all the layers may be the same, all the layers may be different, or only some of the layers may be different. And when several layers differ from each other, the combination of these several layers is not specifically limited. Here, the plurality of layers being different from each other means that at least one of the material and the thickness of each layer is different from each other.
In addition, when a base material consists of multiple layers, it is good to make it the total thickness of each layer be the thickness of said preferable base material.
 銀インク組成物は、例えば、印刷法、塗布法、浸漬法等の公知の方法で基材上に付着させることができる。
 前記印刷法としては、スクリーン印刷法、フレキソ印刷法、オフセット印刷法、ディップ式印刷法、インクジェット式印刷法、ディスペンサー式印刷法、グラビア印刷法、グラビアオフセット印刷法、パッド印刷法等が例示できる。
 前記塗布法としては、スピンコーター、エアーナイフコーター、カーテンコーター、ダイコーター、ブレードコーター、ロールコーター、ゲートロールコーター、バーコーター、ロッドコーター、グラビアコーター等の各種コーターや、ワイヤーバー等を用いる方法が例示できる。
A silver ink composition can be made to adhere on a base material by well-known methods, such as a printing method, the apply | coating method, and the immersion method, for example.
Examples of the printing method include screen printing method, flexographic printing method, offset printing method, dip printing method, ink jet printing method, dispenser printing method, gravure printing method, gravure offset printing method, pad printing method and the like.
Examples of the coating method include spin coaters, air knife coaters, curtain coaters, die coaters, blade coaters, roll coaters, gate roll coaters, bar coaters, rod coaters, gravure coaters, and other methods such as wire bars. It can be illustrated.
 銀インク組成物の乾燥処理は、公知の方法で行えばよく、例えば、常圧下、減圧下及び送風条件下のいずれで行ってもよく、大気下及び不活性ガス雰囲気下のいずれでおこなってもよい。そして、乾燥温度も特に限定されず、加熱乾燥及び常温乾燥のいずれでもよい。加熱処理が不要な場合の好ましい乾燥方法としては、18~30℃で大気下において乾燥させる方法が例示できる。 The silver ink composition may be dried by a known method. For example, the silver ink composition may be dried under normal pressure, reduced pressure, or air blowing conditions, and may be performed in the air or in an inert gas atmosphere. Good. Also, the drying temperature is not particularly limited, and may be either heat drying or room temperature drying. As a preferable drying method when the heat treatment is unnecessary, a method of drying in the atmosphere at 18 to 30 ° C. can be exemplified.
 銀インク組成物を加熱(焼成)処理する場合、その条件は、銀インク組成物の配合成分の種類に応じて適宜調節すればよい。通常は、加熱温度が60~200℃であることが好ましく、70~180℃であることがより好ましい。加熱時間は、加熱温度に応じて調節すればよいが、通常は、0.2~12時間であることが好ましく、0.4~10時間であることがより好ましい。前記金属銀の形成材料の中でも前記カルボン酸銀、特にβ-ケトカルボン酸銀(1)は、例えば、酸化銀等の金属銀の形成材料とは異なり、当該分野で公知の還元剤等を使用しなくても、低温で分解する。そして、このような分解温度を反映して、前記銀インク組成物は、上記のように、従来のものより極めて低温で金属銀を形成できる。
 銀インク組成物を、耐熱性が低い基板上に付着させて加熱(焼成)処理する場合には、加熱温度は130℃未満であることが好ましく、125℃以下であることがより好ましく、120℃以下であることが特に好ましい。
When the silver ink composition is heated (baked), the conditions may be adjusted as appropriate according to the type of compounding component of the silver ink composition. Usually, the heating temperature is preferably 60 to 200 ° C, more preferably 70 to 180 ° C. The heating time may be adjusted according to the heating temperature, but usually it is preferably 0.2 to 12 hours, more preferably 0.4 to 10 hours. Among the metal silver forming materials, the silver carboxylate, particularly silver β-ketocarboxylate (1) is different from the metal silver forming material such as silver oxide, for example, using a reducing agent known in the art. Even if not, it decomposes at low temperature. Reflecting such decomposition temperature, the silver ink composition can form metallic silver at an extremely lower temperature than the conventional one as described above.
When the silver ink composition is attached to a substrate having low heat resistance and heated (baked), the heating temperature is preferably less than 130 ° C, more preferably 125 ° C or less, and 120 ° C. It is particularly preferred that
 銀インク組成物の加熱処理の方法は特に限定されず、例えば、電気炉による加熱、感熱方式の熱ヘッドによる加熱、遠赤外線照射による加熱等で行うことができる。また、銀インク組成物の加熱処理は、大気下で行ってもよいし、不活性ガス雰囲気下で行ってもよく、加湿条件下で行ってもよい。そして、常圧下、減圧下及び加圧下のいずれで行ってもよい。 The method for heat treatment of the silver ink composition is not particularly limited, and for example, heating by an electric furnace, heating by a thermal head, heating by far infrared irradiation, or the like can be performed. Further, the heat treatment of the silver ink composition may be performed in the air, in an inert gas atmosphere, or may be performed under humidified conditions. And you may carry out under any of normal pressure, pressure reduction, and pressurization.
 本明細書において「加湿」とは、特に断りのない限り、湿度を人為的に増大させることを意味し、好ましくは相対湿度を5%以上とすることである。加熱処理時には、処理温度が高いことによって、処理環境での湿度が極めて低くなるため、5%という相対湿度は、明らかに人為的に増大されたものであるといえる。 In this specification, “humidification” means that the humidity is artificially increased unless otherwise specified, and the relative humidity is preferably 5% or more. At the time of heat treatment, since the humidity in the treatment environment becomes extremely low due to the high treatment temperature, it can be said that the relative humidity of 5% is clearly artificially increased.
 銀インク組成物の加熱処理を加湿条件下で行う場合の相対湿度は、10%以上であることが好ましく、30%以上であることがより好ましく、50%以上であることがさらに好ましく、70%以上であることが特に好ましく、90%以上であってもよいし、100%であってもよい。そして、加湿条件下での加熱処理は、100℃以上に加熱した高圧水蒸気の吹き付けにより行ってもよい。このように加湿条件下で加熱処理することにより、短時間でより高純度の金属銀を形成できる。 The relative humidity when the heat treatment of the silver ink composition is performed under humidified conditions is preferably 10% or more, more preferably 30% or more, further preferably 50% or more, and 70%. It is particularly preferable that it be 90% or more, or 100%. And you may perform the heat processing under humidification conditions by spraying the high pressure steam heated to 100 degreeC or more. Thus, by heat-processing under humidification conditions, highly pure metallic silver can be formed in a short time.
 銀インク組成物の加熱処理は、二段階で行ってもよい。例えば、一段階目の加熱処理では、金属銀の形成ではなく銀インク組成物の乾燥を主に行い、二段階目の加熱処理で、金属銀の形成を最後まで行う方法が例示できる。
 一段階目の加熱処理において、加熱温度は、銀インク組成物の配合成分の種類に応じて適宜調節すればよいが、60~110℃であることが好ましく、70~90℃であることがより好ましい。また、加熱時間は、加熱温度に応じて調節すればよいが、通常は、5秒~12時間であることが好ましく、30秒~2時間であることがより好ましい。
 二段階目の加熱処理において、加熱温度は、金属銀が良好に形成されるように、銀インク組成物の配合成分の種類に応じて適宜調節すればよいが、60~200℃であることが好ましく、70~180℃であることがより好ましい。また、加熱時間は、加熱温度に応じて調節すればよいが、通常は、1分~12時間であることが好ましく、1分~10時間であることがより好ましい。
 銀インク組成物を、耐熱性が低い基板上に付着させて加熱(焼成)処理する場合には、一段階目及び二段階目の加熱処理における加熱温度は、130℃未満であることが好ましく、125℃以下であることがより好ましく、120℃以下であることが特に好ましい。
The heat treatment of the silver ink composition may be performed in two stages. For example, in the first stage heat treatment, there is exemplified a method in which the silver ink composition is mainly dried rather than the formation of metal silver, and the formation of metal silver is completed in the second stage heat treatment.
In the first-stage heat treatment, the heating temperature may be appropriately adjusted according to the type of compounding component of the silver ink composition, but is preferably 60 to 110 ° C, more preferably 70 to 90 ° C. preferable. The heating time may be adjusted according to the heating temperature, but it is usually preferably 5 seconds to 12 hours, and more preferably 30 seconds to 2 hours.
In the second stage heat treatment, the heating temperature may be appropriately adjusted according to the type of compounding component of the silver ink composition so that metallic silver is favorably formed, but it should be 60 to 200 ° C. Preferably, it is 70 to 180 ° C. The heating time may be adjusted according to the heating temperature, but it is usually preferably 1 minute to 12 hours, and more preferably 1 minute to 10 hours.
When the silver ink composition is attached to a substrate having low heat resistance and is heated (baked), the heating temperature in the first stage and second stage heat treatment is preferably less than 130 ° C., The temperature is more preferably 125 ° C. or lower, and particularly preferably 120 ° C. or lower.
 加湿条件下での加熱処理を採用する場合、銀インク組成物の加熱処理は、一段階目の加熱処理において、非加湿条件下で、上述のように金属銀の形成ではなく銀インク組成物の乾燥を主に行い、二段階目の加熱処理において、加湿条件下で、上述のように金属銀の形成を最後まで行う、二段階の方法で行うことが特に好ましい。
 なお、本明細書において「非加湿」とは、上述の「加湿」を行わないこと、すなわち、湿度を人為的に増大させないことを意味し、好ましくは相対湿度を5%未満とすることである。
When heat treatment under humidified conditions is employed, the heat treatment of the silver ink composition is not the formation of metallic silver as described above under non-humidified conditions in the first stage heat treatment. It is particularly preferable to perform drying in a two-stage method in which the formation of metallic silver is performed to the end as described above under humidified conditions in the second-stage heat treatment.
In the present specification, “non-humidification” means that the above “humidification” is not performed, that is, the humidity is not artificially increased, and preferably the relative humidity is less than 5%. .
 上述の加熱処理を二段階の方法で行う場合、一段階目の非加湿条件下での加熱処理時の加熱温度は、60~110℃であることが好ましく、70~90℃であることがより好ましい。また、加熱時間は、5秒~3時間であることが好ましく、30秒~2時間であることがより好ましく、30秒~1時間であることが特に好ましい。
 上述の加熱処理を二段階の方法で行う場合、二段階目の加湿条件下での加熱処理時の加熱温度は、60~180℃であることが好ましく、70~160℃であることがより好ましい。また、加熱時間は、1分~2時間であることが好ましく、1分~1時間であることがより好ましく、1分~30分であることが特に好ましい。
 銀インク組成物を、耐熱性が低い基板上に付着させて加熱(焼成)処理する場合には、一段階目の非加湿条件下での加熱処理及び二段階目の加湿条件下での加熱処理における加熱温度は、いずれも130℃未満であることが好ましく、125℃以下であることがより好ましく、120℃以下であることが特に好ましい。
When the above heat treatment is performed by a two-stage method, the heating temperature during the heat treatment under the first non-humidifying condition is preferably 60 to 110 ° C., more preferably 70 to 90 ° C. preferable. The heating time is preferably 5 seconds to 3 hours, more preferably 30 seconds to 2 hours, and particularly preferably 30 seconds to 1 hour.
When the above heat treatment is performed by a two-stage method, the heating temperature during the heat treatment under the second-stage humidification condition is preferably 60 to 180 ° C, more preferably 70 to 160 ° C. . The heating time is preferably 1 minute to 2 hours, more preferably 1 minute to 1 hour, and particularly preferably 1 minute to 30 minutes.
When the silver ink composition is attached to a substrate having low heat resistance and is heated (baked), the heat treatment under the first stage non-humidifying condition and the heat treatment under the second stage humidifying condition are performed. The heating temperature in is preferably less than 130 ° C., more preferably 125 ° C. or less, and particularly preferably 120 ° C. or less.
 ただし、上記の加熱処理の条件は一例に過ぎない。銀インク組成物を特に低温で加熱処理する場合には、例えば、加熱処理時の温度は、好ましくは100℃以下、より好ましくは90℃以下とすることができる。加熱処理時の温度の下限値は、金属銀を効率的に形成できる限り特に限定されないが、50℃であることが好ましい。
 また、加熱時間は、加熱温度に応じて適宜調節すればよく、例えば、0.1~6時間とすることができる。
However, the above heat treatment conditions are merely examples. When heat-treating the silver ink composition at a particularly low temperature, for example, the temperature during the heat treatment can be preferably 100 ° C. or lower, more preferably 90 ° C. or lower. Although the lower limit of the temperature at the time of heat processing is not specifically limited as long as metallic silver can be formed efficiently, it is preferable that it is 50 degreeC.
In addition, the heating time may be appropriately adjusted according to the heating temperature, and may be, for example, 0.1 to 6 hours.
 本発明の積層体は、金属銀層の厚さを十分に薄くすることができる。金属銀層の厚さは、好ましくは20μm以下であり、より好ましくは10μm以下であり、特に好ましくは2μm以下である。
 金属銀層の厚さの下限値は、特に限定されないが、金属銀層の厚さは、好ましくは0.5μm以上であり、より好ましくは0.7μm以上であり、特に好ましくは0.9μm以上である。金属銀層の厚さが前記下限値以上であることで、金属銀層はより優れた導電性を有する。
The laminate of the present invention can sufficiently reduce the thickness of the metal silver layer. The thickness of the metallic silver layer is preferably 20 μm or less, more preferably 10 μm or less, and particularly preferably 2 μm or less.
The lower limit of the thickness of the metallic silver layer is not particularly limited, but the thickness of the metallic silver layer is preferably 0.5 μm or more, more preferably 0.7 μm or more, and particularly preferably 0.9 μm or more. It is. A metal silver layer has more excellent electroconductivity because the thickness of a metal silver layer is more than the said lower limit.
 本発明の積層体は、金属銀層を線状とした場合、その線幅を十分に狭くすることができる。例えば、線状の金属銀層の線長方向に対して垂直な方向の断面における、金属銀層の線幅を、好ましくは1000μm以下、より好ましくは800μm以下、特に好ましくは600μm以下とすることが可能である。
 前記断面における金属銀層の線幅の下限値は、特に限定されないが、前記線幅を好ましくは0.5μm以上、より好ましくは1μm以上、特に好ましくは2μm以上とすることが可能である。
 ただし、ここに示すのは一例であり、前記線幅は、積層体の用途に応じて適宜選択すればよい。
When the metal silver layer is linear, the laminate of the present invention can sufficiently narrow the line width. For example, the line width of the metal silver layer in the cross section in the direction perpendicular to the line length direction of the linear metal silver layer is preferably 1000 μm or less, more preferably 800 μm or less, and particularly preferably 600 μm or less. Is possible.
The lower limit of the line width of the metallic silver layer in the cross section is not particularly limited, but the line width is preferably 0.5 μm or more, more preferably 1 μm or more, and particularly preferably 2 μm or more.
However, what is shown here is an example, and the line width may be appropriately selected according to the use of the laminate.
 上記の積層体の金属銀層は、体積抵抗率が十分に低減されている。金属銀層の体積抵抗率は5μΩ・cm以下であり、好ましくは4.9μΩ・cm以下であり、4.8μΩ・cm以下とすることも可能である。
 金属銀層の体積抵抗率の下限値は、小さいほど好ましく、特に限定されないが、例えば、好ましくは3μΩ・cmとすることが可能である。
 ここで、金属銀層の体積抵抗率は、金属銀層の線抵抗値R(Ω)、断面積A(cm)、及び線長L(cm)を測定し、式「ρ=R×A/L」により、体積抵抗率ρ(Ω・cm)として算出することができる。
The volume resistivity of the metallic silver layer of the laminate is sufficiently reduced. The volume resistivity of the metallic silver layer is 5 μΩ · cm or less, preferably 4.9 μΩ · cm or less, and can be 4.8 μΩ · cm or less.
The lower limit of the volume resistivity of the metallic silver layer is preferably as small as possible, and is not particularly limited. For example, it can be preferably 3 μΩ · cm.
Here, the volume resistivity of the metal silver layer is determined by measuring the line resistance value R (Ω), the cross-sectional area A (cm 2 ), and the line length L (cm) of the metal silver layer, and the formula “ρ = R × A / L "can be calculated as volume resistivity ρ (Ω · cm).
 また、上記の積層体の金属銀層は、表面粗さが十分に低減されている。金属銀層の表面粗さは70nm以下であり、好ましくは69nm以下であり、65nm以下や、60nm以下とすることも可能である。
 金属銀層の表面粗さの下限値は、特に限定されないが、例えば、好ましくは35nmである。
 なお、本明細書において「表面粗さ」とは、算術平均粗さ(Ra)を意味し、粗さ曲線からその平均線の方向に基準長さだけを抜き取り、この抜取り部分の平均線の方向にX軸を、縦倍率の方向にY軸を取り、粗さ曲線をy=f(x)で表したときに、以下の式によって求められた値をナノメートル(nm)単位で表示したものである。以下、この表面粗さを「表面粗さRa」と記載することがある。
Moreover, the surface roughness of the metal silver layer of the laminate is sufficiently reduced. The surface roughness of the metallic silver layer is 70 nm or less, preferably 69 nm or less, and can be 65 nm or less or 60 nm or less.
The lower limit of the surface roughness of the metallic silver layer is not particularly limited, but is preferably 35 nm, for example.
In the present specification, “surface roughness” means arithmetic average roughness (Ra), and only the reference length is extracted from the roughness curve in the direction of the average line, and the direction of the average line of the extracted portion. The value obtained by the following formula is displayed in nanometer (nm) units when the X-axis is taken along the Y-axis in the direction of the vertical magnification and the roughness curve is expressed as y = f (x) It is. Hereinafter, this surface roughness may be referred to as “surface roughness Ra”.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 本発明に係る積層体は、高温での加熱処理を行うことなく製造可能であり、金属銀層の厚さを十分に薄くすることができ、さらに十分に低減された体積抵抗率及び表面粗さを示すことから、特に通信機器の配線板として好適である。 The laminate according to the present invention can be manufactured without performing heat treatment at high temperature, the thickness of the metal silver layer can be sufficiently reduced, and the volume resistivity and surface roughness are sufficiently reduced. Therefore, it is particularly suitable as a wiring board for communication equipment.
<銀インク組成物>
 銀インク組成物は、金属銀の形成材料が配合されてなるものが好ましい。
 前記金属銀の形成材料は、銀原子(元素)を有し、分解等の構造変化によって金属銀を生じるものであればよく、銀塩、銀錯体、有機銀化合物(銀-炭素結合を有する化合物)等が例示できる。前記銀塩及び銀錯体は、有機基を有する銀化合物及び有機基を有しない銀化合物のいずれでもよい。なかでも金属銀の形成材料は、銀塩であることが好ましい。
 金属銀の形成材料を用いることで、前記材料から金属銀が生じ、この金属銀を含む導電体が形成される。
<Silver ink composition>
The silver ink composition preferably contains a metallic silver forming material.
The metal silver forming material may be any material that has silver atoms (elements) and generates metallic silver by structural change such as decomposition, and is a silver salt, a silver complex, an organic silver compound (a compound having a silver-carbon bond) ) Etc. can be illustrated. The silver salt and the silver complex may be either a silver compound having an organic group or a silver compound having no organic group. Among these, the metal silver forming material is preferably a silver salt.
By using a metallic silver forming material, metallic silver is generated from the material, and a conductor containing the metallic silver is formed.
 金属銀の形成材料は、式「-COOAg」で表される基を有するカルボン酸銀(以下、単に「カルボン酸銀」と略記することがある)であることが好ましい。 The material for forming metallic silver is preferably silver carboxylate having a group represented by the formula “—COOAg” (hereinafter sometimes simply referred to as “silver carboxylate”).
 銀インク組成物は、カルボン酸銀、含窒素化合物、並びに還元性化合物及びアルコールのいずれか一方又は両方が配合されてなるものが好ましく、カルボン酸銀、含窒素化合物及び還元性化合物が配合されてなるもの、並びに、カルボン酸銀、含窒素化合物、還元性化合物及びアルコールが配合されてなるものがより好ましい。 The silver ink composition preferably contains silver carboxylate, a nitrogen-containing compound, and one or both of a reducing compound and an alcohol, and contains silver carboxylate, a nitrogen-containing compound, and a reducing compound. More preferably, and those obtained by blending silver carboxylate, nitrogen-containing compound, reducing compound and alcohol.
 前記含窒素化合物は、炭素数25以下のアミン化合物、炭素数25以下の第4級アンモニウム塩、アンモニア及び前記アミン化合物又はアンモニアが酸と反応してなるアンモニウム塩からなる群から選択される一種以上である。 The nitrogen-containing compound is one or more selected from the group consisting of an amine compound having 25 or less carbon atoms, a quaternary ammonium salt having 25 or less carbon atoms, ammonia and an ammonium salt obtained by reacting the amine compound or ammonia with an acid. It is.
 前記還元性化合物は、シュウ酸、ヒドラジン及び下記一般式(5)で表される化合物(以下、「化合物(5)」と略記することがある)からなる群から選択される一種以上である。
 前記還元性化合物を配合することで、前記銀インク組成物は、金属銀をより形成し易くなり、例えば、低温での加熱処理でも十分な導電性を有する金属銀(導電体)を形成できる。
 H-C(=O)-R21 ・・・・(5)
 (式中、R21は、炭素数20以下のアルキル基、アルコキシ基若しくはN,N-ジアルキルアミノ基、水酸基又はアミノ基である。)
The reducing compound is at least one selected from the group consisting of oxalic acid, hydrazine and a compound represented by the following general formula (5) (hereinafter sometimes abbreviated as “compound (5)”).
By blending the reducing compound, the silver ink composition can more easily form metallic silver. For example, metallic silver (conductor) having sufficient conductivity can be formed even by heat treatment at a low temperature.
HC (= O) -R 21 (5)
(Wherein R 21 represents an alkyl group having 20 or less carbon atoms, an alkoxy group, or an N, N-dialkylamino group, a hydroxyl group, or an amino group.)
[カルボン酸銀]
 本発明において、カルボン酸銀は、一種を単独で使用してもよいし、二種以上を併用してもよい。二種以上を併用する場合、その組み合わせ及び比率は、任意に調節できる。
 前記カルボン酸銀は、式「-COOAg」で表される基を有していれば特に限定されない。例えば、式「-COOAg」で表される基の数は1個のみでもよいし、2個以上でもよい。また、カルボン酸銀中の式「-COOAg」で表される基の位置も特に限定されない。
[Silver carboxylate]
In this invention, silver carboxylate may be used individually by 1 type, and may use 2 or more types together. When using 2 or more types together, the combination and ratio can be adjusted arbitrarily.
The silver carboxylate is not particularly limited as long as it has a group represented by the formula “—COOAg”. For example, the number of groups represented by the formula “—COOAg” may be one, or two or more. Further, the position of the group represented by the formula “—COOAg” in the silver carboxylate is not particularly limited.
 前記カルボン酸銀は、下記一般式(1)で表わされるβ-ケトカルボン酸銀(以下、「β-ケトカルボン酸銀(1)」と略記することがある)及び下記一般式(4)で表されるカルボン酸銀(以下、「カルボン酸銀(4)」と略記することがある)からなる群から選択される一種以上であることが好ましい。
 なお、本明細書においては、単なる「カルボン酸銀」との記載は、特に断りの無い限り、「β-ケトカルボン酸銀(1)」及び「カルボン酸銀(4)」だけではなく、これらを包括する、「式「-COOAg」で表される基を有するカルボン酸銀」を意味するものとする。
The silver carboxylate is represented by the following general formula (1) β-ketocarboxylate silver (hereinafter sometimes abbreviated as “β-ketocarboxylate (1)”) and the following general formula (4). It is preferably one or more selected from the group consisting of silver carboxylates (hereinafter sometimes abbreviated as “silver carboxylate (4)”).
In this specification, the simple description of “silver carboxylate” is not limited to “silver β-ketocarboxylate (1)” and “silver carboxylate (4)”, unless otherwise specified. It is intended to mean “silver carboxylate having a group represented by the formula“ —COOAg ””.
Figure JPOXMLDOC01-appb-C000002
