WO2015147066A1 - 積層型電池及びその製造方法 - Google Patents

積層型電池及びその製造方法 Download PDF

Info

Publication number
WO2015147066A1
WO2015147066A1 PCT/JP2015/059147 JP2015059147W WO2015147066A1 WO 2015147066 A1 WO2015147066 A1 WO 2015147066A1 JP 2015059147 W JP2015059147 W JP 2015059147W WO 2015147066 A1 WO2015147066 A1 WO 2015147066A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
polarity
insulating layer
active material
material layer
Prior art date
Application number
PCT/JP2015/059147
Other languages
English (en)
French (fr)
Inventor
乙幡 牧宏
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Priority to US15/125,927 priority Critical patent/US20170005318A1/en
Priority to JP2016510431A priority patent/JP6504158B2/ja
Publication of WO2015147066A1 publication Critical patent/WO2015147066A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0413Large-sized flat cells or batteries for motive or stationary systems with plate-like electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/26Electrodes characterised by their structure, e.g. multi-layered, porosity or surface features
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/26Electrodes characterised by their structure, e.g. multi-layered, porosity or surface features
    • H01G11/28Electrodes characterised by their structure, e.g. multi-layered, porosity or surface features arranged or disposed on a current collector; Layers or phases between electrodes and current collectors, e.g. adhesives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/66Current collectors
    • H01G11/72Current collectors specially adapted for integration in multiple or stacked hybrid or EDL capacitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/74Terminals, e.g. extensions of current collectors
    • H01G11/76Terminals, e.g. extensions of current collectors specially adapted for integration in multiple or stacked hybrid or EDL capacitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0436Small-sized flat cells or batteries for portable equipment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0459Cells or batteries with folded separator between plate-like electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/4235Safety or regulating additives or arrangements in electrodes, separators or electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/172Arrangements of electric connectors penetrating the casing
    • H01M50/174Arrangements of electric connectors penetrating the casing adapted for the shape of the cells
    • H01M50/178Arrangements of electric connectors penetrating the casing adapted for the shape of the cells for pouch or flexible bag cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/531Electrode connections inside a battery casing
    • H01M50/54Connection of several leads or tabs of plate-like electrode stacks, e.g. electrode pole straps or bridges
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/14Arrangements or processes for adjusting or protecting hybrid or EDL capacitors
    • H01G11/16Arrangements or processes for adjusting or protecting hybrid or EDL capacitors against electric overloads, e.g. including fuses
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/52Separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/66Current collectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/84Processes for the manufacture of hybrid or EDL capacitors, or components thereof
    • H01G11/86Processes for the manufacture of hybrid or EDL capacitors, or components thereof specially adapted for electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present embodiment relates to a stacked battery and a manufacturing method thereof.
  • Secondary batteries are widely used as power sources for portable devices such as mobile phones, digital cameras, and laptop computers, and as power sources for vehicles and homes.
  • a lithium ion secondary battery having a high energy density and a light weight is an energy storage device indispensable for life.
  • a battery element of a wound secondary battery has a structure in which a long positive electrode and a negative electrode are wound a plurality of times in a state of being overlapped while being separated by a separator.
  • a battery element of a stacked secondary battery has a structure in which a positive electrode and a negative electrode are alternately and repeatedly stacked while being separated by a separator.
  • Each of the positive electrode and the negative electrode includes an active material layer forming portion in which an active material layer is formed on a current collector, and an active material layer non-forming portion in which no active material layer is formed in order to provide a lead portion.
  • one end of the positive electrode lead portion and the negative electrode lead portion is electrically connected to the positive electrode active material layer non-formed portion of the positive electrode and the negative electrode active material layer non-formed portion of the negative electrode, respectively. It is connected.
  • the other ends of the positive electrode lead portion and the negative electrode lead portion are electrically connected to the positive electrode terminal and the negative electrode terminal, respectively.
  • the battery element is sealed in the outer container so that the positive electrode terminal and the negative electrode terminal are drawn out of the outer container. An electrolytic solution is enclosed in the outer container together with the battery element.
  • the battery element is fixed with a tape or the like, and the battery element is pressed with a uniform pressure.
  • the insulating layer as shown in Patent Documents 1 and 2 is provided in the laminated secondary battery, the battery elements are evenly distributed due to the difference in thickness between the portion where the insulating layer is laminated and the portion where the insulating layer is not laminated. In some cases, the battery cannot be held down, resulting in deterioration in battery quality such as variations in electrical characteristics and deterioration in cycle characteristics.
  • An object of the present embodiment is to provide a stacked battery that prevents a short circuit between a positive electrode and a negative electrode, suppresses an increase in partial thickness of the battery, and has high electrical characteristics and reliability. .
  • the stacked battery according to the present embodiment is a stacked battery including a battery element in which at least two of the first polar electrodes are respectively stacked on the second polar electrode via a separator.
  • An electrode having an active material layer formed on a current collector, a lead portion having no active material layer formed on the current collector, and the electrode portion and the lead portion.
  • An insulating layer disposed in the boundary region from the active material layer to the active material layer non-forming region, and when viewed from the stacking direction, the insulating layer of the first polarity electrode and the other first layers At least a part of the insulating layer of the polar electrode is formed at a different position.
  • the stacked battery according to the present embodiment is a stacked battery including a battery element in which at least two of the first polar electrodes are stacked on the second polar electrode via a separator, respectively.
  • the electrode of the first polarity includes an electrode part in which an active material layer is formed on a current collector, a lead part in which an active material layer is not formed on the current collector, the electrode part and the lead part And an insulating layer disposed from the active material layer to the active material layer non-formation region in the boundary region, and when viewed from the stacking direction, the insulating layer of the electrode of the first polarity and the other first layer
  • the insulating layer of the electrode of one polarity is formed at least partially at different positions, and at least partially formed at different positions, the thickness of the laminated portion of the insulating layer is reduced. .
  • an active material layer is formed on the surface of a current collector, an electrode part in which the active material layer is formed on the current collector, and an active material on the current collector
  • Forming a first polarity electrode by forming, a step of cutting out at least part of a region of the first polarity electrode where the insulating layer is formed, and forming a cutout portion; Laminating at least two of the first polarity electrodes with a second polarity electrode through a separator, respectively, and a method for producing a stacked battery, wherein the first The insulation layer of one polarity electrode and the insulation of the other first polarity electrode Bets is formed on at least partially different positions.
  • the increase in the partial thickness of a battery can be reduced, and a multilayer battery with high electrical characteristics and reliability can be provided.
  • the stacked battery according to the present embodiment is a stacked battery including a battery element in which at least two of the first polar electrodes are respectively stacked on the second polar electrode via a separator.
  • An electrode having an active material layer formed on a current collector, a lead portion having no active material layer formed on the current collector, and the electrode portion and the lead portion.
  • An insulating layer disposed in the boundary region from the active material layer to the active material layer non-forming region, and when viewed from the stacking direction, the insulating layer of the first polarity electrode and the other first layers At least a part of the insulating layer of the polar electrode is formed at a different position.
  • the insulating layer In order to prevent a short circuit between the positive electrode and the negative electrode, when an insulating layer is provided at the boundary between the active material layer and the active material layer non-formed region, the insulating layer has a certain degree of Since the thickness is necessary, as shown in FIG. 12, a partial increase in thickness occurs in the laminated portion of the insulating layer 12.
  • the insulating layer of the first polarity electrode and the insulating layer of the other first polarity electrode are at least partially formed at different positions. Yes. That is, the first polarity electrodes are stacked so that at least a part of the insulating layer does not overlap when viewed from the stacking direction.
  • the first polarity electrodes are stacked so as to have a region where the insulating layers do not overlap each other when viewed from the stacking direction.
  • region in which the insulating layer was formed decreases, and the thickness of the laminated part of an insulating layer can be reduced.
  • a short circuit between the positive electrode and the negative electrode can be prevented and an increase in the partial thickness of the battery can be reduced, so that a stacked battery with high electrical characteristics and reliability can be obtained.
  • the partial thickness of the battery is reduced, an exterior container having a uniform thickness can be used, and productivity is improved. Furthermore, even when a plurality of batteries are stacked and installed, the height of the battery stack can be made uniform.
  • the insulating layer of the first polarity electrode and the insulating layer of the other first polarity electrode are formed at different positions, that is, the region where the insulating layer is formed overlaps. It is preferable that there is no at all because the thickness of the laminated portion of the insulating layer can be further reduced.
  • the insulating layer of the first polarity electrode and the insulating layer of the other first polarity electrode at least partially at different positions when viewed from the stacking direction, for example, described later.
  • FIG. 11 there is a method of shifting the positions of the insulating layers 12 when viewed from the stacking direction.
  • the insulating layer 12, the current collector, and the cutout portion 13 in which the active material layer 2 is cut as necessary are formed in a region where the insulating layer 12 is originally formed.
  • the insulating layers 12 are not overlapped with each other in the notch 13 by providing. That is, in this case, the notch corresponds to a region where the insulating layers do not overlap each other when viewed from the stacking direction.
  • At least a part of the insulating layer of at least one first polarity electrode must overlap with the insulating layer of the other first polarity electrode. It is included in this embodiment. That is, for example, when there are three electrodes of the first polarity, the insulating layers of the two electrodes of the first polarity are all overlapped, and even if the positions are the same, the remaining one sheet If at least part of the insulating layer of the first polarity electrode does not overlap with the insulating layers of the two first polarity electrodes, at least part of the insulating layer is formed at different positions. Included in the embodiment.
  • the overlap width of the region where the insulating layer is formed is smaller than the overlap width of the leading end of the first polarity electrode as viewed from the stacking direction.
  • the first polarity is easily set so that at least a part of the insulating layer is different.
  • Polar electrodes can be stacked.
  • the overlapping width of the leading end of the lead portion of the first polarity electrode indicates the width of the portion where the leading ends of the lead portions of the plurality of first polarity electrodes overlap in the stacking direction.
  • the width of the portion where the tips of the lead portions of all the electrodes of the first polarity overlap is shown.
  • the overlapping width of the region where the insulating layer is formed indicates the width of the portion where the regions where the insulating layers of the plurality of first polarity electrodes are formed overlap.
  • the widths of the overlapping portions of the regions where the insulating layers of all the first polarity electrodes are formed are shown.
  • the total of each width is shown.
  • the overlapping width of the region where the insulating layer is formed is not constant, the longest portion is set as the overlapping width of the region where the insulating layer is formed.
  • the overlapping width of the region where the insulating layer is formed with respect to the overlapping width of the leading end of the lead portion of the first polarity electrode when viewed from the stacking direction Is small, it is possible to reduce the thickness of at least two insulating layers and one current collector per electrode of the first polarity in a portion where the region where the insulating layer is formed does not overlap. Therefore, when the battery element is manufactured by stacking the electrodes having the first polarity, the thickness of the stacked portion of the insulating layer can be reduced.
  • the first polarity electrode has a notch in at least a part of the region where the insulating layer is formed.
  • the notch 13 can be provided as shown in FIGS.
  • the cutout portion refers to a portion in which an insulating layer, a current collector, and if necessary, an active material layer are cut out in at least a part of a region where the insulating layer is formed.
  • the electrode of the first polarity has two or more types as the notch from the viewpoint of uniformly reducing an increase in the partial thickness of the battery.
  • that the electrode of the first polarity has two or more types of cutouts means that two or more electrodes of the first polarity have cutouts of two or more types.
  • the two first polarity electrodes have cutout portions having different shapes.
  • the three first polarity electrodes may have cutout portions having different shapes from each other.
  • the electrodes having the same polarity may have a cutout portion having the same shape, and one sheet of the first polarity electrode may have a cutout portion having a different shape.
  • the shape of the notch is the same, the case where the position of the notch is different is also included.
  • the stacking direction is viewed.
  • the notch preferably covers the entire active material layer forming region where the insulating layer before the notch is formed.
  • the cutout portion covers all the active material layer forming region in which the insulating layer before the cutout is formed as viewed from the stacking direction.
  • each notch portion is formed in each electrode of the first polarity so that the active material layer formation region is completely supplemented.
  • the thickness of the battery increases by the amount of the active material layer when the layers are laminated, so the notch is formed in the insulating layer and the active material layer. It is preferable to be provided in at least a part of the formed region.
  • the shape of the notch is not particularly limited, and may be rectangular or circular. Moreover, it is preferable that a notch part is not formed in the connection part with the terminal of a lead part from a viewpoint of reducing resistance.
