WO2017057188A1 - Silver ink composition, process for producing same, and layered product - Google Patents

Silver ink composition, process for producing same, and layered product Download PDF

Info

Publication number
WO2017057188A1
WO2017057188A1 PCT/JP2016/078013 JP2016078013W WO2017057188A1 WO 2017057188 A1 WO2017057188 A1 WO 2017057188A1 JP 2016078013 W JP2016078013 W JP 2016078013W WO 2017057188 A1 WO2017057188 A1 WO 2017057188A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
silver
ink composition
silver ink
carbon atoms
Prior art date
Application number
PCT/JP2016/078013
Other languages
French (fr)
Japanese (ja)
Inventor
久美 廣瀬
Original Assignee
トッパン・フォームズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トッパン・フォームズ株式会社 filed Critical トッパン・フォームズ株式会社
Priority to JP2017543212A priority Critical patent/JP6802798B2/en
Publication of WO2017057188A1 publication Critical patent/WO2017057188A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/02Printing inks
    • C09D11/03Printing inks characterised by features other than the chemical nature of the binder
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/02Printing inks
    • C09D11/03Printing inks characterised by features other than the chemical nature of the binder
    • C09D11/033Printing inks characterised by features other than the chemical nature of the binder characterised by the solvent
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/52Electrically conductive inks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables

Definitions

  • the present invention relates to a novel silver ink composition, a method for producing the same, and a laminate.
  • Metallic silver is widely used as a recording material, a printing plate material, and a highly conductive material because of its excellent conductivity.
  • a method for producing metallic silver for example, a method using a silver ink composition containing a metallic silver forming material that is decomposed by heating or the like to form metallic silver is known.
  • the silver ink composition is attached to a target location, and metal silver can be easily formed by decomposing the forming material of the metallic silver under various conditions.
  • various printing methods can be applied, it is extremely versatile.
  • Examples of such a silver ink composition include silver carboxylate having a group represented by the formula “—COOAg”, an amine compound having a carbon number of 25 or less, a quaternary ammonium salt, ammonia, and the amine compound or 1 selected from the group consisting of one or more nitrogen-containing compounds selected from the group consisting of ammonium salts obtained by reacting ammonia with an acid, and oxalic acid, hydrazine, and a compound represented by the following general formula (5)
  • a silver ink composition in which at least one kind of reducing agent is blended is known (see Patent Document 1).
  • R 21 represents an alkyl group having 20 or less carbon atoms, an alkoxy group, or an N, N-dialkylamino group, a hydroxyl group, or an amino group.
  • the silver ink composition described in Patent Document 1 is extremely useful because it can form metallic silver having sufficient conductivity without performing heat treatment at a high temperature.
  • the application range of silver ink compositions has become extremely wide, their usage methods have diversified, and the storage forms when not in use have also diversified, further improving the storage stability of silver ink compositions than before. Improvement has come to be desired.
  • the storage stability of the silver ink composition is not sufficient, the conductivity of metallic silver formed using the silver ink composition after storage may be lowered.
  • the silver ink composition described in Patent Document 1 has sufficient storage stability that has been desired in the past, but it is unclear whether further improvement in storage stability is possible. .
  • an object of the present invention is to provide a novel silver ink composition excellent in storage stability and a method for producing the same.
  • the present invention provides a silver carboxylate having a group represented by the formula “—COOAg”, an amine compound having a carbon number of 25 or less, a quaternary ammonium salt, ammonia, and the amine compound or ammonia.
  • a silver carboxylate having a group represented by the formula “—COOAg”
  • an amine compound having a carbon number of 25 or less a quaternary ammonium salt, ammonia, and the amine compound or ammonia.
  • a silver ink composition comprising the above reducing agent and an acetylene alcohol having 9 or more carbon atoms represented by the following general formula (20).
  • R 21 represents an alkyl group having 20 or less carbon atoms, an alkoxy group, or an N, N-dialkylamino group, a hydroxyl group, or an amino group.
  • R ′ and R ′′ are each independently a hydrogen atom, an alkyl group, or a phenyl group in which one or more hydrogen atoms may be substituted with a substituent, provided that R ′ and R ′ At least one of 'is the alkyl group or the phenyl group.
  • the total number of carbon atoms of R ′ and R ′′ may be 6-9.
  • the silver ink composition of the present invention may be formulated with acetylene alcohol represented by the following general formula (21).
  • R 9 ′ and R 9 ′′ are each independently a hydrogen atom or an alkyl group, provided that the total number of carbon atoms of R 9 ′ and R 9 ′′ is 0 to 5)
  • the present invention also relates to a silver carboxylate having a group represented by the formula “—COOAg”, an amine compound having a carbon number of 25 or less, a quaternary ammonium salt, ammonia, and the amine compound or ammonia reacting with an acid.
  • a silver carboxylate having a group represented by the formula “—COOAg”
  • an amine compound having a carbon number of 25 or less a quaternary ammonium salt, ammonia, and the amine compound or ammonia reacting with an acid.
  • the manufacturing method of the silver ink composition which has the process of mix
  • R 21 represents an alkyl group having 20 or less carbon atoms, an alkoxy group, or an N, N-dialkylamino group, a hydroxyl group, or an amino group.
  • R ′ and R ′′ are each independently a hydrogen atom, an alkyl group, or a phenyl group in which one or more hydrogen atoms may be substituted with a substituent, provided that R ′ and R ′ At least one of 'is the alkyl group or the phenyl group.
  • the present invention also provides a laminate in which a silver layer is laminated on the surface of a substrate, and the silver layer is formed using the silver ink composition.
  • the silver ink composition of the present invention is excellent in storage stability.
  • the silver ink composition having excellent storage stability can be obtained by the production method of the present invention.
  • the laminate of the present invention comprises metallic silver formed using the silver ink composition of the present invention, and this metallic silver is excellent in conductivity.
  • the silver ink composition of the present invention comprises a silver carboxylate having a group represented by the formula “—COOAg”, an amine compound having a carbon number of 25 or less, a quaternary ammonium salt, ammonia, and the amine compound or ammonia is an acid.
  • a reducing agent and an acetylene alcohol having 9 or more carbon atoms represented by the following general formula (20) are blended.
  • R 21 represents an alkyl group having 20 or less carbon atoms, an alkoxy group, or an N, N-dialkylamino group, a hydroxyl group, or an amino group.
  • R ′ and R ′′ are each independently a hydrogen atom, an alkyl group, or a phenyl group in which one or more hydrogen atoms may be substituted with a substituent, provided that R ′ and R ′ At least one of 'is the alkyl group or the phenyl group.
  • the silver ink composition of the present invention has storage stability superior to that of conventional silver ink compositions by combining specific compounding components as described above.
  • the silver ink composition of the present invention is preferably in a liquid state, and preferably one in which the silver carboxylate is uniformly dispersed.
  • the silver carboxylate in the present invention has a group represented by the formula “—COOAg”, and the number of groups represented by the formula “—COOAg” may be only one or two or more. Further, the position of the group represented by the formula “—COOAg” in the silver carboxylate is not particularly limited. In this invention, silver carboxylate may be used individually by 1 type, may use 2 or more types together, and when using 2 or more types together, the combination and ratio can be adjusted arbitrarily.
  • the silver carboxylate is represented by the following general formula (1) ⁇ -ketocarboxylate silver (hereinafter sometimes abbreviated as “ ⁇ -ketocarboxylate (1)”) and the following general formula (4).
  • ⁇ -ketocarboxylate (1) ⁇ -ketocarboxylate silver
  • (4) One or more selected from the group consisting of silver carboxylates (hereinafter sometimes abbreviated as “silver carboxylate (4)”).
  • the simple description of “silver carboxylate” is not limited to “silver ⁇ -ketocarboxylate (1)” and “silver carboxylate (4)”, unless otherwise specified. It is intended to mean “silver carboxylate having a group represented by the formula“ —COOAg ””.
  • R represents an aliphatic hydrocarbon group having 1 to 20 carbon atoms in which one or more hydrogen atoms may be substituted with a substituent, a phenyl group, a hydroxyl group, an amino group, or a group represented by the general formula “R 1 -CY 1 2- ",” CY 1 3- “,” R 1 -CHY 1- ",” R 2 O- “,” R 5 R 4 N- “,” (R 3 O) 2 CY 1- "or” R 6 —C ( ⁇ O) —CY 1 2 — ”;
  • Y 1 is each independently a fluorine atom, a chlorine atom, a bromine atom or a hydrogen atom;
  • R 1 is an aliphatic hydrocarbon group having 1 to 19 carbon atoms or a phenyl group;
  • R 2 is an aliphatic having 1 to 20 carbon atoms
  • R 3 is an aliphatic hydrocarbon group having 1 to 16 carbon atoms;
  • R 4 and R 5 are each independently an alipha
  • R 8 is an aliphatic hydrocarbon group having 1 to 19 carbon atoms, a carboxy group, or a group represented by the formula “—C ( ⁇ O) —OAg”, wherein the aliphatic hydrocarbon group is a methylene group. And one or more of the methylene groups may be substituted with a carbonyl group.
  • the silver ⁇ -ketocarboxylate (1) is represented by the general formula (1).
  • R is an aliphatic hydrocarbon group having 1 to 20 carbon atoms, a phenyl group, a hydroxyl group, an amino group, or a group represented by the general formula “R 1 -CY 1 ” in which one or more hydrogen atoms may be substituted with a substituent.
  • the aliphatic hydrocarbon group having 1 to 20 carbon atoms in R may be any of linear, branched and cyclic (aliphatic cyclic group), and may be monocyclic or polycyclic when cyclic. . Further, the aliphatic hydrocarbon group may be either a saturated aliphatic hydrocarbon group or an unsaturated aliphatic hydrocarbon group. The aliphatic hydrocarbon group preferably has 1 to 10 carbon atoms, and more preferably 1 to 6 carbon atoms. Preferred examples of the aliphatic hydrocarbon group for R include an alkyl group, an alkenyl group, and an alkynyl group.
  • linear or branched alkyl group in R examples include, for example, methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, sec-butyl group, and tert-butyl group.
  • N-pentyl group isopentyl group, neopentyl group, tert-pentyl group, 1-methylbutyl group, 2-methylbutyl group, n-hexyl group, 1-methylpentyl group, 2-methylpentyl group, 3-methylpentyl group, 4-methylpentyl group, 1,1-dimethylbutyl group, 2,2-dimethylbutyl group, 3,3-dimethylbutyl group, 2,3-dimethylbutyl group, 1-ethylbutyl group, 2-ethylbutyl group, 3- Ethylbutyl group, 1-ethyl-1-methylpropyl group, n-heptyl group, 1-methylhexyl group, 2-methylhexyl group, 3-methylhexyl group Group, 4-methylhexyl group, 5-methylhexyl group, 1,1-dimethylpentyl group, 2,2-dimethylpentyl group, 2,3-dimethylp
  • Examples of the cyclic alkyl group in R include, for example, a cyclopropyl group, cyclobutyl group, cyclopentyl group, cyclohexyl group, cycloheptyl group, cyclooctyl group, cyclononyl group, cyclodecyl group, norbornyl group, isobornyl group, 1-adamantyl group, Examples thereof include a 2-adamantyl group and a tricyclodecyl group.
  • Examples of the alkenyl group in R include a group in which one single bond (C—C) between carbon atoms of the alkyl group in R is substituted with a double bond (C ⁇ C).
  • Examples of the alkenyl group include a vinyl group (ethenyl group, —CH ⁇ CH 2 ), an allyl group (2-propenyl group, —CH 2 —CH ⁇ CH 2 ), and a 1-propenyl group (—CH ⁇ CH—CH 3 ), isopropenyl group (—C (CH 3 ) ⁇ CH 2 ), 1-butenyl group (—CH ⁇ CH—CH 2 —CH 3 ), 2-butenyl group (—CH 2 —CH ⁇ CH) —CH 3 ), 3-butenyl group (—CH 2 —CH 2 —CH ⁇ CH 2 ), cyclohexenyl group, cyclopentenyl group and the like.
  • alkynyl group in R examples include a group in which one single bond (C—C) between carbon atoms of the alkyl group in R is substituted with a triple bond (C ⁇ C).
  • alkynyl group examples include ethynyl group (—C ⁇ CH), propargyl group (—CH 2 —C ⁇ CH), and the like.
  • one or more hydrogen atoms may be substituted with a substituent.
  • Preferred examples of the substituent include a fluorine atom, a chlorine atom, and a bromine atom.
  • the number and position of the substituents are not particularly limited. When the number of substituents is plural, the plural substituents may be the same as or different from each other. That is, all the substituents may be the same, all the substituents may be different, or only some of the substituents may be different.
  • one or more hydrogen atoms may be substituted with a substituent.
  • the substituent include a saturated or unsaturated monovalent aliphatic hydrocarbon group having 1 to 16 carbon atoms, a monovalent group formed by bonding the aliphatic hydrocarbon group to an oxygen atom, fluorine An atom, a chlorine atom, a bromine atom, a hydroxyl group (—OH), a cyano group (—C ⁇ N), a phenoxy group (—O—C 6 H 5 ), and the like.
  • the number and position of the substituent are not particularly limited.
  • the plural substituents may be the same as or different from each other.
  • Examples of the aliphatic hydrocarbon group which is a substituent include the same aliphatic hydrocarbon groups as those described above for R except that the number of carbon atoms is 1 to 16.
  • Y 1 in R is independently a fluorine atom, a chlorine atom, a bromine atom or a hydrogen atom.
  • a plurality of Y 1 may be the same as each other. May be different.
  • R 1 in R is an aliphatic hydrocarbon group having 1 to 19 carbon atoms or a phenyl group (C 6 H 5 —). Examples of the aliphatic hydrocarbon group for R 1 include those similar to the aliphatic hydrocarbon group for R except that the aliphatic hydrocarbon group has 1 to 19 carbon atoms.
  • R 2 in R is an aliphatic hydrocarbon group having 1 to 20 carbon atoms, and examples thereof include the same as the aliphatic hydrocarbon group in R.
  • R 3 in R is an aliphatic hydrocarbon group having 1 to 16 carbon atoms. Examples of the aliphatic hydrocarbon group for R 3 include the same aliphatic hydrocarbon groups as those described above for R except that the number of carbon atoms is 1 to 16.
  • R 4 and R 5 in R are each independently an aliphatic hydrocarbon group having 1 to 18 carbon atoms. That is, R 4 and R 5 may be the same or different from each other, and the aliphatic hydrocarbon group in R 4 and R 5 is, for example, the above in R except that it has 1 to 18 carbon atoms. The thing similar to an aliphatic hydrocarbon group is mentioned.
  • R 6 in R is an aliphatic hydrocarbon group having 1 to 19 carbon atoms, a hydroxyl group, or a group represented by the formula “AgO—”. Examples of the aliphatic hydrocarbon group for R 6 include the same aliphatic hydrocarbon groups as those described above for R except that the number of carbon atoms is 1 to 19.
  • R is a linear or branched alkyl group, a group represented by the general formula “R 6 —C ( ⁇ O) —CY 1 2 —”, a hydroxyl group, or a phenyl group.
  • R 6 is preferably a linear or branched alkyl group, a hydroxyl group, or a group represented by the formula “AgO—”.
  • each X 1 independently represents a hydrogen atom, an aliphatic hydrocarbon group having 1 to 20 carbon atoms, a halogen atom, a phenyl group in which one or more hydrogen atoms may be substituted with a substituent, or A benzyl group (C 6 H 5 —CH 2 —), a cyano group, an N-phthaloyl-3-aminopropyl group, a 2-ethoxyvinyl group (C 2 H 5 —O—CH ⁇ CH—), or the general formula “R 7 O— ”,“ R 7 S— ”,“ R 7 —C ( ⁇ O) — ”or“ R 7 —C ( ⁇ O) —O— ”.
  • Examples of the aliphatic hydrocarbon group having 1 to 20 carbon atoms in X 1 include those similar to the aliphatic hydrocarbon group in R.
  • the halogen atom in X 1 for example, a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom.
  • one or more hydrogen atoms may be substituted with a substituent.
  • Preferred examples of the substituent include a halogen atom (fluorine atom, chlorine atom, bromine atom, iodine atom), nitro group (—NO 2 ) and the like.
  • the number and position of the substituent are not particularly limited. When the number of substituents is plural, the plural substituents may be the same as or different from each other.
  • R 7 in X 1 represents an aliphatic hydrocarbon group having 1 to 10 carbon atoms, a thienyl group (C 4 H 3 S—), a phenyl group in which one or more hydrogen atoms may be substituted with a substituent, or A diphenyl group (biphenyl group, C 6 H 5 —C 6 H 4 —);
  • Examples of the aliphatic hydrocarbon group for R 7 include the same aliphatic hydrocarbon groups as those described above for R except that the number of carbon atoms is 1 to 10.
  • the number and position of the substituent are not particularly limited. When the number of substituents is plural, the plural substituents may be the same as or different from each other.
  • R 7 is a thienyl group or a diphenyl group, there are no particular limitations on the bonding position of these groups with an adjacent group or atom (oxygen atom, sulfur atom, carbonyl group, carbonyloxy group) in X 1 .
  • the thienyl group may be either a 2-thienyl group or a 3-thienyl group.
  • two X 1 s may be bonded as one group through a double bond with a carbon atom sandwiched between two carbonyl groups.
  • Examples of such X 1 include a group represented by the formula “ ⁇ CH—C 6 H 4 —NO 2 ”.
  • X 1 is preferably a hydrogen atom, a linear or branched alkyl group, a benzyl group, or a group represented by the general formula “R 7 —C ( ⁇ O) —” among the above. It is preferable that at least one X 1 is a hydrogen atom.
  • the concentration of the remaining raw materials and impurities can be further reduced.
  • the smaller the raw materials and impurities for example, the better the contact between the formed metal silvers, the easier the conduction, and the lower the resistivity.
  • the ⁇ -ketocarboxylate (1) is decomposed at a low temperature of preferably 60 to 210 ° C., more preferably 60 to 200 ° C. without using a reducing agent known in the art, as will be described later.
  • Metal silver can be formed.
  • the silver ⁇ -ketocarboxylate (1) is decomposed at a lower temperature to form metallic silver when used in combination with a reducing agent.
  • the reducing agent will be described later.
  • the silver ⁇ -ketocarboxylate (1) may be used singly or in combination of two or more, and when two or more are used in combination, the combination and ratio are as follows: Can be adjusted arbitrarily.
  • the silver carboxylate (4) is represented by the general formula (4).
  • R 8 is an aliphatic hydrocarbon group having 1 to 19 carbon atoms, a carboxy group (—COOH), or a group represented by the formula “—C ( ⁇ O) —OAg”.
  • Examples of the aliphatic hydrocarbon group for R 8 include those similar to the aliphatic hydrocarbon group for R except that the aliphatic hydrocarbon group has 1 to 19 carbon atoms. However, the aliphatic hydrocarbon group for R 8 preferably has 1 to 15 carbon atoms, and more preferably 1 to 10 carbon atoms.
  • the aliphatic hydrocarbon group for R 8 has a methylene group (—CH 2 —)
  • one or more of the methylene groups may be substituted with a carbonyl group.
  • the number and position of the methylene groups that may be substituted with a carbonyl group are not particularly limited, and all methylene groups may be substituted with a carbonyl group.
  • the “methylene group” is not only a single group represented by the formula “—CH 2 —” but also one of alkylene groups in which a plurality of groups represented by the formula “—CH 2 —” are linked. And a group represented by the formula “—CH 2 —”.
  • Silver carboxylate (4) includes silver pyruvate (CH 3 —C ( ⁇ O) —C ( ⁇ O) —OAg), silver acetate (CH 3 —C ( ⁇ O) —OAg), silver butyrate (CH 3 — (CH 2 ) 2 —C ( ⁇ O) —OAg), silver isobutyrate ((CH 3 ) 2 CH—C ( ⁇ O) —OAg), silver 2-ethylhexanoate (CH 3 — (CH 2 ) 3 —CH (CH 2 CH 3 ) —C ( ⁇ O) —OAg), silver neodecanoate (CH 3 — (CH 2 ) 5 —C (CH 3 ) 2 —C ( ⁇ O) —OAg), Shu It is preferably silver oxide (AgO—C ( ⁇ O) —C ( ⁇ O) —OAg) or silver malonate (AgO—C ( ⁇ O) —CH 2 —C ( ⁇ O) —OAg).
  • silver oxalate (AgO—C ( ⁇ O) —C ( ⁇ O) —OAg) and silver malonate (AgO—C ( ⁇ O) —CH 2 —C ( ⁇ O) —OAg)
  • silver oxalate (AgO—C ( ⁇ O) —C ( ⁇ O) —OAg)
  • silver malonate (AgO—C ( ⁇ O) —CH 2 —C ( ⁇ O) —OAg)
  • —COOAg one of the groups represented by the formula “—COOH” (HO—C ( ⁇ O) —C ( ⁇ O) —OAg, HO)
  • —C ( ⁇ O) —CH 2 —C ( ⁇ O) —OAg is —COOH
  • silver carboxylate (4) is also used in the conductor (metal silver) formed by solidification treatment such as drying treatment or heating (firing) treatment. The concentration can be further reduced. And silver carboxylate (4) is also decomposed
  • silver carboxylate (4) may be used individually by 1 type, may use 2 or more types together, and when using 2 or more types together, the combination and ratio are arbitrary. Can be adjusted.
  • the silver carboxylate is silver 2-methylacetoacetate, silver acetoacetate, silver 2-ethylacetoacetate, silver propionylacetate, silver isobutyrylacetate, silver pivaloylacetate, silver caproylacetate, silver 2-n-butylacetoacetate, 2-benzylacetoacetate Silver acetate, silver benzoyl acetate, silver pivaloyl acetoacetate, silver isobutyryl acetoacetate, silver acetone dicarboxylate, silver pyruvate, silver acetate, silver butyrate, silver isobutyrate, silver 2-ethylhexanoate, silver neodecanoate, silver One or more selected from the group consisting of silver oxide and silver malonate are preferred.
  • silver 2-methylacetoacetate and silver acetoacetate are excellent in compatibility with a nitrogen-containing compound (particularly an amine compound) described later, and are particularly suitable for increasing the concentration of silver ink compositions. It is mentioned as a thing.
  • the content of silver derived from the silver carboxylate is preferably 5% by mass or more, and more preferably 10% by mass or more.
  • the formed conductor metal silver
  • the upper limit of the silver content is not particularly limited as long as the effects of the present invention are not impaired, but it is preferably 25% by mass in consideration of the handleability of the silver ink composition.
  • silver derived from carboxylate is synonymous with silver in silver carboxylate blended at the time of producing the silver ink composition unless otherwise specified, and continues after blending.
  • the nitrogen-containing compound in the present invention includes an amine compound having 25 or less carbon atoms (hereinafter sometimes abbreviated as “amine compound”), a quaternary ammonium salt having 25 or less carbon atoms (hereinafter, “quaternary ammonium salt”).
  • Ammonia an ammonium salt formed by a reaction of an amine compound having 25 or less carbon atoms with an acid (hereinafter sometimes abbreviated as “ammonium salt derived from an amine compound”), and ammonia as an acid. It is one or more selected from the group consisting of ammonium salts obtained by reaction (hereinafter sometimes abbreviated as “ammonium salts derived from ammonia”). That is, the nitrogen-containing compound to be blended may be only one type, or two or more types, and when two or more types are used in combination, the combination and ratio can be arbitrarily adjusted.
  • the amine compound has 1 to 25 carbon atoms, and may be any of primary amine, secondary amine, and tertiary amine.
  • the quaternary ammonium salt has 4 to 25 carbon atoms.
  • the amine compound and the quaternary ammonium salt may be either chain or cyclic. Further, the number of nitrogen atoms constituting the amine moiety or ammonium salt moiety (for example, the nitrogen atom constituting the amino group (—NH 2 ) of the primary amine) may be one, or two or more.
  • Examples of the primary amine include monoalkylamines, monoarylamines, mono (heteroaryl) amines, and diamines in which one or more hydrogen atoms may be substituted with a substituent.
  • the alkyl group constituting the monoalkylamine may be linear, branched or cyclic, and examples of such an alkyl group include the same alkyl groups as those described above for R.
  • the alkyl group is preferably a linear or branched alkyl group having 1 to 19 carbon atoms or a cyclic alkyl group having 3 to 7 carbon atoms.
  • preferable monoalkylamine examples include n-butylamine, n-hexylamine, n-octylamine, n-dodecylamine, n-octadecylamine, isobutylamine, sec-butylamine, tert-butylamine, 3 -Aminopentane, 3-methylbutylamine, 2-heptylamine (2-aminoheptane), 2-aminooctane, 2-ethylhexylamine, 1,2-dimethyl-n-propylamine and the like.
  • Examples of the aryl group constituting the monoarylamine include a phenyl group, a 1-naphthyl group, and a 2-naphthyl group.
  • the aryl group preferably has 6 to 10 carbon atoms.
  • the heteroaryl group constituting the mono (heteroaryl) amine has a heteroatom as an atom constituting the aromatic ring skeleton.
  • the heteroatom include a nitrogen atom, a sulfur atom, an oxygen atom, A boron atom etc. are mentioned.
  • the number of the said hetero atom which comprises an aromatic ring frame is not specifically limited, One may be sufficient and two or more may be sufficient. When there are two or more, these heteroatoms may be the same or different from each other. That is, these heteroatoms may all be the same, may all be different, or may be partially different.
  • the heteroaryl group may be either monocyclic or polycyclic, and the number of ring members (the number of atoms constituting the ring skeleton) is not particularly limited, but is preferably a 3- to 12-membered ring.
  • Examples of the monoaryl group having 1 to 4 nitrogen atoms as the heteroaryl group include, for example, pyrrolyl group, pyrrolinyl group, imidazolyl group, pyrazolyl group, pyridyl group, pyrimidyl group, pyrazinyl group, pyridazinyl group, triazolyl group, Examples include a tetrazolyl group, a pyrrolidinyl group, an imidazolidinyl group, a piperidinyl group, a pyrazolidinyl group, a piperazinyl group, and the like.
  • Such a heteroaryl group is preferably a 3- to 8-membered ring, and preferably a 5- to 6-membered ring. More preferred.
  • Examples of the monoaryl group having one oxygen atom as the heteroaryl group include a furanyl group, and such a heteroaryl group is preferably a 3- to 8-membered ring. More preferably, it is a member ring.
  • Examples of the monoaryl group having one sulfur atom as the heteroaryl group include a thienyl group.
  • the heteroaryl group is preferably a 3- to 8-membered ring, and preferably from 5 to 6 More preferably, it is a member ring.
  • Examples of the monoaryl group having 1 to 2 oxygen atoms and 1 to 3 nitrogen atoms as the heteroaryl group include an oxazolyl group, an isoxazolyl group, an oxadiazolyl group, and a morpholinyl group.
  • the heteroaryl group is preferably a 3- to 8-membered ring, more preferably a 5- to 6-membered ring.
  • Examples of the monoaryl group having 1 to 2 sulfur atoms and 1 to 3 nitrogen atoms as the heteroaryl group include a thiazolyl group, a thiadiazolyl group, a thiazolidinyl group, and the like.
  • the polyaryl group having 1 to 5 nitrogen atoms as the heteroaryl group include, for example, indolyl group, isoindolyl group, indolizinyl group, benzimidazolyl group, quinolyl group, isoquinolyl group, indazolyl group, benzotriazolyl group A tetrazolopyridyl group, a tetrazolopyridazinyl group, a dihydrotriazolopyridazinyl group, and the like.
  • Such a heteroaryl group is preferably a 7-12 membered ring, More preferably, it is a ring.
  • Examples of the polyaryl group having 1 to 3 sulfur atoms as the heteroaryl group include a dithianaphthalenyl group and a benzothiophenyl group.
  • Such a heteroaryl group has 7 to 12 members.
  • a ring is preferable, and a 9- to 10-membered ring is more preferable.
  • Examples of the polyaryl group having 1 to 2 oxygen atoms and 1 to 3 nitrogen atoms as the heteroaryl group include a benzoxazolyl group and a benzoxdiazolyl group.
  • the heteroaryl group is preferably a 7-12 membered ring, more preferably a 9-10 membered ring.
  • Examples of the polyaryl group having 1 to 2 sulfur atoms and 1 to 3 nitrogen atoms as the heteroaryl group include a benzothiazolyl group, a benzothiadiazolyl group, and the like. Is preferably a 7 to 12-membered ring, more preferably a 9 to 10-membered ring.
  • the diamine only needs to have two amino groups, and the positional relationship between the two amino groups is not particularly limited.
  • the preferred diamine for example, in the monoalkylamine, monoarylamine or mono (heteroaryl) amine, one hydrogen atom other than the hydrogen atom constituting the amino group (—NH 2 ) is substituted with an amino group. And the like.
  • the diamine preferably has 1 to 10 carbon atoms, and more preferable examples include ethylenediamine, 1,3-diaminopropane, 1,4-diaminobutane, and the like.
  • secondary amine examples include dialkylamine, diarylamine, di (heteroaryl) amine and the like in which one or more hydrogen atoms may be substituted with a substituent.
  • the alkyl group constituting the dialkylamine is the same as the alkyl group constituting the monoalkylamine, and is a linear or branched alkyl group having 1 to 9 carbon atoms, or having 3 to 7 carbon atoms.
  • a cyclic alkyl group is preferred.
  • Two alkyl groups in one molecule of dialkylamine may be the same as or different from each other.
  • Specific examples of preferable dialkylamines include N-methyl-n-hexylamine, diisobutylamine, and di (2-ethylhexyl) amine.
  • the aryl group constituting the diarylamine is the same as the aryl group constituting the monoarylamine, and preferably has 6 to 10 carbon atoms. Two aryl groups in one molecule of diarylamine may be the same as or different from each other.
  • the heteroaryl group constituting the di (heteroaryl) amine is the same as the heteroaryl group constituting the mono (heteroaryl) amine, and is preferably a 6-12 membered ring.
  • Two heteroaryl groups in one molecule of di (heteroaryl) amine may be the same or different from each other.
  • tertiary amine examples include trialkylamine and dialkylmonoarylamine in which one or more hydrogen atoms may be substituted with a substituent.
  • the alkyl group constituting the trialkylamine is the same as the alkyl group constituting the monoalkylamine, and is a linear or branched alkyl group having 1 to 19 carbon atoms, or 3 to 7 carbon atoms.
  • the cyclic alkyl group is preferably.
  • the three alkyl groups in one molecule of trialkylamine may be the same as or different from each other. That is, all three alkyl groups may be the same, all may be different, or only a part may be different.
  • Specific examples of the preferable trialkylamine include N, N-dimethyl-n-octadecylamine, N, N-dimethylcyclohexylamine and the like.
  • the alkyl group constituting the dialkyl monoarylamine is the same as the alkyl group constituting the monoalkylamine, and is a linear or branched alkyl group having 1 to 6 carbon atoms, or 3 to 3 carbon atoms. 7 is a cyclic alkyl group. Two alkyl groups in one molecule of dialkyl monoarylamine may be the same or different from each other.
  • the aryl group constituting the dialkyl monoarylamine is the same as the aryl group constituting the monoarylamine, and preferably has 6 to 10 carbon atoms.
  • examples of the quaternary ammonium salt include halogenated tetraalkylammonium, in which one or more hydrogen atoms may be substituted with a substituent.
  • the alkyl group constituting the halogenated tetraalkylammonium is the same as the alkyl group constituting the monoalkylamine, and preferably has 1 to 19 carbon atoms.
  • the four alkyl groups in one molecule of the tetraalkylammonium halide may be the same as or different from each other. That is, all four alkyl groups may be the same, all may be different, or only a part may be different.
  • halogen constituting the halogenated tetraalkylammonium examples include fluorine, chlorine, bromine, iodine and the like.
  • Specific examples of the preferred tetraalkylammonium halide include dodecyltrimethylammonium bromide.
  • the chain amine compound and the quaternary organic ammonium salt have been mainly described.
  • the nitrogen atom constituting the amine moiety or the ammonium salt moiety is a ring skeleton structure ( A heterocyclic compound which is a part of a heterocyclic skeleton structure) may be used. That is, the amine compound may be a cyclic amine, and the quaternary ammonium salt may be a cyclic ammonium salt.
  • the ring (ring containing the nitrogen atom constituting the amine moiety or ammonium salt moiety) structure may be either monocyclic or polycyclic, and the number of ring members (number of atoms constituting the ring skeleton) is also particularly limited. Any of an aliphatic ring and an aromatic ring may be sufficient. If it is a cyclic amine, as a preferable thing, a pyridine etc. will be mentioned, for example.
  • the “hydrogen atom optionally substituted with a substituent” means a nitrogen atom constituting an amine moiety or an ammonium salt moiety.
  • the number of substituents at this time is not particularly limited, and may be one or two or more, and all of the hydrogen atoms may be substituted with a substituent.
  • the plural substituents may be the same as or different from each other. That is, the plurality of substituents may all be the same, may all be different, or only some may be different. Further, the position of the substituent is not particularly limited.
  • Examples of the substituent in the amine compound and the quaternary ammonium salt include an alkyl group, an aryl group, a halogen atom, a cyano group, a nitro group, a hydroxyl group, and a trifluoromethyl group (—CF 3 ).
  • a halogen atom a fluorine atom, a chlorine atom, a bromine atom, an iodine atom etc. are mentioned, for example.
  • the alkyl group constituting the monoalkylamine has a substituent
  • the alkyl group has an aryl group as a substituent, a linear or branched alkyl group having 1 to 9 carbon atoms, or a substituent
  • a cyclic alkyl group having 3 to 7 carbon atoms and an alkyl group having 1 to 5 carbon atoms is preferable.
  • Specific examples of the monoalkylamine having such a substituent include 2-phenylethylamine, benzylamine, 2,3-dimethylcyclohexylamine and the like.
  • one or more hydrogen atoms may be further substituted with a halogen atom.
  • Examples of the monoalkylamine having a substituent substituted with a halogen atom include 2-bromobenzylamine.
  • examples of the halogen atom include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom.
  • the aryl group constituting the monoarylamine has a substituent
  • the aryl group is preferably an aryl group having 6 to 10 carbon atoms having a halogen atom as a substituent.
  • Specific examples of the monoarylamine having such a substituent include bromophenylamine.
  • examples of the halogen atom include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom.
  • the alkyl group constituting the dialkylamine has a substituent
  • the alkyl group is a linear or branched alkyl group having 1 to 9 carbon atoms and having a hydroxyl group or an aryl group as a substituent. Is preferred.
  • Specific examples of the dialkylamine having such a substituent include diethanolamine and N-methylbenzylamine.
  • the amine compound includes n-propylamine, n-butylamine, n-hexylamine, n-octylamine, n-dodecylamine, n-octadecylamine, isobutylamine, sec-butylamine, tert-butylamine, 3-aminopentane, 3-methylbutylamine, 2-heptylamine, 2-aminooctane, 2-ethylhexylamine, 2-phenylethylamine, ethylenediamine, 1,3-diaminopropane, 1,4-diaminobutane, N-methyl-n-hexylamine, Diisobutylamine, N-methylbenzylamine, di (2-ethylhexyl) amine, 1,2-dimethyl-n-propylamine, N, N-dimethyl-n-octadecylamine or N, N-dimethylcyclo
  • the ammonium salt derived from the amine compound is an ammonium salt formed by reacting the amine compound with an acid.
  • the acid may be an inorganic acid such as hydrochloric acid, sulfuric acid, or nitric acid, or may be an organic acid such as acetic acid, and the type of acid is not particularly limited.
  • Examples of the ammonium salt derived from the amine compound include n-propylamine hydrochloride, N-methyl-n-hexylamine hydrochloride, N, N-dimethyl-n-octadecylamine hydrochloride, and the like. It is not limited.
  • ammonium salt derived from ammonia is an ammonium salt formed by reacting ammonia with an acid.
  • examples of the acid include the same ones as in the case of the ammonium salt derived from the amine compound.
  • examples of the ammonium salt derived from ammonia include ammonium chloride, but are not limited thereto.
  • the amine compound, the quaternary ammonium salt, the ammonium salt derived from the amine compound and the ammonium salt derived from ammonia may be used alone or in combination of two or more.
  • the combination and ratio can be adjusted arbitrarily.
  • you may use individually 1 type selected from the group which consists of said amine compound, quaternary ammonium salt, ammonium salt derived from amine compound, and ammonium salt derived from ammonia Two or more kinds may be used in combination, and when two or more kinds are used in combination, the combination and ratio can be arbitrarily adjusted.
  • the compounding amount of the nitrogen-containing compound is preferably 0.3 to 15 mol, and more preferably 0.3 to 5 mol, per mol of the carboxylate silver.
  • the silver ink composition is further improved in stability and the quality of the conductor (metal silver) is further improved.
  • the conductor can be formed more stably without performing heat treatment at a high temperature.
  • the reducing agent in the present invention may be abbreviated as oxalic acid (HOOC-COOH), hydrazine (H 2 N—NH 2 ) and a compound represented by the following general formula (5) (hereinafter referred to as “compound (5)”).
  • reducing agent to be blended may be only one type, or two or more types, and when two or more types are used in combination, the combination and ratio can be arbitrarily adjusted.
  • the alkyl group having 20 or less carbon atoms in R 21 has 1 to 20 carbon atoms and may be linear, branched or cyclic.
  • Examples of the alkyl group for R 21 include those similar to the alkyl group for R in the general formula (1).
  • the alkoxy group having 20 or less carbon atoms in R 21 has 1 to 20 carbon atoms.
  • Examples of such alkoxy groups include a monovalent group formed by bonding the alkyl group in R 21 to an oxygen atom, and the like. Is mentioned.
  • the N, N-dialkylamino group having 20 or less carbon atoms in R 21 has 2 to 20 carbon atoms, and the two alkyl groups bonded to the nitrogen atom may be the same as or different from each other.
  • the alkyl group in the N, N-dialkylamino group has 1 to 19 carbon atoms. However, the total value of the carbon number of these two alkyl groups is 2 to 20.
  • Each of the alkyl groups bonded to the nitrogen atom may be linear, branched or cyclic. Examples of such an alkyl group include those similar to the alkyl group in R of the general formula (1) except that the number of carbon atoms is 1 to 19.
  • Hydrazine as the reducing agent may be a monohydrate (H 2 N—NH 2 .H 2 O).
  • Preferred examples of the reducing agent include formic acid (HC ( ⁇ O) —OH); methyl formate (HC ( ⁇ O) —OCH 3 ), ethyl formate (HC— ⁇ O) — Formic acid esters such as OCH 2 CH 3 ) and butyl formate (HC ( ⁇ O) —O (CH 2 ) 3 CH 3 ); propanal (HC ( ⁇ O) —CH 2 CH 3 ), butanal ( Aldehydes such as HC ( ⁇ O) — (CH 2 ) 2 CH 3 ) and hexanal (HC ( ⁇ O) — (CH 2 ) 4 CH 3 ); formamide (HC ( ⁇ O) —NH 2 ), formamides such as N, N-dimethylformamide (HC ( ⁇ O) —N (CH 3 ) 2 ) (represented by the formula “HC ( ⁇ O) —N ( ⁇ ) —”) A compound having a group); oxalic acid and the like.
  • the compounding amount of the reducing agent is preferably 0.04 to 3.5 mol, and more preferably 0.06 to 2.5 mol per mol of the silver carboxylate. preferable.
  • the silver ink composition can form a conductor (metal silver) more easily and more stably.
  • acetylene alcohols are those represented by the following general formula (20) and having 9 or more carbon atoms (hereinafter sometimes abbreviated as “acetylene alcohol (20)”).
  • R ′ and R ′′ are each independently a hydrogen atom, an alkyl group, or a phenyl group in which one or more hydrogen atoms may be substituted with a substituent, provided that R ′ and R ′ At least one of 'is the alkyl group or the phenyl group.
  • R ′ and R ′′ each independently represent a hydrogen atom, an alkyl group, or a phenyl group in which one or more hydrogen atoms may be substituted with a substituent.
  • the alkyl group in R ′ and R ′′ may be linear, branched or cyclic, and when it is cyclic, it may be monocyclic or polycyclic.
  • the total value of the carbon number of R ′ and R ′′ (the total value of the carbon number of R ′ and the carbon number of R ′′) is 6 or more. That is, acetylene alcohol (20) has 9 or more carbon atoms.
  • Examples of the alkyl group in R ′ and R ′′ include those similar to the alkyl group in R, and those having 1 to 20 carbon atoms are preferable.
  • the linear or branched alkyl group in R ′ and R ′′ preferably has 1 to 20 carbon atoms.
  • alkyl group examples include a methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, sec-butyl group, tert-butyl group, n-pentyl group, isopentyl group, Neopentyl group, tert-pentyl group, 1-methylbutyl group, 2-methylbutyl group, n-hexyl group, 1-methylpentyl group, 2-methylpentyl group, 3-methylpentyl group, 4-methylpentyl group, 1,1 -Dimethylbutyl group, 2,2-dimethylbutyl group, 3,3-dimethylbutyl group, 2,3-dimethylbutyl group, 1-ethylbutyl group, 2-ethylbutyl group, 3-ethylbutyl group, 1-ethyl-1- Methylpropyl group, n-heptyl group,
  • the number of carbon atoms of the cyclic alkyl group in R ′ and R ′′ is preferably 3-20.
  • alkyl groups include cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl, cyclooctyl, cyclononyl, cyclodecyl, norbornyl, isobornyl, 1-adamantyl, 2- Examples thereof include an adamantyl group and a tricyclodecyl group.
  • the number of carbon atoms of the alkyl group in R ′ and R ′′ is preferably 1 to 15, more preferably 1 to 12, still more preferably 1 to 10, and 1 to 8. Is particularly preferred.
  • At least one of the alkyl groups in R ′ and R ′′ is preferably linear or branched, and more preferably both are linear or branched.
  • substituents in which the hydrogen atom of the phenyl group in R ′ and R ′′ may be substituted include, for example, a saturated or unsaturated monovalent aliphatic hydrocarbon group having 1 to 16 carbon atoms, the aliphatic group A monovalent group formed by bonding an aromatic hydrocarbon group to an oxygen atom, a fluorine atom, a chlorine atom, a bromine atom, a hydroxyl group, a cyano group, a phenoxy group, and the like.
  • substituents are the same as the substituents in which the hydrogen atom of the phenyl group in R may be substituted.
  • the number and position of the substituents are not particularly limited, and when the number of substituents is plural, the plural substituents may be the same as or different from each other.
  • the total number of carbon atoms of R ′ and R ′′ is preferably 6 to 16, more preferably 6 to 13, still more preferably 6 to 11, and particularly preferably 6 to 9. preferable. That is, the carbon number of the acetylene alcohol (20) is preferably 9 to 19, more preferably 9 to 16, further preferably 9 to 14, and particularly preferably 9 to 12. .
  • R ′ and R ′′ are the alkyl group or the phenyl group, and R ′ and R ′′ are not both hydrogen atoms.
  • the acetylene alcohol (20) may be either liquid or solid, for example, but is preferably liquid because it is easy to handle. Moreover, what can be removed by vaporizing acetylene alcohol (20) under normal pressure or pressure reduction is preferable.
  • Preferred acetylene alcohol (20) includes, for example, 3-ethyl-1-heptin-3-ol, 4-ethyl-1-octyn-3-ol, and the like.
  • Acetylene alcohol (20) may be used alone or in combination of two or more, and the combination and ratio thereof can be arbitrarily adjusted.
  • the amount of acetylene alcohol (20) is preferably 0.003 to 0.7 mol per mol of the silver carboxylate, for example, 0.01 to 0.7 mol, 0.02 to 0 It may be any of 0.7 mol and 0.02 to 0.3 mol.
  • the storage stability of a silver ink composition improves more because the said compounding quantity of acetylene alcohol (20) is such a range.
  • a thin line pattern can be more easily formed among metallic silvers by blending both the reducing agent and acetylene alcohol (20).
  • the silver ink composition may contain other components other than the silver carboxylate, nitrogen-containing compound, reducing agent and acetylene alcohol (20).
  • the other components in the silver ink composition can be arbitrarily selected according to the purpose and are not particularly limited. Examples of the other components include acetylene alcohols other than acetylene alcohol (20), solvents other than the other acetylene alcohols, and the like, and can be arbitrarily selected according to the type and amount of the compounding components.
  • the other components in the silver ink composition one kind may be used alone, two or more kinds may be used in combination, and two or more kinds may be used in combination. Can be adjusted.
  • the other acetylene alcohol is an alcohol other than acetylene alcohol (20) having a triple bond (“C ⁇ C”) between carbon atoms.
  • Other acetylene alcohols may or may not have a double bond (“C ⁇ C”) between carbon atoms, but preferably do not have.
  • acetylene alcohol (21) Preferred examples of the other acetylene alcohol include those represented by the following general formula (21) (hereinafter sometimes abbreviated as “acetylene alcohol (21)”).
  • R 9 ′ and R 9 ′′ are each independently a hydrogen atom or an alkyl group, provided that the total number of carbon atoms of R 9 ′ and R 9 ′′ is 0 to 5)
  • R 9 'and R 9' ' are each independently a hydrogen atom or an alkyl group, provided that, R 9' and R 9 'sum of the carbon atoms of' (R 9 carbon number of 'and R 9 The total value of '' and the number of carbon atoms) is 0-5. That is, acetylene alcohol (21) has 3 to 8 carbon atoms.
  • the alkyl group in R 9 ′ and R 9 ′′ is the same as the alkyl group in R ′ and R ′′ in the general formula (20) except that the number of carbon atoms is limited as described above. It is.
  • the alkyl group in R 9 ′ and R 9 ′′ has 1 to 5 carbon atoms.
  • Preferred acetylene alcohols (21) include, for example, 3,5-dimethyl-1-hexyn-3-ol, 3-methyl-1-butyn-3-ol, 3-methyl-1-pentyn-3-ol, and the like. Can be mentioned.
  • Acetylene alcohol (21) may be used alone or in combination of two or more, and the combination and ratio thereof can be arbitrarily adjusted.
  • the blending amount of the other acetylene alcohol in the silver ink composition is preferably 0.2 to 11 moles per mole of the acetylene alcohol (20). It is more preferably from ⁇ 10 mol, particularly preferably from 0.2 to 9 mol.
  • the effect by using other acetylene alcohol is acquired more notably because the said compounding quantity of another acetylene alcohol is more than the said lower limit.
  • the effect by using acetylene alcohol (20) and the effect by using other acetylene alcohol are obtained in a more balanced manner because the blending amount of other acetylene alcohol is not more than the upper limit. It is done.
  • the solvent is not particularly limited as long as it is other than acetylene alcohol (20) and the other acetylene alcohol.
  • the solvent include aromatic hydrocarbons such as toluene, o-xylene, m-xylene, and p-xylene; pentane, hexane, cyclohexane, heptane, octane, nonane, decane, undecane, dodecane, tridecane, tetradecane, and pentadecane.
  • Aliphatic hydrocarbons such as ethanol; saturated aliphatic alcohols such as ethanol and 2-propanol; unsaturated alcohols other than acetylene alcohol (20) and other acetylene alcohols; halogenated hydrocarbons such as dichloromethane and chloroform; ethyl acetate and glutaric acid Esters such as monomethyl and dimethyl glutarate; ethers such as diethyl ether, tetrahydrofuran (THF) and 1,2-dimethoxyethane (dimethyl cellosolve); acetone, methyl ethyl ketone (MEK), cyclohexanone and the like Ketone; nitriles such as acetonitrile; N, N-dimethylformamide (DMF), N, N-but amides of dimethylacetamide, and the like, without limitation.
  • halogenated hydrocarbons such as dichloromethane and chloroform
  • the unsaturated alcohol has acetylene alcohol (20) and other acetylenes having a double bond between carbon atoms (“C ⁇ C”) and no triple bond between carbon atoms (“C ⁇ C”). It is something other than alcohol.
  • the aliphatic hydrocarbon preferably has 15 or less carbon atoms.
  • the ratio of the amount of the solvent to the amount of acetylene alcohol (20) is preferably as small as possible, preferably 10% by mass or less, more preferably 5% by mass or less.
  • the content is more preferably not more than mass%, particularly preferably not more than 1 mass%, and most preferably 0 mass, that is, the solvent is not blended.
  • the ratio of the blending amount of other components not corresponding to any of the other acetylenic alcohols and solvents to the total blending component amount is preferably 10% by mass or less, and preferably 5% by mass or less. It is more preferable that the silver ink composition exhibits its effect sufficiently even when 0 mass, that is, without adding such other components.
  • all the components may be dissolved, or a part or all of the components may be dispersed without dissolving, but it is preferable that all the components are dissolved.
  • the undissolved component is preferably dispersed uniformly.
  • the method for producing a silver ink composition of the present invention includes a step of blending the silver carboxylate, a nitrogen-containing compound, a reducing agent, and acetylene alcohol (20) (hereinafter sometimes abbreviated as “blending step”).
  • the obtained blend may be used as it is as a silver ink composition, or the resulting blend is further stirred at a predetermined temperature and time for a stirring step. It is good also as a silver ink composition, and it is good also as what was passed through the refinement
  • ⁇ -ketocarboxylate (1) is used as the carboxylate, no impurities that inhibit conductivity are generated in the blending step, or the amount of such impurities generated is extremely small. Can be suppressed. Therefore, even when a silver ink composition that has not been subjected to a purification step is used, a conductor (metal silver) having sufficient conductivity can be obtained.
  • all the components may be added and then mixed, or some components may be mixed while being sequentially added, or all components may be mixed while being sequentially added. Good.
  • the order of adding the blending components is not particularly limited, and can be appropriately selected according to the purpose.
  • the reducing agent promotes the formation of metallic silver from the silver carboxylate
  • acetylene alcohol (20) is strongly involved in improving the storage stability of the silver ink composition.
  • these components may directly react with each other.
  • the reducing agent is added to the silver carboxylate prior to acetylene alcohol (20) to promote the formation of metallic silver, and the resulting mixture is further added to acetylene. It is preferred to add alcohol (20).
  • Examples of such an addition method include a method of adding the silver carboxylate, the reducing agent, and the acetylene alcohol (20) in this order to the nitrogen-containing compound.
  • a method of adding the silver carboxylate, the reducing agent, and the acetylene alcohol (20) in this order to the nitrogen-containing compound When using the said other acetylene alcohol, it is preferable to handle other acetylene alcohol similarly to acetylene alcohol (20). Depending on the type of reducing agent and other acetylenic alcohols, these components may also react directly. Therefore, in the blending step, it is preferable to add other acetylene alcohols as in the case of acetylene alcohol (20). And it is preferable to mix
  • the reducing agent is preferably blended dropwise, and the surface roughness of the metallic silver tends to be further reduced by suppressing fluctuations in the dropping speed.
  • blend acetylene alcohol (20) it is preferable to mix
  • blend another acetylene alcohol by dripping in the said mixing
  • Both the blending step and the stirring step may be performed in an air atmosphere, but at least one of the blending step and the stirring step is performed in an inert gas atmosphere such as nitrogen gas, helium gas, or argon gas. Preferably, both the blending step and the stirring step are more preferably performed in the inert gas atmosphere. In addition, whether the blending step and the stirring step are performed in an air atmosphere or the inert gas atmosphere, the moisture content of the air and the inert gas is adjusted by a desiccant or the like. Those are preferred.
  • the mixing method of compounding ingredients is not particularly limited, and is a method of mixing by rotating a stirrer or a stirring blade; a method of mixing using a mixer, a three-roller, a kneader, a bead mill, or the like; What is necessary is just to select suitably from well-known methods, such as a method.
  • a method of dispersing using, for example, the above-described three-roll, kneader or bead mill.
  • the temperature in each step until the silver ink composition is obtained is not particularly limited as long as each blending component does not deteriorate, but is preferably ⁇ 5 to 60 ° C. And the said temperature is good to adjust suitably according to the kind and quantity of a compounding component so that the mixture obtained by mix
  • the total time of the blending step and the stirring step is not particularly limited as long as each blending component does not deteriorate, but is preferably 10 minutes to 36 hours.
  • the silver ink composition may be further supplied with carbon dioxide.
  • a silver ink composition has a high viscosity.
  • a flexographic printing method, a screen printing method, a gravure printing method, a gravure offset printing method, a pad printing method, etc. Suitable for application.
  • Carbon dioxide may be supplied at any time during the production of the silver ink composition.
  • carbon dioxide is supplied to the first mixture in which the silver carboxylate and the nitrogen-containing compound are blended to form a second mixture, and the reducing agent is further added to the second mixture.
  • blending the said other component these can be mix
  • the first mixture can be produced by the same method as the above silver ink composition except that the blending components are different.
  • all the components may be dissolved, or a part or all of the components may be dispersed without dissolving, but it is preferable that all the components are dissolved, It is preferable that the components which are not dissolved are uniformly dispersed.
  • the compounding temperature at the time of producing the first mixture is not particularly limited as long as each compounding component does not deteriorate, but it is preferably ⁇ 5 to 30 ° C.
  • the blending time may be appropriately adjusted according to the type of blending component and the temperature at the time of blending, but is preferably 0.5 to 12 hours, for example.
  • Carbon dioxide (CO 2 ) supplied to the first mixture may be either gaseous or solid (dry ice), or both gaseous and solid. By supplying carbon dioxide, it is estimated that this carbon dioxide dissolves in the first mixture and acts on the components in the first mixture, thereby increasing the viscosity of the obtained second mixture.
  • the carbon dioxide gas may be supplied by various known methods for blowing gas into the liquid, and a suitable supply method may be selected as appropriate. For example, a method of immersing one end of the pipe in the first mixture, connecting the other end to a carbon dioxide gas supply source, and supplying the carbon dioxide gas to the first mixture through the pipe can be mentioned. At this time, the carbon dioxide gas may be supplied directly from the end of the pipe. For example, a plurality of voids that can serve as gas flow paths, such as a porous one, are provided to diffuse the introduced gas. A gas diffusion member that can be discharged as minute bubbles may be connected to the end of the pipe, and the carbon dioxide gas may be supplied through the gas diffusion member. Moreover, you may supply a carbon dioxide gas, stirring the 1st mixture by the method similar to the time of manufacture of a 1st mixture. By doing in this way, carbon dioxide can be supplied efficiently.
  • the supply amount of carbon dioxide gas is not particularly limited, and may be appropriately adjusted according to the amount of the first mixture at the supply destination and the viscosity of the target silver ink composition or the second mixture.
  • the viscosity at 20 to 25 ° C. of the silver ink composition has been described here, the temperature at the time of using the silver ink composition is not limited to 20 to 25 ° C. and can be arbitrarily selected.
  • “viscosity” means a value measured using an ultrasonic vibration viscometer unless otherwise specified.
  • the flow rate of carbon dioxide gas may be appropriately adjusted in consideration of the required supply amount of carbon dioxide gas, but is preferably 0.5 mL / min or more per 1 g of the first mixture, and is 1 mL / min or more. More preferably.
  • the upper limit value of the flow rate is not particularly limited, but is preferably 40 mL / min per 1 g of the mixture in consideration of handling properties and the like.
  • the carbon dioxide gas supply time may be appropriately adjusted in consideration of the required supply amount and flow rate of carbon dioxide gas.
  • the temperature of the first mixture at the time of supplying carbon dioxide gas is preferably 5 to 70 ° C., more preferably 7 to 60 ° C., and particularly preferably 10 to 50 ° C.
  • carbon dioxide can be supplied more efficiently, and when the temperature is equal to or lower than the upper limit value, a silver ink composition having better quality with fewer impurities can be obtained.
  • the flow rate and supply time of carbon dioxide gas, and the temperature at the time of supplying carbon dioxide gas may be adjusted to a suitable range while considering each value. For example, even if the temperature is set lower, the carbon dioxide gas flow rate is set higher, the carbon dioxide gas supply time is set longer, or both are performed efficiently. Can supply carbon. Moreover, even if the flow rate of carbon dioxide gas is set to a small value, the carbon dioxide gas can be efficiently produced by increasing the temperature, setting the carbon dioxide gas supply time longer, or both. Can supply. That is, a silver ink of good quality can be obtained by flexibly combining the numerical values in the above numerical range exemplified as the flow rate of carbon dioxide gas and the temperature at the time of carbon dioxide gas supply while considering the supply time of carbon dioxide gas. A composition is obtained efficiently.
  • the supply of carbon dioxide gas is preferably performed while stirring the first mixture. By doing in this way, the supplied carbon dioxide gas diffuses more uniformly in the first mixture, and carbon dioxide can be supplied more efficiently.
  • the stirring method at this time may be the same as in the case of the mixing method at the time of producing the above silver ink composition not using carbon dioxide.
  • the supply of dry ice may be performed by adding dry ice to the first mixture.
  • the total amount of dry ice may be added all at once, or may be added stepwise (continuously across a time zone during which no addition is performed). What is necessary is just to adjust the usage-amount of dry ice in consideration of the supply amount of said carbon dioxide gas.
  • the first mixture is preferably stirred.
  • the first mixture is preferably stirred in the same manner as in the production of the silver ink composition described above without using carbon dioxide. By doing in this way, carbon dioxide can be supplied efficiently.
  • the temperature at the time of stirring may be the same as that at the time of supplying carbon dioxide gas.
  • stirring time suitably according to stirring temperature.
  • the viscosity of the second mixture may be appropriately adjusted according to the purpose, such as a method for handling the silver ink composition or the second mixture, and is not particularly limited.
  • a method for handling the silver ink composition or the second mixture is not particularly limited.
  • the viscosity of the second mixture at 20 to 25 ° C. is 3 Pa ⁇ s or more. Is preferred.
  • the viscosity of the second mixture at 20 to 25 ° C. has been described, but the temperature at the time of use of the second mixture is not limited to 20 to 25 ° C. and can be arbitrarily selected.
  • the reducing agent and acetylene alcohol (20) may be further blended, and the other components may be blended as necessary to obtain a silver ink composition.
  • the reducing agent and acetylene alcohol (20) may be blended in this order, may be blended simultaneously, or may be blended in the order of acetylene alcohol (20) and reducing agent.
  • the reducing agent is added to the second mixture before acetylene alcohol (20) to promote the formation of metallic silver, and then the acetylene alcohol (20) is further added to the obtained mixture. Is preferably added.
  • the silver ink composition at this time can be manufactured by the same method as the above silver ink composition not using carbon dioxide except that the blending components are different. In the obtained silver ink composition, all the components may be dissolved, or some or all of the components may be dispersed without being dissolved, but all the components are dissolved. It is preferable that the undissolved components are uniformly dispersed.
  • the temperature in each step from the blending of each blending component into the second mixture until obtaining the silver ink composition is not particularly limited as long as each blending component does not deteriorate, but is preferably ⁇ 5 to 60 ° C.
  • blending is good to adjust suitably so that the mixture obtained by mix
  • the total time of blending each blending component into the second mixture and the subsequent stirring may be appropriately adjusted according to the type of blending component and the temperature at the blending. Time is preferred.
  • the other components may be blended during the production of either the first mixture or the second mixture, or may be blended during the production of both. That is, when the other component is a solvent, in the process of producing a silver ink composition through the first mixture and the second mixture, the ratio of the amount of the solvent to the amount of acetylene alcohol (20) ([solvent (Mass)] / [acetylene alcohol (20) (mass)] ⁇ 100) is preferably 10% by mass or less, more preferably 5% by mass or less, and further preferably 3% by mass or less. The content is preferably 1% by mass or less, particularly 0%, that is, the silver ink composition exhibits its effect sufficiently even when no solvent is added.
  • the ratio of the blended amount of the other component to the total amount of blended components other than carbon dioxide is 10% by mass or less.
  • the amount is 5% by mass or less, more preferably 0% by mass, that is, the silver ink composition exhibits its effect sufficiently even when no other components are blended.
  • the silver ink composition to which carbon dioxide is supplied is, for example, a viscosity at 20 to 25 ° C. when the silver ink composition is applied to a printing method using a high viscosity ink such as a screen printing method or a flexographic printing method. Is preferably 1 Pa ⁇ s or more.
  • the resulting blend (silver ink composition) tends to generate heat relatively easily. And when the temperature at the time of the compounding of the reducing agent is high, this compound is in the same state as at the time of the heat treatment of the silver ink composition described later. It is presumed that the formation of metallic silver may start in at least part of the silver.
  • Such a silver ink composition containing metallic silver may be able to form metallic silver by performing post-treatment under milder conditions than a silver ink composition not containing metallic silver during the formation of metallic silver. Further, when the amount of the reducing agent is sufficiently large, metallic silver may be formed by performing post-treatment under the same mild conditions.
  • metallic silver is formed by a heat treatment at a lower temperature or only by a drying treatment at room temperature without performing the heat treatment.
  • the silver ink composition containing such metal silver can be handled in the same manner as the silver ink composition not containing metal silver, and the handleability is not particularly inferior.
  • the 2nd mixture in this invention has a viscosity higher than usual by supply of a carbon dioxide as mentioned above.
  • the reducing agent when the reducing agent is blended into the second mixture, depending on the type of the second mixture or the reducing agent, formation of metallic silver is started in at least part of the silver carboxylate as described above, and metallic silver is deposited.
  • the viscosity of the second mixture is high, aggregation of the precipitated metallic silver is suppressed, and the dispersibility of the metallic silver in the obtained silver ink composition is improved.
  • a conductor obtained by forming metallic silver by a method described later using such a silver ink composition is obtained by blending a reducing agent in a mixture having a low viscosity, that is, carbon dioxide is not supplied. In addition, it has higher electrical conductivity (lower volume resistivity), lower surface roughness, and more favorable characteristics than a conductor using a silver ink composition.
  • the silver ink composition of the present invention has better storage stability than conventional silver ink compositions.
  • the storage stability of the silver ink composition can be determined, for example, by dividing the silver ink composition into two or more and storing the obtained silver ink compositions having the same composition for different periods of time.
  • Metallic silver is formed using the ink composition, and physical property values serving as conductivity indicators such as volume resistivity of the metallic silver are measured, and the difference can be confirmed by the difference in these physical property values.
  • two or more silver ink compositions to be compared have the same storage conditions other than the storage period.
  • the silver ink composition of the present invention can form metallic silver having high conductivity by solidification treatment such as heating (firing) treatment.
  • the silver ink composition of the present invention is deposited on a substrate, heat-treated, and the silver carboxylate is decomposed to form a layer made of metallic silver on the substrate (hereinafter abbreviated as “silver layer”).
  • a laminate a layer made of metallic silver on the substrate.
  • a silver ink composition can be made to adhere on a base material by well-known methods, such as a printing method, the apply
  • the printing method include screen printing method, flexographic printing method, offset printing method, dip printing method, ink jet printing method, dispenser printing method, jet dispenser printing method, gravure printing method, gravure offset printing method, The pad printing method etc. are mentioned.
  • the coating method include various coaters such as a spin coater, an air knife coater, a curtain coater, a die coater, a blade coater, a roll coater, a gate roll coater, a bar coater, a rod coater, a gravure coater, and a wire bar. Methods and the like.
  • the thickness of the silver layer can be adjusted by adjusting the amount of the silver ink composition to be deposited on the substrate or the blending amount of the silver carboxylate in the silver ink composition.
  • the drying treatment may be performed, for example, under normal pressure, reduced pressure, or air blowing conditions, and may be performed under air or an inert gas atmosphere.
  • the drying temperature is not particularly limited, and may be either heat drying or room temperature drying.
  • a preferable drying method when the heat treatment is unnecessary for example, a method of drying in the atmosphere at 18 to 30 ° C. can be mentioned.
  • the conditions may be adjusted as appropriate according to the type of compounding component of the silver ink composition.
  • the heating temperature is preferably 60 to 370 ° C., more preferably 70 to 280 ° C.
  • the heating time may be adjusted according to the heating temperature, but it is usually preferably 1 minute to 24 hours, and more preferably 1 minute to 12 hours.
  • the ⁇ -ketocarboxylate (1) is different from a metal silver forming material such as silver oxide, for example, at a low temperature without using a reducing agent known in the art. Decompose. Reflecting such decomposition temperature, the silver ink composition can form metallic silver at an extremely lower temperature than the conventional one as described above.
  • the heating temperature is preferably less than 130 ° C, more preferably 125 ° C or less, and 120 ° C or less. It is particularly preferred that
  • the method for heat treatment of the silver ink composition is not particularly limited.
  • the heat treatment can be performed by, for example, heating with an electric furnace, heating with a thermal head, heating with far-infrared irradiation, or heating by blowing a hot gas. Further, the heat treatment may be performed in the atmosphere, in an inert gas atmosphere, or may be performed under humidified conditions. The heat treatment may be performed under normal pressure, reduced pressure, or increased pressure.
  • humidity means that the humidity is artificially increased unless otherwise specified, and the relative humidity is preferably 5% or more. At the time of heat treatment, since the humidity in the treatment environment becomes extremely low due to the high treatment temperature, it can be said that the relative humidity of 5% is clearly artificially increased.
  • the relative humidity when the heat treatment of the silver ink composition is performed under humidified conditions is preferably 10% or more, more preferably 30% or more, further preferably 50% or more, and 70%. It is particularly preferable that it be 90% or more, or 100%. And you may perform the heat processing under humidification conditions by spraying the high pressure steam heated to 100 degreeC or more. Thus, by heat-processing under humidification conditions, highly pure metallic silver can be formed in a short time.
  • the heat treatment of the silver ink composition may be performed in two stages.
  • the heating temperature may be appropriately adjusted according to the type of compounding component of the silver ink composition, but is preferably 60 to 120 ° C, more preferably 70 to 120 ° C.
  • the temperature is preferably 80 to 110 ° C.
  • the heating time may be adjusted according to the heating temperature, but it is usually preferably 5 seconds to 12 hours, and more preferably 30 seconds to 2 hours.
  • the heating temperature may be appropriately adjusted according to the type of compounding component of the silver ink composition so that metallic silver is formed satisfactorily, but it should be 60 to 280 ° C.
  • the temperature is 70 to 260 ° C.
  • the heating time may be adjusted according to the heating temperature, but it is usually preferably 1 minute to 12 hours, and more preferably 1 minute to 10 hours.
  • the heating temperature in the first stage and second stage heat treatment is preferably less than 130 ° C. More preferably, it is not higher than 120 ° C, particularly preferably not higher than 120 ° C.
  • the heat treatment of the silver ink composition described so far is performed in the gas phase.
  • the heat treatment in the second step is performed in the gas phase.
  • the silver ink composition that has been completely or partially dried through the first stage heat treatment can be subjected to the second stage heat treatment without impairing its shape by contacting with the heated liquid.
  • the heating temperature and heating time in the heat treatment in the liquid phase are the same as the heating temperature and heating time in the second-stage heat treatment described above.
  • the heated liquid is preferably hot water (heated water), and the second stage heat treatment is performed by immersing the silver ink composition subjected to the first stage heat treatment in hot water, that is, by hot water bathing. Preferably it is done.
  • the metallic silver formed by this heat treatment may be further dried.
  • the first stage heat treatment of the silver ink composition is preferably performed under non-humidified conditions.
  • non-humidification means that the above “humidification” is not performed, that is, the humidity is not artificially increased, and preferably the relative humidity is less than 5%. .
  • the silver ink composition When heat treatment under humidified conditions is employed, it is particularly preferable to perform the heat treatment of the silver ink composition by the following two-step method. That is, in the first stage heat treatment, the silver ink composition is mainly dried under the non-humidified condition as described above, rather than the formation of metallic silver, and in the second stage heat treatment, under the humidified condition, As described above, it is particularly preferable to heat-treat the silver ink composition by forming metal silver to the end.
  • the heating temperature during the heat treatment under the first stage non-humidified conditions is preferably 60 to 120 ° C, and preferably 70 to 120 ° C. More preferred is 80 to 110 ° C.
  • the heating time is preferably 5 seconds to 1 hour, more preferably 30 seconds to 30 minutes, and particularly preferably 30 seconds to 10 minutes.
  • the heating temperature during the heat treatment under the second-stage humidification condition, which is performed after the heat treatment under the first-stage non-humidification conditions is preferably 60 to 140 ° C, and preferably 70 to 130 ° C. Is more preferable.
  • the heating time is preferably 1 minute to 2 hours, more preferably 1 minute to 1 hour, and particularly preferably 1 minute to 30 minutes.
  • the heating temperature is preferably less than 130 ° C, more preferably 125 ° C or less, and particularly preferably 120 ° C or less.
  • the preferable method for producing metal silver includes, for example, one having a step of forming the metal silver using the silver ink composition.
  • the silver ink composition is heat-treated under non-humidified conditions, and further heat-treated under humidified conditions or in contact with a heated liquid. Can be mentioned.
  • the metallic silver formed using the silver ink composition of the present invention has excellent conductivity, and its volume resistivity is, for example, preferably 14.0 ⁇ ⁇ cm or less, more preferably 13.5 ⁇ ⁇ cm or less, particularly Preferably, it is 13.0 ⁇ ⁇ cm or less.
  • the lower limit value of the volume resistivity of the metallic silver is not particularly limited, but is, for example, 5.0 ⁇ ⁇ cm.
  • a silver ink composition having a storage period of 30 days immediately after production can also form metallic silver having the above volume resistivity.
  • the silver ink composition of the present invention can form metallic silver excellent in conductivity even when the storage period immediately after production is 1 day, and the volume resistivity is preferably, for example, 13.5 ⁇ ⁇ It is possible to form metallic silver of cm or less, more preferably 13.0 ⁇ ⁇ cm or less, particularly preferably 12.5 ⁇ ⁇ cm or less.
  • the lower limit value of the volume resistivity of the metallic silver is not particularly limited, but is, for example, 4.5 ⁇ ⁇ cm.
  • the silver ink composition of the present invention has better storage stability than conventional silver ink compositions. Therefore, the metallic silver formed from the silver ink composition of the present invention after long-term storage has the same composition immediately after production, compared with the metallic silver formed from the silver ink composition of the present invention with a short storage period. There is no significant difference in conductivity (volume resistivity). For example, the volume resistivity ⁇ 1 ( ⁇ ⁇ cm) of metallic silver formed using a silver ink composition having a storage period of 1 day immediately after manufacture is the same as that immediately after manufacture, and immediately after manufacture.
  • volume resistivity ⁇ 2 ( ⁇ ⁇ cm) of metallic silver formed using a silver ink composition having a storage period of 30 days and using the formula “( ⁇ 2 ⁇ 1 ) / ⁇ 1 ⁇
  • the change rate (%) of the volume resistivity of metallic silver calculated by “100” is preferably 20% or less, more preferably 15% or less, and particularly preferably 10% or less.
  • the storage temperature of the silver ink composition is preferably 20 ° C. or less, and more preferably 15 ° C. or less. A temperature of 10 ° C. or lower is particularly preferable.
  • the metallic silver formed using the silver ink composition of the present invention is extremely high in purity, and the proportion of metallic silver is sufficiently high that it can be regarded as consisting solely of metallic silver, for example, preferably 99 mass. % Or more.
  • the metallic silver formed using the silver ink composition of the present invention has an upper limit of the metallic silver ratio, for example, 99.9 mass%, 99.8 mass%, 99.7 mass%, 99.99 mass%. It can be any of 6% by mass, 99.5% by mass, 99.4% by mass, 99.3% by mass, 99.2% by mass and 99.1% by mass.
  • the volume resistivity of the metallic silver can be adjusted by, for example, the purity and thickness of the metallic silver (silver layer).
  • FIG. 1 is a cross-sectional view schematically showing an embodiment of a laminate obtained using the silver ink composition of the present invention.
  • FIG. 1 may show an enlarged main part for convenience, and the dimensional ratios and the like of the respective constituent elements are not always the same.
  • the laminated body 1 shown here is formed by laminating a silver layer 12 on the surface (one main surface) 11a of a base material 11.
  • the substrate 11 is not particularly limited as long as the silver ink composition can be used.
  • Specific examples of the material of the substrate 11 include polyethylene (PE); polypropylene (PP); polyvinyl chloride (PVC); polyvinylidene chloride (PVDC); polymethylpentene (PMP); polycycloolefin; PS); polyvinyl acetate (PVAc); acrylic resin such as polymethyl methacrylate (PMMA); AS resin; ABS resin; polyamide (PA) such as nylon 6,6, nylon 6, etc .; polyimide; polyamideimide (PAI); Polyacetal (POM); Polyethylene terephthalate (PET); Polybutylene terephthalate (PBT); Polytrimethylene terephthalate (PTT); Polyethylene naphthalate (PEN); Polybutylene naphthalate (PBN); Polyphenylene sulfide (PPS); Polysulfone (PSF); Polyethersulfone (PES); Polyetherketone (PEK);
  • the base material 11 can select an arbitrary shape according to the purpose, and is preferably in the form of a film or a sheet, for example.
  • the thickness of the substrate 11 in the form of a film or sheet is preferably 0.5 to 5000 ⁇ m, and more preferably 0.5 to 2500 ⁇ m.
  • the thickness of the base material 11 is equal to or greater than the lower limit value, the structure of the silver layer can be more stably maintained, and when the thickness of the base material 11 is equal to or less than the upper limit value, handling at the time of forming the silver layer The property becomes better.
  • the substrate 11 may be composed of a single layer, or may be composed of two or more layers.
  • these multiple layers may be the same as or different from each other. That is, all the layers may be the same, all the layers may be different, or only some of the layers may be different. And when several layers differ from each other, the combination of these several layers is not specifically limited.
  • the plurality of layers being different from each other means that at least one of the material and the thickness of each layer is different from each other.
  • the base material 11 consists of multiple layers, it is good to make it the thickness of the total of each layer be the thickness of said preferable base material 11.
  • the silver layer 12 is made of metallic silver formed using the silver ink composition.
  • the shape of the silver layer 12 when the laminate 1 is viewed in plan so that one main surface (surface) 11a of the substrate 11 is looked down from above can be arbitrarily set according to the purpose, and the surface of the substrate 11
  • the silver layer 12 may be provided on the entire surface of 11a, or the silver layer 12 may be provided on only a part of the surface 11a of the base material 11. In this case, the silver layer 12 is patterned. May be.
  • the patterned silver layer 12 is useful as a wiring, for example.
  • the thickness of the silver layer 12 can be arbitrarily set according to the purpose, but is preferably 0.01 to 5 ⁇ m, and more preferably 0.05 to 3 ⁇ m. When the thickness of the silver layer 12 is equal to or more than the lower limit value, the conductivity can be further improved, and the structure of the silver layer 12 can be more stably maintained. Moreover, the laminated body 1 can be made thinner by the thickness of the silver layer 12 being the said upper limit or less.
  • the silver layer 12 may be composed of a single layer or may be composed of two or more layers. When the silver layer 12 consists of a plurality of layers, these layers may be the same as or different from each other, and can be configured in the same manner as in the case of the substrate 11. For example, the silver layer 12 composed of a plurality of layers may be configured such that the total thickness of each layer is the thickness of the preferred silver layer 12 described above.
  • the laminated body is not limited to that shown in FIG. 1, and other configurations may be added or a part of the configuration may be appropriately changed within a range not impairing the effects of the present invention.
  • another layer other than the silver layer 12 may be provided on the base material 11, and the other layer may include a receiving layer (not shown) provided between the base material 11 and the silver layer 12, And an overcoat layer (not shown) for covering the silver layer 12.
  • the receptor layer improves the adhesion between the silver layer and the substrate.
  • the laminate 1 is shown having a silver layer 12 on one main surface (surface) 11a of the base material 11, but the laminate of the present invention is the other main surface of the base material 11.
  • the surface (back surface) 11b may be provided with the silver layer 12 (on both main surfaces of the base material 11).
  • the said laminated body is suitable for comprising various electronic devices, a transparent conductive film, etc.
  • an electronic device can be configured to use the laminate and include the base material as a casing (exterior material).
  • Such an electronic device can be configured in the same manner as a known electronic device except that at least a part of the casing (exterior material) is configured by the base material in the laminate.
  • a planar or curved surface portion of an exterior material in a communication device such as a cellular phone is used as the base material, and a thin wire (silver thin wire) made of the metallic silver is formed on the exterior material (base material).
  • the laminate can be used as a circuit board.
  • a cellular phone can be configured by combining a voice input unit, a voice output unit, an operation switch, a display unit, and the like in addition to the laminate.
  • the laminated body can be used as an antenna structure, and the configuration is the same as that of a known data transmitting / receiving body except that the antenna structure is used.
  • a new data receiving / transmitting body can be obtained.
  • an IC chip electrically connected to the silver layer is provided on the base material to form an antenna portion, whereby a non-contact type data receiving / transmitting body can be configured.
  • the transparent conductive film can be configured to use the laminate and include a silver layer as ultrafine wiring or ultrathin wiring.
  • a transparent conductive film can have the same configuration as a known transparent conductive film except that the silver layer is provided as an ultrafine wiring or an ultrathin wiring.
  • a touch panel or an optical display can be configured by further combining the laminate with a transparent substrate or the like.
  • the line width of the ultrafine wiring is preferably 1 to 20 ⁇ m, more preferably 1.3 to 15 ⁇ m, and particularly preferably 1.5 to 13 ⁇ m.
  • the cross-sectional shape of the ultrafine wiring is preferably a semi-elliptical shape in which approximately half the region in the minor axis direction of the ellipse is cut off.
  • the thickness of the ultra-thin wiring is preferably 5 nm to 10 ⁇ m, more preferably 7 nm to 5 ⁇ m, and particularly preferably 10 nm to 1 ⁇ m.
  • the cross-sectional shape of the ultrathin wiring is the same as the cross-sectional shape of the ultrafine wiring.
  • the silver layer preferably satisfies at least one of such a line width and thickness. If the silver layer has such a line width or thickness, its presence is difficult to recognize by visual observation, which is preferable as a transparent conductive film.
  • the silver layer can be formed at a low temperature, and a wide range of materials such as a base material can be selected.
  • a wide range of materials such as a base material can be selected.
  • electronic devices, transparent conductive films, etc. Can be made more rational.
  • the above electronic devices, transparent conductive films, and the like can maintain high performance over a long period of time.
  • Example 1 ⁇ Manufacture of silver ink composition>
  • 2-ethylhexylamine a 1.45-fold molar amount with respect to silver 2-methylacetoacetate described later
  • the mixture is stirred with a mechanical stirrer so that the liquid temperature is 50 ° C. or lower.
  • Silver methyl acetoacetate was added.
  • the beaker was placed in a water bath having a temperature of 25 ° C.
  • nitrogen-containing compound (molar ratio) means the compounding amount (number of moles) of nitrogen-containing compound per mol of silver carboxylate ([number of moles of nitrogen-containing compound] / [silver carboxylate] Number of moles]).
  • reducing agent (molar ratio) is the reductant compounding amount (mole number) per mol of silver carboxylate ([molar number of reducing agent] / [molar number of silver carboxylate]).
  • the silver ink composition obtained above was placed in a light-shielding resin container in an air atmosphere and covered to prevent moisture from entering, and left at 5 ° C. for 1 day.
  • a part of the silver ink composition is taken out from the resin container, and this silver ink composition is taken out by gravure offset printing on one main surface (surface) of the polycarbonate base material (thickness 2 mm).
  • the substrate printed in an oven is dried at 100 ° C. for 10 minutes, and further, this substrate is placed in a steam atmosphere at 100 ° C. for 10 minutes to be heated (fired), whereby a thickness of 0.
  • a linear silver thin wire having a thickness of 2 ⁇ m, a width of 200 ⁇ m, and a length of 25 mm was formed on the surface of the substrate to obtain a laminate.
  • this laminate is referred to as a first laminate.
  • the remaining silver ink composition after taking out a part thereof was prevented from entering moisture in the resin container, and was left at 5 ° C. for 29 days, and stored for a total of 30 days.
  • a thin silver wire was formed on the surface of the substrate in the same manner as in the case of the first laminate described above to obtain a laminate.
  • this laminate is referred to as a second laminate.
  • the line resistance value R was measured by a two-terminal method using a digital multimeter (“7352” manufactured by ADC), and the cross-sectional area A was measured using a laser microscope (“VK-X100” manufactured by Keyence). . Furthermore, the rate of change (%) in volume resistivity of the silver thin wire was calculated by the formula “( ⁇ 21 ⁇ 11 ) / ⁇ 11 ⁇ 100”. The results are shown in Table 2.
  • Example 2 Comparative Examples 1 to 3
  • a silver ink composition, a first laminate, and a second laminate were produced in the same manner as in Example 1 except that the compounding components at the time of producing the silver ink composition were as shown in Table 1, and these laminates were produced. Evaluated. The results are shown in Table 2.
  • Example 3 ⁇ Manufacture of silver ink composition>
  • 2-ethylhexylamine a 1.45-fold molar amount with respect to silver 2-methylacetoacetate described later
  • the mixture is stirred with a mechanical stirrer so that the liquid temperature is 50 ° C. or lower.
  • Silver methyl acetoacetate was added.
  • the beaker was placed in a water bath having a temperature of 25 ° C.
  • Example 4 A silver ink composition, a first laminate, and a second laminate were produced in the same manner as in Example 3 except that the compounding components at the time of producing the silver ink composition were as shown in Table 3, and these laminates were produced. Evaluated. The results are shown in Table 4.
  • Example 4 A silver ink composition, a first laminate, and a second laminate were produced in the same manner as in Example 1 except that the blending components during production of the silver ink composition were as shown in Table 3, and these laminates were produced. Evaluated. The results are shown in Table 4.
  • the volume resistivity ( ⁇ 11 and ⁇ 21 ) of the silver fine wires is low and the volume of the silver fine wires is low in both the first laminate and the second laminate. It was confirmed that the change rate (%) of the resistivity was small and the storage stability of the silver ink composition was high.
  • the volume resistivity ( ⁇ 21 ) of the silver thin wire of the second laminate and the silver fine wire of the first laminate were obtained by using acetylene alcohols in a form different from the above example. The volume resistivity ( ⁇ 11 ) was large, the volume resistivity change rate (%) of the silver thin wire was large, and it was confirmed that the storage stability of the silver ink composition was low.
  • the present invention can be used for various electronic devices having a silver layer on a base material such as a wiring board, an electromagnetic wave shield, a touch panel, and an antenna of a wireless communication device casing.
  • SYMBOLS 1 Laminated body, 11 ... Base material, 11a ... One main surface (front surface) of a base material, 11b ... The other main surface (back surface) of a base material, 12 ... Silver layer