 (式中、Rは1個以上の水素原子が置換基で置換されていてもよい炭素数1~20の脂肪族炭化水素基若しくはフェニル基、水酸基、アミノ基、又は一般式「R-CY -」、「CY -」、「R-CHY-」、「RO-」、「RN-」、「(RO)CY-」若しくは「R-C(=O)-CY -」で表される基であり;
 Yはそれぞれ独立にフッ素原子、塩素原子、臭素原子又は水素原子であり;Rは炭素数1~19の脂肪族炭化水素基又はフェニル基であり;Rは炭素数1~20の脂肪族炭化水素基であり;Rは炭素数1~16の脂肪族炭化水素基であり;R及びRはそれぞれ独立に炭素数1~18の脂肪族炭化水素基であり;Rは炭素数1~19の脂肪族炭化水素基、水酸基又は式「AgO-」で表される基であり;
 Xはそれぞれ独立に水素原子、炭素数1~20の脂肪族炭化水素基、ハロゲン原子、1個以上の水素原子が置換基で置換されていてもよいフェニル基若しくはベンジル基、シアノ基、N-フタロイル-3-アミノプロピル基、2-エトキシビニル基、又は一般式「RO-」、「RS-」、「R-C(=O)-」若しくは「R-C(=O)-O-」で表される基であり;
 Rは、炭素数1~10の脂肪族炭化水素基、チエニル基、又は1個以上の水素原子が置換基で置換されていてもよいフェニル基若しくはジフェニル基である。)
Figure JPOXMLDOC01-appb-C000002
(Wherein R represents an aliphatic hydrocarbon group having 1 to 20 carbon atoms in which one or more hydrogen atoms may be substituted with a substituent, a phenyl group, a hydroxyl group, an amino group, or a group represented by the general formula “R 1 -CY 1 2- "," CY 1 3- "," R 1 -CHY 1- "," R 2 O- "," R 5 R 4 N- "," (R 3 O) 2 CY 1- "or" R 6 —C (═O) —CY 1 2 — ”;
Y 1 is each independently a fluorine atom, a chlorine atom, a bromine atom or a hydrogen atom; R 1 is an aliphatic hydrocarbon group having 1 to 19 carbon atoms or a phenyl group; R 2 is an aliphatic having 1 to 20 carbon atoms R 3 is an aliphatic hydrocarbon group having 1 to 16 carbon atoms; R 4 and R 5 are each independently an aliphatic hydrocarbon group having 1 to 18 carbon atoms; R 6 is An aliphatic hydrocarbon group having 1 to 19 carbon atoms, a hydroxyl group or a group represented by the formula “AgO—”;
X 1 is independently a hydrogen atom, an aliphatic hydrocarbon group having 1 to 20 carbon atoms, a halogen atom, a phenyl group or benzyl group in which one or more hydrogen atoms may be substituted with a substituent, a cyano group, N -Phthaloyl-3-aminopropyl group, 2-ethoxyvinyl group, or “R 7 O—”, “R 7 S—”, “R 7 —C (═O) —” or “R 7 —C ( ═O) —O— ”;
R 7 is an aliphatic hydrocarbon group having 1 to 10 carbon atoms, a thienyl group, or a phenyl group or diphenyl group in which one or more hydrogen atoms may be substituted with a substituent. )
Figure JPOXMLDOC01-appb-C000003
 (式中、Rは炭素数1~19の脂肪族炭化水素基、カルボキシ基又は式「-C(=O)-OAg」で表される基であり、前記脂肪族炭化水素基がメチレン基を有する場合、1個以上の前記メチレン基はカルボニル基で置換されていてもよい。)
Figure JPOXMLDOC01-appb-C000003
(Wherein R 8 is an aliphatic hydrocarbon group having 1 to 19 carbon atoms, a carboxy group, or a group represented by the formula “—C (═O) —OAg”, wherein the aliphatic hydrocarbon group is a methylene group. And one or more of the methylene groups may be substituted with a carbonyl group.)
(β-ケトカルボン酸銀(1))
 β-ケトカルボン酸銀(1)は、前記一般式(1)で表される。
 式中、Rは1個以上の水素原子が置換基で置換されていてもよい炭素数1~20の脂肪族炭化水素基若しくはフェニル基、水酸基、アミノ基、又は一般式「R-CY -」、「CY -」、「R-CHY-」、「RO-」、「RN-」、「(RO)CY-」若しくは「R-C(=O)-CY -」で表される基である。
(Silver β-ketocarboxylate (1))
The silver β-ketocarboxylate (1) is represented by the general formula (1).
In the formula, R is an aliphatic hydrocarbon group having 1 to 20 carbon atoms, a phenyl group, a hydroxyl group, an amino group, or a group represented by the general formula “R 1 -CY 1 ” in which one or more hydrogen atoms may be substituted with a substituent. 2- "," CY 1 3- "," R 1 -CHY 1- "," R 2 O- "," R 5 R 4 N- "," (R 3 O) 2 CY 1- "or" R 6 —C (═O) —CY 1 2 — ”.
 Rにおける炭素数1~20の脂肪族炭化水素基は、直鎖状、分岐鎖状及び環状(脂肪族環式基)のいずれでもよく、環状である場合、単環状及び多環状のいずれでもよい。また、前記脂肪族炭化水素基は、飽和脂肪族炭化水素基及び不飽和脂肪族炭化水素基のいずれでもよい。そして、前記脂肪族炭化水素基は、炭素数が1~10であることが好ましく、1~6であることがより好ましい。Rにおける好ましい前記脂肪族炭化水素基としては、アルキル基、アルケニル基、アルキニル基が例示できる。 The aliphatic hydrocarbon group having 1 to 20 carbon atoms in R may be any of linear, branched and cyclic (aliphatic cyclic group), and may be monocyclic or polycyclic when cyclic. . Further, the aliphatic hydrocarbon group may be either a saturated aliphatic hydrocarbon group or an unsaturated aliphatic hydrocarbon group. The aliphatic hydrocarbon group preferably has 1 to 10 carbon atoms, and more preferably 1 to 6 carbon atoms. Preferred examples of the aliphatic hydrocarbon group for R include an alkyl group, an alkenyl group, and an alkynyl group.
 Rにおける直鎖状又は分枝鎖状の前記アルキル基としては、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、n-ペンチル基、イソペンチル基、ネオペンチル基、tert-ペンチル基、1-メチルブチル基、2-メチルブチル基、n-ヘキシル基、1-メチルペンチル基、2-メチルペンチル基、3-メチルペンチル基、4-メチルペンチル基、1,1-ジメチルブチル基、2,2-ジメチルブチル基、3,3-ジメチルブチル基、2,3-ジメチルブチル基、1-エチルブチル基、2-エチルブチル基、3-エチルブチル基、1-エチル-1-メチルプロピル基、n-ヘプチル基、1-メチルヘキシル基、2-メチルヘキシル基、3-メチルヘキシル基、4-メチルヘキシル基、5-メチルヘキシル基、1,1-ジメチルペンチル基、2,2-ジメチルペンチル基、2,3-ジメチルペンチル基、2,4-ジメチルペンチル基、3,3-ジメチルペンチル基、4,4-ジメチルペンチル基、1-エチルペンチル基、2-エチルペンチル基、3-エチルペンチル基、4-エチルペンチル基、2,2,3-トリメチルブチル基、1-プロピルブチル基、n-オクチル基、イソオクチル基、1-メチルヘプチル基、2-メチルヘプチル基、3-メチルヘプチル基、4-メチルヘプチル基、5-メチルヘプチル基、1-エチルヘキシル基、2-エチルヘキシル基、3-エチルヘキシル基、4-エチルヘキシル基、5-エチルヘキシル基、1,1-ジメチルヘキシル基、2,2-ジメチルヘキシル基、3,3-ジメチルヘキシル基、4,4-ジメチルヘキシル基、5,5-ジメチルヘキシル基、1-プロピルペンチル基、2-プロピルペンチル基、ノニル基、デシル基、ウンデシル基、ドデシル基、トリデシル基、テトラデシル基、ペンタデシル基、ヘキサデシル基、ヘプタデシル基、オクタデシル基、ノナデシル基、イコシル基が例示できる。
 Rにおける環状の前記アルキル基としては、シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基、シクロヘプチル基、シクロオクチル基、シクロノニル基、シクロデシル基、ノルボルニル基、イソボルニル基、1-アダマンチル基、2-アダマンチル基、トリシクロデシル基が例示できる。
Examples of the linear or branched alkyl group in R include a methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, sec-butyl group, tert-butyl group, n -Pentyl group, isopentyl group, neopentyl group, tert-pentyl group, 1-methylbutyl group, 2-methylbutyl group, n-hexyl group, 1-methylpentyl group, 2-methylpentyl group, 3-methylpentyl group, 4- Methylpentyl group, 1,1-dimethylbutyl group, 2,2-dimethylbutyl group, 3,3-dimethylbutyl group, 2,3-dimethylbutyl group, 1-ethylbutyl group, 2-ethylbutyl group, 3-ethylbutyl group 1-ethyl-1-methylpropyl group, n-heptyl group, 1-methylhexyl group, 2-methylhexyl group, 3-methylhexyl group, -Methylhexyl group, 5-methylhexyl group, 1,1-dimethylpentyl group, 2,2-dimethylpentyl group, 2,3-dimethylpentyl group, 2,4-dimethylpentyl group, 3,3-dimethylpentyl group 4,4-dimethylpentyl group, 1-ethylpentyl group, 2-ethylpentyl group, 3-ethylpentyl group, 4-ethylpentyl group, 2,2,3-trimethylbutyl group, 1-propylbutyl group, n -Octyl, isooctyl, 1-methylheptyl, 2-methylheptyl, 3-methylheptyl, 4-methylheptyl, 5-methylheptyl, 1-ethylhexyl, 2-ethylhexyl, 3-ethylhexyl Group, 4-ethylhexyl group, 5-ethylhexyl group, 1,1-dimethylhexyl group, 2,2-dimethylhexyl group, 3, -Dimethylhexyl group, 4,4-dimethylhexyl group, 5,5-dimethylhexyl group, 1-propylpentyl group, 2-propylpentyl group, nonyl group, decyl group, undecyl group, dodecyl group, tridecyl group, tetradecyl group And pentadecyl group, hexadecyl group, heptadecyl group, octadecyl group, nonadecyl group and icosyl group.
Examples of the cyclic alkyl group in R include cyclopropyl group, cyclobutyl group, cyclopentyl group, cyclohexyl group, cycloheptyl group, cyclooctyl group, cyclononyl group, cyclodecyl group, norbornyl group, isobornyl group, 1-adamantyl group, 2- Examples thereof include an adamantyl group and a tricyclodecyl group.
 Rにおける前記アルケニル基としては、ビニル基(エテニル基、-CH=CH)、アリル基(2-プロペニル基、-CH-CH=CH)、1-プロペニル基(-CH=CH-CH)、イソプロペニル基(-C(CH)=CH)、1-ブテニル基(-CH=CH-CH-CH)、2-ブテニル基(-CH-CH=CH-CH)、3-ブテニル基(-CH-CH-CH=CH)、シクロヘキセニル基、シクロペンテニル基等の、Rにおける前記アルキル基の炭素原子間の1個の単結合(C-C)が二重結合(C=C)に置換された基が例示できる。
 Rにおける前記アルキニル基としては、エチニル基(-C≡CH)、プロパルギル基(-CH-C≡CH)等の、Rにおける前記アルキル基の炭素原子間の1個の単結合(C-C)が三重結合(C≡C)に置換された基が例示できる。
Examples of the alkenyl group in R include a vinyl group (ethenyl group, —CH═CH 2 ), an allyl group (2-propenyl group, —CH 2 —CH═CH 2 ), and a 1-propenyl group (—CH═CH—CH). 3 ), isopropenyl group (—C (CH 3 ) ═CH 2 ), 1-butenyl group (—CH═CH—CH 2 —CH 3 ), 2-butenyl group (—CH 2 —CH═CH—CH 3) ), 3-butenyl group (—CH 2 —CH 2 —CH═CH 2 ), cyclohexenyl group, cyclopentenyl group and the like, one single bond (C—C) between the carbon atoms of the alkyl group in R Is a group in which is substituted with a double bond (C═C).
As the alkynyl group in R, one single bond (C—C) between carbon atoms of the alkyl group in R, such as ethynyl group (—C≡CH), propargyl group (—CH 2 —C≡CH), etc. ) Is substituted with a triple bond (C≡C).
 Rにおける炭素数1~20の脂肪族炭化水素基は、1個以上の水素原子が置換基で置換されていてもよく、好ましい前記置換基としては、フッ素原子、塩素原子、臭素原子が例示できる。また、置換基の数及び位置は特に限定されない。そして、置換基の数が複数である場合、これら複数個の置換基は互いに同一でも異なっていてもよい。すなわち、すべての置換基が同一であってもよいし、すべての置換基が異なっていてもよく、一部の置換基のみが異なっていてもよい。 In the aliphatic hydrocarbon group having 1 to 20 carbon atoms in R, one or more hydrogen atoms may be substituted with a substituent, and preferred examples of the substituent include a fluorine atom, a chlorine atom, and a bromine atom. . Moreover, the number and position of substituents are not particularly limited. When the number of substituents is plural, the plural substituents may be the same as or different from each other. That is, all the substituents may be the same, all the substituents may be different, or only some of the substituents may be different.
 Rにおけるフェニル基は、1個以上の水素原子が置換基で置換されていてもよく、好ましい前記置換基としては、炭素数が1~16の飽和又は不飽和の一価の脂肪族炭化水素基、前記脂肪族炭化水素基が酸素原子に結合してなる一価の基、フッ素原子、塩素原子、臭素原子、水酸基(-OH)、シアノ基(-C≡N)、フェノキシ基(-O-C)等が例示でき、置換基の数及び位置は特に限定されない。そして、置換基の数が複数である場合、これら複数個の置換基は互いに同一でも異なっていてもよい。
 置換基である前記脂肪族炭化水素基としては、炭素数が1~16である点以外は、Rにおける前記脂肪族炭化水素基と同様のものが例示できる。
In the phenyl group in R, one or more hydrogen atoms may be substituted with a substituent. Preferred examples of the substituent include a saturated or unsaturated monovalent aliphatic hydrocarbon group having 1 to 16 carbon atoms. A monovalent group formed by bonding the aliphatic hydrocarbon group to an oxygen atom, a fluorine atom, a chlorine atom, a bromine atom, a hydroxyl group (—OH), a cyano group (—C≡N), a phenoxy group (—O—), C 6 H 5 ) and the like can be exemplified, and the number and position of substituents are not particularly limited. When the number of substituents is plural, the plural substituents may be the same as or different from each other.
Examples of the aliphatic hydrocarbon group that is a substituent include the same aliphatic hydrocarbon groups as those described above for R except that the number of carbon atoms is 1 to 16.
 RにおけるYは、それぞれ独立にフッ素原子、塩素原子、臭素原子又は水素原子である。そして、一般式「R-CY -」、「CY -」及び「R-C(=O)-CY -」においては、それぞれ複数個のYは、互いに同一でも異なっていてもよい。 Y 1 in R is independently a fluorine atom, a chlorine atom, a bromine atom or a hydrogen atom. In the general formulas “R 1 —CY 1 2 —”, “CY 1 3 —” and “R 6 —C (═O) —CY 1 2 —”, a plurality of Y 1 may be the same as each other. May be different.
 RにおけるRは、炭素数1~19の脂肪族炭化水素基又はフェニル基(C-)であり、Rにおける前記脂肪族炭化水素基としては、炭素数が1~19である点以外は、Rにおける前記脂肪族炭化水素基と同様のものが例示できる。
 RにおけるRは、炭素数1~20の脂肪族炭化水素基であり、Rにおける前記脂肪族炭化水素基と同様のものが例示できる。
 RにおけるRは、炭素数1~16の脂肪族炭化水素基であり、炭素数が1~16である点以外は、Rにおける前記脂肪族炭化水素基と同様のものが例示できる。
 RにおけるR及びRは、それぞれ独立に炭素数1~18の脂肪族炭化水素基である。すなわち、R及びRは、互いに同一でも異なっていてもよく、炭素数が1~18である点以外は、Rにおける前記脂肪族炭化水素基と同様のものが例示できる。
 RにおけるRは、炭素数1~19の脂肪族炭化水素基、水酸基又は式「AgO-」で表される基であり、Rにおける前記脂肪族炭化水素基としては、炭素数が1~19である点以外は、Rにおける前記脂肪族炭化水素基と同様のものが例示できる。
R 1 in R is an aliphatic hydrocarbon group having 1 to 19 carbon atoms or a phenyl group (C 6 H 5 —), and the aliphatic hydrocarbon group in R 1 has 1 to 19 carbon atoms. Except for this point, the same aliphatic hydrocarbon groups as those in R can be exemplified.
R 2 in R is an aliphatic hydrocarbon group having 1 to 20 carbon atoms, and examples thereof are the same as the aliphatic hydrocarbon group in R.
R 3 in R is an aliphatic hydrocarbon group having 1 to 16 carbon atoms, and examples thereof are the same as the aliphatic hydrocarbon group in R except that the carbon number is 1 to 16.
R 4 and R 5 in R are each independently an aliphatic hydrocarbon group having 1 to 18 carbon atoms. That is, R 4 and R 5 may be the same as or different from each other, and examples thereof are the same as the aliphatic hydrocarbon group for R except that the number of carbon atoms is 1 to 18.
R 6 in R is an aliphatic hydrocarbon group having 1 to 19 carbon atoms, a hydroxyl group or a group represented by the formula “AgO—”. The aliphatic hydrocarbon group in R 6 has 1 to Except for being 19, the same aliphatic hydrocarbon groups as those described above for R can be exemplified.
 Rは、上記の中でも、直鎖状若しくは分枝鎖状のアルキル基、一般式「R-C(=O)-CY -」で表される基、水酸基又はフェニル基であることが好ましい。そして、Rは、直鎖状若しくは分枝鎖状のアルキル基、水酸基又は式「AgO-」で表される基であることが好ましい。 Among them, R is a linear or branched alkyl group, a group represented by the general formula “R 6 —C (═O) —CY 1 2 —”, a hydroxyl group, or a phenyl group. preferable. Then, R 6 represents a linear or branched alkyl group, or a group represented by a hydroxyl group or a formula "AgO-".
 一般式(1)において、Xはそれぞれ独立に水素原子、炭素数1~20の脂肪族炭化水素基、ハロゲン原子、1個以上の水素原子が置換基で置換されていてもよいフェニル基若しくはベンジル基(C-CH-)、シアノ基、N-フタロイル-3-アミノプロピル基、2-エトキシビニル基(C-O-CH=CH-)、又は一般式「RO-」、「RS-」、「R-C(=O)-」若しくは「R-C(=O)-O-」で表される基である。
 Xにおける炭素数1~20の脂肪族炭化水素基としては、Rにおける前記脂肪族炭化水素基と同様のものが例示できる。
In the general formula (1), each X 1 independently represents a hydrogen atom, an aliphatic hydrocarbon group having 1 to 20 carbon atoms, a halogen atom, a phenyl group in which one or more hydrogen atoms may be substituted with a substituent, or A benzyl group (C 6 H 5 —CH 2 —), a cyano group, an N-phthaloyl-3-aminopropyl group, a 2-ethoxyvinyl group (C 2 H 5 —O—CH═CH—), or the general formula “R 7 O— ”,“ R 7 S— ”,“ R 7 —C (═O) — ”or“ R 7 —C (═O) —O— ”.
Examples of the aliphatic hydrocarbon group having 1 to 20 carbon atoms in X 1 include those similar to the aliphatic hydrocarbon group in R.
 Xにおけるハロゲン原子としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子が例示できる。
 Xにおけるフェニル基及びベンジル基は、1個以上の水素原子が置換基で置換されていてもよく、好ましい前記置換基としては、ハロゲン原子(フッ素原子、塩素原子、臭素原子、ヨウ素原子)、ニトロ基(-NO)等が例示でき、置換基の数及び位置は特に限定されない。そして、置換基の数が複数である場合、これら複数個の置換基は互いに同一でも異なっていてもよい。
Examples of the halogen atom in X 1 include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom.
In the phenyl group and benzyl group in X 1 , one or more hydrogen atoms may be substituted with a substituent. Preferred examples of the substituent include a halogen atom (a fluorine atom, a chlorine atom, a bromine atom, an iodine atom), A nitro group (—NO 2 ) and the like can be exemplified, and the number and position of substituents are not particularly limited. When the number of substituents is plural, the plural substituents may be the same as or different from each other.
 XにおけるRは、炭素数1~10の脂肪族炭化水素基、チエニル基(CS-)、又は1個以上の水素原子が置換基で置換されていてもよいフェニル基若しくはジフェニル基(ビフェニル基、C-C-)である。Rにおける前記脂肪族炭化水素基としては、炭素数が1~10である点以外は、Rにおける前記脂肪族炭化水素基と同様のものが例示できる。また、Rにおけるフェニル基及びジフェニル基の前記置換基としては、ハロゲン原子(フッ素原子、塩素原子、臭素原子、ヨウ素原子)等が例示でき、置換基の数及び位置は特に限定されない。そして、置換基の数が複数である場合、これら複数個の置換基は互いに同一でも異なっていてもよい。
 Rがチエニル基又はジフェニル基である場合、これらの、Xにおいて隣接する基又は原子(酸素原子、硫黄原子、カルボニル基、カルボニルオキシ基)との結合位置は、特に限定されない。例えば、チエニル基は、2-チエニル基及び3-チエニル基のいずれでもよい。
R 7 in X 1 represents an aliphatic hydrocarbon group having 1 to 10 carbon atoms, a thienyl group (C 4 H 3 S—), a phenyl group in which one or more hydrogen atoms may be substituted with a substituent, or A diphenyl group (biphenyl group, C 6 H 5 —C 6 H 4 —); Examples of the aliphatic hydrocarbon group for R 7 include those similar to the aliphatic hydrocarbon group for R except that the aliphatic hydrocarbon group has 1 to 10 carbon atoms. Further, examples of the substituent of the phenyl group and a diphenyl group in R 7, halogen atom (fluorine atom, chlorine atom, bromine atom, iodine atom) can be exemplified the like, the number and position of the substituent is not particularly limited. When the number of substituents is plural, the plural substituents may be the same as or different from each other.
When R 7 is a thienyl group or a diphenyl group, there are no particular limitations on the bonding position of these groups with an adjacent group or atom (oxygen atom, sulfur atom, carbonyl group, carbonyloxy group) in X 1 . For example, the thienyl group may be either a 2-thienyl group or a 3-thienyl group.
 一般式(1)において、2個のXは、2個のカルボニル基で挟まれた炭素原子と二重結合を介して1個の基として結合していてもよく、このようなものとしては式「=CH-C-NO」で表される基が例示できる。 In the general formula (1), two X 1 s may be bonded as one group through a double bond with a carbon atom sandwiched between two carbonyl groups. Examples thereof include a group represented by the formula “═CH—C 6 H 4 —NO 2 ”.
 Xは、上記の中でも、水素原子、直鎖状若しくは分枝鎖状のアルキル基、ベンジル基、又は一般式「R-C(=O)-」で表される基であることが好ましく、少なくとも一方のXが水素原子であることが好ましい。 X 1 is preferably a hydrogen atom, a linear or branched alkyl group, a benzyl group, or a group represented by the general formula “R 7 —C (═O) —” among the above. It is preferable that at least one X 1 is a hydrogen atom.
 β-ケトカルボン酸銀(1)は、2-メチルアセト酢酸銀(CH-C(=O)-CH(CH)-C(=O)-OAg)、アセト酢酸銀(CH-C(=O)-CH-C(=O)-OAg)、2-エチルアセト酢酸銀(CH-C(=O)-CH(CHCH)-C(=O)-OAg)、プロピオニル酢酸銀(CHCH-C(=O)-CH-C(=O)-OAg)、イソブチリル酢酸銀((CHCH-C(=O)-CH-C(=O)-OAg)、ピバロイル酢酸銀((CHC-C(=O)-CH-C(=O)-OAg)、カプロイル酢酸銀(CH(CHCH-C(=O)-CH-C(=O)-OAg)、2-n-ブチルアセト酢酸銀(CH-C(=O)-CH(CHCHCHCH)-C(=O)-OAg)、2-ベンジルアセト酢酸銀(CH-C(=O)-CH(CH)-C(=O)-OAg)、ベンゾイル酢酸銀(C-C(=O)-CH-C(=O)-OAg)、ピバロイルアセト酢酸銀((CHC-C(=O)-CH-C(=O)-CH-C(=O)-OAg)、イソブチリルアセト酢酸銀((CHCH-C(=O)-CH-C(=O)-CH-C(=O)-OAg)、2-アセチルピバロイル酢酸銀((CHC-C(=O)-CH(-C(=O)-CH)-C(=O)-OAg)、2-アセチルイソブチリル酢酸銀((CHCH-C(=O)-CH(-C(=O)-CH)-C(=O)-OAg)、又はアセトンジカルボン酸銀(AgO-C(=O)-CH-C(=O)-CH-C(=O)-OAg)であることが好ましい。 Silver β-ketocarboxylate (1) is silver 2-methylacetoacetate (CH 3 —C (═O) —CH (CH 3 ) —C (═O) —OAg), silver acetoacetate (CH 3 —C (= O) —CH 2 —C (═O) —OAg), silver 2-ethylacetoacetate (CH 3 —C (═O) —CH (CH 2 CH 3 ) —C (═O) —OAg), silver propionyl acetate (CH 3 CH 2 —C (═O) —CH 2 —C (═O) —OAg), silver isobutyryl acetate ((CH 3 ) 2 CH—C (═O) —CH 2 —C (═O) — OAg), silver pivaloyl acetate ((CH 3 ) 3 C—C (═O) —CH 2 —C (═O) —OAg), silver caproyl acetate (CH 3 (CH 2 ) 3 CH 2 —C (═O ) —CH 2 —C (═O) —OAg), silver 2-n-butylacetoacetate (CH 3 —C (═O) —CH (C H 2 CH 2 CH 2 CH 3 ) —C (═O) —OAg), silver 2-benzylacetoacetate (CH 3 —C (═O) —CH (CH 2 C 6 H 5 ) —C (═O) —OAg), silver benzoyl acetate (C 6 H 5 —C (═O) —CH 2 —C (═O) —OAg), silver pivaloyl acetoacetate ((CH 3 ) 3 C—C (═O) —CH 2 —C (═O) —CH 2 —C (═O) —OAg), silver isobutyrylacetoacetate ((CH 3 ) 2 CH—C (═O) —CH 2 —C (═O) —CH 2 -C (= O) -OAg), silver 2-acetylpivaloyl acetate ((CH 3 ) 3 CC (= O) -CH (-C (= O) -CH 3 ) -C (= O) -OAg), 2- acetyl isobutyryl silver acetate ((CH 3) 2 CH- C (= O) -CH (-C (= O) -CH 3) -C (= O) - Ag), or is preferably acetone dicarboxylic silver (AgO-C (= O) -CH 2 -C (= O) -CH 2 -C (= O) -OAg).
 β-ケトカルボン酸銀(1)は、乾燥処理や加熱(焼成)処理等の後処理により形成された導電体(金属銀)において、残存する原料や不純物の濃度をより低減できる。原料や不純物が少ない程、例えば、形成された金属銀同士の接触が良好となり、導通が容易となり、抵抗率が低下する。 Β-ketocarboxylate (1) can further reduce the concentration of the remaining raw materials and impurities in the conductor (metal silver) formed by post-treatment such as drying treatment or heating (firing) treatment. The smaller the raw materials and impurities, for example, the better the contact between the formed metal silvers, the easier the conduction, and the lower the resistivity.
 β-ケトカルボン酸銀(1)は、後述するように、当該分野で公知の還元性化合物等を使用しなくても、好ましくは60~210℃、より好ましくは60~200℃という低温で分解し、金属銀を形成することが可能である。そして、還元性化合物と併用することで、より低温で分解して金属銀を形成する。還元性化合物については後ほど説明する。 As will be described later, silver β-ketocarboxylate (1) is decomposed at a low temperature of preferably 60 to 210 ° C., more preferably 60 to 200 ° C. without using a reducing compound known in the art. It is possible to form metallic silver. And by using together with a reducing compound, it decomposes | disassembles at lower temperature and forms metallic silver. The reducing compound will be described later.
 本発明において、β-ケトカルボン酸銀(1)は、一種を単独で使用してもよいし、二種以上を併用してもよい。二種以上を併用する場合、その組み合わせ及び比率は、任意に調節できる。 In the present invention, silver β-ketocarboxylate (1) may be used alone or in combination of two or more. When using 2 or more types together, the combination and ratio can be adjusted arbitrarily.
(カルボン酸銀(4))
 カルボン酸銀(4)は、前記一般式(4)で表される。
 式中、Rは炭素数1~19の脂肪族炭化水素基、カルボキシ基(-COOH)又は式「-C(=O)-OAg」で表される基である。
 Rにおける前記脂肪族炭化水素基としては、炭素数が1~19である点以外は、Rにおける前記脂肪族炭化水素基と同様のものが例示できる。ただし、Rにおける前記脂肪族炭化水素基は、炭素数が1~15であることが好ましく、1~10であることがより好ましい。
(Silver carboxylate (4))
The silver carboxylate (4) is represented by the general formula (4).
In the formula, R 8 is an aliphatic hydrocarbon group having 1 to 19 carbon atoms, a carboxy group (—COOH), or a group represented by the formula “—C (═O) —OAg”.
Examples of the aliphatic hydrocarbon group for R 8 include those similar to the aliphatic hydrocarbon group for R except that the aliphatic hydrocarbon group has 1 to 19 carbon atoms. However, the aliphatic hydrocarbon group for R 8 preferably has 1 to 15 carbon atoms, and more preferably 1 to 10 carbon atoms.