  • the area of the notch per electrode is 20% or more with respect to the area of the portion where the insulating layer is formed, although it depends on the number of types of the notch shape provided in each first polarity electrode. 70% or less is preferable.
  • the position of the lead part drawn from the current collector can be the same in each first polarity electrode, and the lead part can be connected to the terminal in one place, so that the resistance can be reduced. This is preferable from the viewpoint of reducing the partial thickness of the battery.
  • the thickness of the stacked battery is not particularly limited, but can be, for example, 1 mm or more and 20 mm or less. Since the laminated battery according to this embodiment has a reduced partial thickness, a plurality of such laminated batteries may be used.
  • the first polarity electrode may be a positive electrode or a negative electrode.
  • the negative electrode is larger than the positive electrode, and in order to prevent a short circuit between the positive electrode and the negative electrode, the positive electrode active material layer and the positive electrode active material layer unformed region of the positive electrode It is preferable to form an insulating layer in the boundary part between them. For this reason, it is preferable that the first polarity electrode is a positive electrode and the second polarity electrode is a negative electrode.
  • the battery element includes at least two electrodes having a second polarity
  • the second polarity electrode includes an electrode portion in which an active material layer is formed on the current collector, and an active material on the current collector.
  • the second polarity electrode has the same configuration as the first polarity electrode in the present embodiment, and the second polarity electrode also has the same configuration as the insulating layer provided on the first polarity electrode. It is preferable that an insulating layer is provided. In this case, an increase in thickness can also be reduced in the laminated portion of the insulating layer of the second polarity electrode.
  • the following embodiment relates to a stacked lithium ion secondary battery, but the present embodiment is not limited to a stacked lithium ion secondary battery.
  • a nickel metal hydride battery, a nickel cadmium battery, a lithium metal primary battery, and a lithium metal secondary battery are used.
  • the present invention can also be applied to battery elements of other types of chemical batteries such as secondary batteries and lithium polymer batteries, and capacitor elements such as lithium ion capacitors and capacitor elements.
  • FIG. 1 shows the configuration of a stacked lithium ion secondary battery according to this embodiment.
  • a stacked lithium ion secondary battery 100 shown in FIG. 1 includes a battery element in which a plurality of positive electrodes 1 and negative electrodes 6 are alternately stacked via separators 20.
  • the battery element is housed in an exterior container 30 made of a flexible film together with an electrolytic solution (not shown).
  • the positive electrode 1 includes a positive electrode current collector 4 and a positive electrode active material layer 2.
  • a positive electrode lead portion 3 is drawn out from the positive electrode current collector 4 of the positive electrode 1, and the tips of the positive electrode lead portion 3 are collectively connected to a positive electrode terminal 11 at a connection portion 5. Note that the positive electrode lead portion 3 is drawn out from the positive electrode current collector 4.
  • the positive electrode lead portion 3 may be formed as a part of the positive electrode current collector 4, and another member is provided on the positive electrode current collector 4.
  • the positive electrode lead portion 3 may be electrically connected.
  • the end of the positive electrode terminal 11 opposite to the connection portion 5 is drawn out of the outer container 30.
  • the negative electrode 6 includes a negative electrode current collector 9 and a negative electrode active material layer 7.
  • a negative electrode lead portion 8 is drawn out from the negative electrode current collector 9 of the negative electrode 6, and the tip of the negative electrode lead portion 8 is collectively connected to a negative electrode terminal 16 at a connection portion 10.
  • the end of the negative electrode terminal 16 opposite to the connection portion 10 is drawn out of the outer container 30.
  • FIGS. 2A and 2B show the positive electrode according to the present embodiment.
  • the positive electrode active material layer 2 is provided on the positive electrode current collector, and the positive electrode lead portion 3 is drawn from a part of the positive electrode current collector.
  • An insulating layer 12 is provided on the boundary between the positive electrode active material layer 2 and the positive electrode active material layer non-formation region to prevent a short circuit between the positive electrode active material layer non-formation region and the negative electrode. Further, a part of the portion where the insulating layer 12 is provided is cut out, and a cutout portion 13 is provided. The position where the notch 13 is provided differs between the positive electrode shown in FIG. 2A and the positive electrode shown in FIG. The positive electrode shown in FIG.
  • the positive electrode shown in FIG. 2A has a notch 13 formed from one direction of the region where the insulating layer 12 is formed.
  • the positive electrode shown in FIG. 2B has a notch 13 formed from the other direction of the region where the insulating layer 12 is formed.
  • the notch 13 can be easily formed.
  • the positive electrode active material layer in which the insulating layer 12 before the cutout is formed as viewed from the stacking direction.
  • the cutout portions 13 are arranged so as to cover the entire formation region. 9A and 9B, the notch 13 may be provided so that a part of the positive electrode active material layer unformed region where the insulating layer 12 is formed remains. .
  • a negative electrode active material layer is provided on a negative electrode current collector, and a negative electrode lead portion is drawn from a part of the negative electrode current collector.
  • the negative electrode is not formed with an insulating layer and a notch, but an insulating layer and a notch similar to those of the positive electrode may be formed.
  • the material of the positive electrode current collector examples include aluminum, stainless steel, nickel, titanium, and alloys thereof. Among these, aluminum is preferable as a material for the positive electrode current collector.
  • the material of the positive electrode lead portion drawn from the positive electrode current collector can be the same material as that of the positive electrode current collector. In this case, for example, a positive electrode current collector having a positive electrode lead portion cut out from a single metal foil can be obtained.
  • the thickness of the positive electrode current collector is preferably 5 ⁇ m or more and 100 ⁇ m or less, and more preferably 10 ⁇ m or more and 50 ⁇ m or less.
  • the material for the negative electrode current collector examples include copper, stainless steel, nickel, titanium, and alloys thereof. Among these, copper is preferable as a material for the negative electrode current collector.
  • the material of the negative electrode lead portion drawn from the negative electrode current collector can be the same material as that of the negative electrode current collector. In this case, for example, a negative electrode current collector having a negative electrode lead portion cut out from one metal foil can be obtained.
  • the thickness of the negative electrode current collector is preferably 5 ⁇ m or more and 100 ⁇ m or less, and more preferably 7 ⁇ m or more and 50 ⁇ m or less.
  • Examples of the positive electrode active material contained in the positive electrode active material layer include LiCoO 2 , LiNiO 2 , LiNi (1-x) Co x O 2 , LiNi x (CoAl) (1-x) O 2 , Li 2 MO 3 -LiMO. 2 , layered oxide materials such as LiNi 1/3 Co 1/3 Mn 1/3 O 2 , LiMn 2 O 4 , LiMn 1.5 Ni 0.5 O 4 , LiMn (2-x) M x O 4 Spinel materials such as LiMPO 4 , olivine materials such as LiMPO 4 , fluorinated olivine materials such as Li 2 MPO 4 F, Li 2 MSiO 4 F, and vanadium oxide materials such as V 2 O 5 . These positive electrode active materials may be used alone or in combination of two or more.
  • the thickness of the positive electrode active material layer is preferably 10 ⁇ m or more and 200 ⁇ m or less, and more preferably 20 ⁇ m or more and 100 ⁇ m or less.
  • Examples of the negative electrode active material contained in the negative electrode active material layer include carbon materials such as graphite, amorphous carbon, diamond-like carbon, fullerene, carbon nanotube, and carbon nanohorn, lithium metal materials, alloy materials such as silicon and tin, Examples thereof include oxide materials such as Nb 2 O 5 and TiO 2 . These negative electrode active materials may be used alone or in combination of two or more.
  • the thickness of the negative electrode active material layer is preferably 10 ⁇ m or more and 200 ⁇ m or less, and more preferably 20 ⁇ m or more and 100 ⁇ m or less.
  • the positive electrode active material layer and the negative electrode active material layer may further contain a conductive agent and a binder.
  • the conductive agent include carbon black, carbon fiber, and graphite. These conductive agents may be used alone or in combination of two or more.
  • the binder include polyvinylidene fluoride (PVdF), polytetrafluoroethylene, carboxymethylcellulose, and modified acrylonitrile rubber particles. These binders may be used alone or in combination of two or more.
  • the insulating layer is selected from the group consisting of a pressure-sensitive adhesive tape, a heat-sealing tape, and a layer formed by applying and drying a liquid containing an insulator from the viewpoint of sufficiently preventing a short circuit between the positive electrode and the negative electrode. It is preferable that it is at least one kind.
  • the pressure-sensitive adhesive tape include a tape in which a resin layer such as polyethylene or polypropylene is used as a base material and a pressure-sensitive adhesive layer is provided on one side of the base material.
  • the heat fusion tape include a tape in which a resin layer such as polyethylene or polypropylene is used as a base material and is bonded by heat fusion.
  • the insulator examples include polyimide, glass fiber, polyester, and polypropylene. Further, a mixture of inorganic particles such as alumina and titania and a binder such as polyvinylidene fluoride (PVdF), polytetrafluoroethylene, carboxymethylcellulose, and modified acrylonitrile rubber particles may be used. These materials may be used alone or in combination of two or more.
  • the solvent for dispersing or dissolving the insulator is not particularly limited as long as it can be removed by drying.
  • the thickness of the insulating layer is preferably 1 ⁇ m or more and 200 ⁇ m or less, and more preferably 10 ⁇ m or more and 100 ⁇ m or less.
  • the thickness of the insulating layer is 1 ⁇ m or more, a short circuit between the positive electrode and the negative electrode can be sufficiently prevented, and the effect of the present embodiment can be sufficiently obtained. Moreover, the partial thickness of a battery is reduced because the thickness of an insulating layer is 200 micrometers or less.
  • the width of the insulating layer is not particularly limited as long as at least the insulating layer can cover the boundary portion between the positive electrode active material layer and the region where the positive electrode active material layer is not formed.
  • the portion including the layer forming region is preferably covered with an insulating layer with a width of 0.5 mm or more and 10 mm or less.
  • a solution in which a lithium salt as an electrolyte is dissolved in a solvent can be used.
  • the solvent include cyclic carbonates such as ethylene carbonate, propylene carbonate, vinylene carbonate, and butylene carbonate, and chain structures such as ethyl methyl carbonate (EMC), diethyl carbonate (DEC), dimethyl carbonate (DMC), and dipropyl carbonate (DPC).
  • EMC ethyl methyl carbonate
  • DEC diethyl carbonate
  • DMC dimethyl carbonate
  • DPC dipropyl carbonate
  • Examples thereof include carbonates, aliphatic carboxylic acid esters, ⁇ -lactones such as ⁇ -butyrolactone, chain ethers, and cyclic ethers. These solvents may be used alone or in combination of two or more.
  • lithium salt examples include LiPF 6 , LiAsF 6 , LiAlCl 4 , LiClO 4 , LiBF 4 , LiSbF 6 , LiCF 3 SO 3 , LiC 4 F 9 CO 3 , LiC (CF 3 SO 2 ) 2 , LiN (CF 3 SO 2) 2, LiN (C 2 F 5 SO 2) 2, LiB 10 Cl 10, lower aliphatic lithium carboxylate, chloroborane lithium, lithium tetraphenylborate, and LiBr, LiI, LiSCN, LiCl, imides and the like .
  • These lithium salts may be used alone or in combination of two or more.
  • Examples of the separator include a porous film, a woven fabric, and a non-woven fabric.
  • Examples of the material for the separator include polyolefin resins such as polypropylene and polyethylene, polyester resins, acrylic resins, styrene resins, and nylon resins. These materials may be used alone or in combination of two or more.
  • the separator is preferably a polyolefin resin porous film from the viewpoint of excellent ion permeability and excellent performance of physically separating the positive electrode and the negative electrode.
  • a separator may be provided with the layer containing an inorganic particle as needed.
  • Examples of the inorganic particles include particles of insulating oxide, nitride, sulfide, carbide and the like. As the inorganic particles, TiO 2 and Al 2 O 3 particles are preferable. These inorganic particles may be used alone or in combination of two or more.
  • Examples of exterior containers include flexible film cases and can cases. Among these, a flexible film case is preferable as the exterior container from the viewpoint of weight reduction of the laminated battery.
  • Examples of the flexible film include a film in which a resin layer is provided on at least one surface of a metal layer that is a base material.
  • a material for the metal layer a material having a barrier property capable of preventing leakage of the electrolytic solution and entry of moisture from the outside can be appropriately selected.
  • Examples of the material include aluminum and stainless steel. These materials may be used alone or in combination of two or more.
  • positioned inside an exterior container the heat-fusible resin layer containing modified polyolefin etc. is mentioned, for example.
  • the resin layer is a heat-fusible resin layer
  • the heat-fusible resin layers of the two flexible films are opposed to each other, and the periphery of the portion housing the battery element is heat-sealed.
  • An exterior container can be formed.
  • the resin layer disposed outside the outer container include layers such as a nylon film and a polyester film. Since the battery according to the present embodiment has a reduced partial thickness, an outer casing having a uniform thickness can be used.
  • the positive electrode terminal material examples include aluminum and aluminum alloys.
  • the material for the negative electrode terminal examples include copper and copper alloys.
  • the negative electrode terminal may be nickel-plated.
  • the positive electrode lead portion can be collectively connected to the positive electrode terminal by ultrasonic welding or the like. By connecting the positive electrode lead portion to the positive electrode terminal in one place, the resistance can be reduced and the battery characteristics are improved. The same applies to the negative electrode lead portion and the negative electrode terminal.
  • the positive electrode terminal and the negative electrode terminal are drawn out of the outer container. When the outer container is sealed by heat fusion, a heat-fusible resin may be provided in advance in the heat-sealed portion of the outer container of the positive electrode terminal and the negative electrode terminal.
  • the positive electrode shown in FIGS. 4A and 4B is used.
  • the positive electrode shown in FIG. 4A has a notch 13 formed as a hole in the center of the region where the insulating layer 12 is formed.
  • the positive electrode shown in FIG. 4B has notches 13 formed symmetrically from both directions of the region where the insulating layer 12 is formed.
  • the positive electrode active material layer in which the insulating layer 12 before the cutout is formed when viewed from the stacking direction.
  • the cutout portions 13 are arranged so as to cover the entire formation region. In the present embodiment, since the notch 13 is formed symmetrically in the region where the insulating layer 12 is formed, the strength of the positive electrode lead 3 is improved.
