WO2015146681A1 - 撥水アルミニウム基材、撥水アルミニウム基材の製造方法、熱交換器および送電線 - Google Patents

撥水アルミニウム基材、撥水アルミニウム基材の製造方法、熱交換器および送電線 Download PDF

Info

Publication number
WO2015146681A1
WO2015146681A1 PCT/JP2015/057738 JP2015057738W WO2015146681A1 WO 2015146681 A1 WO2015146681 A1 WO 2015146681A1 JP 2015057738 W JP2015057738 W JP 2015057738W WO 2015146681 A1 WO2015146681 A1 WO 2015146681A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
repellent
aluminum
aluminum substrate
aluminum base
Prior art date
Application number
PCT/JP2015/057738
Other languages
English (en)
French (fr)
Inventor
小松 寛
堀田 久
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Publication of WO2015146681A1 publication Critical patent/WO2015146681A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/60Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using alkaline aqueous solutions with pH greater than 8
    • C23C22/66Treatment of aluminium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/78Pretreatment of the material to be coated
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25FPROCESSES FOR THE ELECTROLYTIC REMOVAL OF MATERIALS FROM OBJECTS; APPARATUS THEREFOR
    • C25F3/00Electrolytic etching or polishing
    • C25F3/02Etching
    • C25F3/04Etching of light metals
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F17/00Removing ice or water from heat-exchange apparatus
    • F28F17/005Means for draining condensates from heat exchangers, e.g. from evaporators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F21/00Constructions of heat-exchange apparatus characterised by the selection of particular materials
    • F28F21/08Constructions of heat-exchange apparatus characterised by the selection of particular materials of metal
    • F28F21/081Heat exchange elements made from metals or metal alloys
    • F28F21/084Heat exchange elements made from metals or metal alloys from aluminium or aluminium alloys
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2245/00Coatings; Surface treatments
    • F28F2245/04Coatings; Surface treatments hydrophobic