 Rにおける前記脂肪族炭化水素基がメチレン基(-CH-)を有する場合、1個以上の前記メチレン基はカルボニル基で置換されていてもよい。カルボニル基で置換されていてもよいメチレン基の数及び位置は特に限定されず、すべてのメチレン基がカルボニル基で置換されていてもよい。ここで「メチレン基」とは、単独の式「-CH-」で表される基だけでなく、式「-CH-」で表される基が複数個連なったアルキレン基中の1個の式「-CH-」で表される基も含むものとする。 When the aliphatic hydrocarbon group for R 8 has a methylene group (—CH 2 —), one or more of the methylene groups may be substituted with a carbonyl group. The number and position of the methylene groups that may be substituted with a carbonyl group are not particularly limited, and all methylene groups may be substituted with a carbonyl group. Here, the “methylene group” is not only a single group represented by the formula “—CH 2 —” but also one of alkylene groups in which a plurality of groups represented by the formula “—CH 2 —” are linked. And a group represented by the formula “—CH 2 —”.
 カルボン酸銀(4)は、ピルビン酸銀(CH-C(=O)-C(=O)-OAg)、酢酸銀(CH-C(=O)-OAg)、酪酸銀(CH-(CH-C(=O)-OAg)、イソ酪酸銀((CHCH-C(=O)-OAg)、2-エチルへキサン酸銀(CH-(CH-CH(CHCH)-C(=O)-OAg)、ネオデカン酸銀(CH-(CH-C(CH-C(=O)-OAg)、シュウ酸銀(AgO-C(=O)-C(=O)-OAg)、又はマロン酸銀(AgO-C(=O)-CH-C(=O)-OAg)であることが好ましい。また、上記のシュウ酸銀(AgO-C(=O)-C(=O)-OAg)及びマロン酸銀(AgO-C(=O)-CH-C(=O)-OAg)の2個の式「-COOAg」で表される基のうち、1個が式「-COOH」で表される基となったもの(HO-C(=O)-C(=O)-OAg、HO-C(=O)-CH-C(=O)-OAg)も好ましい。 Silver carboxylate (4) includes silver pyruvate (CH 3 —C (═O) —C (═O) —OAg), silver acetate (CH 3 —C (═O) —OAg), silver butyrate (CH 3 — (CH 2 ) 2 —C (═O) —OAg), silver isobutyrate ((CH 3 ) 2 CH—C (═O) —OAg), silver 2-ethylhexanoate (CH 3 — (CH 2 ) 3 —CH (CH 2 CH 3 ) —C (═O) —OAg), silver neodecanoate (CH 3 — (CH 2 ) 5 —C (CH 3 ) 2 —C (═O) —OAg), Shu It is preferably silver oxide (AgO—C (═O) —C (═O) —OAg) or silver malonate (AgO—C (═O) —CH 2 —C (═O) —OAg). Further, silver oxalate (AgO—C (═O) —C (═O) —OAg) and silver malonate (AgO—C (═O) —CH 2 —C (═O) —OAg) Of the groups represented by the formula “—COOAg”, one of the groups represented by the formula “—COOH” (HO—C (═O) —C (═O) —OAg, HO) Also preferred is —C (═O) —CH 2 —C (═O) —OAg).
 カルボン酸銀(4)も、β-ケトカルボン酸銀(1)と同様に、乾燥処理や加熱(焼成)処理等の後処理により形成された導電体(金属銀)において、残存する原料や不純物の濃度をより低減できる。そして、還元性化合物と併用することで、より低温で分解して金属銀を形成する。 Similarly to the silver β-ketocarboxylate (1), the silver carboxylate (4) is also used for the remaining raw materials and impurities in the conductor (metal silver) formed by post-treatment such as drying treatment or heating (firing) treatment. The concentration can be further reduced. And by using together with a reducing compound, it decomposes | disassembles at lower temperature and forms metallic silver.
 本発明において、カルボン酸銀(4)は、一種を単独で使用してもよいし、二種以上を併用してもよい。二種以上を併用する場合、その組み合わせ及び比率は、任意に調節できる。 In the present invention, the silver carboxylate (4) may be used alone or in combination of two or more. When using 2 or more types together, the combination and ratio can be adjusted arbitrarily.
 前記カルボン酸銀は、2-メチルアセト酢酸銀、アセト酢酸銀、2-エチルアセト酢酸銀、プロピオニル酢酸銀、イソブチリル酢酸銀、ピバロイル酢酸銀、カプロイル酢酸銀、2-n-ブチルアセト酢酸銀、2-ベンジルアセト酢酸銀、ベンゾイル酢酸銀、ピバロイルアセト酢酸銀、イソブチリルアセト酢酸銀、アセトンジカルボン酸銀、ピルビン酸銀、酢酸銀、酪酸銀、イソ酪酸銀、2-エチルへキサン酸銀、ネオデカン酸銀、シュウ酸銀及びマロン酸銀からなる群から選択される一種以上であることが好ましい。
 そして、これらカルボン酸銀の中でも、2-メチルアセト酢酸銀及びアセト酢酸銀は、後述する含窒素化合物(なかでもアミン化合物)との相溶性に優れ、銀インク組成物の高濃度化に、特に適したものとして挙げられる。
The silver carboxylate is silver 2-methylacetoacetate, silver acetoacetate, silver 2-ethylacetoacetate, silver propionylacetate, silver isobutyrylacetate, silver pivaloylacetate, silver caproylacetate, silver 2-n-butylacetoacetate, 2-benzylacetoacetate Silver acetate, silver benzoyl acetate, silver pivaloyl acetoacetate, silver isobutyryl acetoacetate, silver acetone dicarboxylate, silver pyruvate, silver acetate, silver butyrate, silver isobutyrate, silver 2-ethylhexanoate, silver neodecanoate, silver It is preferably at least one selected from the group consisting of silver oxide and silver malonate.
Among these silver carboxylates, silver 2-methylacetoacetate and silver acetoacetate are excellent in compatibility with a nitrogen-containing compound (particularly an amine compound) described later, and are particularly suitable for increasing the concentration of silver ink compositions. It is mentioned as a thing.
 銀インク組成物において、前記金属銀の形成材料に由来する銀の含有量は、5質量%以上であることが好ましく、10質量%以上であることがより好ましい。このような範囲であることで、形成された導電体(金属銀)は品質により優れたものとなる。前記銀の含有量の上限値は、本発明の効果を損なわない限り特に限定されないが、取り扱い性等を考慮すると25質量%であることが好ましい。
 なお、本明細書において、「金属銀の形成材料に由来する銀」とは、特に断りの無い限り、銀インク組成物の製造時に配合された前記金属銀の形成材料中の銀を意味し、配合後に引き続き金属銀の形成材料を構成している銀と、配合後に金属銀の形成材料が分解して生じた分解物中の銀及び銀自体と、の両方を含む概念とする。
In the silver ink composition, the content of silver derived from the metal silver forming material is preferably 5% by mass or more, and more preferably 10% by mass or more. By being in such a range, the formed conductor (metal silver) becomes superior in quality. The upper limit of the silver content is not particularly limited as long as the effects of the present invention are not impaired, but it is preferably 25% by mass in consideration of handling properties and the like.
In the present specification, “silver derived from a metallic silver forming material” means silver in the metallic silver forming material blended during the production of the silver ink composition, unless otherwise specified. It is a concept that includes both silver constituting the metal silver forming material after blending, and silver and silver itself in the decomposition product generated by decomposition of the metal silver forming material after blending.
[含窒素化合物]
 前記含窒素化合物は、炭素数25以下のアミン化合物(以下、「アミン化合物」と略記することがある)、炭素数25以下の第4級アンモニウム塩(以下、「第4級アンモニウム塩」と略記することがある)、アンモニア、炭素数25以下のアミン化合物が酸と反応してなるアンモニウム塩(以下、「アミン化合物由来のアンモニウム塩」と略記することがある)、及びアンモニアが酸と反応してなるアンモニウム塩(以下、「アンモニア由来のアンモニウム塩」と略記することがある)からなる群から選択される一種以上である。すなわち、配合される含窒素化合物は、一種のみでよいし、二種以上でもよく、二種以上を併用する場合、その組み合わせ及び比率は、任意に調節できる。
[Nitrogen-containing compounds]
The nitrogen-containing compound is an amine compound having 25 or less carbon atoms (hereinafter sometimes abbreviated as “amine compound”), a quaternary ammonium salt having 25 or less carbon atoms (hereinafter abbreviated as “quaternary ammonium salt”). Ammonia, an ammonium salt formed by reacting an amine compound having 25 or less carbon atoms with an acid (hereinafter sometimes abbreviated as “ammonium salt derived from an amine compound”), and ammonia reacting with an acid. Is one or more selected from the group consisting of ammonium salts (hereinafter sometimes abbreviated as “ammonium salts derived from ammonia”). That is, the nitrogen-containing compound to be blended may be only one kind, or two or more kinds. When two or more kinds are used in combination, the combination and ratio can be arbitrarily adjusted.
(アミン化合物、第4級アンモニウム塩)
 前記アミン化合物は、炭素数が1~25であり、第1級アミン、第2級アミン及び第3級アミンのいずれでもよい。また、前記第4級アンモニウム塩は、炭素数が4~25である。前記アミン化合物及び第4級アンモニウム塩は、鎖状及び環状のいずれでもよい。また、アミン部位又はアンモニウム塩部位を構成する窒素原子(例えば、第1級アミンのアミノ基(-NH)を構成する窒素原子)の数は1個でもよいし、2個以上でもよい。
(Amine compound, quaternary ammonium salt)
The amine compound has 1 to 25 carbon atoms, and may be any of primary amine, secondary amine, and tertiary amine. The quaternary ammonium salt has 4 to 25 carbon atoms. The amine compound and the quaternary ammonium salt may be either chain or cyclic. Further, the number of nitrogen atoms constituting the amine moiety or ammonium salt moiety (for example, the nitrogen atom constituting the amino group (—NH 2 ) of the primary amine) may be one, or two or more.
 前記第1級アミンとしては、1個以上の水素原子が置換基で置換されていてもよいモノアルキルアミン、モノアリールアミン、モノ(ヘテロアリール)アミン、ジアミン等が例示できる。 Examples of the primary amine include monoalkylamines, monoarylamines, mono (heteroaryl) amines, and diamines in which one or more hydrogen atoms may be substituted with a substituent.
 前記モノアルキルアミンを構成するアルキル基は、直鎖状、分岐鎖状及び環状のいずれでもよく、Rにおける前記アルキル基と同様のものが例示でき、炭素数が1~19の直鎖状若しくは分岐鎖状のアルキル基、又は炭素数が3~7の環状のアルキル基であることが好ましい。
 好ましい前記モノアルキルアミンとして、具体的には、n-ブチルアミン、n-へキシルアミン、n-オクチルアミン、n-ドデシルアミン、n-オクタデシルアミン、sec-ブチルアミン、tert-ブチルアミン、イソブチルアミン、3-アミノペンタン、3-メチルブチルアミン、2-ヘプチルアミン(2-アミノヘプタン)、2-アミノオクタン、2-エチルヘキシルアミン、1,2-ジメチル-n-プロピルアミンが例示できる。
The alkyl group constituting the monoalkylamine may be linear, branched or cyclic, and examples thereof are the same as the alkyl group in R, and are linear or branched having 1 to 19 carbon atoms. It is preferably a chain alkyl group or a cyclic alkyl group having 3 to 7 carbon atoms.
Specific examples of preferable monoalkylamine include n-butylamine, n-hexylamine, n-octylamine, n-dodecylamine, n-octadecylamine, sec-butylamine, tert-butylamine, isobutylamine, and 3-amino. Examples include pentane, 3-methylbutylamine, 2-heptylamine (2-aminoheptane), 2-aminooctane, 2-ethylhexylamine, and 1,2-dimethyl-n-propylamine.
 前記モノアリールアミンを構成するアリール基としては、フェニル基、1-ナフチル基、2-ナフチル基等が例示でき、炭素数が6~10であることが好ましい。 Examples of the aryl group constituting the monoarylamine include a phenyl group, a 1-naphthyl group, a 2-naphthyl group, and the like, and preferably has 6 to 10 carbon atoms.
 前記モノ(ヘテロアリール)アミンを構成するヘテロアリール基は、芳香族環骨格を構成する原子として、ヘテロ原子を有するものであり、前記ヘテロ原子としては、窒素原子、硫黄原子、酸素原子、ホウ素原子が例示できる。また、芳香族環骨格を構成する前記へテロ原子の数は特に限定されず、1個でもよいし、2個以上でもよい。2個以上である場合、これらへテロ原子は互いに同一でも異なっていてもよい。すなわち、これらへテロ原子は、すべて同じでもよいし、すべて異なっていてもよく、一部だけ異なっていてもよい。
 前記ヘテロアリール基は、単環状及び多環状のいずれでもよく、その環員数(環骨格を構成する原子の数)も特に限定されないが、3~12員環であることが好ましい。
The heteroaryl group constituting the mono (heteroaryl) amine has a heteroatom as an atom constituting the aromatic ring skeleton, and the heteroatom includes a nitrogen atom, a sulfur atom, an oxygen atom, and a boron atom. Can be illustrated. Moreover, the number of the said hetero atom which comprises an aromatic ring frame is not specifically limited, One may be sufficient and two or more may be sufficient. When there are two or more, these heteroatoms may be the same or different from each other. That is, these heteroatoms may all be the same, may all be different, or may be partially different.
The heteroaryl group may be either monocyclic or polycyclic, and the number of ring members (the number of atoms constituting the ring skeleton) is not particularly limited, but is preferably a 3- to 12-membered ring.
 前記ヘテロアリール基で、窒素原子を1~4個有する単環状のものとしては、ピロリル基、ピロリニル基、イミダゾリル基、ピラゾリル基、ピリジル基、ピリミジル基、ピラジニル基、ピリダジニル基、トリアゾリル基、テトラゾリル基、ピロリジニル基、イミダゾリジニル基、ピペリジニル基、ピラゾリジニル基、ピペラジニル基が例示でき、3~8員環であることが好ましく、5~6員環であることがより好ましい。
 前記ヘテロアリール基で、酸素原子を1個有する単環状のものとしては、フラニル基が例示でき、3~8員環であることが好ましく、5~6員環であることがより好ましい。
 前記ヘテロアリール基で、硫黄原子を1個有する単環状のものとしては、チエニル基が例示でき、3~8員環であることが好ましく、5~6員環であることがより好ましい。
 前記ヘテロアリール基で、酸素原子を1~2個及び窒素原子を1~3個有する単環状のものとしては、オキサゾリル基、イソオキサゾリル基、オキサジアゾリル基、モルホリニル基が例示でき、3~8員環であることが好ましく、5~6員環であることがより好ましい。
 前記ヘテロアリール基で、硫黄原子を1~2個及び窒素原子を1~3個有する単環状のものとしては、チアゾリル基、チアジアゾリル基、チアゾリジニル基が例示でき、3~8員環であることが好ましく、5~6員環であることがより好ましい。
 前記ヘテロアリール基で、窒素原子を1~5個有する多環状のものとしては、インドリル基、イソインドリル基、インドリジニル基、ベンズイミダゾリル基、キノリル基、イソキノリル基、インダゾリル基、ベンゾトリアゾリル基、テトラゾロピリジル基、テトラゾロピリダジニル基、ジヒドロトリアゾロピリダジニル基が例示でき、7~12員環であることが好ましく、9~10員環であることがより好ましい。
 前記ヘテロアリール基で、硫黄原子を1~3個有する多環状のものとしては、ジチアナフタレニル基、ベンゾチオフェニル基が例示でき、7~12員環であることが好ましく、9~10員環であることがより好ましい。
 前記ヘテロアリール基で、酸素原子を1~2個及び窒素原子を1~3個有する多環状のものとしては、ベンゾオキサゾリル基、ベンゾオキサジアゾリル基が例示でき、7~12員環であることが好ましく、9~10員環であることがより好ましい。
 前記ヘテロアリール基で、硫黄原子を1~2個及び窒素原子を1~3個有する多環状のものとしては、ベンゾチアゾリル基、ベンゾチアジアゾリル基が例示でき、7~12員環であることが好ましく、9~10員環であることがより好ましい。
Examples of the monoaryl group having 1 to 4 nitrogen atoms as the heteroaryl group include pyrrolyl group, pyrrolinyl group, imidazolyl group, pyrazolyl group, pyridyl group, pyrimidyl group, pyrazinyl group, pyridazinyl group, triazolyl group, tetrazolyl group A pyrrolidinyl group, an imidazolidinyl group, a piperidinyl group, a pyrazolidinyl group, and a piperazinyl group, which are preferably 3- to 8-membered rings, and more preferably 5- to 6-membered rings.
Examples of the monoaryl group having one oxygen atom as the heteroaryl group include a furanyl group, preferably a 3- to 8-membered ring, and more preferably a 5- to 6-membered ring.
Examples of the monoaryl group having one sulfur atom as the heteroaryl group include a thienyl group, preferably a 3- to 8-membered ring, and more preferably a 5- to 6-membered ring.
Examples of the monoaryl group having 1 to 2 oxygen atoms and 1 to 3 nitrogen atoms as the heteroaryl group include an oxazolyl group, an isoxazolyl group, an oxadiazolyl group, and a morpholinyl group. Preferably, it is a 5- to 6-membered ring.
Examples of the monoaryl group having 1 to 2 sulfur atoms and 1 to 3 nitrogen atoms as the heteroaryl group include a thiazolyl group, a thiadiazolyl group, and a thiazolidinyl group, and is a 3- to 8-membered ring. A 5- to 6-membered ring is preferable.
Examples of the polyaryl having 1 to 5 nitrogen atoms as the heteroaryl group include indolyl group, isoindolyl group, indolizinyl group, benzimidazolyl group, quinolyl group, isoquinolyl group, indazolyl group, benzotriazolyl group, tetra Examples thereof include a zolopyridyl group, a tetrazolopyridazinyl group, and a dihydrotriazolopyridazinyl group, preferably a 7-12 membered ring, and more preferably a 9-10 membered ring.
Examples of the polyaryl group having 1 to 3 sulfur atoms as the heteroaryl group include a dithiaphthalenyl group and a benzothiophenyl group, preferably a 7 to 12 membered ring, preferably a 9 to 10 membered ring. More preferably, it is a ring.
Examples of the polyaryl group having 1 to 2 oxygen atoms and 1 to 3 nitrogen atoms as the heteroaryl group include a benzoxazolyl group and a benzooxadiazolyl group. Preferably, it is a 9 to 10 membered ring.
Examples of the polyaryl group having 1 to 2 sulfur atoms and 1 to 3 nitrogen atoms as the heteroaryl group include a benzothiazolyl group and a benzothiadiazolyl group, and is a 7 to 12 membered ring. Preferably, it is a 9 to 10 membered ring.
 前記ジアミンは、アミノ基を2個有していればよく、2個のアミノ基の位置関係は特に限定されない。好ましい前記ジアミンとしては、前記モノアルキルアミン、モノアリールアミン又はモノ(ヘテロアリール)アミンにおいて、アミノ基(-NH)を構成する水素原子以外の1個の水素原子が、アミノ基で置換されたものが例示できる。
 前記ジアミンは炭素数が1~10であることが好ましく、より好ましいものとしてはエチレンジアミン、1,3-ジアミノプロパン、1,4-ジアミノブタンが例示できる。
The diamine only needs to have two amino groups, and the positional relationship between the two amino groups is not particularly limited. As the preferred diamine, in the monoalkylamine, monoarylamine or mono (heteroaryl) amine, one hydrogen atom other than the hydrogen atom constituting the amino group (—NH 2 ) is substituted with an amino group. The thing can be illustrated.
The diamine preferably has 1 to 10 carbon atoms, and more preferable examples include ethylenediamine, 1,3-diaminopropane, and 1,4-diaminobutane.
 前記第2級アミンとしては、1個以上の水素原子が置換基で置換されていてもよいジアルキルアミン、ジアリールアミン、ジ(ヘテロアリール)アミン等が例示できる。 Examples of the secondary amine include dialkylamine, diarylamine, di (heteroaryl) amine and the like in which one or more hydrogen atoms may be substituted with a substituent.
 前記ジアルキルアミンを構成するアルキル基は、前記モノアルキルアミンを構成するアルキル基と同様であり、炭素数が1~9の直鎖状若しくは分岐鎖状のアルキル基、又は炭素数が3~7の環状のアルキル基であることが好ましい。また、ジアルキルアミン一分子中の2個のアルキル基は、互いに同一でも異なっていてもよい。
 好ましい前記ジアルキルアミンとして、具体的には、N-メチル-n-ヘキシルアミン、ジイソブチルアミン、ジ(2-エチルへキシル)アミンが例示できる。
The alkyl group constituting the dialkylamine is the same as the alkyl group constituting the monoalkylamine, and is a linear or branched alkyl group having 1 to 9 carbon atoms, or having 3 to 7 carbon atoms. A cyclic alkyl group is preferred. Two alkyl groups in one molecule of dialkylamine may be the same as or different from each other.
Specific examples of preferable dialkylamines include N-methyl-n-hexylamine, diisobutylamine, and di (2-ethylhexyl) amine.
 前記ジアリールアミンを構成するアリール基は、前記モノアリールアミンを構成するアリール基と同様であり、炭素数が6~10であることが好ましい。また、ジアリールアミン一分子中の2個のアリール基は、互いに同一でも異なっていてもよい。 The aryl group constituting the diarylamine is the same as the aryl group constituting the monoarylamine, and preferably has 6 to 10 carbon atoms. Two aryl groups in one molecule of diarylamine may be the same as or different from each other.
 前記ジ(ヘテロアリール)アミンを構成するヘテロアリール基は、前記モノ(ヘテロアリール)アミンを構成するヘテロアリール基と同様であり、6~12員環であることが好ましい。また、ジ(ヘテロアリール)アミン一分子中の2個のヘテロアリール基は、互いに同一でも異なっていてもよい。 The heteroaryl group constituting the di (heteroaryl) amine is the same as the heteroaryl group constituting the mono (heteroaryl) amine, and is preferably a 6-12 membered ring. Two heteroaryl groups in one molecule of di (heteroaryl) amine may be the same or different from each other.
 前記第3級アミンとしては、1個以上の水素原子が置換基で置換されていてもよいトリアルキルアミン、ジアルキルモノアリールアミン等が例示できる。 Examples of the tertiary amine include trialkylamine and dialkylmonoarylamine in which one or more hydrogen atoms may be substituted with a substituent.
 前記トリアルキルアミンを構成するアルキル基は、前記モノアルキルアミンを構成するアルキル基と同様であり、炭素数が1~19の直鎖状若しくは分岐鎖状のアルキル基、又は炭素数が3~7の環状のアルキル基であることが好ましい。また、トリアルキルアミン一分子中の3個のアルキル基は、互いに同一でも異なっていてもよい。すなわち、3個のアルキル基は、すべてが同じでもよいし、すべてが異なっていてもよく、一部だけが異なっていてもよい。
 好ましい前記トリアルキルアミンとして、具体的には、N,N-ジメチル-n-オクタデシルアミン、N,N-ジメチルシクロヘキシルアミンが例示できる。
The alkyl group constituting the trialkylamine is the same as the alkyl group constituting the monoalkylamine, and is a linear or branched alkyl group having 1 to 19 carbon atoms, or 3 to 7 carbon atoms. The cyclic alkyl group is preferably. Further, the three alkyl groups in one molecule of trialkylamine may be the same as or different from each other. That is, all three alkyl groups may be the same, all may be different, or only a part may be different.
Preferable examples of the trialkylamine include N, N-dimethyl-n-octadecylamine and N, N-dimethylcyclohexylamine.
 前記ジアルキルモノアリールアミンを構成するアルキル基は、前記モノアルキルアミンを構成するアルキル基と同様であり、炭素数が1~6の直鎖状若しくは分岐鎖状のアルキル基、又は炭素数が3~7の環状のアルキル基であることが好ましい。また、ジアルキルモノアリールアミン一分子中の2個のアルキル基は、互いに同一でも異なっていてもよい。
 前記ジアルキルモノアリールアミンを構成するアリール基は、前記モノアリールアミンを構成するアリール基と同様であり、炭素数が6~10であることが好ましい。
The alkyl group constituting the dialkyl monoarylamine is the same as the alkyl group constituting the monoalkylamine, and is a linear or branched alkyl group having 1 to 6 carbon atoms, or 3 to 3 carbon atoms. 7 is a cyclic alkyl group. Two alkyl groups in one molecule of dialkyl monoarylamine may be the same or different from each other.
The aryl group constituting the dialkyl monoarylamine is the same as the aryl group constituting the monoarylamine, and preferably has 6 to 10 carbon atoms.
 本発明において、前記第4級アンモニウム塩としては、1個以上の水素原子が置換基で置換されていてもよいハロゲン化テトラアルキルアンモニウム等が例示できる。
 前記ハロゲン化テトラアルキルアンモニウムを構成するアルキル基は、前記モノアルキルアミンを構成するアルキル基と同様であり、炭素数が1~19であることが好ましい。
また、ハロゲン化テトラアルキルアンモニウム一分子中の4個のアルキル基は、互いに同一でも異なっていてもよい。すなわち、4個のアルキル基は、すべてが同じでもよいし、すべてが異なっていてもよく、一部だけが異なっていてもよい。
 前記ハロゲン化テトラアルキルアンモニウムを構成するハロゲンとしては、フッ素、塩素、臭素、ヨウ素が例示できる。
 好ましい前記ハロゲン化テトラアルキルアンモニウムとして、具体的には、ドデシルトリメチルアンモニウムブロミドが例示できる。
In the present invention, examples of the quaternary ammonium salt include halogenated tetraalkylammonium, in which one or more hydrogen atoms may be substituted with a substituent.
The alkyl group constituting the halogenated tetraalkylammonium is the same as the alkyl group constituting the monoalkylamine, and preferably has 1 to 19 carbon atoms.
Further, the four alkyl groups in one molecule of the tetraalkylammonium halide may be the same as or different from each other. That is, all four alkyl groups may be the same, all may be different, or only a part may be different.
Examples of the halogen constituting the halogenated tetraalkylammonium include fluorine, chlorine, bromine and iodine.
Specific examples of the preferred tetraalkylammonium halide include dodecyltrimethylammonium bromide.
 ここまでは、主に鎖状のアミン化合物及び第4級有機アンモニウム塩について説明したが、前記アミン化合物及び第4級アンモニウム塩は、アミン部位又はアンモニウム塩部位を構成する窒素原子が環骨格構造(複素環骨格構造)の一部であるようなヘテロ環化合物であってもよい。すなわち、前記アミン化合物は環状アミンでもよく、前記第4級アンモニウム塩は環状アンモニウム塩でもよい。この時の環(アミン部位又はアンモニウム塩部位を構成する窒素原子を含む環)構造は、単環状及び多環状のいずれでもよく、その環員数(環骨格を構成する原子の数)も特に限定されず、脂肪族環及び芳香族環のいずれでもよい。
 環状アミンであれば、好ましいものとして、ピリジンが例示できる。
So far, the chain amine compound and the quaternary organic ammonium salt have been mainly described. However, in the amine compound and the quaternary ammonium salt, the nitrogen atom constituting the amine moiety or the ammonium salt moiety is a ring skeleton structure ( A heterocyclic compound which is a part of a heterocyclic skeleton structure) may be used. That is, the amine compound may be a cyclic amine, and the quaternary ammonium salt may be a cyclic ammonium salt. At this time, the ring (ring containing the nitrogen atom constituting the amine moiety or ammonium salt moiety) structure may be either monocyclic or polycyclic, and the number of ring members (number of atoms constituting the ring skeleton) is also particularly limited. Any of an aliphatic ring and an aromatic ring may be sufficient.
If it is a cyclic amine, a pyridine can be illustrated as a preferable thing.
 前記第1級アミン、第2級アミン、第3級アミン及び第4級アンモニウム塩において、「置換基で置換されていてもよい水素原子」とは、アミン部位又はアンモニウム塩部位を構成する窒素原子に結合している水素原子以外の水素原子である。この時の置換基の数は特に限定されず、1個でもよいし、2個以上でもよく、前記水素原子のすべてが置換基で置換されていてもよい。置換基の数が複数の場合には、これら複数個の置換基は互いに同一でも異なっていてもよい。すなわち、複数個の置換基はすべて同じでもよいし、すべて異なっていてもよく、一部だけが異なっていてもよい。また、置換基の位置も特に限定されない。 In the primary amine, secondary amine, tertiary amine and quaternary ammonium salt, the “hydrogen atom optionally substituted with a substituent” means a nitrogen atom constituting an amine moiety or an ammonium salt moiety. A hydrogen atom other than a hydrogen atom bonded to. The number of substituents at this time is not particularly limited, and may be one or two or more, and all of the hydrogen atoms may be substituted with a substituent. When the number of substituents is plural, the plural substituents may be the same as or different from each other. That is, the plurality of substituents may all be the same, may all be different, or only some may be different. Further, the position of the substituent is not particularly limited.