Abstract

This silver ink composition is obtained by mixing from: a silver carbonate; one or more nitrogenous compounds selected from the group consisting of C25 and lower amine compounds and quaternary ammonium salts, ammonia, and ammonium salts obtained by the reaction of any of the amine compounds or ammonia with an acid; one or more reducing agents selected from the group consisting of oxalic acid, hydrazine, and compounds represented by the following general formula (5); and a C9 or higher acetylene alcohol compound represented by the following general formula (20). H-C(=O)-R21 (5)

Description

銀インク組成物、その製造方法及び積層体Silver ink composition, method for producing the same, and laminate
 本発明は、新規の銀インク組成物、その製造方法及び積層体に関する。
 本願は、2015年9月29日に、日本に出願された特願2015-191853号に基づき優先権を主張し、その内容をここに援用する。
The present invention relates to a novel silver ink composition, a method for producing the same, and a laminate.
This application claims priority based on Japanese Patent Application No. 2015-191853 filed in Japan on September 29, 2015, the contents of which are incorporated herein by reference.
 金属銀は、記録材料や印刷刷版の材料として、また、導電性に優れることから高導電性材料として幅広く使用されている。
 金属銀の製造方法としては、例えば、加熱等によって分解することで金属銀を形成する金属銀の形成材料が配合されてなる銀インク組成物を用いるものが知られている。この製造方法では、銀インク組成物を目的とする箇所に付着させ、種々の条件で金属銀の形成材料を分解させることで容易に金属銀を形成でき、銀インク組成物を付着させるときに、各種印刷法等も適用できるため、極めて汎用性が高い。
Metallic silver is widely used as a recording material, a printing plate material, and a highly conductive material because of its excellent conductivity.
As a method for producing metallic silver, for example, a method using a silver ink composition containing a metallic silver forming material that is decomposed by heating or the like to form metallic silver is known. In this production method, the silver ink composition is attached to a target location, and metal silver can be easily formed by decomposing the forming material of the metallic silver under various conditions. When the silver ink composition is attached, Since various printing methods can be applied, it is extremely versatile.
 このような銀インク組成物としては、例えば、式「-COOAg」で表される基を有するカルボン酸銀と、炭素数25以下のアミン化合物及び第4級アンモニウム塩、アンモニア、並びに前記アミン化合物又はアンモニアが酸と反応してなるアンモニウム塩からなる群から選択される1種以上の含窒素化合物と、シュウ酸、ヒドラジン及び下記一般式(5)で表される化合物からなる群から選択される1種以上の還元剤と、が配合されてなる銀インク組成物が知られている(特許文献1参照)。
 H-C(=O)-R21 ・・・・(5)
 (式中、R21は、炭素数20以下のアルキル基、アルコキシ基若しくはN,N-ジアルキルアミノ基、水酸基又はアミノ基である。)
Examples of such a silver ink composition include silver carboxylate having a group represented by the formula “—COOAg”, an amine compound having a carbon number of 25 or less, a quaternary ammonium salt, ammonia, and the amine compound or 1 selected from the group consisting of one or more nitrogen-containing compounds selected from the group consisting of ammonium salts obtained by reacting ammonia with an acid, and oxalic acid, hydrazine, and a compound represented by the following general formula (5) A silver ink composition in which at least one kind of reducing agent is blended is known (see Patent Document 1).
HC (= O) -R 21 (5)
(Wherein R 21 represents an alkyl group having 20 or less carbon atoms, an alkoxy group, or an N, N-dialkylamino group, a hydroxyl group, or an amino group.)
 特許文献1に記載の銀インク組成物は、高温での加熱処理を行わなくても十分な導電性を有する金属銀を形成できるため、極めて有用性が高い。一方で近年は、銀インク組成物の応用範囲が極めて広範となり、その使用方法も多様化して、未使用時の保存形態も多様化しており、従来よりもさらに銀インク組成物の保存安定性の向上が望まれるようになってきた。銀インク組成物の保存安定性が十分ではない場合、保存後の銀インク組成物を用いて形成した金属銀の導電性が低下してしまうことがある。これに対して、特許文献1に記載の銀インク組成物は、従来望まれていた十分な保存安定性を有するものであるが、さらなる保存安定性の向上が可能であるかどうかは定かではない。 The silver ink composition described in Patent Document 1 is extremely useful because it can form metallic silver having sufficient conductivity without performing heat treatment at a high temperature. On the other hand, in recent years, the application range of silver ink compositions has become extremely wide, their usage methods have diversified, and the storage forms when not in use have also diversified, further improving the storage stability of silver ink compositions than before. Improvement has come to be desired. When the storage stability of the silver ink composition is not sufficient, the conductivity of metallic silver formed using the silver ink composition after storage may be lowered. On the other hand, the silver ink composition described in Patent Document 1 has sufficient storage stability that has been desired in the past, but it is unclear whether further improvement in storage stability is possible. .
特開2014-193991号公報Japanese Patent Application Laid-Open No. 2014-199391
 そこで本発明は、保存安定性に優れた新規の銀インク組成物及びその製造方法を提供することを課題とする。 Therefore, an object of the present invention is to provide a novel silver ink composition excellent in storage stability and a method for producing the same.
 上記課題を解決するため、本発明は、式「-COOAg」で表される基を有するカルボン酸銀と、炭素数25以下のアミン化合物及び第4級アンモニウム塩、アンモニア、並びに前記アミン化合物又はアンモニアが酸と反応してなるアンモニウム塩からなる群から選択される1種以上の含窒素化合物と、シュウ酸、ヒドラジン及び下記一般式(5)で表される化合物からなる群から選択される1種以上の還元剤と、下記一般式(20)で表される、炭素数9以上のアセチレンアルコール類と、が配合されてなる銀インク組成物を提供する。
 H-C(=O)-R21 ・・・・(5)
 (式中、R21は、炭素数20以下のアルキル基、アルコキシ基若しくはN,N-ジアルキルアミノ基、水酸基又はアミノ基である。)
In order to solve the above problems, the present invention provides a silver carboxylate having a group represented by the formula “—COOAg”, an amine compound having a carbon number of 25 or less, a quaternary ammonium salt, ammonia, and the amine compound or ammonia. Selected from the group consisting of one or more nitrogen-containing compounds selected from the group consisting of ammonium salts obtained by reacting an acid with oxalic acid, hydrazine and the compound represented by the following general formula (5) Provided is a silver ink composition comprising the above reducing agent and an acetylene alcohol having 9 or more carbon atoms represented by the following general formula (20).
HC (= O) -R 21 (5)
(Wherein R 21 represents an alkyl group having 20 or less carbon atoms, an alkoxy group, or an N, N-dialkylamino group, a hydroxyl group, or an amino group.)
Figure JPOXMLDOC01-appb-C000004
 (式中、R’及びR’’は、それぞれ独立に水素原子、アルキル基、又は1個以上の水素原子が置換基で置換されていてもよいフェニル基であり、ただし、R’及びR’’の少なくとも一方は前記アルキル基又はフェニル基である。)
Figure JPOXMLDOC01-appb-C000004
Wherein R ′ and R ″ are each independently a hydrogen atom, an alkyl group, or a phenyl group in which one or more hydrogen atoms may be substituted with a substituent, provided that R ′ and R ′ At least one of 'is the alkyl group or the phenyl group.)
 本発明の銀インク組成物においては、前記R’及びR’’の炭素数の合計値が6~9であってもよい。
 本発明の銀インク組成物は、下記一般式(21)で表されるアセチレンアルコールが配合されてなるものでもよい。
In the silver ink composition of the present invention, the total number of carbon atoms of R ′ and R ″ may be 6-9.
The silver ink composition of the present invention may be formulated with acetylene alcohol represented by the following general formula (21).
Figure JPOXMLDOC01-appb-C000005
 (式中、R’及びR’’は、それぞれ独立に水素原子又はアルキル基であり、ただし、R’及びR’’の炭素数の合計値は0~5である。)
Figure JPOXMLDOC01-appb-C000005
(Wherein R 9 ′ and R 9 ″ are each independently a hydrogen atom or an alkyl group, provided that the total number of carbon atoms of R 9 ′ and R 9 ″ is 0 to 5)
 また、本発明は、式「-COOAg」で表される基を有するカルボン酸銀と、炭素数25以下のアミン化合物及び第4級アンモニウム塩、アンモニア、並びに前記アミン化合物又はアンモニアが酸と反応してなるアンモニウム塩からなる群から選択される1種以上の含窒素化合物と、シュウ酸、ヒドラジン及び下記一般式(5)で表される化合物からなる群から選択される1種以上の還元剤と、下記一般式(20)で表される、炭素数9以上のアセチレンアルコール類と、を配合する工程を有する、銀インク組成物の製造方法を提供する。
 H-C(=O)-R21 ・・・・(5)
 (式中、R21は、炭素数20以下のアルキル基、アルコキシ基若しくはN,N-ジアルキルアミノ基、水酸基又はアミノ基である。)
The present invention also relates to a silver carboxylate having a group represented by the formula “—COOAg”, an amine compound having a carbon number of 25 or less, a quaternary ammonium salt, ammonia, and the amine compound or ammonia reacting with an acid. One or more nitrogen-containing compounds selected from the group consisting of ammonium salts, and one or more reducing agents selected from the group consisting of oxalic acid, hydrazine and a compound represented by the following general formula (5) The manufacturing method of the silver ink composition which has the process of mix | blending with C9 or more acetylene alcohol represented by following General formula (20) is provided.
HC (= O) -R 21 (5)
(Wherein R 21 represents an alkyl group having 20 or less carbon atoms, an alkoxy group, or an N, N-dialkylamino group, a hydroxyl group, or an amino group.)
Figure JPOXMLDOC01-appb-C000006
 (式中、R’及びR’’は、それぞれ独立に水素原子、アルキル基、又は1個以上の水素原子が置換基で置換されていてもよいフェニル基であり、ただし、R’及びR’’の少なくとも一方は前記アルキル基又はフェニル基である。)
Figure JPOXMLDOC01-appb-C000006
Wherein R ′ and R ″ are each independently a hydrogen atom, an alkyl group, or a phenyl group in which one or more hydrogen atoms may be substituted with a substituent, provided that R ′ and R ′ At least one of 'is the alkyl group or the phenyl group.)
 また、本発明は、基材の表面に銀層が積層されてなり、前記銀層が、前記銀インク組成物を用いて形成されたものである、積層体を提供する。 The present invention also provides a laminate in which a silver layer is laminated on the surface of a substrate, and the silver layer is formed using the silver ink composition.
 本発明の銀インク組成物は、保存安定性に優れる。また、本発明の製造方法により、このような保存安定性に優れる銀インク組成物が得られる。
 本発明の積層体は、本発明の銀インク組成物を用いて形成した金属銀を備え、この金属銀は導電性に優れる。
The silver ink composition of the present invention is excellent in storage stability. In addition, the silver ink composition having excellent storage stability can be obtained by the production method of the present invention.
The laminate of the present invention comprises metallic silver formed using the silver ink composition of the present invention, and this metallic silver is excellent in conductivity.
本発明の銀インク組成物を用いて得られた積層体の一実施形態を模式的に示す断面図である。It is sectional drawing which shows typically one Embodiment of the laminated body obtained using the silver ink composition of this invention.
 本発明の銀インク組成物、銀インク組成物の製造方法及び積層体の好ましい例について以下に説明する。ただし、本発明はこれら例のみに限定されることはなく、例えば、本発明の趣旨を逸脱しない範囲で、追加、省略、置換、及びその他の変更(量、数、位置、サイズなど)が可能である。 Preferred examples of the silver ink composition of the present invention, the method for producing the silver ink composition, and the laminate will be described below. However, the present invention is not limited to these examples. For example, additions, omissions, substitutions, and other changes (amount, number, position, size, etc.) are possible without departing from the spirit of the present invention. It is.
<銀インク組成物>
 本発明の銀インク組成物は、式「-COOAg」で表される基を有するカルボン酸銀と、炭素数25以下のアミン化合物及び第4級アンモニウム塩、アンモニア、並びに前記アミン化合物又はアンモニアが酸と反応してなるアンモニウム塩からなる群から選択される1種以上の含窒素化合物と、シュウ酸、ヒドラジン及び下記一般式(5)で表される化合物からなる群から選択される1種以上の還元剤と、下記一般式(20)で表される、炭素数9以上のアセチレンアルコール類と、が配合されてなる。
 H-C(=O)-R21 ・・・・(5)
 (式中、R21は、炭素数20以下のアルキル基、アルコキシ基若しくはN,N-ジアルキルアミノ基、水酸基又はアミノ基である。)
<Silver ink composition>
The silver ink composition of the present invention comprises a silver carboxylate having a group represented by the formula “—COOAg”, an amine compound having a carbon number of 25 or less, a quaternary ammonium salt, ammonia, and the amine compound or ammonia is an acid. One or more nitrogen-containing compounds selected from the group consisting of ammonium salts formed by reaction with oxalic acid, hydrazine, and one or more selected from the group consisting of compounds represented by the following general formula (5) A reducing agent and an acetylene alcohol having 9 or more carbon atoms represented by the following general formula (20) are blended.
HC (= O) -R 21 (5)
(Wherein R 21 represents an alkyl group having 20 or less carbon atoms, an alkoxy group, or an N, N-dialkylamino group, a hydroxyl group, or an amino group.)
Figure JPOXMLDOC01-appb-C000007
 (式中、R’及びR’’は、それぞれ独立に水素原子、アルキル基、又は1個以上の水素原子が置換基で置換されていてもよいフェニル基であり、ただし、R’及びR’’の少なくとも一方は前記アルキル基又はフェニル基である。)
Figure JPOXMLDOC01-appb-C000007
Wherein R ′ and R ″ are each independently a hydrogen atom, an alkyl group, or a phenyl group in which one or more hydrogen atoms may be substituted with a substituent, provided that R ′ and R ′ At least one of 'is the alkyl group or the phenyl group.)
 本発明の銀インク組成物は、上記のように特定の配合成分を組み合わせることで、従来の銀インク組成物よりも優れた保存安定性を有する。 The silver ink composition of the present invention has storage stability superior to that of conventional silver ink compositions by combining specific compounding components as described above.
 本発明の銀インク組成物は、液状であるものが好ましく、前記カルボン酸銀が均一に分散されたものが好ましい。 The silver ink composition of the present invention is preferably in a liquid state, and preferably one in which the silver carboxylate is uniformly dispersed.
[カルボン酸銀]
 本発明におけるカルボン酸銀は、式「-COOAg」で表される基を有するものであり、式「-COOAg」で表される基の数は1個のみでもよいし、2個以上でもよい。また、カルボン酸銀中の式「-COOAg」で表される基の位置は特に限定されない。
 本発明において、カルボン酸銀は、1種を単独で使用してもよいし、2種以上を併用してもよく、2種以上を併用する場合、その組み合わせ及び比率は、任意に調節できる。
[Silver carboxylate]
The silver carboxylate in the present invention has a group represented by the formula “—COOAg”, and the number of groups represented by the formula “—COOAg” may be only one or two or more. Further, the position of the group represented by the formula “—COOAg” in the silver carboxylate is not particularly limited.
In this invention, silver carboxylate may be used individually by 1 type, may use 2 or more types together, and when using 2 or more types together, the combination and ratio can be adjusted arbitrarily.
 前記カルボン酸銀は、下記一般式(1)で表わされるβ-ケトカルボン酸銀(以下、「β-ケトカルボン酸銀(1)」と略記することがある)及び下記一般式(4)で表されるカルボン酸銀(以下、「カルボン酸銀(4)」と略記することがある)からなる群から選択される1種以上であることが好ましい。
 なお、本明細書においては、単なる「カルボン酸銀」との記載は、特に断りの無い限り、「β-ケトカルボン酸銀(1)」及び「カルボン酸銀(4)」だけではなく、これらを包括する、「式「-COOAg」で表される基を有するカルボン酸銀」を意味するものとする。
The silver carboxylate is represented by the following general formula (1) β-ketocarboxylate silver (hereinafter sometimes abbreviated as “β-ketocarboxylate (1)”) and the following general formula (4). One or more selected from the group consisting of silver carboxylates (hereinafter sometimes abbreviated as “silver carboxylate (4)”).
In this specification, the simple description of “silver carboxylate” is not limited to “silver β-ketocarboxylate (1)” and “silver carboxylate (4)”, unless otherwise specified. It is intended to mean “silver carboxylate having a group represented by the formula“ —COOAg ””.
Figure JPOXMLDOC01-appb-C000008
 (式中、Rは1個以上の水素原子が置換基で置換されていてもよい炭素数1~20の脂肪族炭化水素基若しくはフェニル基、水酸基、アミノ基、又は一般式「R-CY -」、「CY -」、「R-CHY-」、「RO-」、「RN-」、「(RO)CY-」若しくは「R-C(=O)-CY -」で表される基であり;
 Yはそれぞれ独立にフッ素原子、塩素原子、臭素原子又は水素原子であり;Rは炭素数1~19の脂肪族炭化水素基又はフェニル基であり;Rは炭素数1~20の脂肪族炭化水素基であり;Rは炭素数1~16の脂肪族炭化水素基であり;R及びRはそれぞれ独立に炭素数1~18の脂肪族炭化水素基であり;Rは炭素数1~19の脂肪族炭化水素基、水酸基又は式「AgO-」で表される基であり;
 Xはそれぞれ独立に水素原子、炭素数1~20の脂肪族炭化水素基、ハロゲン原子、1個以上の水素原子が置換基で置換されていてもよいフェニル基若しくはベンジル基、シアノ基、N-フタロイル-3-アミノプロピル基、2-エトキシビニル基、又は一般式「RO-」、「RS-」、「R-C(=O)-」若しくは「R-C(=O)-O-」で表される基であり;
 Rは、炭素数1~10の脂肪族炭化水素基、チエニル基、又は1個以上の水素原子が置換基で置換されていてもよいフェニル基若しくはジフェニル基である。)
Figure JPOXMLDOC01-appb-C000008
(Wherein R represents an aliphatic hydrocarbon group having 1 to 20 carbon atoms in which one or more hydrogen atoms may be substituted with a substituent, a phenyl group, a hydroxyl group, an amino group, or a group represented by the general formula “R 1 -CY 1 2- "," CY 1 3- "," R 1 -CHY 1- "," R 2 O- "," R 5 R 4 N- "," (R 3 O) 2 CY 1- "or" R 6 —C (═O) —CY 1 2 — ”;
Y 1 is each independently a fluorine atom, a chlorine atom, a bromine atom or a hydrogen atom; R 1 is an aliphatic hydrocarbon group having 1 to 19 carbon atoms or a phenyl group; R 2 is an aliphatic having 1 to 20 carbon atoms R 3 is an aliphatic hydrocarbon group having 1 to 16 carbon atoms; R 4 and R 5 are each independently an aliphatic hydrocarbon group having 1 to 18 carbon atoms; R 6 is An aliphatic hydrocarbon group having 1 to 19 carbon atoms, a hydroxyl group or a group represented by the formula “AgO—”;
X 1 is independently a hydrogen atom, an aliphatic hydrocarbon group having 1 to 20 carbon atoms, a halogen atom, a phenyl group or benzyl group in which one or more hydrogen atoms may be substituted with a substituent, a cyano group, N -Phthaloyl-3-aminopropyl group, 2-ethoxyvinyl group, or “R 7 O—”, “R 7 S—”, “R 7 —C (═O) —” or “R 7 —C ( ═O) —O— ”;
R 7 is an aliphatic hydrocarbon group having 1 to 10 carbon atoms, a thienyl group, or a phenyl group or diphenyl group in which one or more hydrogen atoms may be substituted with a substituent. )
Figure JPOXMLDOC01-appb-C000009
 (式中、Rは炭素数1~19の脂肪族炭化水素基、カルボキシ基又は式「-C(=O)-OAg」で表される基であり、前記脂肪族炭化水素基がメチレン基を有する場合、1個以上の前記メチレン基はカルボニル基で置換されていてもよい。)
Figure JPOXMLDOC01-appb-C000009
(Wherein R 8 is an aliphatic hydrocarbon group having 1 to 19 carbon atoms, a carboxy group, or a group represented by the formula “—C (═O) —OAg”, wherein the aliphatic hydrocarbon group is a methylene group. And one or more of the methylene groups may be substituted with a carbonyl group.)
(β-ケトカルボン酸銀(1))
 β-ケトカルボン酸銀(1)は、前記一般式(1)で表される。
 式中、Rは1個以上の水素原子が置換基で置換されていてもよい炭素数1~20の脂肪族炭化水素基若しくはフェニル基、水酸基、アミノ基、又は一般式「R-CY -」、「CY -」、「R-CHY-」、「RO-」、「RN-」、「(RO)CY-」若しくは「R-C(=O)-CY -」で表される基である。
(Silver β-ketocarboxylate (1))
The silver β-ketocarboxylate (1) is represented by the general formula (1).
In the formula, R is an aliphatic hydrocarbon group having 1 to 20 carbon atoms, a phenyl group, a hydroxyl group, an amino group, or a group represented by the general formula “R 1 -CY 1 ” in which one or more hydrogen atoms may be substituted with a substituent. 2- "," CY 1 3- "," R 1 -CHY 1- "," R 2 O- "," R 5 R 4 N- "," (R 3 O) 2 CY 1- "or" R 6 —C (═O) —CY 1 2 — ”.
 Rにおける炭素数1~20の脂肪族炭化水素基は、直鎖状、分岐鎖状及び環状(脂肪族環式基)のいずれでもよく、環状である場合、単環状及び多環状のいずれでもよい。また、前記脂肪族炭化水素基は、飽和脂肪族炭化水素基及び不飽和脂肪族炭化水素基のいずれでもよい。そして、前記脂肪族炭化水素基は、炭素数が1~10であることが好ましく、1~6であることがより好ましい。Rにおける好ましい前記脂肪族炭化水素基としては、例えば、アルキル基、アルケニル基、アルキニル基等が挙げられる。 The aliphatic hydrocarbon group having 1 to 20 carbon atoms in R may be any of linear, branched and cyclic (aliphatic cyclic group), and may be monocyclic or polycyclic when cyclic. . Further, the aliphatic hydrocarbon group may be either a saturated aliphatic hydrocarbon group or an unsaturated aliphatic hydrocarbon group. The aliphatic hydrocarbon group preferably has 1 to 10 carbon atoms, and more preferably 1 to 6 carbon atoms. Preferred examples of the aliphatic hydrocarbon group for R include an alkyl group, an alkenyl group, and an alkynyl group.
 Rにおける直鎖状又は分枝鎖状の前記アルキル基としては、例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、n-ペンチル基、イソペンチル基、ネオペンチル基、tert-ペンチル基、1-メチルブチル基、2-メチルブチル基、n-ヘキシル基、1-メチルペンチル基、2-メチルペンチル基、3-メチルペンチル基、4-メチルペンチル基、1,1-ジメチルブチル基、2,2-ジメチルブチル基、3,3-ジメチルブチル基、2,3-ジメチルブチル基、1-エチルブチル基、2-エチルブチル基、3-エチルブチル基、1-エチル-1-メチルプロピル基、n-ヘプチル基、1-メチルヘキシル基、2-メチルヘキシル基、3-メチルヘキシル基、4-メチルヘキシル基、5-メチルヘキシル基、1,1-ジメチルペンチル基、2,2-ジメチルペンチル基、2,3-ジメチルペンチル基、2,4-ジメチルペンチル基、3,3-ジメチルペンチル基、4,4-ジメチルペンチル基、1-エチルペンチル基、2-エチルペンチル基、3-エチルペンチル基、4-エチルペンチル基、2,2,3-トリメチルブチル基、1-プロピルブチル基、n-オクチル基、イソオクチル基、1-メチルヘプチル基、2-メチルヘプチル基、3-メチルヘプチル基、4-メチルヘプチル基、5-メチルヘプチル基、1-エチルヘキシル基、2-エチルヘキシル基、3-エチルヘキシル基、4-エチルヘキシル基、5-エチルヘキシル基、1,1-ジメチルヘキシル基、2,2-ジメチルヘキシル基、3,3-ジメチルヘキシル基、4,4-ジメチルヘキシル基、5,5-ジメチルヘキシル基、1-プロピルペンチル基、2-プロピルペンチル基、ノニル基、デシル基、ウンデシル基、ドデシル基、トリデシル基、テトラデシル基、ペンタデシル基、ヘキサデシル基、ヘプタデシル基、オクタデシル基、ノナデシル基、イコシル基等が挙げられる。
 Rにおける環状の前記アルキル基としては、例えば、シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基、シクロヘプチル基、シクロオクチル基、シクロノニル基、シクロデシル基、ノルボルニル基、イソボルニル基、1-アダマンチル基、2-アダマンチル基、トリシクロデシル基等が挙げられる。
Examples of the linear or branched alkyl group in R include, for example, methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, sec-butyl group, and tert-butyl group. N-pentyl group, isopentyl group, neopentyl group, tert-pentyl group, 1-methylbutyl group, 2-methylbutyl group, n-hexyl group, 1-methylpentyl group, 2-methylpentyl group, 3-methylpentyl group, 4-methylpentyl group, 1,1-dimethylbutyl group, 2,2-dimethylbutyl group, 3,3-dimethylbutyl group, 2,3-dimethylbutyl group, 1-ethylbutyl group, 2-ethylbutyl group, 3- Ethylbutyl group, 1-ethyl-1-methylpropyl group, n-heptyl group, 1-methylhexyl group, 2-methylhexyl group, 3-methylhexyl group Group, 4-methylhexyl group, 5-methylhexyl group, 1,1-dimethylpentyl group, 2,2-dimethylpentyl group, 2,3-dimethylpentyl group, 2,4-dimethylpentyl group, 3,3 -Dimethylpentyl group, 4,4-dimethylpentyl group, 1-ethylpentyl group, 2-ethylpentyl group, 3-ethylpentyl group, 4-ethylpentyl group, 2,2,3-trimethylbutyl group, 1-propyl Butyl group, n-octyl group, isooctyl group, 1-methylheptyl group, 2-methylheptyl group, 3-methylheptyl group, 4-methylheptyl group, 5-methylheptyl group, 1-ethylhexyl group, 2-ethylhexyl group 3-ethylhexyl group, 4-ethylhexyl group, 5-ethylhexyl group, 1,1-dimethylhexyl group, 2,2-dimethylhexyl 3,3-dimethylhexyl group, 4,4-dimethylhexyl group, 5,5-dimethylhexyl group, 1-propylpentyl group, 2-propylpentyl group, nonyl group, decyl group, undecyl group, dodecyl group, tridecyl Group, tetradecyl group, pentadecyl group, hexadecyl group, heptadecyl group, octadecyl group, nonadecyl group, icosyl group and the like.
Examples of the cyclic alkyl group in R include, for example, a cyclopropyl group, cyclobutyl group, cyclopentyl group, cyclohexyl group, cycloheptyl group, cyclooctyl group, cyclononyl group, cyclodecyl group, norbornyl group, isobornyl group, 1-adamantyl group, Examples thereof include a 2-adamantyl group and a tricyclodecyl group.
 Rにおける前記アルケニル基としては、例えば、Rにおける前記アルキル基の炭素原子間の1個の単結合(C-C)が二重結合(C=C)に置換された基等が挙げられる。
 このような前記アルケニル基としては、例えば、ビニル基(エテニル基、-CH=CH)、アリル基(2-プロペニル基、-CH-CH=CH)、1-プロペニル基(-CH=CH-CH)、イソプロペニル基(-C(CH)=CH)、1-ブテニル基(-CH=CH-CH-CH)、2-ブテニル基(-CH-CH=CH-CH)、3-ブテニル基(-CH-CH-CH=CH)、シクロヘキセニル基、シクロペンテニル基等が挙げられる。
Examples of the alkenyl group in R include a group in which one single bond (C—C) between carbon atoms of the alkyl group in R is substituted with a double bond (C═C).
Examples of the alkenyl group include a vinyl group (ethenyl group, —CH═CH 2 ), an allyl group (2-propenyl group, —CH 2 —CH═CH 2 ), and a 1-propenyl group (—CH═ CH—CH 3 ), isopropenyl group (—C (CH 3 ) ═CH 2 ), 1-butenyl group (—CH═CH—CH 2 —CH 3 ), 2-butenyl group (—CH 2 —CH═CH) —CH 3 ), 3-butenyl group (—CH 2 —CH 2 —CH═CH 2 ), cyclohexenyl group, cyclopentenyl group and the like.
 Rにおける前記アルキニル基としては、例えば、Rにおける前記アルキル基の炭素原子間の1個の単結合(C-C)が三重結合(C≡C)に置換された基等が挙げられる。
 このような前記アルキニル基としては、例えば、エチニル基(-C≡CH)、プロパルギル基(-CH-C≡CH)等が挙げられる。
Examples of the alkynyl group in R include a group in which one single bond (C—C) between carbon atoms of the alkyl group in R is substituted with a triple bond (C≡C).
Examples of such alkynyl group include ethynyl group (—C≡CH), propargyl group (—CH 2 —C≡CH), and the like.
 Rにおける炭素数1~20の脂肪族炭化水素基は、1個以上の水素原子が置換基で置換されていてもよい。好ましい前記置換基としては、例えば、フッ素原子、塩素原子、臭素原子等が挙げられる。また、前記脂肪族炭化水素基において、前記置換基の数及び位置は特に限定されない。そして、置換基の数が複数である場合、これら複数個の置換基は互いに同一でも異なっていてもよい。すなわち、すべての置換基が同一であってもよいし、すべての置換基が異なっていてもよく、一部の置換基のみが異なっていてもよい。 In the aliphatic hydrocarbon group having 1 to 20 carbon atoms in R, one or more hydrogen atoms may be substituted with a substituent. Preferred examples of the substituent include a fluorine atom, a chlorine atom, and a bromine atom. In the aliphatic hydrocarbon group, the number and position of the substituents are not particularly limited. When the number of substituents is plural, the plural substituents may be the same as or different from each other. That is, all the substituents may be the same, all the substituents may be different, or only some of the substituents may be different.
 Rにおけるフェニル基は、1個以上の水素原子が置換基で置換されていてもよい。好ましい前記置換基としては、例えば、炭素数が1~16の飽和又は不飽和の一価の脂肪族炭化水素基、前記脂肪族炭化水素基が酸素原子に結合してなる一価の基、フッ素原子、塩素原子、臭素原子、水酸基(-OH)、シアノ基(-C≡N)、フェノキシ基(-O-C)等が挙げられる。置換基を有する前記フェニル基において、前記置換基の数及び位置は特に限定されない。そして、置換基の数が複数である場合、これら複数個の置換基は互いに同一でも異なっていてもよい。
 置換基である前記脂肪族炭化水素基としては、例えば、炭素数が1~16である点以外は、Rにおける前記脂肪族炭化水素基と同様のものが挙げられる。
In the phenyl group in R, one or more hydrogen atoms may be substituted with a substituent. Preferred examples of the substituent include a saturated or unsaturated monovalent aliphatic hydrocarbon group having 1 to 16 carbon atoms, a monovalent group formed by bonding the aliphatic hydrocarbon group to an oxygen atom, fluorine An atom, a chlorine atom, a bromine atom, a hydroxyl group (—OH), a cyano group (—C≡N), a phenoxy group (—O—C 6 H 5 ), and the like. In the phenyl group having a substituent, the number and position of the substituent are not particularly limited. When the number of substituents is plural, the plural substituents may be the same as or different from each other.
Examples of the aliphatic hydrocarbon group which is a substituent include the same aliphatic hydrocarbon groups as those described above for R except that the number of carbon atoms is 1 to 16.
 RにおけるYは、それぞれ独立にフッ素原子、塩素原子、臭素原子又は水素原子である。そして、一般式「R-CY -」、「CY -」及び「R-C(=O)-CY -」においては、それぞれ複数個のYは、互いに同一でも異なっていてもよい。 Y 1 in R is independently a fluorine atom, a chlorine atom, a bromine atom or a hydrogen atom. In the general formulas “R 1 —CY 1 2 —”, “CY 1 3 —” and “R 6 —C (═O) —CY 1 2 —”, a plurality of Y 1 may be the same as each other. May be different.
 RにおけるRは、炭素数1~19の脂肪族炭化水素基又はフェニル基(C-)である。Rにおける前記脂肪族炭化水素基としては、例えば、炭素数が1~19である点以外は、Rにおける前記脂肪族炭化水素基と同様のものが挙げられる。
 RにおけるRは、炭素数1~20の脂肪族炭化水素基であり、例えば、Rにおける前記脂肪族炭化水素基と同様のものが挙げられる。
 RにおけるRは、炭素数1~16の脂肪族炭化水素基である。Rにおける前記脂肪族炭化水素基としては、例えば、炭素数が1~16である点以外は、Rにおける前記脂肪族炭化水素基と同様のものが挙げられる。
 RにおけるR及びRは、それぞれ独立に炭素数1~18の脂肪族炭化水素基である。すなわち、R及びRは、互いに同一でも異なっていてもよく、R及びRにおける前記脂肪族炭化水素基としては、例えば、炭素数が1~18である点以外は、Rにおける前記脂肪族炭化水素基と同様のものが挙げられる。
 RにおけるRは、炭素数1~19の脂肪族炭化水素基、水酸基又は式「AgO-」で表される基である。Rにおける前記脂肪族炭化水素基としては、例えば、炭素数が1~19である点以外は、Rにおける前記脂肪族炭化水素基と同様のものが挙げられる。
R 1 in R is an aliphatic hydrocarbon group having 1 to 19 carbon atoms or a phenyl group (C 6 H 5 —). Examples of the aliphatic hydrocarbon group for R 1 include those similar to the aliphatic hydrocarbon group for R except that the aliphatic hydrocarbon group has 1 to 19 carbon atoms.
R 2 in R is an aliphatic hydrocarbon group having 1 to 20 carbon atoms, and examples thereof include the same as the aliphatic hydrocarbon group in R.
R 3 in R is an aliphatic hydrocarbon group having 1 to 16 carbon atoms. Examples of the aliphatic hydrocarbon group for R 3 include the same aliphatic hydrocarbon groups as those described above for R except that the number of carbon atoms is 1 to 16.
R 4 and R 5 in R are each independently an aliphatic hydrocarbon group having 1 to 18 carbon atoms. That is, R 4 and R 5 may be the same or different from each other, and the aliphatic hydrocarbon group in R 4 and R 5 is, for example, the above in R except that it has 1 to 18 carbon atoms. The thing similar to an aliphatic hydrocarbon group is mentioned.
R 6 in R is an aliphatic hydrocarbon group having 1 to 19 carbon atoms, a hydroxyl group, or a group represented by the formula “AgO—”. Examples of the aliphatic hydrocarbon group for R 6 include the same aliphatic hydrocarbon groups as those described above for R except that the number of carbon atoms is 1 to 19.
 Rは、上記の中でも、直鎖状若しくは分枝鎖状のアルキル基、一般式「R-C(=O)-CY -」で表される基、水酸基又はフェニル基であることが好ましい。そして、Rは、直鎖状若しくは分枝鎖状のアルキル基、水酸基又は式「AgO-」で表される基であることが好ましい。 Among them, R is a linear or branched alkyl group, a group represented by the general formula “R 6 —C (═O) —CY 1 2 —”, a hydroxyl group, or a phenyl group. preferable. R 6 is preferably a linear or branched alkyl group, a hydroxyl group, or a group represented by the formula “AgO—”.
 一般式(1)において、Xはそれぞれ独立に水素原子、炭素数1~20の脂肪族炭化水素基、ハロゲン原子、1個以上の水素原子が置換基で置換されていてもよいフェニル基若しくはベンジル基(C-CH-)、シアノ基、N-フタロイル-3-アミノプロピル基、2-エトキシビニル基(C-O-CH=CH-)、又は一般式「RO-」、「RS-」、「R-C(=O)-」若しくは「R-C(=O)-O-」で表される基である。
 Xにおける炭素数1~20の脂肪族炭化水素基としては、例えば、Rにおける前記脂肪族炭化水素基と同様のものが挙げられる。
In the general formula (1), each X 1 independently represents a hydrogen atom, an aliphatic hydrocarbon group having 1 to 20 carbon atoms, a halogen atom, a phenyl group in which one or more hydrogen atoms may be substituted with a substituent, or A benzyl group (C 6 H 5 —CH 2 —), a cyano group, an N-phthaloyl-3-aminopropyl group, a 2-ethoxyvinyl group (C 2 H 5 —O—CH═CH—), or the general formula “R 7 O— ”,“ R 7 S— ”,“ R 7 —C (═O) — ”or“ R 7 —C (═O) —O— ”.
Examples of the aliphatic hydrocarbon group having 1 to 20 carbon atoms in X 1 include those similar to the aliphatic hydrocarbon group in R.
 Xにおけるハロゲン原子としては、例えば、フッ素原子、塩素原子、臭素原子、ヨウ素原子等が挙げられる。
 Xにおけるフェニル基及びベンジル基は、1個以上の水素原子が置換基で置換されていてもよい。好ましい前記置換基としては、例えば、ハロゲン原子(フッ素原子、塩素原子、臭素原子、ヨウ素原子)、ニトロ基(-NO)等が挙げられる。置換基を有する前記フェニル基及びベンジル基において、前記置換基の数及び位置は特に限定されない。そして、置換基の数が複数である場合、これら複数個の置換基は互いに同一でも異なっていてもよい。
The halogen atom in X 1, for example, a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom.
In the phenyl group and benzyl group in X 1 , one or more hydrogen atoms may be substituted with a substituent. Preferred examples of the substituent include a halogen atom (fluorine atom, chlorine atom, bromine atom, iodine atom), nitro group (—NO 2 ) and the like. In the phenyl group and benzyl group having a substituent, the number and position of the substituent are not particularly limited. When the number of substituents is plural, the plural substituents may be the same as or different from each other.
 XにおけるRは、炭素数1~10の脂肪族炭化水素基、チエニル基(CS-)、又は1個以上の水素原子が置換基で置換されていてもよいフェニル基若しくはジフェニル基(ビフェニル基、C-C-)である。Rにおける前記脂肪族炭化水素基としては、例えば、炭素数が1~10である点以外は、Rにおける前記脂肪族炭化水素基と同様のものが挙げられる。また、Rにおけるフェニル基及びジフェニル基が有する前記置換基としては、例えば、ハロゲン原子(フッ素原子、塩素原子、臭素原子、ヨウ素原子)等が挙げられる。置換基を有する前記フェニル基及びジフェニル基において、前記置換基の数及び位置は特に限定されない。そして、置換基の数が複数である場合、これら複数個の置換基は互いに同一でも異なっていてもよい。
 Rがチエニル基又はジフェニル基である場合、これらの、Xにおいて隣接する基又は原子(酸素原子、硫黄原子、カルボニル基、カルボニルオキシ基)との結合位置は、特に限定されない。例えば、チエニル基は、2-チエニル基及び3-チエニル基のいずれでもよい。
R 7 in X 1 represents an aliphatic hydrocarbon group having 1 to 10 carbon atoms, a thienyl group (C 4 H 3 S—), a phenyl group in which one or more hydrogen atoms may be substituted with a substituent, or A diphenyl group (biphenyl group, C 6 H 5 —C 6 H 4 —); Examples of the aliphatic hydrocarbon group for R 7 include the same aliphatic hydrocarbon groups as those described above for R except that the number of carbon atoms is 1 to 10. Further, examples of the substituent having a phenyl group and a diphenyl group in R 7, for example, a halogen atom (fluorine atom, chlorine atom, bromine atom, iodine atom) and the like. In the phenyl group and diphenyl group having a substituent, the number and position of the substituent are not particularly limited. When the number of substituents is plural, the plural substituents may be the same as or different from each other.
When R 7 is a thienyl group or a diphenyl group, there are no particular limitations on the bonding position of these groups with an adjacent group or atom (oxygen atom, sulfur atom, carbonyl group, carbonyloxy group) in X 1 . For example, the thienyl group may be either a 2-thienyl group or a 3-thienyl group.
 一般式(1)において、2個のXは、2個のカルボニル基で挟まれた炭素原子と二重結合を介して1個の基として結合していてもよい。このようなXとしては、例えば、式「=CH-C-NO」で表される基等が挙げられる。 In the general formula (1), two X 1 s may be bonded as one group through a double bond with a carbon atom sandwiched between two carbonyl groups. Examples of such X 1 include a group represented by the formula “═CH—C 6 H 4 —NO 2 ”.
 Xは、上記の中でも、水素原子、直鎖状若しくは分枝鎖状のアルキル基、ベンジル基、又は一般式「R-C(=O)-」で表される基であることが好ましく、少なくとも一方のXが水素原子であることが好ましい。 X 1 is preferably a hydrogen atom, a linear or branched alkyl group, a benzyl group, or a group represented by the general formula “R 7 —C (═O) —” among the above. It is preferable that at least one X 1 is a hydrogen atom.