Definitions

  • the present invention relates to a water repellent aluminum substrate, a method for producing a water repellent aluminum substrate, a heat exchanger, and a power transmission line.
  • Patent Document 1 states that “a hydrated oxidation having macro unevenness of several micrometer order or more formed on the surface of the air side heat transfer surface and further having micro unevenness of nanometer order to micrometer order on the surface.
  • Patent Document 2 states that “in a power transmission line including a plurality of strands made of aluminum or an aluminum alloy, macro unevenness having a size of several micrometers to several hundred micrometers is formed on the surface of each strand. In addition, a hydrated oxide having micro unevenness having a size on the order of nanometers to several micrometers is formed on the macro uneven surface, and further includes a hydrophobic group having a critical surface tension of 20 dyn / cm or less on the micro uneven surface.
  • a water-repellent coating made of a fluorine silane compound is coated, and an effective area expansion ratio indicating the ratio of the surface area of the micro uneven surface to the surface area determined as the surface of the strand is smooth is 800 to thousands.
  • the hard-to-snow power transmission line characterized by the above. "(Claim 1).
  • the inventors of the present invention have described the complex uneven structure formed on the surface of the air-side heat transfer surface of the heat exchanger described in Patent Document 1 and the macro unevenness and micro unevenness of the strand surface described in Patent Document 2. As a result of the investigation, it has been clarified that the water-repellent coating is not sufficient depending on the shape of the concavo-convex structure.
  • the present invention is excellent in water repellency, and can be suitably used for the surface of the air side heat transfer surface of the heat exchanger, the surface of the strand of the power transmission line, etc.
  • An object is to provide a heat exchanger and a power transmission line using a water-repellent aluminum base material.
  • the present inventors have superimposed an uneven structure including an aluminum support and a water-repellent film and having a concave portion having a predetermined average opening diameter, resulting in a surface area ratio ⁇ S and steepness.
  • the inventors found that an aluminum substrate having a surface with a degree a45 in a specific range is excellent in water repellency, and completed the present invention. That is, it has been found that the above-described problem can be achieved by the following configuration.
  • the surface of the water-repellent aluminum substrate has a structure in which a concavo-convex structure including a recess having an average opening diameter of more than 0.5 ⁇ m and 5 ⁇ m or less and a concavo-convex structure including a recess having an average opening diameter of 0.01 ⁇ m to 0.5 ⁇ m are superimposed,
  • a water repellent aluminum substrate having a surface area ratio ⁇ S of the water repellent aluminum substrate of 20% or more and a steepness a45 of 5 to 50%.
  • the surface area ratio ⁇ S is an actual area S x obtained by an approximate three-point method from three-dimensional data obtained by measuring 512 ⁇ 512 points on a surface of 50 ⁇ m ⁇ 50 ⁇ m using an atomic force microscope, It is a value obtained from the geometric measurement area S 0 by the following formula (i), and the steepness a45 has an inclination with an angle of 45 ° or more with respect to the actual area S x (an inclination of 45 ° or more).
  • the area ratio of the part is an actual area S x obtained by an approximate three-point method from three-dimensional data obtained by measuring 512 ⁇ 512 points on a surface of 50 ⁇ m ⁇ 50 ⁇ m using an atomic force microscope, It is a value obtained from the geometric measurement area S 0 by the following formula (i), and the steepness a45 has an inclination with an angle of 45 ° or more with respect to the actual area S x (an inclination of 45 ° or more).
  • the area ratio of the part
  • the aluminum support is 0.50 to 2.0 mass% Fe, 0.15 to 0.30 mass% Si, 0.050 to 0.15 mass% Cu, and 0.050 mass Ti.
  • a method for producing a water-repellent aluminum substrate for producing the water-repellent aluminum substrate according to [1] The surface of the aluminum plate is subjected to an electrochemical roughening treatment, and a concavo-convex structure including concave portions having an average opening diameter of 0.01 ⁇ m or more and 0.5 ⁇ m or less is superimposed on a concavo-convex structure including concave portions having an average opening diameter of more than 0.5 ⁇ m and not more than 5 ⁇ m.
  • a method for producing a water-repellent aluminum substrate comprising: a water-repellent treatment step of performing a water-repellent treatment after the roughening treatment step and forming a water-repellent coating on the surface of the aluminum support. [5] After the roughening treatment step forms an uneven structure including recesses having an average opening diameter of more than 0.5 ⁇ m and not more than 5 ⁇ m on the surface by electrochemical surface roughening using an electrolytic solution containing nitric acid, hydrochloric acid is added.
  • the amount of electricity in the electrochemical surface roughening treatment using an electrolytic solution containing nitric acid is 100 to 400 C / dm 2 .
  • the method for producing a water-repellent aluminum substrate according to [5], wherein the amount of electricity in the electrochemical roughening treatment using an electrolytic solution containing hydrochloric acid is 10 to 150 C / dm 2 .
  • a boehmite treatment step in which a boehmite treatment is performed to form a boehmite layer between the roughening treatment step and the water repellent treatment step.
  • a heat exchanger having an air-side heat transfer surface The heat exchanger, wherein the member constituting the surface of the air side heat transfer surface is the water repellent aluminum base material according to any one of [1] to [3].
  • the water-repellent aluminum base is excellent in water repellency and can be suitably used for the surface of the air side heat transfer surface of the heat exchanger, the surface of the wire of the power transmission line, and the like.
  • a heat exchanger and a power transmission line using a water-repellent aluminum substrate can be provided.
  • FIG. 1 is a schematic cross-sectional view showing an example of a concavo-convex structure on the surface of the water-repellent aluminum substrate of the present invention.
  • FIG. 2 is a schematic cross-sectional view showing another example of the concavo-convex structure on the surface of the water-repellent aluminum substrate of the present invention.
  • a numerical range expressed using “to” means a range including numerical values described before and after “to” as a lower limit value and an upper limit value.
  • the water-repellent aluminum substrate of the present invention (hereinafter also referred to as “the aluminum substrate of the present invention”) is a water-repellent aluminum substrate having an aluminum support and a water-repellent coating,
  • the surface has a concavo-convex structure (hereinafter also referred to as “medium wave structure”) including concave portions having an average opening diameter of more than 0.5 ⁇ m and not more than 5 ⁇ m and a concavo-convex structure (hereinafter referred to as “medium wave structure”) (hereinafter referred to as “medium wave structure”)
  • a water repellent aluminum base having a structure in which the surface area ratio ⁇ S of the water repellent aluminum substrate is 20% or more and the steepness a45 is 5 to 50%. It is a material. Below, the surface shape and each structure of the aluminum base material of this invention are demonstrated in detail.
  • the aluminum substrate of the present invention has a surface on which a medium wave structure and a small wave structure are superimposed, has a surface area ratio ⁇ S of 20% or more, and a steepness a45 of 5 to 50%.
  • ⁇ S surface area ratio
  • a45 steepness of 5 to 50%.
  • the coating amount (adsorption amount of the water repellent) is reduced. This is particularly noticeable when a boehmite treatment is performed, and it is considered that one of the causes is that a needle-like boehmite layer (hydroxide layer) is formed in a direction parallel to the surface of the substrate. .
  • the present invention considers that the water-repellent film is easily coated and is less likely to fall off by increasing the surface area ratio ⁇ S while keeping the steepness a45 low, thereby contributing to the improvement of water repellency. It is done.
  • the aluminum substrate of the present invention has a structure in which a medium wave structure and a small wave structure are superimposed.
  • the medium wave structure 1 (concave portion 1a, convex portion 1b) and the small wave structure 2 (concave portion 2a, convex portion 2b) each form a substantially sinusoidal waveform, and as a whole, one substantially sinusoidal waveform. It constitutes.
  • the “concavo-convex structure including the concave portion” may be a corrugated structure as shown in FIG. 1, and the convex portion is constituted by a flat portion of the surface as shown in FIG.
  • the concave structure may be a repeated structure.
  • the measurement method of the average aperture diameter of the medium wave structure and the small wave structure is as follows.
  • Average aperture diameter (average wavelength) of medium wave structure Using a high-resolution scanning electron microscope (SEM), the surface of the aluminum substrate was photographed at a magnification of 2000 times from directly above, and in the obtained SEM photograph, the concave portion in which the periphery was connected in a ring shape (the concave portion in the overlapping small wave structure) 50) are extracted, and the diameter is read as the opening diameter, and the average opening diameter is calculated.
  • SEM scanning electron microscope
  • the medium wave structure preferably has an average opening diameter of 2 to 5 ⁇ m because the superposition of the small wave structure is easily formed, and as a result, the water repellency is further improved. Further, the above small wave structure preferably has an average opening diameter of 0.1 to 0.5 ⁇ m because an arbitrary boehmite layer described later is easily formed.
  • the aluminum substrate of the present invention has a surface area ratio ⁇ S of 20% or more and a steepness a45 of 5 to 50%.
  • the aluminum base material of the present invention preferably has a surface area ratio ⁇ S of 20 to 95% and a steepness a45 of 20 to 45%.