  • FIG. 6A shows the positive electrode lead portion 3 of the positive electrode shown in FIGS. 6A to 6C.
  • the positive electrode shown in FIG. 6A has a notch 13 formed from one direction of the region where the insulating layer 12 is formed.
  • the positive electrode shown in FIG. 6C has a notch 13 formed from the other direction of the region where the insulating layer 12 is formed.
  • a notch 13 is formed as a hole in the center of the region where the insulating layer 12 is formed.
  • the cutout is performed so that the positive electrode active material layer forming region where the insulating layer 12 before the cutout is formed is covered when viewed from the stacking direction.
  • Each part 13 is arranged.
  • notch portions 13 having different shapes are formed on three positive electrodes, and the respective notch portions 13 are arranged at different positions in the stacking direction, so that the notch portions 13 formed on one positive electrode are formed. , And the strength of the positive electrode lead portion 3 is improved.
  • this embodiment is the same as the first embodiment except that a battery element is produced using two positive electrodes 1 each not having a notch.
  • the positive electrode 1 that is not provided with a notch By using together the positive electrode 1 that is not provided with a notch, the number of electrode layers of the battery element can be easily increased, and the battery performance can be improved.
  • it is preferable that the total of the thickness reduction due to the notch is greater than the total thickness increase due to the insulating layer.
  • the present embodiment is the same as the first embodiment except that a part of the positive electrode active material unformed region where the insulating layer is formed is not cut out.
  • the thickness of the positive electrode active material layer is larger than the thickness of the insulating layer, the thickness of the insulating layer on the positive electrode active material non-formed region does not cause an increase in the partial thickness of the battery. Also good.
  • the region where the two positive insulating layers are formed partially overlaps when viewed from the stacking direction, and the tip of the positive electrode lead portion 3 is viewed from the stacking direction. The whole is overlapping.
  • the positive electrode having such a shape is the same as in the first embodiment except that the positive electrode is manufactured in the same manner as in the first embodiment.
  • the notched portion is not provided in the region where the positive electrode insulating layer is formed, but the region where the two positive electrode insulating layers are formed is arranged so as to be shifted when stacked. Therefore, the overlapping width of the region where the insulating layer is formed is smaller than the overlapping width of the leading ends of the two positive electrode leads.
  • the thickness of the laminated portion of the insulating layer can be reduced without cutting out the region where the insulating layer is formed.
  • the region where the two positive electrode insulating layers are formed partially overlaps when viewed from the stacking direction, but may not overlap when viewed from the stacking direction.
  • an active material layer is formed on the surface of a current collector, an electrode part in which the active material layer is formed on the current collector, and an active material on the current collector
  • Forming a first polarity electrode by forming, a step of cutting out at least part of a region of the first polarity electrode where the insulating layer is formed, and forming a cutout portion; Laminating at least two of the first polarity electrodes with a second polarity electrode through a separator, respectively, and a method for producing a stacked battery, wherein the first The insulating layer of one polarity electrode and the insulating layer of the other first polarity electrode There is formed at least partially different positions. According to this method, the multilayer battery according to this embodiment can be easily manufactured.
  • an electrode is obtained by forming an active material layer on the surface of the current collector.
  • a current collector having a portion to be a lead portion can be produced by cutting out from a single metal foil.
  • the active material layer can be formed, for example, by applying a solution obtained by dispersing an active material, a conductive agent, and a binder in a solvent such as N-methylpyrrolidone on a current collector and drying it.
  • the active material layer may be formed on one side of the current collector or on both sides.
  • an insulating layer is formed in the boundary region between the electrode portion and the lead portion from the active material layer to the active material layer unformed region.
  • an electrode having the first polarity is obtained.
  • the insulating layer can be formed by attaching the tape.
  • the insulating layer may be formed by applying a liquid in which an insulator is dispersed or dissolved in a solvent and drying.
  • the notch can be formed, for example, by punching.
  • a current collector that does not have a portion that becomes a lead portion at the time of electrode fabrication may be used, and the lead portion may be formed simultaneously with the notch portion at the time of punching.
  • the formation of the notch is preferably performed so that the active material layer and the current collector are not exposed in the cross section of the notched portion.
  • a notch part may be formed in the electrode having a lead part, and then an insulating layer may be formed.
  • a battery element is obtained by laminating at least two of the first polar electrodes with the second polar electrode through a separator, respectively.
  • a battery element may be fabricated by using a long negative electrode and folding the negative electrode alternately with the positive electrode and the separator interposed therebetween.
  • a battery element may be manufactured by using a long separator so that the separator is folded with the positive electrode and the negative electrode alternately sandwiched therebetween.
  • each lead part is then connected to a terminal in one place, and the battery element and the electrolytic solution are accommodated in an outer container.
  • the stacked lithium ion secondary battery according to the embodiment can be obtained.
  • Example 1 (Preparation of positive electrode) A positive electrode having the shape shown in FIGS. 2A and 2B was produced. First, a mixture of LiMn 2 O 4 and LiNi 0.8 Co 0.1 Al 0.1 O 2 as a positive electrode active material, carbon black as a conductive agent, and PVdF as a binder were prepared. These mixtures were dispersed in N-methylpyrrolidone to obtain a slurry. The slurry was applied to both surfaces of two positive electrode current collectors mainly composed of 20 ⁇ m thick aluminum and dried to form a positive electrode active material layer 2 having a thickness of 80 ⁇ m.
  • an adhesive tape made of polypropylene having a width of 10 mm and a thickness of 30 ⁇ m was attached as the insulating layer 12 to the boundary region between the positive electrode portion and the positive electrode lead portion 3 from the positive electrode active material layer to the positive electrode active material layer non-formed portion. Further, as shown in FIGS. 2A and 2B, a part of the region where the insulating layer 12 was formed was cut out by punching to form a cutout portion 13.
  • the shape of the positive electrode shown in FIGS. 2 (a) and 2 (b) is such that when all the notches 13 are overlapped in the stacking direction of the battery elements, as shown in FIG. 2 (c) When viewed from the direction, it was a shape that covered all the positive electrode active material layer forming region where the insulating layer 12 before the notch was formed.
  • the obtained two positive electrodes 1 and three negative electrodes 6 were alternately laminated via separators 20 made of polypropylene having a thickness of 25 ⁇ m to obtain a battery element.
  • Each positive lead part 3 was connected to the positive lead terminal in one place.
  • each negative electrode lead part 8 was collectively connected to the negative electrode lead terminal at one place.
  • the battery element was housed in an exterior container 30 made of a flexible film together with the electrolytic solution, thereby obtaining a laminated lithium ion secondary battery having a thickness of 8 mm. Since the secondary battery has an insulating layer, a short circuit between the region where the positive electrode active material layer is not formed and the negative electrode is prevented.
  • the presence of the cut-out portion does not overlap the region where the insulating layer is formed, and the increase in thickness is suppressed in the laminated portion of the insulating layer, so that a secondary battery with high electrical characteristics and reliability can be obtained. It was.
  • Example 2 A positive electrode having the shape shown in FIGS. 4A and 4B was produced in the same manner as in Example 1.
  • the shape of the positive electrode shown in FIGS. 4A and 4B is viewed from the stacking direction as shown in FIG. 4C when all the notches 13 are overlapped in the stacking direction of the battery elements.
  • the positive electrode active material layer formation region where the insulating layer 12 before the notch was formed was covered.
  • a laminated lithium ion secondary battery was produced in the same manner as in Example 1 except that the positive electrode was used.
  • the structure of the battery element in a present Example is shown in FIG. Since the secondary battery has an insulating layer, a short circuit between the region where the positive electrode active material layer is not formed and the negative electrode is prevented.
  • the presence of the cut-out portion does not overlap the region where the insulating layer is formed, and the increase in thickness is suppressed in the laminated portion of the insulating layer, so that a secondary battery with high electrical characteristics and reliability can be obtained. It was.
  • Example 3 Similarly to Example 1, a positive electrode having the shape shown in FIGS. 6A to 6C was produced. 6A to 6C, the shape of the positive electrode shown in FIGS. 6A to 6C is such that when all the cutout portions 13 are overlapped in the stacking direction of the battery elements, the insulating layer 12 before the cutout is formed when viewed from the stacking direction. It was the shape which covered all the positive electrode active material layer formation area
  • a stacked lithium ion secondary battery was produced in the same manner as in Example 1. Since the secondary battery has an insulating layer, a short circuit between the region where the positive electrode active material layer is not formed and the negative electrode is prevented. In addition, since there is no region where all the insulating layers of the three positive electrodes 1 overlap due to the presence of the notches, an increase in thickness is suppressed in the laminated portion of the insulating layers, so that the secondary battery with high electrical characteristics and reliability can be obtained. was gotten.
  • Example 4 A positive electrode having the shape shown in FIGS. 2A and 2B was produced in the same manner as in Example 1. Further, two positive electrodes were produced in the same manner as in Example 1 except that the notched portion was not provided. Further, five negative electrodes were produced in the same manner as in Example 1. As shown in FIG. 8, except that the obtained four positive electrodes 1 and five negative electrodes 6 were alternately laminated via separators 20 made of polypropylene having a thickness of 25 ⁇ m to obtain a battery element. A stacked lithium ion secondary battery was produced in the same manner as in Example 1. Since the secondary battery has an insulating layer, a short circuit between the region where the positive electrode active material layer is not formed and the negative electrode is prevented.
  • Example 5 A positive electrode was produced in the same manner as in Example 1 except that a polypropylene heat-sealing tape having a width of 10 mm and a thickness of 30 ⁇ m was used as the insulating layer. Further, a stacked lithium ion secondary battery was produced in the same manner as in Example 1 except that the positive electrode was used. Since the secondary battery has an insulating layer, a short circuit between the region where the positive electrode active material layer is not formed and the negative electrode is prevented. In addition, the presence of the cut-out portion does not overlap the region where the insulating layer is formed, and the increase in thickness is suppressed in the laminated portion of the insulating layer, so that a secondary battery with high electrical characteristics and reliability can be obtained. It was.
  • Example 6 A solution in which alumina as an insulator and PVdF as a binder are dispersed in N-methylpyrrolidone from the positive electrode active material layer to the positive electrode active material layer non-formed portion is formed in a boundary region between the positive electrode portion and the positive electrode lead portion 3.
  • an insulating layer having a width of 10 mm and a thickness of 20 ⁇ m was formed.
  • a positive electrode was produced in the same manner as in Example 1.
  • a stacked lithium ion secondary battery was produced in the same manner as in Example 1 except that the positive electrode was used. Since the secondary battery has an insulating layer, a short circuit between the region where the positive electrode active material layer is not formed and the negative electrode is prevented.
  • the presence of the cut-out portion does not overlap the region where the insulating layer is formed, and the increase in thickness is suppressed in the laminated portion of the insulating layer, so that a secondary battery with high electrical characteristics and reliability can be obtained. It was.
  • Example 7 As shown in FIG. 9, a positive electrode was produced in the same manner as in Example 1 except that a part of the positive electrode active material unformed region where the insulating layer was formed was not cut out. Further, a stacked lithium ion secondary battery was produced in the same manner as in Example 1 except that the positive electrode was used. Since the secondary battery has an insulating layer, a short circuit between the region where the positive electrode active material layer is not formed and the negative electrode is prevented. In addition, the presence of the cut-out portion reduces the overlapping portion of the region where the insulating layer is formed, and the increase in thickness is suppressed in the laminated portion of the insulating layer, so that a secondary battery with high electrical characteristics and reliability can be obtained. Obtained.
  • Example 8 Using a long separator 20 made of polypropylene having a thickness of 25 ⁇ m, as shown in FIG. 10, a battery element was obtained such that the separator 20 was folded with the positive electrode 1 and the negative electrode 6 alternately sandwiched therebetween. .
  • a laminated lithium ion secondary battery was produced in the same manner as in Example 1 except that the battery element was used. Since the secondary battery has an insulating layer, a short circuit between the region where the positive electrode active material layer is not formed and the negative electrode is prevented.
  • the presence of the cut-out portion does not overlap the region where the insulating layer is formed, and the increase in thickness is suppressed in the laminated portion of the insulating layer, so that a secondary battery with high electrical characteristics and reliability can be obtained. It was.
  • Example 9 As shown in FIG. 11, the region where the two positive electrode insulating layers are formed partially overlaps when viewed from the stacking direction, and the tip of the positive electrode lead portion 3 overlaps when viewed from the stacking direction.
  • a positive electrode was produced in the same manner as in Example 1 except that. Further, a stacked lithium ion secondary battery was produced in the same manner as in Example 1 except that the positive electrode was used. Since the secondary battery has an insulating layer, a short circuit between the region where the positive electrode active material layer is not formed and the negative electrode is prevented.
  • the region where the two positive electrode insulating layers are formed is arranged so as to be displaced when the two positive electrodes are stacked, the insulating layer is formed with respect to the overlapping width of the leading ends of the two positive electrode leads. Since the overlapping width of the regions was small and an increase in thickness was suppressed in the laminated portion of the insulating layer, a secondary battery with high electrical characteristics and reliability was obtained.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Materials Engineering (AREA)
  • Connection Of Batteries Or Terminals (AREA)
  • Secondary Cells (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)