 β-ケトカルボン酸銀(1)は、2-メチルアセト酢酸銀(CH-C(=O)-CH(CH)-C(=O)-OAg)、アセト酢酸銀(CH-C(=O)-CH-C(=O)-OAg)、2-エチルアセト酢酸銀(CH-C(=O)-CH(CHCH)-C(=O)-OAg)、プロピオニル酢酸銀(CHCH-C(=O)-CH-C(=O)-OAg)、イソブチリル酢酸銀((CHCH-C(=O)-CH-C(=O)-OAg)、ピバロイル酢酸銀((CHC-C(=O)-CH-C(=O)-OAg)、カプロイル酢酸銀(CH(CHCH-C(=O)-CH-C(=O)-OAg)、2-n-ブチルアセト酢酸銀(CH-C(=O)-CH(CHCHCHCH)-C(=O)-OAg)、2-ベンジルアセト酢酸銀(CH-C(=O)-CH(CH)-C(=O)-OAg)、ベンゾイル酢酸銀(C-C(=O)-CH-C(=O)-OAg)、ピバロイルアセト酢酸銀((CHC-C(=O)-CH-C(=O)-CH-C(=O)-OAg)、イソブチリルアセト酢酸銀((CHCH-C(=O)-CH-C(=O)-CH-C(=O)-OAg)、2-アセチルピバロイル酢酸銀((CHC-C(=O)-CH(-C(=O)-CH)-C(=O)-OAg)、2-アセチルイソブチリル酢酸銀((CHCH-C(=O)-CH(-C(=O)-CH)-C(=O)-OAg)、又はアセトンジカルボン酸銀(AgO-C(=O)-CH-C(=O)-CH-C(=O)-OAg)であることが好ましい。 Silver β-ketocarboxylate (1) is silver 2-methylacetoacetate (CH 3 —C (═O) —CH (CH 3 ) —C (═O) —OAg), silver acetoacetate (CH 3 —C (= O) —CH 2 —C (═O) —OAg), silver 2-ethylacetoacetate (CH 3 —C (═O) —CH (CH 2 CH 3 ) —C (═O) —OAg), silver propionyl acetate (CH 3 CH 2 —C (═O) —CH 2 —C (═O) —OAg), silver isobutyryl acetate ((CH 3 ) 2 CH—C (═O) —CH 2 —C (═O) — OAg), silver pivaloyl acetate ((CH 3 ) 3 C—C (═O) —CH 2 —C (═O) —OAg), silver caproyl acetate (CH 3 (CH 2 ) 3 CH 2 —C (═O ) —CH 2 —C (═O) —OAg), silver 2-n-butylacetoacetate (CH 3 —C (═O) —CH (C H 2 CH 2 CH 2 CH 3 ) —C (═O) —OAg), silver 2-benzylacetoacetate (CH 3 —C (═O) —CH (CH 2 C 6 H 5 ) —C (═O) —OAg), silver benzoyl acetate (C 6 H 5 —C (═O) —CH 2 —C (═O) —OAg), silver pivaloyl acetoacetate ((CH 3 ) 3 C—C (═O) —CH 2 —C (═O) —CH 2 —C (═O) —OAg), silver isobutyrylacetoacetate ((CH 3 ) 2 CH—C (═O) —CH 2 —C (═O) —CH 2 -C (= O) -OAg), silver 2-acetylpivaloyl acetate ((CH 3 ) 3 CC (= O) -CH (-C (= O) -CH 3 ) -C (= O) -OAg), 2- acetyl isobutyryl silver acetate ((CH 3) 2 CH- C (= O) -CH (-C (= O) -CH 3) -C (= O) - Ag), or is preferably acetone dicarboxylic silver (AgO-C (= O) -CH 2 -C (= O) -CH 2 -C (= O) -OAg).
 β-ケトカルボン酸銀(1)を用いて、乾燥処理や加熱(焼成)処理等の固化処理により形成された導電体(金属銀)においては、残存する原料や不純物の濃度をより低減できる。このような導電体においては、原料や不純物が少ない程、例えば、形成された金属銀同士の接触が良好となり、導通が容易となり、抵抗率が低下する。 In the conductor (metal silver) formed by solidification treatment such as drying treatment or heating (firing) treatment using silver β-ketocarboxylate (1), the concentration of the remaining raw materials and impurities can be further reduced. In such a conductor, the smaller the raw materials and impurities, for example, the better the contact between the formed metal silvers, the easier the conduction, and the lower the resistivity.
 β-ケトカルボン酸銀(1)は、後述するように、当該分野で公知の還元剤等を使用しなくても、好ましくは60~210℃、より好ましくは60~200℃という低温で分解し、金属銀を形成できる。そして、β-ケトカルボン酸銀(1)は、還元剤と併用することで、より低温で分解して金属銀を形成する。還元剤については後ほど説明する。 The β-ketocarboxylate (1) is decomposed at a low temperature of preferably 60 to 210 ° C., more preferably 60 to 200 ° C. without using a reducing agent known in the art, as will be described later. Metal silver can be formed. The silver β-ketocarboxylate (1) is decomposed at a lower temperature to form metallic silver when used in combination with a reducing agent. The reducing agent will be described later.
 本発明において、β-ケトカルボン酸銀(1)は、1種を単独で使用してもよいし、2種以上を併用してもよく、2種以上を併用する場合、その組み合わせ及び比率は、任意に調節できる。 In the present invention, the silver β-ketocarboxylate (1) may be used singly or in combination of two or more, and when two or more are used in combination, the combination and ratio are as follows: Can be adjusted arbitrarily.
(カルボン酸銀(4))
 カルボン酸銀(4)は、前記一般式(4)で表される。
 式中、Rは炭素数1~19の脂肪族炭化水素基、カルボキシ基(-COOH)又は式「-C(=O)-OAg」で表される基である。
 Rにおける前記脂肪族炭化水素基としては、例えば、炭素数が1~19である点以外は、Rにおける前記脂肪族炭化水素基と同様のものが挙げられる。ただし、Rにおける前記脂肪族炭化水素基は、炭素数が1~15であることが好ましく、1~10であることがより好ましい。
(Silver carboxylate (4))
The silver carboxylate (4) is represented by the general formula (4).
In the formula, R 8 is an aliphatic hydrocarbon group having 1 to 19 carbon atoms, a carboxy group (—COOH), or a group represented by the formula “—C (═O) —OAg”.
Examples of the aliphatic hydrocarbon group for R 8 include those similar to the aliphatic hydrocarbon group for R except that the aliphatic hydrocarbon group has 1 to 19 carbon atoms. However, the aliphatic hydrocarbon group for R 8 preferably has 1 to 15 carbon atoms, and more preferably 1 to 10 carbon atoms.
 Rにおける前記脂肪族炭化水素基がメチレン基(-CH-)を有する場合、1個以上の前記メチレン基はカルボニル基で置換されていてもよい。カルボニル基で置換されていてもよいメチレン基の数及び位置は特に限定されず、すべてのメチレン基がカルボニル基で置換されていてもよい。ここで「メチレン基」とは、単独の式「-CH-」で表される基だけでなく、式「-CH-」で表される基が複数個連なったアルキレン基中の1個の式「-CH-」で表される基も含むものとする。 When the aliphatic hydrocarbon group for R 8 has a methylene group (—CH 2 —), one or more of the methylene groups may be substituted with a carbonyl group. The number and position of the methylene groups that may be substituted with a carbonyl group are not particularly limited, and all methylene groups may be substituted with a carbonyl group. Here, the “methylene group” is not only a single group represented by the formula “—CH 2 —” but also one of alkylene groups in which a plurality of groups represented by the formula “—CH 2 —” are linked. And a group represented by the formula “—CH 2 —”.
 カルボン酸銀(4)は、ピルビン酸銀(CH-C(=O)-C(=O)-OAg)、酢酸銀(CH-C(=O)-OAg)、酪酸銀(CH-(CH-C(=O)-OAg)、イソ酪酸銀((CHCH-C(=O)-OAg)、2-エチルへキサン酸銀(CH-(CH-CH(CHCH)-C(=O)-OAg)、ネオデカン酸銀(CH-(CH-C(CH-C(=O)-OAg)、シュウ酸銀(AgO-C(=O)-C(=O)-OAg)、又はマロン酸銀(AgO-C(=O)-CH-C(=O)-OAg)であることが好ましい。また、上記のシュウ酸銀(AgO-C(=O)-C(=O)-OAg)及びマロン酸銀(AgO-C(=O)-CH-C(=O)-OAg)の2個の式「-COOAg」で表される基のうち、1個が式「-COOH」で表される基となったもの(HO-C(=O)-C(=O)-OAg、HO-C(=O)-CH-C(=O)-OAg)も好ましい。 Silver carboxylate (4) includes silver pyruvate (CH 3 —C (═O) —C (═O) —OAg), silver acetate (CH 3 —C (═O) —OAg), silver butyrate (CH 3 — (CH 2 ) 2 —C (═O) —OAg), silver isobutyrate ((CH 3 ) 2 CH—C (═O) —OAg), silver 2-ethylhexanoate (CH 3 — (CH 2 ) 3 —CH (CH 2 CH 3 ) —C (═O) —OAg), silver neodecanoate (CH 3 — (CH 2 ) 5 —C (CH 3 ) 2 —C (═O) —OAg), Shu It is preferably silver oxide (AgO—C (═O) —C (═O) —OAg) or silver malonate (AgO—C (═O) —CH 2 —C (═O) —OAg). Further, silver oxalate (AgO—C (═O) —C (═O) —OAg) and silver malonate (AgO—C (═O) —CH 2 —C (═O) —OAg) Of the groups represented by the formula “—COOAg”, one of the groups represented by the formula “—COOH” (HO—C (═O) —C (═O) —OAg, HO) Also preferred is —C (═O) —CH 2 —C (═O) —OAg).
 カルボン酸銀(4)も、β-ケトカルボン酸銀(1)と同様に、乾燥処理や加熱(焼成)処理等の固化処理により形成された導電体(金属銀)において、残存する原料や不純物の濃度をより低減できる。そして、カルボン酸銀(4)も、還元剤と併用することで、より低温で分解して金属銀を形成する。 Similarly to the β-ketocarboxylate silver (1), silver carboxylate (4) is also used in the conductor (metal silver) formed by solidification treatment such as drying treatment or heating (firing) treatment. The concentration can be further reduced. And silver carboxylate (4) is also decomposed | disassembled at lower temperature by using together with a reducing agent, and forms metallic silver.
 本発明において、カルボン酸銀(4)は、1種を単独で使用してもよいし、2種以上を併用してもよく、2種以上を併用する場合、その組み合わせ及び比率は、任意に調節できる。 In this invention, silver carboxylate (4) may be used individually by 1 type, may use 2 or more types together, and when using 2 or more types together, the combination and ratio are arbitrary. Can be adjusted.
 前記カルボン酸銀は、2-メチルアセト酢酸銀、アセト酢酸銀、2-エチルアセト酢酸銀、プロピオニル酢酸銀、イソブチリル酢酸銀、ピバロイル酢酸銀、カプロイル酢酸銀、2-n-ブチルアセト酢酸銀、2-ベンジルアセト酢酸銀、ベンゾイル酢酸銀、ピバロイルアセト酢酸銀、イソブチリルアセト酢酸銀、アセトンジカルボン酸銀、ピルビン酸銀、酢酸銀、酪酸銀、イソ酪酸銀、2-エチルへキサン酸銀、ネオデカン酸銀、シュウ酸銀及びマロン酸銀からなる群から選択される1種以上であることが好ましい。
 そして、これらカルボン酸銀の中でも、2-メチルアセト酢酸銀及びアセト酢酸銀は、後述する含窒素化合物(なかでもアミン化合物)との相溶性に優れ、銀インク組成物の高濃度化に、特に適したものとして挙げられる。
The silver carboxylate is silver 2-methylacetoacetate, silver acetoacetate, silver 2-ethylacetoacetate, silver propionylacetate, silver isobutyrylacetate, silver pivaloylacetate, silver caproylacetate, silver 2-n-butylacetoacetate, 2-benzylacetoacetate Silver acetate, silver benzoyl acetate, silver pivaloyl acetoacetate, silver isobutyryl acetoacetate, silver acetone dicarboxylate, silver pyruvate, silver acetate, silver butyrate, silver isobutyrate, silver 2-ethylhexanoate, silver neodecanoate, silver One or more selected from the group consisting of silver oxide and silver malonate are preferred.
Among these silver carboxylates, silver 2-methylacetoacetate and silver acetoacetate are excellent in compatibility with a nitrogen-containing compound (particularly an amine compound) described later, and are particularly suitable for increasing the concentration of silver ink compositions. It is mentioned as a thing.
 銀インク組成物において、前記カルボン酸銀に由来する銀の含有量は、5質量%以上であることが好ましく、10質量%以上であることがより好ましい。前記銀の含有量がこのような範囲であることで、形成された導電体(金属銀)は品質により優れたものとなる。前記銀の含有量の上限値は、本発明の効果を損なわない限り特に限定されないが、銀インク組成物の取り扱い性等を考慮すると25質量%であることが好ましい。
 なお、本明細書において、「カルボン酸銀に由来する銀」とは、特に断りの無い限り、銀インク組成物の製造時に配合されたカルボン酸銀中の銀と同義であり、配合後も引き続きカルボン酸銀を構成している銀と、配合後にカルボン酸銀の分解で生じた分解物中の銀と、配合後にカルボン酸銀の分解で生じた銀そのもの(金属銀)と、のすべてを含む概念とする。
In the silver ink composition, the content of silver derived from the silver carboxylate is preferably 5% by mass or more, and more preferably 10% by mass or more. When the silver content is within such a range, the formed conductor (metal silver) becomes more excellent in quality. The upper limit of the silver content is not particularly limited as long as the effects of the present invention are not impaired, but it is preferably 25% by mass in consideration of the handleability of the silver ink composition.
In the present specification, “silver derived from carboxylate” is synonymous with silver in silver carboxylate blended at the time of producing the silver ink composition unless otherwise specified, and continues after blending. Includes all of the silver that constitutes silver carboxylate, the silver in the decomposition product produced by decomposition of silver carboxylate after compounding, and the silver itself (metal silver) produced by decomposition of silver carboxylate after compounding Let it be a concept.
[含窒素化合物]
 本発明における含窒素化合物は、炭素数25以下のアミン化合物(以下、「アミン化合物」と略記することがある)、炭素数25以下の第4級アンモニウム塩(以下、「第4級アンモニウム塩」と略記することがある)、アンモニア、炭素数25以下のアミン化合物が酸と反応してなるアンモニウム塩(以下、「アミン化合物由来のアンモニウム塩」と略記することがある)、及びアンモニアが酸と反応してなるアンモニウム塩(以下、「アンモニア由来のアンモニウム塩」と略記することがある)からなる群から選択される1種以上のものである。すなわち、配合される含窒素化合物は、1種のみでよいし、2種以上でもよく、2種以上を併用する場合、その組み合わせ及び比率は、任意に調節できる。
[Nitrogen-containing compounds]
The nitrogen-containing compound in the present invention includes an amine compound having 25 or less carbon atoms (hereinafter sometimes abbreviated as “amine compound”), a quaternary ammonium salt having 25 or less carbon atoms (hereinafter, “quaternary ammonium salt”). Ammonia, an ammonium salt formed by a reaction of an amine compound having 25 or less carbon atoms with an acid (hereinafter sometimes abbreviated as “ammonium salt derived from an amine compound”), and ammonia as an acid. It is one or more selected from the group consisting of ammonium salts obtained by reaction (hereinafter sometimes abbreviated as “ammonium salts derived from ammonia”). That is, the nitrogen-containing compound to be blended may be only one type, or two or more types, and when two or more types are used in combination, the combination and ratio can be arbitrarily adjusted.
(アミン化合物、第4級アンモニウム塩)
 前記アミン化合物は、炭素数が1~25であり、第1級アミン、第2級アミン及び第3級アミンのいずれでもよい。また、前記第4級アンモニウム塩は、炭素数が4~25である。前記アミン化合物及び第4級アンモニウム塩は、鎖状及び環状のいずれでもよい。また、アミン部位又はアンモニウム塩部位を構成する窒素原子(例えば、第1級アミンのアミノ基(-NH)を構成する窒素原子)の数は1個でもよいし、2個以上でもよい。
(Amine compound, quaternary ammonium salt)
The amine compound has 1 to 25 carbon atoms, and may be any of primary amine, secondary amine, and tertiary amine. The quaternary ammonium salt has 4 to 25 carbon atoms. The amine compound and the quaternary ammonium salt may be either chain or cyclic. Further, the number of nitrogen atoms constituting the amine moiety or ammonium salt moiety (for example, the nitrogen atom constituting the amino group (—NH 2 ) of the primary amine) may be one, or two or more.
 前記第1級アミンとしては、例えば、1個以上の水素原子が置換基で置換されていてもよいモノアルキルアミン、モノアリールアミン、モノ(ヘテロアリール)アミン、ジアミン等が挙げられる。 Examples of the primary amine include monoalkylamines, monoarylamines, mono (heteroaryl) amines, and diamines in which one or more hydrogen atoms may be substituted with a substituent.
 前記モノアルキルアミンを構成するアルキル基は、直鎖状、分岐鎖状及び環状のいずれでもよく、このようなアルキル基としては、例えば、Rにおける前記アルキル基と同様のものが挙げられる。前記アルキル基は、炭素数が1~19の直鎖状若しくは分岐鎖状のアルキル基、又は炭素数が3~7の環状のアルキル基であることが好ましい。
 好ましい前記モノアルキルアミンとして、具体的には、例えば、n-ブチルアミン、n-へキシルアミン、n-オクチルアミン、n-ドデシルアミン、n-オクタデシルアミン、イソブチルアミン、sec-ブチルアミン、tert-ブチルアミン、3-アミノペンタン、3-メチルブチルアミン、2-ヘプチルアミン(2-アミノヘプタン)、2-アミノオクタン、2-エチルヘキシルアミン、1,2-ジメチル-n-プロピルアミン等が挙げられる。
The alkyl group constituting the monoalkylamine may be linear, branched or cyclic, and examples of such an alkyl group include the same alkyl groups as those described above for R. The alkyl group is preferably a linear or branched alkyl group having 1 to 19 carbon atoms or a cyclic alkyl group having 3 to 7 carbon atoms.
Specific examples of preferable monoalkylamine include n-butylamine, n-hexylamine, n-octylamine, n-dodecylamine, n-octadecylamine, isobutylamine, sec-butylamine, tert-butylamine, 3 -Aminopentane, 3-methylbutylamine, 2-heptylamine (2-aminoheptane), 2-aminooctane, 2-ethylhexylamine, 1,2-dimethyl-n-propylamine and the like.
 前記モノアリールアミンを構成するアリール基としては、例えば、フェニル基、1-ナフチル基、2-ナフチル基等が挙げられる。前記アリール基は、炭素数が6~10であることが好ましい。 Examples of the aryl group constituting the monoarylamine include a phenyl group, a 1-naphthyl group, and a 2-naphthyl group. The aryl group preferably has 6 to 10 carbon atoms.
 前記モノ(ヘテロアリール)アミンを構成するヘテロアリール基は、芳香族環骨格を構成する原子として、ヘテロ原子を有するものであり、前記ヘテロ原子としては、例えば、窒素原子、硫黄原子、酸素原子、ホウ素原子等が挙げられる。また、芳香族環骨格を構成する前記へテロ原子の数は特に限定されず、1個でもよいし、2個以上でもよい。2個以上である場合、これらへテロ原子は互いに同一でも異なっていてもよい。すなわち、これらへテロ原子は、すべて同じでもよいし、すべて異なっていてもよく、一部だけ異なっていてもよい。
 前記ヘテロアリール基は、単環状及び多環状のいずれでもよく、その環員数(環骨格を構成する原子の数)も特に限定されないが、3~12員環であることが好ましい。
The heteroaryl group constituting the mono (heteroaryl) amine has a heteroatom as an atom constituting the aromatic ring skeleton. Examples of the heteroatom include a nitrogen atom, a sulfur atom, an oxygen atom, A boron atom etc. are mentioned. Moreover, the number of the said hetero atom which comprises an aromatic ring frame is not specifically limited, One may be sufficient and two or more may be sufficient. When there are two or more, these heteroatoms may be the same or different from each other. That is, these heteroatoms may all be the same, may all be different, or may be partially different.
The heteroaryl group may be either monocyclic or polycyclic, and the number of ring members (the number of atoms constituting the ring skeleton) is not particularly limited, but is preferably a 3- to 12-membered ring.
 前記ヘテロアリール基で、窒素原子を1~4個有する単環状のものとしては、例えば、ピロリル基、ピロリニル基、イミダゾリル基、ピラゾリル基、ピリジル基、ピリミジル基、ピラジニル基、ピリダジニル基、トリアゾリル基、テトラゾリル基、ピロリジニル基、イミダゾリジニル基、ピペリジニル基、ピラゾリジニル基、ピペラジニル基等が挙げられ、このようなヘテロアリール基は、3~8員環であることが好ましく、5~6員環であることがより好ましい。
 前記ヘテロアリール基で、酸素原子を1個有する単環状のものとしては、例えば、フラニル基等が挙げられ、このようなヘテロアリール基は、3~8員環であることが好ましく、5~6員環であることがより好ましい。
 前記ヘテロアリール基で、硫黄原子を1個有する単環状のものとしては、例えば、チエニル基等が挙げられ、このようなヘテロアリール基は、3~8員環であることが好ましく、5~6員環であることがより好ましい。
 前記ヘテロアリール基で、酸素原子を1~2個及び窒素原子を1~3個有する単環状のものとしては、例えば、オキサゾリル基、イソオキサゾリル基、オキサジアゾリル基、モルホリニル基等が挙げられ、このようなヘテロアリール基は、3~8員環であることが好ましく、5~6員環であることがより好ましい。
 前記ヘテロアリール基で、硫黄原子を1~2個及び窒素原子を1~3個有する単環状のものとしては、例えば、チアゾリル基、チアジアゾリル基、チアゾリジニル基等が挙げられ、このようなヘテロアリール基は、3~8員環であることが好ましく、5~6員環であることがより好ましい。
 前記ヘテロアリール基で、窒素原子を1~5個有する多環状のものとしては、例えば、インドリル基、イソインドリル基、インドリジニル基、ベンズイミダゾリル基、キノリル基、イソキノリル基、インダゾリル基、ベンゾトリアゾリル基、テトラゾロピリジル基、テトラゾロピリダジニル基、ジヒドロトリアゾロピリダジニル基等が挙げられ、このようなヘテロアリール基は、7~12員環であることが好ましく、9~10員環であることがより好ましい。
 前記ヘテロアリール基で、硫黄原子を1~3個有する多環状のものとしては、例えば、ジチアナフタレニル基、ベンゾチオフェニル基等が挙げられ、このようなヘテロアリール基は、7~12員環であることが好ましく、9~10員環であることがより好ましい。
 前記ヘテロアリール基で、酸素原子を1~2個及び窒素原子を1~3個有する多環状のものとしては、例えば、ベンゾオキサゾリル基、ベンゾオキサジアゾリル基等が挙げられ、このようなヘテロアリール基は、7~12員環であることが好ましく、9~10員環であることがより好ましい。
 前記ヘテロアリール基で、硫黄原子を1~2個及び窒素原子を1~3個有する多環状のものとしては、例えば、ベンゾチアゾリル基、ベンゾチアジアゾリル基等が挙げられ、このようなヘテロアリール基は、7~12員環であることが好ましく、9~10員環であることがより好ましい。
Examples of the monoaryl group having 1 to 4 nitrogen atoms as the heteroaryl group include, for example, pyrrolyl group, pyrrolinyl group, imidazolyl group, pyrazolyl group, pyridyl group, pyrimidyl group, pyrazinyl group, pyridazinyl group, triazolyl group, Examples include a tetrazolyl group, a pyrrolidinyl group, an imidazolidinyl group, a piperidinyl group, a pyrazolidinyl group, a piperazinyl group, and the like. Such a heteroaryl group is preferably a 3- to 8-membered ring, and preferably a 5- to 6-membered ring. More preferred.
Examples of the monoaryl group having one oxygen atom as the heteroaryl group include a furanyl group, and such a heteroaryl group is preferably a 3- to 8-membered ring. More preferably, it is a member ring.
Examples of the monoaryl group having one sulfur atom as the heteroaryl group include a thienyl group. The heteroaryl group is preferably a 3- to 8-membered ring, and preferably from 5 to 6 More preferably, it is a member ring.
Examples of the monoaryl group having 1 to 2 oxygen atoms and 1 to 3 nitrogen atoms as the heteroaryl group include an oxazolyl group, an isoxazolyl group, an oxadiazolyl group, and a morpholinyl group. The heteroaryl group is preferably a 3- to 8-membered ring, more preferably a 5- to 6-membered ring.
Examples of the monoaryl group having 1 to 2 sulfur atoms and 1 to 3 nitrogen atoms as the heteroaryl group include a thiazolyl group, a thiadiazolyl group, a thiazolidinyl group, and the like. Is preferably a 3- to 8-membered ring, more preferably a 5- to 6-membered ring.
Examples of the polyaryl group having 1 to 5 nitrogen atoms as the heteroaryl group include, for example, indolyl group, isoindolyl group, indolizinyl group, benzimidazolyl group, quinolyl group, isoquinolyl group, indazolyl group, benzotriazolyl group A tetrazolopyridyl group, a tetrazolopyridazinyl group, a dihydrotriazolopyridazinyl group, and the like. Such a heteroaryl group is preferably a 7-12 membered ring, More preferably, it is a ring.
Examples of the polyaryl group having 1 to 3 sulfur atoms as the heteroaryl group include a dithianaphthalenyl group and a benzothiophenyl group. Such a heteroaryl group has 7 to 12 members. A ring is preferable, and a 9- to 10-membered ring is more preferable.
Examples of the polyaryl group having 1 to 2 oxygen atoms and 1 to 3 nitrogen atoms as the heteroaryl group include a benzoxazolyl group and a benzoxdiazolyl group. The heteroaryl group is preferably a 7-12 membered ring, more preferably a 9-10 membered ring.
Examples of the polyaryl group having 1 to 2 sulfur atoms and 1 to 3 nitrogen atoms as the heteroaryl group include a benzothiazolyl group, a benzothiadiazolyl group, and the like. Is preferably a 7 to 12-membered ring, more preferably a 9 to 10-membered ring.
 前記ジアミンは、アミノ基を2個有していればよく、2個のアミノ基の位置関係は特に限定されない。好ましい前記ジアミンとしては、例えば、前記モノアルキルアミン、モノアリールアミン又はモノ(ヘテロアリール)アミンにおいて、アミノ基(-NH)を構成する水素原子以外の1個の水素原子が、アミノ基で置換されたもの等が挙げられる。
 前記ジアミンは炭素数が1~10であることが好ましく、より好ましいものとしては、例えば、エチレンジアミン、1,3-ジアミノプロパン、1,4-ジアミノブタン等が挙げられる。
The diamine only needs to have two amino groups, and the positional relationship between the two amino groups is not particularly limited. As the preferred diamine, for example, in the monoalkylamine, monoarylamine or mono (heteroaryl) amine, one hydrogen atom other than the hydrogen atom constituting the amino group (—NH 2 ) is substituted with an amino group. And the like.
The diamine preferably has 1 to 10 carbon atoms, and more preferable examples include ethylenediamine, 1,3-diaminopropane, 1,4-diaminobutane, and the like.
 前記第2級アミンとしては、例えば、1個以上の水素原子が置換基で置換されていてもよいジアルキルアミン、ジアリールアミン、ジ(ヘテロアリール)アミン等が挙げられる。 Examples of the secondary amine include dialkylamine, diarylamine, di (heteroaryl) amine and the like in which one or more hydrogen atoms may be substituted with a substituent.
 前記ジアルキルアミンを構成するアルキル基は、前記モノアルキルアミンを構成するアルキル基と同様であり、炭素数が1~9の直鎖状若しくは分岐鎖状のアルキル基、又は炭素数が3~7の環状のアルキル基であることが好ましい。また、ジアルキルアミン一分子中の2個のアルキル基は、互いに同一でも異なっていてもよい。
 好ましい前記ジアルキルアミンとして、具体的には、例えば、N-メチル-n-ヘキシルアミン、ジイソブチルアミン、ジ(2-エチルへキシル)アミン等が挙げられる。
The alkyl group constituting the dialkylamine is the same as the alkyl group constituting the monoalkylamine, and is a linear or branched alkyl group having 1 to 9 carbon atoms, or having 3 to 7 carbon atoms. A cyclic alkyl group is preferred. Two alkyl groups in one molecule of dialkylamine may be the same as or different from each other.
Specific examples of preferable dialkylamines include N-methyl-n-hexylamine, diisobutylamine, and di (2-ethylhexyl) amine.
 前記ジアリールアミンを構成するアリール基は、前記モノアリールアミンを構成するアリール基と同様であり、炭素数が6~10であることが好ましい。また、ジアリールアミン一分子中の2個のアリール基は、互いに同一でも異なっていてもよい。 The aryl group constituting the diarylamine is the same as the aryl group constituting the monoarylamine, and preferably has 6 to 10 carbon atoms. Two aryl groups in one molecule of diarylamine may be the same as or different from each other.
 前記ジ(ヘテロアリール)アミンを構成するヘテロアリール基は、前記モノ(ヘテロアリール)アミンを構成するヘテロアリール基と同様であり、6~12員環であることが好ましい。また、ジ(ヘテロアリール)アミン一分子中の2個のヘテロアリール基は、互いに同一でも異なっていてもよい。 The heteroaryl group constituting the di (heteroaryl) amine is the same as the heteroaryl group constituting the mono (heteroaryl) amine, and is preferably a 6-12 membered ring. Two heteroaryl groups in one molecule of di (heteroaryl) amine may be the same or different from each other.
 前記第3級アミンとしては、例えば、1個以上の水素原子が置換基で置換されていてもよいトリアルキルアミン、ジアルキルモノアリールアミン等が挙げられる。 Examples of the tertiary amine include trialkylamine and dialkylmonoarylamine in which one or more hydrogen atoms may be substituted with a substituent.
 前記トリアルキルアミンを構成するアルキル基は、前記モノアルキルアミンを構成するアルキル基と同様であり、炭素数が1~19の直鎖状若しくは分岐鎖状のアルキル基、又は炭素数が3~7の環状のアルキル基であることが好ましい。また、トリアルキルアミン一分子中の3個のアルキル基は、互いに同一でも異なっていてもよい。すなわち、3個のアルキル基は、すべてが同じでもよいし、すべてが異なっていてもよく、一部だけが異なっていてもよい。
 好ましい前記トリアルキルアミンとして、具体的には、例えば、N,N-ジメチル-n-オクタデシルアミン、N,N-ジメチルシクロヘキシルアミン等が挙げられる。
The alkyl group constituting the trialkylamine is the same as the alkyl group constituting the monoalkylamine, and is a linear or branched alkyl group having 1 to 19 carbon atoms, or 3 to 7 carbon atoms. The cyclic alkyl group is preferably. Further, the three alkyl groups in one molecule of trialkylamine may be the same as or different from each other. That is, all three alkyl groups may be the same, all may be different, or only a part may be different.
Specific examples of the preferable trialkylamine include N, N-dimethyl-n-octadecylamine, N, N-dimethylcyclohexylamine and the like.
 前記ジアルキルモノアリールアミンを構成するアルキル基は、前記モノアルキルアミンを構成するアルキル基と同様であり、炭素数が1~6の直鎖状若しくは分岐鎖状のアルキル基、又は炭素数が3~7の環状のアルキル基であることが好ましい。また、ジアルキルモノアリールアミン一分子中の2個のアルキル基は、互いに同一でも異なっていてもよい。
 前記ジアルキルモノアリールアミンを構成するアリール基は、前記モノアリールアミンを構成するアリール基と同様であり、炭素数が6~10であることが好ましい。
The alkyl group constituting the dialkyl monoarylamine is the same as the alkyl group constituting the monoalkylamine, and is a linear or branched alkyl group having 1 to 6 carbon atoms, or 3 to 3 carbon atoms. 7 is a cyclic alkyl group. Two alkyl groups in one molecule of dialkyl monoarylamine may be the same or different from each other.
The aryl group constituting the dialkyl monoarylamine is the same as the aryl group constituting the monoarylamine, and preferably has 6 to 10 carbon atoms.
 本発明において、前記第4級アンモニウム塩としては、例えば、1個以上の水素原子が置換基で置換されていてもよいハロゲン化テトラアルキルアンモニウム等が挙げられる。
 前記ハロゲン化テトラアルキルアンモニウムを構成するアルキル基は、前記モノアルキルアミンを構成するアルキル基と同様であり、炭素数が1~19であることが好ましい。また、ハロゲン化テトラアルキルアンモニウム一分子中の4個のアルキル基は、互いに同一でも異なっていてもよい。すなわち、4個のアルキル基は、すべてが同じでもよいし、すべてが異なっていてもよく、一部だけが異なっていてもよい。
 前記ハロゲン化テトラアルキルアンモニウムを構成するハロゲンとしては、例えば、フッ素、塩素、臭素、ヨウ素等が挙げられる。
 好ましい前記ハロゲン化テトラアルキルアンモニウムとして、具体的には、例えば、ドデシルトリメチルアンモニウムブロミド等が挙げられる。
In the present invention, examples of the quaternary ammonium salt include halogenated tetraalkylammonium, in which one or more hydrogen atoms may be substituted with a substituent.
The alkyl group constituting the halogenated tetraalkylammonium is the same as the alkyl group constituting the monoalkylamine, and preferably has 1 to 19 carbon atoms. Further, the four alkyl groups in one molecule of the tetraalkylammonium halide may be the same as or different from each other. That is, all four alkyl groups may be the same, all may be different, or only a part may be different.
Examples of the halogen constituting the halogenated tetraalkylammonium include fluorine, chlorine, bromine, iodine and the like.
Specific examples of the preferred tetraalkylammonium halide include dodecyltrimethylammonium bromide.
 ここまでは、主に鎖状のアミン化合物及び第4級有機アンモニウム塩について説明したが、前記アミン化合物及び第4級アンモニウム塩は、アミン部位又はアンモニウム塩部位を構成する窒素原子が環骨格構造(複素環骨格構造)の一部であるようなヘテロ環化合物であってもよい。すなわち、前記アミン化合物は環状アミンでもよく、前記第4級アンモニウム塩は環状アンモニウム塩でもよい。この時の環(アミン部位又はアンモニウム塩部位を構成する窒素原子を含む環)構造は、単環状及び多環状のいずれでもよく、その環員数(環骨格を構成する原子の数)も特に限定されず、脂肪族環及び芳香族環のいずれでもよい。
 環状アミンであれば、好ましいものとして、例えば、ピリジン等が挙げられる。
So far, the chain amine compound and the quaternary organic ammonium salt have been mainly described. However, in the amine compound and the quaternary ammonium salt, the nitrogen atom constituting the amine moiety or the ammonium salt moiety is a ring skeleton structure ( A heterocyclic compound which is a part of a heterocyclic skeleton structure) may be used. That is, the amine compound may be a cyclic amine, and the quaternary ammonium salt may be a cyclic ammonium salt. At this time, the ring (ring containing the nitrogen atom constituting the amine moiety or ammonium salt moiety) structure may be either monocyclic or polycyclic, and the number of ring members (number of atoms constituting the ring skeleton) is also particularly limited. Any of an aliphatic ring and an aromatic ring may be sufficient.
If it is a cyclic amine, as a preferable thing, a pyridine etc. will be mentioned, for example.
 前記第1級アミン、第2級アミン、第3級アミン及び第4級アンモニウム塩において、「置換基で置換されていてもよい水素原子」とは、アミン部位又はアンモニウム塩部位を構成する窒素原子に結合している水素原子以外の水素原子である。この時の置換基の数は特に限定されず、1個でもよいし、2個以上でもよく、前記水素原子のすべてが置換基で置換されていてもよい。置換基の数が複数の場合には、これら複数個の置換基は互いに同一でも異なっていてもよい。すなわち、複数個の置換基はすべて同じでもよいし、すべて異なっていてもよく、一部だけが異なっていてもよい。また、置換基の位置も特に限定されない。 In the primary amine, secondary amine, tertiary amine and quaternary ammonium salt, the “hydrogen atom optionally substituted with a substituent” means a nitrogen atom constituting an amine moiety or an ammonium salt moiety. A hydrogen atom other than a hydrogen atom bonded to. The number of substituents at this time is not particularly limited, and may be one or two or more, and all of the hydrogen atoms may be substituted with a substituent. When the number of substituents is plural, the plural substituents may be the same as or different from each other. That is, the plurality of substituents may all be the same, may all be different, or only some may be different. Further, the position of the substituent is not particularly limited.
 前記アミン化合物及び第4級アンモニウム塩における前記置換基としては、例えば、アルキル基、アリール基、ハロゲン原子、シアノ基、ニトロ基、水酸基、トリフルオロメチル基(-CF)等が挙げられる。ここで、ハロゲン原子としては、例えば、フッ素原子、塩素原子、臭素原子、ヨウ素原子等が挙げられる。 Examples of the substituent in the amine compound and the quaternary ammonium salt include an alkyl group, an aryl group, a halogen atom, a cyano group, a nitro group, a hydroxyl group, and a trifluoromethyl group (—CF 3 ). Here, as a halogen atom, a fluorine atom, a chlorine atom, a bromine atom, an iodine atom etc. are mentioned, for example.
 前記モノアルキルアミンを構成するアルキル基が置換基を有する場合、前記アルキル基は、置換基としてアリール基を有する、炭素数が1~9の直鎖状若しくは分岐鎖状のアルキル基、又は置換基として好ましくは炭素数が1~5のアルキル基を有する、炭素数が3~7の環状のアルキル基であることが好ましい。このような置換基を有するモノアルキルアミンとして、具体的には、例えば、2-フェニルエチルアミン、ベンジルアミン、2,3-ジメチルシクロヘキシルアミン等が挙げられる。
 また、置換基である前記アリール基及びアルキル基は、さらに1個以上の水素原子がハロゲン原子で置換されていてもよい。このようなハロゲン原子で置換された置換基を有するモノアルキルアミンとしては、例えば、2-ブロモベンジルアミン等が挙げられる。ここで、前記ハロゲン原子としては、例えば、フッ素原子、塩素原子、臭素原子、ヨウ素原子等が挙げられる。
When the alkyl group constituting the monoalkylamine has a substituent, the alkyl group has an aryl group as a substituent, a linear or branched alkyl group having 1 to 9 carbon atoms, or a substituent A cyclic alkyl group having 3 to 7 carbon atoms and an alkyl group having 1 to 5 carbon atoms is preferable. Specific examples of the monoalkylamine having such a substituent include 2-phenylethylamine, benzylamine, 2,3-dimethylcyclohexylamine and the like.
In the aryl group and alkyl group which are substituents, one or more hydrogen atoms may be further substituted with a halogen atom. Examples of the monoalkylamine having a substituent substituted with a halogen atom include 2-bromobenzylamine. Here, examples of the halogen atom include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom.
 前記モノアリールアミンを構成するアリール基が置換基を有する場合、前記アリール基は、置換基としてハロゲン原子を有する、炭素数が6~10のアリール基であることが好ましい。このような置換基を有するモノアリールアミンとして、具体的には、例えば、ブロモフェニルアミン等が挙げられる。ここで、前記ハロゲン原子としては、例えば、フッ素原子、塩素原子、臭素原子、ヨウ素原子等が挙げられる。 When the aryl group constituting the monoarylamine has a substituent, the aryl group is preferably an aryl group having 6 to 10 carbon atoms having a halogen atom as a substituent. Specific examples of the monoarylamine having such a substituent include bromophenylamine. Here, examples of the halogen atom include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom.
 前記ジアルキルアミンを構成するアルキル基が置換基を有する場合、前記アルキル基は、置換基として水酸基又はアリール基を有する、炭素数が1~9の直鎖状若しくは分岐鎖状のアルキル基であることが好ましい。このような置換基を有するジアルキルアミンとして、具体的には、例えば、ジエタノールアミン、N-メチルベンジルアミン等が挙げられる。 When the alkyl group constituting the dialkylamine has a substituent, the alkyl group is a linear or branched alkyl group having 1 to 9 carbon atoms and having a hydroxyl group or an aryl group as a substituent. Is preferred. Specific examples of the dialkylamine having such a substituent include diethanolamine and N-methylbenzylamine.
 前記アミン化合物は、n-プロピルアミン、n-ブチルアミン、n-へキシルアミン、n-オクチルアミン、n-ドデシルアミン、n-オクタデシルアミン、イソブチルアミン、sec-ブチルアミン、tert-ブチルアミン、3-アミノペンタン、3-メチルブチルアミン、2-ヘプチルアミン、2-アミノオクタン、2-エチルヘキシルアミン、2-フェニルエチルアミン、エチレンジアミン、1,3-ジアミノプロパン、1,4-ジアミノブタン、N-メチル-n-ヘキシルアミン、ジイソブチルアミン、N-メチルベンジルアミン、ジ(2-エチルへキシル)アミン、1,2-ジメチル-n-プロピルアミン、N,N-ジメチル-n-オクタデシルアミン又はN,N-ジメチルシクロヘキシルアミンであることが好ましい。
 そして、これらアミン化合物の中でも、2-エチルヘキシルアミンは、前記カルボン酸銀との相溶性に優れ、銀インク組成物の高濃度化に特に適しており、さらに導電層の表面粗さの低減に特に適したものとして挙げられる。
The amine compound includes n-propylamine, n-butylamine, n-hexylamine, n-octylamine, n-dodecylamine, n-octadecylamine, isobutylamine, sec-butylamine, tert-butylamine, 3-aminopentane, 3-methylbutylamine, 2-heptylamine, 2-aminooctane, 2-ethylhexylamine, 2-phenylethylamine, ethylenediamine, 1,3-diaminopropane, 1,4-diaminobutane, N-methyl-n-hexylamine, Diisobutylamine, N-methylbenzylamine, di (2-ethylhexyl) amine, 1,2-dimethyl-n-propylamine, N, N-dimethyl-n-octadecylamine or N, N-dimethylcyclohexylamine It is preferable.
Among these amine compounds, 2-ethylhexylamine is excellent in compatibility with the silver carboxylate, particularly suitable for increasing the concentration of the silver ink composition, and particularly for reducing the surface roughness of the conductive layer. Listed as suitable.
(アミン化合物由来のアンモニウム塩)
 本発明において、前記アミン化合物由来のアンモニウム塩は、前記アミン化合物が酸と反応してなるアンモニウム塩である。前記酸は、塩酸、硫酸、硝酸等の無機酸でもよいし、酢酸等の有機酸でもよく、酸の種類は特に限定されない。
 前記アミン化合物由来のアンモニウム塩としては、例えば、n-プロピルアミン塩酸塩、N-メチル-n-ヘキシルアミン塩酸塩、N,N-ジメチル-n-オクタデシルアミン塩酸塩等が挙げられるが、これらに限定されない。
(Ammonium salts derived from amine compounds)
In the present invention, the ammonium salt derived from the amine compound is an ammonium salt formed by reacting the amine compound with an acid. The acid may be an inorganic acid such as hydrochloric acid, sulfuric acid, or nitric acid, or may be an organic acid such as acetic acid, and the type of acid is not particularly limited.
Examples of the ammonium salt derived from the amine compound include n-propylamine hydrochloride, N-methyl-n-hexylamine hydrochloride, N, N-dimethyl-n-octadecylamine hydrochloride, and the like. It is not limited.
(アンモニア由来のアンモニウム塩)
 本発明において、前記アンモニア由来のアンモニウム塩は、アンモニアが酸と反応してなるアンモニウム塩である。ここで酸としては、例えば、前記アミン化合物由来のアンモニウム塩の場合と同じもの等が挙げられる。
 前記アンモニア由来のアンモニウム塩としては、例えば、塩化アンモニウム等が挙げられるが、これに限定されない。
(Ammonium salt derived from ammonia)
In the present invention, the ammonium salt derived from ammonia is an ammonium salt formed by reacting ammonia with an acid. Here, examples of the acid include the same ones as in the case of the ammonium salt derived from the amine compound.
Examples of the ammonium salt derived from ammonia include ammonium chloride, but are not limited thereto.
 本発明においては、前記アミン化合物、第4級アンモニウム塩、アミン化合物由来のアンモニウム塩及びアンモニア由来のアンモニウム塩は、それぞれ1種を単独で使用してもよいし、2種以上を併用してもよく、2種以上を併用する場合、その組み合わせ及び比率は、任意に調節できる。
 そして、前記含窒素化合物としては、前記アミン化合物、第4級アンモニウム塩、アミン化合物由来のアンモニウム塩及びアンモニア由来のアンモニウム塩からなる群から選択される1種を単独で使用してもよいし、2種以上を併用してもよく、2種以上を併用する場合、その組み合わせ及び比率は、任意に調節できる。