  • the surface area ratio ⁇ S is an actual area S x obtained by an approximate three-point method from three-dimensional data obtained by measuring 512 ⁇ 512 points on a surface of 50 ⁇ m ⁇ 50 ⁇ m using an atomic force microscope, It is a value obtained from the geometric measurement area S 0 by the following formula (i), and the steepness a45 has an inclination with an angle of 45 ° or more with respect to the actual area S x (an inclination of 45 ° or more).
  • the area ratio of the part. ⁇ S (S x ⁇ S 0 ) / S 0 ⁇ 100 (%) (i)
  • the surface shape is measured with an atomic force microscope (AFM) to obtain three-dimensional data.
  • the measurement can be performed, for example, under the following conditions. That is, cut the aluminum substrate into 1cm square size, set it on the horizontal sample stage on the piezo scanner, approach the sample surface with the cantilever, and when it reaches the region where the atomic force works, it scans in XY direction At that time, the surface shape (wave structure) of the sample is captured by the displacement of the piezoelectric element in the Z direction.
  • a piezo scanner that can scan 150 ⁇ m in the XY direction and 10 ⁇ m in the Z direction is used.
  • a cantilever having a resonance frequency of 120 to 150 kHz and a spring constant of 12 to 20 N / m (SI-DF20, manufactured by NANOPROBE) is used for measurement in the DFM mode (Dynamic Force Mode). Further, the reference plane is obtained by correcting the slight inclination of the sample by approximating the obtained three-dimensional data by least squares. At the time of measurement, the surface of 50 ⁇ m ⁇ 50 ⁇ m is measured at 512 ⁇ 512 points.
  • the resolution in the XY direction is 1.9 ⁇ m
  • the resolution in the Z direction is 1 nm
  • the scan speed is 60 ⁇ m / sec.
  • the three-dimensional data (f (x, y)) obtained above three adjacent points are extracted, and the sum of the areas of the minute triangles formed by the three points is obtained to obtain the actual area S x .
  • the surface area difference ⁇ S is obtained by the above formula (i) from the obtained real area S x and the geometric measurement area S 0 .
  • the number of reference points whose inclination of the micro triangle is 45 degrees or more is obtained by subtracting the number of all reference points (the number of all data 512 ⁇ 512 points and the number of points having no two adjacent points in a predetermined direction).
  • the area ratio a45 of the portion having the inclination of 45 degrees or more is calculated by dividing by 511 ⁇ 511 points.
  • the aluminum support body which the aluminum base material of this invention has will not be specifically limited if it is an aluminum material for supporting the water-repellent film mentioned later, A well-known aluminum plate can be used.
  • the aluminum plate may be an aluminum alloy plate containing aluminum as a main component and containing a trace amount of foreign elements, in addition to a pure aluminum plate.
  • the foreign elements contained in the aluminum alloy include silicon, iron, manganese, copper, magnesium, chromium, zinc, bismuth, nickel, titanium, and the content of the foreign elements in the alloy is 10% by mass or less. preferable.
  • the aluminum support is 0.50 to 2.0% by mass of Fe and 0% of Si because the strength of the resulting water-repellent aluminum substrate is high (for example, 180 N / mm 2 or more). .15 to 0.30 mass%, Cu is 0.050 to 0.15 mass%, Ti is 0.050 mass% or less, and the balance is made of an aluminum alloy containing Al and inevitable impurities. preferable.
  • the surface of the aluminum support has an average opening diameter in a concavo-convex structure including recesses having an average opening diameter of more than 0.5 ⁇ m and not more than 5 ⁇ m. It is preferable to have a concavo-convex structure in which a concavo-convex structure including a concave portion of 0.01 ⁇ m or more and 0.5 ⁇ m or less is superimposed.
  • the thickness of such an aluminum support is not particularly limited because it can be appropriately changed according to the use of the water-repellent aluminum substrate, but is generally preferably about 0.01 mm to 1 mm, for example, a heat exchanger. When used as a surface member on the air-side heat transfer surface, the thickness is preferably about 0.1 mm to 0.8 mm.
  • the water-repellent film that the aluminum substrate of the present invention has is not particularly limited as long as it is a film containing a hydrophobic compound.
  • the hydrophobic compound is a compound insoluble in water. Insoluble in water is a property that does not dissolve or stably disperse in water. Specifically, it represents that the solubility in water is 1 g / L or less, or that a stable dispersion in water is not formed.
  • the film containing such a hydrophobic compound is preferably a film made of a fluorine silane compound, for example, as in Patent Document 2 (Japanese Patent Laid-Open No. 2000-040422).
  • a film made of an alkoxysilane (—Si (OR 3 ) 3 , R ⁇ C n H 2n + 1 ) compound having a fluorocarbon group (CF 3 group) is more preferable.
  • alkoxysilane compound examples include 3,3,3-trifluoropropyltrimethoxysilane, 3,3,3-trifluoropropyltriethoxysilane, 1H, 1H, 2H, 2H-perfluorodecyltrimethoxysilane, 1H , 1H, 2H, 2H-perfluorodecyltriethoxysilane, and the like. These may be used alone or in combination of two or more.
  • the content of the hydrophobic compound in the water repellent coating is preferably 50% by mass or more, and more preferably 60 to 90% by mass.
  • the thickness of the water-repellent film is not particularly limited because it can be appropriately changed according to the use of the water-repellent aluminum substrate, but is generally preferably 0.01 ⁇ m to 10 ⁇ m. When used as a surface member on the hot surface, the thickness is preferably 0.02 ⁇ m to 1 ⁇ m.
  • the boehmite layer Since the aluminum base material of the present invention has a higher surface area ratio ⁇ S, the thickness (coating amount) of the water-repellent film increases, and as a result, the water repellency becomes better. It is preferable to have a boehmite layer between the film.
  • the boehmite layer refers to a pseudo-boehmite hydrated oxide film formed by reacting aluminum with high-temperature water.
  • the thickness of the boehmite layer is not particularly limited because it can be appropriately changed according to the use of the water-repellent aluminum base material, but is generally preferably 0.01 ⁇ m to 5 ⁇ m, for example, air side heat transfer of a heat exchanger. When used as a surface member on the surface, the thickness is preferably 0.05 ⁇ m to 0.5 ⁇ m.
  • the method for producing a water-repellent aluminum substrate of the present invention applies an electrochemical roughening treatment to the surface of an aluminum plate, and the medium wave described above.
  • a water repellent treatment is performed to form a water repellent film on the surface of the aluminum support, thereby obtaining a water repellent aluminum substrate.
  • the method for producing the aluminum substrate of the present invention forms a boehmite layer by performing boehmite treatment between the roughening treatment step and the water repellent treatment step.
  • a boehmite treatment step the aluminum plate, the roughening treatment step, the water repellent treatment step, and the arbitrary boehmite treatment step used in the method for producing an aluminum substrate of the present invention will be described in detail.
  • a known aluminum plate can be used for the production of the aluminum substrate of the present invention.
  • the aluminum plate that can be used in the method for producing an aluminum base material of the present invention is an aluminum alloy plate containing aluminum as a main component and containing a trace amount of foreign elements, in addition to a pure aluminum plate, as with the aluminum support described above. Also good.
  • the foreign elements contained in the aluminum alloy include silicon, iron, manganese, copper, magnesium, chromium, zinc, bismuth, nickel, titanium, and the content of the foreign elements in the alloy is 10% by mass or less. preferable.
  • the composition of the aluminum plate is not specified, and conventionally known materials such as JIS A 1050, JIS A 1100, JIS A 3103, and JIS A 3005 can be used as appropriate.
  • the water-repellent aluminum base material to be produced has high strength (for example, 180 N / mm 2 or more), so that Fe is 0.50 to 2.0 mass% and Si is 0.15. It is preferably made of an aluminum alloy containing from 0.30% by mass, Cu from 0.050% to 0.15% by mass, Ti from 0.050% by mass or less and the balance containing Al and inevitable impurities.
  • the aluminum plate is usually processed while continuously running in a web shape, and the width is about 10 mm to 1000 mm, and the thickness is about 0.1 mm to 0.6 mm.
  • the width and thickness can be changed as appropriate according to the size of the tab lead and the desire of the user. In addition, after performing the surface treatment mentioned later, it can also cut
  • an electrochemical roughening treatment (hereinafter also referred to as “electrolytic roughening treatment”) is performed on the surface of the aluminum plate described above.
  • electrolytic roughening treatment a step of producing an aluminum support having an uneven structure in which the above-described small wave structure is superimposed on the above-described medium wave structure, a surface area ratio ⁇ S of 20% or more, and a steepness a45 of 5 to 50%. It is.
  • an electrolytic solution used for an electrochemical surface roughening treatment using a normal alternating current can be used.
  • an electrolytic solution containing hydrochloric acid and / or nitric acid is used for the electrolytic surface treatment.
  • the method of processing etc. are mentioned suitably.
  • electrolysis using an electrolytic solution containing hydrochloric acid is performed.
  • a treatment method in which a small wave structure is superimposed on the surface by roughening treatment (hereinafter also referred to as “hydrochloric acid electrolysis”) is preferable.
  • the total amount of electricity involved in the anodic reaction of the aluminum substrate at the end of the electrolytic reaction is 1 to is preferably from 1000C / dm 2, more preferably from 100 ⁇ 400C / dm 2, and even more preferably 150 ⁇ 300C / dm 2.
  • the current density is preferably 20 to 100 A / dm 2 .
  • the treatment is preferably performed in an electrolytic solution containing 0.1 to 50% by mass of nitric acid at a temperature of 20 to 80 ° C. for a time of 1 second to 10 minutes.
  • the conditions for hydrochloric acid electrolysis are not particularly limited. From the viewpoint of easily forming the above-described concave-convex structure with a small wave structure, the total amount of electricity involved in the anodic reaction of the aluminum substrate at the end of the electrolytic reaction is 10 to 150 C. / Dm 2 is preferable, and 30 to 100 C / dm 2 is more preferable.
  • the current density at this time is preferably 20 to 50 A / dm 2 . More specifically, for example, the treatment is preferably performed in an electrolytic solution containing 0.1 to 10% by mass of hydrochloric acid at a temperature of 20 to 80 ° C. for a time of 1 second to 10 minutes.