 前記アミン化合物及び第4級アンモニウム塩における前記置換基としては、アルキル基、アリール基、ハロゲン原子、シアノ基、ニトロ基、水酸基、トリフルオロメチル基(-CF)等が例示できる。ここで、ハロゲン原子としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子が例示できる。 Examples of the substituent in the amine compound and the quaternary ammonium salt include an alkyl group, an aryl group, a halogen atom, a cyano group, a nitro group, a hydroxyl group, and a trifluoromethyl group (—CF 3 ). Here, examples of the halogen atom include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom.
 前記モノアルキルアミンを構成するアルキル基が置換基を有する場合、かかるアルキル基は、置換基としてアリール基を有する、炭素数が1~9の直鎖状若しくは分岐鎖状のアルキル基、又は置換基として好ましくは炭素数が1~5のアルキル基を有する、炭素数が3~7の環状のアルキル基が好ましく、このような置換基を有するモノアルキルアミンとして、具体的には、2-フェニルエチルアミン、ベンジルアミン、2,3-ジメチルシクロヘキシルアミンが例示できる。
 また、置換基である前記アリール基及びアルキル基は、さらに1個以上の水素原子がハロゲン原子で置換されていてもよく、このようなハロゲン原子で置換された置換基を有するモノアルキルアミンとしては、2-ブロモベンジルアミンが例示できる。ここで、前記ハロゲン原子としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子が例示できる。
When the alkyl group constituting the monoalkylamine has a substituent, the alkyl group has an aryl group as a substituent, a linear or branched alkyl group having 1 to 9 carbon atoms, or a substituent Preferably, a cyclic alkyl group having 3 to 7 carbon atoms having an alkyl group having 1 to 5 carbon atoms is preferable, and a monoalkylamine having such a substituent is specifically 2-phenylethylamine. , Benzylamine, and 2,3-dimethylcyclohexylamine.
In addition, the aryl group and the alkyl group which are substituents may further have one or more hydrogen atoms substituted with halogen atoms, and as monoalkylamines having such substituents substituted with halogen atoms, And 2-bromobenzylamine. Here, examples of the halogen atom include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom.
 前記モノアリールアミンを構成するアリール基が置換基を有する場合、かかるアリール基は、置換基としてハロゲン原子を有する、炭素数が6~10のアリール基が好ましく、このような置換基を有するモノアリールアミンとして、具体的には、ブロモフェニルアミンが例示できる。ここで、前記ハロゲン原子としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子が例示できる。 When the aryl group constituting the monoarylamine has a substituent, the aryl group is preferably an aryl group having 6 to 10 carbon atoms having a halogen atom as the substituent, and the monoaryl having such a substituent Specific examples of the amine include bromophenylamine. Here, examples of the halogen atom include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom.
 前記ジアルキルアミンを構成するアルキル基が置換基を有する場合、かかるアルキル基は、置換基として水酸基又はアリール基を有する、炭素数が1~9の直鎖状若しくは分岐鎖状のアルキル基が好ましく、このような置換基を有するジアルキルアミンとして、具体的には、ジエタノールアミン、N-メチルベンジルアミンが例示できる。 When the alkyl group constituting the dialkylamine has a substituent, the alkyl group is preferably a linear or branched alkyl group having 1 to 9 carbon atoms and having a hydroxyl group or an aryl group as a substituent. Specific examples of the dialkylamine having such a substituent include diethanolamine and N-methylbenzylamine.
 前記アミン化合物は、n-プロピルアミン、n-ブチルアミン、n-へキシルアミン、n-オクチルアミン、n-ドデシルアミン、n-オクタデシルアミン、sec-ブチルアミン、tert-ブチルアミン、イソブチルアミン、3-アミノペンタン、3-メチルブチルアミン、2-ヘプチルアミン、2-アミノオクタン、2-エチルヘキシルアミン、2-フェニルエチルアミン、エチレンジアミン、1,3-ジアミノプロパン、1,4-ジアミノブタン、N-メチル-n-ヘキシルアミン、ジイソブチルアミン、N-メチルベンジルアミン、ジ(2-エチルへキシル)アミン、1,2-ジメチル-n-プロピルアミン、N,N-ジメチル-n-オクタデシルアミン又はN,N-ジメチルシクロヘキシルアミンであることが好ましい。
 そして、これらアミン化合物の中でも、2-エチルヘキシルアミンは、前記カルボン酸銀との相溶性に優れ、銀インク組成物の高濃度化に特に適しており、さらに銀細線の表面粗さの低減に特に適したものとして挙げられる。
The amine compound includes n-propylamine, n-butylamine, n-hexylamine, n-octylamine, n-dodecylamine, n-octadecylamine, sec-butylamine, tert-butylamine, isobutylamine, 3-aminopentane, 3-methylbutylamine, 2-heptylamine, 2-aminooctane, 2-ethylhexylamine, 2-phenylethylamine, ethylenediamine, 1,3-diaminopropane, 1,4-diaminobutane, N-methyl-n-hexylamine, Diisobutylamine, N-methylbenzylamine, di (2-ethylhexyl) amine, 1,2-dimethyl-n-propylamine, N, N-dimethyl-n-octadecylamine or N, N-dimethylcyclohexylamine It is preferable.
Among these amine compounds, 2-ethylhexylamine is excellent in compatibility with the above-mentioned silver carboxylate, particularly suitable for increasing the concentration of the silver ink composition, and particularly for reducing the surface roughness of silver fine wires. Listed as suitable.
(アミン化合物由来のアンモニウム塩)
 本発明において、前記アミン化合物由来のアンモニウム塩は、前記アミン化合物が酸と反応してなるアンモニウム塩であり、前記酸は、塩酸、硫酸、硝酸等の無機酸でもよいし、酢酸等の有機酸でもよく、酸の種類は特に限定されない。
 前記アミン化合物由来のアンモニウム塩としては、n-プロピルアミン塩酸塩、N-メチル-n-ヘキシルアミン塩酸塩、N,N-ジメチル-n-オクタデシルアミン塩酸塩等が例示できるが、これらに限定されない。
(Ammonium salts derived from amine compounds)
In the present invention, the ammonium salt derived from the amine compound is an ammonium salt obtained by reacting the amine compound with an acid, and the acid may be an inorganic acid such as hydrochloric acid, sulfuric acid or nitric acid, or an organic acid such as acetic acid. However, the type of acid is not particularly limited.
Examples of the ammonium salt derived from the amine compound include, but are not limited to, n-propylamine hydrochloride, N-methyl-n-hexylamine hydrochloride, N, N-dimethyl-n-octadecylamine hydrochloride and the like. .
(アンモニア由来のアンモニウム塩)
 本発明において、前記アンモニア由来のアンモニウム塩は、アンモニアが酸と反応してなるアンモニウム塩であり、ここで酸としては、前記アミン化合物由来のアンモニウム塩の場合と同じものが例示できる。
 前記アンモニア由来のアンモニウム塩としては、塩化アンモニウム等が例示できるが、これに限定されない。
(Ammonium salt derived from ammonia)
In the present invention, the ammonium salt derived from ammonia is an ammonium salt obtained by reacting ammonia with an acid, and examples of the acid include the same ones as in the case of the ammonium salt derived from the amine compound.
Examples of the ammonium salt derived from ammonia include ammonium chloride, but are not limited thereto.
 本発明においては、前記アミン化合物、第4級アンモニウム塩、アミン化合物由来のアンモニウム塩及びアンモニア由来のアンモニウム塩は、それぞれ一種を単独で使用してもよいし、二種以上を併用してもよい。二種以上を併用する場合、その組み合わせ及び比率は、任意に調節できる。
 そして、前記含窒素化合物としては、前記アミン化合物、第4級アンモニウム塩、アミン化合物由来のアンモニウム塩及びアンモニア由来のアンモニウム塩からなる群から選択される一種を単独で使用してもよいし、二種以上を併用してもよい。二種以上を併用する場合、その組み合わせ及び比率は、任意に調節できる。
In the present invention, the amine compound, the quaternary ammonium salt, the ammonium salt derived from the amine compound and the ammonium salt derived from ammonia may be used singly or in combination of two or more. . When using 2 or more types together, the combination and ratio can be adjusted arbitrarily.
And as said nitrogen-containing compound, you may use individually by 1 type selected from the group which consists of said amine compound, quaternary ammonium salt, ammonium salt derived from an amine compound, and ammonium salt derived from ammonia, More than one species may be used in combination. When using 2 or more types together, the combination and ratio can be adjusted arbitrarily.
 銀インク組成物において、前記含窒素化合物の配合量は、前記金属銀の形成材料の配合量1モルあたり0.3~15モルであることが好ましく、0.3~5モルであることがより好ましい。前記含窒素化合物の前記配合量がこのような範囲であることで、銀インク組成物は安定性がより向上し、導電体(金属銀)の品質がより向上する。さらに、高温による加熱処理を行わなくても、より安定して導電体を形成できる。 In the silver ink composition, the compounding amount of the nitrogen-containing compound is preferably 0.3 to 15 mol, more preferably 0.3 to 5 mol, per mol of the metal silver forming material. preferable. When the blending amount of the nitrogen-containing compound is within such a range, the silver ink composition is further improved in stability and the quality of the conductor (metal silver) is further improved. Furthermore, the conductor can be formed more stably without performing heat treatment at a high temperature.
[還元性化合物]
 銀インク組成物は、前記金属銀の形成材料以外に、さらに還元性化合物を配合することで、前記銀インク組成物は、金属銀をより形成し易くなり、例えば、低温での加熱処理でも十分な導電性を有する導電体(金属銀)を形成できる。
[Reducing compounds]
In addition to the metallic silver forming material, the silver ink composition further contains a reducing compound, so that the silver ink composition can form metallic silver more easily. For example, heat treatment at a low temperature is sufficient. It is possible to form a conductive material (metallic silver) having excellent conductivity.
 前記還元性化合物は、シュウ酸(HOOC-COOH)、ヒドラジン(HN-NH)及び下記一般式(5)で表される化合物(化合物(5))からなる群から選択される一種以上である。すなわち、配合される還元性化合物は、一種のみでもよいし、二種以上でもよく、二種以上を併用する場合、その組み合わせ及び比率は任意に調節できる。
 H-C(=O)-R21 ・・・・(5)
 (式中、R21は、炭素数20以下のアルキル基、アルコキシ基若しくはN,N-ジアルキルアミノ基、水酸基又はアミノ基である。)
The reducing compound is one or more selected from the group consisting of oxalic acid (HOOC-COOH), hydrazine (H 2 N—NH 2 ), and a compound represented by the following general formula (5) (compound (5)). It is. That is, the reducing compound to be blended may be one kind or two or more kinds. When two or more kinds are used in combination, the combination and ratio can be arbitrarily adjusted.
HC (= O) -R 21 (5)
(Wherein R 21 represents an alkyl group having 20 or less carbon atoms, an alkoxy group, or an N, N-dialkylamino group, a hydroxyl group, or an amino group.)
 R21における炭素数20以下のアルキル基は、炭素数が1~20であり、直鎖状、分岐鎖状及び環状のいずれでもよく、前記一般式(1)のRにおける前記アルキル基と同様のものが例示できる。 The alkyl group having 20 or less carbon atoms in R 21 has 1 to 20 carbon atoms and may be linear, branched or cyclic, and is the same as the alkyl group in R in the general formula (1) The thing can be illustrated.
 R21における炭素数20以下のアルコキシ基は、炭素数が1~20であり、R21における前記アルキル基が酸素原子に結合してなる一価の基が例示できる。 The alkoxy group having 20 or less carbon atoms in R 21 has 1 to 20 carbon atoms, and examples thereof include monovalent groups in which the alkyl group in R 21 is bonded to an oxygen atom.
 R21における炭素数20以下のN,N-ジアルキルアミノ基は、炭素数が2~20であり、窒素原子に結合している2個のアルキル基は、互いに同一でも異なっていてもよく、前記アルキル基はそれぞれ炭素数が1~19である。ただし、これら2個のアルキル基の炭素数の合計値が2~20である。
 窒素原子に結合している前記アルキル基は、それぞれ直鎖状、分岐鎖状及び環状のいずれでもよく、炭素数が1~19である点以外は、前記一般式(1)のRにおける前記アルキル基と同様のものが例示できる。
The N, N-dialkylamino group having 20 or less carbon atoms in R 21 has 2 to 20 carbon atoms, and the two alkyl groups bonded to the nitrogen atom may be the same as or different from each other. Each alkyl group has 1 to 19 carbon atoms. However, the total value of the carbon number of these two alkyl groups is 2 to 20.
The alkyl group bonded to the nitrogen atom may be linear, branched or cyclic, respectively, and the alkyl group in R of the general formula (1) except that it has 1 to 19 carbon atoms. The thing similar to group can be illustrated.
 前記還元性化合物として、ヒドラジンは、一水和物(HN-NH・HO)を用いてもよい。 As the reducing compound, hydrazine may be monohydrate (H 2 N—NH 2 .H 2 O).
 前記還元性化合物で好ましいものとしては、ギ酸(H-C(=O)-OH);ギ酸メチル(H-C(=O)-OCH)、ギ酸エチル(H-C(=O)-OCHCH)、ギ酸ブチル(H-C(=O)-O(CHCH)等のギ酸エステル;プロパナール(H-C(=O)-CHCH)、ブタナール(H-C(=O)-(CHCH)、ヘキサナール(H-C(=O)-(CHCH)等のアルデヒド;ホルムアミド(H-C(=O)-NH)、N,N-ジメチルホルムアミド(H-C(=O)-N(CH)等のホルムアミド類(式「H-C(=O)-N(-)-」で表される基を有する化合物);シュウ酸が例示できる。 Preferred examples of the reducing compound include formic acid (HC (═O) —OH); methyl formate (HC (═O) —OCH 3 ), ethyl formate (HC (═O) —OCH). 2 CH 3 ), formic acid esters such as butyl formate (HC (═O) —O (CH 2 ) 3 CH 3 ); propanal (HC (═O) —CH 2 CH 3 ), butanal (H -C (= O) - (CH 2) 2 CH 3), hexanal (H-C (= O) - (CH 2) 4 aldehyde CH 3) or the like; dimethylformamide (H-C (= O) -NH 2 ), N, N-dimethylformamide (HC (═O) —N (CH 3 ) 2 ) and other formamides (groups represented by the formula “HC (═O) —N (—) —”) And oxalic acid.
 銀インク組成物において、還元剤の配合量は、前記金属銀の形成材料の配合量1モルあたり0.04~3.5モルであることが好ましく、0.06~2.5モルであることがより好ましい。還元剤の前記配合量がこのような範囲であることで、銀インク組成物は、より容易に、より安定して導電体(金属銀)を形成できる。 In the silver ink composition, the compounding amount of the reducing agent is preferably 0.04 to 3.5 mol, and preferably 0.06 to 2.5 mol per mol of the metal silver forming material. Is more preferable. When the blending amount of the reducing agent is within such a range, the silver ink composition can form a conductor (metal silver) more easily and more stably.
[アルコール]
 前記アルコールは、下記一般式(2)で表されるアセチレンアルコール類(以下、「アセチレンアルコール(2)」と略記することがある)であることが好ましい。
[alcohol]
The alcohol is preferably an acetylene alcohol represented by the following general formula (2) (hereinafter sometimes abbreviated as “acetylene alcohol (2)”).
Figure JPOXMLDOC01-appb-C000004
 (式中、R’及びR’’は、それぞれ独立に炭素数1~20のアルキル基、又は1個以上の水素原子が置換基で置換されていてもよいフェニル基である。)
Figure JPOXMLDOC01-appb-C000004
(In the formula, R ′ and R ″ are each independently an alkyl group having 1 to 20 carbon atoms, or a phenyl group in which one or more hydrogen atoms may be substituted with a substituent.)
(アセチレンアルコール(2))
 アセチレンアルコール(2)は、前記一般式(2)で表される。
 式中、R’及びR’’は、それぞれ独立に炭素数1~20のアルキル基、又は1個以上の水素原子が置換基で置換されていてもよいフェニル基である。
 R’及びR’’における炭素数1~20のアルキル基は、直鎖状、分岐鎖状及び環状のいずれでもよく、環状である場合、単環状及び多環状のいずれでもよい。R’及びR’’における前記アルキル基としては、Rにおける前記アルキル基と同様のものが例示できる。
(Acetylene alcohol (2))
The acetylene alcohol (2) is represented by the general formula (2).
In the formula, R ′ and R ″ are each independently an alkyl group having 1 to 20 carbon atoms or a phenyl group in which one or more hydrogen atoms may be substituted with a substituent.
The alkyl group having 1 to 20 carbon atoms in R ′ and R ″ may be linear, branched or cyclic, and when it is cyclic, it may be monocyclic or polycyclic. Examples of the alkyl group in R ′ and R ″ include the same alkyl groups as in R.
 R’及びR’’におけるフェニル基の水素原子が置換されていてもよい前記置換基としては、炭素数が1~16の飽和又は不飽和の一価の脂肪族炭化水素基、前記脂肪族炭化水素基が酸素原子に結合してなる一価の基、フッ素原子、塩素原子、臭素原子、水酸基、シアノ基、フェノキシ基等が例示でき、Rにおけるフェニル基の水素原子が置換されていてもよい前記置換基と同様である。そして、置換基の数及び位置は特に限定されず、置換基の数が複数である場合、これら複数個の置換基は互いに同一でも異なっていてもよい。 Examples of the substituent in which the hydrogen atom of the phenyl group in R ′ and R ″ may be substituted include a saturated or unsaturated monovalent aliphatic hydrocarbon group having 1 to 16 carbon atoms, the aliphatic carbon Examples thereof include a monovalent group formed by bonding a hydrogen group to an oxygen atom, a fluorine atom, a chlorine atom, a bromine atom, a hydroxyl group, a cyano group, a phenoxy group, and the like, and the hydrogen atom of the phenyl group in R may be substituted. This is the same as the substituent. And the number and position of a substituent are not specifically limited, When there are two or more substituents, these several substituents may mutually be same or different.
 R’及びR’’は、炭素数1~20のアルキル基であることが好ましく、炭素数1~10の直鎖状又は分岐鎖状のアルキル基であることがより好ましい。 R ′ and R ″ are preferably an alkyl group having 1 to 20 carbon atoms, and more preferably a linear or branched alkyl group having 1 to 10 carbon atoms.
 好ましいアセチレンアルコール(2)としては、3,5-ジメチル-1-ヘキシン-3-オール、3-メチル-1-ブチン-3-オール、3-メチル-1-ペンチン-3-オールが例示できる。 Examples of preferable acetylene alcohol (2) include 3,5-dimethyl-1-hexyn-3-ol, 3-methyl-1-butyn-3-ol, and 3-methyl-1-pentyn-3-ol.
 アセチレンアルコール(2)を用いる場合、銀インク組成物において、アセチレンアルコール(2)の配合量は、前記金属銀の形成材料の配合量1モルあたり0.03~0.7モルであることが好ましく、0.05~0.3モルであることがより好ましい。アセチレンアルコール(2)の前記配合量がこのような範囲であることで、銀インク組成物の安定性がより向上する。 When acetylene alcohol (2) is used, the amount of acetylene alcohol (2) in the silver ink composition is preferably 0.03 to 0.7 mol per mol of the metal silver forming material. 0.05 to 0.3 mol is more preferable. When the blending amount of acetylene alcohol (2) is within such a range, the stability of the silver ink composition is further improved.
 前記アルコールは、一種を単独で使用してもよいし、二種以上を併用してもよい。二種以上を併用する場合、その組み合わせ及び比率は、任意に調節できる。 The alcohol may be used alone or in combination of two or more. When using 2 or more types together, the combination and ratio can be adjusted arbitrarily.
[その他の成分]
 銀インク組成物は、前記金属銀の形成材料、含窒素化合物、還元剤及びアルコール以外の、その他の成分が配合されてなるものでもよい。
 銀インク組成物における前記その他の成分は、目的に応じて任意に選択でき、特に限定されず、好ましいものとしては、アルコール以外の溶媒が例示でき、配合成分の種類や量に応じて任意に選択できる。
 銀インク組成物における前記その他の成分は、一種を単独で使用してもよいし、二種以上を併用してもよい。二種以上を併用する場合、その組み合わせ及び比率は、任意に調節できる。
[Other ingredients]
The silver ink composition may contain other components other than the metallic silver forming material, nitrogen-containing compound, reducing agent, and alcohol.
The other components in the silver ink composition can be arbitrarily selected according to the purpose, and are not particularly limited. Preferred examples thereof include solvents other than alcohol, and can be arbitrarily selected according to the type and amount of compounding components. it can.
One of these other components in the silver ink composition may be used alone, or two or more thereof may be used in combination. When using 2 or more types together, the combination and ratio can be adjusted arbitrarily.
 銀インク組成物において、配合成分の総量に対する前記その他の成分の配合量の割合は、10質量%以下であることが好ましく、5質量%以下であることがより好ましく、0質量%、すなわちその他の成分を配合しなくても、銀インク組成物は十分にその効果を発現する。 In the silver ink composition, the ratio of the blending amount of the other components to the total blending component is preferably 10% by mass or less, more preferably 5% by mass or less, and 0% by mass, ie, other Even if the component is not blended, the silver ink composition exhibits its effect sufficiently.
 銀インク組成物は、配合成分がすべて溶解していてもよいし、一部又は全ての成分が溶解せずに分散した状態であってもよいが、配合成分がすべて溶解していることが好ましく、溶解していない成分は均一に分散していることが好ましい。 In the silver ink composition, all the compounding components may be dissolved, or some or all of the components may be dispersed without dissolving, but it is preferable that all the compounding components are dissolved. The undissolved component is preferably dispersed uniformly.
[銀インク組成物の製造方法]
 銀インク組成物は、例えば、カルボン酸銀、含窒素化合物、還元性化合物及びアルコールのいずれか一方又は両方、並びに必要に応じてその他の成分を配合することで得られる。各成分の配合後は、得られたものをそのまま銀インク組成物としてもよいし、必要に応じて引き続き公知の精製操作を行って得られたものを銀インク組成物としてもよい。本発明においては、上記の各成分の配合時において、導電性を阻害する不純物が生成しないか、又はこのような不純物の生成量を極めて少ない量に抑制できるため、精製操作を行わなくても十分な導電性を有する金属銀層が得られる。
[Method for producing silver ink composition]
The silver ink composition can be obtained, for example, by blending one or both of silver carboxylate, nitrogen-containing compound, reducing compound and alcohol, and other components as required. After the blending of each component, the resulting product may be used as it is as a silver ink composition, or a product obtained by performing a known purification operation as necessary may be used as a silver ink composition. In the present invention, at the time of blending each of the above components, impurities that inhibit conductivity are not generated, or the amount of such impurities generated can be suppressed to an extremely small amount, so that it is not necessary to perform a purification operation. A metallic silver layer having excellent conductivity can be obtained.
 各成分の配合時には、すべての成分を添加してからこれらを混合してもよいし、一部の成分を順次添加しながら混合してもよく、すべての成分を順次添加しながら混合してもよい。 At the time of blending each component, all the components may be added and then mixed, or some components may be mixed while being added sequentially, or all components may be mixed while being added sequentially. Good.
 混合方法は特に限定されず、撹拌子又は撹拌翼等を回転させて混合する方法;ミキサー、三本ロール、ニーダー又はビーズミル等を使用して混合する方法;超音波を加えて混合する方法等、公知の方法から適宜選択すればよい。 The mixing method is not particularly limited, a method of mixing by rotating a stirrer or a stirring blade; a method of mixing using a mixer, a three-roller, a kneader, a bead mill or the like; a method of mixing by adding ultrasonic waves, etc. What is necessary is just to select suitably from a well-known method.
 特に、撹拌容器中で撹拌翼を回転させて混合する方法が好ましく、撹拌翼がアンカー形状のものであることが好ましい。アンカー形状の撹拌翼で撹拌すると、撹拌効率が高く、銀インク組成物の材料の反応を効率よく行うことができるものと考えられる。 In particular, a method of rotating and mixing the stirring blade in the stirring vessel is preferable, and the stirring blade is preferably in an anchor shape. When stirring with an anchor-shaped stirring blade, stirring efficiency is high, and it is considered that the material of the silver ink composition can be reacted efficiently.
 アンカー形状の撹拌翼としては、例えば、図1に示す撹拌翼100が挙げられる。図1は、アンカー形状の撹拌翼100を示す模式図である。撹拌翼100は、駆動軸110と、撹拌槽(ビーカー)の内周面の近傍を回転移動する外側辺120aを有する強制流動発生翼部120と、前記駆動軸110と前記強制流動発生翼部120とを連結する連結部130とを備えている。
 強制流動発生翼部120は、撹拌槽の深さ方向に(駆動軸110と平行な方向に)伸びていることが好ましい。この場合、強制流動発生翼部120は、図1に示すように駆動軸110と平行に直線状に伸びていてもよい。あるいは、強制流動発生翼部120は、撹拌槽の深さ方向に、例えば、らせん状にねじれながら伸びていてもよい。
 撹拌槽の内径(直径)に対する撹拌翼の直径(図1の一方の外側辺120aから他方の外周辺120aまでの距離)は、85~95%であることが好ましい。
Examples of the anchor-shaped stirring blade include a stirring blade 100 shown in FIG. 1. FIG. 1 is a schematic diagram showing an anchor-shaped stirring blade 100. The stirring blade 100 includes a drive shaft 110, a forced flow generating blade portion 120 having an outer side 120a that rotates in the vicinity of the inner peripheral surface of the stirring tank (beaker), the drive shaft 110, and the forced flow generating blade portion 120. And a connecting portion 130 for connecting the two.
The forced flow generating blade part 120 preferably extends in the depth direction of the stirring tank (in a direction parallel to the drive shaft 110). In this case, the forced flow generating blade portion 120 may extend linearly in parallel with the drive shaft 110 as shown in FIG. Or the forced flow generation | occurrence | production blade | wing part 120 may be extended in the depth direction of a stirring tank, for example, twisting helically.