In the present invention, the amine compound, the quaternary ammonium salt, the ammonium salt derived from the amine compound and the ammonium salt derived from ammonia may be used alone or in combination of two or more. Well, when using 2 or more types together, the combination and ratio can be adjusted arbitrarily.
And as said nitrogen-containing compound, you may use individually 1 type selected from the group which consists of said amine compound, quaternary ammonium salt, ammonium salt derived from amine compound, and ammonium salt derived from ammonia, Two or more kinds may be used in combination, and when two or more kinds are used in combination, the combination and ratio can be arbitrarily adjusted.
 銀インク組成物において、前記含窒素化合物の配合量は、前記カルボン酸銀の配合量1モルあたり0.3~15モルであることが好ましく、0.3~5モルであることがより好ましい。前記含窒素化合物の前記配合量がこのような範囲であることで、銀インク組成物は安定性がより向上し、導電体(金属銀)の品質がより向上する。さらに、高温による加熱処理を行わなくても、より安定して導電体を形成できる。 In the silver ink composition, the compounding amount of the nitrogen-containing compound is preferably 0.3 to 15 mol, and more preferably 0.3 to 5 mol, per mol of the carboxylate silver. When the blending amount of the nitrogen-containing compound is within such a range, the silver ink composition is further improved in stability and the quality of the conductor (metal silver) is further improved. Furthermore, the conductor can be formed more stably without performing heat treatment at a high temperature.
[還元剤]
 本発明における還元剤は、シュウ酸(HOOC-COOH)、ヒドラジン(HN-NH)及び下記一般式(5)で表される化合物(以下、「化合物(5)」と略記することがある)からなる群から選択される1種以上のものである。
 H-C(=O)-R21 ・・・・(5)
 (式中、R21は、炭素数20以下のアルキル基、アルコキシ基若しくはN,N-ジアルキルアミノ基、水酸基又はアミノ基である。)
 すなわち、配合される還元剤は、1種のみでよいし、2種以上でもよく、2種以上を併用する場合、その組み合わせ及び比率は、任意に調節できる。
[Reducing agent]
The reducing agent in the present invention may be abbreviated as oxalic acid (HOOC-COOH), hydrazine (H 2 N—NH 2 ) and a compound represented by the following general formula (5) (hereinafter referred to as “compound (5)”). One or more selected from the group consisting of:
HC (= O) -R 21 (5)
(Wherein R 21 represents an alkyl group having 20 or less carbon atoms, an alkoxy group, or an N, N-dialkylamino group, a hydroxyl group, or an amino group.)
That is, the reducing agent to be blended may be only one type, or two or more types, and when two or more types are used in combination, the combination and ratio can be arbitrarily adjusted.
 R21における炭素数20以下のアルキル基は、炭素数が1~20であり、直鎖状、分岐鎖状及び環状のいずれでもよい。R21における前記アルキル基としては、例えば、前記一般式(1)のRにおける前記アルキル基と同様のもの等が挙げられる。 The alkyl group having 20 or less carbon atoms in R 21 has 1 to 20 carbon atoms and may be linear, branched or cyclic. Examples of the alkyl group for R 21 include those similar to the alkyl group for R in the general formula (1).
 R21における炭素数20以下のアルコキシ基は、炭素数が1~20であり、このようなアルコキシ基としては、例えば、R21における前記アルキル基が酸素原子に結合してなる一価の基等が挙げられる。 The alkoxy group having 20 or less carbon atoms in R 21 has 1 to 20 carbon atoms. Examples of such alkoxy groups include a monovalent group formed by bonding the alkyl group in R 21 to an oxygen atom, and the like. Is mentioned.
 R21における炭素数20以下のN,N-ジアルキルアミノ基は、炭素数が2~20であり、窒素原子に結合している2個のアルキル基は、互いに同一でも異なっていてもよい。N,N-ジアルキルアミノ基における前記アルキル基は、それぞれ炭素数が1~19である。ただし、これら2個のアルキル基の炭素数の合計値は2~20である。
 窒素原子に結合している前記アルキル基は、それぞれ直鎖状、分岐鎖状及び環状のいずれでもよい。このようなアルキル基としては、例えば、炭素数が1~19である点以外は、前記一般式(1)のRにおける前記アルキル基と同様のもの等が挙げられる。
The N, N-dialkylamino group having 20 or less carbon atoms in R 21 has 2 to 20 carbon atoms, and the two alkyl groups bonded to the nitrogen atom may be the same as or different from each other. The alkyl group in the N, N-dialkylamino group has 1 to 19 carbon atoms. However, the total value of the carbon number of these two alkyl groups is 2 to 20.
Each of the alkyl groups bonded to the nitrogen atom may be linear, branched or cyclic. Examples of such an alkyl group include those similar to the alkyl group in R of the general formula (1) except that the number of carbon atoms is 1 to 19.
 前記還元剤としてのヒドラジンは、一水和物(HN-NH・HO)であってもよい。 Hydrazine as the reducing agent may be a monohydrate (H 2 N—NH 2 .H 2 O).
 前記還元剤で好ましいものとしては、例えば、ギ酸(H-C(=O)-OH);ギ酸メチル(H-C(=O)-OCH)、ギ酸エチル(H-C(=O)-OCHCH)、ギ酸ブチル(H-C(=O)-O(CHCH)等のギ酸エステル;プロパナール(H-C(=O)-CHCH)、ブタナール(H-C(=O)-(CHCH)、ヘキサナール(H-C(=O)-(CHCH)等のアルデヒド;ホルムアミド(H-C(=O)-NH)、N,N-ジメチルホルムアミド(H-C(=O)-N(CH)等のホルムアミド類(式「H-C(=O)-N(-)-」で表される基を有する化合物);シュウ酸等が挙げられる。 Preferred examples of the reducing agent include formic acid (HC (═O) —OH); methyl formate (HC (═O) —OCH 3 ), ethyl formate (HC—═O) — Formic acid esters such as OCH 2 CH 3 ) and butyl formate (HC (═O) —O (CH 2 ) 3 CH 3 ); propanal (HC (═O) —CH 2 CH 3 ), butanal ( Aldehydes such as HC (═O) — (CH 2 ) 2 CH 3 ) and hexanal (HC (═O) — (CH 2 ) 4 CH 3 ); formamide (HC (═O) —NH 2 ), formamides such as N, N-dimethylformamide (HC (═O) —N (CH 3 ) 2 ) (represented by the formula “HC (═O) —N (−) —”) A compound having a group); oxalic acid and the like.
 銀インク組成物において、還元剤の配合量は、前記カルボン酸銀の配合量1モルあたり0.04~3.5モルであることが好ましく、0.06~2.5モルであることがより好ましい。還元剤の前記配合量がこのような範囲であることで、銀インク組成物は、より容易に、より安定して導電体(金属銀)を形成できる。 In the silver ink composition, the compounding amount of the reducing agent is preferably 0.04 to 3.5 mol, and more preferably 0.06 to 2.5 mol per mol of the silver carboxylate. preferable. When the blending amount of the reducing agent is within such a range, the silver ink composition can form a conductor (metal silver) more easily and more stably.
[アセチレンアルコール類]
 本発明におけるアセチレンアルコール類は、下記一般式(20)で表される、炭素数9以上のもの(以下、「アセチレンアルコール(20)」と略記することがある)である。
[Acetylene alcohols]
The acetylene alcohols in the present invention are those represented by the following general formula (20) and having 9 or more carbon atoms (hereinafter sometimes abbreviated as “acetylene alcohol (20)”).
Figure JPOXMLDOC01-appb-C000010
 (式中、R’及びR’’は、それぞれ独立に水素原子、アルキル基、又は1個以上の水素原子が置換基で置換されていてもよいフェニル基であり、ただし、R’及びR’’の少なくとも一方は前記アルキル基又はフェニル基である。)
Figure JPOXMLDOC01-appb-C000010
Wherein R ′ and R ″ are each independently a hydrogen atom, an alkyl group, or a phenyl group in which one or more hydrogen atoms may be substituted with a substituent, provided that R ′ and R ′ At least one of 'is the alkyl group or the phenyl group.)
 式中、R’及びR’’は、それぞれ独立に水素原子、アルキル基、又は1個以上の水素原子が置換基で置換されていてもよいフェニル基である。
 R’及びR’’における前記アルキル基は、直鎖状、分岐鎖状及び環状のいずれでもよく、環状である場合、単環状及び多環状のいずれでもよい。ただし、R’及びR’’の炭素数の合計値(R’の炭素数とR’’の炭素数との合計値)は6以上である。
 すなわち、アセチレンアルコール(20)は、炭素数が9以上のものである。
In the formula, R ′ and R ″ each independently represent a hydrogen atom, an alkyl group, or a phenyl group in which one or more hydrogen atoms may be substituted with a substituent.
The alkyl group in R ′ and R ″ may be linear, branched or cyclic, and when it is cyclic, it may be monocyclic or polycyclic. However, the total value of the carbon number of R ′ and R ″ (the total value of the carbon number of R ′ and the carbon number of R ″) is 6 or more.
That is, acetylene alcohol (20) has 9 or more carbon atoms.
 R’及びR’’における前記アルキル基としては、例えば、Rにおける前記アルキル基と同様のものが挙げられ、炭素数が1~20であるものが好ましい。
 R’及びR’’における直鎖状又は分岐鎖状の前記アルキル基の炭素数は、1~20であることが好ましい。このようなアルキル基としては、例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、n-ペンチル基、イソペンチル基、ネオペンチル基、tert-ペンチル基、1-メチルブチル基、2-メチルブチル基、n-ヘキシル基、1-メチルペンチル基、2-メチルペンチル基、3-メチルペンチル基、4-メチルペンチル基、1,1-ジメチルブチル基、2,2-ジメチルブチル基、3,3-ジメチルブチル基、2,3-ジメチルブチル基、1-エチルブチル基、2-エチルブチル基、3-エチルブチル基、1-エチル-1-メチルプロピル基、n-ヘプチル基、1-メチルヘキシル基、2-メチルヘキシル基、3-メチルヘキシル基、4-メチルヘキシル基、5-メチルヘキシル基、1,1-ジメチルペンチル基、2,2-ジメチルペンチル基、2,3-ジメチルペンチル基、2,4-ジメチルペンチル基、3,3-ジメチルペンチル基、4,4-ジメチルペンチル基、1-エチルペンチル基、2-エチルペンチル基、3-エチルペンチル基、4-エチルペンチル基、2,2,3-トリメチルブチル基、1-プロピルブチル基、n-オクチル基、イソオクチル基、1-メチルヘプチル基、2-メチルヘプチル基、3-メチルヘプチル基、4-メチルヘプチル基、5-メチルヘプチル基、1-エチルヘキシル基、2-エチルヘキシル基、3-エチルヘキシル基、4-エチルヘキシル基、5-エチルヘキシル基、1,1-ジメチルヘキシル基、2,2-ジメチルヘキシル基、3,3-ジメチルヘキシル基、4,4-ジメチルヘキシル基、5,5-ジメチルヘキシル基、1-プロピルペンチル基、2-プロピルペンチル基、ノニル基、デシル基、ウンデシル基、ドデシル基、トリデシル基、テトラデシル基、ペンタデシル基、ヘキサデシル基、ヘプタデシル基、オクタデシル基、ノナデシル基、イコシル基等が挙げられる。
 R’及びR’’における環状の前記アルキル基の炭素数は、3~20であることが好ましい。このようなアルキル基としては、例えば、シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基、シクロヘプチル基、シクロオクチル基、シクロノニル基、シクロデシル基、ノルボルニル基、イソボルニル基、1-アダマンチル基、2-アダマンチル基、トリシクロデシル基等が挙げられる。
Examples of the alkyl group in R ′ and R ″ include those similar to the alkyl group in R, and those having 1 to 20 carbon atoms are preferable.
The linear or branched alkyl group in R ′ and R ″ preferably has 1 to 20 carbon atoms. Examples of such an alkyl group include a methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, sec-butyl group, tert-butyl group, n-pentyl group, isopentyl group, Neopentyl group, tert-pentyl group, 1-methylbutyl group, 2-methylbutyl group, n-hexyl group, 1-methylpentyl group, 2-methylpentyl group, 3-methylpentyl group, 4-methylpentyl group, 1,1 -Dimethylbutyl group, 2,2-dimethylbutyl group, 3,3-dimethylbutyl group, 2,3-dimethylbutyl group, 1-ethylbutyl group, 2-ethylbutyl group, 3-ethylbutyl group, 1-ethyl-1- Methylpropyl group, n-heptyl group, 1-methylhexyl group, 2-methylhexyl group, 3-methylhexyl group, 4-methylhexyl Group, 5-methylhexyl group, 1,1-dimethylpentyl group, 2,2-dimethylpentyl group, 2,3-dimethylpentyl group, 2,4-dimethylpentyl group, 3,3-dimethylpentyl group, 4, 4-dimethylpentyl group, 1-ethylpentyl group, 2-ethylpentyl group, 3-ethylpentyl group, 4-ethylpentyl group, 2,2,3-trimethylbutyl group, 1-propylbutyl group, n-octyl group , Isooctyl group, 1-methylheptyl group, 2-methylheptyl group, 3-methylheptyl group, 4-methylheptyl group, 5-methylheptyl group, 1-ethylhexyl group, 2-ethylhexyl group, 3-ethylhexyl group, 4 -Ethylhexyl group, 5-ethylhexyl group, 1,1-dimethylhexyl group, 2,2-dimethylhexyl group, 3,3-dimethylhexyl Group, 4,4-dimethylhexyl group, 5,5-dimethylhexyl group, 1-propylpentyl group, 2-propylpentyl group, nonyl group, decyl group, undecyl group, dodecyl group, tridecyl group, tetradecyl group, pentadecyl Group, hexadecyl group, heptadecyl group, octadecyl group, nonadecyl group, icosyl group and the like.
The number of carbon atoms of the cyclic alkyl group in R ′ and R ″ is preferably 3-20. Examples of such alkyl groups include cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl, cyclooctyl, cyclononyl, cyclodecyl, norbornyl, isobornyl, 1-adamantyl, 2- Examples thereof include an adamantyl group and a tricyclodecyl group.
 R’及びR’’における前記アルキル基の炭素数は、1~15であることが好ましく、1~12であることがより好ましく、1~10であることがさらに好ましく、1~8であることが特に好ましい。 The number of carbon atoms of the alkyl group in R ′ and R ″ is preferably 1 to 15, more preferably 1 to 12, still more preferably 1 to 10, and 1 to 8. Is particularly preferred.
 R’及びR’’における前記アルキル基は、少なくとも一方が直鎖状又は分岐鎖状であることが好ましく、両方が直鎖状又は分岐鎖状であることがより好ましい。 At least one of the alkyl groups in R ′ and R ″ is preferably linear or branched, and more preferably both are linear or branched.
 R’及びR’’におけるフェニル基の水素原子が置換されていてもよい前記置換基としては、例えば、炭素数が1~16の飽和又は不飽和の一価の脂肪族炭化水素基、前記脂肪族炭化水素基が酸素原子に結合してなる一価の基、フッ素原子、塩素原子、臭素原子、水酸基、シアノ基、フェノキシ基等が挙げられる。これら前記置換基は、Rにおけるフェニル基の水素原子が置換されていてもよい前記置換基と同様のものである。そして、置換基を有する前記フェニル基において、前記置換基の数及び位置は特に限定されず、置換基の数が複数である場合、これら複数個の置換基は互いに同一でも異なっていてもよい。 Examples of the substituent in which the hydrogen atom of the phenyl group in R ′ and R ″ may be substituted include, for example, a saturated or unsaturated monovalent aliphatic hydrocarbon group having 1 to 16 carbon atoms, the aliphatic group A monovalent group formed by bonding an aromatic hydrocarbon group to an oxygen atom, a fluorine atom, a chlorine atom, a bromine atom, a hydroxyl group, a cyano group, a phenoxy group, and the like. These substituents are the same as the substituents in which the hydrogen atom of the phenyl group in R may be substituted. In the phenyl group having a substituent, the number and position of the substituents are not particularly limited, and when the number of substituents is plural, the plural substituents may be the same as or different from each other.
 R’及びR’’の炭素数の合計値は6~16であることが好ましく、6~13であることがより好ましく、6~11であることがさらに好ましく、6~9であることが特に好ましい。
 すなわち、アセチレンアルコール(20)の炭素数は、9~19であることが好ましく、9~16であることがより好ましく、9~14であることがさらに好ましく、9~12であることが特に好ましい。
The total number of carbon atoms of R ′ and R ″ is preferably 6 to 16, more preferably 6 to 13, still more preferably 6 to 11, and particularly preferably 6 to 9. preferable.
That is, the carbon number of the acetylene alcohol (20) is preferably 9 to 19, more preferably 9 to 16, further preferably 9 to 14, and particularly preferably 9 to 12. .
 ただし、R’及びR’’の少なくとも一方は前記アルキル基又はフェニル基であり、R’及びR’’がともに水素原子となることはない。 However, at least one of R ′ and R ″ is the alkyl group or the phenyl group, and R ′ and R ″ are not both hydrogen atoms.
 アセチレンアルコール(20)は、例えば、液状及び固形状のいずれでもよいが、取り扱いが容易であることから、液状であることが好ましい。
 また、アセチレンアルコール(20)は、常圧下又は減圧下において、気化させることにより除去可能なものが好ましい。
The acetylene alcohol (20) may be either liquid or solid, for example, but is preferably liquid because it is easy to handle.
Moreover, what can be removed by vaporizing acetylene alcohol (20) under normal pressure or pressure reduction is preferable.
 好ましいアセチレンアルコール(20)としては、例えば、3-エチル-1-ヘプチン-3-オール、4-エチル-1-オクチン-3-オール等が挙げられる。 Preferred acetylene alcohol (20) includes, for example, 3-ethyl-1-heptin-3-ol, 4-ethyl-1-octyn-3-ol, and the like.
 アセチレンアルコール(20)は、1種を単独で使用してもよいし、2種以上を併用してもよく、2種以上を併用する場合で、その組み合わせ及び比率は、任意に調節できる。 Acetylene alcohol (20) may be used alone or in combination of two or more, and the combination and ratio thereof can be arbitrarily adjusted.
 アセチレンアルコール(20)の配合量は、前記カルボン酸銀の配合量1モルあたり0.003~0.7モルであることが好ましく、例えば、0.01~0.7モル、0.02~0.7モル、及び0.02~0.3モル等のいずれかであってもよい。アセチレンアルコール(20)の前記配合量がこのような範囲であることで、銀インク組成物の保存安定性がより向上する。 The amount of acetylene alcohol (20) is preferably 0.003 to 0.7 mol per mol of the silver carboxylate, for example, 0.01 to 0.7 mol, 0.02 to 0 It may be any of 0.7 mol and 0.02 to 0.3 mol. The storage stability of a silver ink composition improves more because the said compounding quantity of acetylene alcohol (20) is such a range.
 本発明の銀インク組成物は、前記還元剤及びアセチレンアルコール(20)がともに配合されていることで、金属銀の中でも、特に細線状のパターンのものをより容易に形成できる。 In the silver ink composition of the present invention, a thin line pattern can be more easily formed among metallic silvers by blending both the reducing agent and acetylene alcohol (20).
[その他の成分]
 銀インク組成物は、前記カルボン酸銀、含窒素化合物、還元剤及びアセチレンアルコール(20)以外の、その他の成分が配合されてなるものでもよい。
 銀インク組成物における前記その他の成分は、目的に応じて任意に選択でき、特に限定されない。前記その他の成分としては、例えば、アセチレンアルコール(20)以外の他のアセチレンアルコール、前記他のアセチレンアルコール以外の溶媒等が挙げられ、配合成分の種類や量に応じて任意に選択できる。
 銀インク組成物における前記その他の成分は、1種を単独で使用してもよいし、2種以上を併用してもよく、2種以上を併用する場合で、その組み合わせ及び比率は、任意に調節できる。
[Other ingredients]
The silver ink composition may contain other components other than the silver carboxylate, nitrogen-containing compound, reducing agent and acetylene alcohol (20).
The other components in the silver ink composition can be arbitrarily selected according to the purpose and are not particularly limited. Examples of the other components include acetylene alcohols other than acetylene alcohol (20), solvents other than the other acetylene alcohols, and the like, and can be arbitrarily selected according to the type and amount of the compounding components.
As the other components in the silver ink composition, one kind may be used alone, two or more kinds may be used in combination, and two or more kinds may be used in combination. Can be adjusted.
 前記他のアセチレンアルコールは、炭素原子間の三重結合(「C≡C」)を有する、アセチレンアルコール(20)以外のアルコールである。他のアセチレンアルコールは、炭素原子間の二重結合(「C=C」)を有していてもよいし、有していなくてもよいが、有していないことが好ましい。
 他のアセチレンアルコールが配合されてなる銀インク組成物を用いることにより、後述する各種印刷法を適用して形成した印刷パターンにおいて、かすれをより抑制できる。その結果、かすれがより抑制された金属銀を形成できる。
The other acetylene alcohol is an alcohol other than acetylene alcohol (20) having a triple bond (“C≡C”) between carbon atoms. Other acetylene alcohols may or may not have a double bond (“C═C”) between carbon atoms, but preferably do not have.
By using a silver ink composition in which other acetylene alcohols are blended, blurring can be further suppressed in a printing pattern formed by applying various printing methods described later. As a result, metallic silver in which fading is further suppressed can be formed.
 前記他のアセチレンアルコールで好ましいものとしては、例えば、下記一般式(21)で表されるもの(以下、「アセチレンアルコール(21)」と略記することがある)が挙げられる。 Preferred examples of the other acetylene alcohol include those represented by the following general formula (21) (hereinafter sometimes abbreviated as “acetylene alcohol (21)”).
Figure JPOXMLDOC01-appb-C000011
 (式中、R’及びR’’は、それぞれ独立に水素原子又はアルキル基であり、ただし、R’及びR’’の炭素数の合計値は0~5である。)
Figure JPOXMLDOC01-appb-C000011
(Wherein R 9 ′ and R 9 ″ are each independently a hydrogen atom or an alkyl group, provided that the total number of carbon atoms of R 9 ′ and R 9 ″ is 0 to 5)
 式中、R’及びR’’は、それぞれ独立に水素原子又はアルキル基であり、ただし、R’及びR’’の炭素数の合計値(R’の炭素数とR’’の炭素数との合計値)は0~5である。
 すなわち、アセチレンアルコール(21)は、炭素数が3~8のものである。
Wherein, R 9 'and R 9' 'are each independently a hydrogen atom or an alkyl group, provided that, R 9' and R 9 'sum of the carbon atoms of' (R 9 carbon number of 'and R 9 The total value of '' and the number of carbon atoms) is 0-5.
That is, acetylene alcohol (21) has 3 to 8 carbon atoms.
 R’及びR’’における前記アルキル基は、上記のように、炭素数が限定される点を除けば、一般式(20)中のR’及びR’’におけるアルキル基と同様のものである。R’及びR’’における前記アルキル基の炭素数は、1~5である。 The alkyl group in R 9 ′ and R 9 ″ is the same as the alkyl group in R ′ and R ″ in the general formula (20) except that the number of carbon atoms is limited as described above. It is. The alkyl group in R 9 ′ and R 9 ″ has 1 to 5 carbon atoms.
 好ましいアセチレンアルコール(21)としては、例えば、3,5-ジメチル-1-ヘキシン-3-オール、3-メチル-1-ブチン-3-オール、3-メチル-1-ペンチン-3-オール等が挙げられる。 Preferred acetylene alcohols (21) include, for example, 3,5-dimethyl-1-hexyn-3-ol, 3-methyl-1-butyn-3-ol, 3-methyl-1-pentyn-3-ol, and the like. Can be mentioned.
 アセチレンアルコール(21)は、1種を単独で使用してもよいし、2種以上を併用してもよく、2種以上を併用する場合で、その組み合わせ及び比率は、任意に調節できる。 Acetylene alcohol (21) may be used alone or in combination of two or more, and the combination and ratio thereof can be arbitrarily adjusted.
 前記他のアセチレンアルコールを用いる場合、銀インク組成物において、他のアセチレンアルコールの配合量は、アセチレンアルコール(20)の配合量1モルあたり0.2~11モルであることが好ましく、0.2~10モルであることがより好ましく、0.2~9モルであることが特に好ましい。他のアセチレンアルコールの前記配合量が前記下限値以上であることで、他のアセチレンアルコールを用いたことによる効果がより顕著に得られる。また、他のアセチレンアルコールの前記配合量が前記上限値以下であることで、アセチレンアルコール(20)を用いたことによる効果と、他のアセチレンアルコールを用いたことによる効果とが、よりバランスよく得られる。 When the other acetylene alcohol is used, the blending amount of the other acetylene alcohol in the silver ink composition is preferably 0.2 to 11 moles per mole of the acetylene alcohol (20). It is more preferably from ˜10 mol, particularly preferably from 0.2 to 9 mol. The effect by using other acetylene alcohol is acquired more notably because the said compounding quantity of another acetylene alcohol is more than the said lower limit. Moreover, the effect by using acetylene alcohol (20) and the effect by using other acetylene alcohol are obtained in a more balanced manner because the blending amount of other acetylene alcohol is not more than the upper limit. It is done.
 前記溶媒は、アセチレンアルコール(20)及び前記他のアセチレンアルコール以外のものであれば、特に限定されない。
 前記溶媒としては、例えば、トルエン、o-キシレン、m-キシレン、p-キシレン等の芳香族炭化水素;ペンタン、ヘキサン、シクロヘキサン、ヘプタン、オクタン、ノナン、デカン、ウンデカン、ドデカン、トリデカン、テトラデカン、ペンタデカン等の脂肪族炭化水素;エタノール、2-プロパノール等の飽和脂肪族アルコール;アセチレンアルコール(20)及び他のアセチレンアルコール以外の不飽和アルコール;ジクロロメタン、クロロホルム等のハロゲン化炭化水素;酢酸エチル、グルタル酸モノメチル、グルタル酸ジメチル等のエステル;ジエチルエーテル、テトラヒドロフラン(THF)、1,2-ジメトキシエタン(ジメチルセロソルブ)等のエーテル;アセトン、メチルエチルケトン(MEK)、シクロヘキサノン等のケトン;アセトニトリル等のニトリル;N,N-ジメチルホルムアミド(DMF)、N,N-ジメチルアセトアミド等のアミド等が挙げられるが、これらに限定されない。
The solvent is not particularly limited as long as it is other than acetylene alcohol (20) and the other acetylene alcohol.
Examples of the solvent include aromatic hydrocarbons such as toluene, o-xylene, m-xylene, and p-xylene; pentane, hexane, cyclohexane, heptane, octane, nonane, decane, undecane, dodecane, tridecane, tetradecane, and pentadecane. Aliphatic hydrocarbons such as ethanol; saturated aliphatic alcohols such as ethanol and 2-propanol; unsaturated alcohols other than acetylene alcohol (20) and other acetylene alcohols; halogenated hydrocarbons such as dichloromethane and chloroform; ethyl acetate and glutaric acid Esters such as monomethyl and dimethyl glutarate; ethers such as diethyl ether, tetrahydrofuran (THF) and 1,2-dimethoxyethane (dimethyl cellosolve); acetone, methyl ethyl ketone (MEK), cyclohexanone and the like Ketone; nitriles such as acetonitrile; N, N-dimethylformamide (DMF), N, N-but amides of dimethylacetamide, and the like, without limitation.
 前記不飽和アルコールは、炭素原子間の二重結合(「C=C」)を有し、炭素原子間の三重結合(「C≡C」)を有しない、アセチレンアルコール(20)及び他のアセチレンアルコール以外のものである。
 前記脂肪族炭化水素は、炭素数が15以下であることが好ましい。
The unsaturated alcohol has acetylene alcohol (20) and other acetylenes having a double bond between carbon atoms (“C═C”) and no triple bond between carbon atoms (“C≡C”). It is something other than alcohol.
The aliphatic hydrocarbon preferably has 15 or less carbon atoms.
 銀インク組成物において、アセチレンアルコール(20)の配合量に対する前記溶媒の配合量の割合は、少ないほど好ましく、10質量%以下であることが好ましく、5質量%以下であることがより好ましく、3質量%以下であることがさらに好ましく、1質量%以下であることが特に好ましく、0質量、すなわち、前記溶媒が配合されていないことが最も好ましい。 In the silver ink composition, the ratio of the amount of the solvent to the amount of acetylene alcohol (20) is preferably as small as possible, preferably 10% by mass or less, more preferably 5% by mass or less. The content is more preferably not more than mass%, particularly preferably not more than 1 mass%, and most preferably 0 mass, that is, the solvent is not blended.
 銀インク組成物において、配合成分の総量に対する、前記他のアセチレンアルコール及び溶媒のいずれにも該当しないその他の成分の配合量の割合は、10質量%以下であることが好ましく、5質量%以下であることがより好ましく、0質量、すなわち、このようなその他の成分を配合しなくても、銀インク組成物は十分にその効果を発現する。 In the silver ink composition, the ratio of the blending amount of other components not corresponding to any of the other acetylenic alcohols and solvents to the total blending component amount is preferably 10% by mass or less, and preferably 5% by mass or less. It is more preferable that the silver ink composition exhibits its effect sufficiently even when 0 mass, that is, without adding such other components.
 銀インク組成物は、すべての成分が溶解していてもよいし、一部又は全ての成分が溶解せずに分散した状態であってもよいが、すべての成分が溶解していることが好ましく、溶解していない成分は均一に分散していることが好ましい。 In the silver ink composition, all the components may be dissolved, or a part or all of the components may be dispersed without dissolving, but it is preferable that all the components are dissolved. The undissolved component is preferably dispersed uniformly.
<銀インク組成物の製造方法>
 本発明の銀インク組成物の製造方法は、前記カルボン酸銀、含窒素化合物、還元剤及びアセチレンアルコール(20)を配合する工程(以下、「配合工程」と略記することがある)を有する。
<Method for producing silver ink composition>
The method for producing a silver ink composition of the present invention includes a step of blending the silver carboxylate, a nitrogen-containing compound, a reducing agent, and acetylene alcohol (20) (hereinafter sometimes abbreviated as “blending step”).
 前記配合工程後は、得られた配合物をそのまま銀インク組成物としてもよいし、得られた配合物を所定の温度及び時間でさらに継続して撹拌する撹拌工程を行って得られたものを銀インク組成物としてもよいし、配合工程後のいずれかの段階で、得られたものを公知の方法で精製する精製工程を経たものを銀インク組成物としてもよい。本発明においては、特にカルボン酸銀としてβ-ケトカルボン酸銀(1)を用いた場合、前記配合工程において、導電性を阻害する不純物が生成しないか、又はこのような不純物の生成量を極めて少量に抑制できる。したがって、精製工程を行っていない銀インク組成物を用いても、十分な導電性を有する導電体(金属銀)が得られる。 After the blending step, the obtained blend may be used as it is as a silver ink composition, or the resulting blend is further stirred at a predetermined temperature and time for a stirring step. It is good also as a silver ink composition, and it is good also as what was passed through the refinement | purification process which refine | purifies what was obtained by the well-known method in any step after a compounding process as a silver ink composition. In the present invention, particularly when β-ketocarboxylate (1) is used as the carboxylate, no impurities that inhibit conductivity are generated in the blending step, or the amount of such impurities generated is extremely small. Can be suppressed. Therefore, even when a silver ink composition that has not been subjected to a purification step is used, a conductor (metal silver) having sufficient conductivity can be obtained.
 前記配合工程においては、すべての成分を添加してからこれらを混合してもよいし、一部の成分を順次添加しながら混合してもよく、すべての成分を順次添加しながら混合してもよい。 In the blending step, all the components may be added and then mixed, or some components may be mixed while being sequentially added, or all components may be mixed while being sequentially added. Good.
 前記配合工程においては、配合成分の添加順序は特に限定されず、目的に応じて適宜選択できる。ただし、前記還元剤は前記カルボン酸銀からの金属銀の生成を促進し、アセチレンアルコール(20)は銀インク組成物の保存安定性の向上により強く関与していると推測される。一方で、還元剤及びアセチレンアルコール(20)の種類によっては、これらの成分同士が直接反応する可能性もある。このような理由から、前記配合工程においては、前記還元剤をアセチレンアルコール(20)よりも先に前記カルボン酸銀に添加して、金属銀の生成を促進した後、得られた混合物にさらにアセチレンアルコール(20)を添加することが好ましい。このような添加方法としては、例えば、前記含窒素化合物に対して、前記カルボン酸銀、還元剤及びアセチレンアルコール(20)をこの順序で添加する方法が挙げられる。
 前記他のアセチレンアルコールを用いる場合には、他のアセチレンアルコールも、アセチレンアルコール(20)と同様に取り扱うことが好ましい。還元剤及び他のアセチレンアルコールの種類によっては、これらの成分同士も直接反応する可能性がある。したがって、前記配合工程においては、アセチレンアルコール(20)の場合と同様に、他のアセチレンアルコールを添加することが好ましい。そして、他のアセチレンアルコールは、アセチレンアルコール(20)と同時に配合することが好ましい。
In the blending step, the order of adding the blending components is not particularly limited, and can be appropriately selected according to the purpose. However, it is assumed that the reducing agent promotes the formation of metallic silver from the silver carboxylate, and that acetylene alcohol (20) is strongly involved in improving the storage stability of the silver ink composition. On the other hand, depending on the types of the reducing agent and acetylene alcohol (20), these components may directly react with each other. For these reasons, in the blending step, the reducing agent is added to the silver carboxylate prior to acetylene alcohol (20) to promote the formation of metallic silver, and the resulting mixture is further added to acetylene. It is preferred to add alcohol (20). Examples of such an addition method include a method of adding the silver carboxylate, the reducing agent, and the acetylene alcohol (20) in this order to the nitrogen-containing compound.
When using the said other acetylene alcohol, it is preferable to handle other acetylene alcohol similarly to acetylene alcohol (20). Depending on the type of reducing agent and other acetylenic alcohols, these components may also react directly. Therefore, in the blending step, it is preferable to add other acetylene alcohols as in the case of acetylene alcohol (20). And it is preferable to mix | blend other acetylene alcohol simultaneously with acetylene alcohol (20).
 前記配合工程においては、前記還元剤は滴下により配合することが好ましく、さらに滴下速度の変動を抑制することで、金属銀の表面粗さをより低減できる傾向にある。
 また、前記配合工程においては、アセチレンアルコール(20)は滴下により配合することが好ましい。
 前記他のアセチレンアルコールを用いる場合には、前記配合工程においては、他のアセチレンアルコールも滴下により配合することが好ましい。
In the blending step, the reducing agent is preferably blended dropwise, and the surface roughness of the metallic silver tends to be further reduced by suppressing fluctuations in the dropping speed.
Moreover, in the said mixing | blending process, it is preferable to mix | blend acetylene alcohol (20) by dripping.
When using the said other acetylene alcohol, it is preferable to mix | blend another acetylene alcohol by dripping in the said mixing | blending process.
 前記配合工程及び撹拌工程はいずれも、空気雰囲気下で行ってもよいが、前記配合工程及び撹拌工程の少なくとも一方は、窒素ガス、ヘリウムガス、アルゴンガス等の不活性ガス雰囲気下で行うことが好ましく、前記配合工程及び撹拌工程をともに前記不活性ガス雰囲気下で行うことがより好ましい。
 また、前記配合工程及び撹拌工程を、空気雰囲気下及び前記不活性ガス雰囲気下のいずれで行う場合であっても、空気及び前記不活性ガスは、乾燥剤等により水分の含有量が調節されたものが好ましい。
Both the blending step and the stirring step may be performed in an air atmosphere, but at least one of the blending step and the stirring step is performed in an inert gas atmosphere such as nitrogen gas, helium gas, or argon gas. Preferably, both the blending step and the stirring step are more preferably performed in the inert gas atmosphere.
In addition, whether the blending step and the stirring step are performed in an air atmosphere or the inert gas atmosphere, the moisture content of the air and the inert gas is adjusted by a desiccant or the like. Those are preferred.
 配合成分の混合方法は特に限定されず、撹拌子又は撹拌翼等を回転させて混合する方法;ミキサー、三本ロール、ニーダー又はビーズミル等を使用して混合する方法;超音波を加えて混合する方法等、公知の方法から適宜選択すればよい。
 銀インク組成物において、溶解していない成分を均一に分散させる場合には、例えば、上記の三本ロール、ニーダー又はビーズミル等を用いて分散させる方法を適用することが好ましい。
The mixing method of compounding ingredients is not particularly limited, and is a method of mixing by rotating a stirrer or a stirring blade; a method of mixing using a mixer, a three-roller, a kneader, a bead mill, or the like; What is necessary is just to select suitably from well-known methods, such as a method.
In the silver ink composition, when the undissolved component is uniformly dispersed, it is preferable to apply a method of dispersing using, for example, the above-described three-roll, kneader or bead mill.
 前記配合工程、撹拌工程等の、銀インク組成物を得るまでの各工程における温度は、各配合成分が劣化しない限り特に限定されないが、-5~60℃であることが好ましい。そして、前記温度は、配合成分の種類及び量に応じて、配合して得られた混合物が撹拌し易い粘度となるように、適宜調節するとよい。 The temperature in each step until the silver ink composition is obtained, such as the blending step and the stirring step, is not particularly limited as long as each blending component does not deteriorate, but is preferably −5 to 60 ° C. And the said temperature is good to adjust suitably according to the kind and quantity of a compounding component so that the mixture obtained by mix | blending may become the viscosity which is easy to stir.
 前記配合工程及び撹拌工程の合計時間は、各配合成分が劣化しない限り特に限定されないが、10分~36時間であることが好ましい。 The total time of the blending step and the stirring step is not particularly limited as long as each blending component does not deteriorate, but is preferably 10 minutes to 36 hours.
[二酸化炭素]
 銀インク組成物は、さらに二酸化炭素が供給されてなるものでもよい。このような銀インク組成物は高粘度となり、例えば、フレキソ印刷法、スクリーン印刷法、グラビア印刷法、グラビアオフセット印刷法、パッド印刷法等の、インクを厚盛りすることが必要な印刷法への適用に好適である。
[carbon dioxide]
The silver ink composition may be further supplied with carbon dioxide. Such a silver ink composition has a high viscosity. For example, a flexographic printing method, a screen printing method, a gravure printing method, a gravure offset printing method, a pad printing method, etc. Suitable for application.
 二酸化炭素は、銀インク組成物製造時のいずれの時期に供給してもよい。
 そして、本発明においては、例えば、前記カルボン酸銀及び含窒素化合物が配合されてなる第1混合物に、二酸化炭素を供給して第2混合物とし、前記第2混合物に、さらに、前記還元剤及びアセチレンアルコール(20)を配合して、銀インク組成物を製造することが好ましい。また、前記その他の成分を配合する場合、これらは、第1混合物及び第2混合物のいずれか一方又は両方の製造時に配合でき、目的に応じて任意に選択できる。
Carbon dioxide may be supplied at any time during the production of the silver ink composition.
In the present invention, for example, carbon dioxide is supplied to the first mixture in which the silver carboxylate and the nitrogen-containing compound are blended to form a second mixture, and the reducing agent is further added to the second mixture. It is preferable to produce a silver ink composition by blending acetylene alcohol (20). Moreover, when mix | blending the said other component, these can be mix | blended at the time of manufacture of any one or both of a 1st mixture and a 2nd mixture, and can be arbitrarily selected according to the objective.
 前記第1混合物は、配合成分が異なる点以外は、上記の銀インク組成物と同様の方法で製造できる。 The first mixture can be produced by the same method as the above silver ink composition except that the blending components are different.
 第1混合物は、すべての成分が溶解していてもよいし、一部又は全ての成分が溶解せずに分散した状態であってもよいが、すべての成分が溶解していることが好ましく、溶解していない成分は均一に分散していることが好ましい。 In the first mixture, all the components may be dissolved, or a part or all of the components may be dispersed without dissolving, but it is preferable that all the components are dissolved, It is preferable that the components which are not dissolved are uniformly dispersed.
 第1混合物製造時の配合温度は、各配合成分が劣化しない限り特に限定されないが、-5~30℃であることが好ましい。また、配合時間は、配合成分の種類や配合時の温度に応じて適宜調節すればよいが、例えば、0.5~12時間であることが好ましい。 The compounding temperature at the time of producing the first mixture is not particularly limited as long as each compounding component does not deteriorate, but it is preferably −5 to 30 ° C. In addition, the blending time may be appropriately adjusted according to the type of blending component and the temperature at the time of blending, but is preferably 0.5 to 12 hours, for example.