Abstract

 正極と負極との間の短絡を防止するとともに、電池の部分的な厚みの増加を抑制し、電気的な特性および信頼性の高い積層型電池を提供する。第1の極性の電極の少なくとも2枚が、それぞれセパレータを介して第2の極性の電極に積層された電池素子を備える積層型電池であって、前記第1の極性の電極が、集電体上に活物質層が形成された電極部と、前記集電体上に活物質層が形成されていないリード部と、前記電極部と前記リード部との境界領域に、前記活物質層から活物質層未形成領域にかけて配置された絶縁層と、を備え、積層方向から見て、前記第1の極性の電極の前記絶縁層と他の前記第1の極性の電極の前記絶縁層とが、少なくとも一部が異なる位置に形成されている積層型電池。

Description

積層型電池及びその製造方法
 本実施形態は積層型電池及びその製造方法に関する。
 二次電池は、携帯電話、デジタルカメラ、ラップトップコンピュータ等のポータブル機器の電源として、また、車両や家庭用の電源として広く普及している。中でも、高エネルギー密度で軽量なリチウムイオン二次電池は、生活に欠かせないエネルギー蓄積デバイスである。
 二次電池は大別して捲回型と積層型とに分類される。捲回型二次電池の電池素子は、長尺の正極と負極とがセパレータによって隔離されつつ重ね合わされた状態で複数回巻かれた構造を有する。積層型二次電池の電池素子は、正極と負極とがセパレータによって隔離されながら交互に繰り返し積層された構造を有する。正極および負極は、集電体に活物質層が形成された活物質層形成部と、リード部を設けるために活物質層が形成されていない活物質層未形成部とを備える。捲回型および積層型のいずれの二次電池においても、正極リード部と負極リード部の一端は、それぞれ正極の正極活物質層未形成部と負極の負極活物質層未形成部に電気的に接続されている。正極リード部と負極リード部の他端は、それぞれ正極端子と負極端子とに電気的に接続されている。電池素子は、正極端子及び負極端子が外装容器の外部に引き出されるように、外装容器内に封入されている。外装容器内には電池素子とともに電解液が封入されている。
 二次電池は年々大容量化する傾向にある。したがって、仮に短絡が発生した場合には、該二次電池はより発熱する可能性があるため、二次電池の安全性を向上させることが重要である。二次電池の安全性を向上させる方法としては、例えば、正極と負極との間の短絡を防止するために、活物質層形成部と活物質層未形成部との境界部分に絶縁層を形成する技術が知られている(特許文献1及び2)。一方、特許文献3には、集電タブの積層に関する技術が開示されている。
特開2012-164470号公報 特開2013-45795号公報 特開2008-66170号公報
 しかしながら、特許文献1及び2に開示された技術を用いる場合、積層型二次電池においては、平面的に見て同じ位置で絶縁層が繰り返し積層される。このため、絶縁層が配置される位置において電池素子の厚さが部分的に厚くなり、体積あたりのエネルギー密度が低下する。
 また、二次電池においては、電気的な特性や信頼性を向上させる観点から、電池素子をテープ等で固定して電池素子を均一な圧力で押さえる。しかしながら、積層型二次電池に特許文献1及び2に示されるような絶縁層を設けると、絶縁層が積層される部分と絶縁層が積層されない部分との厚みの差により、電池素子を均等に押さえることが出来なくなり、電気特性のばらつきやサイクル特性の低下など、電池の品質低下を招く場合がある。
 本実施形態の目的は、正極と負極との間の短絡を防止するとともに、電池の部分的な厚みの増加を抑制し、電気的な特性および信頼性の高い積層型電池を提供することである。
 本実施形態に係る積層型電池は、第1の極性の電極の少なくとも2枚が、それぞれセパレータを介して第2の極性の電極に積層された電池素子を備える積層型電池であって、前記第1の極性の電極が、集電体上に活物質層が形成された電極部と、前記集電体上に活物質層が形成されていないリード部と、前記電極部と前記リード部との境界領域に、前記活物質層から活物質層未形成領域にかけて配置された絶縁層と、を備え、積層方向から見て、前記第1の極性の電極の前記絶縁層と他の前記第1の極性の電極の前記絶縁層とが、少なくとも一部が異なる位置に形成されている。
 また、本実施形態に係る積層型電池は、第1の極性の電極の少なくとも2枚が、それぞれセパレータを介して第2の極性の電極に積層された電池素子を備える積層型電池であって、前記第1の極性の電極が、集電体上に活物質層が形成された電極部と、前記集電体上に活物質層が形成されていないリード部と、前記電極部と前記リード部との境界領域に、前記活物質層から活物質層未形成領域にかけて配置された絶縁層と、を備え、積層方向から見て、前記第1の極性の電極の前記絶縁層と他の前記第1の極性の電極の前記絶縁層とが、少なくとも一部が異なる位置に形成されており、少なくとも一部が異なる位置に形成されることにより、前記絶縁層の積層部分の厚みが低減されている。
 本実施形態に係る積層型電池の製造方法は、集電体の表面上に活物質層を形成し、集電体上に活物質層が形成された電極部と、集電体上に活物質層が形成されていないリード部と、を備える電極を得る工程と、前記電極の、前記電極部と前記リード部との境界領域に、前記活物質層から活物質層未形成領域にかけて絶縁層を形成することで、第1の極性の電極を得る工程と、前記第1の極性の電極の、前記絶縁層が形成された領域の少なくとも一部を切り欠いて切り欠き部を形成する工程と、前記第1の極性の電極の少なくとも2枚を、それぞれセパレータを介して第2の極性の電極と積層する工程と、を含む積層型電池の製造方法であって、積層方向から見て、前記第1の極性の電極の前記絶縁層と他の前記第1の極性の電極の前記絶縁層とが、少なくとも一部が異なる位置に形成されている。
 本実施形態によれば、正極と負極との間の短絡を防止するとともに、電池の部分的な厚みの増加を低減し、電気的な特性および信頼性の高い積層型電池を提供することができる。
本実施形態に係る積層型リチウムイオン二次電池の構成の一例を示す断面図である。 本実施形態に係る正極の一例を示す上面図である。 本実施形態に係る電池素子の一例を示す斜視分解図である。 本実施形態に係る正極の一例を示す上面図である。 本実施形態に係る電池素子の一例を示す斜視分解図である。 本実施形態に係る正極の一例を示す上面図である。 本実施形態に係る電池素子の一例を示す斜視分解図である。 本実施形態に係る電池素子の一例を示す斜視分解図である。 本実施形態に係る正極の一例を示す上面図である。 本実施形態に係る電池素子の一例を示す斜視分解図である。 本実施形態に係る正極の一例を示す上面図である。 積層型電池の絶縁層の積層部分を示す断面図である。
 [積層型電池]
 本実施形態に係る積層型電池は、第1の極性の電極の少なくとも2枚が、それぞれセパレータを介して第2の極性の電極に積層された電池素子を備える積層型電池であって、前記第1の極性の電極が、集電体上に活物質層が形成された電極部と、前記集電体上に活物質層が形成されていないリード部と、前記電極部と前記リード部との境界領域に、前記活物質層から活物質層未形成領域にかけて配置された絶縁層と、を備え、積層方向から見て、前記第1の極性の電極の前記絶縁層と他の前記第1の極性の電極の前記絶縁層とが、少なくとも一部が異なる位置に形成されている。
 正極と負極との間の短絡を防止するために、活物質層と活物質層未形成領域との境界部分に絶縁層を設ける場合、該絶縁層は絶縁効果を十分に発揮するためにある程度の厚みが必要なため、図12に示されるように、絶縁層12の積層部分において部分的な厚みの増加が発生する。本実施形態に係る積層型電池では、積層方向から見て、第1の極性の電極の絶縁層と他の第1の極性の電極の絶縁層とが、少なくとも一部が異なる位置に形成されている。すなわち、積層方向から見て、絶縁層の少なくとも一部が重ならないように第1の極性の電極が積層されている。また、すなわち、積層方向から見て、絶縁層同士が重ならない領域を有するように第1の極性の電極が積層されている。これにより、絶縁層が形成された領域の重なり部分が少なくなり、絶縁層の積層部分の厚みを減少させることができる。本実施形態では、正極と負極との間の短絡を防止するとともに、電池の部分的な厚みの増加を低減できるため、電気的な特性および信頼性の高い積層型電池が得られる。また、電池の部分的な厚みが低減されているため、厚みの均一な外装容器を用いることができ、生産性が向上する。さらに、電池を複数積層して設置する場合にも電池の積層体の高さを均一にすることができる。特に、本実施形態では、第1の極性の電極の絶縁層と他の第1の極性の電極の絶縁層とが異なる位置に形成されている、すなわち、絶縁層が形成された領域の重なりが全くないことが、より絶縁層の積層部分の厚みを減少させることができるため好ましい。
 積層方向から見て、第1の極性の電極の絶縁層と他の第1の極性の電極の絶縁層とが、少なくとも一部が異なる位置に形成されるようにする方法としては、例えば後述する図11のように、積層方向から見て、絶縁層12同士の位置をずらす方法が挙げられる。また、例えば後述する図2~10のように、本来絶縁層12が形成される領域に、絶縁層12、集電体、および必要に応じて活物質層2が切り欠かれた切り欠き部13を設けることにより、該切り欠き部13において絶縁層12同士が重ならないようにすることも本実施形態に含まれる。即ちこの場合、該切り欠き部が、積層方向から見て、絶縁層の一部が重ならない領域に該当する。
 また、第1の極性の電極が3枚以上ある場合には、少なくとも1枚の第1の極性の電極の絶縁層の少なくとも一部が他の第1の極性の電極の絶縁層と重なっていなければ、本実施形態に含まれる。即ち、例えば第1の極性の電極が3枚ある場合には、2枚の第1の極性の電極の絶縁層が全て重なっており、その位置が同じであったとしても、残りの1枚の第1の極性の電極の絶縁層の少なくとも一部が前記2枚の第1の極性の電極の絶縁層と重なっていなければ、絶縁層の少なくとも一部が異なる位置に形成されているため、本実施形態に含まれる。
 本実施形態では、積層方向から見て、第1の極性の電極のリード部先端の重なり幅に対して、絶縁層が形成された領域の重なり幅が小さいことが好ましい。例えば後述する図2~8、10のような形態が挙げられる。第1の極性の電極のリード部先端の重なり幅に対して、絶縁層が形成された領域の重なり幅が小さいことにより、容易に絶縁層の少なくとも一部が異なる位置になるように第1の極性の電極を積層させることができる。ここで、第1の極性の電極のリード部先端の重なり幅とは、積層方向において、複数枚の第1の極性の電極のリード部の先端が重なっている部分の幅を示す。第1の極性の電極が3枚以上ある場合には、全ての第1の極性の電極のリード部の先端が重なっている部分の幅を示す。また、絶縁層が形成された領域の重なり幅とは、複数枚の第1の極性の電極の絶縁層が形成された領域が重なっている部分の幅を示す。第1の極性の電極が3枚以上ある場合には、全ての第1の極性の電極の絶縁層が形成された領域が重なっている部分の幅を示す。また、絶縁層が形成された領域が重なっている部分が分離して存在する場合には、各幅の合計を示す。さらに、絶縁層が形成された領域の重なり幅が一定でない場合には、最長部分を絶縁層が形成された領域の重なり幅とする。