The diameter of the stirring blade (the distance from one outer side 120a to the other outer periphery 120a in FIG. 1) with respect to the inner diameter (diameter) of the stirring tank is preferably 85 to 95%.
 アンカー形状の撹拌翼としては、例えば、図3に示す撹拌翼300も挙げられる。図3は、アンカー形状の他の撹拌翼300を示す模式図である。
 図3に示す撹拌翼300は、マックスブレンド型であり、駆動軸310と、撹拌槽(ビーカー)の内周面の近傍を回転移動する外側辺320aを有する強制流動発生翼部320と、前記駆動軸310と前記強制流動発生翼部320とをこれらの下部において連結する第1連結部330と、前記駆動軸310と前記強制流動発生翼部320とをこれらの上部において連結する第2連結部340とを備えている。また、撹拌翼300は、前記駆動軸310と前記強制流動発生翼部320との間の位置で、前記第1連結部330と前記第2連結部340とを連結する第3連結部350を備えている。
 図3に示す撹拌翼300は、前記駆動軸310と前記強制流動発生翼部320とを連結するものとして、前記第1連結部330及び第2連結部340を備え、さらに、これら連結部同士を連結する第3連結部350を備えている点以外は、図1に示す撹拌翼100と同様のものである。
Examples of the anchor-shaped stirring blade include a stirring blade 300 shown in FIG. 3. FIG. 3 is a schematic view showing another stirring blade 300 having an anchor shape.
A stirring blade 300 shown in FIG. 3 is a Max Blend type, and includes a drive shaft 310, a forced flow generation blade portion 320 having an outer side 320a that rotates around the inner peripheral surface of a stirring tank (beaker), and the drive. A first connecting part 330 connecting the shaft 310 and the forced flow generating blade part 320 at the lower part thereof, and a second connecting part 340 connecting the drive shaft 310 and the forced flow generating blade part 320 at the upper part thereof. And. Further, the stirring blade 300 includes a third connection portion 350 that connects the first connection portion 330 and the second connection portion 340 at a position between the drive shaft 310 and the forced flow generation blade portion 320. ing.
The agitating blade 300 shown in FIG. 3 includes the first connecting portion 330 and the second connecting portion 340 for connecting the drive shaft 310 and the forced flow generating blade portion 320, and further connecting the connecting portions to each other. Except for the point provided with the 3rd connection part 350 connected, it is the same as that of the stirring blade 100 shown in FIG.
 前記第1連結部330及び第2連結部340の幅は、特に限定されず、例えば、図3に示すように、第1連結部330の方が第2連結部340よりも幅が広くてもよいし、第2連結部340の方が第1連結部330よりも幅が広くてもよく、第1連結部330と第2連結部340は幅が同じであってもよい。
 前記強制流動発生翼部320及び第3連結部350の幅も同様であり、例えば、図3に示すように、強制流動発生翼部320の方が第3連結部350よりも幅が広くてもよいし、第3連結部350の方が強制流動発生翼部320よりも幅が広くてもよく、強制流動発生翼部320と第3連結部350は幅が同じであってもよい。
The widths of the first connection part 330 and the second connection part 340 are not particularly limited. For example, as illustrated in FIG. 3, the first connection part 330 may be wider than the second connection part 340. Alternatively, the second connecting part 340 may be wider than the first connecting part 330, and the first connecting part 330 and the second connecting part 340 may have the same width.
The same applies to the widths of the forced flow generating blade portion 320 and the third connecting portion 350. For example, the forced flow generating blade portion 320 may be wider than the third connecting portion 350 as shown in FIG. Alternatively, the third connecting part 350 may be wider than the forced flow generating blade part 320, and the forced flow generating blade part 320 and the third connecting part 350 may have the same width.
 本発明において、銀インク組成物は、前記カルボン酸銀、含窒素化合物、並びに還元性化合物及びアルコールのいずれか一方又は両方の混合物(配合物)を、撹拌槽内で撹拌翼を回転させることにより撹拌する工程を含む製造方法により製造されたものが好ましい。 In the present invention, the silver ink composition is prepared by rotating a stirring blade in a stirring tank of the silver carboxylate, the nitrogen-containing compound, and the reducing compound and / or a mixture (formulation) of alcohol. What was manufactured by the manufacturing method including the process of stirring is preferable.
 アンカー形状の撹拌翼を回転させて銀インク組成物の成分を混合する場合の回転速度は、例えば、銀インク組成物の材料の合計が約30~300gの場合には100~500rpmであることが好ましい。 The rotation speed when mixing the components of the silver ink composition by rotating the anchor-shaped stirring blade is, for example, 100 to 500 rpm when the total of the materials of the silver ink composition is about 30 to 300 g. preferable.
 前記銀インク組成物は、配合成分がすべて溶解していてもよいし、一部の成分が溶解せずに分散した状態であってもよいが、配合成分がすべて溶解していることが好ましく、溶解していない成分は均一に分散していることが好ましい。溶解していない成分を均一に分散させる場合には、例えば、上記の三本ロール、ニーダー又はビーズミル等を用いて分散させる方法を適用するのが好ましい。 In the silver ink composition, all of the compounding components may be dissolved, or a part of the components may be dispersed without dissolving, but it is preferable that all of the compounding components are dissolved, It is preferable that the components which are not dissolved are uniformly dispersed. In the case of uniformly dispersing the undissolved component, for example, it is preferable to apply a method of dispersing using the above-described three-roll, kneader or bead mill.
 配合時の温度は、各配合成分が劣化しない限り特に限定されないが、-5~60℃であることが好ましい。そして、配合時の温度は、配合成分の種類及び量に応じて、配合して得られた混合物が撹拌し易い粘度となるように、適宜調節するとよい。
 また、配合時間も、各配合成分が劣化しない限り特に限定されないが、例えば10分~36時間であり、例えば0.5~12時間である。
The temperature at the time of compounding is not particularly limited as long as each compounding component does not deteriorate, but it is preferably −5 to 60 ° C. And the temperature at the time of mixing | blending is good to adjust suitably so that the mixture obtained by mix | blending may become the viscosity which is easy to stir according to the kind and quantity of a mixing | blending component.
Further, the blending time is not particularly limited as long as each blending component is not deteriorated, but is, for example, 10 minutes to 36 hours, for example, 0.5 to 12 hours.
 例えば、前記カルボン酸銀及び還元性化合物を共に配合した場合、得られる混合物(銀インク組成物)は比較的発熱し易い。そして、これらを配合時の温度が高い場合、この混合物は、後述する銀インク組成物の加熱処理時と同様の状態になるため、前記還元性化合物による前記カルボン酸銀の分解促進作用によって、前記カルボン酸銀の少なくとも一部において金属銀の形成が開始されることがあると推測される。このような金属銀を含有する銀インク組成物は、積層体の製造時において、金属銀を含有しない銀インク組成物よりも温和な条件で後処理を行うことにより、金属銀層を形成できることがある。また、還元性化合物の配合量が十分に多い場合にも、同様に温和な条件で後処理を行うことにより、金属銀層を形成できることがある。このように、前記カルボン酸銀の分解を促進する条件を採用することで、後処理として、より低温での加熱処理で、あるいは加熱処理を行わずに常温での乾燥処理のみで、金属銀層を形成できることがある。また、このような金属銀を含有する銀インク組成物は、金属銀を含有しない銀インク組成物と同様に取り扱うことができ、特に取り扱い性が劣ることもない。 For example, when the silver carboxylate and the reducing compound are mixed together, the resulting mixture (silver ink composition) is relatively easy to generate heat. And, when the temperature at the time of blending these is high, this mixture will be in the same state as at the time of heat treatment of the silver ink composition to be described later, so by the decomposition promoting action of the silver carboxylate by the reducing compound, It is speculated that the formation of metallic silver may be initiated in at least part of the silver carboxylate. Such a silver ink composition containing metallic silver can form a metallic silver layer by performing post-treatment under milder conditions than a silver ink composition not containing metallic silver during the production of the laminate. is there. Moreover, even when the compounding amount of the reducing compound is sufficiently large, a metallic silver layer may be formed by performing post-treatment under the same mild conditions. Thus, by adopting conditions that promote the decomposition of the silver carboxylate, as a post-treatment, the metal silver layer can be obtained by a heat treatment at a lower temperature or only by a drying treatment at room temperature without performing the heat treatment. Can be formed. Moreover, the silver ink composition containing such metal silver can be handled in the same manner as the silver ink composition not containing metal silver, and the handleability is not particularly inferior.
 本発明においては、例えば、前記カルボン酸銀及び含窒素化合物を配合した後、前記還元性化合物を配合して、前記銀インク組成物を製造する場合には、前記還元性化合物を滴下しながら配合することが好ましく、さらに滴下速度の変動を抑制することで、金属銀層の表面粗さをより低減できる傾向にある。 In the present invention, for example, after the silver carboxylate and the nitrogen-containing compound are blended, the reducing compound is blended to produce the silver ink composition, the dripping of the reducing compound is blended. Preferably, the surface roughness of the metallic silver layer tends to be further reduced by suppressing fluctuations in the dropping speed.
[二酸化炭素]
 銀インク組成物は、さらに二酸化炭素が供給されてなるものでもよい。このような銀インク組成物は高粘度となり、例えば、フレキソ印刷法、スクリーン印刷法、グラビア印刷法、グラビアオフセット印刷法、パッド印刷法等の、インクを厚盛りすることが必要な印刷法への適用に好適である。
[carbon dioxide]
The silver ink composition may be further supplied with carbon dioxide. Such a silver ink composition has a high viscosity. For example, a flexographic printing method, a screen printing method, a gravure printing method, a gravure offset printing method, a pad printing method, etc. Suitable for application.
 二酸化炭素は、銀インク組成物製造時のいずれの時期に供給してもよい。
 例えば、カルボン酸銀及び含窒素化合物が配合されてなる第一の混合物に、二酸化炭素を供給して第二の混合物とし、第二の混合物に、さらに還元性化合物を配合して、銀インク組成物を製造してもよい。また、前記アルコール又はその他の成分を配合する場合、これらは、第一の混合物及び第二の混合物のいずれか一方又は両方の製造時に配合でき、目的に応じて任意に選択できる。
Carbon dioxide may be supplied at any time during the production of the silver ink composition.
For example, a silver ink composition is obtained by supplying carbon dioxide to a first mixture in which silver carboxylate and a nitrogen-containing compound are blended to form a second mixture, and further blending a reducing compound in the second mixture. You may manufacture things. Moreover, when mix | blending the said alcohol or another component, these can be mix | blended at the time of manufacture of any one or both of a 1st mixture and a 2nd mixture, and can be arbitrarily selected according to the objective.
 前記第一の混合物は、配合成分が異なる点以外は、上記の銀インク組成物と同様の方法で製造できる。 The first mixture can be produced by the same method as the above silver ink composition except that the blending components are different.
 第一の混合物は、配合成分がすべて溶解していてもよいし、一部の成分が溶解せずに分散した状態であってもよいが、配合成分がすべて溶解していることが好ましく、溶解していない成分は均一に分散していることが好ましい。 The first mixture may have all of the compounding components dissolved, or may be in a state of being dispersed without dissolving some of the components, but preferably all of the compounding components are dissolved and dissolved. It is preferable that the components not dispersed are uniformly dispersed.
 第一の混合物製造時の配合温度は、各配合成分が劣化しない限り特に限定されないが、-5~60℃であることが好ましい。また、配合時間は、配合成分の種類や配合時の温度に応じて適宜調節すればよいが、例えば10分~36時間であり、例えば0.5~12時間である。 The compounding temperature at the time of producing the first mixture is not particularly limited as long as each compounding component does not deteriorate, but it is preferably −5 to 60 ° C. The blending time may be appropriately adjusted according to the type of blending component and the temperature at the blending, and is, for example, 10 minutes to 36 hours, for example 0.5 to 12 hours.
 第一の混合物に供給される二酸化炭素(CO)は、ガス状及び固形状(ドライアイス)のいずれでもよく、ガス状及び固形状の両方でもよい。二酸化炭素が供給されることにより、この二酸化炭素が第一の混合物に溶け込み、第一の混合物中の成分に作用することで、得られる第二の混合物の粘度が上昇すると推測される。 Carbon dioxide (CO 2 ) supplied to the first mixture may be either gaseous or solid (dry ice), or both gaseous and solid. By supplying carbon dioxide, it is estimated that this carbon dioxide dissolves in the first mixture and acts on the components in the first mixture, thereby increasing the viscosity of the obtained second mixture.
 二酸化炭素ガスの供給は、液体中にガスを吹き込む公知の各種方法で行えばよく、適した供給方法を適宜選択すればよい。例えば、配管の一端を第一の混合物中に浸漬し、他端を二酸化炭素ガスの供給源に接続して、この配管を通じて二酸化炭素ガスを第一の混合物に供給する方法が例示できる。この時、配管の端部から直接二酸化炭素ガスを供給してもよいが、例えば、多孔質性のものなど、ガスの流路となり得る空隙部が多数設けられ、導入されたガスを拡散させて微小な気泡として放出することが可能なガス拡散部材を配管の端部に接続し、このガス拡散部材を介して二酸化炭素ガスを供給してもよい。また、第一の混合物の製造時と同様の方法で、第一の混合物を撹拌しながら二酸化炭素ガスを供給してもよい。このようにすることで、効率的に二酸化炭素を供給できる。 The carbon dioxide gas may be supplied by various known methods for blowing gas into the liquid, and a suitable supply method may be selected as appropriate. For example, a method in which one end of a pipe is immersed in the first mixture, the other end is connected to a carbon dioxide gas supply source, and the carbon dioxide gas is supplied to the first mixture through the pipe. At this time, the carbon dioxide gas may be supplied directly from the end of the pipe. For example, a plurality of voids that can serve as gas flow paths, such as a porous one, are provided to diffuse the introduced gas. A gas diffusion member that can be discharged as minute bubbles may be connected to the end of the pipe, and the carbon dioxide gas may be supplied through the gas diffusion member. Moreover, you may supply a carbon dioxide gas, stirring the 1st mixture by the method similar to the time of manufacture of a 1st mixture. By doing in this way, carbon dioxide can be supplied efficiently.
 二酸化炭素ガスの供給量は、供給先の第一の混合物の量や、目的とする銀インク組成物又は第二の混合物の粘度に応じて適宜調節すればよく、特に限定されない。例えば、20~25℃において、超音波式粘度計(CBC社製「VISCOMATE VM-10A」)で測定した粘度が5Pa・s以上である銀インク組成物を100~1000g程度得るためには、二酸化炭素ガスを100L以上供給することが好ましく、200L以上供給することがより好ましい。なお、ここでは銀インク組成物の20~25℃における粘度について説明したが、銀インク組成物の使用時の温度は、20~25℃に限定されるものではなく、任意に選択できる。 The supply amount of carbon dioxide gas is not particularly limited, and may be appropriately adjusted according to the amount of the first mixture at the supply destination and the viscosity of the target silver ink composition or the second mixture. For example, in order to obtain about 100 to 1000 g of a silver ink composition having a viscosity of 5 Pa · s or more measured at 20 to 25 ° C. with an ultrasonic viscometer (“VISCOMATE VM-10A” manufactured by CBC), It is preferable to supply 100 L or more of carbon gas, and it is more preferable to supply 200 L or more. Although the viscosity at 20 to 25 ° C. of the silver ink composition has been described here, the temperature at the time of using the silver ink composition is not limited to 20 to 25 ° C. and can be arbitrarily selected.
 二酸化炭素ガスの流量は、必要とされる二酸化炭素ガスの供給量を考慮して適宜調節すればよいが、第一の混合物1gあたり0.5mL/分以上であることが好ましく、1mL/分以上であることがより好ましい。流量の上限値は特に限定されないが、取り扱い性等を考慮すると、混合物1gあたり40mL/分であることが好ましい。
 そして、二酸化炭素ガスの供給時間は、必要とされる二酸化炭素ガスの供給量や、流量を考慮して適宜調節すればよい。
The flow rate of carbon dioxide gas may be appropriately adjusted in consideration of the required supply amount of carbon dioxide gas, but is preferably 0.5 mL / min or more per 1 g of the first mixture, and is 1 mL / min or more. It is more preferable that The upper limit value of the flow rate is not particularly limited, but is preferably 40 mL / min per 1 g of the mixture in consideration of handling properties and the like.
The carbon dioxide gas supply time may be appropriately adjusted in consideration of the required supply amount and flow rate of carbon dioxide gas.
 二酸化炭素ガス供給時の第一の混合物の温度は、5~70℃であることが好ましく、7~60℃であることがより好ましく、10~50℃であることが特に好ましい。前記温度が前記下限値以上であることで、より効率的に二酸化炭素を供給でき、前記温度が前記上限値以下であることで、不純物が少ないより良好な品質の銀インク組成物が得られる。 The temperature of the first mixture at the time of supplying carbon dioxide gas is preferably 5 to 70 ° C, more preferably 7 to 60 ° C, and particularly preferably 10 to 50 ° C. When the temperature is equal to or higher than the lower limit value, carbon dioxide can be supplied more efficiently, and when the temperature is equal to or lower than the upper limit value, a silver ink composition having better quality with fewer impurities can be obtained.
 二酸化炭素ガスの流量及び供給時間、並びに二酸化炭素ガス供給時の前記温度は、それぞれの値を相互に考慮しながら適した範囲に調節すればよい。例えば、前記温度を低めに設定しても、二酸化炭素ガスの流量を多めに設定するか、二酸化炭素ガスの供給時間を長めに設定することで、あるいはこの両方を行うことで、効率的に二酸化炭素を供給できる。また、二酸化炭素ガスの流量を少なめに設定しても、前記温度を高めにするか、二酸化炭素ガスの供給時間を長めに設定することで、あるいはこの両方を行うことで、効率的に二酸化炭素を供給できる。すなわち、二酸化炭素ガスの流量、二酸化炭素ガス供給時の前記温度として例示した上記数値範囲の中の数値を、二酸化炭素ガスの供給時間も考慮しつつ柔軟に組み合わせることで、良好な品質の銀インク組成物が効率的に得られる。 The flow rate and supply time of carbon dioxide gas, and the temperature at the time of supplying carbon dioxide gas may be adjusted to a suitable range while considering each value. For example, even if the temperature is set lower, the carbon dioxide gas flow rate is set higher, the carbon dioxide gas supply time is set longer, or both are performed efficiently. Can supply carbon. Moreover, even if the flow rate of carbon dioxide gas is set to a small value, the carbon dioxide gas can be efficiently produced by increasing the temperature, setting the carbon dioxide gas supply time longer, or both. Can supply. That is, a silver ink of good quality can be obtained by flexibly combining the numerical values in the above numerical range exemplified as the flow rate of carbon dioxide gas and the temperature at the time of carbon dioxide gas supply while considering the supply time of carbon dioxide gas. A composition is obtained efficiently.
 二酸化炭素ガスの供給は、第一の混合物を撹拌しながら行うことが好ましい。このようにすることで、供給した二酸化炭素ガスがより均一に第一の混合物中に拡散し、より効率的に二酸化炭素を供給できる。
 この時の撹拌方法は、二酸化炭素を用いない上記の銀インク組成物の製造時における前記混合方法の場合と同様でよい。
The carbon dioxide gas is preferably supplied while stirring the first mixture. By doing in this way, the supplied carbon dioxide gas diffuses more uniformly in the first mixture, and carbon dioxide can be supplied more efficiently.
The stirring method at this time may be the same as in the case of the mixing method at the time of producing the above silver ink composition not using carbon dioxide.
 ドライアイス(固形状二酸化炭素)の供給は、第一の混合物中にドライアイスを添加することで行えばよい。ドライアイスは、全量を一括して添加してもよいし、分割して段階的に(添加を行わない時間帯を挟んで連続的に)添加してもよい。
 ドライアイスの使用量は、上記の二酸化炭素ガスの供給量を考慮して調節すればよい。
 ドライアイスの添加中及び添加後は、第一の混合物を撹拌することが好ましく、例えば、二酸化炭素を用いない上記の銀インク組成物の製造時と同様の方法で撹拌することが好ましい。このようにすることで、効率的に二酸化炭素を供給できる。
 撹拌時の温度は、二酸化炭素ガス供給時と同様でよい。また、撹拌時間は、撹拌温度に応じて適宜調節すればよい。
The supply of dry ice (solid carbon dioxide) may be performed by adding dry ice to the first mixture. The total amount of dry ice may be added all at once, or may be added stepwise (continuously across a time zone during which no addition is performed).
What is necessary is just to adjust the usage-amount of dry ice in consideration of the supply amount of said carbon dioxide gas.
During and after the addition of dry ice, the first mixture is preferably stirred. For example, the first mixture is preferably stirred in the same manner as in the production of the above silver ink composition without using carbon dioxide. By doing in this way, carbon dioxide can be supplied efficiently.
The temperature at the time of stirring may be the same as that at the time of supplying carbon dioxide gas. Moreover, what is necessary is just to adjust stirring time suitably according to stirring temperature.
 第二の混合物の粘度は、銀インク組成物又は第二の混合物の取り扱い方法など、目的に応じて適宜調節すればよく、特に限定されない。例えば、銀インク組成物をスクリーン印刷法、フレキソ印刷法等の高粘度インクを使用する印刷法へ適用する場合には、第二の混合物の20~25℃における粘度は、3Pa・s以上であることが好ましい。なお、ここでは第二の混合物の20~25℃における粘度について説明したが、第二の混合物の使用時の温度は、20~25℃に限定されるものではなく、任意に選択できる。 The viscosity of the second mixture may be appropriately adjusted according to the purpose, such as a method for handling the silver ink composition or the second mixture, and is not particularly limited. For example, when the silver ink composition is applied to a printing method using a high viscosity ink such as a screen printing method or a flexographic printing method, the viscosity of the second mixture at 20 to 25 ° C. is 3 Pa · s or more. It is preferable. Here, the viscosity of the second mixture at 20 to 25 ° C. has been described, but the temperature at the time of use of the second mixture is not limited to 20 to 25 ° C. and can be arbitrarily selected.
 前記第二の混合物に還元性化合物を配合し、さらに必要に応じてアルコール及びその他の成分からなる群から選択される一種以上を配合して、銀インク組成物とすることができる。
 このときの銀インク組成物は、配合成分が異なる点以外は、二酸化炭素を用いない上記の銀インク組成物と同様の方法で製造できる。そして、得られた銀インク組成物は、配合成分がすべて溶解していてもよいし、一部の成分が溶解せずに分散した状態であってもよいが、配合成分がすべて溶解していることが好ましく、溶解していない成分は均一に分散していることが好ましい。
A reductive compound is mix | blended with said 2nd mixture, Furthermore, 1 or more types selected from the group which consists of alcohol and another component can be mix | blended as needed, and it can be set as a silver ink composition.
The silver ink composition at this time can be manufactured by the same method as the above silver ink composition not using carbon dioxide except that the blending components are different. The obtained silver ink composition may have all of the compounding components dissolved therein or may be in a state where some of the components are dispersed without dissolving, but all of the compounding components are dissolved. Preferably, the undissolved component is preferably dispersed uniformly.
 前記還元性化合物配合時の温度は、各配合成分が劣化しない限り特に限定されないが、-5~60℃であることが好ましい。そして、配合時の温度は、配合成分の種類及び量に応じて、配合して得られた混合物が撹拌し易い粘度となるように、適宜調節するとよい。
 また、配合時間は、配合成分の種類や配合時の温度に応じて適宜調節すればよいが、例えば10分~36時間であり、例えば0.5~12時間である。
The temperature at the time of compounding the reducing compound is not particularly limited as long as each compounding component does not deteriorate, but it is preferably −5 to 60 ° C. And the temperature at the time of mixing | blending is good to adjust suitably so that the mixture obtained by mix | blending may become the viscosity which is easy to stir according to the kind and quantity of a mixing | blending component.
The blending time may be appropriately adjusted according to the type of blending component and the temperature at the blending, and is, for example, 10 minutes to 36 hours, for example 0.5 to 12 hours.