  • a mechanical surface roughening treatment such as brush grain may be performed on the surface of the aluminum plate before the electrolytic surface roughening treatment described above.
  • the water-repellent treatment step of the method for producing a water-repellent aluminum substrate of the present invention is a step of forming a water-repellent film on the surface of the aluminum support by performing a water-repellent treatment after the above-mentioned roughening treatment step.
  • a water repellent treatment for example, a method of adsorbing the above-described alkoxysilane compound or the like by applying or vaporizing it on the surface of the aluminum support (or the surface of the boehmite layer in the case of having a boehmite layer) may be mentioned. .
  • the boehmite treatment step optionally included in the method for producing a water-repellent aluminum substrate of the present invention is performed by performing boehmite treatment between the roughening treatment step and the water-repellent treatment step to form a boehmite layer (water This is a step of forming a (Japanese oxide film).
  • the boehmite treatment uses a reaction in which aluminum reacts with high-temperature water to form a pseudo-boehmite hydrated oxide film.
  • water at 70 to 95 ° C. for example, pure water, dehydrated, dehydrated.
  • the hydrated oxide film can be formed by adjusting the pH of ion water to 7 to 12 and immersing the aluminum support.
  • the heat exchanger of the present invention is a heat exchanger having an air-side heat transfer surface, and the member constituting the surface of the air-side heat transfer surface is the water-repellent aluminum base material of the present invention. .
  • the member constituting the surface of the air side heat transfer surface is composed of the water-repellent aluminum base material of the present invention, frost formation is prevented and defrosting is promoted. High ventilation and heat exchange rate can be maintained.
  • the power transmission line of the present invention is a power transmission line in which a plurality of strands made of aluminum or an aluminum alloy are wound together, and a member constituting the surface of the plurality of strands is the water repellent aluminum base material of the present invention. It is an electric wire.
  • the member constituting the surface of the element wire is composed of the water-repellent aluminum base material of the present invention, snow accretion can be reduced or suppressed. Can prevent accidents.
  • Example 1 ⁇ Nitric acid electrolysis (A1)> Aluminum alloy plate having a thickness of 0.1 mm, a width of 20 mm, and a length of 50 mm (Fe: 0.53% by mass, Si: 0.3% by mass, Cu: 0.12% by mass, Ti: 0.01% by mass, balance) : Aluminum and unavoidable impurities) were placed in an electrolytic cell kept at 35 ° C. and having a nitric acid concentration of 10 g / L, and electrolysis was performed under the condition that the total amount of electricity was 200 C / dm 2 . A 60 Hz trapezoidal wave was used as the AC power source wave. The current density was 30 A / dm 2 .
  • Water repellent treatment (C1)> 1H, 1H, 2H, 2H-perfluorodecyltriethoxysilane is vaporized and chemically adsorbed on the surface of the aluminum support that has been subjected to electrochemical roughening treatment, thereby making the water repellent 0.05 ⁇ m thick.
  • a film was formed to produce a water-repellent aluminum substrate.
  • Examples 2 to 6 The same as Example 1 except that the boehmite treatment (B1) shown below was applied between the hydrochloric acid electrolysis and the water repellency treatment, and the electric quantities of nitric acid electrolysis and hydrochloric acid electrolysis were changed to the values shown in Table 1 below.
  • a water-repellent aluminum substrate was produced.
  • ⁇ Boehmite treatment (B1)> The produced aluminum support was immersed in an aqueous solution (sodium hydroxide concentration: 1%) at 80 ° C. and pH 12.0 for 70 seconds to form a 0.2 ⁇ m thick boehmite layer.
  • Example 7 As an aluminum alloy plate, a 1N30 material having a thickness of 0.1 mm, a width of 20 mm, and a length of 50 mm (Fe: 0.43 mass%, Si: 0.13 mass%, Cu: 0.02 mass%, Ti: 0.01 A water-repellent aluminum base material was produced in the same manner as in Example 2 except that mass%, balance: aluminum and inevitable impurities) were used.
  • Example 8 A water-repellent aluminum substrate was prepared in the same manner as in Example 7 except that the boehmite treatment (B2) shown below was applied instead of the boehmite treatment (B1) between the hydrochloric acid electrolysis and the water repellent treatment.
  • B2 boehmite treatment
  • the produced aluminum support was immersed in an aqueous solution (sodium hydroxide concentration: 1%) at 80 ° C. and pH 12.0 for 15 seconds to form a boehmite layer having a thickness of 0.02 ⁇ m.
  • Example 1 The aluminum alloy plate used before applying nitric acid electrolysis (A1) in Example 1 was evaluated as it was.
  • Example 2 A water-repellent aluminum substrate was produced in the same manner as in Example 1 except that nitric acid electrolysis (A1) and hydrochloric acid electrolysis (A2) were not performed.
  • Comparative Example 3 A water-repellent aluminum base material was produced in the same manner as in Comparative Example 2 except that the following mechanical surface roughening treatment was performed. In addition, an uneven structure (hereinafter referred to as “large wave structure”) including recesses having an average opening diameter greater than 5 ⁇ m and not more than 9 ⁇ m larger than the average opening diameter of the recesses of the medium wave structure is formed by the mechanical surface roughening treatment. I understood.
  • ⁇ Mechanical roughening treatment (M1)> Aluminum alloy plate having a thickness of 0.1 mm, a width of 20 mm, and a length of 50 mm (Fe: 0.53% by mass, Si: 0.3% by mass, Cu: 0.12% by mass, Ti: 0.01% by mass, balance) : Aluminium and unavoidable impurities) on the surface of the aluminum plate with five rotating nylon brushes with a specific gravity of 1.12 using Pamiston with an average particle size of 100 ⁇ m as an abrasive. It was moved and the surface was roughened. The diameter of the nylon brush used was 0.9 mm, the bristle density was 450 / cm 2 , and the brush rotation speed was 150 rpm.
  • a water-repellent aluminum substrate was produced in the same manner as in Comparative Example 4 except that the following mechanical roughening treatment (M2) was performed instead of the mechanical roughening treatment (M1).
  • M2 Mechanical roughening treatment
  • Aluminum alloy plate having a thickness of 0.1 mm, a width of 20 mm, and a length of 50 mm (Fe: 0.53% by mass, Si: 0.3% by mass, Cu: 0.12% by mass, Ti: 0.01% by mass, balance) : Aluminium and unavoidable impurities) on the surface of the aluminum plate with five rotating nylon brushes with a specific gravity of 1.12 using Pamiston with an average particle size of 100 ⁇ m as an abrasive. It was moved and the surface was roughened. The diameter of the nylon brush used was 0.9 mm, the hair density was 450 / cm 2 , and the brush rotation speed was 250 rpm.
  • a water-repellent aluminum substrate was produced in the same manner as in Comparative Example 4 except that the mechanical roughening treatment (M3) shown below was performed instead of the mechanical roughening treatment (M1).
  • M3 Mechanical roughening treatment
  • ⁇ Surface area ratio ⁇ S and steepness a45> In order to obtain the surface area difference ⁇ S and the steepness a45 for the surface of each water-repellent aluminum base material (Comparative Example 1 is an aluminum alloy plate), the surface shape was made by an atomic force microscope SII nanotechnology (currently Hitachi High-Tech Science). Measurement was performed to obtain three-dimensional data. A specific procedure will be described below. Cut the adhesion plate to 1cm square size, set it on the horizontal sample stage on the piezo scanner, approach the cantilever to the sample surface, and when it reaches the area where the atomic force works, scan in XY direction, At that time, the surface shape (wave structure) of the sample was captured by the displacement of the piezo in the Z direction.
  • a piezo scanner that can scan 150 ⁇ m in the XY direction and 10 ⁇ m in the Z direction was used.
  • a cantilever having a resonance frequency of 130 to 170 kHz and a spring constant of 6 to 14 N / m (OMCL-AC200TS, manufactured by Olympus Corporation) was used and measured in a DFM mode (Dynamic Force Mode). Further, the reference plane was obtained by correcting the slight inclination of the sample by least-square approximation of the obtained three-dimensional data. At the time of measurement, 256 ⁇ 256 points were measured in a 25 ⁇ m ⁇ 25 ⁇ m range of the surface.
  • the resolution in the XY direction was 0.1 ⁇ m
  • the resolution in the Z direction was 1 nm
  • the scan speed was 15 ⁇ m / sec.
  • three adjacent points were extracted, and the sum of the areas of the minute triangles formed by the three points was obtained to obtain the actual area Sx .
  • the surface area difference ⁇ S was determined by the above formula (i) from the obtained real area S x and the geometric measurement area S 0 .
  • the number of reference points where the inclination of the micro triangle is 45 degrees or more is obtained by subtracting the number of all reference points (the number of all data points from 256 ⁇ 256 points that do not have two adjacent points in a predetermined direction). In other words, the area ratio a45 of the portion having the inclination of 45 degrees or more is calculated by dividing by 255). The results are shown in Table 1 below.
  • Each manufactured water-repellent aluminum substrate (Comparative Example 1 is an aluminum alloy plate) is based on JIS Z 2241 (Metal Material Tensile Test Method) using an autograph (AGS-H, manufactured by Shimadzu Corporation) with a tensile speed of 2 mm.
  • a tensile test was performed using a test piece having a width of 25 mm and a length of 100 mm.
  • the maximum stress was read from the obtained stress-strain curve, and the average value (two-point average) was taken as the cross-sectional area (the cross-sectional area was calculated by actually measuring the thickness of the sample and multiplying that value by 25 mm).
  • the tensile stress was calculated by dividing by. The results are shown in Table 1 below.
  • the aluminum substrates produced in Comparative Examples 5 and 6 that do not satisfy any one of the surface area ratio ⁇ S (20% or more) and the steepness a45 (5 to 50%) are water repellent as in Comparative Examples 3 and 4. Was found to be inferior. Moreover, it turned out that water repellency improves more by providing a boehmite process and providing a boehmite layer from the comparison with Example 1 and Example 2.