 例えば、絶縁層が集電体の両面に形成されている場合、積層方向から見て、第1の極性の電極のリード部先端の重なり幅に対して、絶縁層が形成された領域の重なり幅が小さいことにより、絶縁層が形成された領域が重なっていない部分において、第1の極性の電極1枚当たり少なくとも絶縁層2層分および集電体1枚分の厚みを低減させることができる。したがって、該第1の極性の電極を積層して電池素子を作製した場合に、絶縁層の積層部分の厚みを低減することができる。
 前記第1の極性の電極は、前記絶縁層が形成された領域の少なくとも一部に切り欠き部を有することが好ましい。例えば後述する図2~10のように切り欠き部13を設けることができる。ここで、切り欠き部とは、絶縁層が形成された領域の少なくとも一部について、絶縁層、集電体、および必要に応じて活物質層が切り抜かれた部分を示す。前記第1の極性の電極が該切り欠き部を有することにより、積層方向から見て、絶縁層の少なくとも一部が異なる位置となる状態を容易に作り出すことができる。また、これにより、積層方向から見て、第1の極性の電極のリード部先端の重なり幅に対して、絶縁層が形成された領域の重なり幅が小さい状態を容易に作り出すことができる。
 本実施形態では、電池の部分的な厚みの増加を均一に低減できる観点から、前記第1の極性の電極が前記切り欠き部として2種類以上の形状を有することが好ましい。ここで、第1の極性の電極が切り欠き部として2種類以上の形状を有するとは、2枚以上の第1の極性の電極が2種類以上の形状の切り欠き部を有することを示す。例えば、2枚の第1の極性の電極が切り欠き部を有する場合には、2枚の第1の極性の電極は互いに異なる形状の切り欠き部を有する。また、3枚の第1の極性の電極が切り欠き部を有する場合には、3枚の第1の極性の電極は互いに異なる形状の切り欠き部を有してもよく、2枚の第1の極性の電極が同じ形状の切り欠き部を有し、1枚の第1の極性の電極が異なる形状の切り欠き部を有していてもよい。なお、切り欠き部の形状自体が同一であっても切り欠き部の位置が異なる場合も含まれる。
 特に、絶縁層が積層される部分全体において、少なくとも絶縁層1層分の厚みを均一に低減できる観点から、電池素子の積層方向において全ての切り欠き部を重ね合わせた場合、積層方向から見て、該切り欠き部は切り欠き前の絶縁層が形成された活物質層形成領域を全て覆うことが好ましい。ここで、電池素子の積層方向において全ての切り欠き部を重ね合わせた場合、積層方向から見て、該切り欠き部が切り欠き前の絶縁層が形成された活物質層形成領域を全て覆う、とは、第1の極性の電極を積層した際に各第1の極性の電極に形成された切り欠き部を全て重ね合わせると、積層方向から見て、切り欠かれる前の絶縁層が形成された活物質層形成領域が全て補われるように、各切り欠き部がそれぞれの第1の極性の電極に形成されていることを示す。
 また、絶縁層と活物質層の両方ともが積層されている部分は、積層されると活物質層の分より電池の厚みが増加するため、切り欠き部が、絶縁層及び活物質層が形成された領域の少なくとも一部に設けられていることが好ましい。
 切り欠き部の形状は特に限定されず、矩形でも円形でもよい。また、切り欠き部は、リード部の端子との接続部には形成されないことが、抵抗を減少させる観点から好ましい。電極1枚当たりの切り欠き部の面積は、各第1の極性の電極に設ける切り欠き部の形状の種類の数にもよるが、絶縁層が形成された部分の面積に対して20%以上、70%以下が好ましい。集電体から引き出されるリード部の位置は、各第1の極性の電極において同じであることが、リード部を端子に1か所にまとめて接続できるため抵抗を減少させることができ、また、電池の部分的な厚みをより低減できる観点から好ましい。積層型電池の厚みは特に限定されないが、例えば1mm以上、20mm以下とすることができる。本実施形態に係る積層型電池は部分的な厚みが低減されているため、該積層型電池を複数積層して用いてもよい。
 本実施形態においては、第1の極性の電極は、正極でも負極でもよい。しかしながら、特にリチウムイオン二次電池の場合、負極の方が正極よりも大きく、正極と負極との間の短絡を防止するために、正極の正極活物質層と正極活物質層未形成領域との間の境界部分に絶縁層を形成することが好ましい。このため、第1の極性の電極が正極であり、第2の極性の電極が負極であることが好ましい。
 また、電池素子が第2の極性の電極を少なくとも2枚備え、前記第2の極性の電極が、集電体上に活物質層が形成された電極部と、前記集電体上に活物質層が形成されていないリード部と、前記電極部と前記リード部との境界領域に、前記活物質層から活物質層未形成領域にかけて配置された絶縁層と、を備え、積層方向から見て、前記第2の極性の電極の前記絶縁層と他の前記第2の極性の電極の前記絶縁層とが、少なくとも一部が異なる位置に形成されていることが好ましい。即ち、第2の極性の電極が本実施形態における第1の極性の電極と同じ構成を有し、第2の極性の電極にも第1の極性の電極に設けられている絶縁層と同じ構成の絶縁層が設けられていることが好ましい。この場合、第2の極性の電極の絶縁層の積層部分においても、厚みの増加を低減できる。
 以下、本実施形態の詳細を示す。なお、以下に示す実施形態は積層型リチウムイオン二次電池に関するが、本実施形態は積層型リチウムイオン二次電池に限られず、例えばニッケル水素電池、ニッケルカドミウム電池、リチウムメタル一次電池、リチウムメタル二次電池、リチウムポリマー電池等の他の種類の化学電池の電池要素、さらにはリチウムイオンキャパシタ等のキャパシタ要素やコンデンサ要素等にも適用できる。
 (第一の実施形態)
 図1に本実施形態に係る積層型リチウムイオン二次電池の構成を示す。図1に示される積層型リチウムイオン二次電池100は、正極1と負極6とがセパレータ20を介して交互に複数積層された電池素子を備える。該電池素子は電解液(不図示)と共に、可撓性フィルムからなる外装容器30に収納されている。正極1は正極集電体4と正極活物質層2とを備える。正極1の正極集電体4からは正極リード部3が引き出されており、正極リード部3の先端は接続部5において一か所にまとめて正極端子11に接続されている。なお、正極リード部3が正極集電体4から引き出されているとは、正極集電体4の一部として正極リード部3が形成されていてもよく、正極集電体4に別の部材である正極リード部3が電気的に接続されていてもよい。正極端子11の接続部5とは反対側の端部は外装容器30の外部に引き出されている。負極6は負極集電体9と負極活物質層7とを備える。負極6の負極集電体9からは負極リード部8が引き出されており、負極リード部8の先端は接続部10において一か所にまとめて負極端子16に接続されている。負極端子16の接続部10とは反対側の端部は外装容器30の外部に引き出されている。
 図2(a)及び(b)に本実施形態に係る正極を示す。図2(a)及び(b)に示される正極では、正極集電体上に正極活物質層2が設けられており、正極集電体の一部から正極リード部3が引き出されている。正極活物質層2と正極活物質層未形成領域との境界上には、正極活物質層未形成領域と負極との間の短絡を防止する絶縁層12が設けられている。また、絶縁層12が設けられている部分の一部が切り抜かれ、切り欠き部13が設けられている。図2(a)に示される正極と図2(b)に示される正極とでは、切り欠き部13が設けられている位置が異なる。図2(a)に示される正極は、絶縁層12が形成された領域の一方の方向から切り欠き部13が形成されている。図2(b)に示される正極は、絶縁層12が形成された領域の他方の方向から切り欠き部13が形成されている。本実施形態では絶縁層12が形成された領域の一方向から切り欠き部13が形成されているため、容易に切り欠き部13を形成することができる。電池素子の積層方向において2つの切り欠き部13を重ね合わせた場合、図2(c)に示されるように、積層方向から見て、切り欠き前の絶縁層12が形成された正極活物質層形成領域が全て覆われるように、切り欠き部13がそれぞれ配置されている。なお、切り欠き部13は、図9(a)及び(b)に示されるように、絶縁層12の形成された正極活物質層未形成領域の一部が残るように設けられていてもよい。
 本実施形態に係る負極は、負極集電体上に負極活物質層が設けられており、負極集電体の一部から負極リード部が引き出されている。本実施形態において、該負極には絶縁層及び切り欠き部は形成されていないが、正極と同様の絶縁層及び切り欠き部が形成されていてもよい。
 正極集電体の材料としては、アルミニウム、ステンレス鋼、ニッケル、チタン、これらの合金等が挙げられる。これらの中でも、正極集電体の材料としてはアルミニウムが好ましい。正極集電体から引き出される正極リード部の材料は、正極集電体と同じ材料を用いることができる。この場合、例えば一枚の金属箔から切り出して正極リード部を有する正極集電体を得ることができる。正極集電体の厚さは、5μm以上、100μm以下が好ましく、10μm以上、50μm以下がより好ましい。
 負極集電体の材料としては、銅、ステンレス鋼、ニッケル、チタン、またはこれらの合金等が挙げられる。これらの中でも、負極集電体の材料としては銅が好ましい。負極集電体から引き出される負極リード部の材料は、負極集電体と同じ材料を用いることができる。この場合、例えば一枚の金属箔から切り出して負極リード部を有する負極集電体を得ることができる。負極集電体の厚さは、5μm以上、100μm以下が好ましく、7μm以上、50μm以下がより好ましい。
 正極活物質層に含まれる正極活物質としては、例えばLiCoO、LiNiO、LiNi(1-x)Co、LiNi(CoAl)(1-x)、LiMO-LiMO、LiNi1/3Co1/3Mn1/3等の層状酸化物系材料、LiMn、LiMn1.5Ni0.5、LiMn(2-x)等のスピネル系材料、LiMPO等のオリビン系材料、LiMPOF、LiMSiOF等のフッ化オリビン系材料、V等の酸化バナジウム系材料等が挙げられる。これらの正極活物質は一種を用いてもよく、二種以上を併用してもよい。正極活物質層の厚さは、10μm以上、200μm以下が好ましく、20μm以上、100μm以下がより好ましい。
 負極活物質層に含まれる負極活物質としては、例えば黒鉛、非晶質炭素、ダイヤモンド状炭素、フラーレン、カーボンナノチューブ、カーボンナノホーン等の炭素材料、リチウム金属材料、シリコン、スズ等の合金系材料、Nb、TiO等の酸化物系材料等が挙げられる。これらの負極活物質は一種を用いてもよく、二種以上を併用してもよい。負極活物質層の厚さは、10μm以上、200μm以下が好ましく、20μm以上、100μm以下がより好ましい。
 正極活物質層及び負極活物質層は、さらに導電剤、バインダーを含んでもよい。導電剤としては、カーボンブラック、炭素繊維、黒鉛等が挙げられる。これらの導電剤は一種を用いてもよく、二種以上を併用してもよい。バインダーとしては、ポリフッ化ビニリデン(PVdF)、ポリテトラフルオロエチレン、カルボキシメチルセルロース、変性アクリロニトリルゴム粒子等が挙げられる。これらのバインダーは一種を用いてもよく、二種以上を併用してもよい。