 第1混合物に供給される二酸化炭素(CO)は、ガス状及び固形状(ドライアイス)のいずれでもよく、ガス状及び固形状の両方でもよい。二酸化炭素が供給されることにより、この二酸化炭素が第1混合物に溶け込み、第1混合物中の成分に作用することで、得られる第2混合物の粘度が上昇すると推測される。 Carbon dioxide (CO 2 ) supplied to the first mixture may be either gaseous or solid (dry ice), or both gaseous and solid. By supplying carbon dioxide, it is estimated that this carbon dioxide dissolves in the first mixture and acts on the components in the first mixture, thereby increasing the viscosity of the obtained second mixture.
 二酸化炭素ガスの供給は、液体中にガスを吹き込む公知の各種方法で行えばよく、適した供給方法を適宜選択すればよい。例えば、配管の一端を第1混合物中に浸漬し、他端を二酸化炭素ガスの供給源に接続して、この配管を通じて二酸化炭素ガスを第1混合物に供給する方法等が挙げられる。この時、配管の端部から直接二酸化炭素ガスを供給してもよいが、例えば、多孔質性のものなど、ガスの流路となり得る空隙部が多数設けられ、導入されたガスを拡散させて微小な気泡として放出することが可能なガス拡散部材を配管の端部に接続し、このガス拡散部材を介して二酸化炭素ガスを供給してもよい。また、第1混合物の製造時と同様の方法で、第1混合物を撹拌しながら二酸化炭素ガスを供給してもよい。このようにすることで、効率的に二酸化炭素を供給できる。 The carbon dioxide gas may be supplied by various known methods for blowing gas into the liquid, and a suitable supply method may be selected as appropriate. For example, a method of immersing one end of the pipe in the first mixture, connecting the other end to a carbon dioxide gas supply source, and supplying the carbon dioxide gas to the first mixture through the pipe can be mentioned. At this time, the carbon dioxide gas may be supplied directly from the end of the pipe. For example, a plurality of voids that can serve as gas flow paths, such as a porous one, are provided to diffuse the introduced gas. A gas diffusion member that can be discharged as minute bubbles may be connected to the end of the pipe, and the carbon dioxide gas may be supplied through the gas diffusion member. Moreover, you may supply a carbon dioxide gas, stirring the 1st mixture by the method similar to the time of manufacture of a 1st mixture. By doing in this way, carbon dioxide can be supplied efficiently.
 二酸化炭素ガスの供給量は、供給先の第1混合物の量や、目的とする銀インク組成物又は第2混合物の粘度に応じて適宜調節すればよく、特に限定されない。例えば、20~25℃における粘度が5Pa・s以上である銀インク組成物を100~1000g程度得るためには、二酸化炭素ガスを100L以上供給することが好ましく、200L以上供給することがより好ましい。なお、ここでは銀インク組成物の20~25℃における粘度について説明したが、銀インク組成物の使用時の温度は、20~25℃に限定されるものではなく、任意に選択できる。また、本明細書において「粘度」とは、特に断りのない限り、超音波振動式粘度計を用いて測定したものを意味する。 The supply amount of carbon dioxide gas is not particularly limited, and may be appropriately adjusted according to the amount of the first mixture at the supply destination and the viscosity of the target silver ink composition or the second mixture. For example, in order to obtain about 100 to 1000 g of a silver ink composition having a viscosity at 20 to 25 ° C. of 5 Pa · s or more, it is preferable to supply 100 L or more of carbon dioxide gas, and more preferably 200 L or more. Although the viscosity at 20 to 25 ° C. of the silver ink composition has been described here, the temperature at the time of using the silver ink composition is not limited to 20 to 25 ° C. and can be arbitrarily selected. In the present specification, “viscosity” means a value measured using an ultrasonic vibration viscometer unless otherwise specified.
 二酸化炭素ガスの流量は、必要とされる二酸化炭素ガスの供給量を考慮して適宜調節すればよいが、第1混合物1gあたり0.5mL/分以上であることが好ましく、1mL/分以上であることがより好ましい。流量の上限値は特に限定されないが、取り扱い性等を考慮すると、混合物1gあたり40mL/分であることが好ましい。
 そして、二酸化炭素ガスの供給時間は、必要とされる二酸化炭素ガスの供給量や、流量を考慮して適宜調節すればよい。
The flow rate of carbon dioxide gas may be appropriately adjusted in consideration of the required supply amount of carbon dioxide gas, but is preferably 0.5 mL / min or more per 1 g of the first mixture, and is 1 mL / min or more. More preferably. The upper limit value of the flow rate is not particularly limited, but is preferably 40 mL / min per 1 g of the mixture in consideration of handling properties and the like.
The carbon dioxide gas supply time may be appropriately adjusted in consideration of the required supply amount and flow rate of carbon dioxide gas.
 二酸化炭素ガス供給時の第1混合物の温度は、5~70℃であることが好ましく、7~60℃であることがより好ましく、10~50℃であることが特に好ましい。前記温度が前記下限値以上であることで、より効率的に二酸化炭素を供給でき、前記温度が前記上限値以下であることで、不純物が少ないより良好な品質の銀インク組成物が得られる。 The temperature of the first mixture at the time of supplying carbon dioxide gas is preferably 5 to 70 ° C., more preferably 7 to 60 ° C., and particularly preferably 10 to 50 ° C. When the temperature is equal to or higher than the lower limit value, carbon dioxide can be supplied more efficiently, and when the temperature is equal to or lower than the upper limit value, a silver ink composition having better quality with fewer impurities can be obtained.
 二酸化炭素ガスの流量及び供給時間、並びに二酸化炭素ガス供給時の前記温度は、それぞれの値を相互に考慮しながら適した範囲に調節すればよい。例えば、前記温度を低めに設定しても、二酸化炭素ガスの流量を多めに設定するか、二酸化炭素ガスの供給時間を長めに設定することで、あるいはこの両方を行うことで、効率的に二酸化炭素を供給できる。また、二酸化炭素ガスの流量を少なめに設定しても、前記温度を高めにするか、二酸化炭素ガスの供給時間を長めに設定することで、あるいはこの両方を行うことで、効率的に二酸化炭素を供給できる。すなわち、二酸化炭素ガスの流量、二酸化炭素ガス供給時の前記温度として例示した上記数値範囲の中の数値を、二酸化炭素ガスの供給時間も考慮しつつ柔軟に組み合わせることで、良好な品質の銀インク組成物が効率的に得られる。 The flow rate and supply time of carbon dioxide gas, and the temperature at the time of supplying carbon dioxide gas may be adjusted to a suitable range while considering each value. For example, even if the temperature is set lower, the carbon dioxide gas flow rate is set higher, the carbon dioxide gas supply time is set longer, or both are performed efficiently. Can supply carbon. Moreover, even if the flow rate of carbon dioxide gas is set to a small value, the carbon dioxide gas can be efficiently produced by increasing the temperature, setting the carbon dioxide gas supply time longer, or both. Can supply. That is, a silver ink of good quality can be obtained by flexibly combining the numerical values in the above numerical range exemplified as the flow rate of carbon dioxide gas and the temperature at the time of carbon dioxide gas supply while considering the supply time of carbon dioxide gas. A composition is obtained efficiently.
 二酸化炭素ガスの供給は、第1混合物を撹拌しながら行うことが好ましい。このようにすることで、供給した二酸化炭素ガスがより均一に第1混合物中に拡散し、より効率的に二酸化炭素を供給できる。
 この時の撹拌方法は、二酸化炭素を用いない上記の銀インク組成物の製造時における前記混合方法の場合と同様でよい。
The supply of carbon dioxide gas is preferably performed while stirring the first mixture. By doing in this way, the supplied carbon dioxide gas diffuses more uniformly in the first mixture, and carbon dioxide can be supplied more efficiently.
The stirring method at this time may be the same as in the case of the mixing method at the time of producing the above silver ink composition not using carbon dioxide.
 ドライアイス(固形状二酸化炭素)の供給は、第1混合物中にドライアイスを添加することで行えばよい。ドライアイスは、全量を一括して添加してもよいし、分割して段階的に(添加を行わない時間帯を挟んで連続的に)添加してもよい。
 ドライアイスの使用量は、上記の二酸化炭素ガスの供給量を考慮して調節すればよい。
 ドライアイスの添加中及び添加後は、第1混合物を撹拌することが好ましく、例えば、二酸化炭素を用いない上記の銀インク組成物の製造時と同様の方法で撹拌することが好ましい。このようにすることで、効率的に二酸化炭素を供給できる。
 撹拌時の温度は、二酸化炭素ガス供給時と同様でよい。また、撹拌時間は、撹拌温度に応じて適宜調節すればよい。
The supply of dry ice (solid carbon dioxide) may be performed by adding dry ice to the first mixture. The total amount of dry ice may be added all at once, or may be added stepwise (continuously across a time zone during which no addition is performed).
What is necessary is just to adjust the usage-amount of dry ice in consideration of the supply amount of said carbon dioxide gas.
During and after the addition of dry ice, the first mixture is preferably stirred. For example, the first mixture is preferably stirred in the same manner as in the production of the silver ink composition described above without using carbon dioxide. By doing in this way, carbon dioxide can be supplied efficiently.
The temperature at the time of stirring may be the same as that at the time of supplying carbon dioxide gas. Moreover, what is necessary is just to adjust stirring time suitably according to stirring temperature.
 第2混合物の粘度は、銀インク組成物又は第2混合物の取り扱い方法など、目的に応じて適宜調節すればよく、特に限定されない。例えば、銀インク組成物をスクリーン印刷法、フレキソ印刷法等の高粘度インクを使用する印刷法へ適用する場合には、第2混合物の20~25℃における粘度は、3Pa・s以上であることが好ましい。なお、ここでは第2混合物の20~25℃における粘度について説明したが、第2混合物の使用時の温度は、20~25℃に限定されるものではなく、任意に選択できる。 The viscosity of the second mixture may be appropriately adjusted according to the purpose, such as a method for handling the silver ink composition or the second mixture, and is not particularly limited. For example, when the silver ink composition is applied to a printing method using a high viscosity ink such as a screen printing method or a flexographic printing method, the viscosity of the second mixture at 20 to 25 ° C. is 3 Pa · s or more. Is preferred. Here, the viscosity of the second mixture at 20 to 25 ° C. has been described, but the temperature at the time of use of the second mixture is not limited to 20 to 25 ° C. and can be arbitrarily selected.
 前記第2混合物には、さらに前記還元剤及びアセチレンアルコール(20)を配合し、さらに必要に応じて前記その他の成分を配合して、銀インク組成物とすることができる。前記還元剤及びアセチレンアルコール(20)は、この順に配合してもよいし、同時に配合してもよく、アセチレンアルコール(20)及び還元剤の順に配合してもよい。ただし、先に説明した理由で、前記還元剤をアセチレンアルコール(20)よりも先に第2混合物に添加して、金属銀の生成を促進した後、得られた混合物にさらにアセチレンアルコール(20)を添加することが好ましい。
 このときの銀インク組成物は、配合成分が異なる点以外は、二酸化炭素を用いない上記の銀インク組成物と同様の方法で製造できる。そして、得られた銀インク組成物は、すべての成分が溶解していてもよいし、一部又は全ての成分が溶解せずに分散した状態であってもよいが、すべての成分が溶解していることが好ましく、溶解していない成分は均一に分散していることが好ましい。
In the second mixture, the reducing agent and acetylene alcohol (20) may be further blended, and the other components may be blended as necessary to obtain a silver ink composition. The reducing agent and acetylene alcohol (20) may be blended in this order, may be blended simultaneously, or may be blended in the order of acetylene alcohol (20) and reducing agent. However, for the reason explained above, the reducing agent is added to the second mixture before acetylene alcohol (20) to promote the formation of metallic silver, and then the acetylene alcohol (20) is further added to the obtained mixture. Is preferably added.
The silver ink composition at this time can be manufactured by the same method as the above silver ink composition not using carbon dioxide except that the blending components are different. In the obtained silver ink composition, all the components may be dissolved, or some or all of the components may be dispersed without being dissolved, but all the components are dissolved. It is preferable that the undissolved components are uniformly dispersed.
 第2混合物への各配合成分の配合時から、銀インク組成物を得るまでの各工程における温度は、各配合成分が劣化しない限り特に限定されないが、-5~60℃であることが好ましい。そして、この配合時の温度は、配合成分の種類及び量に応じて、配合して得られた混合物が撹拌し易い粘度となるように、適宜調節するとよい。
 また、第2混合物への各配合成分の配合時と、それに続く撹拌時の合計時間は、配合成分の種類や配合時の温度に応じて適宜調節すればよいが、例えば、0.5~12時間であることが好ましい。
The temperature in each step from the blending of each blending component into the second mixture until obtaining the silver ink composition is not particularly limited as long as each blending component does not deteriorate, but is preferably −5 to 60 ° C. And the temperature at the time of this mixing | blending is good to adjust suitably so that the mixture obtained by mix | blending may become the viscosity which is easy to stir according to the kind and quantity of a mixing | blending component.
In addition, the total time of blending each blending component into the second mixture and the subsequent stirring may be appropriately adjusted according to the type of blending component and the temperature at the blending. Time is preferred.
 前記その他の成分は、先に説明したように、前記第1混合物及び第2混合物のいずれかの製造時に配合されてもよく、両方の製造時に配合されてもよい。
 すなわち、前記その他の成分が溶媒である場合、第1混合物及び第2混合物を経て銀インク組成物を製造する過程において、アセチレンアルコール(20)の配合量に対する前記溶媒の配合量の割合([溶媒(質量)]/[アセチレンアルコール(20)(質量)]×100)は、10質量%以下であることが好ましく、5質量%以下であることがより好ましく、3質量%以下であることがさらに好ましく、1質量%以下であることが特に好ましく、0質量、すなわち溶媒を配合しなくても、銀インク組成物は十分にその効果を発現する。
As described above, the other components may be blended during the production of either the first mixture or the second mixture, or may be blended during the production of both.
That is, when the other component is a solvent, in the process of producing a silver ink composition through the first mixture and the second mixture, the ratio of the amount of the solvent to the amount of acetylene alcohol (20) ([solvent (Mass)] / [acetylene alcohol (20) (mass)] × 100) is preferably 10% by mass or less, more preferably 5% by mass or less, and further preferably 3% by mass or less. The content is preferably 1% by mass or less, particularly 0%, that is, the silver ink composition exhibits its effect sufficiently even when no solvent is added.
 一方、前記その他の成分が、前記他のアセチレンアルコール及び溶媒のいずれにも該当しない場合、二酸化炭素以外の配合成分の総量に対する、前記その他の成分の配合量の割合([他のアセチレンアルコール及び溶媒のいずれにも該当しないその他の成分(質量)]/[カルボン酸銀、含窒素化合物、還元剤、アセチレンアルコール(20)、及びその他の成分(質量)]×100)は、10質量%以下であることが好ましく、5質量%以下であることがより好ましく、0質量、すなわちその他の成分を配合しなくても、銀インク組成物は十分にその効果を発現する。 On the other hand, when the other component does not correspond to any of the other acetylene alcohol and solvent, the ratio of the blended amount of the other component to the total amount of blended components other than carbon dioxide ([other acetylene alcohol and solvent Other components (mass) not corresponding to any of the above] / [silver carboxylate, nitrogen-containing compound, reducing agent, acetylene alcohol (20), and other components (mass)] × 100) is 10% by mass or less. Preferably, the amount is 5% by mass or less, more preferably 0% by mass, that is, the silver ink composition exhibits its effect sufficiently even when no other components are blended.
 二酸化炭素が供給されてなる銀インク組成物は、例えば、銀インク組成物をスクリーン印刷法、フレキソ印刷法等の高粘度インクを使用する印刷法へ適用する場合には、20~25℃における粘度が、1Pa・s以上であることが好ましい。 The silver ink composition to which carbon dioxide is supplied is, for example, a viscosity at 20 to 25 ° C. when the silver ink composition is applied to a printing method using a high viscosity ink such as a screen printing method or a flexographic printing method. Is preferably 1 Pa · s or more.
 例えば、還元剤の配合時には、得られる配合物(銀インク組成物)は比較的発熱し易い。そして、還元剤の配合時の温度が高い場合、この配合物は、後述する銀インク組成物の加熱処理時と同様の状態になるため、還元剤によるカルボン酸銀の分解促進作用によって、カルボン酸銀の少なくとも一部において金属銀の形成が開始されることがあると推測される。このような金属銀を含有する銀インク組成物は、金属銀形成時において、金属銀を含有しない銀インク組成物よりも温和な条件で後処理を行うことにより、金属銀を形成できることがある。また、還元剤の配合量が十分に多い場合にも、同様に温和な条件で後処理を行うことにより、金属銀を形成できることがある。このように、カルボン酸銀の分解を促進する条件を採用することで、後処理として、より低温での加熱処理で、あるいは加熱処理を行わずに常温での乾燥処理のみで、金属銀を形成できることがある。また、このような金属銀を含有する銀インク組成物は、金属銀を含有しない銀インク組成物と同様に取り扱うことができ、特に取り扱い性が劣ることもない。 For example, when a reducing agent is blended, the resulting blend (silver ink composition) tends to generate heat relatively easily. And when the temperature at the time of the compounding of the reducing agent is high, this compound is in the same state as at the time of the heat treatment of the silver ink composition described later. It is presumed that the formation of metallic silver may start in at least part of the silver. Such a silver ink composition containing metallic silver may be able to form metallic silver by performing post-treatment under milder conditions than a silver ink composition not containing metallic silver during the formation of metallic silver. Further, when the amount of the reducing agent is sufficiently large, metallic silver may be formed by performing post-treatment under the same mild conditions. In this way, by adopting conditions that promote the decomposition of silver carboxylate, as a post-treatment, metallic silver is formed by a heat treatment at a lower temperature or only by a drying treatment at room temperature without performing the heat treatment. There are things you can do. Moreover, the silver ink composition containing such metal silver can be handled in the same manner as the silver ink composition not containing metal silver, and the handleability is not particularly inferior.
 なお、本発明における第2混合物は、上記のように二酸化炭素の供給によって、粘度が通常よりも高い。一方で、第2混合物への還元剤の配合時には、第2混合物又は還元剤の種類によっては、上記のようにカルボン酸銀の少なくとも一部において金属銀の形成が開始され、金属銀が析出することがある。ここで、第2混合物の粘度が高い場合には、析出した金属銀の凝集が抑制され、得られた銀インク組成物中での金属銀の分散性が向上する。このような銀インク組成物を用いて、後述する方法で金属銀を形成して得られた導電体は、粘度が低い、すなわち二酸化炭素が供給されていない混合物に還元剤が配合されて得られた銀インク組成物を用いた場合の導電体よりも、導電性が高く(体積抵抗率が低く)、表面粗さも小さくなり、より好ましい特性を有するものとなる。 In addition, the 2nd mixture in this invention has a viscosity higher than usual by supply of a carbon dioxide as mentioned above. On the other hand, when the reducing agent is blended into the second mixture, depending on the type of the second mixture or the reducing agent, formation of metallic silver is started in at least part of the silver carboxylate as described above, and metallic silver is deposited. Sometimes. Here, when the viscosity of the second mixture is high, aggregation of the precipitated metallic silver is suppressed, and the dispersibility of the metallic silver in the obtained silver ink composition is improved. A conductor obtained by forming metallic silver by a method described later using such a silver ink composition is obtained by blending a reducing agent in a mixture having a low viscosity, that is, carbon dioxide is not supplied. In addition, it has higher electrical conductivity (lower volume resistivity), lower surface roughness, and more favorable characteristics than a conductor using a silver ink composition.
 本発明の銀インク組成物は、従来の銀インク組成物よりも優れた保存安定性を有する。銀インク組成物の保存安定性は、例えば、銀インク組成物を二以上に分割して、得られた同じ組成の銀インク組成物を、互いに異なる期間だけ保存して、これら保存期間が異なる銀インク組成物を用いて金属銀を形成し、これら金属銀の体積抵抗率等の導電性の指標となる物性値を測定して、これら物性値の差の大小により確認できる。
 ここで、比較対象となる二以上の銀インク組成物は、保存期間以外の保存条件が互いに同じであることが好ましい。
The silver ink composition of the present invention has better storage stability than conventional silver ink compositions. The storage stability of the silver ink composition can be determined, for example, by dividing the silver ink composition into two or more and storing the obtained silver ink compositions having the same composition for different periods of time. Metallic silver is formed using the ink composition, and physical property values serving as conductivity indicators such as volume resistivity of the metallic silver are measured, and the difference can be confirmed by the difference in these physical property values.
Here, it is preferable that two or more silver ink compositions to be compared have the same storage conditions other than the storage period.
<積層体>
 本発明の銀インク組成物は、加熱(焼成)処理等の固化処理によって、導電性が高い金属銀の形成が可能である。例えば、本発明の銀インク組成物を基材上に付着させ、加熱処理して、前記カルボン酸銀を分解させることで、基材上に金属銀からなる層(以下、「銀層」と略記する)を備えた積層体が得られる。
<Laminate>
The silver ink composition of the present invention can form metallic silver having high conductivity by solidification treatment such as heating (firing) treatment. For example, the silver ink composition of the present invention is deposited on a substrate, heat-treated, and the silver carboxylate is decomposed to form a layer made of metallic silver on the substrate (hereinafter abbreviated as “silver layer”). To obtain a laminate.
 銀インク組成物は、例えば、印刷法、塗布法、浸漬法等の公知の方法で基材上に付着させることができる。
 前記印刷法としては、例えば、スクリーン印刷法、フレキソ印刷法、オフセット印刷法、ディップ式印刷法、インクジェット式印刷法、ディスペンサー式印刷法、ジェットディスペンサー式印刷法、グラビア印刷法、グラビアオフセット印刷法、パッド印刷法等が挙げられる。
 前記塗布法としては、例えば、スピンコーター、エアーナイフコーター、カーテンコーター、ダイコーター、ブレードコーター、ロールコーター、ゲートロールコーター、バーコーター、ロッドコーター、グラビアコーター等の各種コーターや、ワイヤーバー等を用いる方法等が挙げられる。
A silver ink composition can be made to adhere on a base material by well-known methods, such as a printing method, the apply | coating method, and the immersion method, for example.
Examples of the printing method include screen printing method, flexographic printing method, offset printing method, dip printing method, ink jet printing method, dispenser printing method, jet dispenser printing method, gravure printing method, gravure offset printing method, The pad printing method etc. are mentioned.
Examples of the coating method include various coaters such as a spin coater, an air knife coater, a curtain coater, a die coater, a blade coater, a roll coater, a gate roll coater, a bar coater, a rod coater, a gravure coater, and a wire bar. Methods and the like.
 銀層の形成時には、基材上に付着させる銀インク組成物の量、又は銀インク組成物における前記カルボン酸銀の配合量を調節することで、銀層の厚さを調節できる。 At the time of forming the silver layer, the thickness of the silver layer can be adjusted by adjusting the amount of the silver ink composition to be deposited on the substrate or the blending amount of the silver carboxylate in the silver ink composition.
 基材上に付着させた銀インク組成物を乾燥処理する場合には、公知の方法で行えばよい。すなわち前記乾燥処理は、例えば、常圧下、減圧下及び送風条件下のいずれで行ってもよく、大気下及び不活性ガス雰囲気下のいずれでおこなってもよい。そして、乾燥温度も特に限定されず、加熱乾燥及び常温乾燥のいずれでもよい。加熱処理が不要な場合の好ましい乾燥方法としては、例えば、18~30℃で大気下において乾燥させる方法等が挙げられる。 When the silver ink composition deposited on the substrate is subjected to a drying process, it may be performed by a known method. That is, the drying treatment may be performed, for example, under normal pressure, reduced pressure, or air blowing conditions, and may be performed under air or an inert gas atmosphere. Also, the drying temperature is not particularly limited, and may be either heat drying or room temperature drying. As a preferable drying method when the heat treatment is unnecessary, for example, a method of drying in the atmosphere at 18 to 30 ° C. can be mentioned.
 基材上に付着させた銀インク組成物を加熱(焼成)処理する場合、その条件は、銀インク組成物の配合成分の種類に応じて適宜調節すればよい。通常は、加熱温度が60~370℃であることが好ましく、70~280℃であることがより好ましい。加熱時間は、加熱温度に応じて調節すればよいが、通常は、1分~24時間であることが好ましく、1分~12時間であることがより好ましい。前記カルボン酸銀の中でも、特にβ-ケトカルボン酸銀(1)は、例えば、酸化銀等の金属銀の形成材料とは異なり、当該分野で公知の還元剤等を使用しなくても、低温で分解する。そして、このような分解温度を反映して、前記銀インク組成物は、上記のように、従来のものより極めて低温で金属銀を形成できる。 When the silver ink composition deposited on the substrate is heated (baked), the conditions may be adjusted as appropriate according to the type of compounding component of the silver ink composition. Usually, the heating temperature is preferably 60 to 370 ° C., more preferably 70 to 280 ° C. The heating time may be adjusted according to the heating temperature, but it is usually preferably 1 minute to 24 hours, and more preferably 1 minute to 12 hours. Among the silver carboxylates, in particular, the β-ketocarboxylate (1) is different from a metal silver forming material such as silver oxide, for example, at a low temperature without using a reducing agent known in the art. Decompose. Reflecting such decomposition temperature, the silver ink composition can form metallic silver at an extremely lower temperature than the conventional one as described above.
 銀インク組成物を耐熱性が低い基材に付着させて加熱(焼成)処理する場合には、加熱温度は130℃未満であることが好ましく、125℃以下であることがより好ましく、120℃以下であることが特に好ましい。 When the silver ink composition is attached to a substrate having low heat resistance and is heated (baked), the heating temperature is preferably less than 130 ° C, more preferably 125 ° C or less, and 120 ° C or less. It is particularly preferred that
 銀インク組成物の加熱処理の方法は、特に限定されない。前記加熱処理は、例えば、電気炉による加熱、感熱方式の熱ヘッドによる加熱、遠赤外線照射による加熱、高熱ガスの吹き付けによる加熱等で行うことができる。また、前記加熱処理は、大気下で行ってもよいし、不活性ガス雰囲気下で行ってもよく、加湿条件下で行ってもよい。そして、前記加熱処理は、常圧下、減圧下及び加圧下のいずれで行ってもよい。 The method for heat treatment of the silver ink composition is not particularly limited. The heat treatment can be performed by, for example, heating with an electric furnace, heating with a thermal head, heating with far-infrared irradiation, or heating by blowing a hot gas. Further, the heat treatment may be performed in the atmosphere, in an inert gas atmosphere, or may be performed under humidified conditions. The heat treatment may be performed under normal pressure, reduced pressure, or increased pressure.
 本明細書において「加湿」とは、特に断りのない限り、湿度を人為的に増大させることを意味し、好ましくは相対湿度を5%以上とすることである。加熱処理時には、処理温度が高いことによって、処理環境での湿度が極めて低くなるため、5%という相対湿度は、明らかに人為的に増大されたものであるといえる。 In this specification, “humidification” means that the humidity is artificially increased unless otherwise specified, and the relative humidity is preferably 5% or more. At the time of heat treatment, since the humidity in the treatment environment becomes extremely low due to the high treatment temperature, it can be said that the relative humidity of 5% is clearly artificially increased.
 銀インク組成物の加熱処理を加湿条件下で行う場合の相対湿度は、10%以上であることが好ましく、30%以上であることがより好ましく、50%以上であることがさらに好ましく、70%以上であることが特に好ましく、90%以上であってもよいし、100%であってもよい。そして、加湿条件下での加熱処理は、100℃以上に加熱した高圧水蒸気の吹き付けにより行ってもよい。このように加湿条件下で加熱処理することにより、短時間でより高純度の金属銀を形成できる。 The relative humidity when the heat treatment of the silver ink composition is performed under humidified conditions is preferably 10% or more, more preferably 30% or more, further preferably 50% or more, and 70%. It is particularly preferable that it be 90% or more, or 100%. And you may perform the heat processing under humidification conditions by spraying the high pressure steam heated to 100 degreeC or more. Thus, by heat-processing under humidification conditions, highly pure metallic silver can be formed in a short time.
 銀インク組成物の加熱処理は、二段階で行ってもよい。例えば、一段階目の加熱処理では、金属銀の形成ではなく銀インク組成物の乾燥を主に行い、二段階目の加熱処理で、金属銀の形成を最後まで行う方法等が挙げられる。
 一段階目の加熱処理において、加熱温度は、銀インク組成物の配合成分の種類に応じて適宜調節すればよいが、60~120℃であることが好ましく、70~120℃であることがより好ましく、80~110℃であることが特に好ましい。また、加熱時間は、加熱温度に応じて調節すればよいが、通常は、5秒~12時間であることが好ましく、30秒~2時間であることがより好ましい。
 二段階目の加熱処理において、加熱温度は、金属銀が良好に形成されるように、銀インク組成物の配合成分の種類に応じて適宜調節すればよいが、60~280℃であることが好ましく、70~260℃であることがより好ましい。また、加熱時間は、加熱温度に応じて調節すればよいが、通常は、1分~12時間であることが好ましく、1分~10時間であることがより好ましい。
 銀インク組成物を耐熱性が低い基材に付着させて加熱(焼成)処理する場合には、一段階目及び二段階目の加熱処理における加熱温度は、130℃未満であることが好ましく、125℃以下であることがより好ましく、120℃以下であることが特に好ましい。
The heat treatment of the silver ink composition may be performed in two stages. For example, in the first stage heat treatment, there is a method in which the silver ink composition is mainly dried rather than the formation of metallic silver, and in the second stage heat treatment, the formation of metallic silver is performed to the end.
In the first-stage heat treatment, the heating temperature may be appropriately adjusted according to the type of compounding component of the silver ink composition, but is preferably 60 to 120 ° C, more preferably 70 to 120 ° C. The temperature is preferably 80 to 110 ° C. The heating time may be adjusted according to the heating temperature, but it is usually preferably 5 seconds to 12 hours, and more preferably 30 seconds to 2 hours.
In the second stage heat treatment, the heating temperature may be appropriately adjusted according to the type of compounding component of the silver ink composition so that metallic silver is formed satisfactorily, but it should be 60 to 280 ° C. Preferably, the temperature is 70 to 260 ° C. The heating time may be adjusted according to the heating temperature, but it is usually preferably 1 minute to 12 hours, and more preferably 1 minute to 10 hours.
When the silver ink composition is attached to a substrate having low heat resistance and is heated (baked), the heating temperature in the first stage and second stage heat treatment is preferably less than 130 ° C. More preferably, it is not higher than 120 ° C, particularly preferably not higher than 120 ° C.
 ここまでで説明した銀インク組成物の加熱処理は、いずれも気相中で行うものであるが、銀インク組成物の加熱処理を二段階で行う場合、二段階目の加熱処理は、気相中ではなく液相中で行ってもよい。一段階目の加熱処理を経て、完全に又はある程度乾燥した銀インク組成物は、加熱した液体と接触させることで、その形状を損なうことなく、二段階目の加熱処理を行うことができる。そして、銀インク組成物の、一段階目の加熱処理を行った後の二段階目の液相中での加熱処理は、加熱した液体に銀インク組成物を浸漬することで行うことが好ましい。この液相中での加熱処理における加熱温度及び加熱時間は、先に説明した二段階目の加熱処理における加熱温度及び加熱時間と同じである。
 上記の加熱した液体は湯(加熱した水)であることが好ましく、二段階目の加熱処理は、一段階目の加熱処理を行った銀インク組成物を湯中に浸漬すること、すなわち湯煎によって行うことが好ましい。
 二段階目の加熱処理を液相中で行った場合には、この加熱処理によって形成された金属銀を、さらに乾燥させればよい。
The heat treatment of the silver ink composition described so far is performed in the gas phase. However, when the heat treatment of the silver ink composition is performed in two steps, the heat treatment in the second step is performed in the gas phase. You may carry out in a liquid phase instead of inside. The silver ink composition that has been completely or partially dried through the first stage heat treatment can be subjected to the second stage heat treatment without impairing its shape by contacting with the heated liquid. And it is preferable to perform the heat processing in the liquid phase of the 2nd step after performing the heat processing of the 1st step of a silver ink composition by immersing a silver ink composition in the heated liquid. The heating temperature and heating time in the heat treatment in the liquid phase are the same as the heating temperature and heating time in the second-stage heat treatment described above.
The heated liquid is preferably hot water (heated water), and the second stage heat treatment is performed by immersing the silver ink composition subjected to the first stage heat treatment in hot water, that is, by hot water bathing. Preferably it is done.
When the second stage heat treatment is performed in the liquid phase, the metallic silver formed by this heat treatment may be further dried.
 銀インク組成物の二段階目の加熱処理を液相中で行う場合、銀インク組成物の一段階目の加熱処理は、非加湿条件下で行うことが好ましい。
 なお、本明細書において「非加湿」とは、上述の「加湿」を行わないこと、すなわち、湿度を人為的に増大させないことを意味し、好ましくは相対湿度を5%未満とすることである。
When the second stage heat treatment of the silver ink composition is performed in a liquid phase, the first stage heat treatment of the silver ink composition is preferably performed under non-humidified conditions.
In the present specification, “non-humidification” means that the above “humidification” is not performed, that is, the humidity is not artificially increased, and preferably the relative humidity is less than 5%. .
 加湿条件下での加熱処理を採用する場合、銀インク組成物の加熱処理は、以下に示す二段階の方法で行うことが特に好ましい。すなわち、一段階目の加熱処理において、非加湿条件下で、上述のように金属銀の形成ではなく銀インク組成物の乾燥を主に行い、二段階目の加熱処理において、加湿条件下で、上述のように金属銀の形成を最後まで行うことにより、銀インク組成物の加熱処理を行うことが特に好ましい。 When heat treatment under humidified conditions is employed, it is particularly preferable to perform the heat treatment of the silver ink composition by the following two-step method. That is, in the first stage heat treatment, the silver ink composition is mainly dried under the non-humidified condition as described above, rather than the formation of metallic silver, and in the second stage heat treatment, under the humidified condition, As described above, it is particularly preferable to heat-treat the silver ink composition by forming metal silver to the end.
 二段階目の加熱処理を加湿条件下で行う場合、一段階目の非加湿条件下での加熱処理時の加熱温度は、60~120℃であることが好ましく、70~120℃であることがより好ましく、80~110℃であることが特に好ましい。また、加熱時間は、5秒~1時間であることが好ましく、30秒~30分であることがより好ましく、30秒~10分であることが特に好ましい。
 一段階目の非加湿条件下での加熱処理に次いで行う、二段階目の加湿条件下での加熱処理時の加熱温度は、60~140℃であることが好ましく、70~130℃であることがより好ましい。また、加熱時間は、1分~2時間であることが好ましく、1分~1時間であることがより好ましく、1分~30分であることが特に好ましい。
 銀インク組成物を耐熱性が低い基材に付着させて加熱(焼成)処理する場合には、一段階目の非加湿条件下での加熱処理及び二段階目の加湿条件下での加熱処理における加熱温度は、いずれも130℃未満であることが好ましく、125℃以下であることがより好ましく、120℃以下であることが特に好ましい。
When the second stage heat treatment is performed under humidified conditions, the heating temperature during the heat treatment under the first stage non-humidified conditions is preferably 60 to 120 ° C, and preferably 70 to 120 ° C. More preferred is 80 to 110 ° C. The heating time is preferably 5 seconds to 1 hour, more preferably 30 seconds to 30 minutes, and particularly preferably 30 seconds to 10 minutes.
The heating temperature during the heat treatment under the second-stage humidification condition, which is performed after the heat treatment under the first-stage non-humidification conditions, is preferably 60 to 140 ° C, and preferably 70 to 130 ° C. Is more preferable. The heating time is preferably 1 minute to 2 hours, more preferably 1 minute to 1 hour, and particularly preferably 1 minute to 30 minutes.
When the silver ink composition is attached to a substrate having low heat resistance and is heated (baked), the heat treatment under the first stage non-humidifying condition and the heat treatment under the second stage humidifying condition are performed. The heating temperature is preferably less than 130 ° C, more preferably 125 ° C or less, and particularly preferably 120 ° C or less.