Abstract

 本発明は、撥水性に優れ、熱交換器の空気側伝熱面の表面や送電線の素線の表面などに好適に用いることができる、撥水性アルミニウム基材およびその製造方法、ならびに、撥水性アルミニウム基材を用いた熱交換器および送電線を提供することを課題とする。本発明の撥水性アルミニウム基材は、アルミニウム支持体と撥水性皮膜とを有する撥水アルミニウム基材であって、撥水アルミニウム基材の表面が、平均開口径0.5μm超5μm以下の凹部を含む凹凸構造および平均開口径0.01μm以上0.5μm以下の凹部を含む凹凸構造が重畳した構造を有し、撥水アルミニウム基材の表面積比ΔSが20%以上であり、かつ、急峻度a45が5~50%である、撥水アルミニウム基材である。

Description

撥水アルミニウム基材、撥水アルミニウム基材の製造方法、熱交換器および送電線
 本発明は、撥水アルミニウム基材、撥水アルミニウム基材の製造方法、熱交換器および送電線に関する。
 エアコンや冷蔵庫等の熱交換器ユニットにおいては、暖房運転時における空気側伝熱面(例えば、フィン材)の表面上に発生する結露や着霜により性能が低下するため、その対策が重要課題の1つとなっている。
 そして、着霜防止または除霜促進を目的として、空気側伝熱面の表面に、撥水性塗膜等の表面処理を施すことが知られている。
 例えば、特許文献1には、「空気側伝熱面の表面に数マイクロメートルオーダー以上のマクロ凹凸が形成され、さらに、その表面上にナノメートルオーダーからマイクロメートルオーダーのミクロ凹凸を有する水和酸化物が形成された複合凹凸構造で、且つ、前記水和酸化物の有効面積拡大率が800倍以上を有し、しかも、その表面を臨界表面張力が20dyn/cm以下の疎水性化合物からなる撥水性被膜で被覆した構造としたものであることを特徴とする撥水性空気側伝熱面付き熱交換器。」が記載されている([請求項5])。
 一方、冬期における架空送電線への着雪は、断線や鉄塔到壊などの事故につながるおそれがあることが指摘されている。
 例えば、特許文献2には、「アルミニウムまたはアルミニウム合金からなる複数の素線をよりこんだ送電線において、各素線表面には数マイクロメートルから数百マイクロメートルの大きさのマクロ凹凸が形成され、該マクロ凹凸表面上にナノメートルオーダーから数マイクロメートルの大きさのミクロ凹凸を有する水和酸化物が形成され、さらに該ミクロ凹凸表面に臨界表面張力が20dyn/cm以下の疎水基を有する含フッ素シラン化合物からなる撥水性被膜が被覆されており、且つ前記素線表面が滑らかであるとして求めた表面積に対する前記ミクロ凹凸面の表面積の比を示す有効面積拡大率が800ないし数千であることを特徴とする難着雪送電線。」が記載されている([請求項1])。
特開平10-281690号公報 特開2000-040422号公報
 本発明者らは、特許文献1に記載された熱交換器の空気側伝熱面の表面に形成された複合凹凸構造や、特許文献2に記載された素線表面のマクロ凹凸およびミクロ凹凸について検討したところ、凹凸構造の形状によっては、撥水性皮膜による被覆が十分ではないことを明らかとした。
 そこで、本発明は、撥水性に優れ、熱交換器の空気側伝熱面の表面や送電線の素線の表面などに好適に用いることができる、撥水性アルミニウム基材およびその製造方法、ならびに、撥水性アルミニウム基材を用いた熱交換器および送電線を提供することを課題とする。
 本発明者らは、上記課題を解決すべく鋭意検討した結果、アルミニウム支持体と撥水性皮膜とを有し、所定の平均開口径を有する凹部を含む凹凸構造が重畳し、表面積比ΔSおよび急峻度a45が特定の範囲となる表面を有するアルミニウム基材が、撥水性に優れることを見出し、本発明を完成させた。
 すなわち、以下の構成により上記課題を達成することができることを見出した。
 [1] アルミニウム支持体と撥水性皮膜とを有する撥水アルミニウム基材であって、
 撥水アルミニウム基材の表面が、平均開口径0.5μm超5μm以下の凹部を含む凹凸構造および平均開口径0.01μm以上0.5μm以下の凹部を含む凹凸構造が重畳した構造を有し、
 撥水アルミニウム基材の表面積比ΔSが20%以上であり、かつ、急峻度a45が5~50%である、撥水アルミニウム基材。
 ここで、表面積比ΔSは、原子間力顕微鏡を用いて、表面の50μm×50μmの範囲を512×512点測定して得られる3次元データから近似三点法により得られる実面積Sxと、幾何学的測定面積S0とから、下記式(i)により求められる値であり、急峻度a45は、実面積Sxに対する角度45°以上の大きさの傾斜(傾斜度45°以上)を有する部分の面積率である。
 ΔS=(Sx-S0)/S0×100(%)・・・(i)
 [2] アルミニウム支持体と撥水性皮膜との間に、更にベーマイト層を有する、[1]に記載の撥水アルミニウム基材。
 [3] アルミニウム支持体が、Feを0.50~2.0質量%、Siを0.15~0.30質量%、Cuを0.050~0.15質量%、Tiを0.050質量%以下含有し、残部がAlおよび不可避不純物を含有するアルミニウム合金からなる、[1]または[2]に記載の撥水アルミニウム基材。
 [4] [1]に記載の撥水アルミニウム基材を作製する撥水アルミニウム基材の製造方法であって、
 アルミニウム板の表面に電気化学的粗面化処理を施し、平均開口径0.5μm超5μm以下の凹部を含む凹凸構造に平均開口径0.01μm以上0.5μm以下の凹部を含む凹凸構造が重畳された凹凸構造を有し、表面積比ΔSが20%以上であり、かつ、急峻度a45が5~50%であるアルミニウム支持体を作製する粗面化処理工程と、
 粗面化処理工程の後に、撥水処理を施し、アルミニウム支持体の表面に撥水性皮膜を形成する撥水処理工程と、を有する撥水アルミニウム基材の製造方法。
 [5] 粗面化処理工程が、硝酸を含む電解液を用いた電気化学的粗面化処理により表面に平均開口径0.5μm超5μm以下の凹部を含む凹凸構造を形成した後に、塩酸を含む電解液を用いた電気化学的粗面化処理により表面に平均開口径0.01μm以上0.5μm以下の凹部を含む凹凸構造を重畳形成する工程である、[4]に記載の撥水アルミニウム基材の製造方法。
 [6] 硝酸を含む電解液を用いた電気化学的粗面化処理の電気量が100~400C/dm2であり、
 塩酸を含む電解液を用いた電気化学的粗面化処理の電気量が10~150C/dm2である、[5]に記載の撥水アルミニウム基材の製造方法。
 [7] [2]に記載の撥水アルミニウム基材を作製する撥水アルミニウム基材の製造方法であって、
 粗面化処理工程と撥水処理工程の間に、ベーマイト処理を施してベーマイト層を形成するベーマイト処理工程を有する、[4]~[6]のいずれかに記載の撥水アルミニウム基材の製造方法。
 [8] 空気側伝熱面を有する熱交換器であって、
 空気側伝熱面の表面を構成する部材が、[1]~[3]のいずれかに記載の撥水アルミニウム基材である熱交換器。
 [9] アルミニウムまたはアルミニウム合金からなる複数の素線を縒り合わせた送電線であって、
 複数の素線の表面を構成する部材が、[1]~[3]のいずれかに記載の撥水アルミニウム基材である送電線。
 以下に説明するように、本発明によれば、撥水性に優れ、熱交換器の空気側伝熱面の表面や送電線の素線の表面などに好適に用いることができる、撥水性アルミニウム基材およびその製造方法、ならびに、撥水性アルミニウム基材を用いた熱交換器および送電線を提供することができる。
図1は、本発明の撥水性アルミニウム基材の表面における凹凸構造の一例を示す模式的な断面図である。 図2は、本発明の撥水性アルミニウム基材の表面における凹凸構造の他の一例を示す模式的な断面図である。
 以下、本発明について詳細に説明する。
 以下に記載する構成要件の説明は、本発明の代表的な実施態様に基づいてなされることがあるが、本発明はそのような実施態様に限定されるものではない。
 なお、本明細書において、「~」を用いて表される数値範囲は、「~」の前後に記載される数値を下限値および上限値として含む範囲を意味する。
[撥水性アルミニウム基材]
 本発明の撥水性アルミニウム基材(以下、「本発明のアルミニウム基材」ともいう。)は、アルミニウム支持体と撥水性皮膜とを有する撥水アルミニウム基材であって、撥水アルミニウム基材の表面が、平均開口径0.5μm超5μm以下の凹部を含む凹凸構造(以下、「中波構造」ともいう。)および平均開口径0.01μm以上0.5μm以下の凹部を含む凹凸構造(以下、「小波構造」ともいう。)が重畳した構造を有し、撥水アルミニウム基材の表面積比ΔSが20%以上であり、かつ、急峻度a45が5~50%である、撥水アルミニウム基材である。
 以下に、本発明のアルミニウム基材の表面形状および各構成を詳細に説明する。
 〔表面形状〕
 本発明のアルミニウム基材は、中波構造および小波構造が重畳した表面を有し、表面積比ΔSが20%以上であり、かつ、急峻度a45が5~50%である。
 このような表面形状を有することにより、撥水性が良好となる。
 本発明者らは、本発明の効果が得られる理由を以下のように推測する。なお、この推測によって本発明の範囲が限定的に解釈されるものではない。
 すなわち、後述する比較例6に示すように、表面積比ΔSが20%以上であっても急峻度a45が50%超であると接触角が低下する事実から、急峻度が大きいと、撥水性皮膜の被覆量(撥水剤の吸着量)が減少していると考えられる。これは、特にベーマイト処理を施した場合に顕著となることから、基材の表面と平行な方向に針状のベーマイト層(水酸化物層)が形成されていることが原因の1つと考えられる。
 そのため、本発明は、急峻度a45を低く保ちながら表面積比ΔSを大きくすることにより、撥水性皮膜が被覆されやすく、かつ、脱落しにくくなったことが撥水性の向上に寄与していると考えられる。
 <凹凸構造>
 本発明のアルミニウム基材は、上述した通り、中波構造と小波構造が重畳した構造を有する。
 ここで、図1を用いて、上記中波構造および上記小波構造を重畳して有する態様を説明する。
 図1に示す通り、中波構造1(凹部1a,凸部1b)および小波構造2(凹部2a,凸部2b)は、それぞれが略正弦波形を形成し、かつ、全体として1つの略正弦波形を構成するものである。
 なお、本発明において、「凹部を含む凹凸構造」とは、図1に示すように波型の構造のものであってもよく、図2に示すように凸部が表面の平坦部分で構成される凹部の繰り返し構造であってもよい。
 ここで、上記中波構造および上記小波構造の平均開口径の測定方法は、以下の通りである。
 (1)中波構造の平均開口径(平均波長)
 高分解能走査型電子顕微鏡(SEM)を用いてアルミニウム基材の表面を真上から倍率2000倍で撮影し、得られたSEM写真において、周囲が環状に連なっている凹部(重畳する小波構造における凹部を除く)を少なくとも50個抽出し、その直径を読み取って開口径とし、平均開口径を算出する。
 (2)小波構造の平均開口径(平均波長)
 高分解能走査型電子顕微鏡(SEM)を用いてアルミニウム基材の表面を真上から倍率50000倍で撮影し、得られたSEM写真において、周囲が環状に連なっている凹部(重畳する中波構造における凹部を除く)を少なくとも50個抽出し、その直径を読み取って開口径とし、平均開口径を算出する。
 本発明においては、上記中波構造は、小波構造の重畳が形成されやすく、その結果、撥水性がより向上する理由から、平均開口径が2~5μmであるのが好ましい。
 また、上記小波構造は、後述する任意のベーマイト層が形成されやすい理由から、平均開口径が0.1~0.5μmであるのが好ましい。
 <表面積比ΔS、急峻度a45>
 本発明のアルミニウム基材は、上述した通り、表面積比ΔSが20%以上であり、かつ、急峻度a45が5~50%である。
 また、本発明のアルミニウム基材は、表面積比ΔSが20~95%であるのが好ましく、急峻度a45が20~45%であるのが好ましい。