 前記その他の成分は、先に説明したように、前記第一の混合物及び第二の混合物のいずれかの製造時に配合されてもよく、両方の製造時に配合されてもよい。すなわち、第一の混合物及び第二の混合物を経て銀インク組成物を製造する過程において、二酸化炭素以外の配合成分の総量に対する前記その他の成分の配合量の割合([その他の成分(質量)]/[カルボン酸銀、含窒素化合物、還元性化合物、アルコール、及びその他の成分(質量)]×100)は、10質量%以下であることが好ましく、5質量%以下であることがより好ましく、0質量%、すなわちその他の成分を配合しなくても、銀インク組成物は十分にその効果を発現する。 As described above, the other components may be blended during the production of either the first mixture or the second mixture, or may be blended during the production of both. That is, in the process of producing the silver ink composition through the first mixture and the second mixture, the ratio of the blended amount of the other components to the total amount of blended components other than carbon dioxide ([other components (mass)] / [Silver carboxylate, nitrogen-containing compound, reducing compound, alcohol, and other components (mass)] × 100) is preferably 10% by mass or less, more preferably 5% by mass or less, Even if 0% by mass, that is, no other components are blended, the silver ink composition exhibits its effect sufficiently.
 二酸化炭素が供給されてなる銀インク組成物は、例えば、銀インク組成物をスクリーン印刷法、フレキソ印刷法等の高粘度インクを使用する印刷法へ適用する場合には、20~25℃における粘度が、1Pa・s以上であることが好ましい。 The silver ink composition to which carbon dioxide is supplied is, for example, a viscosity at 20 to 25 ° C. when the silver ink composition is applied to a printing method using a high viscosity ink such as a screen printing method or a flexographic printing method. Is preferably 1 Pa · s or more.
 次に実施例を示して本発明をさらに詳細に説明するが、本発明は以下の実施例に限定されるものではない。 Next, the present invention will be described in more detail with reference to examples. However, the present invention is not limited to the following examples.
[実施例1~3]
(銀インク組成物の作製)
 液温が50℃以下となるように、容量200mLのビーカー中で2-エチルヘキシルアミン(22.0g)に2-メチルアセト酢酸銀(38.0g)を添加して、メカニカルスターラーを用いて15分間撹拌することにより、液状物を得た。
[Examples 1 to 3]
(Preparation of silver ink composition)
Silver 2-methylacetoacetate (38.0 g) was added to 2-ethylhexylamine (22.0 g) in a 200 mL beaker so that the liquid temperature was 50 ° C. or lower, and the mixture was stirred for 15 minutes using a mechanical stirrer. As a result, a liquid material was obtained.
 メカニカルスターラーの撹拌翼には、アンカー形状のものを使用した。図1は、アンカー形状の撹拌翼100を示す模式図である。撹拌翼100は、駆動軸110と、撹拌槽(ビーカー)の内周面の近傍を回転移動する外側辺120aを有する強制流動発生翼部120と、前記駆動軸110と前記強制流動発生翼部120とを連結する連結部130とを備えている。撹拌翼100は、ビーカーの内径(直径)に対する撹拌翼の直径が約95%であり、ビーカーの内周面と強制流動発生翼部120の外側辺120aとの間の距離が約2mmであった。また、撹拌翼100の回転数を300rpmに設定した。 The anchor stirrer was used for the stirring blade of the mechanical stirrer. FIG. 1 is a schematic diagram showing an anchor-shaped stirring blade 100. The stirring blade 100 includes a drive shaft 110, a forced flow generating blade portion 120 having an outer side 120a that rotates in the vicinity of the inner peripheral surface of the stirring tank (beaker), the drive shaft 110, and the forced flow generating blade portion 120. And a connecting portion 130 for connecting the two. The stirring blade 100 had a stirring blade diameter of about 95% with respect to the inner diameter (diameter) of the beaker, and the distance between the inner peripheral surface of the beaker and the outer side 120a of the forced flow generation blade portion 120 was about 2 mm. . Moreover, the rotation speed of the stirring blade 100 was set to 300 rpm.
 上述した液状物に、反応液の温度が50℃以下となるように、ギ酸(6.3g)を30分間かけて滴下した。ギ酸の滴下終了後、25℃にて反応液をさらに1.5時間撹拌することにより、銀インク組成物を得た。2-メチルアセト酢酸銀の配合量1モルあたりの2-エチルヘキシルアミン及びギ酸の配合量は、それぞれ1モル及び0.8モルであった。 Formic acid (6.3 g) was added dropwise to the above-mentioned liquid over 30 minutes so that the temperature of the reaction solution was 50 ° C. or lower. After the formic acid was dropped, the reaction solution was further stirred at 25 ° C. for 1.5 hours to obtain a silver ink composition. The blending amounts of 2-ethylhexylamine and formic acid per 1 mole of silver 2-methylacetoacetate were 1 mole and 0.8 mole, respectively.
(積層体の作製)
 得られた銀インク組成物を使用して、基材であるポリエチレンテレフタレート(PET)製フィルム(東レ社製「ルミラーS10」、厚さ100μm)上にスクリーン印刷を行った。スクリーン版としては、ステンレス製500メッシュのものを使用し、乳剤厚10μmの条件で、線幅0.5mm、線長30mmのパターンを印刷した。
(Production of laminate)
Using the obtained silver ink composition, screen printing was performed on a polyethylene terephthalate (PET) film (“Lumirror S10” manufactured by Toray Industries, Inc., 100 μm thick) as a base material. As the screen plate, a 500-mesh stainless steel plate was used, and a pattern with a line width of 0.5 mm and a line length of 30 mm was printed under the condition of an emulsion thickness of 10 μm.
 次いで、得られた印刷パターンを、80℃で1時間焼成(加熱処理)することにより金属銀層を形成し、実施例1の積層体を得た。実施例1と同様にして、銀インク組成物及び積層体の作製を繰り返し、実施例2及び3の積層体を得た。 Next, the obtained printed pattern was baked (heat treatment) at 80 ° C. for 1 hour to form a metal silver layer, whereby the laminate of Example 1 was obtained. In the same manner as in Example 1, the production of the silver ink composition and the laminate was repeated, and the laminates of Examples 2 and 3 were obtained.
[比較例1~3]
(銀インク組成物の作製)
 液温が50℃以下となるように、ビーカー中で2-エチルヘキシルアミン(22.0g)に2-メチルアセト酢酸銀(38.0g)を添加して、メカニカルスターラーを用いて15分間撹拌することにより、液状物を得た。
[Comparative Examples 1 to 3]
(Preparation of silver ink composition)
By adding silver 2-methylacetoacetate (38.0 g) to 2-ethylhexylamine (22.0 g) in a beaker so that the liquid temperature is 50 ° C. or lower, and stirring for 15 minutes using a mechanical stirrer. A liquid product was obtained.
 メカニカルスターラーの撹拌翼には、プロペラ形状のものを使用した。図2は、プロペラ形状の撹拌翼200を示す模式図である。撹拌翼200は、駆動軸210と、プロペラ状の強制流動発生翼部220とを備えている。撹拌翼の回転数は300rpmに設定した。 The propeller-shaped one was used for the stirring blade of the mechanical stirrer. FIG. 2 is a schematic diagram showing a propeller-shaped stirring blade 200. The stirring blade 200 includes a drive shaft 210 and a propeller-like forced flow generation blade portion 220. The rotation speed of the stirring blade was set to 300 rpm.
 上述した液状物に、反応液の温度が50℃以下となるように、ギ酸(6.3g)を30分間かけて滴下した。ギ酸の滴下終了後、25℃にて反応液をさらに1.5時間撹拌することにより、銀インク組成物を得た。2-メチルアセト酢酸銀の配合量1モルあたりの2-エチルヘキシルアミン及びギ酸の配合量は、それぞれ1モル及び0.8モルであった。 Formic acid (6.3 g) was added dropwise to the above-mentioned liquid over 30 minutes so that the temperature of the reaction solution was 50 ° C. or lower. After the formic acid was dropped, the reaction solution was further stirred at 25 ° C. for 1.5 hours to obtain a silver ink composition. The blending amounts of 2-ethylhexylamine and formic acid per 1 mole of silver 2-methylacetoacetate were 1 mole and 0.8 mole, respectively.
(積層体の作製)
 得られた銀インク組成物を使用して、基材であるポリエチレンテレフタレート(PET)製フィルム(東レ社製「ルミラーS10」、厚さ100μm)上にスクリーン印刷を行った。スクリーン版としては、ステンレス製500メッシュのものを使用し、乳剤厚10μmの条件で、線幅0.5mm、線長30mmのパターンを印刷した。
(Production of laminate)
Using the obtained silver ink composition, screen printing was performed on a polyethylene terephthalate (PET) film (“Lumirror S10” manufactured by Toray Industries, Inc., 100 μm thick) as a base material. As the screen plate, a 500-mesh stainless steel plate was used, and a pattern with a line width of 0.5 mm and a line length of 30 mm was printed under the condition of an emulsion thickness of 10 μm.
 次いで、得られた印刷パターンを、80℃で1時間焼成(加熱処理)することにより金属銀層を形成し、比較例1の積層体を得た。比較例1と同様にして、銀インク組成物及び積層体の作製を繰り返し、比較例2及び3の積層体を得た。 Next, the obtained printed pattern was baked (heat treatment) at 80 ° C. for 1 hour to form a metallic silver layer, whereby a laminate of Comparative Example 1 was obtained. In the same manner as in Comparative Example 1, the production of the silver ink composition and the laminate was repeated, and the laminates of Comparative Examples 2 and 3 were obtained.
[銀インク組成物の評価]
(撹拌状態)
 実施例1~3及び比較例1~3において、銀インク組成物の材料をメカニカルスターラーで撹拌したときの撹拌状態を目視で評価した。結果を下記表1に示す。均一に撹拌され、撹拌容器の壁面への材料の付着がないか、少なかった場合を「○」、一部不均一に撹拌され、撹拌容器の壁面への材料の付着が比較的多かった場合を「△」、全く撹拌されていなかった場合を「×」として評価した。
[Evaluation of silver ink composition]
(Stirring state)
In Examples 1 to 3 and Comparative Examples 1 to 3, the stirring state when the materials of the silver ink composition were stirred with a mechanical stirrer was visually evaluated. The results are shown in Table 1 below. “○” when the material is evenly stirred and there is little or no material adhering to the wall surface of the stirring vessel, and when the material is partly unevenly stirred and relatively much material adhering to the wall surface of the stirring vessel. The case where “Δ” was not stirred at all was evaluated as “x”.
(重量減少率)
 実施例1~3及び比較例1~3において、完成した銀インク組成物の質量を定量した。また、銀インク組成物の材料として使用した、2-エチルヘキシルアミン、2-メチルアセト酢酸銀及びギ酸の合計の質量に対する、完成した銀インク組成物の質量の割合を算出し、下記式により重量減少率(質量%)を算出した。結果を下記表1に示す。重量減少率が大きいほど、材料の反応が進み、揮発成分となって失われたことを示す。
 重量減少率(質量%)=1-(銀インク組成物の質量)/(2-エチルヘキシルアミン、2-メチルアセト酢酸銀及びギ酸の合計の質量)
(Weight reduction rate)
In Examples 1 to 3 and Comparative Examples 1 to 3, the mass of the completed silver ink composition was quantified. Further, the ratio of the mass of the completed silver ink composition to the total mass of 2-ethylhexylamine, silver 2-methylacetoacetate and formic acid used as the material of the silver ink composition was calculated, and the weight reduction rate was calculated by the following formula. (Mass%) was calculated. The results are shown in Table 1 below. The larger the weight reduction rate, the more the reaction of the material progresses, indicating that it has been lost as a volatile component.
Weight reduction rate (mass%) = 1- (mass of silver ink composition) / (total mass of 2-ethylhexylamine, silver 2-methylacetoacetate and formic acid)
(銀濃度)
 実施例1~3及び比較例1~3において、銀インク組成物を定量してるつぼに入れ、400℃で3時間加熱処理した。加熱処理後にるつぼ内に残った金属銀を定量し、インク組成物中の銀濃度を(質量%)を算出した。結果を下記表1に示す。銀濃度が高いほど不純物が少ないことを示す。
(Silver concentration)
In Examples 1 to 3 and Comparative Examples 1 to 3, the silver ink composition was quantified and placed in a crucible and heat treated at 400 ° C. for 3 hours. The metallic silver remaining in the crucible after the heat treatment was quantified, and the silver concentration in the ink composition (% by mass) was calculated. The results are shown in Table 1 below. It shows that there are few impurities, so that silver concentration is high.
(粘度)
 実施例1~3及び比較例1~3において、レオメータ(アントンパール社製「MCR-301」)を用いて、25℃の環境下で、せん断速度が10s-1での銀インク組成物の粘度を測定した。コーンプレートとしてCP-25-2(直径25mm、コーン角度2°)を使用した。
(viscosity)
In Examples 1 to 3 and Comparative Examples 1 to 3, using a rheometer (“MCR-301” manufactured by Anton Paar), the viscosity of the silver ink composition at a shear rate of 10 s −1 under an environment of 25 ° C. Was measured. CP-25-2 (diameter 25 mm, cone angle 2 °) was used as the cone plate.
(色味)
 実施例1~3及び比較例1~3において、銀インク組成物の色味を目視で判断した。結果を下記表1に示す。
(Color)
In Examples 1 to 3 and Comparative Examples 1 to 3, the color of the silver ink composition was judged visually. The results are shown in Table 1 below.
[作製した積層体の評価]
 実施例1~3及び比較例1~3の積層体の金属銀層について、線抵抗値R(Ω)、断面積A(cm)、及び線長L(cm)を測定し、式「ρ=R×A/L」により、体積抵抗率ρ(Ω・cm)を算出した。なお、線抵抗値Rはデジタルマルチメータ(三和電気計器社製「PC5000a」)を用いて測定し、断面積Aは形状測定レーザマイクロスコープ(キーエンス社製「VK-X100」)を用いて測定した。さらに、形状測定レーザマイクロスコープ(キーエンス社製「VK-X100」)を用いて、形成したパターンの表面粗さ(算術平均表面粗さRa)を測定した。このとき、表面粗さは、JISB0601:2001(ISO4287、1997)に従い、λc(輪郭曲線フィルタ)=0.08mmでカットオフして測定した。結果を表2に示す。
[Evaluation of produced laminate]
For the metallic silver layers of the laminates of Examples 1 to 3 and Comparative Examples 1 to 3, the line resistance value R (Ω), the cross-sectional area A (cm 2 ), and the line length L (cm) were measured, and the formula “ρ = R × A / L ”, the volume resistivity ρ (Ω · cm) was calculated. The line resistance value R was measured using a digital multimeter (“PC5000a” manufactured by Sanwa Denki Keiki Co., Ltd.), and the cross-sectional area A was measured using a shape measurement laser microscope (“VK-X100” manufactured by Keyence Corporation). did. Further, the surface roughness (arithmetic average surface roughness Ra) of the formed pattern was measured using a shape measurement laser microscope (“VK-X100” manufactured by Keyence Corporation). At this time, the surface roughness was measured by cutting off at λc (contour curve filter) = 0.08 mm in accordance with JIS B0601: 2001 (ISO 4287, 1997). The results are shown in Table 2.
 実施例1~3の積層体では、金属銀層が、体積抵抗率5μΩ・cm以下、表面粗さ70nm以下を再現性良く達成することができた。これに対し、比較例1~3の積層体では、金属銀層が体積抵抗率5μΩ・cm以下、表面粗さ70nm以下を達成することができなかった。 In the laminates of Examples 1 to 3, the metal silver layer was able to achieve a volume resistivity of 5 μΩ · cm or less and a surface roughness of 70 nm or less with good reproducibility. In contrast, in the laminates of Comparative Examples 1 to 3, the metal silver layer could not achieve a volume resistivity of 5 μΩ · cm or less and a surface roughness of 70 nm or less.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
[実施例4、6、7]
(銀インク組成物の作製)
 銀インク組成物作製時の各成分とその配合量を表3に示すとおりとした点以外は、実施例1と同様に、銀インク組成物を作製した。カルボン酸銀の配合量(モル数)は、実施例1と同じとした。結果を表4に示す。
 なお、表3中、配合成分の欄の「-」は、その成分が未配合であることを意味する。
[Examples 4, 6, and 7]
(Preparation of silver ink composition)
A silver ink composition was prepared in the same manner as in Example 1 except that each component and the blending amount thereof at the time of preparing the silver ink composition were as shown in Table 3. The amount (number of moles) of silver carboxylate was the same as in Example 1. The results are shown in Table 4.
In Table 3, “-” in the column of the blending component means that the component is not blended.
 なお、表3中、「含窒素化合物(モル比)」とは、カルボン酸銀の配合量1モルあたりの含窒素化合物の配合量(モル数)([含窒素化合物のモル数]/[カルボン酸銀のモル数])を意味する。同様に、「還元性化合物(モル比)」もカルボン酸銀の配合量1モルあたりの還元性化合物の配合量(モル数)([還元性化合物のモル数]/[カルボン酸銀のモル数])を意味し、「アルコール(モル比)」もカルボン酸銀の配合量1モルあたりのアルコールの配合量(モル数)([アルコールのモル数]/[カルボン酸銀のモル数])を意味する。 In Table 3, “nitrogen-containing compound (molar ratio)” means the compounding amount (number of moles) of nitrogen-containing compound per mole of silver carboxylate ([number of moles of nitrogen-containing compound] / [carvone] Number of moles of acid silver]). Similarly, the “reducing compound (molar ratio)” is also the blending amount (number of moles) of the reducing compound per mole of silver carboxylate (number of moles of reducing compound) / [number of moles of silver carboxylate]. ] "And" alcohol (molar ratio) "means the blending amount (number of moles) of alcohol per mole of silver carboxylate ([number of moles of alcohol] / [number of moles of silver carboxylate]). means.
(積層体の作製及び評価)
 上記で得られた銀インク組成物を使用した点、80℃で1時間焼成(加熱処理)するのに代えて、80℃で1分間、オーブン内で加熱処理した後、さらに相対湿度99%の加湿条件下において80℃で2分間加熱(焼成)処理した点以外は、実施例1と同様に、積層体を作製し、評価した。結果を表5に示す。
(Production and evaluation of laminate)
Using the silver ink composition obtained above, instead of baking (heat treatment) at 80 ° C. for 1 hour, after heat treatment in an oven at 80 ° C. for 1 minute, the relative humidity of 99% was further increased. A laminate was prepared and evaluated in the same manner as in Example 1 except that it was heated (baked) at 80 ° C. for 2 minutes under humidified conditions. The results are shown in Table 5.
[実施例5]
(銀インク組成物の作製)
 銀インク組成物作製時の各成分の配合量を表3に示すとおりとした点、メカニカルスターラーの撹拌翼として、図1に示すアンカー形状のものに代えて、図3に示すアンカー形状(マックスブレンド型)のものを用いた点以外は、実施例1と同様に、銀インク組成物を作製した。図3は、アンカー形状(マックスブレンド型)の撹拌翼300を示す模式図である。カルボン酸銀の配合量(モル数)は、実施例1と同じとした。結果を表4に示す。
[Example 5]
(Preparation of silver ink composition)
The blending amount of each component at the time of preparing the silver ink composition is as shown in Table 3, and the stirring shape of the mechanical stirrer is replaced with the anchor shape shown in FIG. A silver ink composition was prepared in the same manner as in Example 1 except that the type) was used. FIG. 3 is a schematic diagram showing an anchor-shaped (max blend type) stirring blade 300. The amount (number of moles) of silver carboxylate was the same as in Example 1. The results are shown in Table 4.
 図3に示す撹拌翼300は、ビーカーの内径(直径)に対する撹拌翼の直径が約95%であり、ビーカーの内周面と強制流動発生翼部320の外側辺320aとの間の距離が約2mmであった。また、撹拌翼300の回転数を300rpmに設定した。 The stirring blade 300 shown in FIG. 3 has a stirring blade diameter of about 95% with respect to the inner diameter (diameter) of the beaker, and the distance between the inner peripheral surface of the beaker and the outer side 320a of the forced flow generation blade portion 320 is about It was 2 mm. Moreover, the rotation speed of the stirring blade 300 was set to 300 rpm.
(積層体の作製及び評価)
 上記で得られた銀インク組成物を使用した点、80℃で1時間焼成(加熱処理)するのに代えて、80℃で1分間、オーブン内で加熱処理した後、さらに相対湿度99%の加湿条件下において80℃で2分間加熱(焼成)処理した点以外は、実施例1と同様に、積層体を作製し、評価した。結果を表5に示す。
(Production and evaluation of laminate)
Using the silver ink composition obtained above, instead of baking (heat treatment) at 80 ° C. for 1 hour, after heat treatment in an oven at 80 ° C. for 1 minute, the relative humidity of 99% was further increased. A laminate was prepared and evaluated in the same manner as in Example 1 except that it was heated (baked) at 80 ° C. for 2 minutes under humidified conditions. The results are shown in Table 5.
[実施例8]
(銀インク組成物の作製)
 液温が50℃以下となるように、ビーカー中で2-エチルヘキシルアミン(後述する2-メチルアセト酢酸銀に対して1.5倍モル量)に2-メチルアセト酢酸銀を添加して、メカニカルスターラーを用いて15分間撹拌することにより、液状物を得た。メカニカルスターラーの撹拌翼には、実施例1の場合と同じアンカー形状のものを使用した。
 この液状物に、反応液の温度が50℃以下となるように、ギ酸(2-メチルアセト酢酸銀に対して0.4倍モル量)を30分間かけて滴下した。ギ酸の滴下終了後、25℃にて反応液をさらに1時間撹拌した後、25℃を維持したまま、3,5-ジメチル-1-ヘキシン-3-オール(エアープロダクツジャパン社製「サーフィノール61」、以下、「DMHO」と略記する)(2-メチルアセト酢酸銀に対して0.04倍モル量)を添加し、反応液をさらに約2分間撹拌することにより、銀インク組成物を得た。カルボン酸銀の配合量(モル数)は、実施例1と同じとした。結果を表4に示す。
[Example 8]
(Preparation of silver ink composition)
Add 2-methylacetoacetic acid silver to 2-ethylhexylamine (1.5-fold molar amount with respect to silver 2-methylacetoacetate described later) in a beaker so that the liquid temperature is 50 ° C. or less. The mixture was stirred for 15 minutes to obtain a liquid material. As the stirring blade of the mechanical stirrer, the same anchor shape as in Example 1 was used.
To this liquid, formic acid (0.4 times molar amount with respect to silver 2-methylacetoacetate) was added dropwise over 30 minutes so that the temperature of the reaction solution was 50 ° C. or lower. After completion of the formic acid dropwise addition, the reaction solution was further stirred at 25 ° C. for 1 hour, and while maintaining the temperature at 25 ° C., 3,5-dimethyl-1-hexyn-3-ol (“Surfinol 61” manufactured by Air Products Japan Co., Ltd.) was used. ”(Hereinafter abbreviated as“ DMHO ”) (0.04 times the molar amount with respect to silver 2-methylacetoacetate) was added, and the reaction liquid was further stirred for about 2 minutes to obtain a silver ink composition. . The amount (number of moles) of silver carboxylate was the same as in Example 1. The results are shown in Table 4.
(積層体の作製及び評価)
 上記で得られた銀インク組成物を使用した点、80℃で1時間焼成(加熱処理)するのに代えて、120℃で1時間焼成(加熱)処理した点以外は、実施例1と同様に、積層体を作製し、評価した。結果を表5に示す。
(Production and evaluation of laminate)
The same as Example 1 except that the silver ink composition obtained above was used, and that it was baked (heated) at 120 ° C. for 1 hour instead of baked (heated) at 80 ° C. for 1 hour. Then, a laminate was prepared and evaluated. The results are shown in Table 5.
[実施例9]
(銀インク組成物の作製、積層体の作製及び評価)
 銀インク組成物作製時の各成分とその配合量を表3に示すとおりとした点以外は、実施例8と同様に、銀インク組成物を作製し、積層体を作製して、評価した。結果を表5に示す。
[Example 9]
(Preparation of silver ink composition, preparation and evaluation of laminate)
A silver ink composition was produced, and a laminate was produced and evaluated in the same manner as in Example 8 except that the components and the blending amounts thereof when producing the silver ink composition were as shown in Table 3. The results are shown in Table 5.
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
 実施例4、6~9の積層体では、銀インク組成物の種類を変えても、また、実施例5の積層体では、アンカー形状が異なる撹拌翼を用いて銀インク組成物を作製しても、いずれも金属銀層は、体積抵抗率5μΩ・cm以下、表面粗さ70nm以下を達成することができた。 In the laminates of Examples 4 and 6 to 9, even if the type of the silver ink composition was changed, in the laminate of Example 5, the silver ink composition was prepared using stirring blades having different anchor shapes. In both cases, the metallic silver layer was able to achieve a volume resistivity of 5 μΩ · cm or less and a surface roughness of 70 nm or less.
 本発明によれば、基材と前記基材上に形成された金属銀層とを備えた積層体であって、高温での加熱処理を行うことなく製造可能であり、上記の金属銀層が、再現性良く十分に低減された体積抵抗率及び表面粗さを示す、積層体を提供することができる。 According to the present invention, a laminate comprising a substrate and a metallic silver layer formed on the substrate, which can be produced without performing a heat treatment at a high temperature, It is possible to provide a laminate that exhibits sufficiently reduced volume resistivity and surface roughness with good reproducibility.
 100,200,300 撹拌翼
 110,210,310 駆動軸
 120,220,320 強制流動発生翼部
 120a,320a 外側辺
 130 連結部
 330 第1連結部
 340 第2連結部
 350 第3連結部
100, 200, 300 Stirring blade 110, 210, 310 Drive shaft 120, 220, 320 Forced flow generating blade portion 120a, 320a Outer side 130 Connecting portion 330 First connecting portion 340 Second connecting portion 350 Third connecting portion