 以上のように、金属銀の製造方法で好ましいものとしては、例えば、前記銀インク組成物を用いて、前記金属銀を形成する工程を有するものが挙げられ、中でも好ましい製造方法としては、例えば、前記金属銀を形成する工程において、前記銀インク組成物を、非加湿条件下で加熱処理した後、さらに加湿条件下で、又は加熱した液体と接触させて、加熱処理することで、前記金属銀を形成するものが挙げられる。 As described above, the preferable method for producing metal silver includes, for example, one having a step of forming the metal silver using the silver ink composition. Among the preferred methods, for example, In the step of forming the metallic silver, the silver ink composition is heat-treated under non-humidified conditions, and further heat-treated under humidified conditions or in contact with a heated liquid. Can be mentioned.
 本発明の銀インク組成物を用いて形成された金属銀は、導電性に優れ、その体積抵抗率は、例えば、好ましくは14.0μΩ・cm以下、より好ましくは13.5μΩ・cm以下、特に好ましくは13.0μΩ・cm以下となる。そして、前記金属銀の体積抵抗率の下限値は特に限定されないが、例えば、5.0μΩ・cmとなる。
 例えば、製造直後からの保存期間が30日である銀インク組成物も、上記のような体積抵抗率の金属銀の形成が可能である。
The metallic silver formed using the silver ink composition of the present invention has excellent conductivity, and its volume resistivity is, for example, preferably 14.0 μΩ · cm or less, more preferably 13.5 μΩ · cm or less, particularly Preferably, it is 13.0 μΩ · cm or less. The lower limit value of the volume resistivity of the metallic silver is not particularly limited, but is, for example, 5.0 μΩ · cm.
For example, a silver ink composition having a storage period of 30 days immediately after production can also form metallic silver having the above volume resistivity.
 本発明の銀インク組成物は、製造直後からの保存期間が1日である場合も、導電性に優れた金属銀の形成が可能であり、体積抵抗率が、例えば、好ましくは13.5μΩ・cm以下、より好ましくは13.0μΩ・cm以下、特に好ましくは12.5μΩ・cm以下の金属銀の形成が可能である。そして、前記金属銀の体積抵抗率の下限値は特に限定されないが、例えば、4.5μΩ・cmとなる。 The silver ink composition of the present invention can form metallic silver excellent in conductivity even when the storage period immediately after production is 1 day, and the volume resistivity is preferably, for example, 13.5 μΩ · It is possible to form metallic silver of cm or less, more preferably 13.0 μΩ · cm or less, particularly preferably 12.5 μΩ · cm or less. The lower limit value of the volume resistivity of the metallic silver is not particularly limited, but is, for example, 4.5 μΩ · cm.
 本発明の銀インク組成物は、従来の銀インク組成物よりも優れた保存安定性を有する。そのため、長期間保存後の本発明の銀インク組成物から形成した金属銀は、製造直後の組成が同じである、保存期間が短い本発明の銀インク組成物から形成した金属銀と比較して、導電性(体積抵抗率)に大きな違いが見られない。
 例えば、製造直後からの保存期間が1日である銀インク組成物を用いて形成された金属銀の体積抵抗率ρ(μΩ・cm)と、製造直後の組成が同じであり、製造直後からの保存期間が30日である銀インク組成物を用いて形成された金属銀の体積抵抗率ρ(μΩ・cm)と、を用いて、式「(ρ-ρ)/ρ×100」により算出される金属銀の体積抵抗率の変化率(%)は、好ましくは20%以下、より好ましくは15%以下、特に好ましくは10%以下となる。
The silver ink composition of the present invention has better storage stability than conventional silver ink compositions. Therefore, the metallic silver formed from the silver ink composition of the present invention after long-term storage has the same composition immediately after production, compared with the metallic silver formed from the silver ink composition of the present invention with a short storage period. There is no significant difference in conductivity (volume resistivity).
For example, the volume resistivity ρ 1 (μΩ · cm) of metallic silver formed using a silver ink composition having a storage period of 1 day immediately after manufacture is the same as that immediately after manufacture, and immediately after manufacture. And the volume resistivity ρ 2 (μΩ · cm) of metallic silver formed using a silver ink composition having a storage period of 30 days, and using the formula “(ρ 2 −ρ 1 ) / ρ 1 × The change rate (%) of the volume resistivity of metallic silver calculated by “100” is preferably 20% or less, more preferably 15% or less, and particularly preferably 10% or less.
 金属銀が上述のような体積抵抗率及びその変化率を示すようにするためには、銀インク組成物の保存温度は、20℃以下であることが好ましく、15℃以下であることがより好ましく、10℃以下であることが特に好ましい。 In order for metallic silver to exhibit the volume resistivity and the rate of change thereof as described above, the storage temperature of the silver ink composition is preferably 20 ° C. or less, and more preferably 15 ° C. or less. A temperature of 10 ° C. or lower is particularly preferable.
 本発明の銀インク組成物を用いて形成された金属銀は、極めて高純度であり、金属銀の比率が、見かけ上金属銀だけからなるとみなし得る程度に十分に高く、例えば、好ましくは99質量%以上である。
 一方、本発明の銀インク組成物を用いて形成された金属銀は、金属銀の比率の上限値を、例えば、99.9質量%、99.8質量%、99.7質量%、99.6質量%、99.5質量%、99.4質量%、99.3質量%、99.2質量%及び99.1質量%のいずれかとすることができる。
The metallic silver formed using the silver ink composition of the present invention is extremely high in purity, and the proportion of metallic silver is sufficiently high that it can be regarded as consisting solely of metallic silver, for example, preferably 99 mass. % Or more.
On the other hand, the metallic silver formed using the silver ink composition of the present invention has an upper limit of the metallic silver ratio, for example, 99.9 mass%, 99.8 mass%, 99.7 mass%, 99.99 mass%. It can be any of 6% by mass, 99.5% by mass, 99.4% by mass, 99.3% by mass, 99.2% by mass and 99.1% by mass.
 前記金属銀の体積抵抗率は、例えば、金属銀(銀層)の純度及び厚さ等により調節できる。 The volume resistivity of the metallic silver can be adjusted by, for example, the purity and thickness of the metallic silver (silver layer).
 図1は、本発明の銀インク組成物を用いて得られた積層体の一実施形態を模式的に示す断面図である。なお、図1は、例えば、便宜上、要部となる部分を拡大して示している場合があり、各構成要素の寸法比率等が実際と同じであるとは限らない。これは、以降の図においても同様である。
 ここに示す積層体1は、基材11の表面(一方の主面)11aに銀層12が積層されてなるものである。
FIG. 1 is a cross-sectional view schematically showing an embodiment of a laminate obtained using the silver ink composition of the present invention. For example, FIG. 1 may show an enlarged main part for convenience, and the dimensional ratios and the like of the respective constituent elements are not always the same. The same applies to the following drawings.
The laminated body 1 shown here is formed by laminating a silver layer 12 on the surface (one main surface) 11a of a base material 11.
[基材]
 基材11は、前記銀インク組成物を使用できるものであれば、特に限定されない。
 基材11の材質として具体的には、例えば、ポリエチレン(PE);ポリプロピレン(PP);ポリ塩化ビニル(PVC);ポリ塩化ビニリデン(PVDC);ポリメチルペンテン(PMP);ポリシクロオレフィン;ポリスチレン(PS);ポリ酢酸ビニル(PVAc);ポリメタクリル酸メチル(PMMA)等のアクリル樹脂;AS樹脂;ABS樹脂;ナイロン6,6、ナイロン6等のポリアミド(PA);ポリイミド;ポリアミドイミド(PAI);ポリアセタール(POM);ポリエチレンテレフタレート(PET);ポリブチレンテレフタレート(PBT);ポリトリメチレンテレフタレート(PTT);ポリエチレンナフタレート(PEN);ポリブチレンナフタレート(PBN);ポリフェニレンスルファイド(PPS);ポリスルホン(PSF);ポリエーテルスルホン(PES);ポリエーテルケトン(PEK);ポリエーテルエーテルケトン(PEEK);ポリカーボネート(PC);ポリウレタン;ポリフェニレンエーテル(PPE);変性ポリフェニレンエーテル(m-PPE);ポリアリレート;エポキシ樹脂;メラミン樹脂;フェノール樹脂;尿素樹脂等の合成樹脂が挙げられる。
 また、基材11の材質としては、上記以外にも、例えば、ガラス、シリコン等のセラミックス;紙等が挙げられる。
 また、基材11は、ガラスエポキシ樹脂、ポリマーアロイ等の、2種以上の材質を併用したものでもよい。
[Base material]
The substrate 11 is not particularly limited as long as the silver ink composition can be used.
Specific examples of the material of the substrate 11 include polyethylene (PE); polypropylene (PP); polyvinyl chloride (PVC); polyvinylidene chloride (PVDC); polymethylpentene (PMP); polycycloolefin; PS); polyvinyl acetate (PVAc); acrylic resin such as polymethyl methacrylate (PMMA); AS resin; ABS resin; polyamide (PA) such as nylon 6,6, nylon 6, etc .; polyimide; polyamideimide (PAI); Polyacetal (POM); Polyethylene terephthalate (PET); Polybutylene terephthalate (PBT); Polytrimethylene terephthalate (PTT); Polyethylene naphthalate (PEN); Polybutylene naphthalate (PBN); Polyphenylene sulfide (PPS); Polysulfone (PSF); Polyethersulfone (PES); Polyetherketone (PEK); Polyetheretherketone (PEEK); Polycarbonate (PC); Polyurethane; Polyphenylene ether (PPE); Modified polyphenylene ether (m-PPE); Arylate; epoxy resin; melamine resin; phenol resin; synthetic resin such as urea resin.
In addition to the above, the material of the base material 11 includes, for example, ceramics such as glass and silicon; paper and the like.
The substrate 11 may be a combination of two or more materials such as a glass epoxy resin and a polymer alloy.
 基材11は、目的に応じて任意の形状を選択でき、例えば、フィルム状又はシート状であることが好ましい。フィルム状又はシート状である基材11の厚さは、0.5~5000μmであることが好ましく、0.5~2500μmであることがより好ましい。基材11の厚さが前記下限値以上であることで、銀層の構造をより安定して保持でき、基材11の厚さが前記上限値以下であることで、銀層形成時の取り扱い性がより良好となる。 The base material 11 can select an arbitrary shape according to the purpose, and is preferably in the form of a film or a sheet, for example. The thickness of the substrate 11 in the form of a film or sheet is preferably 0.5 to 5000 μm, and more preferably 0.5 to 2500 μm. When the thickness of the base material 11 is equal to or greater than the lower limit value, the structure of the silver layer can be more stably maintained, and when the thickness of the base material 11 is equal to or less than the upper limit value, handling at the time of forming the silver layer The property becomes better.
 基材11は、単層からなるものでもよいし、2層以上の複数層からなるものでもよい。基材11が複数層からなる場合、これら複数層は、互いに同一でも異なっていてもよい。すなわち、すべての層が同一であってもよいし、すべての層が異なっていてもよく、一部の層のみが異なっていてもよい。そして、複数層が互いに異なる場合、これら複数層の組み合わせは特に限定されない。ここで、複数層が互いに異なるとは、各層の材質及び厚さの少なくとも一方が互いに異なることを意味する。
 なお、基材11が複数層からなる場合には、各層の合計の厚さが、上記の好ましい基材11の厚さとなるようにするとよい。
The substrate 11 may be composed of a single layer, or may be composed of two or more layers. When the base material 11 consists of multiple layers, these multiple layers may be the same as or different from each other. That is, all the layers may be the same, all the layers may be different, or only some of the layers may be different. And when several layers differ from each other, the combination of these several layers is not specifically limited. Here, the plurality of layers being different from each other means that at least one of the material and the thickness of each layer is different from each other.
In addition, when the base material 11 consists of multiple layers, it is good to make it the thickness of the total of each layer be the thickness of said preferable base material 11.
[銀層]
 銀層12は、前記銀インク組成物を用いて形成された金属銀からなる。
 基材11の一方の主面(表面)11aを上方から見下ろすように、積層体1を平面視したときの、銀層12の形状は、目的に応じて任意に設定でき、基材11の表面11aの全面に銀層12が設けられていてもよいし、基材11の表面11aのうち、一部のみに銀層12が設けられていてもよく、この場合、銀層12はパターニングされていてもよい。
 パターニングされた銀層12は、例えば、配線として有用である。
[Silver layer]
The silver layer 12 is made of metallic silver formed using the silver ink composition.
The shape of the silver layer 12 when the laminate 1 is viewed in plan so that one main surface (surface) 11a of the substrate 11 is looked down from above can be arbitrarily set according to the purpose, and the surface of the substrate 11 The silver layer 12 may be provided on the entire surface of 11a, or the silver layer 12 may be provided on only a part of the surface 11a of the base material 11. In this case, the silver layer 12 is patterned. May be.
The patterned silver layer 12 is useful as a wiring, for example.
 銀層12の厚さは、目的に応じて任意に設定できるが、0.01~5μmであることが好ましく、0.05~3μmであることがより好ましい。銀層12の厚さが前記下限値以上であることで、導電性をより向上させることができ、さらに、銀層12の構造をより安定して維持できる。また、銀層12の厚さが前記上限値以下であることで、積層体1をより薄層化できる。 The thickness of the silver layer 12 can be arbitrarily set according to the purpose, but is preferably 0.01 to 5 μm, and more preferably 0.05 to 3 μm. When the thickness of the silver layer 12 is equal to or more than the lower limit value, the conductivity can be further improved, and the structure of the silver layer 12 can be more stably maintained. Moreover, the laminated body 1 can be made thinner by the thickness of the silver layer 12 being the said upper limit or less.
 銀層12は、単層からなるものでもよいし、2層以上の複数層からなるものでもよい。銀層12が複数層からなる場合、これら複数層は、互いに同一でも異なっていてもよく、基材11の場合と同様に構成できる。例えば、複数層からなる銀層12は、各層の合計の厚さが、上記の好ましい銀層12の厚さとなるようにするとよい。 The silver layer 12 may be composed of a single layer or may be composed of two or more layers. When the silver layer 12 consists of a plurality of layers, these layers may be the same as or different from each other, and can be configured in the same manner as in the case of the substrate 11. For example, the silver layer 12 composed of a plurality of layers may be configured such that the total thickness of each layer is the thickness of the preferred silver layer 12 described above.
 前記積層体は、図1に示すものに限定されず、本発明の効果を損なわない範囲内において、他の構成が追加されたり、一部構成が適宜変更されたものでもよい。例えば、基材11上に銀層12以外のその他の層が設けられたものでもよく、前記その他の層としては、基材11と銀層12との間に設けられる受容層(図示略)、及び銀層12を被覆するオーバーコート層(図示略)等が挙げられる。前記受容層は、銀層と基材との密着性を向上させるものである。
 また、ここでは、積層体1として基材11の一方の主面(表面)11a上に銀層12を備えたものを示しているが、本発明の積層体は、基材11の他方の主面(裏面)11b上にも同様に(基材11の両方の主面上に)銀層12を備えたものでもよい。
The laminated body is not limited to that shown in FIG. 1, and other configurations may be added or a part of the configuration may be appropriately changed within a range not impairing the effects of the present invention. For example, another layer other than the silver layer 12 may be provided on the base material 11, and the other layer may include a receiving layer (not shown) provided between the base material 11 and the silver layer 12, And an overcoat layer (not shown) for covering the silver layer 12. The receptor layer improves the adhesion between the silver layer and the substrate.
In addition, here, the laminate 1 is shown having a silver layer 12 on one main surface (surface) 11a of the base material 11, but the laminate of the present invention is the other main surface of the base material 11. Similarly, the surface (back surface) 11b may be provided with the silver layer 12 (on both main surfaces of the base material 11).
 前記積層体として、基材11上に銀層12以外のその他の層が設けられたものを製造する場合には、上述の製造方法において、所定のタイミングでその他の層を形成する工程を適宜追加して行えばよい。 In the case of manufacturing a laminate in which a layer other than the silver layer 12 is provided on the substrate 11, a step of forming the other layer at a predetermined timing is added as appropriate in the above-described manufacturing method. You can do it.
<<電子機器、透明導電膜>>
 前記積層体は、各種電子機器、透明導電膜等を構成するのに好適である。
 例えば、電子機器は、前記積層体を用い、前記基材を筐体(外装材)として備えるように構成できる。このような電子機器は、前記積層体中の基材で筐体(外装材)の少なくとも一部を構成した点以外は、公知の電子機器と同様の構成とすることができる。例えば、携帯電話機等の通信機器における外装材の平面又は曲面部分を前記基材とし、この外装材(基材)上に前記金属銀からなる細線(銀細線)を形成し、この細線を回路とすることで、前記積層体を回路基板として用いることができる。そして、例えば、前記積層体に加え、音声入力部、音声出力部、操作スイッチ、表示部等を組み合わせることにより、携帯電話機を構成できる。また、パターニングされた銀層をアンテナとすることで、前記積層体をアンテナ構造体とすることができ、前記アンテナ構造体を用いた点以外は、公知のデータ受送信体と同様の構成とすることで、新規のデータ受送信体とすることができる。例えば、前記積層体において、基材上に銀層と電気的に接続されたICチップを設けてアンテナ部とすることにより、非接触型データ受送信体を構成できる。
<< Electronic equipment, transparent conductive film >>
The said laminated body is suitable for comprising various electronic devices, a transparent conductive film, etc.
For example, an electronic device can be configured to use the laminate and include the base material as a casing (exterior material). Such an electronic device can be configured in the same manner as a known electronic device except that at least a part of the casing (exterior material) is configured by the base material in the laminate. For example, a planar or curved surface portion of an exterior material in a communication device such as a cellular phone is used as the base material, and a thin wire (silver thin wire) made of the metallic silver is formed on the exterior material (base material). By doing so, the laminate can be used as a circuit board. For example, a cellular phone can be configured by combining a voice input unit, a voice output unit, an operation switch, a display unit, and the like in addition to the laminate. Further, by using the patterned silver layer as an antenna, the laminated body can be used as an antenna structure, and the configuration is the same as that of a known data transmitting / receiving body except that the antenna structure is used. Thus, a new data receiving / transmitting body can be obtained. For example, in the laminate, an IC chip electrically connected to the silver layer is provided on the base material to form an antenna portion, whereby a non-contact type data receiving / transmitting body can be configured.
 また、透明導電膜は、前記積層体を用い、銀層を極微細配線又は極薄配線として備えるように構成できる。このような透明導電膜は、銀層を極微細配線又は極薄配線として備えた点以外は、公知の透明導電膜と同様の構成とすることができる。例えば、前記積層体をさらに透明基材等と組合せることにより、タッチパネルや光学ディスプレイを構成できる。
 極微細配線の線幅は、1~20μmであることが好ましく、1.3~15μmであることがより好ましく、1.5~13μmであることが特に好ましい。
 また、極微細配線の断面形状は、好ましくは楕円の短軸方向のほぼ半分の領域が切り取られた半楕円形状である。
 一方、極薄配線の厚さは、5nm~10μmであることが好ましく、7nm~5μmであることがより好ましく、10nm~1μmであることが特に好ましい。
 極薄配線の断面形状は、前記極微細配線の断面形状と同様である。
 前記透明導電膜は、銀層がこのような線幅及び厚さの少なくとも一方を満たしていることが好ましい。銀層がこのような線幅又は厚さであれば、目視によってその存在が認識困難となるので、透明導電膜として好ましいものとなる。
Further, the transparent conductive film can be configured to use the laminate and include a silver layer as ultrafine wiring or ultrathin wiring. Such a transparent conductive film can have the same configuration as a known transparent conductive film except that the silver layer is provided as an ultrafine wiring or an ultrathin wiring. For example, a touch panel or an optical display can be configured by further combining the laminate with a transparent substrate or the like.
The line width of the ultrafine wiring is preferably 1 to 20 μm, more preferably 1.3 to 15 μm, and particularly preferably 1.5 to 13 μm.
In addition, the cross-sectional shape of the ultrafine wiring is preferably a semi-elliptical shape in which approximately half the region in the minor axis direction of the ellipse is cut off.
On the other hand, the thickness of the ultra-thin wiring is preferably 5 nm to 10 μm, more preferably 7 nm to 5 μm, and particularly preferably 10 nm to 1 μm.
The cross-sectional shape of the ultrathin wiring is the same as the cross-sectional shape of the ultrafine wiring.
In the transparent conductive film, the silver layer preferably satisfies at least one of such a line width and thickness. If the silver layer has such a line width or thickness, its presence is difficult to recognize by visual observation, which is preferable as a transparent conductive film.
 また、前記積層体においては、銀層を低温で形成することも可能であり、基材等の材質を幅広く選択できるので、設計の自由度が飛躍的に向上し、電子機器、透明導電膜等をより合理的な構造とすることも可能である。
 上記のような電子機器、透明導電膜等は、長期に渡って高い性能を維持することが可能である。
In the laminate, the silver layer can be formed at a low temperature, and a wide range of materials such as a base material can be selected. Thus, the degree of freedom in design is greatly improved, and electronic devices, transparent conductive films, etc. Can be made more rational.
The above electronic devices, transparent conductive films, and the like can maintain high performance over a long period of time.
 以下、具体的実施例により、本発明についてより詳細に説明する。ただし、本発明は、以下に示す実施例に、何ら限定されるものではない。 Hereinafter, the present invention will be described in more detail with reference to specific examples. However, the present invention is not limited to the following examples.
[実施例1]
<銀インク組成物の製造>
 ビーカー中に2-エチルヘキシルアミン(後述する2-メチルアセト酢酸銀に対して1.45倍モル量)を加え、メカニカルスターラーを用いて撹拌しながら、液温が50℃以下となるように、2-メチルアセト酢酸銀を添加した。次いで、ビーカーの開口部をカバーで塞いだ状態で、10mL/分の流量で窒素ガスをビーカー内に流しながら10分撹拌した後、温度が25℃である水浴中にビーカーを設置して、以降、この状態を保ったまま、シリンジポンプを用いてギ酸(2-メチルアセト酢酸銀に対して0.48倍モル量)を30分間かけて滴下した。最初の操作(配合成分の混合)を開始してから2時間後に、3-エチル-1-ヘプチン-3-オール(2-メチルアセト酢酸銀に対して0.036倍モル量)を1分間かけて滴下し、さらに5分撹拌して、銀インク組成物を得た。各配合成分の種類と配合比を表1に示す。表1中、「含窒素化合物(モル比)」とは、カルボン酸銀の配合量1モルあたりの含窒素化合物の配合量(モル数)([含窒素化合物のモル数]/[カルボン酸銀のモル数])を意味する。「還元剤(モル比)」も同様に、カルボン酸銀の配合量1モルあたりの還元剤の配合量(モル数)([還元剤のモル数]/[カルボン酸銀のモル数])を意味する。「アセチレンアルコール類(モル比)」も同様に、カルボン酸銀の配合量1モルあたりのアセチレンアルコール類の配合量(モル数)([アセチレンアルコール類のモル数]/[カルボン酸銀のモル数])を意味する。
[Example 1]
<Manufacture of silver ink composition>
In a beaker, 2-ethylhexylamine (a 1.45-fold molar amount with respect to silver 2-methylacetoacetate described later) is added, and the mixture is stirred with a mechanical stirrer so that the liquid temperature is 50 ° C. or lower. Silver methyl acetoacetate was added. Next, after stirring for 10 minutes while flowing nitrogen gas into the beaker at a flow rate of 10 mL / min with the opening of the beaker covered with a cover, the beaker was placed in a water bath having a temperature of 25 ° C. While maintaining this state, formic acid (0.48-fold molar amount with respect to silver 2-methylacetoacetate) was added dropwise over 30 minutes using a syringe pump. Two hours after the start of the first operation (mixing of the ingredients), 3-ethyl-1-heptin-3-ol (0.036-fold molar amount with respect to silver 2-methylacetoacetate) was added over 1 minute. The solution was added dropwise and further stirred for 5 minutes to obtain a silver ink composition. Table 1 shows the types and blending ratios of each blending component. In Table 1, “nitrogen-containing compound (molar ratio)” means the compounding amount (number of moles) of nitrogen-containing compound per mol of silver carboxylate ([number of moles of nitrogen-containing compound] / [silver carboxylate] Number of moles]). Similarly, the “reducing agent (molar ratio)” is the reductant compounding amount (mole number) per mol of silver carboxylate ([molar number of reducing agent] / [molar number of silver carboxylate]). means. Similarly, in the case of “acetylene alcohols (molar ratio)”, the blending amount (number of moles) of acetylenic alcohol per mole of silver carboxylate (number of moles of acetylene alcohol) / [number of moles of silver carboxylate ]).
<積層体の製造>
 上記で得られた銀インク組成物を、空気雰囲気下、遮光性を有する樹脂製容器中に入れ、蓋をして水分の侵入を防止し、5℃で1日放置した。
 次いで、樹脂製容器中から一部の銀インク組成物を取り出し、ポリカーボネート製基材(厚さ2mm)の一方の主面(表面)上に、グラビアオフセット印刷法により、この取り出した銀インク組成物を用いて印刷を行い、印刷パターンを形成した。
 次いで、オーブン内で印刷済みの前記基材を100℃で10分乾燥させ、さらに、100℃の水蒸気雰囲気下にこの基材を10分置いて加熱(焼成)処理することにより、厚さ0.2μm、幅200μm、長さ25mmの直線状銀細線を前記基材の表面上に形成し、積層体を得た。以下、この積層体を第1積層体と称する。
<Manufacture of laminates>
The silver ink composition obtained above was placed in a light-shielding resin container in an air atmosphere and covered to prevent moisture from entering, and left at 5 ° C. for 1 day.
Next, a part of the silver ink composition is taken out from the resin container, and this silver ink composition is taken out by gravure offset printing on one main surface (surface) of the polycarbonate base material (thickness 2 mm). Was printed to form a print pattern.
Next, the substrate printed in an oven is dried at 100 ° C. for 10 minutes, and further, this substrate is placed in a steam atmosphere at 100 ° C. for 10 minutes to be heated (fired), whereby a thickness of 0. A linear silver thin wire having a thickness of 2 μm, a width of 200 μm, and a length of 25 mm was formed on the surface of the substrate to obtain a laminate. Hereinafter, this laminate is referred to as a first laminate.
 さらに、一部を取り出した後の残りの銀インク組成物を、引き続き前記樹脂製容器中で水分の侵入を防止して、5℃で29日放置し、合計で30日に渡って保存した。
 次いで、この30日保存後の銀インク組成物を用いて、上述の第1積層体の場合と同様に、基材の表面上に銀細線を形成し、積層体を得た。以下、この積層体を第2積層体と称する。
Further, the remaining silver ink composition after taking out a part thereof was prevented from entering moisture in the resin container, and was left at 5 ° C. for 29 days, and stored for a total of 30 days.
Next, using this silver ink composition after storage for 30 days, a thin silver wire was formed on the surface of the substrate in the same manner as in the case of the first laminate described above to obtain a laminate. Hereinafter, this laminate is referred to as a second laminate.
<積層体の評価>
(銀細線の体積抵抗率の変化率の測定)
 上記で得られた第1積層体及び第2積層体の銀細線について、線抵抗値R(Ω)、断面積A(cm)、及び線長L(=2.5cm)を測定し、式「ρ=R×A/L」により、第1積層体の銀細線の体積抵抗率ρ11(μΩ・cm)、及び第2積層体の銀細線の体積抵抗率ρ21(μΩ・cm)をそれぞれ算出した。なお、線抵抗値Rはデジタルマルチメータ(エーディーシー社製「7352」)を用いて2端子法で測定し、断面積Aはレーザ顕微鏡(キーエンス社製「VK-X100」)を用いて測定した。
 さらに、式「(ρ21-ρ11)/ρ11×100」により、銀細線の体積抵抗率の変化率(%)を算出した。結果を表2に示す。
<Evaluation of laminate>
(Measurement of change rate of volume resistivity of silver thin wire)
The silver thin line of the first laminate and the second laminate obtained above, line resistance value R (Omega), the cross-sectional area A (cm 2), and measure the line length L (= 2.5 cm), the formula By “ρ = R × A / L”, the volume resistivity ρ 11 (μΩ · cm) of the silver fine wire of the first laminate and the volume resistivity ρ 21 (μΩ · cm) of the silver fine wire of the second laminate are obtained. Each was calculated. The line resistance value R was measured by a two-terminal method using a digital multimeter (“7352” manufactured by ADC), and the cross-sectional area A was measured using a laser microscope (“VK-X100” manufactured by Keyence). .
Furthermore, the rate of change (%) in volume resistivity of the silver thin wire was calculated by the formula “(ρ 21 −ρ 11 ) / ρ 11 × 100”. The results are shown in Table 2.
<積層体の製造及び評価>
[実施例2、比較例1~3]
 銀インク組成物製造時の配合成分を表1に示すとおりとした点以外は、実施例1と同じ方法で、銀インク組成物、第1積層体及び第2積層体を製造し、これら積層体を評価した。結果を表2に示す。
<Manufacture and evaluation of laminate>
[Example 2, Comparative Examples 1 to 3]
A silver ink composition, a first laminate, and a second laminate were produced in the same manner as in Example 1 except that the compounding components at the time of producing the silver ink composition were as shown in Table 1, and these laminates were produced. Evaluated. The results are shown in Table 2.
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000013
 上記結果から明らかなように、実施例1~2では、第1積層体及び第2積層体のいずれにおいても、銀細線の体積抵抗率(ρ11及びρ21)が低く、かつ銀細線の体積抵抗率の変化率(%)が小さく、銀インク組成物の保存安定性が高いことが確認された。
 これに対して、比較例1~3では、上記実施例とは異なる種類のアセチレンアルコール類を用いたことにより、第2積層体の銀細線の体積抵抗率(ρ21)と第1積層体の銀細線の体積抵抗率(ρ11)との差が大きく、銀細線の体積抵抗率の変化率(%)が大きくなっており、銀インク組成物の保存安定性が低いことが確認された。特に、アセチレンアルコール類として、他の実施例及び比較例とは構造が大きく異なるものを用いた比較例3では、銀細線の体積抵抗率の変化率(%)が著しく大きく、表2中では「-」として示している。
As is clear from the above results, in Examples 1 and 2, the volume resistivity (ρ 11 and ρ 21 ) of the silver fine wires is low and the volume of the silver fine wires is low in both the first laminate and the second laminate. It was confirmed that the change rate (%) of the resistivity was small and the storage stability of the silver ink composition was high.
On the other hand, in Comparative Examples 1 to 3, the volume resistivity (ρ 21 ) of the silver thin wire of the second laminated body and the first laminated body were different by using a different type of acetylene alcohol from the above examples. The difference from the volume resistivity (ρ 11 ) of the silver fine wire was large, and the rate of change (%) in the volume resistivity of the silver fine wire was large, confirming that the storage stability of the silver ink composition was low. In particular, in Comparative Example 3 in which acetylene alcohols having a structure significantly different from those of other Examples and Comparative Examples were used, the change rate (%) of the volume resistivity of the silver thin wire was remarkably large. -".
[実施例3]
<銀インク組成物の製造>
 ビーカー中に2-エチルヘキシルアミン(後述する2-メチルアセト酢酸銀に対して1.45倍モル量)を加え、メカニカルスターラーを用いて撹拌しながら、液温が50℃以下となるように、2-メチルアセト酢酸銀を添加した。次いで、ビーカーの開口部をカバーで塞いだ状態で、10mL/分の流量で窒素ガスをビーカー内に流しながら10分撹拌した後、温度が25℃である水浴中にビーカーを設置して、以降、この状態を保ったまま、シリンジポンプを用いてギ酸(2-メチルアセト酢酸銀に対して0.50倍モル量)を30分間かけて滴下した。最初の操作(配合成分の混合)を開始してから2時間後に、4-エチル-1-オクチン-3-オール(2-メチルアセト酢酸銀に対して0.004倍モル量)及び3,5-ジメチル-1-ヘキシン-3-オール(2-メチルアセト酢酸銀に対して0.032倍モル量)を1分間かけて滴下し、さらに5分撹拌して、銀インク組成物を得た。各配合成分の種類と配合比を表3に示す。なお、表3中、配合成分の欄の「-」との記載は、その成分が未配合であることを意味する。
[Example 3]
<Manufacture of silver ink composition>
In a beaker, 2-ethylhexylamine (a 1.45-fold molar amount with respect to silver 2-methylacetoacetate described later) is added, and the mixture is stirred with a mechanical stirrer so that the liquid temperature is 50 ° C. or lower. Silver methyl acetoacetate was added. Next, after stirring for 10 minutes while flowing nitrogen gas into the beaker at a flow rate of 10 mL / min with the opening of the beaker covered with a cover, the beaker was placed in a water bath having a temperature of 25 ° C. While maintaining this state, formic acid (0.50-fold molar amount with respect to silver 2-methylacetoacetate) was added dropwise over 30 minutes using a syringe pump. Two hours after the start of the first operation (mixing of the ingredients), 4-ethyl-1-octyn-3-ol (0.004 times the molar amount with respect to silver 2-methylacetoacetate) and 3,5- Dimethyl-1-hexyn-3-ol (0.032-fold molar amount relative to silver 2-methylacetoacetate) was added dropwise over 1 minute, and the mixture was further stirred for 5 minutes to obtain a silver ink composition. Table 3 shows the types and mixing ratios of the respective components. In Table 3, “-” in the column of the blending component means that the component is not blended.
<積層体の製造及び評価>
 上記で得られた銀インク組成物を用いた点以外は、実施例1と同じ方法で、第1積層体及び第2積層体を製造し、これら積層体を評価した。結果を表4に示す。
<Manufacture and evaluation of laminate>
Except the point which used the silver ink composition obtained above, the 1st laminated body and the 2nd laminated body were manufactured by the same method as Example 1, and these laminated bodies were evaluated. The results are shown in Table 4.
<積層体の製造及び評価>
[実施例4~5]
 銀インク組成物製造時の配合成分を表3に示すとおりとした点以外は、実施例3と同じ方法で、銀インク組成物、第1積層体及び第2積層体を製造し、これら積層体を評価した。結果を表4に示す。
<Manufacture and evaluation of laminate>
[Examples 4 to 5]
A silver ink composition, a first laminate, and a second laminate were produced in the same manner as in Example 3 except that the compounding components at the time of producing the silver ink composition were as shown in Table 3, and these laminates were produced. Evaluated. The results are shown in Table 4.
<積層体の製造及び評価>
[実施例6~7、比較例4]
 銀インク組成物製造時の配合成分を表3に示すとおりとした点以外は、実施例1と同じ方法で、銀インク組成物、第1積層体及び第2積層体を製造し、これら積層体を評価した。結果を表4に示す。
<Manufacture and evaluation of laminate>
[Examples 6 to 7, Comparative Example 4]
A silver ink composition, a first laminate, and a second laminate were produced in the same manner as in Example 1 except that the blending components during production of the silver ink composition were as shown in Table 3, and these laminates were produced. Evaluated. The results are shown in Table 4.
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000015
Figure JPOXMLDOC01-appb-T000015
 上記結果から明らかなように、実施例3~7では、第1積層体及び第2積層体のいずれにおいても、銀細線の体積抵抗率(ρ11及びρ21)が低く、かつ銀細線の体積抵抗率の変化率(%)が小さく、銀インク組成物の保存安定性が高いことが確認された。
 これに対して、比較例4では、上記実施例とは異なる形態でアセチレンアルコール類を用いたことにより、第2積層体の銀細線の体積抵抗率(ρ21)と第1積層体の銀細線の体積抵抗率(ρ11)との差が大きく、銀細線の体積抵抗率の変化率(%)が大きくなっており、銀インク組成物の保存安定性が低いことが確認された。
As is clear from the above results, in Examples 3 to 7, the volume resistivity (ρ 11 and ρ 21 ) of the silver fine wires is low and the volume of the silver fine wires is low in both the first laminate and the second laminate. It was confirmed that the change rate (%) of the resistivity was small and the storage stability of the silver ink composition was high.
On the other hand, in Comparative Example 4, the volume resistivity (ρ 21 ) of the silver thin wire of the second laminate and the silver fine wire of the first laminate were obtained by using acetylene alcohols in a form different from the above example. The volume resistivity (ρ 11 ) was large, the volume resistivity change rate (%) of the silver thin wire was large, and it was confirmed that the storage stability of the silver ink composition was low.
 実施例3~5では、アセチレンアルコール(20)とそれ以外の他のアセチレンアルコール(アセチレンアルコール(21))とを併用したが、他のアセチレンアルコールを併用していない実施例6~7の場合と比べると、第1積層体及び第2積層体のいずれにおいても、銀細線のかすれがより抑制されていた。すなわち、アセチレンアルコール(20)と他のアセチレンアルコールとを併用した銀インク組成物を用いることにより、かすれがより抑制された印刷パターンを形成できることが確認された。 In Examples 3 to 5, acetylene alcohol (20) and other acetylene alcohol (acetylene alcohol (21)) were used in combination, but in the case of Examples 6 to 7 where no other acetylene alcohol was used in combination. In comparison, in both the first laminated body and the second laminated body, fading of the silver thin wire was further suppressed. That is, it was confirmed that by using a silver ink composition in which acetylene alcohol (20) and another acetylene alcohol are used in combination, it is possible to form a print pattern in which fading is further suppressed.
 本発明は、例えば、配線基板、電磁波シールド、タッチパネル、無線通信機筐体のアンテナ等、基材上に銀層を備えた各種電子機器に利用可能である。 The present invention can be used for various electronic devices having a silver layer on a base material such as a wiring board, an electromagnetic wave shield, a touch panel, and an antenna of a wireless communication device casing.
 1・・・積層体、11・・・基材、11a・・・基材の一方の主面(表面)、11b・・・基材の他方の主面(裏面)、12・・・銀層 DESCRIPTION OF SYMBOLS 1 ... Laminated body, 11 ... Base material, 11a ... One main surface (front surface) of a base material, 11b ... The other main surface (back surface) of a base material, 12 ... Silver layer

Claims (5)

  1.  式「-COOAg」で表される基を有するカルボン酸銀と、
     炭素数25以下のアミン化合物及び第4級アンモニウム塩、アンモニア、並びに前記アミン化合物又はアンモニアが酸と反応してなるアンモニウム塩からなる群から選択される1種以上の含窒素化合物と、
     シュウ酸、ヒドラジン及び下記一般式(5)で表される化合物からなる群から選択される1種以上の還元剤と、
     下記一般式(20)で表される、炭素数9以上のアセチレンアルコール類と、
     が配合されてなる銀インク組成物。
     H-C(=O)-R21 ・・・・(5)
     (式中、R21は、炭素数20以下のアルキル基、アルコキシ基若しくはN,N-ジアルキルアミノ基、水酸基又はアミノ基である。)
    Figure JPOXMLDOC01-appb-C000001
     (式中、R’及びR’’は、それぞれ独立に水素原子、アルキル基、又は1個以上の水素原子が置換基で置換されていてもよいフェニル基であり、ただし、R’及びR’’の少なくとも一方は前記アルキル基又はフェニル基である。)
    Silver carboxylate having a group represented by the formula “—COOAg”;
    An amine compound having a carbon number of 25 or less and a quaternary ammonium salt, ammonia, and one or more nitrogen-containing compounds selected from the group consisting of ammonium salts obtained by reacting the amine compound or ammonia with an acid;
    One or more reducing agents selected from the group consisting of oxalic acid, hydrazine and a compound represented by the following general formula (5);
    An acetylene alcohol having 9 or more carbon atoms represented by the following general formula (20);
    A silver ink composition comprising:
    HC (= O) -R 21 (5)
    (Wherein R 21 represents an alkyl group having 20 or less carbon atoms, an alkoxy group, or an N, N-dialkylamino group, a hydroxyl group, or an amino group.)
    Figure JPOXMLDOC01-appb-C000001
    Wherein R ′ and R ″ are each independently a hydrogen atom, an alkyl group, or a phenyl group in which one or more hydrogen atoms may be substituted with a substituent, provided that R ′ and R ′ At least one of 'is the alkyl group or the phenyl group.)
  2.  前記R’及びR’’の炭素数の合計値が6~9である、請求項1に記載の銀インク組成物。 The silver ink composition according to claim 1, wherein the total number of carbon atoms of R ′ and R ″ is 6 to 9.
  3.  前記銀インク組成物が、下記一般式(21)で表されるアセチレンアルコールが配合されてなる、請求項1又は2に記載の銀インク組成物。
    Figure JPOXMLDOC01-appb-C000002
     (式中、R’及びR’’は、それぞれ独立に水素原子又はアルキル基であり、ただし、R’及びR’’の炭素数の合計値は0~5である。)
    The silver ink composition according to claim 1 or 2, wherein the silver ink composition is blended with acetylene alcohol represented by the following general formula (21).
    Figure JPOXMLDOC01-appb-C000002
    (Wherein R 9 ′ and R 9 ″ are each independently a hydrogen atom or an alkyl group, provided that the total number of carbon atoms of R 9 ′ and R 9 ″ is 0 to 5)
  4.  式「-COOAg」で表される基を有するカルボン酸銀と、
     炭素数25以下のアミン化合物及び第4級アンモニウム塩、アンモニア、並びに前記アミン化合物又はアンモニアが酸と反応してなるアンモニウム塩からなる群から選択される1種以上の含窒素化合物と、
     シュウ酸、ヒドラジン及び下記一般式(5)で表される化合物からなる群から選択される1種以上の還元剤と、
     下記一般式(20)で表される、炭素数9以上のアセチレンアルコール類と、
     を配合する工程を有する、銀インク組成物の製造方法。
     H-C(=O)-R21 ・・・・(5)
     (式中、R21は、炭素数20以下のアルキル基、アルコキシ基若しくはN,N-ジアルキルアミノ基、水酸基又はアミノ基である。)
    Figure JPOXMLDOC01-appb-C000003
     (式中、R’及びR’’は、それぞれ独立に水素原子、アルキル基、又は1個以上の水素原子が置換基で置換されていてもよいフェニル基であり、ただし、R’及びR’’の少なくとも一方は前記アルキル基又はフェニル基である。)
    Silver carboxylate having a group represented by the formula “—COOAg”;
    An amine compound having a carbon number of 25 or less and a quaternary ammonium salt, ammonia, and one or more nitrogen-containing compounds selected from the group consisting of ammonium salts obtained by reacting the amine compound or ammonia with an acid;
    One or more reducing agents selected from the group consisting of oxalic acid, hydrazine and a compound represented by the following general formula (5);
    An acetylene alcohol having 9 or more carbon atoms represented by the following general formula (20);
    The manufacturing method of a silver ink composition which has the process of mix | blending.
    HC (= O) -R 21 (5)
    (Wherein R 21 represents an alkyl group having 20 or less carbon atoms, an alkoxy group, or an N, N-dialkylamino group, a hydroxyl group, or an amino group.)
    Figure JPOXMLDOC01-appb-C000003
    Wherein R ′ and R ″ are each independently a hydrogen atom, an alkyl group, or a phenyl group in which one or more hydrogen atoms may be substituted with a substituent, provided that R ′ and R ′ At least one of 'is the alkyl group or the phenyl group.)
  5.  基材の表面に銀層が積層されてなり、
     前記銀層が、請求項1~3のいずれか一項に記載の銀インク組成物を用いて形成されたものである、積層体。
    A silver layer is laminated on the surface of the substrate,
    A laminate in which the silver layer is formed using the silver ink composition according to any one of claims 1 to 3.
PCT/JP2016/078013 2015-09-29 2016-09-23 Silver ink composition, process for producing same, and layered product WO2017057188A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017543212A JP6802798B2 (en) 2015-09-29 2016-09-23 Silver ink composition, its manufacturing method and laminate

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015191853 2015-09-29
JP2015-191853 2015-09-29

Publications (1)

Publication Number Publication Date
WO2017057188A1 true WO2017057188A1 (en) 2017-04-06

Family

ID=58423696

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/078013 WO2017057188A1 (en) 2015-09-29 2016-09-23 Silver ink composition, process for producing same, and layered product

Country Status (2)

Country Link
JP (1) JP6802798B2 (en)
WO (1) WO2017057188A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017115090A (en) * 2015-12-25 2017-06-29 トッパン・フォームズ株式会社 Silver ink composition

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63139964A (en) * 1986-12-01 1988-06-11 Canon Inc Ink for use in ink jet recording and ink jet recording method using same
JP2002309130A (en) * 2001-04-06 2002-10-23 Seiko Epson Corp Aqueous ink composition
WO2007138345A1 (en) * 2006-05-26 2007-12-06 Johnson Matthey Public Limited Company Process for producing stabilised metal nanoparticles
US20100255201A1 (en) * 2009-04-01 2010-10-07 E.I. Du Pont De Nemours And Company Ink jet ink and ink set
WO2014051066A1 (en) * 2012-09-28 2014-04-03 トッパン・フォームズ株式会社 Silver ink composition, conductor and communication device
WO2014051083A1 (en) * 2012-09-28 2014-04-03 トッパン・フォームズ株式会社 Silver ink composition and heat treatment product

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63139964A (en) * 1986-12-01 1988-06-11 Canon Inc Ink for use in ink jet recording and ink jet recording method using same
JP2002309130A (en) * 2001-04-06 2002-10-23 Seiko Epson Corp Aqueous ink composition
WO2007138345A1 (en) * 2006-05-26 2007-12-06 Johnson Matthey Public Limited Company Process for producing stabilised metal nanoparticles
US20100255201A1 (en) * 2009-04-01 2010-10-07 E.I. Du Pont De Nemours And Company Ink jet ink and ink set
WO2014051066A1 (en) * 2012-09-28 2014-04-03 トッパン・フォームズ株式会社 Silver ink composition, conductor and communication device
WO2014051083A1 (en) * 2012-09-28 2014-04-03 トッパン・フォームズ株式会社 Silver ink composition and heat treatment product

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017115090A (en) * 2015-12-25 2017-06-29 トッパン・フォームズ株式会社 Silver ink composition

Also Published As

Publication number Publication date
JPWO2017057188A1 (en) 2018-07-12
JP6802798B2 (en) 2020-12-23

Similar Documents

Publication Publication Date Title
WO2014051066A1 (en) Silver ink composition, conductor and communication device
US20150259557A1 (en) Silver ink composition, conductor and communication device
JP6289841B2 (en) Method for producing silver ink composition
JP6863715B2 (en) Laminated body and manufacturing method of laminated body
JP6821422B2 (en) Manufacturing method of metal thin film base material
WO2017057188A1 (en) Silver ink composition, process for producing same, and layered product
JP6712949B2 (en) Metallic silver, method for producing metallic silver, and laminate
JPWO2015147124A1 (en) Laminate
JP6604468B2 (en) Method for producing metallic silver
JP6346486B2 (en) Laminate, data transmitter / receiver, communication device, and transparent conductive film
JP6650295B2 (en) Wiring board
JP6644998B2 (en) Antenna structure
JP6421383B2 (en) Laminate and electronic equipment
JP2016005908A (en) Laminated body and electronic equipment
JP6678475B2 (en) Metal ink composition, wiring board and method of forming wiring
JP6432096B2 (en) Laminate and electronic equipment
JP6081120B2 (en) Laminate, data transmitter / receiver, and communication equipment
JP6322019B2 (en) Laminate and electronic equipment
JP6596783B2 (en) Laminate, data transmitter / receiver, and electronic device
WO2017110787A1 (en) Laminate and method of manufacturing laminate
JP2017226798A (en) Silver ink composition
JP6501300B2 (en) Method of manufacturing laminate
JP6289988B2 (en) Method for producing silver ink composition
JP6393951B2 (en) Method for producing metallic silver
JP2014087967A (en) Laminate, data reception and transmission body and communication equipment

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16851362

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017543212

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16851362

Country of ref document: EP

Kind code of ref document: A1