 ここで、表面積比ΔSは、原子間力顕微鏡を用いて、表面の50μm×50μmの範囲を512×512点測定して得られる3次元データから近似三点法により得られる実面積Sxと、幾何学的測定面積S0とから、下記式(i)により求められる値であり、急峻度a45は、実面積Sxに対する角度45°以上の大きさの傾斜(傾斜度45°以上)を有する部分の面積率である。
 ΔS=(Sx-S0)/S0×100(%)・・・(i)
 表面積比ΔSは、本発明のアルミニウム基材の表面における波構造の頻度を示すファクターの一つである。また、急峻度a45は、本発明のアルミニウム基材の表面における波構造のとがり具合を表すファクターである。
 本発明においては、表面積比ΔSおよび急峻度a45を求めるために、原子間力顕微鏡(Atomic Force Microscope:AFM)により表面形状を測定し、3次元データを求める。測定は、例えば、以下の条件で行うことができる。
 すなわち、アルミニウム基材を1cm角の大きさに切り取って、ピエゾスキャナー上の水平な試料台にセットし、カンチレバーを試料表面にアプローチし、原子間力が働く領域に達したところで、XY方向にスキャンし、その際、試料の表面形状(波構造)をZ方向のピエゾの変位でとらえる。ピエゾスキャナーは、XY方向について150μm、Z方向について10μm、走査可能なものを使用する。カンチレバーは共振周波数120~150kHz、バネ定数12~20N/mのもの(SI-DF20、NANOPROBE社製)を用い、DFMモード(Dynamic Force Mode)で測定する。また、求めた3次元データを最小二乗近似することにより試料のわずかな傾きを補正し基準面を求める。計測の際は、表面の50μm×50μmの範囲を512×512点測定する。XY方向の分解能は1.9μm、Z方向の分解能は1nm、スキャン速度は60μm/secとする。
 上記で求められた3次元データ(f(x,y))を用い、隣り合う3点を抽出し、その3点で形成される微小三角形の面積の総和を求め、実面積Sxとする。表面積差ΔSは、得られた実面積Sxと幾何学的測定面積S0とから、上記式(i)により求められる。
 また、上記で求められた三次元データ(f(x,y))を用い、各基準点と所定の方向(例えば、右と下)の隣接する2点との3点で形成される微小三角形と基準面とのなす角を各基準点について算出する。微小三角形の傾斜度が45度以上の基準点の個数を、全基準点の個数(全データの個数である512×512点から所定の方向の隣接する2点がない点の個数を減じた個数、すなわち、511×511点)で除して、傾斜度45度以上の部分の面積率a45を算出する。
 〔アルミニウム支持体〕
 本発明のアルミニウム基材が有するアルミニウム支持体は、後述する撥水性皮膜を支持するためのアルミニウム材であれば特に限定されず、公知のアルミニウム板を用いることができる。
 なお、アルミニウム板は、純アルミニウム板の他、アルミニウムを主成分とし、微量の異元素を含むアルミニウム合金板であってもよい。アルミニウム合金に含まれる異元素には、ケイ素、鉄、マンガン、銅、マグネシウム、クロム、亜鉛、ビスマス、ニッケル、チタンなどがあり、合金中の異元素の含有量は10質量%以下であるのが好ましい。
 本発明においては、アルミニウム支持体は、得られる撥水性アルミニウム基材の強度が高く(例えば、180N/mm2以上と)なる理由から、Feを0.50~2.0質量%、Siを0.15~0.30質量%、Cuを0.050~0.15質量%、Tiを0.050質量%以下含有し、残部がAlおよび不可避不純物を含有するアルミニウム合金から構成されているのが好ましい。
 また、本発明においては、後述する撥水アルミニウム基材の製造方法に記載している通り、アルミニウム支持体の表面は、平均開口径0.5μm超5μm以下の凹部を含む凹凸構造に平均開口径0.01μm以上0.5μm以下の凹部を含む凹凸構造が重畳された凹凸構造を有しているのが好ましい。
 このようなアルミニウム支持体の厚みは、撥水性アルミニウム基材の用途に応じて適宜変更できるため特に限定されないが、一般的に、0.01mm~1mm程度であるのが好ましく、例えば、熱交換器の空気側伝熱面に表面部材に用いる場合は、0.1mm~0.8mm程度であるのが好ましい。
 〔撥水性皮膜〕
 本発明のアルミニウム基材が有する撥水性皮膜は、疎水性化合物を含有する皮膜であれば特に限定されない。
 ここで、疎水性化合物とは、水に対して不溶な化合物である。水に対して不溶とは、水に溶解または安定分散しない性質のことである。具体的にいうと、水に対する溶解度が1g/L以下であること、または、水に対して安定な分散体を形成しないことを表す。
 また、このような疎水性化合物を含有する皮膜としては、例えば、特許文献2(特開2000-040422号公報)と同様、フッ素シラン化合物からなる皮膜であるのが好ましく、具体的には、パーフルオロカーボン基(CF3基)を有するアルコキシシラン(-Si(OR3)3,R=Cn2n+1)化合物からなる皮膜であるのがより好ましい。
 アルコキシシラン化合物としては、例えば、3,3,3-トリフルオロプロピルトリメトキシシラン、3,3,3-トリフルオロプロピルトリエトキシシラン、1H,1H,2H,2H-パーフルオロデシルトリメトキシシラン、1H,1H,2H,2H-パーフルオロデシルトリエトキシシラン等が挙げられ、これらを1種単独で用いてもよく、2種以上を併用してもよい。
 撥水性皮膜における疎水性化合物の含有量は、50質量%以上であるのが好ましく、60~90質量%であるのがより好ましい。
 撥水性皮膜の厚みは、撥水性アルミニウム基材の用途に応じて適宜変更できるため特に限定されないが、一般的に、0.01μm~10μmであるのが好ましく、例えば、熱交換器の空気側伝熱面に表面部材に用いる場合は、0.02μm~1μmであるのが好ましい。
 〔ベーマイト層〕
 本発明のアルミニウム基材は、表面積比ΔSがより高くなるため撥水性皮膜の厚み(塗布量)が多くなり、その結果、撥水性がより良好となる理由から、上述したアルミニウム支持体と撥水性皮膜との間に、ベーマイト層を有しているのが好ましい。
 ここで、ベーマイト層とは、アルミニウムが高温の水と反応して形成される擬ベーマイト質の水和酸化皮膜をいう。
 ベーマイト層の厚みは、撥水性アルミニウム基材の用途に応じて適宜変更できるため特に限定されないが、一般的に、0.01μm~5μmであるのが好ましく、例えば、熱交換器の空気側伝熱面に表面部材に用いる場合は、0.05μm~0.5μmであるのが好ましい。
[撥水性アルミニウム基材の製造方法]
 本発明の撥水性アルミニウム基材の製造方法(以下、「本発明のアルミニウム基材の製造方法」ともいう。)は、アルミニウム板の表面に電気化学的粗面化処理を施し、上述した中波構造に上述した小波構造が重畳された凹凸構造を有し、表面積比ΔSが20%以上であり、かつ、急峻度a45が5~50%であるアルミニウム支持体を作製する粗面化処理工程と、粗面化処理工程の後に、撥水処理を施し、アルミニウム支持体の表面に撥水性皮膜を形成し、撥水性アルミニウム基材を得る撥水処理工程とを有する。
 また、本発明のアルミニウム基材の製造方法は、本発明のアルミニウム基材がベーマイト層を有する場合は、粗面化処理工程と撥水処理工程の間に、ベーマイト処理を施してベーマイト層を形成するベーマイト処理工程を有する。
 以下に、本発明のアルミニウム基材の製造方法で用いるアルミニウム板ならびに粗面化処理工程および撥水処理工程ならびに任意のベーマイト処理工程を詳細に説明する。
 〔アルミニウム板〕
 本発明のアルミニウム基材の製造には、公知のアルミニウム板を用いることができる。
 本発明のアルミニウム基材の製造方法に用いることができるアルミニウム板は、上述したアルミニウム支持体と同様、純アルミニウム板の他、アルミニウムを主成分とし、微量の異元素を含むアルミニウム合金板であってもよい。アルミニウム合金に含まれる異元素には、ケイ素、鉄、マンガン、銅、マグネシウム、クロム、亜鉛、ビスマス、ニッケル、チタンなどがあり、合金中の異元素の含有量は10質量%以下であるのが好ましい。
 アルミニウム板は、その組成が特定されるものではなく、従来より公知公用の素材のもの、例えばJIS A 1050、JIS A 1100、JIS A 3103、JIS A 3005などを適宜利用することができるが、上述したアルミニウム支持体と同様、作製される撥水性アルミニウム基材の強度が高く(例えば、180N/mm2以上と)なる理由から、Feを0.50~2.0質量%、Siを0.15~0.30質量%、Cuを0.050~0.15質量%、Tiを0.050質量%以下含有し、残部がAlおよび不可避不純物を含有するアルミニウム合金から構成されているのが好ましい。
 また、アルミニウム板は通常ウェブ状で連続走行させながら処理され、その幅は10mm~1000mm程度、厚みはおよそ0.1mm~0.6mm程度である。この幅や厚みは、タブリードの大きさや、ユーザーの希望により適宜変更することができる。なお、後述する表面処理を施した後に、所望の幅に切断して利用することもできる。
 〔粗面化処理工程〕
 本発明の撥水性アルミニウム基材の製造方法が有する粗面化処理工程は、上述したアルミニウム板の表面に電気化学的粗面化処理(以下、「電解粗面化処理」ともいう。)を施し、上述した中波構造に上述した小波構造が重畳された凹凸構造を有し、表面積比ΔSが20%以上であり、かつ、急峻度a45が5~50%であるアルミニウム支持体を作製する工程である。
 <電解粗面化処理>
 電解粗面化処理には、通常の交流を用いた電気化学的粗面化処理に用いられる電解液を用いることができ、例えば、塩酸および/または硝酸を含む電解液を用いて、交流で電解処理する方法等が好適に挙げられる。
 具体的には、硝酸を含む電解液を用いた電解粗面化処理(以下、「硝酸電解」ともいう。)により表面に中波構造を形成させた後に、塩酸を含む電解液を用いた電解粗面化処理(以下、「塩酸電解」ともいう。)により表面に小波構造を重畳形成させる処理方法が好ましい。
 (硝酸電解)
 硝酸電解の条件は特に限定されないが、上述した中波構造の凹凸構造を容易に形成できる観点から、電解反応が終了した時点でのアルミニウム基材のアノード反応にあずかる電気量の総和が、1~1000C/dm2であるのが好ましく、100~400C/dm2であるのがより好ましく、150~300C/dm2であるのが更に好ましい。また、電流密度は20~100A/dm2であるのが好ましい。
 より具体的には、例えば、0.1~50質量%の硝酸を含む電解液中で、20~80℃の温度、時間1秒~10分の範囲で処理するのが好ましい。
 (塩酸電解)
 塩酸電解の条件は特に限定されないが、上述した小波構造の凹凸構造を容易に形成できる観点から、電解反応が終了した時点でのアルミニウム基材のアノード反応にあずかる電気量の総和が、10~150C/dm2であるのが好ましく、30~100C/dm2であるのがより好ましい。この際の電流密度は20~50A/dm2であるのが好ましい。
 より具体的には、例えば、0.1~10質量%の塩酸を含む電解液中で、20~80℃の温度、時間1秒~10分の範囲で処理するのが好ましい。
 <他の任意の処理工程>
 本発明においては、上述した電解粗面化処理の前に、アルミニウム板の表面にブラシグレイン等の機械的粗面化処理を施してもよい。
 〔撥水処理工程〕
 本発明の撥水性アルミニウム基材の製造方法が有する撥水処理工程は、上述した粗面化処理工程の後に、撥水処理を施し、アルミニウム支持体の表面に撥水性皮膜を形成する工程である。
 ここで、撥水処理としては、例えば、上述したアルコキシシラン化合物等をアルミニウム支持体の表面(ベーマイト層を有する場合はベーマイト層の表面)に塗布や気化させることのより吸着させる方法等が挙げられる。
 〔ベーマイト処理〕