Claims (5)

  1.  基材と前記基材上に形成された金属銀層とを備え、前記金属銀層の体積抵抗率が5μΩ・cm以下であり、前記金属銀層の表面粗さが70nm以下である、積層体。 A laminate comprising a substrate and a metal silver layer formed on the substrate, wherein the metal silver layer has a volume resistivity of 5 μΩ · cm or less, and a surface roughness of the metal silver layer is 70 nm or less. .
  2.  前記金属銀層は、前記基材上に付着された銀インク組成物を固化して形成されたものであり、
     前記銀インク組成物は、
     式「-COOAg」で表される基を有するカルボン酸銀と、
     炭素数25以下のアミン化合物、炭素数25以下の第4級アンモニウム塩、アンモニア及び前記アミン化合物又はアンモニアが酸と反応してなるアンモニウム塩からなる群から選択される一種以上の含窒素化合物と、
     シュウ酸、ヒドラジン及び下記一般式(5)で表される化合物からなる群から選択される一種以上の還元性化合物、及びアルコールのいずれか一方又は両方と、の混合物を、撹拌槽内で撹拌翼を回転させることにより撹拌する工程を含む製造方法により製造されたものである、請求項1に記載の積層体。
     H-C(=O)-R21…(5)
     (式中、R21は、炭素数20以下のアルキル基、アルコキシ基若しくはN,N-ジアルキルアミノ基、水酸基又はアミノ基である。)
    The metallic silver layer is formed by solidifying a silver ink composition attached on the base material,
    The silver ink composition is
    Silver carboxylate having a group represented by the formula “—COOAg”;
    One or more nitrogen-containing compounds selected from the group consisting of an amine compound having 25 or less carbon atoms, a quaternary ammonium salt having 25 or less carbon atoms, ammonia and an ammonium salt obtained by reacting the amine compound or ammonia with an acid;
    A mixture of oxalic acid, hydrazine and one or more reducing compounds selected from the group consisting of compounds represented by the following general formula (5) and one or both of alcohols in a stirring vessel The laminate according to claim 1, which is produced by a production method including a step of stirring by rotating the material.
    HC (═O) —R 21 (5)
    (Wherein R 21 represents an alkyl group having 20 or less carbon atoms, an alkoxy group, or an N, N-dialkylamino group, a hydroxyl group, or an amino group.)
  3.  前記撹拌翼は、駆動軸と、撹拌槽の内周面の近傍を回転移動する外側辺を有する強制流動発生翼部と、前記駆動軸と前記強制流動発生翼部とを連結する連結部とを備えるものである、請求項2に記載の積層体。 The stirring blade includes a drive shaft, a forced flow generating blade portion having an outer side that rotates and moves in the vicinity of the inner peripheral surface of the stirring tank, and a connecting portion that connects the drive shaft and the forced flow generating blade portion. The laminate according to claim 2, which is provided.
  4.  前記基材の厚さが10~5000μmである、請求項1~3のいずれか一項に記載の積層体。 The laminate according to any one of claims 1 to 3, wherein the base material has a thickness of 10 to 5000 µm.
  5.  前記金属銀層の厚さが0.5~20μmである、請求項1~4のいずれか一項に記載の積層体。 The laminate according to any one of claims 1 to 4, wherein the metal silver layer has a thickness of 0.5 to 20 µm.
PCT/JP2015/059288 2014-03-28 2015-03-26 Laminated body WO2015147124A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016510464A JPWO2015147124A1 (en) 2014-03-28 2015-03-26 Laminate