 絶縁層としては、正極と負極との間の短絡を十分に防止できる観点から、粘着テープ、熱融着テープ、並びに絶縁体を含む液の塗布及び乾燥により形成された層からなる群から選択される少なくとも一種であることが好ましい。粘着テープとしては、基材にポリエチレンやポリプロピレンなどの樹脂層が用いられ、該基材の片面に粘着層が設けられたテープ等が挙げられる。熱融着テープとしては、ポリエチレンやポリプロピレンなどの樹脂層が基材に用いられ、熱融着により接着するテープ等が挙げられる。絶縁体としては、ポリイミド、ガラス繊維、ポリエステル、ポリプロピレン等が挙げられる。さらにアルミナ、チタニアなどの無機粒子と、ポリフッ化ビニリデン(PVdF)、ポリテトラフルオロエチレン、カルボキシメチルセルロース、変性アクリロニトリルゴム粒子などのバインダーとの混合物を用いてもよい。これらの材料は一種を用いてもよく、二種以上を併用してもよい。絶縁体を分散又は溶解させる溶媒は、乾燥により除去できる溶媒であれば特に限定されない。絶縁層の厚さは、1μm以上、200μm以下が好ましく、10μm以上、100μm以下がより好ましい。絶縁層の厚さが1μm以上であることにより、正極と負極との間の短絡を十分に防止でき、かつ、本実施形態の効果が十分に得られる。また、絶縁層の厚さが200μm以下であることにより、電池の部分的な厚みが低減される。絶縁層の幅は、少なくとも絶縁層が正極活物質層と正極活物質層未形成領域との境界部分を覆うことができる幅であれば特に限定されない。しかしながら、正極活物質層未形成領域と対向する負極との間での、金属物の混入等による短絡を防止する観点から、正極活物質未形成領域の負極対向部と、さらに隣接する正極活物質層形成領域とを含む部分が、絶縁層により0.5mm以上、10mm以下の幅で覆われることが好ましい。
 電解液としては、溶媒に電解質としてのリチウム塩を溶解させた溶液を用いることができる。溶媒としては、例えばエチレンカーボネート、プロピレンカーボネート、ビニレンカーボネート、ブチレンカーボネート等の環状カーボネート、エチルメチルカーボネート(EMC)、ジエチルカーボネート(DEC)、ジメチルカーボネート(DMC)、ジプロピルカーボネート(DPC)等の鎖状カーボネート、脂肪族カルボン酸エステル、γ-ブチロラクトン等のγ-ラクトン、鎖状エーテル、環状エーテル等が挙げられる。これらの溶媒は一種を用いてもよく、二種以上を併用してもよい。リチウム塩としては、例えばLiPF、LiAsF、LiAlCl、LiClO、LiBF、LiSbF、LiCFSO、LiCCO、LiC(CFSO、LiN(CFSO、LiN(CSO、LiB10Cl10、低級脂肪族カルボン酸リチウム、クロロボランリチウム、四フェニルホウ酸リチウム、LiBr、LiI、LiSCN、LiCl、イミド類等が挙げられる。これらのリチウム塩は一種を用いてもよく、二種以上を併用してもよい。
 セパレータとしては、多孔膜、織布、不織布等が挙げられる。セパレータの材料としては、例えばポリプロピレン、ポリエチレン等のポリオレフィン樹脂、ポリエステル樹脂、アクリル樹脂、スチレン樹脂、ナイロン樹脂等が挙げられる。これらの材料は一種を用いてもよく、二種以上を併用してもよい。セパレータとしては、イオン透過性に優れ、正極と負極とを物理的に隔離する性能に優れている観点から、ポリオレフィン樹脂の多孔膜が好ましい。また、必要に応じて、セパレータは無機物粒子を含む層を備えてもよい。無機物粒子としては、絶縁性の酸化物、窒化物、硫化物、炭化物等の粒子が挙げられる。無機物粒子としてはTiO、Alの粒子が好ましい。これらの無機物粒子は一種を用いてもよく、二種以上を併用してもよい。
 外装容器としては、可撓性フィルムのケース、缶ケース等が挙げられる。これらの中でも、外装容器としては積層型電池の軽量化の観点から可撓性フィルムのケースが好ましい。可撓性フィルムとしては、例えば基材である金属層の少なくとも一方の面に樹脂層が設けられたフィルムが挙げられる。金属層の材料としては、電解液の漏出や外部からの水分の侵入を防止できるバリア性を有する材料を適宜選択することができる。該材料としては、例えばアルミニウム、ステンレス鋼等が挙げられる。これらの材料は一種を用いてもよく、二種以上を併用してもよい。外装容器の内側に配置される樹脂層としては、例えば変性ポリオレフィン等を含む熱融着性樹脂層が挙げられる。樹脂層が熱融着性樹脂層である場合には、2枚の可撓性フィルムの熱融着性樹脂層同士を対向させ、電池素子を収納する部分の周囲を熱融着することで、外装容器を形成することができる。外装容器の外側に配置される樹脂層としては、ナイロンフィルム、ポリエステルフィルム等の層が挙げられる。本実施形態に係る電池は部分的な厚みが低減されているため、厚みの均一な外装容器を用いることができる。
 正極端子の材料としては、アルミニウム、アルミニウム合金等が挙げられる。負極端子の材料としては、銅、銅合金等が挙げられる。また、負極端子はニッケルメッキが施されていてもよい。正極リード部は、正極端子に超音波溶接等により一か所にまとめて接続することができる。正極リード部を正極端子に一か所にまとめて接続することで、抵抗を減少させることができ、電池特性が向上する。負極リード部及び負極端子についても同様である。正極端子及び負極端子は外装容器の外部に引き出されている。外装容器が熱融着により封止される場合には、正極端子及び負極端子の、外装容器の熱融着部分には、熱融着性の樹脂が予め設けられていてもよい。
 (第二の実施形態)
 本実施形態は、図4(a)及び(b)に示される正極を用いる以外は、第一の実施形態と同様である。図4(a)に示される正極は、絶縁層12が形成された領域の中央部に穴として切り欠き部13が形成されている。図4(b)に示される正極は、絶縁層12が形成された領域の両方向から左右対称に切り欠き部13が形成されている。電池素子の積層方向において2つの切り欠き部13を重ね合わせた場合、図4(c)に示されるように、積層方向から見て、切り欠き前の絶縁層12が形成された正極活物質層形成領域が全て覆われるように、切り欠き部13がそれぞれ配置されている。本実施形態では、絶縁層12が形成された領域において左右対称に切り欠き部13が形成されるため、正極リード部3の強度が向上する。
 (第三の実施形態)
 本実施形態は、図6(a)から(c)に示される正極を用いる以外は、第一の実施形態と同様である。図6(a)から(c)に示される正極の正極リード部3は、第一の実施形態の正極の正極リード部よりも幅が広い。図6(a)に示される正極は、絶縁層12が形成された領域の一方の方向から切り欠き部13が形成されている。図6(c)に示される正極は、絶縁層12が形成された領域の他方の方向から切り欠き部13が形成されている。図6(b)に示される正極は、絶縁層12が形成された領域の中央部に穴として切り欠き部13が形成されている。電池素子の積層方向において3つの切り欠き部13を重ね合わせた場合、積層方向から見て、切り欠き前の絶縁層12が形成された正極活物質層形成領域が全て覆われるように、切り欠き部13がそれぞれ配置されている。本実施形態では、3枚の正極に異なる形状の切り欠き部13が形成され、それぞれの切り欠き部13が積層方向において異なる位置に配置されるため、1枚の正極に形成する切り欠き部13の幅を狭くすることができ、正極リード部3の強度が向上する。
 (第四の実施形態)
 本実施形態は、図8に示されるように、切り欠き部が設けられていない正極1を2枚さらに用いて電池素子を作製する以外は、第一の実施形態と同様である。切り欠き部が設けられていない正極1を併用することで、電池素子の電極の積層数を容易に増やすことができ、電池性能を向上させることができる。本実施形態のように切り欠き部が設けられていない正極を用いる場合には、絶縁層による厚み増加分の合計よりも、切り欠き部による電極厚み減少分の合計の方が大きいことが好ましい。
 (第五の実施形態)
 本実施形態は、図9に示されるように、絶縁層が形成された正極活物質未形成領域の一部を切り欠かないこと以外は、第一の実施形態と同様である。正極活物質層の厚みが絶縁層の厚みよりも大きい場合、正極活物質未形成領域上の絶縁層の厚みは電池の部分的な厚みの増加原因とはならないため、切り欠き範囲から除外してもよい。
 (第六の実施形態)
 本実施形態は、図10に示されるように、長尺のセパレータ20を用いて、セパレータ20が正極1及び負極6をそれぞれ交互に間に挟んで折りたたまれるようにして電池素子を作製した以外は、第一の実施形態と同様である。長尺のセパレータ20を九十九折にして用いることで、正極1、負極6及びセパレータ20の積層構造を容易に維持させることができ、電池素子の作製及び該電池素子の外装容器への収容を容易にすることができる。また、長尺の負極を用いて、該負極が正極及びセパレータをそれぞれ交互に間に挟んで折りたたまれるようにして電池素子を作製してもよい。
 (第七の実施形態)
 本実施形態では、図11に示されるように、2枚の正極の絶縁層が形成された領域が、積層方向から見て部分的に重なっており、正極リード部3の先端は積層方向から見て全体が重なっている。このような形状の正極を第一の実施形態と同様に作製する以外は第一の実施形態と同様である。本実施形態では、正極の絶縁層が形成された領域に切り欠き部は設けられていないが、2枚の正極の絶縁層が形成された領域が、積層した際にずれるように配置されているため、2枚の正極のリード部先端の重なり幅に対して、絶縁層が形成された領域の重なり幅は小さい。本実施形態では、絶縁層が形成された領域を切り欠くことなく、絶縁層の積層部分の厚みを低減することができる。本実施形態では2枚の正極の絶縁層が形成された領域が、積層方向から見て部分的に重なっているが、積層方向から見て重ならないようにしてもよい。
 [積層型電池の製造方法]
 本実施形態に係る積層型電池の製造方法は、集電体の表面上に活物質層を形成し、集電体上に活物質層が形成された電極部と、集電体上に活物質層が形成されていないリード部と、を備える電極を得る工程と、前記電極の、前記電極部と前記リード部との境界領域に、前記活物質層から活物質層未形成領域にかけて絶縁層を形成することで、第1の極性の電極を得る工程と、前記第1の極性の電極の、前記絶縁層が形成された領域の少なくとも一部を切り欠いて切り欠き部を形成する工程と、前記第1の極性の電極の少なくとも2枚を、それぞれセパレータを介して第2の極性の電極と積層する工程と、を含む積層型電池の製造方法であって、積層方向から見て、前記第1の極性の電極の前記絶縁層と他の前記第1の極性の電極の前記絶縁層とが、少なくとも一部が異なる位置に形成されている。該方法によれば、本実施形態に係る積層型電池を容易に製造することができる。
 (電極作製工程)
 本工程では、集電体の表面上に活物質層を形成して電極を得る。リード部となる部分を有する集電体は、一枚の金属箔から切り出すことで作製することができる。また、リード部となる部分を有する集電体は、集電体にリード部となる部分を接続させることで作製してもよい。活物質層は、例えば活物質、導電剤及びバインダーをN-メチルピロリドン等の溶媒に分散させた溶液を集電体上に塗布して乾燥することで形成することができる。活物質層は集電体の一方の面に形成してもよく、両面に形成してもよい。