 本発明の撥水性アルミニウム基材の製造方法が任意に有するベーマイト処理工程は、粗面化処理工程と撥水処理工程の間に、ベーマイト処理を施してアルミニウム支持体の表面上にベーマイト層(水和酸化皮膜)を形成する工程である。
 ここで、ベーマイト処理は、アルミニウムが高温の水と反応して擬ベーマイト質の水和酸化皮膜を生成する反応を用いたものであり、例えば、70~95℃の水(例えば、純水、脱イオン水)をpH7~12に調整し、アルミニウム支持体を浸漬することによって水和酸化皮膜を生成することができる。
[熱交換器]
 本発明の熱交換器は、空気側伝熱面を有する熱交換器であって、空気側伝熱面の表面を構成する部材が、本発明の撥水アルミニウム基材である熱交換器である。
 本発明の熱交換機は、空気側伝熱面の表面を構成する部材が本発明の撥水アルミニウム基材で構成されているため、着霜が防止され、また、除霜が促進されるため、通風性や熱交換率を高く維持することができる。
[送電線]
 本発明の送電線は、アルミニウムまたはアルミニウム合金からなる複数の素線を縒り合わせた送電線であって、複数の素線の表面を構成する部材が、本発明の撥水アルミニウム基材である送電線である。
 本発明の送電線は、素線の表面を構成する部材が、本発明の撥水アルミニウム基材で構成されているため、着雪を軽減ないし抑制することができるため、断線や鉄塔到壊などの事故を未然に防ぐことができる。
 以下に実施例に基づいて本発明をさらに詳細に説明する。以下の実施例に示す材料、使用量、割合、処理内容、処理手順等は、本発明の趣旨を逸脱しない限り適宜変更することができる。したがって、本発明の範囲は以下に示す実施例により限定的に解釈されるべきものではない。
[実施例1]
 <硝酸電解(A1)>
 厚さ0.1mm、幅20mm、長さ50mmのアルミニウム合金板(Fe:0.53質量%、Si:0.3質量%、Cu:0.12質量%、Ti:0.01質量%、残部:アルミニウムおよび不可避的不純物)を、35℃に保温した硝酸濃度10g/Lの電解槽に入れて、電気量総和が200C/dm2の条件下で電解処理を行った。
 交流電源波は、60Hzの台形波を使用した。電流密度は30A/dm2とした。
 <塩酸電解(A2)>
 次いで、硝酸電解を施したアルミニウム合金板を、35℃に保温した塩酸濃度10g/Lの電解槽に入れて、電気量総和が40C/dm2の条件下で電解処理を施し、アルミニウム支持体を作製した。
 交流電源波は、60Hzの台形波を使用した。電流密度は30A/dm2とした。
 <撥水化処理(C1)>
 作製したアルミニウム支持体の電気化学的粗面化処理を施した面に、1H,1H,2H,2H-パーフルオロデシルトリエトキシシランを気化させて化学吸着させることにより、厚み0.05μmの撥水性皮膜を形成し、撥水性アルミニウム基材を作製した。
[実施例2~6]
 塩酸電解と撥水化処理との間に、以下に示すベーマイト処理(B1)を施し、硝酸電解および塩酸電解の電気量を下記第1表に示す値に変更した以外は、実施例1と同様の方法により、撥水性アルミニウム基材を作製した。
 <ベーマイト処理(B1)>
 作製したアルミニウム支持体を、80℃、pH12.0の水溶液(水酸化ナトリウム濃度:1%)に、基板を70秒間浸せきさせ、厚み0.2μmのベーマイト層を形成した。
[実施例7]
 アルミニウム合金板として、厚さ0.1mm、幅20mm、長さ50mmの1N30材(Fe:0.43質量%、Si:0.13質量%、Cu:0.02質量%、Ti:0.01質量%、残部:アルミニウムおよび不可避的不純物)を用いた以外は、実施例2と同様の方法により、撥水性アルミニウム基材を作製した。
[実施例8]
 塩酸電解と撥水化処理との間に、ベーマイト処理(B1)に代えて、以下に示すベーマイト処理(B2)を施した以外は、実施例7と同様の方法により、撥水性アルミニウム基材を作製した。
 <ベーマイト処理(B2)>
 作製したアルミニウム支持体を、80℃、pH12.0の水溶液(水酸化ナトリウム濃度:1%)に、基板を15秒間浸せきさせ、厚み0.02μmのベーマイト層を形成した。
[比較例1]
 実施例1で硝酸電解(A1)を施す前に使用したアルミニウム合金板をそのまま評価した。
[比較例2]
 硝酸電解(A1)および塩酸電解(A2)を施さなかった以外は、実施例1と同様の方法により、撥水性アルミニウム基材を作製した。
[比較例3]
 以下に示す機械的粗面化処理を施した以外は、比較例2と同様の方法により、撥水性アルミニウム基材を作製した。なお、機械的粗面化処理により、中波構造の凹部の平均開口径よりも大きい平均開口径5μm超9μm以下の凹部を含む凹凸構造(以下、「大波構造」という。)が形成されることが分かった。
 <機械的粗面化処理(M1)>
 厚さ0.1mm、幅20mm、長さ50mmのアルミニウム合金板(Fe:0.53質量%、Si:0.3質量%、Cu:0.12質量%、Ti:0.01質量%、残部:アルミニウムおよび不可避的不純物)の表面に、平均粒径100μmのパミストンを研磨剤とする、比重1.12のスラリー液を供給し、回転するローラ状ナイロンブラシを5本にて、アルミニウム板上を移動させて、表面の粗面化処理を行った。
 使用した、ナイロンブラシの直径は0.9mm、毛密度は450本/cm2で、ブラシ回転数は150rpmとした。
[比較例4]
 機械的粗面化処理(M1)を施した後、実施例2と同様のベーマイト処理(B1)を施した以外は、比較例3と同様の方法により、撥水性アルミニウム基材を作製した。
[比較例5]
 機械的粗面化処理(M1)に代えて、以下に示す機械的粗面化処理(M2)を施した以外は、比較例4と同様の方法により、撥水性アルミニウム基材を作製した。
 <機械的粗面化処理(M2)>
 厚さ0.1mm、幅20mm、長さ50mmのアルミニウム合金板(Fe:0.53質量%、Si:0.3質量%、Cu:0.12質量%、Ti:0.01質量%、残部:アルミニウムおよび不可避的不純物)の表面に、平均粒径100μmのパミストンを研磨剤とする、比重1.12のスラリー液を供給し、回転するローラ状ナイロンブラシを5本にて、アルミニウム板上を移動させて、表面の粗面化処理を行った。
 使用した、ナイロンブラシの直径は0.9mm、毛密度は450本/cm2で、ブラシ回転数は250rpmとした。
[比較例6]
 機械的粗面化処理(M1)に代えて、以下に示す機械的粗面化処理(M3)を施した以外は、比較例4と同様の方法により、撥水性アルミニウム基材を作製した。
 <機械的粗面化処理(M3)>
 厚さ0.1mm、幅20mm、長さ50mmのアルミニウム合金板(Fe:0.53質量%、Si:0.3質量%、Cu:0.12質量%、Ti:0.01質量%、残部:アルミニウムおよび不可避的不純物)の表面に、平均粒径100μmのパミストンを研磨剤とする、比重1.12のスラリー液を供給し、回転するローラ状ナイロンブラシを5本にて、アルミニウム板上を移動させて、表面の粗面化処理を行った。
 使用した、ナイロンブラシの直径は0.9mm、毛密度は450本/cm2で、ブラシ回転数は400rpmとした。
 〔表面形状〕
 <凹凸構造>
 作製した各撥水性アルミニウム基材(比較例1はアルミニウム合金板)の表面を電子顕微鏡によって倍率2000倍(大波構造および中波構造の観察倍率)ならびに倍率50000倍(小波構造の観察倍率)で観察し、凹凸構造(大波構造、中波構造および小波構造)における凹部の平均開口径を測定した。これらの結果を下記第1表に示す。なお、下記第1表中、「-」で表される項目は、当該項目が存在していないことを示す。
 <表面積比ΔSおよび急峻度a45>
 作製した各撥水性アルミニウム基材(比較例1はアルミニウム合金板)の表面について表面積差ΔSおよび急峻度a45を求めるために、原子間力顕微鏡SIIナノテクノロジー(現日立ハイテクサイエンス)製により表面形状を測定し、3次元データを求めた。以下、具体的な手順を説明する。
 防着板を1cm角の大きさに切り取って、ピエゾスキャナー上の水平な試料台にセットし、カンチレバーを試料表面にアプローチし、原子間力が働く領域に達したところで、XY方向にスキャンし、その際、試料の表面形状(波構造)をZ方向のピエゾの変位でとらえた。ピエゾスキャナーは、XY方向について150μm、Z方向について10μm、走査可能なものを使用した。カンチレバーは共振周波数130~170kHz、バネ定数6~14N/mのもの(OMCL-AC200TS、オリンパス株式会社製)を用い、DFMモード(Dynamic Force Mode)で測定した。また、求めた3次元データを最小二乗近似することにより試料のわずかな傾きを補正し基準面を求めた。
 計測の際は、表面の25μm×25μmの範囲を256×256点測定した。XY方向の分解能は0.1μm、Z方向の分解能は1nm、スキャン速度は15μm/secとした。
 上記で求められた3次元データ(f(x,y))を用い、隣り合う3点を抽出し、その3点で形成される微小三角形の面積の総和を求め、実面積Sxとした。表面積差ΔSは、得られた実面積Sxと幾何学的測定面積S0とから、上記式(i)により求めた。
 また、上記で求められた三次元データ(f(x,y))を用い、各基準点と所定の方向(例えば、右と下)の隣接する2点との3点で形成される微小三角形と基準面とのなす角を各基準点について算出する。微小三角形の傾斜度が45度以上の基準点の個数を、全基準点の個数(全データの個数である256×256点から所定の方向の隣接する2点がない点の個数を減じた個数、すなわち、255×255点)で除して、傾斜度45度以上の部分の面積率a45を算出する。
 この結果を下記第1表に示す。
 〔評価〕
 <強度>
 作製した各撥水性アルミニウム基材(比較例1はアルミニウム合金板)について、JIS Z 2241(金属材料引張試験方法)に基づき、オートグラフ(AGS-H、島津製作所製)を用い、引張速度を2mm/分とし、幅25mm×長さ100mmの試験片を用いて引張試験を行った。
 次いで、得られた応力-歪曲線から最大応力を読み取り、平均値(2点平均)を断面積(断面積は、試料の厚さを実測し、その値に25mmを乗じることによって算出した。)で割って、引張応力を計算した。結果を下記第1表に示す。
 <接触角>
 作製した各撥水性アルミニウム基材(比較例1はアルミニウム合金板)の表面について、協和界面科学株式会社製DROP MASTER 700用いて、蒸留水の水滴接触角を測定した。結果を下記第1表に示す。
Figure JPOXMLDOC01-appb-T000001
 第1表に示す結果から、平均開口径0.5μm超5μm以下の凹部を含む凹凸構造および平均開口径0.01μm以上0.5μm以下の凹部を含む凹凸構造が重畳した構造を有し、表面積比ΔSが20%以上であり、かつ、急峻度a45が5~50%である、アルミニウム基材は、これら規定をいずれも満たさない比較例1~4で作製したアルミニウム基材と比較して、いずれも接触角が高くなり、撥水性が良好であることが分かった(実施例1~8)。
 また、表面積比ΔS(20%以上)および急峻度a45(5~50%)のいずれか一方を満たさない比較例5および6で作製したアルミニウム基材は、比較例3および4と同様、撥水性が劣ることが分かった。
 また、実施例1と実施例2との対比から、ベーマイト処理を施してベーマイト層を設けることにより、撥水性がより向上することが分かった。
 また、実施例2~6と実施例7との対比から、Feを0.50~2.0質量%、Siを0.15~0.30質量%、Cuを0.050~0.15質量%、Tiを0.050質量%以下含有するアルミニウム合金板を用いると、強度が180N/mm2以上と高くなることが分かった。
 また、実施例2と実施例3および4との対比から、中波構造の平均開口径が2~5μmであると、撥水性がより向上することが分かった。
 1 中波構造
 1a 凹部
 1b 凸部
 2 小波構造
 2a 凹部
 2b 凸部