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014070354 2014-03-28
JP2014-070354 2014-03-28

Publications (1)

Publication Number Publication Date
WO2015147124A1 true WO2015147124A1 (en) 2015-10-01

Family

ID=54195631

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/059288 WO2015147124A1 (en) 2014-03-28 2015-03-26 Laminated body

Country Status (2)

Country Link
JP (1) JPWO2015147124A1 (en)
WO (1) WO2015147124A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017226798A (en) * 2016-06-24 2017-12-28 トッパン・フォームズ株式会社 Silver ink composition
JP2017226796A (en) * 2016-06-24 2017-12-28 トッパン・フォームズ株式会社 Silver ink composition
JP2017226797A (en) * 2016-06-24 2017-12-28 トッパン・フォームズ株式会社 Processing method of silver ink composition

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009114232A (en) * 2007-11-01 2009-05-28 Osaka Industrial Promotion Organization INK CONTAINING SILVER beta-KETOCARBOXYLATE
JP2013067703A (en) * 2011-09-21 2013-04-18 Canon Finetech Inc Ink for recording, inkjet recording method, and recorded matter
JP5187913B2 (en) * 2007-12-06 2013-04-24 独立行政法人産業技術総合研究所 Pattern drawing method and apparatus
JP2013207624A (en) * 2012-03-29 2013-10-07 Dowa Electronics Materials Co Ltd Booster antenna and method of manufacturing the same
JP2014034602A (en) * 2012-08-07 2014-02-24 Tanaka Kikinzoku Kogyo Kk Silver fine particle ink, silver fine particle sintered body and method for manufacturing silver fine particle ink
JP2014049644A (en) * 2012-08-31 2014-03-17 Toppan Forms Co Ltd Antenna structure, data receiver/transmitter and communication apparatus
WO2014051066A1 (en) * 2012-09-28 2014-04-03 トッパン・フォームズ株式会社 Silver ink composition, conductor and communication device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009114232A (en) * 2007-11-01 2009-05-28 Osaka Industrial Promotion Organization INK CONTAINING SILVER beta-KETOCARBOXYLATE
JP5187913B2 (en) * 2007-12-06 2013-04-24 独立行政法人産業技術総合研究所 Pattern drawing method and apparatus
JP2013067703A (en) * 2011-09-21 2013-04-18 Canon Finetech Inc Ink for recording, inkjet recording method, and recorded matter
JP2013207624A (en) * 2012-03-29 2013-10-07 Dowa Electronics Materials Co Ltd Booster antenna and method of manufacturing the same
JP2014034602A (en) * 2012-08-07 2014-02-24 Tanaka Kikinzoku Kogyo Kk Silver fine particle ink, silver fine particle sintered body and method for manufacturing silver fine particle ink
JP2014049644A (en) * 2012-08-31 2014-03-17 Toppan Forms Co Ltd Antenna structure, data receiver/transmitter and communication apparatus
WO2014051066A1 (en) * 2012-09-28 2014-04-03 トッパン・フォームズ株式会社 Silver ink composition, conductor and communication device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017226798A (en) * 2016-06-24 2017-12-28 トッパン・フォームズ株式会社 Silver ink composition
JP2017226796A (en) * 2016-06-24 2017-12-28 トッパン・フォームズ株式会社 Silver ink composition
JP2017226797A (en) * 2016-06-24 2017-12-28 トッパン・フォームズ株式会社 Processing method of silver ink composition

Also Published As

Publication number Publication date
JPWO2015147124A1 (en) 2017-04-13

Similar Documents

Publication Publication Date Title
WO2015111715A1 (en) Wiring board
WO2014051066A1 (en) Silver ink composition, conductor and communication device
JP6289841B2 (en) Method for producing silver ink composition
WO2014157581A1 (en) Laminate and circuit board
WO2015147124A1 (en) Laminated body
JP2014110514A (en) Antenna structure, communication device, and method of manufacturing antenna structure
JP6278659B2 (en) Silver ink composition, conductor and electronic device
WO2018062040A1 (en) Silver ink composition and laminate
JP6821422B2 (en) Manufacturing method of metal thin film base material
JP6289840B2 (en) Silver ink composition, conductor and communication device
WO2016052292A1 (en) Silver metal, method for producing silver metal, and laminate
JP6604468B2 (en) Method for producing metallic silver
JP6270587B2 (en) Silver ink composition and method for producing the same
JP6346486B2 (en) Laminate, data transmitter / receiver, communication device, and transparent conductive film
JP6678475B2 (en) Metal ink composition, wiring board and method of forming wiring
JP2015181160A (en) Conducting pattern forming method, and conductive wiring line
WO2017057188A1 (en) Silver ink composition, process for producing same, and layered product
WO2014051083A1 (en) Silver ink composition and heat treatment product
JP6650295B2 (en) Wiring board
JP6314012B2 (en) Method for producing silver ink composition
JP2019197682A (en) Laminate
JP6289988B2 (en) Method for producing silver ink composition
JP2014080580A (en) Silver ink composition and heat treatment product
JP6230781B2 (en) LAMINATE, DATA TRANSMITTER / TRANSMITTER, COMMUNICATION DEVICE, AND LAMINATE MANUFACTURING METHOD
JP2014089926A (en) Silver film

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15768048

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016510464

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase
122 Ep: pct application non-entry in european phase

Ref document number: 15768048

Country of ref document: EP

Kind code of ref document: A1