 (絶縁層形成工程)
 本工程では、電極部とリード部との境界領域に、活物質層から活物質層未形成領域にかけて絶縁層を形成する。これにより、第1の極性の電極を得る。絶縁層として粘着テープ、熱融着テープ等のテープを用いる場合には、該テープを貼り付けることで絶縁層を形成することができる。また、絶縁体を溶媒に分散又は溶解させた液を塗布し、乾燥させることにより絶縁層を形成してもよい。
 (切り欠き部形成工程)
 本工程では、絶縁層が形成された領域の少なくとも一部を切り欠いて切り欠き部を形成する。切り欠き部は、例えば打ち抜き加工等により形成することができる。なお、電極作製時にリード部となる部分を有さない集電体を用い、打ち抜き加工時に切り欠き部と同時にリード部を形成してもよい。切り欠き部の形成は、切り欠かれた部分の断面において、活物質層や集電体が露出しないように行われることが好ましい。なお、リード部を有する電極に切り欠き部を形成し、その後に絶縁層を形成してもよい。
 (電池素子作製工程)
 本工程では、第1の極性の電極の少なくとも2枚を、それぞれセパレータを介して第2の極性の電極と積層して電池素子を得る。なお、第六の実施形態のように、長尺の負極を用いて、該負極が正極及びセパレータをそれぞれ交互に間に挟んで折りたたまれるようにすることで、電池素子を作製してもよい。また、長尺のセパレータを用いて、該セパレータが正極及び負極をそれぞれ交互に間に挟んで折りたたまれるようにすることで、電池素子を作製してもよい。
 例えば積層型リチウムイオン二次電池を作製する場合には、その後、各リード部を端子に一か所にまとめて接続し、外装容器内に前記電池素子及び前記電解液を収容することで、本実施形態に係る積層型リチウムイオン二次電池を得ることができる。
 以下、本実施形態の具体例を示すが、本実施形態はこれらに限定されない。
 [実施例1]
 (正極の作製)
 図2(a)及び(b)に示される形状を有する正極を作製した。まず、正極活物質としてLiMnとLiNi0.8Co0.1Al0.1との混合物、導電剤としてカーボンブラック、バインダーとしてPVdFを用意した。これらの混合物をN-メチルピロリドンに分散させてスラリーを得た。該スラリーを、厚さ20μmのアルミニウムを主成分とする2枚の正極集電体の両面に塗布して乾燥し、厚さ80μmの正極活物質層2を形成した。その後、正極部と正極リード部3との境界領域に、正極活物質層から正極活物質層未形成部にかけて、絶縁層12として幅10mm、厚さ30μmのポリプロピレン製の粘着テープを貼り付けた。さらに、図2(a)及び(b)に示されるように、絶縁層12が形成された領域の一部を打ち抜き加工により切り欠いて、切り欠き部13を形成した。得られた図2(a)及び(b)に示される正極の形状は、電池素子の積層方向において全ての切り欠き部13を重ね合わせた場合、図2(c)に示されるように、積層方向から見て、切り欠き前の絶縁層12が形成された正極活物質層形成領域を全て覆う形状であった。
 (負極の作製)
 負極活物質として表面が非晶質炭素で被覆された黒鉛、バインダーとしてPVdFを用意した。これらの混合物をN-メチルピロリドンに分散させてスラリーを得た。該スラリーを、負極集電体である厚さ15μmの銅箔の両面に塗布して乾燥し、厚さ55μmの負極活物質層を形成した。これにより、負極リード部を有する3枚の負極を得た。
 (積層型リチウムイオン二次電池の作製)
 図3に示されるように、得られた2枚の正極1と3枚の負極6とを、厚さ25μmのポリプロピレンからなるセパレータ20を介して交互に積層して電池素子を得た。各正極リード部3を正極リード端子に一か所にまとめて接続した。また、各負極リード部8を負極リード端子に一か所にまとめて接続した。図1に示されるように、電池素子を可撓性フィルムからなる外装容器30に電解液と共に収容することで、厚さ8mmの積層型リチウムイオン二次電池を得た。該二次電池は絶縁層が形成されているため、正極活物質層未形成領域と負極との間の短絡が防止された。さらに、切り欠き部の存在により、絶縁層が形成された領域の重なりがなく、絶縁層の積層部分において厚みの増加が抑制されたため、電気的な特性および信頼性の高い二次電池が得られた。
 [実施例2]
 実施例1と同様に図4(a)及び(b)に示される形状を有する正極を作製した。図4(a)及び(b)に示される正極の形状は、電池素子の積層方向において全ての切り欠き部13を重ね合わせた場合、図4(c)に示されるように、積層方向から見て、切り欠き前の絶縁層12が形成された正極活物質層形成領域を全て覆う形状であった。該正極を用いた以外は実施例1と同様に積層型リチウムイオン二次電池を作製した。なお、本実施例における電池素子の構成を図5に示す。該二次電池は絶縁層が形成されているため、正極活物質層未形成領域と負極との間の短絡が防止された。さらに、切り欠き部の存在により、絶縁層が形成された領域の重なりがなく、絶縁層の積層部分において厚みの増加が抑制されたため、電気的な特性および信頼性の高い二次電池が得られた。
 [実施例3]
 実施例1と同様に図6(a)から(c)に示される形状を有する正極を作製した。図6(a)から(c)に示される正極の形状は、電池素子の積層方向において全ての切り欠き部13を重ね合わせた場合、積層方向から見て、切り欠き前の絶縁層12が形成された正極活物質層形成領域を全て覆う形状であった。また、実施例1と同様に負極を4枚作製した。図7に示されるように、得られた3枚の正極1と4枚の負極6とを、厚さ25μmのポリプロピレンからなるセパレータ20を介して交互に積層して電池素子を得た以外は、実施例1と同様に積層型リチウムイオン二次電池を作製した。該二次電池は絶縁層が形成されているため、正極活物質層未形成領域と負極との間の短絡が防止された。さらに、切り欠き部の存在により、3枚の正極1の絶縁層が全て重なる領域がなく、絶縁層の積層部分において厚みの増加が抑制されたため、電気的な特性および信頼性の高い二次電池が得られた。
 [実施例4]
 実施例1と同様に図2(a)及び(b)に示される形状を有する正極を作製した。また、切り欠き部を設けない以外は、実施例1と同様に正極を2枚作製した。さらに、実施例1と同様に負極を5枚作製した。図8に示されるように、得られた4枚の正極1と5枚の負極6とを、厚さ25μmのポリプロピレンからなるセパレータ20を介して交互に積層して電池素子を得た以外は、実施例1と同様に積層型リチウムイオン二次電池を作製した。該二次電池は絶縁層が形成されているため、正極活物質層未形成領域と負極との間の短絡が防止された。さらに、切り欠き部の存在により、4枚の正極1の絶縁層が全て重なる領域がなく、絶縁層の積層部分において厚みの増加が抑制されたため、電気的な特性および信頼性の高い二次電池が得られた。
 [実施例5]
 絶縁層として幅10mm、厚さ30μmのポリプロピレン製の熱融着テープを用いた以外は、実施例1と同様に正極を作製した。また、該正極を用いた以外は実施例1と同様に積層型リチウムイオン二次電池を作製した。該二次電池は絶縁層が形成されているため、正極活物質層未形成領域と負極との間の短絡が防止された。さらに、切り欠き部の存在により、絶縁層が形成された領域の重なりがなく、絶縁層の積層部分において厚みの増加が抑制されたため、電気的な特性および信頼性の高い二次電池が得られた。
 [実施例6]
 正極部と正極リード部3との境界領域に、正極活物質層から正極活物質層未形成部にかけて、絶縁体であるアルミナと、バインダーとしてのPVdFとがN-メチルピロリドンに分散された溶液を塗布し、乾燥することで、幅10mm、厚さ20μmの絶縁層を形成した。それ以外は実施例1と同様に正極を作製した。また、該正極を用いた以外は実施例1と同様に積層型リチウムイオン二次電池を作製した。該二次電池は絶縁層が形成されているため、正極活物質層未形成領域と負極との間の短絡が防止された。さらに、切り欠き部の存在により、絶縁層が形成された領域の重なりがなく、絶縁層の積層部分において厚みの増加が抑制されたため、電気的な特性および信頼性の高い二次電池が得られた。
 [実施例7]
 図9に示されるように、絶縁層が形成された正極活物質未形成領域の一部を切り欠かなかったこと以外は、実施例1と同様に正極を作製した。また、該正極を用いた以外は実施例1と同様に積層型リチウムイオン二次電池を作製した。該二次電池は絶縁層が形成されているため、正極活物質層未形成領域と負極との間の短絡が防止された。さらに、切り欠き部の存在により、絶縁層が形成された領域の重なり部分が少なくなり、絶縁層の積層部分において厚みの増加が抑制されたため、電気的な特性および信頼性の高い二次電池が得られた。 
 [実施例8]
 厚さ25μmのポリプロピレンからなる長尺のセパレータ20を用いて、図10に示されるように、セパレータ20が正極1及び負極6をそれぞれ交互に間に挟んで折りたたまれるようにして電池素子を得た。該電池素子を用いた以外は実施例1と同様に積層型リチウムイオン二次電池を作製した。該二次電池は絶縁層が形成されているため、正極活物質層未形成領域と負極との間の短絡が防止された。さらに、切り欠き部の存在により、絶縁層が形成された領域の重なりがなく、絶縁層の積層部分において厚みの増加が抑制されたため、電気的な特性および信頼性の高い二次電池が得られた。
 [実施例9]
 図11に示されるように、2枚の正極の絶縁層が形成された領域が、積層方向から見て部分的に重なり、正極リード部3の先端が、積層方向から見て全体が重なるようにした以外は、実施例1と同様に正極を作製した。また、該正極を用いた以外は実施例1と同様に積層型リチウムイオン二次電池を作製した。該二次電池は絶縁層が形成されているため、正極活物質層未形成領域と負極との間の短絡が防止された。さらに、2枚の正極の絶縁層が形成された領域が、積層した際にずれるように配置されているため、2枚の正極のリード部先端の重なり幅に対して、絶縁層が形成された領域の重なり幅は小さく、絶縁層の積層部分において厚みの増加が抑制されたため、電気的な特性および信頼性の高い二次電池が得られた。
 この出願は、2014年3月25日に出願された日本出願特願2014-61776を基礎とする優先権を主張し、その開示の全てをここに取り込む。
 以上、実施形態及び実施例を参照して本願発明を説明したが、本願発明は上記実施形態及び実施例に限定されるものではない。本願発明の構成や詳細には、本願発明のスコープ内で当業者が理解し得る様々な変更をすることができる。
1     正極
2     正極活物質層
3     正極リード部
4     正極集電体
5     接続部
6     負極
7     負極活物質層
8     負極リード部
9     負極集電体
10    接続部
11    正極端子
12    絶縁層
13    切り欠き部
16    負極端子
20    セパレータ
30    外装容器
100   積層型リチウムイオン二次電池

Claims (17)

  1.  第1の極性の電極の少なくとも2枚が、それぞれセパレータを介して第2の極性の電極に積層された電池素子を備える積層型電池であって、
     前記第1の極性の電極が、集電体上に活物質層が形成された電極部と、前記集電体上に活物質層が形成されていないリード部と、前記電極部と前記リード部との境界領域に、前記活物質層から活物質層未形成領域にかけて配置された絶縁層と、を備え、
     積層方向から見て、前記第1の極性の電極の前記絶縁層と他の前記第1の極性の電極の前記絶縁層とが、少なくとも一部が異なる位置に形成されている積層型電池。
  2.  積層方向から見て、前記第1の極性の電極のリード部先端の重なり幅に対して、前記絶縁層が形成された領域の重なり幅が小さい請求項1に記載の積層型電池。
  3.  前記第1の極性の電極が、前記絶縁層が形成された領域の少なくとも一部に切り欠き部を有する請求項1又は2に記載の積層型電池。
  4.  前記第1の極性の電極は、前記切り欠き部として2種類以上の形状を有する請求項3に記載の積層型電池。
  5.  前記電池素子の積層方向において全ての切り欠き部を重ね合わせた場合、積層方向から見て、該切り欠き部は切り欠き前の絶縁層が形成された活物質層形成領域を全て覆う請求項3又は4に記載の積層型電池。
  6.  前記切り欠き部が、前記絶縁層及び前記活物質層が形成された領域の少なくとも一部に設けられている請求項3から5のいずれか1項に記載の積層型電池。
  7.  前記電池素子が、さらに前記切り欠き部を有さない第1の極性の電極を備える請求項3から6のいずれか1項に記載の積層型電池。
  8.  前記絶縁層が、粘着テープ、熱融着テープ、並びに絶縁体を含む液の塗布及び乾燥により形成された層からなる群から選択される少なくとも一種である請求項1から7のいずれか1項に記載の積層型電池。
  9.  前記第1の極性の電極が正極であり、前記第2の極性の電極が負極である請求項1から8のいずれか1項に記載の積層型電池。
  10.  前記第1の極性の電極が、前記絶縁層が形成された領域の少なくとも一部に穴を有する請求項1から9のいずれか1項に記載の積層型電池。
  11.  前記第1の極性の電極の少なくとも3枚が、第2の極性の電極にそれぞれセパレータを介して積層された電池素子を備える請求項1から10のいずれか1項に記載の積層型電池。
  12.  前記第2の極性の電極が、前記第1の極性の電極及び前記セパレータをそれぞれ交互に間に挟んで折りたたまれている請求項1から11のいずれか1項に記載の積層型電池。
  13.  前記セパレータが、前記第1の極性の電極及び前記第2の極性の電極をそれぞれ交互に間に挟んで折りたたまれている請求項1から11のいずれか1項に記載の積層型電池。
  14.  前記積層型電池がリチウムイオン二次電池、ニッケル水素電池、リチウムイオンキャパシタ、ニッケルカドミウム電池、リチウムメタル一次電池、リチウムメタル二次電池又はリチウムポリマー電池である請求項1から13のいずれか1項に記載の積層型電池。
  15.  前記電池素子が前記第2の極性の電極を少なくとも2枚備え、
     前記第2の極性の電極が、集電体上に活物質層が形成された電極部と、前記集電体に活物質層が形成されていないリード部と、前記電極部と前記リード部との境界領域に、前記活物質層から活物質層未形成領域にかけて配置された絶縁層と、を備え、
     積層方向から見て、前記第2の極性の電極の前記絶縁層と他の前記第2の極性の電極の前記絶縁層とが、少なくとも一部が異なる位置に形成されている請求項1から14のいずれか1項に記載の積層型電池。
  16.  第1の極性の電極の少なくとも2枚が、それぞれセパレータを介して第2の極性の電極に積層された電池素子を備える積層型電池であって、
     前記第1の極性の電極が、集電体上に活物質層が形成された電極部と、前記集電体上に活物質層が形成されていないリード部と、前記電極部と前記リード部との境界領域に、前記活物質層から活物質層未形成領域にかけて配置された絶縁層と、を備え、
     積層方向から見て、前記第1の極性の電極の前記絶縁層と他の前記第1の極性の電極の前記絶縁層とが、少なくとも一部が異なる位置に形成されており、
     少なくとも一部が異なる位置に形成されることにより、前記絶縁層の積層部分の厚みが低減された積層型電池。
  17.  集電体の表面上に活物質層を形成し、集電体上に活物質層が形成された電極部と、集電体上に活物質層が形成されていないリード部と、を備える電極を得る工程と、
     前記電極の、前記電極部と前記リード部との境界領域に、前記活物質層から活物質層未形成領域にかけて絶縁層を形成することで、第1の極性の電極を得る工程と、
     前記第1の極性の電極の、前記絶縁層が形成された領域の少なくとも一部を切り欠いて切り欠き部を形成する工程と、
     前記第1の極性の電極の少なくとも2枚を、それぞれセパレータを介して第2の極性の電極と積層する工程と、
    を含む積層型電池の製造方法であって、
     積層方向から見て、前記第1の極性の電極の前記絶縁層と他の前記第1の極性の電極の前記絶縁層とが、少なくとも一部が異なる位置に形成されている積層型電池の製造方法。
PCT/JP2015/059147 2014-03-25 2015-03-25 積層型電池及びその製造方法 WO2015147066A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US15/125,927 US20170005318A1 (en) 2014-03-25 2015-03-25 Laminated-type battery and method for manufacturing the same
JP2016510431A JP6504158B2 (ja) 2014-03-25 2015-03-25 積層型電池及びその製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014061776 2014-03-25
JP2014-061776 2014-03-25

Publications (1)

Publication Number Publication Date
WO2015147066A1 true WO2015147066A1 (ja) 2015-10-01

Family

ID=54195577

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/059147 WO2015147066A1 (ja) 2014-03-25 2015-03-25 積層型電池及びその製造方法

Country Status (3)

Country Link
US (1) US20170005318A1 (ja)
JP (1) JP6504158B2 (ja)
WO (1) WO2015147066A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108780857A (zh) * 2016-09-28 2018-11-09 株式会社Lg化学 具有包含收容部和电极引线槽的电池壳的电池单元
JP2019102361A (ja) * 2017-12-06 2019-06-24 パナソニックIpマネジメント株式会社 電極板及び二次電池
JP2020521308A (ja) * 2018-01-04 2020-07-16 エルジー・ケム・リミテッド 絶縁コーティング層が備えられた電極タブを含む二次電池
JPWO2020067511A1 (ja) * 2018-09-28 2021-02-15 積水化学工業株式会社 積層型電池および積層型電池の製造方法
US11444271B2 (en) 2017-11-14 2022-09-13 Panasonic Holdings Corporation Lithium-ion battery including electrode with tab section having substrate-exposed portion
US11469439B2 (en) * 2017-02-22 2022-10-11 Samsung Sdi Co., Ltd. Secondary battery

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180097085A (ko) * 2017-02-22 2018-08-30 삼성에스디아이 주식회사 멀티탭 쇼트 억제 구조를 갖는 이차 전지
US11670805B2 (en) 2017-10-31 2023-06-06 Snap Inc. Nested PCM battery pack
US11515575B2 (en) * 2017-10-31 2022-11-29 Snap Inc. Battery pack protection circuit module
KR102299988B1 (ko) * 2018-01-16 2021-09-09 주식회사 엘지에너지솔루션 이차전지용 노칭장치 및 노칭방법
CN109473729B (zh) * 2018-11-05 2020-11-13 宁德新能源科技有限公司 电化学装置
KR20210009207A (ko) * 2019-07-16 2021-01-26 삼성전자주식회사 배터리 및 그를 포함하는 전자 장치
KR20210039081A (ko) 2019-10-01 2021-04-09 주식회사 엘지화학 서로 다른 형태의 전극을 포함하는 이차전지용 전극조립체
CN112771692A (zh) * 2020-03-30 2021-05-07 宁德新能源科技有限公司 复合集流体、电极极片、电化学装置及电子装置
CN113966567B (zh) * 2021-03-24 2023-06-20 宁德新能源科技有限公司 电芯与用电装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006040878A (ja) * 2004-07-28 2006-02-09 Samsung Sdi Co Ltd リチウムイオン二次電池
JP2008066170A (ja) * 2006-09-08 2008-03-21 Nec Tokin Corp 積層型電池の製造方法
JP2013187077A (ja) * 2012-03-08 2013-09-19 Panasonic Corp 捲回型およびスタック型電極電池

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006196428A (ja) * 2004-05-31 2006-07-27 Nissan Motor Co Ltd 組電池およびその製造方法
TW200919807A (en) * 2007-09-06 2009-05-01 Sanyo Electric Co Stact type battery
KR101222259B1 (ko) * 2009-11-18 2013-01-15 삼성에스디아이 주식회사 이차전지
JP5844052B2 (ja) * 2011-02-04 2016-01-13 三洋電機株式会社 積層式電池およびその製造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006040878A (ja) * 2004-07-28 2006-02-09 Samsung Sdi Co Ltd リチウムイオン二次電池
JP2008066170A (ja) * 2006-09-08 2008-03-21 Nec Tokin Corp 積層型電池の製造方法
JP2013187077A (ja) * 2012-03-08 2013-09-19 Panasonic Corp 捲回型およびスタック型電極電池

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108780857A (zh) * 2016-09-28 2018-11-09 株式会社Lg化学 具有包含收容部和电极引线槽的电池壳的电池单元
CN108780857B (zh) * 2016-09-28 2022-05-06 株式会社Lg新能源 具有包含收容部和电极引线槽的电池壳的电池单元
US11469439B2 (en) * 2017-02-22 2022-10-11 Samsung Sdi Co., Ltd. Secondary battery
US11444271B2 (en) 2017-11-14 2022-09-13 Panasonic Holdings Corporation Lithium-ion battery including electrode with tab section having substrate-exposed portion
JP2019102361A (ja) * 2017-12-06 2019-06-24 パナソニックIpマネジメント株式会社 電極板及び二次電池
JP7008247B2 (ja) 2017-12-06 2022-02-10 パナソニックIpマネジメント株式会社 電極板及び二次電池
JP2020521308A (ja) * 2018-01-04 2020-07-16 エルジー・ケム・リミテッド 絶縁コーティング層が備えられた電極タブを含む二次電池
JP7045545B2 (ja) 2018-01-04 2022-04-01 エルジー エナジー ソリューション リミテッド 絶縁コーティング層が備えられた電極タブを含む二次電池
US11777095B2 (en) 2018-01-04 2023-10-03 Lg Energy Solution, Ltd. Secondary battery comprising electrode tab provided with insulation coating layer
US11996563B2 (en) 2018-01-04 2024-05-28 Lg Energy Solution, Ltd. Secondary battery comprising electrode tab provided with insulation coating layer
JPWO2020067511A1 (ja) * 2018-09-28 2021-02-15 積水化学工業株式会社 積層型電池および積層型電池の製造方法

Also Published As

Publication number Publication date
JP6504158B2 (ja) 2019-04-24
US20170005318A1 (en) 2017-01-05
JPWO2015147066A1 (ja) 2017-04-13

Similar Documents

Publication Publication Date Title
JP6504158B2 (ja) 積層型電池及びその製造方法
JP6656715B2 (ja) セルケースの密封信頼性が向上した非定型構造の電池セル
JP4623039B2 (ja) 電気化学素子
US20110244304A1 (en) Stack type battery
US9876257B2 (en) Secondary battery and electrode production method
WO2015015663A1 (ja) 二次電池
WO2013005650A1 (ja) 非水電解質電池モジュール
EP3316349B1 (en) Method for manufacturing electrochemical device
WO2011002064A1 (ja) ラミネート形電池
US7855013B2 (en) Electric double-layer capacitor and method of manufacturing electric double-layer capacitor
JP2013206699A (ja) 電気化学デバイス
WO2017033514A1 (ja) 電気化学デバイス
WO2013002058A1 (ja) 蓄電デバイス
JP2013025999A (ja) 非水二次電池
JP7405243B2 (ja) 集電体、蓄電素子及び蓄電モジュール
JP5201557B2 (ja) 非水電解質電池及び非水電解質電池モジュール
JP6970281B2 (ja) 非水電解質電池及び電池パック
JPWO2019026672A1 (ja) 密閉型電池、組電池及び密閉型電池の製造方法
JP2010244865A (ja) ラミネート形電池
JP5334109B2 (ja) ラミネート形電池
JP6602050B2 (ja) 電池
JP2011108538A (ja) ラミネート形電池
KR102106109B1 (ko) 리튬이차전지
JP2013206700A (ja) 電気化学デバイス
JP7400946B2 (ja) 電極体、蓄電素子および蓄電モジュール

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15768767

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15125927

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2016510431

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15768767

Country of ref document: EP

Kind code of ref document: A1