Claims (9)

  1.  アルミニウム支持体と撥水性皮膜とを有する撥水アルミニウム基材であって、
     前記撥水アルミニウム基材の表面が、平均開口径0.5μm超5μm以下の凹部を含む凹凸構造および平均開口径0.01μm以上0.5μm以下の凹部を含む凹凸構造が重畳した構造を有し、
     前記撥水アルミニウム基材の表面積比ΔSが20%以上であり、かつ、急峻度a45が5~50%である、撥水アルミニウム基材。
     ここで、表面積比ΔSは、原子間力顕微鏡を用いて、表面の50μm×50μmの範囲を512×512点測定して得られる3次元データから近似三点法により得られる実面積Sxと、幾何学的測定面積S0とから、下記式(i)により求められる値であり、急峻度a45は、前記実面積Sxに対する角度45°以上の大きさの傾斜(傾斜度45°以上)を有する部分の面積率である。
     ΔS=(Sx-S0)/S0×100(%)・・・(i)
  2.  前記アルミニウム支持体と前記撥水性皮膜との間に、更にベーマイト層を有する、請求項1に記載の撥水アルミニウム基材。
  3.  前記アルミニウム支持体が、Feを0.50~2.0質量%、Siを0.15~0.30質量%、Cuを0.050~0.15質量%、Tiを0.050質量%以下含有し、残部がAlおよび不可避不純物を含有するアルミニウム合金からなる、請求項1または2に記載の撥水アルミニウム基材。
  4.  請求項1に記載の撥水アルミニウム基材を作製する撥水アルミニウム基材の製造方法であって、
     アルミニウム板の表面に電気化学的粗面化処理を施し、平均開口径0.5μm超5μm以下の凹部を含む凹凸構造に平均開口径0.01μm以上0.5μm以下の凹部を含む凹凸構造が重畳された凹凸構造を有し、表面積比ΔSが20%以上であり、かつ、急峻度a45が5~50%であるアルミニウム支持体を作製する粗面化処理工程と、
     前記粗面化処理工程の後に、撥水処理を施し、前記アルミニウム支持体の表面に撥水性皮膜を形成する撥水処理工程と、を有する撥水アルミニウム基材の製造方法。
  5.  前記粗面化処理工程が、硝酸を含む電解液を用いた電気化学的粗面化処理により表面に平均開口径0.5μm超5μm以下の凹部を含む凹凸構造を形成した後に、塩酸を含む電解液を用いた電気化学的粗面化処理により前記表面に平均開口径0.01μm以上0.5μm以下の凹部を含む凹凸構造を重畳形成する工程である、請求項4に記載の撥水アルミニウム基材の製造方法。
  6.  前記硝酸を含む電解液を用いた電気化学的粗面化処理の電気量が100~400C/dm2であり、
     前記塩酸を含む電解液を用いた電気化学的粗面化処理の電気量が10~150C/dm2である、請求項5に記載の撥水アルミニウム基材の製造方法。
  7.  請求項2に記載の撥水アルミニウム基材を作製する撥水アルミニウム基材の製造方法であって、
     前記粗面化処理工程と前記撥水処理工程の間に、ベーマイト処理を施してベーマイト層を形成するベーマイト処理工程を有する、請求項4~6のいずれか1項に記載の撥水アルミニウム基材の製造方法。
  8.  空気側伝熱面を有する熱交換器であって、
     前記空気側伝熱面の表面を構成する部材が、請求項1~3のいずれか1項に記載の撥水アルミニウム基材である熱交換器。
  9.  アルミニウムまたはアルミニウム合金からなる複数の素線を縒り合わせた送電線であって、
     複数の前記素線の表面を構成する部材が、請求項1~3のいずれか1項に記載の撥水アルミニウム基材である送電線。
PCT/JP2015/057738 2014-03-27 2015-03-16 撥水アルミニウム基材、撥水アルミニウム基材の製造方法、熱交換器および送電線 WO2015146681A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014067020 2014-03-27
JP2014-067020 2014-03-27

Publications (1)

Publication Number Publication Date
WO2015146681A1 true WO2015146681A1 (ja) 2015-10-01

Family

ID=54195204

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/057738 WO2015146681A1 (ja) 2014-03-27 2015-03-16 撥水アルミニウム基材、撥水アルミニウム基材の製造方法、熱交換器および送電線

Country Status (1)

Country Link
WO (1) WO2015146681A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018009783A (ja) * 2016-07-12 2018-01-18 ドゥサン ヘヴィー インダストリーズ アンド コンストラクション カンパニー リミテッド 凝縮器伝熱管のコーティングシステム
WO2018182036A1 (ja) * 2017-03-31 2018-10-04 ダイキン工業株式会社 熱交換器および空気調和装置
CN110678257A (zh) * 2017-06-21 2020-01-10 富士胶片株式会社 铝复合材料
WO2020059728A1 (ja) * 2018-09-19 2020-03-26 日本軽金属株式会社 アルミニウム部材及びその製造方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03100182A (ja) * 1989-09-14 1991-04-25 Mitsubishi Materials Corp 撥水、撥油性を有するアルミニウム材料
JPH06104147A (ja) * 1992-09-18 1994-04-15 Sumitomo Light Metal Ind Ltd 低圧用電解コンデンサAl陽極箔の製造方法
JPH08258440A (ja) * 1995-03-22 1996-10-08 Konica Corp 平版印刷版用支持体及びその製造方法並びに感光性平版印刷版
JP2000040422A (ja) * 1998-07-23 2000-02-08 Hitachi Ltd 難着雪送電線及びその製造方法
JP2000239895A (ja) * 1999-02-24 2000-09-05 Sumitomo Light Metal Ind Ltd 撥水性に優れたアルミニウム表面処理材及びその製造方法
JP2006095831A (ja) * 2004-09-29 2006-04-13 Fuji Photo Film Co Ltd 平版印刷版原版

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03100182A (ja) * 1989-09-14 1991-04-25 Mitsubishi Materials Corp 撥水、撥油性を有するアルミニウム材料
JPH06104147A (ja) * 1992-09-18 1994-04-15 Sumitomo Light Metal Ind Ltd 低圧用電解コンデンサAl陽極箔の製造方法
JPH08258440A (ja) * 1995-03-22 1996-10-08 Konica Corp 平版印刷版用支持体及びその製造方法並びに感光性平版印刷版
JP2000040422A (ja) * 1998-07-23 2000-02-08 Hitachi Ltd 難着雪送電線及びその製造方法
JP2000239895A (ja) * 1999-02-24 2000-09-05 Sumitomo Light Metal Ind Ltd 撥水性に優れたアルミニウム表面処理材及びその製造方法
JP2006095831A (ja) * 2004-09-29 2006-04-13 Fuji Photo Film Co Ltd 平版印刷版原版

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018009783A (ja) * 2016-07-12 2018-01-18 ドゥサン ヘヴィー インダストリーズ アンド コンストラクション カンパニー リミテッド 凝縮器伝熱管のコーティングシステム
US10155245B2 (en) 2016-07-12 2018-12-18 DOOSAN Heavy Industries Construction Co., LTD System for coating heat transfer tube for condenser
WO2018182036A1 (ja) * 2017-03-31 2018-10-04 ダイキン工業株式会社 熱交換器および空気調和装置
JP2018173265A (ja) * 2017-03-31 2018-11-08 ダイキン工業株式会社 熱交換器および空気調和装置
CN110678257A (zh) * 2017-06-21 2020-01-10 富士胶片株式会社 铝复合材料
EP3643402A4 (en) * 2017-06-21 2020-06-24 FUJIFILM Corporation ALUMINUM COMPOSITE
WO2020059728A1 (ja) * 2018-09-19 2020-03-26 日本軽金属株式会社 アルミニウム部材及びその製造方法
JPWO2020059728A1 (ja) * 2018-09-19 2021-09-24 日本軽金属株式会社 アルミニウム部材及びその製造方法
JP7306405B2 (ja) 2018-09-19 2023-07-11 日本軽金属株式会社 アルミニウム部材及びその製造方法

Similar Documents

Publication Publication Date Title
WO2015146681A1 (ja) 撥水アルミニウム基材、撥水アルミニウム基材の製造方法、熱交換器および送電線
Xiao et al. Superhydrophobic CuO nanoneedle-covered copper surfaces for anticorrosion
Khorsand et al. Corrosion resistance and long-term durability of super-hydrophobic nickel film prepared by electrodeposition process
Hu et al. Facile fabrication of superhydrophobic zinc coatings with corrosion resistance via an electrodeposition process
JP4603402B2 (ja) 微細構造体およびその製造方法
Park et al. A facile fabrication method for corrosion-resistant micro/nanostructures on stainless steel surfaces with tunable wettability
Zhang et al. Facile fabrication of superhydrophobic nanostructures on aluminum foils with controlled-condensation and delayed-icing effects
JP6103811B2 (ja) 接続部品用導電材料
Chen et al. One-step electrodeposition process to fabricate cathodic superhydrophobic surface
US11499243B2 (en) Method for manufacturing aluminum alloy anodized film having superhydrophobic surface
CN107249766B (zh) 铝箔、电子设备、辊对辊用铝箔、以及铝箔的制造方法
Xiao et al. Electrodeposited nanostructured cobalt film and its dual modulation of both superhydrophobic property and adhesiveness
KR101150173B1 (ko) 초소수성 표면을 갖는 적층체 및 이의 제조방법
Khedir et al. Robust superamphiphobic nanoscale copper sheet surfaces produced by a simple and environmentally friendly technique
JP6583317B2 (ja) 皮膜被覆溶融Zn−Al−Mg系めっき鋼板およびその製造方法
WO2018235659A1 (ja) アルミニウム複合材料
TW201618362A (zh) 壓延銅箔及使用其之二次電池用集電體
JP4768478B2 (ja) 微細構造体の製造方法および微細構造体
US11225044B2 (en) Porous copper composite and method thereof
KR20160043990A (ko) 전반사 특성과 내식성이 우수한 Al 피복 강판 및 이의 제조법
WO2013146137A1 (ja) 真空成膜装置用防着板、真空成膜装置、および、真空成膜方法
JPH09316693A (ja) フッ素樹脂塗装アルミニウム合金部材およびその製造方法
JP4611419B2 (ja) はんだ濡れ性、挿抜性に優れた銅合金すずめっき条
KR101617611B1 (ko) 초친수성 금속 표면 형성방법
JP5389097B2 (ja) Snめっき材

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15769870

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15769870

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP