WO2015146544A1 - Method for manufacturing mask for use in vapor deposition, and method for manufacturing display device - Google Patents

Method for manufacturing mask for use in vapor deposition, and method for manufacturing display device Download PDF

Info

Publication number
WO2015146544A1
WO2015146544A1 PCT/JP2015/056641 JP2015056641W WO2015146544A1 WO 2015146544 A1 WO2015146544 A1 WO 2015146544A1 JP 2015056641 W JP2015056641 W JP 2015056641W WO 2015146544 A1 WO2015146544 A1 WO 2015146544A1
Authority
WO
WIPO (PCT)
Prior art keywords
mask
manufacturing
opening position
shift amount
position shift
Prior art date
Application number
PCT/JP2015/056641
Other languages
French (fr)
Japanese (ja)
Inventor
石川 博一
昌海 沖田
健太郎 堺
明 西塔
Original Assignee
ソニー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニー株式会社 filed Critical ソニー株式会社
Priority to KR1020167025009A priority Critical patent/KR102289109B1/en
Priority to CN201580015439.4A priority patent/CN106133182B/en
Publication of WO2015146544A1 publication Critical patent/WO2015146544A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/12Organic material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/04Coating on selected surface areas, e.g. using masks
    • C23C14/042Coating on selected surface areas, e.g. using masks using masks
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/16Deposition of organic active material using physical vapour deposition [PVD], e.g. vacuum deposition or sputtering
    • H10K71/164Deposition of organic active material using physical vapour deposition [PVD], e.g. vacuum deposition or sputtering using vacuum deposition
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/16Deposition of organic active material using physical vapour deposition [PVD], e.g. vacuum deposition or sputtering
    • H10K71/166Deposition of organic active material using physical vapour deposition [PVD], e.g. vacuum deposition or sputtering using selective deposition, e.g. using a mask

Definitions

  • the present disclosure relates to a method for manufacturing a vapor deposition mask and a method for manufacturing a display device used at the time of vapor deposition of a material.
  • an organic EL (Electro-Luminescence) display device light from a white light emitting layer formed over all pixels is separated into red (R), green (G), and blue (B) color light using a color filter.
  • RGB red
  • G green
  • B blue
  • each light-emitting layer is formed by a vapor deposition method (vacuum vapor deposition method) using a metal mask.
  • Metal masks are formed with a plurality of openings serving as through holes for the vapor deposition material, and are produced by an electroforming (plating) method, or those obtained by etching a thin metal base material by etching.
  • This metal mask is rarely used alone in the vapor deposition process, and is used in a state where it is assembled by welding or the like to a highly rigid frame, for example. This is because the thickness of the metal mask is thin and the position of the opening cannot be accurately maintained by itself. Therefore, for example, it is pulled with a predetermined elongation rate in the biaxial direction and welded to the frame.
  • the opening position accuracy is required for the metal mask as described above.
  • a metal mask is pulled and pasted on a frame
  • Patent Document 1 there is a method of adjusting the opening position of the outer periphery of the mask after the metal mask is welded to the frame
  • Patent Document 1 Although the technique disclosed in Patent Document 1 and the like can design an ideal opening position at the outer periphery of the mask, there is room for improvement in the opening position accuracy at the center of the mask. Therefore, realization of a highly accurate vapor deposition mask is desired.
  • a method for manufacturing a deposition mask includes a step of forming a first mask having a plurality of first openings as passage holes for a deposition material, and the first mask is stretched on a frame.
  • correction is performed in consideration of the opening position shift amount when the first opening is stretched when the position of the first opening is designed.
  • a method for manufacturing a display device includes a step of forming a vapor deposition mask and a step of patterning a material layer using the vapor deposition mask.
  • a first mask having a plurality of first openings is formed as a passage hole for the vapor deposition material, the first mask is stretched over the frame, and the first mask is When designing the position of one opening, correction is performed in consideration of the amount of opening position shift when the frame is stretched.
  • a first mask having a plurality of first openings is formed as a through hole for a vapor deposition material, and then the first mask is used. Tension on the frame.
  • the step of forming the first mask when the position of the first opening is designed, correction is performed in consideration of the opening position shift amount when the first opening is stretched.
  • the first opening is arranged at a desired position, and an ideal opening position design is possible.
  • a first mask having a plurality of first openings is formed as a through hole for a vapor deposition material, and then the first mask is used.
  • correction is performed in consideration of the opening position shift amount when the first opening is stretched, when designing the position of the first opening. This makes it possible to design an ideal opening position by stretching the first mask on the frame. Therefore, a highly accurate vapor deposition mask can be realized.
  • FIG. 2 is an XY plan view illustrating a configuration of a correction value setting metal mask illustrated in FIG. 1.
  • FIG. 5 is a schematic diagram showing an opening position and thickness distribution of the metal mask shown in FIG. 4 before frame welding. It is a schematic diagram for demonstrating opening position and thickness distribution at the time of welding the metal mask shown to FIG. 5A to a flame
  • FIG. 10 is a characteristic diagram illustrating thickness distributions in a plurality of series illustrated in FIG. 9. It is a characteristic view showing the opening position shift amount computed from the thickness distribution shown in FIG. It is the figure which represented typically the structure of opening vicinity. It is a characteristic view for demonstrating the correction value set based on the opening position shift amount shown in FIG. It is a characteristic view for demonstrating the correction value set based on the opening position shift amount shown in FIG.
  • FIG. 19A It is a characteristic view showing the opening position shift amount based on the thickness distribution at the measurement point shown in FIG. 19A. It is a characteristic view showing the opening position shift amount computed based on the thickness distribution of the sample of a metal mask. It is a characteristic view showing the opening position shift amount computed based on the thickness distribution of the sample of a metal mask. It is a characteristic view showing the opening position shift amount computed based on the thickness distribution of the sample of a metal mask. It is a characteristic view showing the opening position shift amount computed based on the thickness distribution of the sample of a metal mask. It is a characteristic view showing the opening position shift amount computed based on the thickness distribution of the sample of a metal mask. FIG.
  • 25 is a characteristic diagram showing an average value for each area of the samples shown in FIGS. 20 to 24; It is a characteristic view showing an opening position shift amount (A) before correction and an opening position shift amount (B) after correction of a sample of a metal mask according to Modification 1. It is a characteristic view showing an opening position shift amount (A) before correction and an opening position shift amount (B) after correction of a sample of a metal mask according to Modification 1. It is a characteristic view showing an opening position shift amount (A) before correction and an opening position shift amount (B) after correction of a sample of a metal mask according to Modification 1.
  • FIG. 10 is a schematic diagram for explaining a calculation model of a metal mask according to Modification 2.
  • FIG. 10 is a schematic diagram for explaining a calculation model of a metal mask according to Modification 2.
  • FIG. 10 is a schematic diagram for explaining a calculation model of a metal mask according to Modification 2.
  • FIG. 10 is a schematic diagram for explaining a calculation model of a metal mask according to Modification 2.
  • FIG. 32A It is a characteristic view showing the measured value of opening position shift amount, and the calculated value using the model shown to FIG. 32A. It is a characteristic view showing the actual value of opening position shift amount, and the calculated value using the model shown to FIG. 32B. It is a characteristic view showing the actual value of opening position shift amount, and the calculated value using the model shown in Drawing 32C. It is a flowchart showing the manufacturing process of the display apparatus which concerns on an application example. It is a schematic diagram for demonstrating the organic layer vapor deposition process shown in FIG.
  • First embodiment an example of a mask manufacturing process in which correction is performed based on an opening position shift amount at the time of stretching when designing an opening position
  • Second embodiment (example in which correction based on opening position shift amount is performed for each area)
  • Modification 1 (example in which area-specific correction values are obtained from the average value of a plurality of masks) 4).
  • Modification 2 (example in which parameters other than thickness are taken into account when calculating the opening position shift amount) 5.
  • Application example Example of manufacturing method of organic EL display device
  • FIG. 1 illustrates an XY plane configuration of an evaporation mask (evaporation mask 1) according to the first embodiment of the present disclosure.
  • FIG. 1 also shows a cross-sectional configuration of a metal mask (metal mask M1).
  • the vapor deposition mask 1 is used when an organic layer is vapor-deposited in a manufacturing process of a display device (an organic EL display device described later) using an organic EL element, for example.
  • the vapor deposition mask 1 includes, for example, a metal mask M1 serving as a mask body and a frame 110 on which the metal mask M1 is stretched.
  • the metal mask M1 is a metal foil made of a material containing at least one of nickel (Ni), invar (Fe / Ni alloy), copper (Cu), and the like, and has a thickness of about 10 to 50 ⁇ m, for example. .
  • a plurality of openings H1 are formed in a pattern as passage holes for allowing the vapor deposition material to pass therethrough.
  • the plurality of openings H1 are two-dimensionally arranged in a matrix, for example, as a whole.
  • One opening H1 corresponds to an element region for forming one pixel region of the display device.
  • the shape (planar shape) of the opening H1 is, for example, a rectangular shape, a square shape, a circular shape, or the like.
  • a low molecular organic material is deposited through the opening H1.
  • the “metal mask M1” of the present embodiment corresponds to a specific example of “first mask” of the present disclosure
  • the opening H1 corresponds to a specific example of “first opening” of the present disclosure. .
  • the metal mask M1 is fixed (stretched) to the frame 110 in a state where a predetermined tension is applied, for example. Specifically, the outer edge portion of the metal mask M1 is bonded to the frame 110 by, for example, spot welding (for example, by electric resistance or laser).
  • Examples of the formation method of the metal mask M1 include a method using electroforming (electroplating) or etching.
  • electroforming for example, a thin film layer made of the above-described metal is grown (electrodeposited) on a patterned base material (matrix, base layer).
  • the metal foil is patterned by etching using, for example, a photolithography method.
  • the thin film metal mask M1 is assembled to the frame 110 made of a highly rigid metal by welding or the like.
  • the thickness of the metal mask M1 is not uniform in the plane but has a distribution. In particular, when the metal mask M1 is formed by electroforming among the above methods, such a thickness distribution occurs in the mask surface.
  • the frame 110 is a frame-like member for holding the metal mask M1, and is made of a highly rigid metal or the like.
  • the outer shape of the frame 110 is, for example, a rectangular shape, and a metal mask M1 is stretched on four sides along the biaxial direction.
  • FIG. 2 shows a flow of manufacturing the deposition mask 1.
  • the evaporation mask 1 is used.
  • it is manufactured as follows. That is, first, an electroforming mask Mf0 is produced (step S11). Next, optimum electroforming conditions are set (or adjusted) using the produced electroforming mask Mf0 (step S12). Next, a metal mask (metal mask M0) is produced using the set electroforming conditions (step S13). Next, the opening position shift amount is calculated using the metal mask M0 (step S14).
  • step S15 a correction value is set based on the calculated opening position shift amount (step S15).
  • an electroforming mask Mf1 for forming the metal mask M1 is produced by the opening position design reflecting the correction value (step S16).
  • a metal mask M1 is produced by electroforming using the electroforming mask Mf1 (step S17).
  • the metal mask 1 thus manufactured is welded to the frame 110 (step S18), and finally the opening position accuracy is confirmed (step S19). In this way, the vapor deposition mask 1 is completed. Details of each step (steps S11 to S19) will be described below.
  • the electroforming mask Mf0 is a mask for patterning a base material for plating the metal mask M0.
  • the metal mask M0 is a mask sample for calculating an opening position shift amount, which will be described later, and setting a correction value.
  • the metal mask M0 is not left on the completed vapor deposition mask 1 (not shipped) and is finally discarded.
  • the electroforming mask Mf0 for example, a mask having the same accuracy as the electroforming mask Mf1 (described later) may be used. However, the electroforming mask Mf0 is finally (after the aperture correction). Is not required, and the electroforming mask Mf1 is used instead.
  • an inexpensive photomask such as blue plate glass or film emulsion may be used as the electrocasting mask Mf0 for determining the conditions.
  • the design accuracy of blue plates and films is inferior to that of quartz or the like, it can be said that the accuracy is sufficient for the purpose of setting conditions and setting correction values only.
  • the “metal mask M0” of the present embodiment corresponds to a specific example of “second mask” of the present disclosure
  • the opening H0 corresponds to a specific example of “second opening” of the present disclosure. .
  • FIG. 3 shows an example of determining the electroforming conditions.
  • electroforming conditions for example, processing time, partition layout in the plating bath, etc.
  • the metal mask M0 n (where n is an integer greater than or equal to 1) is formed.
  • predetermined electroforming conditions are set (step S21), and a metal mask (metal mask M0 1 ) is formed by plating using the set conditions (step S22). Then, by measuring the fabricated metal mask M0 1 thickness (plate thickness) (step S23), and calculates the design errors based on the measured thickness (step S24). The calculation method of the position error using this thickness is the same as the calculation method of the opening position shift amount described later. Then, it is determined whether or not the calculated design error is equal to or less than a predetermined threshold (whether or not a desired accuracy is obtained) (step S25).
  • the case design error in the metal mask M0 1 is equal to or less than a predetermined threshold value (Y in step S25), and the metal mask M0 1, a metal mask M0 above.
  • a predetermined threshold value Y in step S25
  • the metal mask M0 1 a metal mask M0 above.
  • the metal mask A metal mask M0 2
  • the metal mask A metal mask M0 2
  • the metal mask is repeatedly formed until the desired accuracy is obtained, and the optimum electroforming conditions are selected.
  • the metal mask M0 n formed under electroforming conditions that can finally achieve the desired accuracy is referred to as a metal mask M0. In this way, a metal mask M0 is produced.
  • FIG. 4 shows the XY plane configuration of the metal mask M0 before frame welding.
  • the plurality of openings H0 are arranged at equal intervals along the biaxial direction.
  • images when the metal mass M0 is attached to the frame are shown in FIGS. 5A and 5B.
  • 5A and 5B also show a cross-sectional configuration for explaining the thickness of the mask. In this way, when the metal mask M0 is stretched, the metal mask M0 is welded to the frame 110 while being pulled in all directions (biaxial direction) at a predetermined elongation rate, and then the tensile force T is released.
  • the opening H0 is shifted (shifted) from the ideal position (design position) as shown in FIG. 5B after welding to the frame 110. Further, the position shift amount of the opening H0 is not uniform. For this reason, the arrangement of the openings H0 after frame welding is disturbed, and the arrangement is not evenly spaced (the spacing is uneven).
  • the metal mask M0 has a thickness distribution as shown in the lower part of FIG. 5A.
  • the thickness distribution tends to occur due to variations in the plating growth rate.
  • the design error of the opening position of the metal mask M0 before frame welding is such that there is no practical problem (for example, about submicron).
  • the metal mask M0 expands and contracts due to the tensile force.
  • the metal mask M0 has a thickness distribution, the elongation varies depending on the region.
  • the elongation rate is small (difficult to stretch) in a relatively thick region, and the elongation rate is large (easy to stretch) in a relatively thin region.
  • the position shift amount of the opening H0 becomes non-uniform, and a desired position design accuracy cannot be obtained.
  • the opening position shift amount is calculated using the metal mask M0 as a sample.
  • the thickness (thickness distribution) of the metal mask M0 is measured, and the opening position shift amount is obtained by calculation using the thickness and the pulling rate at the time of stretching as parameters. Note that the thickness of the metal mask M0 can be easily measured using a measuring instrument such as a micrometer or a step gauge even when the thickness is not held by the frame 110.
  • FIG. 6 is a schematic diagram showing thickness measurement points.
  • FIG. 7 is a characteristic diagram showing the thickness distribution at the measurement point shown in FIG.
  • FIG. 8 is a characteristic diagram showing the opening position shift amount (opening position distribution) calculated from the thickness distribution shown in FIG.
  • FIG. 9 is a schematic diagram illustrating measurement points when thickness distribution is measured in a plurality of series.
  • FIG. 10 is a characteristic diagram showing thickness distributions in a plurality of series shown in FIG.
  • FIG. 11 is a characteristic diagram showing the opening position shift amount calculated from the thickness distribution shown in FIG.
  • FIG. 6 shows 15 measurement points in the X direction and 7 measurement points in the Y direction (that is, a total of 15 ⁇ 7 locations).
  • FIG. 7 shows a distribution of thicknesses at positions along the X direction (total of 15 positions) in the fourth series of measurement points in FIG.
  • the thickness is the largest at the 14th position in the X direction and the smallest at the 4th or 7th position in the X direction.
  • the position shift amount is 0 (zero).
  • the shift amount is plus and minus.
  • the amount of shift is indicated by minus. For example, it indicates that the opening H0 at the second position in the X direction is shifted to the plus side in the X direction from the design position.
  • the opening position shift amount at both ends in the X direction (No. 1 and No. 15) is set to 0 by the condition setting at the time of calculation.
  • FIG. 9 shows a total of seven measurement points in the Y direction 1-7.
  • FIG. 10 shows the thickness distribution for each of the seven series shown in FIG. Also in the example of FIG. 11, the opening position shift amount at both ends in the X direction (No. 1 and No. 15) is set to 0 by the condition setting at the time of calculation.
  • the metal mask M0 when calculating the opening position shift amount, can be handled as a one-dimensional model (one-dimensional tensile model) along one axial direction.
  • the opening position shift amount is calculated using a one-dimensional model along the X direction (rectangular longitudinal direction) of the two X and Y axes. Assuming that the metal mask M0 is stretched on the frame 110, the metal mask M0 is pulled in, for example, the biaxial directions of the X direction and the Y direction. Therefore, strictly speaking, the opening position shift amount is determined by the interaction between the tensile amount in the X direction and the tensile amount in the Y direction. However, in this embodiment, the effect of the tensile force in the Y direction is ignored, and the X direction The calculation is performed considering only the action of. It has been confirmed by comparison with the actual measurement that the action in the Y direction is sufficiently negligible.
  • FIG. 12A shows an image of the opening H0 of the metal mask M0.
  • the portion (X1) extending along the X direction between the openings H0 can be used as a thickness measurement target, and the opening position shift amount can be calculated.
  • the thickness (t2) in the vicinity of the central opening H0b is larger than the thickness (t1) in the vicinity of the opening H0a on both sides (t2> t1).
  • the width d2 along the Y direction of the elongated portion (beam 121b) between the openings H0b becomes wider than the width d1 of the beam 121a between the openings H0a.
  • the length s2 of the beam 121b along the X direction is shorter than the length s1 of the beam 121a. This is due to the nature of electroforming.
  • the relatively thick portion acts so that the width and length of the beam 121b are less likely to extend.
  • the portion having a relatively small thickness becomes the opposite, and is easily stretched.
  • the widths d1 and d2 and the lengths s1 and s2 can be used in addition to the thicknesses t1 and t2, but only the thickness is used in the present embodiment. . A case where the thickness and width are taken into account and a case where the thickness, width and length are taken into account will be described later (modified example).
  • the opening position shift amount at the time of stretching to the frame 110 can be calculated from the thickness distribution of the metal mask M0.
  • the opening position shift from the ideal position may occur.
  • the opening position may be shifted in the reverse direction in advance at the design stage in consideration of the opening position shift.
  • a correction value is set based on the calculated opening position shift amount, and this correction value is fed back to the design stage.
  • the correction value is set based on the opening position shift amount (the example shown in FIG. 8 is taken as an example). Specifically, as shown in FIG. 13B, the correction value is set so that the position shift amount in the X direction becomes 0 at each of the positions in the X direction (numbers 1 to 15). For example, since position 3 is shifted 7 (for example, 7 ⁇ m) in the plus direction in the X direction, “ ⁇ 7” is set as the correction value. Further, at position 9, since the shift is 6 to the minus side in the X direction, “+6” is set as the correction value. The correction value for each position is fed back to the opening position design process of the metal mask M1.
  • the opening position is designed using the correction value based on the opening position shift amount set as described above. Specifically, a new electroforming mask Mf1 reflecting such a correction value is created, and a metal mask M1 is formed using the electroforming mask Mf1. It is desirable to use a highly accurate photomask as the electroforming mask Mf1. For example, a glass photomask in which chrome plating is applied to glass having low thermal expansion or quartz glass may be used.
  • FIG. 14 shows an XY plane configuration and a cross-sectional configuration of the metal mask M1.
  • the positions of the openings H1 are not evenly spaced.
  • the position of the opening H1 is shifted depending on the thickness distribution.
  • the opening position is close to the ideal position (the openings H1 are arranged at equal intervals).
  • the opening positions of unequal intervals are evenly spaced after welding.
  • the correction of the opening position shift amount may be performed with respect to the opening position in one axis (X direction), but correction may be performed for two axes in the X direction and the Y direction.
  • the position shift amount in the Y direction is similarly calculated based on the thickness distribution in the Y direction (or Actually measure). Accordingly, correction values at measurement points in the X direction and the Y direction (for example, a total of 105 locations including 15 locations in the X direction and 7 locations in the Y direction) can be obtained.
  • the opening position correction based on the correction value can be performed independently in the X direction and the Y direction.
  • the metal mask M1 is stretched on the frame 110. (Adhering by welding or the like while applying tension).
  • correction is performed in consideration of the opening position shift amount when the metal mask M1 is stretched on the frame 110.
  • the opening position shift amount is obtained by calculation from the thickness distribution of the metal mask M0, and the correction value is set based on the calculated opening position shift amount.
  • the set correction value is reflected in the opening position design of the metal mask M1.
  • the metal mask M0 as a one-dimensional model and calculate the opening position shift amount from the thickness distribution by calculating the opening position shift amount in advance.
  • the variation in the thickness of the metal mask M0 is the main factor of the opening position shift when the frame 110 is stretched to the frame 110, and each process of measuring the thickness distribution and calculating the opening position shift amount is one-dimensional. It can be integrated into the model.
  • the thickness distribution of the metal mask M0 it is actually difficult to eliminate the thickness distribution of the metal mask M0.
  • unevenness in the thickness occurs due to the fact that the flow of the plating solution is uneven and the current density varies depending on the region on the base material depending on the positional relationship with the electrode. .
  • the electrode is disposed at the end portion on the base material, the plating growth rate in the central portion on the base material is slow. For this reason, there exists a tendency for the thickness in the center part in a mask surface to become relatively thin. That is, the mask thickness distribution has a unique tendency due to the process conditions. Accordingly, by calculating the opening position shift amount from such a thickness distribution and feeding it back to the design stage as a correction value, it is possible to design an opening position that assumes an opening position shift caused by such process conditions in advance.
  • the design error or the opening position shift amount is obtained by calculation. Accordingly, it is possible to set conditions or set correction values without welding the metal mask M0 to the frame 110.
  • FIG. 16 shows a mask manufacturing flow in the case where the electroforming conditions are determined by actual measurement as a comparative example of the present embodiment.
  • the opening position is measured.
  • Step S105 As described above, when the opening position accuracy is actually measured, the measurement is performed while being welded to the frame. This is because in a state where the metal mask is not welded, the metal mask does not become flat and measurement is difficult.
  • the metal mask is pulled while measuring the opening position using a dedicated measuring machine, and the tensile amount of the four sides is finely adjusted.
  • a measuring instrument a metal mask is placed on a measurement surface plate, and measured with, for example, a camera with a microscope moving along two axes in the X direction and the Y direction, a laser interferometer and a scale, and captured by the camera with a microscope.
  • a two-dimensional length measuring device or a three-dimensional length measuring device of a type that determines an opening position by image processing can be used. Thereafter, the opening position accuracy is measured with a dedicated measuring machine similar to the above (S105).
  • the time required for electroforming conditions can be greatly shortened.
  • the period of one month or more can be shortened in some cases.
  • FIG. 17 shows a manufacturing flow in the case of welding to the frame 110 after determining the accuracy of the metal mask M1. If the design conditions (electroforming conditions and opening position design) for producing the metal mask M1 are determined by the above-described steps, a plurality of metal masks M1 can be produced based on the design conditions. However, even if the metal mask M1 is manufactured under the same design conditions, desired accuracy may not be obtained due to variations in conditions in the electroforming process.
  • step S31 after manufacturing the metal mask M1 (step S31) and before welding to the frame 110 (step S35), the thickness distribution of the metal mask M1 is measured (step S32), and the design error is calculated. Obtained (step S33). Then, accuracy determination based on the design error is performed (step S34), and when a desired accuracy is obtained (Y in step S34), the process proceeds to the frame welding process. On the other hand, if the desired accuracy is not obtained in the accuracy determination (N in step S34), the process returns to the step of manufacturing the metal mask M1 again (the metal mask M1 is manufactured again).
  • step S36 the opening position is measured (step S36), and the accuracy is confirmed (step S37).
  • FIG. 18 illustrates a flow of manufacturing an evaporation mask according to the second embodiment of the present disclosure.
  • the vapor deposition mask is produced as follows, for example, in the same manner as in the method of manufacturing the vapor deposition mask 1 of the first embodiment. That is, first, an electroforming mask Mf0 is produced (step S41). Next, optimal electroforming conditions are set (or adjusted) using the produced electroforming mask Mf0 (step S42). Next, a metal mask (metal mask M0) is produced using the set electroforming conditions (step S43). Next, the opening position shift amount is calculated using the metal mask M0 (step S44).
  • a correction value (representative correction value) is set based on the calculated opening position shift amount (step S45).
  • the electroforming mask Mf1 reflecting the correction value is produced (step S46).
  • a metal mask M1 is produced by electroforming using the electroforming mask Mf1 (step S47). The metal mask 1 thus manufactured is welded to the frame 110 (step S48), and finally the opening position accuracy is confirmed (step S49). In this way, a vapor deposition mask is completed.
  • the metal mask M0 is divided into a plurality of areas based on the tendency of the opening position shift amount.
  • the correction value setting step (S45) a representative correction value in each area is set based on the opening position shift amount for each area.
  • FIG. 19A shows measurement points (X direction 0 to 32, Y direction 1 to 13) and areas (A1 to A5) of the present embodiment.
  • FIG. 19B is a characteristic diagram of the opening position shift amount in the X direction (longitudinal direction) calculated based on the thickness distribution of the metal mask M0. Also in the present embodiment, the thickness distribution and the opening position shift amount are measured and calculated as a one-dimensional model along the X direction. In the example of FIGS. 19A and 19B, measurement and calculation were performed at 33 locations (0 to 32) along the X direction for each series of 1 to 13 in the Y direction.
  • the series 6, 7, and 8 are similar curves.
  • the position shift of the portion including these series 6, 7, and 8 has the same tendency.
  • series 12 and 13 have similar position shifts.
  • the mask surface can be divided into a plurality of areas (areas A1 to A5) extending along the pulling direction (X direction) according to the tendency of the opening position shift.
  • the thickness distribution of the metal mask M0 is similar for each area.
  • the electroforming plating growth tends to be slow at the central portion on the base material. For this reason, it has line symmetry with the center in the X direction (the same applies to the Y direction) as the axis of symmetry in the mask plane.
  • the in-plane of the metal mask M0 can be regarded as a plurality of areas A1 to A5, and correction can be performed for each area.
  • area division (areas A1 to A5) is performed for each group of series having similar trends in the opening position shift amount. Specifically, area A1 is series 1, 2, area A2 is series 3-5, area A3 is series 6-8, area A4 is series 9-11, area A5 is series 12, 13, Respectively.
  • representative correction values are set in each of the areas A1 to A5. For example, an average of the opening position shift amounts between sequences in each area can be taken, and this average value can be used as a representative correction value. For example, in area 1, the average value of the opening position shift amount of series 1 and the opening position shift amount of series 2 can be used as the representative correction value of area 1.
  • opening position shift amount calculation (S44) and correction value setting (S45) are performed.
  • the electroforming mask Mf1 is manufactured by opening position design that reflects the set representative correction value for each area (S46).
  • the other steps (S41 to S43, S47 to S49) of the present embodiment are the same as the steps (S11 to S13, S17 to S19) of the first embodiment.
  • the effect equivalent to that of the first embodiment can be obtained by performing correction in consideration of the opening position shift amount in the opening position design in the manufacturing process of the metal mask M1. .
  • the area is divided and a representative correction value for each area is set.
  • a vapor deposition mask for a display having 8 million pixels or more has a numerical aperture of 8 million or more.
  • correction by area is possible, and the amount of correction value Can be greatly reduced.
  • area division and representative correction value setting can be performed by the same method as described above.
  • the X direction and the Y direction can be handled independently of each other, and correction values can be set separately.
  • the maximum shift amount is almost always generated in the longitudinal direction. Therefore, it is possible to obtain a sufficient effect only by correcting the shift amount only in the longitudinal direction.
  • ⁇ Modification 1> In the method of manufacturing a deposition mask according to the second embodiment, the method for setting the correction value for each area has been described. However, even in the case of a metal mask manufactured under the same electroforming conditions, the thickness distribution is actually reduced. Varies from rod to rod. In particular, in the electroforming process, the thickness distribution tends to vary from lot to lot.
  • the corresponding areas are opened between the plurality of metal masks manufactured under the same electroforming conditions. Take the average of the position shift amount. In other words, the average aperture position shift amount of the area is taken for all the metal masks.
  • Samples A to E have a somewhat similar tendency for each series or area, but have some variation.
  • FIG. 25 shows an average of these five samples A to E for each area.
  • series 1 and 2 (corresponding to area A1 in FIG. 19A), series 3 to 5, 9 to 11 (corresponding to areas A2 and A4), and series 6 to 8 (corresponding to area A3). Equivalent), and a total of four areas of a set of series 12 and 13 (corresponding to area A5), respectively.
  • the average value of the set of series 1 and 2 includes the opening position shift amount of series 1 and 2 of sample A, the opening position shift amount of series 1 and 2 of sample B, and the series 1 and 2 of sample C.
  • 2 is the average value of the opening position shift amount of the sample D, the opening position shift amount of the series 1 and 2 of the sample D, and the opening position shift amount of the series 1 and 2 of the sample E.
  • the average value for each area in the plurality of metal masks M0 obtained in this way is fed back to the design process of the metal mask M1 as a representative correction value, as in the second embodiment.
  • the same effects as those of the second embodiment can be obtained, and correction in consideration of variation for each rod can be performed. Higher accuracy can be realized.
  • the aperture position design correction is actually performed, since there is only one electroforming mask Mf1, the method of taking an average for each area from a plurality of metal masks as in this modification is most practical. .
  • (Correction effect) 26 to 30 show the opening position shift amount (A in each figure) of the samples A to E of this modification and the position shift amount after actually performing the opening position design correction ((B in each figure). )).
  • the corrected distribution in (B) is a calculated value obtained by subtracting one representative correction value set by the above-described method for each area in the characteristic diagram in (A).
  • Each figure also shows the maximum value (max), minimum value (min), and maximum width (maximum value of shift amount in the X direction: Range) of the position shift amount.
  • all of the maximum value, the minimum value, and the maximum width are halved (or reduced) than before correction.
  • the opening position shift amount is calculated based on the thickness (thickness distribution) of the metal mask M0.
  • the thickness in addition to the thickness, other parameters are used for calculating the opening position shift amount. Also good.
  • a portion (X1) extending along the X direction between the openings H0 can be measured.
  • the thickness (t2) near the central opening H0b is larger than the thickness (t1) near the opening H0a on both sides (t2> t1).
  • the width d2 along the Y direction of the elongated portion (beam 121b) between the openings H0b becomes wider than the width d1 of the beam 121a between the openings H0a.
  • the length s2 of the beam 121b along the X direction is shorter than the length s1 of the beam 121a. This is due to the nature of electroforming.
  • the relatively thick portion acts so that the width and length of the beam 121b are less likely to extend.
  • the portion having a relatively small thickness becomes the opposite, and is easily stretched.
  • the thicknesses t1 and t2 when only the thicknesses t1 and t2 are considered in the one-dimensional model portion X1 (corresponding to the first embodiment: model 1), the thicknesses t1 and t2 and the widths d1 and d2 are considered.
  • the case where the thicknesses t1, t2, the widths d1, d2, and the lengths s1, s2 are taken into account (model 3) will be described.
  • the model X1 only the thickness is considered in the part X1, that is, the extension of the opening part and the extension of the non-opening part are not distinguished in the X direction (FIG. 32A).
  • the model 2 considers the thickness and width in the portion X1, that is, does not distinguish between the extension of the opening portion and the extension of the non-opening portion in the X direction (FIG. 32B).
  • the thickness, width and length are considered in the portion X1, that is, only the beams 121a and 121b are assumed to extend in the X direction (FIG. 32C).
  • FIG. 33 shows measured values (FIG. 33A) and model 1 calculated values (FIG. 33B).
  • FIG. 34 shows measured values ((A) of FIG. 34) and calculated values of model 2 ((B) of FIG. 34).
  • FIG. 35 shows measured values (FIG. 35A) and model 3 calculated values (FIG. 35B). Note that the actual measurement values are actual measurements of the opening position with the metal mask stretched on the frame. Further, in each calculated value of the models 1 to 3, the position shift amount at the end (1, 15) in the X direction was set to zero. This assumes a state where the opening position of the outer peripheral portion of the mask is attached to the frame 110 as an ideal position (design position). In addition, there were a total of 7 Y-direction series, and 15 measurement points in each series were set in the X direction. Accordingly, there are a total of seven curves in each figure.
  • the calculated value of any model has the same tendency as the actually measured value, and it can be seen that the correction effect can be obtained with any model.
  • the calculated value of model 2 in FIG. 34 is closest to the actually measured value. That is, it was found that more accuracy can be obtained when the thickness and width are taken into consideration. Further, it was found that there is no problem even if the tension in the direction (Y direction) perpendicular to the tension direction (X direction) is ignored.
  • FIG. 36 shows the flow of manufacturing the organic EL display device.
  • the organic EL display device includes the first electrode formation process (step S51), the organic layer deposition process (step S52), the second electrode formation process (step S53), and the sealing process (step S54).
  • the organic layer vapor deposition step (S52) for example, when the organic electroluminescent layer is formed by vapor deposition, the vapor deposition mask of the above-described embodiment or the like can be used.
  • FIG. 37 shows an image of the organic layer deposition process.
  • the vapor deposition mask 1 (frame 110, metal mask M1) moves at a constant speed above the vapor deposition source 13 while being in close contact with the substrate 11.
  • the organic material (organic EL material 12) is diffused as vapor 12a from the vapor deposition source 13 and adheres to the substrate 11 through the vapor deposition mask 1.
  • the manufacturing process of the organic EL display device by using the vapor deposition mask according to the above-described embodiment or the like, it is possible to design a pixel with high accuracy and to realize high definition of the pixel. In addition, longer life and higher brightness can be expected.
  • the opening position shift amount is obtained by calculation based on the distribution such as the thickness of the metal mask
  • the opening position may be measured in a state where the metal mask is actually welded to the frame after being manufactured.
  • a correction value may be set based on the measured opening position shift amount.
  • the case where the metal mask is manufactured by electroforming has been described as an example.
  • the present disclosure can be applied to the case where the metal mask is manufactured by etching.
  • the vapor deposition mask of the present disclosure is not limited to an organic material, and may be applied to a vapor deposition process of a metal material, a dielectric material, or the like, for example.
  • the mask may be used not only for vapor deposition but also for exposure or printing, and can be widely applied to masks that require high accuracy.
  • the present disclosure can be configured as follows. (1) Forming a first mask having a plurality of first openings as passage holes for the vapor deposition material; Stretching the first mask on the frame; A method for manufacturing a vapor deposition mask, wherein, when forming the first mask, correction is performed in consideration of an opening position shift amount when the first opening is stretched to the frame when designing the position of the first opening. (2) When forming the first mask, Preparing a second mask having a plurality of second openings; Calculating the opening position shift amount using the second mask; Set the correction value based on the calculated opening position shift amount, The vapor deposition mask manufacturing method according to (1), wherein correction using the correction value is performed when designing the position of the first opening.
  • the second mask is formed a plurality of times while adjusting process conditions until the design error becomes a predetermined threshold value or less,
  • the position shift amount of the second opening which is selective among all the openings of the second mask is used.
  • the vapor deposition according to any one of the above (2) to (11) Mask manufacturing method.
  • (13) Dividing the second mask into a plurality of areas each having a similar tendency of the opening position shift amount;
  • Each of the plurality of areas extends along a first direction of the mask pulling directions and is divided along a second direction orthogonal to the first direction. (13) Of manufacturing a mask for vapor deposition.
  • the said representative correction value is set using the average of the said opening position shift amount in each of these areas, The manufacturing method of the mask for vapor deposition as described in said (14).
  • (16) Forming a plurality of the second masks; The said representative correction value is set using the average of the opening position shift amount of the area corresponding between several said 2nd masks, The manufacturing method of the mask for vapor deposition as described in said (14).
  • (17) The method for manufacturing an evaporation mask according to any one of (2) to (16), wherein the first and second masks are formed by electroforming.

Abstract

A method for manufacturing a mask for use in vapor deposition comprises: forming a first mask which has multiple first openings that serve as through-holes for a vapor deposition material; and stretching the first mask across a frame. In the formation of the first mask, when the positions of the first openings are designed, such a correction that the amount of opening position shift is additionally made upon the stretching of the first mask across the frame.

Description

蒸着用マスクの製造方法および表示装置の製造方法Method for manufacturing deposition mask and method for manufacturing display device
 本開示は、材料の蒸着時に使用される蒸着用マスクの製造方法および表示装置の製造方法に関する。 The present disclosure relates to a method for manufacturing a vapor deposition mask and a method for manufacturing a display device used at the time of vapor deposition of a material.
 例えば有機EL(Electro-Luminescence)表示装置には、全画素にわたって形成された白色の発光層からの光をカラーフィルタを用いて赤(R),緑(G)および青(B)の色光に分離するタイプのものと、R,G,Bの各色発光層を画素毎に形成する(塗り分ける)タイプのものがある。R,G,Bの発光層を画素毎に形成する場合、蒸着法(真空蒸着法)により、メタルマスクを用いて各発光層が形成される。 For example, in an organic EL (Electro-Luminescence) display device, light from a white light emitting layer formed over all pixels is separated into red (R), green (G), and blue (B) color light using a color filter. There are two types: a type in which R, G, and B color light-emitting layers are formed (painted separately) for each pixel. When the R, G, and B light-emitting layers are formed for each pixel, each light-emitting layer is formed by a vapor deposition method (vacuum vapor deposition method) using a metal mask.
 メタルマスクには、蒸着材料の通過孔となる開口が複数形成されており、電鋳(めっき)方式で作製されたものや、薄板金属母材にエッチングにより開口が加工されたものなどがある。このメタルマスクは、蒸着工程において単体で用いられることは少なく、例えば剛性の高いフレームに溶接などで組み付けられた状態で使用される。これは、メタルマスクの厚みが薄く、単体では開口位置を精度よく保持出来ないためである。そのため、例えば2軸方向に所定の伸ばし率を持って引っ張られ、フレームに溶接される。 Metal masks are formed with a plurality of openings serving as through holes for the vapor deposition material, and are produced by an electroforming (plating) method, or those obtained by etching a thin metal base material by etching. This metal mask is rarely used alone in the vapor deposition process, and is used in a state where it is assembled by welding or the like to a highly rigid frame, for example. This is because the thickness of the metal mask is thin and the position of the opening cannot be accurately maintained by itself. Therefore, for example, it is pulled with a predetermined elongation rate in the biaxial direction and welded to the frame.
 上記のようなメタルマスクでは、開口位置精度が求められている。例えば、メタルマスクをフレームに引っ張って貼り付ける際に、引っ張りながら開口位置の全てを測定機で観察しつつ引張量を加減する手法がある。ところが、この手法では、測定と引張量調節にかなりの時間が掛かる。そこで、メタルマスクの外周部に配された開口の位置を間引きしつつ測定し、そのデータを見ながら引張量を調整する手法がある。また、メタルマスクをフレームへ溶接後に、マスク外周部の開口位置調整を行う手法などがある(例えば、特許文献1)。 The opening position accuracy is required for the metal mask as described above. For example, when a metal mask is pulled and pasted on a frame, there is a method of adjusting the amount of tension while observing all of the opening positions with a measuring machine while pulling. However, with this method, it takes a considerable amount of time to measure and adjust the tensile amount. Therefore, there is a method in which the position of the opening arranged on the outer peripheral portion of the metal mask is measured while being thinned, and the tensile amount is adjusted while viewing the data. Further, there is a method of adjusting the opening position of the outer periphery of the mask after the metal mask is welded to the frame (for example, Patent Document 1).
特開2004-6257号公報JP 2004-6257 A
 しかしながら、上記特許文献1等の手法では、マスク外周部において理想的な開口位置設計が可能となるものの、マスク中央部の開口位置精度においては改善の余地がある。したがって、高精度な蒸着用マスクの実現が望まれている。 However, although the technique disclosed in Patent Document 1 and the like can design an ideal opening position at the outer periphery of the mask, there is room for improvement in the opening position accuracy at the center of the mask. Therefore, realization of a highly accurate vapor deposition mask is desired.
 したがって、その目的は、高精度な蒸着用マスクを実現可能な蒸着用マスクの製造方法および表示装置の製造方法を提供することが望ましい。 Therefore, it is desirable to provide a deposition mask manufacturing method and a display device manufacturing method capable of realizing a highly accurate deposition mask.
 本開示の一実施の形態の蒸着用マスクの製造方法は、蒸着材料の通過孔として複数の第1の開口を有する第1のマスクを形成する工程と、第1のマスクをフレームに張設する工程とを含み、第1のマスクを形成する工程では、第1の開口の位置設計の際に、フレームへの張設時における開口位置シフト量を加味した補正を行うものである。 According to one embodiment of the present disclosure, a method for manufacturing a deposition mask includes a step of forming a first mask having a plurality of first openings as passage holes for a deposition material, and the first mask is stretched on a frame. In the step of forming the first mask including the steps, correction is performed in consideration of the opening position shift amount when the first opening is stretched when the position of the first opening is designed.
 本開示の一実施の形態の表示装置の製造方法は、蒸着用マスクを形成する工程と、蒸着用マスクを用いて材料層をパターン形成する工程とを含むものである。蒸着用マスクを形成する工程では、蒸着材料の通過孔として複数の第1の開口を有する第1のマスクを形成し、第1のマスクをフレームに張設し、かつ第1のマスクを、第1の開口の位置設計の際に、フレームへの張設時における開口位置シフト量を加味した補正を行う。 A method for manufacturing a display device according to an embodiment of the present disclosure includes a step of forming a vapor deposition mask and a step of patterning a material layer using the vapor deposition mask. In the step of forming a vapor deposition mask, a first mask having a plurality of first openings is formed as a passage hole for the vapor deposition material, the first mask is stretched over the frame, and the first mask is When designing the position of one opening, correction is performed in consideration of the amount of opening position shift when the frame is stretched.
 本開示の一実施の形態の蒸着用マスクの製造方法および表示装置の製造方法では、蒸着材料の通過孔として複数の第1の開口を有する第1のマスクを形成したのち、第1のマスクをフレームに張設する。第1のマスクを形成する工程において、第1の開口の位置設計の際に、フレームへの張設時における開口位置シフト量を加味した補正を行う。これにより、第1のマスクをフレームへ張設した際に、第1の開口が所望の位置に配され、理想的な開口位置設計が可能となる。 In the method for manufacturing a vapor deposition mask and the method for manufacturing a display device according to an embodiment of the present disclosure, a first mask having a plurality of first openings is formed as a through hole for a vapor deposition material, and then the first mask is used. Tension on the frame. In the step of forming the first mask, when the position of the first opening is designed, correction is performed in consideration of the opening position shift amount when the first opening is stretched. Thus, when the first mask is stretched on the frame, the first opening is arranged at a desired position, and an ideal opening position design is possible.
 本開示の一実施の形態の蒸着用マスクの製造方法および表示装置の製造方法では、蒸着材料の通過孔として複数の第1の開口を有する第1のマスクを形成したのち、第1のマスクをフレームに張設する。第1のマスクを形成する工程では、第1の開口の位置設計の際に、フレームへの張設時の開口位置シフト量を加味した補正を行う。これにより、第1のマスクのフレームへの張設によって理想的な開口位置設計が可能となる。よって、高精度な蒸着用マスクが実現可能となる。 In the method for manufacturing a vapor deposition mask and the method for manufacturing a display device according to an embodiment of the present disclosure, a first mask having a plurality of first openings is formed as a through hole for a vapor deposition material, and then the first mask is used. Tension on the frame. In the step of forming the first mask, correction is performed in consideration of the opening position shift amount when the first opening is stretched, when designing the position of the first opening. This makes it possible to design an ideal opening position by stretching the first mask on the frame. Therefore, a highly accurate vapor deposition mask can be realized.
 尚、上記内容は本開示の一例である。本開示の効果は、上述したものに限らず、他の異なる効果であってもよいし、更に他の効果を含んでいてもよい。 The above content is an example of the present disclosure. The effects of the present disclosure are not limited to those described above, and may be other different effects or may include other effects.
本開示の第1の実施の形態に係る蒸着用マスクの構成を表す模式図である。It is a mimetic diagram showing composition of a mask for vapor deposition concerning a 1st embodiment of this indication. 図1に示した蒸着用マスクの製造工程を表す流れ図である。It is a flowchart showing the manufacturing process of the mask for vapor deposition shown in FIG. 図1に示したメタルマスク作製時の電鋳条件設定に関する工程を表す流れ図である。It is a flowchart showing the process regarding the electroforming condition setting at the time of metal mask production shown in FIG. 図1に示した補正値設定用のメタルマスクの構成を表すXY平面図である。FIG. 2 is an XY plan view illustrating a configuration of a correction value setting metal mask illustrated in FIG. 1. 図4に示したメタルマスクのフレーム溶接前の開口位置および厚み分布を表す模式図である。FIG. 5 is a schematic diagram showing an opening position and thickness distribution of the metal mask shown in FIG. 4 before frame welding. 図5Aに示したメタルマスクをフレームへ溶接した場合の開口位置および厚み分布を説明するための模式図である。It is a schematic diagram for demonstrating opening position and thickness distribution at the time of welding the metal mask shown to FIG. 5A to a flame | frame. 開口位置シフト量算出時における、厚み測定ポイントを表す模式図である。It is a schematic diagram showing the thickness measurement point at the time of opening position shift amount calculation. 図6に示した測定ポイントにおける厚み分布を表す特性図である。It is a characteristic view showing the thickness distribution in the measurement point shown in FIG. 図7に示した厚み分布から算出した開口位置シフト量を表す特性図である。It is a characteristic view showing the opening position shift amount computed from the thickness distribution shown in FIG. 複数系列において厚み分布を測定した場合の測定ポイントを表す模式図である。It is a schematic diagram showing the measurement point at the time of measuring thickness distribution in multiple series. 図9に示した複数系列における厚み分布を表す特性図である。FIG. 10 is a characteristic diagram illustrating thickness distributions in a plurality of series illustrated in FIG. 9. 図10に示した厚み分布から算出した開口位置シフト量を表す特性図である。It is a characteristic view showing the opening position shift amount computed from the thickness distribution shown in FIG. 開口付近の構成を模式的に表した図である。It is the figure which represented typically the structure of opening vicinity. 図8に示した開口位置シフト量に基づいて設定される補正値を説明するための特性図である。It is a characteristic view for demonstrating the correction value set based on the opening position shift amount shown in FIG. 図8に示した開口位置シフト量に基づいて設定される補正値を説明するための特性図である。It is a characteristic view for demonstrating the correction value set based on the opening position shift amount shown in FIG. 開口位置シフト量を加味して設計されたメタルマスクの開口位置および厚みを表す模式図である。It is a schematic diagram showing the opening position and thickness of the metal mask designed in consideration of the opening position shift amount. 図14に示したメタルマスクのフレーム溶接後の開口位置および厚みを表す模式図である。It is a schematic diagram showing the opening position and thickness after flame | frame welding of the metal mask shown in FIG. 比較例に係る蒸着用マスクの製造工程を表す流れ図である。It is a flowchart showing the manufacturing process of the mask for vapor deposition which concerns on a comparative example. 図1に示した蒸着用マスクの製造方法のメリットを説明するための流れ図である。It is a flowchart for demonstrating the merit of the manufacturing method of the mask for vapor deposition shown in FIG. 本開示の第2の実施の形態に係る蒸着用マスクの製造工程を表す流れ図である。It is a flowchart showing the manufacturing process of the mask for vapor deposition which concerns on 2nd Embodiment of this indication. 本開示の第2の実施の形態に係る蒸着用マスクの測定ポイントおよびエリア分けを説明するためのXY平面模式図である。It is a XY plane schematic diagram for demonstrating the measurement point and area division of the vapor deposition mask which concern on 2nd Embodiment of this indication. 図19Aに示した測定ポイントにおける厚み分布に基づく開口位置シフト量を表す特性図である。It is a characteristic view showing the opening position shift amount based on the thickness distribution at the measurement point shown in FIG. 19A. メタルマスクのサンプルの厚み分布に基づいて算出した開口位置シフト量を表す特性図である。It is a characteristic view showing the opening position shift amount computed based on the thickness distribution of the sample of a metal mask. メタルマスクのサンプルの厚み分布に基づいて算出した開口位置シフト量を表す特性図である。It is a characteristic view showing the opening position shift amount computed based on the thickness distribution of the sample of a metal mask. メタルマスクのサンプルの厚み分布に基づいて算出した開口位置シフト量を表す特性図である。It is a characteristic view showing the opening position shift amount computed based on the thickness distribution of the sample of a metal mask. メタルマスクのサンプルの厚み分布に基づいて算出した開口位置シフト量を表す特性図である。It is a characteristic view showing the opening position shift amount computed based on the thickness distribution of the sample of a metal mask. メタルマスクのサンプルの厚み分布に基づいて算出した開口位置シフト量を表す特性図である。It is a characteristic view showing the opening position shift amount computed based on the thickness distribution of the sample of a metal mask. 図20~図24に示したサンプルのエリア別平均値を表す特性図である。FIG. 25 is a characteristic diagram showing an average value for each area of the samples shown in FIGS. 20 to 24; 変形例1に係るメタルマスクのサンプルの、補正前の開口位置シフト量(A)と、補正後の開口位置シフト量(B)とを表す特性図である。It is a characteristic view showing an opening position shift amount (A) before correction and an opening position shift amount (B) after correction of a sample of a metal mask according to Modification 1. 変形例1に係るメタルマスクのサンプルの、補正前の開口位置シフト量(A)と、補正後の開口位置シフト量(B)とを表す特性図である。It is a characteristic view showing an opening position shift amount (A) before correction and an opening position shift amount (B) after correction of a sample of a metal mask according to Modification 1. 変形例1に係るメタルマスクのサンプルの、補正前の開口位置シフト量(A)と、補正後の開口位置シフト量(B)とを表す特性図である。It is a characteristic view showing an opening position shift amount (A) before correction and an opening position shift amount (B) after correction of a sample of a metal mask according to Modification 1. 変形例1に係るメタルマスクのサンプルの、補正前の開口位置シフト量(A)と、補正後の開口位置シフト量(B)とを表す特性図である。It is a characteristic view showing an opening position shift amount (A) before correction and an opening position shift amount (B) after correction of a sample of a metal mask according to Modification 1. 変形例1に係るメタルマスクのサンプルの、補正前の開口位置シフト量(A)と、補正後の開口位置シフト量(B)とを表す特性図である。It is a characteristic view showing an opening position shift amount (A) before correction and an opening position shift amount (B) after correction of a sample of a metal mask according to Modification 1. 開口付近の構成を模式的に表した図である。It is the figure which represented typically the structure of opening vicinity. 変形例2に係るメタルマスクの計算モデルを説明するための模式図である。10 is a schematic diagram for explaining a calculation model of a metal mask according to Modification 2. FIG. 変形例2に係るメタルマスクの計算モデルを説明するための模式図である。10 is a schematic diagram for explaining a calculation model of a metal mask according to Modification 2. FIG. 変形例2に係るメタルマスクの計算モデルを説明するための模式図である。10 is a schematic diagram for explaining a calculation model of a metal mask according to Modification 2. FIG. 開口位置シフト量の実測値と、図32Aに示したモデルを用いた計算値とを表す特性図である。It is a characteristic view showing the measured value of opening position shift amount, and the calculated value using the model shown to FIG. 32A. 開口位置シフト量の実測値と、図32Bに示したモデルを用いた計算値とを表す特性図である。It is a characteristic view showing the actual value of opening position shift amount, and the calculated value using the model shown to FIG. 32B. 開口位置シフト量の実測値と、図32Cに示したモデルを用いた計算値とを表す特性図である。It is a characteristic view showing the actual value of opening position shift amount, and the calculated value using the model shown in Drawing 32C. 適用例に係る表示装置の製造工程を表す流れ図である。It is a flowchart showing the manufacturing process of the display apparatus which concerns on an application example. 図36に示した有機層蒸着工程を説明するための模式図である。It is a schematic diagram for demonstrating the organic layer vapor deposition process shown in FIG.
 以下、本開示の実施の形態について、図面を参照して詳細に説明する。尚、説明は以下の順序で行う。
1.第1の実施の形態(開口位置設計の際に、張設時の開口位置シフト量に基づく補正を行う、マスク製造プロセスの例)
2.第2の実施の形態(開口位置シフト量に基づく補正をエリア別に行う場合の例)
3.変形例1(エリア別補正値を複数枚のマスクの平均値から求める場合の例)
4.変形例2(開口位置シフト量算出の際に、厚み以外のパラメータを考慮した場合の例)
5.適用例(有機EL表示装置の製造方法の例)
Hereinafter, embodiments of the present disclosure will be described in detail with reference to the drawings. The description will be given in the following order.
1. First embodiment (an example of a mask manufacturing process in which correction is performed based on an opening position shift amount at the time of stretching when designing an opening position)
2. Second embodiment (example in which correction based on opening position shift amount is performed for each area)
3. Modification 1 (example in which area-specific correction values are obtained from the average value of a plurality of masks)
4). Modification 2 (example in which parameters other than thickness are taken into account when calculating the opening position shift amount)
5. Application example (Example of manufacturing method of organic EL display device)
<第1の実施の形態>
[構成]
 図1は、本開示の第1の実施形態に係る蒸着用マスク(蒸着用マスク1)のXY平面構成を表したものである。なお、図1には、メタルマスク(メタルマスクM1)の断面構成についても示している。蒸着用マスク1は、例えば有機EL素子を用いた表示デバイス(後述の有機EL表示装置)の製造プロセスにおいて、有機層を蒸着形成する際に使用されるものである。この蒸着用マスク1は、例えば、マスク本体となるメタルマスクM1と、このメタルマスクM1が張設されるフレーム110とを備える。
<First Embodiment>
[Constitution]
FIG. 1 illustrates an XY plane configuration of an evaporation mask (evaporation mask 1) according to the first embodiment of the present disclosure. FIG. 1 also shows a cross-sectional configuration of a metal mask (metal mask M1). The vapor deposition mask 1 is used when an organic layer is vapor-deposited in a manufacturing process of a display device (an organic EL display device described later) using an organic EL element, for example. The vapor deposition mask 1 includes, for example, a metal mask M1 serving as a mask body and a frame 110 on which the metal mask M1 is stretched.
 メタルマスクM1は、例えばニッケル(Ni)、インバー(Fe/Ni合金)および銅(Cu)などのうちの少なくとも1種を含む材料からなる金属箔であり、厚みは、例えば10~50μm程度である。このメタルマスクM1には、蒸着材料を通過させるための通過孔として複数の開口H1がパターン形成されている。これらの複数の開口H1は、全体として、例えばマトリクス状に2次元配置されている。1つ開口H1が、表示デバイスの1つの画素領域を形成するための要素領域に対応する。開口H1の形状(平面形状)は、例えば矩形状、方形状、円形状等である。この開口H1を介して、例えば低分子有機材料等の蒸着がなされる。なお、本実施の形態の「メタルマスクM1」が、本開示の「第1のマスク」の一具体例に相当し、開口H1が本開示の「第1の開口」の一具体例に相当する。 The metal mask M1 is a metal foil made of a material containing at least one of nickel (Ni), invar (Fe / Ni alloy), copper (Cu), and the like, and has a thickness of about 10 to 50 μm, for example. . In the metal mask M1, a plurality of openings H1 are formed in a pattern as passage holes for allowing the vapor deposition material to pass therethrough. The plurality of openings H1 are two-dimensionally arranged in a matrix, for example, as a whole. One opening H1 corresponds to an element region for forming one pixel region of the display device. The shape (planar shape) of the opening H1 is, for example, a rectangular shape, a square shape, a circular shape, or the like. For example, a low molecular organic material is deposited through the opening H1. The “metal mask M1” of the present embodiment corresponds to a specific example of “first mask” of the present disclosure, and the opening H1 corresponds to a specific example of “first opening” of the present disclosure. .
 このメタルマスクM1は、例えば所定の張力が付加された状態でフレーム110に固着されている(張設されている)。具体的には、メタルマスクM1の外縁部が、フレーム110に、例えばスポット溶接(例えば電気抵抗またはレーザによるもの)により接着されている。 The metal mask M1 is fixed (stretched) to the frame 110 in a state where a predetermined tension is applied, for example. Specifically, the outer edge portion of the metal mask M1 is bonded to the frame 110 by, for example, spot welding (for example, by electric resistance or laser).
 メタルマスクM1の形成手法としては、例えば、電鋳(電気めっき)あるいはエッチングを用いた手法が挙げられる。電鋳の場合には、例えばパターニングされた母材(母型,下地層)上に、上述した金属よりなる薄膜層を成長(電着)させる。あるいは、エッチングの場合には、金属箔を例えばフォトリソグラフィ法を用いたエッチングによりパターニングする。いずれの場合にも、薄膜のメタルマスクM1が形成された後、剛性の高い金属などよりなるフレーム110に溶接等で組付けられる。なお、詳細は後述するが、メタルマスクM1の厚みは、面内において均一ではなく分布をもっている。特に、上記手法のうち電鋳によりメタルマスクM1を形成した場合、マスク面内においてこのような厚みの分布が生じる。 Examples of the formation method of the metal mask M1 include a method using electroforming (electroplating) or etching. In the case of electroforming, for example, a thin film layer made of the above-described metal is grown (electrodeposited) on a patterned base material (matrix, base layer). Alternatively, in the case of etching, the metal foil is patterned by etching using, for example, a photolithography method. In any case, after the thin metal mask M1 is formed, the thin film metal mask M1 is assembled to the frame 110 made of a highly rigid metal by welding or the like. Although details will be described later, the thickness of the metal mask M1 is not uniform in the plane but has a distribution. In particular, when the metal mask M1 is formed by electroforming among the above methods, such a thickness distribution occurs in the mask surface.
 フレーム110は、メタルマスクM1を保持するための枠状の部材であり、剛性の高い金属などから構成されている。フレーム110の外形は、例えば矩形状であり、2軸方向に沿った4辺にメタルマスクM1が張設されている。 The frame 110 is a frame-like member for holding the metal mask M1, and is made of a highly rigid metal or the like. The outer shape of the frame 110 is, for example, a rectangular shape, and a metal mask M1 is stretched on four sides along the biaxial direction.
[蒸着用マスク1の製造方法]
 以下、蒸着用マスク1の製造方法について説明する。図2は、蒸着用マスク1の製造の流れを表したものである。本実施の形態では、蒸着用マスク1を。例えば次のようにして作製する。即ち、まず、電鋳用マスクMf0を作製する(ステップS11)。次いで、作製した電鋳用マスクMf0を用いて、最適な電鋳条件を設定(あるいは調整)する(ステップS12)。次いで、設定された電鋳条件を用いて、メタルマスク(メタルマスクM0)を作製する(ステップS13)。次いで、メタルマスクM0を用いて、開口位置シフト量を算出する(ステップS14)。
[Method for Manufacturing Evaporation Mask 1]
Hereinafter, the manufacturing method of the mask 1 for vapor deposition is demonstrated. FIG. 2 shows a flow of manufacturing the deposition mask 1. In the present embodiment, the evaporation mask 1 is used. For example, it is manufactured as follows. That is, first, an electroforming mask Mf0 is produced (step S11). Next, optimum electroforming conditions are set (or adjusted) using the produced electroforming mask Mf0 (step S12). Next, a metal mask (metal mask M0) is produced using the set electroforming conditions (step S13). Next, the opening position shift amount is calculated using the metal mask M0 (step S14).
 この後、算出した開口位置シフト量に基づいて、補正値を設定する(ステップS15)。次いで、上記補正値が反映された開口位置設計により、メタルマスクM1を形成するための電鋳用マスクMf1を作製する(ステップS16)。次いで、この電鋳用マスクMf1を用いて、電鋳により、メタルマスクM1を作製する(ステップS17)。このようにして作製したメタルマスク1をフレーム110へ溶接し(ステップS18)、最後に開口位置精度を確認する(ステップS19)。このようにして、蒸着用マスク1を完成する。以下に、各工程(ステップS11~S19)の詳細について説明する。 Thereafter, a correction value is set based on the calculated opening position shift amount (step S15). Next, an electroforming mask Mf1 for forming the metal mask M1 is produced by the opening position design reflecting the correction value (step S16). Next, a metal mask M1 is produced by electroforming using the electroforming mask Mf1 (step S17). The metal mask 1 thus manufactured is welded to the frame 110 (step S18), and finally the opening position accuracy is confirmed (step S19). In this way, the vapor deposition mask 1 is completed. Details of each step (steps S11 to S19) will be described below.
(メタルマスクM0の作製:S11~S13)
 電鋳用マスクMf0は、メタルマスクM0をめっき形成するための母材をパターニングするためのマスクである。メタルマスクM0は、後述する開口位置シフト量を算出して補正値を設定するためのマスクサンプルであり、完成品の蒸着用マスク1には残らず(出荷されず)、最終的には破棄される。このため、電鋳用マスクMf0としては、例えば、電鋳用マスクMf1と同じ精度のもの(後述)が用いられてもよいが、この電鋳用マスクMf0は、最終的には(開口補正後は)不要となり、代わりに電鋳用マスクMf1が使われることとなる。このため、低コスト化のために、条件出し用の電鋳用マスクMf0には、青板ガラス製やフィルムエマルジョンのような安価なフォトマスクを用いてもよい。青板やフィルムにおける設計精度は石英などに比して劣るが、条件出しおよび補正値設定のみを目的とする場合には、十分な精度といえる。なお、本実施の形態の「メタルマスクM0」が、本開示の「第2のマスク」の一具体例に相当し、開口H0が本開示の「第2の開口」の一具体例に相当する。
(Production of metal mask M0: S11 to S13)
The electroforming mask Mf0 is a mask for patterning a base material for plating the metal mask M0. The metal mask M0 is a mask sample for calculating an opening position shift amount, which will be described later, and setting a correction value. The metal mask M0 is not left on the completed vapor deposition mask 1 (not shipped) and is finally discarded. The For this reason, as the electroforming mask Mf0, for example, a mask having the same accuracy as the electroforming mask Mf1 (described later) may be used. However, the electroforming mask Mf0 is finally (after the aperture correction). Is not required, and the electroforming mask Mf1 is used instead. For this reason, in order to reduce the cost, an inexpensive photomask such as blue plate glass or film emulsion may be used as the electrocasting mask Mf0 for determining the conditions. Although the design accuracy of blue plates and films is inferior to that of quartz or the like, it can be said that the accuracy is sufficient for the purpose of setting conditions and setting correction values only. The “metal mask M0” of the present embodiment corresponds to a specific example of “second mask” of the present disclosure, and the opening H0 corresponds to a specific example of “second opening” of the present disclosure. .
 メタルマスクM0を作製する際には、最適な電鋳条件を設定する(いわゆる電鋳条件出しを行う)ことが望ましい。図3に、この電鋳条件出しの一例を示す。条件出しの際には、電鋳用マスクMf0を用いて形成した母材に対し、設計誤差が所定の閾値以下となるまで、電鋳条件(例えば処理時間やめっき浴内の間仕切りのレイアウトなど)を調整しつつ、メタルマスクM0(但し、nは1以上の整数)を形成する。 When producing the metal mask M0, it is desirable to set optimal electroforming conditions (perform so-called electroforming conditions). FIG. 3 shows an example of determining the electroforming conditions. When setting the conditions, electroforming conditions (for example, processing time, partition layout in the plating bath, etc.) until the design error becomes a predetermined threshold value or less with respect to the base material formed using the electroforming mask Mf0. The metal mask M0 n (where n is an integer greater than or equal to 1) is formed.
 具体的には、まず、所定の電鋳条件を設定し(ステップS21)、設定した条件を用いてメタルマスク(メタルマスクM0)をめっき形成する(ステップS22)。次いで、作製したメタルマスクM0の厚み(板厚)を測定し(ステップS23)、測定した厚みに基づいて設計誤差を算出する(ステップS24)。この厚みを用いた位置誤差の算出手法は、後述の開口位置シフト量の算出手法と同様である。そして、算出した設計誤差が所定の閾値以下となるか(所望の精度が出ているか否か)の判定を行う(ステップS25)。メタルマスクM0における設計誤差が所定の閾値以下である場合(ステップS25のY)には、このメタルマスクM0を、上記のメタルマスクM0とする。一方、メタルマスクM0における設計誤差が所定の閾値よりも大きい場合(ステップS25のN)には、ステップS21に戻り、電鋳条件を調整し(異なる電鋳条件に設定し)、メタルマスク(メタルマスクM0)をめっき形成し、上記と同様にして、厚み測定、設計誤差算出、閾値判定を行う。このようにして、所望の精度が出るまでメタルマスク(メタルマスクM0)の形成を繰り返し行い、最適な電鋳条件を選定する。最終的に所望の精度を実現し得る電鋳条件で形成されたメタルマスクM0を、メタルマスクM0とする。このようにして、メタルマスクM0を作製する。 Specifically, first, predetermined electroforming conditions are set (step S21), and a metal mask (metal mask M0 1 ) is formed by plating using the set conditions (step S22). Then, by measuring the fabricated metal mask M0 1 thickness (plate thickness) (step S23), and calculates the design errors based on the measured thickness (step S24). The calculation method of the position error using this thickness is the same as the calculation method of the opening position shift amount described later. Then, it is determined whether or not the calculated design error is equal to or less than a predetermined threshold (whether or not a desired accuracy is obtained) (step S25). The case design error in the metal mask M0 1 is equal to or less than a predetermined threshold value (Y in step S25), and the metal mask M0 1, a metal mask M0 above. On the other hand, if the design error in the metal mask M0 1 is greater than a predetermined threshold value (N in step S25), and returns to step S21, adjusting the electroforming condition (set to different electroforming condition), the metal mask ( A metal mask M0 2 ) is formed by plating, and thickness measurement, design error calculation, and threshold determination are performed in the same manner as described above. In this way, the metal mask (metal mask M0 n ) is repeatedly formed until the desired accuracy is obtained, and the optimum electroforming conditions are selected. The metal mask M0 n formed under electroforming conditions that can finally achieve the desired accuracy is referred to as a metal mask M0. In this way, a metal mask M0 is produced.
(開口位置シフト量の算出:S14)
 図4に、フレーム溶接前のメタルマスクM0のXY平面構成について示す。このように、フレーム溶接前のメタルマスクM0では、複数の開口H0が、2軸方向に沿って等間隔に整列して配されている。ここで、メタルマスM0をフレームに取り付ける際のイメージを図5Aおよび図5Bに示す。なお、図5Aおよび図5Bには、マスクの厚みを説明するために断面構成についても示す。このようにメタルマスクM0の張設時には、メタルマスクM0を、所定の伸ばし率で四方に(2軸方向に)引張りつつフレーム110へ溶接し、その後、引張力Tを開放する。このメタルマスクM0の張設により、フレーム110への溶接後には、図5Bに示したように、開口H0が理想位置(設計位置)からシフトする(ずれる)。また、開口H0の位置シフト量も不均一となる。このため、フレーム溶接後の開口H0の配列が乱れ、等間隔配置とならない(間隔にむらが生じる)。
(Calculation of opening position shift amount: S14)
FIG. 4 shows the XY plane configuration of the metal mask M0 before frame welding. Thus, in the metal mask M0 before frame welding, the plurality of openings H0 are arranged at equal intervals along the biaxial direction. Here, images when the metal mass M0 is attached to the frame are shown in FIGS. 5A and 5B. 5A and 5B also show a cross-sectional configuration for explaining the thickness of the mask. In this way, when the metal mask M0 is stretched, the metal mask M0 is welded to the frame 110 while being pulled in all directions (biaxial direction) at a predetermined elongation rate, and then the tensile force T is released. By stretching the metal mask M0, the opening H0 is shifted (shifted) from the ideal position (design position) as shown in FIG. 5B after welding to the frame 110. Further, the position shift amount of the opening H0 is not uniform. For this reason, the arrangement of the openings H0 after frame welding is disturbed, and the arrangement is not evenly spaced (the spacing is uneven).
 これは、図5Aの下部に示したように、実際にはメタルマスクM0が厚みの分布を持っていることに起因する。特に電鋳により形成したメタルマスクM0では、めっき成長速度のばらつきに起因して厚みの分布が生じ易い。ここで、フレーム溶接前のメタルマスクM0の開口位置の設計誤差は、実用上問題ない程度(例えばサブミクロン程度)のものである。ところが、溶接時にテンションをかけると、その引張り力によってメタルマスクM0が伸縮する。このとき、メタルマスクM0が厚みの分布を持っていると、その領域によって伸び率が異なってしまう。例えば、相対的に厚みの大きい領域では伸び率が小さく(伸びにくく)、相対的に厚みの小さい領域では、伸び率が大きくなる(伸び易くなる)。この結果、図5Bの下部に示したように、開口H0の位置シフト量が不均一となり、所望の位置設計精度が得られない。 This is due to the fact that the metal mask M0 has a thickness distribution as shown in the lower part of FIG. 5A. In particular, in the metal mask M0 formed by electroforming, the thickness distribution tends to occur due to variations in the plating growth rate. Here, the design error of the opening position of the metal mask M0 before frame welding is such that there is no practical problem (for example, about submicron). However, when tension is applied during welding, the metal mask M0 expands and contracts due to the tensile force. At this time, if the metal mask M0 has a thickness distribution, the elongation varies depending on the region. For example, the elongation rate is small (difficult to stretch) in a relatively thick region, and the elongation rate is large (easy to stretch) in a relatively thin region. As a result, as shown in the lower part of FIG. 5B, the position shift amount of the opening H0 becomes non-uniform, and a desired position design accuracy cannot be obtained.
 そこで、本実施の形態では、上記のような張設時の開口位置シフトを加味した補正を行うために、メタルマスクM0をサンプルとして開口位置シフト量を算出する。この際、メタルマスクM0の厚み(厚みの分布)を測定し、この厚みと張設時の引っ張り率などをパラメータとして用いた計算により、開口位置シフト量を求める。なお、メタルマスクM0の厚みの測定は、フレーム110に保持されていない状態でも、マイクロメータあるいは段差計などの測定器を用いて容易に行うことができる。 Therefore, in the present embodiment, in order to perform correction in consideration of the opening position shift at the time of stretching as described above, the opening position shift amount is calculated using the metal mask M0 as a sample. At this time, the thickness (thickness distribution) of the metal mask M0 is measured, and the opening position shift amount is obtained by calculation using the thickness and the pulling rate at the time of stretching as parameters. Note that the thickness of the metal mask M0 can be easily measured using a measuring instrument such as a micrometer or a step gauge even when the thickness is not held by the frame 110.
 図6~図11を参照して、メタルマスクM0の厚み分布と開口位置シフト量について説明する。図6は、厚み測定ポイントを表す模式図である。図7は、図6に示した測定ポイントにおける厚み分布を表す特性図である。図8は、図7に示した厚み分布から算出した開口位置シフト量(開口位置分布)を表す特性図である。図9は、複数系列において厚み分布を測定する場合の測定ポイントを表す模式図である。図10は、図9に示した複数系列における厚み分布を表す特性図である。図11は、図10に示した厚み分布から算出した開口位置シフト量を表す特性図である。 The thickness distribution of the metal mask M0 and the opening position shift amount will be described with reference to FIGS. FIG. 6 is a schematic diagram showing thickness measurement points. FIG. 7 is a characteristic diagram showing the thickness distribution at the measurement point shown in FIG. FIG. 8 is a characteristic diagram showing the opening position shift amount (opening position distribution) calculated from the thickness distribution shown in FIG. FIG. 9 is a schematic diagram illustrating measurement points when thickness distribution is measured in a plurality of series. FIG. 10 is a characteristic diagram showing thickness distributions in a plurality of series shown in FIG. FIG. 11 is a characteristic diagram showing the opening position shift amount calculated from the thickness distribution shown in FIG.
 メタルマスクM0が、例えばX方向に3840個、Y方向2160個の開口H0を有する場合、全ての開口H0に対応するポイントで厚みを測ると、測定箇所が800万以上となることから、その測定時間は膨大となる。このため、実際には、適当な距離をおいて(選択的な箇所において,間引いて)測定を行う。例えば、図6に示した例では、X方向に15箇所、Y方向に7箇所(つまり、合計で15×7の箇所)の測定ポイントを想定している。図7は、図6の測定ポイントのうちY方向4番の系列において、X方向に沿った位置(計15箇所)の厚みの分布を示している。この測定結果では、X方向14番の位置において厚みが最も大きく、X方向4番あるいは7番の位置において最も小さくなっている。図8では、図7と同じ測定ポイントのそれぞれの開口位置が設計位置と同じである場合を位置シフト量0(ゼロ)とし、X方向プラス側にシフトした場合、そのシフト量をプラスで、マイナス側にシフトした場合、そのシフト量をマイナスで示している。例えばX方向2番の位置の開口H0は設計位置よりもX方向プラス側に、シフトしていることを示す。また、この例では、計算時の条件設定により、X方向両端(1番,15番)における開口位置シフト量を0としている。 When the metal mask M0 has, for example, 3840 openings H0 in the X direction and 2160 openings in the Y direction, measuring the thickness at points corresponding to all the openings H0 results in over 8 million measurement points. The time is enormous. For this reason, in actuality, measurement is performed at an appropriate distance (thinning out at selected locations). For example, the example shown in FIG. 6 assumes 15 measurement points in the X direction and 7 measurement points in the Y direction (that is, a total of 15 × 7 locations). FIG. 7 shows a distribution of thicknesses at positions along the X direction (total of 15 positions) in the fourth series of measurement points in FIG. In this measurement result, the thickness is the largest at the 14th position in the X direction and the smallest at the 4th or 7th position in the X direction. In FIG. 8, when the opening positions of the same measurement points as in FIG. 7 are the same as the design position, the position shift amount is 0 (zero). When shifting to the plus side in the X direction, the shift amount is plus and minus. When shifting to the side, the amount of shift is indicated by minus. For example, it indicates that the opening H0 at the second position in the X direction is shifted to the plus side in the X direction from the design position. Further, in this example, the opening position shift amount at both ends in the X direction (No. 1 and No. 15) is set to 0 by the condition setting at the time of calculation.
 また、図9は、Y方向1~7番の計7つの系列の測定ポイントを示している。図10は、図9に示した計7つの系列毎の厚みの分布を示している。図11の例においても、計算時の条件設定により、X方向両端(1番,15番)における開口位置シフト量を0としている。 In addition, FIG. 9 shows a total of seven measurement points in the Y direction 1-7. FIG. 10 shows the thickness distribution for each of the seven series shown in FIG. Also in the example of FIG. 11, the opening position shift amount at both ends in the X direction (No. 1 and No. 15) is set to 0 by the condition setting at the time of calculation.
 ここで、開口位置シフト量の算出に際し、メタルマスクM0を、1軸方向に沿った1次元モデル(1次元引張モデル)として扱うことができる。例えば、X,Yの2軸方向のうちX方向(矩形状の長手方向)に沿った1次元モデルを用いて開口位置シフト量を算出する。メタルマスクM0のフレーム110への張設を想定すると、メタルマスクM0は、例えばX方向とY方向との2軸方向に引っ張られる。このため、厳密には、開口位置シフト量は、X方向の引張量とY方向の引張量との相互作用で決まるが、本実施の形態では、Y方向の引張りによる作用は無視し、X方向における作用のみを考慮して計算を行う。なお、実測との比較によりY方向の作用が十分に無視できる程度のものであることは確認している。 Here, when calculating the opening position shift amount, the metal mask M0 can be handled as a one-dimensional model (one-dimensional tensile model) along one axial direction. For example, the opening position shift amount is calculated using a one-dimensional model along the X direction (rectangular longitudinal direction) of the two X and Y axes. Assuming that the metal mask M0 is stretched on the frame 110, the metal mask M0 is pulled in, for example, the biaxial directions of the X direction and the Y direction. Therefore, strictly speaking, the opening position shift amount is determined by the interaction between the tensile amount in the X direction and the tensile amount in the Y direction. However, in this embodiment, the effect of the tensile force in the Y direction is ignored, and the X direction The calculation is performed considering only the action of. It has been confirmed by comparison with the actual measurement that the action in the Y direction is sufficiently negligible.
 図12の(A)に、メタルマスクM0の開口H0のイメージを示す。なお、実際には、X方向に4000個程度、Y方向に200個程度の開口H0が配されるが、ここでは、説明上、3×2=6個の開口H0(H0a,H0b)を示す。 FIG. 12A shows an image of the opening H0 of the metal mask M0. In practice, about 4000 openings H0 are arranged in the X direction and about 200 openings H0 in the Y direction, but here, 3 × 2 = 6 openings H0 (H0a, H0b) are shown for explanation. .
 このように、開口H0間においてX方向に沿って延在する部分(X1)を、厚みの測定対象とし、開口位置シフト量を算出することができる。図12の(B)に示したように、中央の開口H0b付近の厚み(t2)は、その両側の開口H0aの付近の厚み(t1)よりも大きくなっている(t2>t1)。加えて、開口H0b付近では、厚みt2が大きいことに伴い、開口H0b間の細長い部分(梁121b)のY方向に沿った幅d2が、開口H0a間の梁121aの幅d1よりも広くなる。また、その梁121bのX方向に沿った長さs2は、梁121aの長さs1よりも短くなる。これは、電鋳の性質に起因する。相対的に厚みの大きな部分は、梁121bの幅および長さのそれぞれが伸びにくい方向になる様に作用する。一方、相対的に厚みの小さい部分はその逆となり、伸びやすくなる。なお、開口位置シフト量を算出するためのパラメータとしては、厚みt1,t2の他にも、幅d1,d2および長さs1,s2を用いることができるが、本実施の形態では厚みのみを用いる。厚みと幅を考慮した場合、および厚みと幅と長さとを考慮した場合については、後述する(変形例)。 As described above, the portion (X1) extending along the X direction between the openings H0 can be used as a thickness measurement target, and the opening position shift amount can be calculated. As shown in FIG. 12B, the thickness (t2) in the vicinity of the central opening H0b is larger than the thickness (t1) in the vicinity of the opening H0a on both sides (t2> t1). In addition, in the vicinity of the opening H0b, as the thickness t2 increases, the width d2 along the Y direction of the elongated portion (beam 121b) between the openings H0b becomes wider than the width d1 of the beam 121a between the openings H0a. Further, the length s2 of the beam 121b along the X direction is shorter than the length s1 of the beam 121a. This is due to the nature of electroforming. The relatively thick portion acts so that the width and length of the beam 121b are less likely to extend. On the other hand, the portion having a relatively small thickness becomes the opposite, and is easily stretched. As parameters for calculating the opening position shift amount, the widths d1 and d2 and the lengths s1 and s2 can be used in addition to the thicknesses t1 and t2, but only the thickness is used in the present embodiment. . A case where the thickness and width are taken into account and a case where the thickness, width and length are taken into account will be described later (modified example).
(補正値の設定:S15)
 上述のように、メタルマスクM0の厚み分布からフレーム110への張設時の開口位置シフト量が計算できるが、メタルマスクM0に厚み分布がある限り、理想位置からの開口位置シフトは生じ得る。このような状況下において精度を向上させるために、設計の段階で、開口位置シフトを考慮して予め開口位置を逆方向にシフトしておけばよい。換言すると、算出した開口位置シフト量に基づいて補正値を設定し、この補正値を設計段階にフィードバックする。
(Correction value setting: S15)
As described above, the opening position shift amount at the time of stretching to the frame 110 can be calculated from the thickness distribution of the metal mask M0. However, as long as the metal mask M0 has the thickness distribution, the opening position shift from the ideal position may occur. In order to improve the accuracy under such circumstances, the opening position may be shifted in the reverse direction in advance at the design stage in consideration of the opening position shift. In other words, a correction value is set based on the calculated opening position shift amount, and this correction value is fed back to the design stage.
 例えば、図13Aに示したように、開口位置シフト量(図8に示したものを例に挙げる)に基づいて、補正値を設定する。具体的には、図13Bに示したように、X方向の位置(1~15番)のそれぞれにおいてX方向の位置シフト量が0となるように、補正値を設定する。例えば、位置3番では、X方向プラス側に7(例えば7μm)シフトしていることから、「-7」を補正値とする。また、位置9番では、X方向マイナス側に6シフトしていることから、「+6」を補正値とする。これらの位置毎の補正値を、メタルマスクM1の開口位置設計工程にフィードバックする。 For example, as shown in FIG. 13A, the correction value is set based on the opening position shift amount (the example shown in FIG. 8 is taken as an example). Specifically, as shown in FIG. 13B, the correction value is set so that the position shift amount in the X direction becomes 0 at each of the positions in the X direction (numbers 1 to 15). For example, since position 3 is shifted 7 (for example, 7 μm) in the plus direction in the X direction, “−7” is set as the correction value. Further, at position 9, since the shift is 6 to the minus side in the X direction, “+6” is set as the correction value. The correction value for each position is fed back to the opening position design process of the metal mask M1.
(メタルマスクM1の作製:S16,S17)
 メタルマスクM1を作製する際には、上記のようにして設定された開口位置シフト量に基づく補正値を用いて、開口位置設計を行う。詳細には、そのような補正値が反映された新たな電鋳用マスクMf1を作り、この電鋳用マスクMf1を用いてメタルマスクM1を形成する。電鋳用マスクMf1としては、高精度なフォトマスクを用いることが望ましい。例えば、熱膨張の小さいガラスあるいは石英ガラスにクロムめっきを施したガラス製のフォトマスクを用いるとよい。
(Production of metal mask M1: S16, S17)
When producing the metal mask M1, the opening position is designed using the correction value based on the opening position shift amount set as described above. Specifically, a new electroforming mask Mf1 reflecting such a correction value is created, and a metal mask M1 is formed using the electroforming mask Mf1. It is desirable to use a highly accurate photomask as the electroforming mask Mf1. For example, a glass photomask in which chrome plating is applied to glass having low thermal expansion or quartz glass may be used.
 図14に、メタルマスクM1のXY平面構成および断面構成について示す。このように、補正値を反映して開口位置設計がなされたメタルマスクM1では、開口H1の位置は等間隔とならない。このようなメタルマスクM1を、次の工程(ステップS18)において、所定の伸ばし率でフレーム110に溶接することで、開口H1の位置が厚み分布に依存してシフトする。これにより、図15に示したように、フレーム110に張設された状態では、開口位置が理想位置に近いものとなる(開口H1が等間隔で配される)。溶接前は不等間隔の開口位置が、溶接後に等間隔に揃う。また、開口位置シフト量の補正は、ここでは1軸(X方向)における開口位置に対して施せばよいが、X方向とY方向との2軸に対して補正を行うこともできる。2軸に対して補正を行う場合は、上記のようにしてX方向における位置シフト量を求めた後、同様にしてY方向における厚み分布に基づいて、Y方向における位置シフト量を算出する(あるいは実際に測定する)。これにより、X方向およびY方向の測定点(例えばX方向15箇所、Y方向7箇所の計105箇所)における補正値を求めることができる。この補正値に基づく開口位置補正は、X方向とY方向とにおいてそれぞれ独立に行うことができる。 FIG. 14 shows an XY plane configuration and a cross-sectional configuration of the metal mask M1. As described above, in the metal mask M1 in which the opening position is designed to reflect the correction value, the positions of the openings H1 are not evenly spaced. By welding such a metal mask M1 to the frame 110 at a predetermined elongation rate in the next step (step S18), the position of the opening H1 is shifted depending on the thickness distribution. As a result, as shown in FIG. 15, in the state of being stretched on the frame 110, the opening position is close to the ideal position (the openings H1 are arranged at equal intervals). Before welding, the opening positions of unequal intervals are evenly spaced after welding. Here, the correction of the opening position shift amount may be performed with respect to the opening position in one axis (X direction), but correction may be performed for two axes in the X direction and the Y direction. When correcting for two axes, after obtaining the position shift amount in the X direction as described above, the position shift amount in the Y direction is similarly calculated based on the thickness distribution in the Y direction (or Actually measure). Accordingly, correction values at measurement points in the X direction and the Y direction (for example, a total of 105 locations including 15 locations in the X direction and 7 locations in the Y direction) can be obtained. The opening position correction based on the correction value can be performed independently in the X direction and the Y direction.
 最後に、フレーム110に張設されたメタルマスクM1において、開口位置精度を確認する。以上により、図1に示した蒸着用マスク1を完成する。 Finally, the opening position accuracy is confirmed in the metal mask M1 stretched on the frame 110. Thus, the vapor deposition mask 1 shown in FIG. 1 is completed.
[効果]
 本実施の形態の蒸着用マスク1の製造方法では、上記のように、蒸着材料の通過孔として複数の開口H1を有するメタルマスクM1を形成したのち、このメタルマスクM1をフレーム110に張設する(張力を印加しつつ溶接等により接着する)。メタルマスクM1の開口位置設計の際に、フレーム110への張設時における開口位置シフト量を加味した補正を行う。例えば、開口位置シフト量を、メタルマスクM0の厚み分布から計算によって求め、算出した開口位置シフト量に基づいて補正値を設定する。設定した補正値を、メタルマスクM1の開口位置設計に反映させる。これにより、メタルマスクM1をフレーム110へ張設した際に、開口H1が所望の位置に配され、理想的な開口位置設計が可能となる。よって、高精度な蒸着用マスクを実現可能となる。
[effect]
In the manufacturing method of the evaporation mask 1 of the present embodiment, as described above, after forming the metal mask M1 having a plurality of openings H1 as the passage holes for the evaporation material, the metal mask M1 is stretched on the frame 110. (Adhering by welding or the like while applying tension). In designing the opening position of the metal mask M1, correction is performed in consideration of the opening position shift amount when the metal mask M1 is stretched on the frame 110. For example, the opening position shift amount is obtained by calculation from the thickness distribution of the metal mask M0, and the correction value is set based on the calculated opening position shift amount. The set correction value is reflected in the opening position design of the metal mask M1. Thereby, when the metal mask M1 is stretched on the frame 110, the opening H1 is arranged at a desired position, and an ideal opening position design is possible. Therefore, a highly accurate evaporation mask can be realized.
 また、上述したように、マスク張設時には開口位置がシフトするが、これまでは、その開口位置シフトが、引張力のばらつきに起因するものなのか、あるいは弾性変形に起因するものなのかが解明されていなかった。本出願人は、このような状況下において、メタルマスクM0を1次元モデルとして捉え、その厚み分布から開口位置シフト量を計算によって求めることで、張設時の開口位置シフト量を事前に想定可能となることを見出した。これにより、メタルマスクM0の厚みのばらつきが、フレーム110への張設時の開口位置シフトの主要因であることがわかり、また、その厚み分布測定および開口位置シフト量算出の各プロセスが1次元モデルに集約可能となった。 In addition, as described above, the opening position shifts when the mask is stretched. Until now, it has been clarified whether the opening position shift is caused by variations in tensile force or due to elastic deformation. Was not. Under such circumstances, the applicant can assume the metal mask M0 as a one-dimensional model and calculate the opening position shift amount from the thickness distribution by calculating the opening position shift amount in advance. I found out that As a result, it can be seen that the variation in the thickness of the metal mask M0 is the main factor of the opening position shift when the frame 110 is stretched to the frame 110, and each process of measuring the thickness distribution and calculating the opening position shift amount is one-dimensional. It can be integrated into the model.
 一方で、実際には、メタルマスクM0の厚み分布をなくすことは難しい。特に、電鋳では、めっき液の流れが不均一であることや、電極との位置関係に応じて母材上の領域によって電流密度が異なること、などに起因して厚みにむらが生じてしまう。一般には、母材上の端部に電極が配置されることから、母材上の中央部におけるめっき成長速度が遅くなる。このため、マスク面内の中央部における厚みが相対的に薄くなる傾向がある。即ち、マスクの厚み分布には、そのプロセス条件に起因する特有の傾向がある。したがって、このような厚み分布から開口位置シフト量を算出し、補正値として設計段階にフィードバックすることで、そのようなプロセス条件に起因する開口位置シフトを予め想定した開口位置設計が可能となる。 On the other hand, it is actually difficult to eliminate the thickness distribution of the metal mask M0. In particular, in electroforming, unevenness in the thickness occurs due to the fact that the flow of the plating solution is uneven and the current density varies depending on the region on the base material depending on the positional relationship with the electrode. . In general, since the electrode is disposed at the end portion on the base material, the plating growth rate in the central portion on the base material is slow. For this reason, there exists a tendency for the thickness in the center part in a mask surface to become relatively thin. That is, the mask thickness distribution has a unique tendency due to the process conditions. Accordingly, by calculating the opening position shift amount from such a thickness distribution and feeding it back to the design stage as a correction value, it is possible to design an opening position that assumes an opening position shift caused by such process conditions in advance.
 また、本実施の形態では、例えばメタルマスクM0の作製工程(図2のS11~S13)および開口位置シフト量の算出工程(S14)において、設計誤差あるいは開口位置シフト量を計算によって求める。これにより、メタルマスクM0をフレーム110に溶接することなく、条件出しあるいは補正値設定を行うことができる。 In the present embodiment, for example, in the metal mask M0 manufacturing process (S11 to S13 in FIG. 2) and the opening position shift amount calculating step (S14), the design error or the opening position shift amount is obtained by calculation. Accordingly, it is possible to set conditions or set correction values without welding the metal mask M0 to the frame 110.
(比較例)
 図16に、本実施の形態の比較例として、実測により電鋳条件出しを行う場合のマスク製造フローを示す。この場合、電鋳用マスク作製(ステップS101)、電鋳条件設定(ステップS102)、メタルマスク作製(ステップS103)およびフレーム溶接(ステップS104)までの一連の工程を行った後、開口位置を測定する(ステップS105)。このように、開口位置精度を実際に測定する場合には、フレームに溶接された状態で測定が行われる。フレームに溶接されていない状態では、メタルマスクが平坦にならず、測定が難しいためである。
(Comparative example)
FIG. 16 shows a mask manufacturing flow in the case where the electroforming conditions are determined by actual measurement as a comparative example of the present embodiment. In this case, after performing a series of steps from electroforming mask production (step S101), electroforming condition setting (step S102), metal mask production (step S103) and frame welding (step S104), the opening position is measured. (Step S105). As described above, when the opening position accuracy is actually measured, the measurement is performed while being welded to the frame. This is because in a state where the metal mask is not welded, the metal mask does not become flat and measurement is difficult.
 具体的には、フレームにメタルマスクを溶接する(S104)際には、専用の測定機を用いて開口位置を計測しつつメタルマスクを引張り、四辺の引張量を微妙に調整したうえで、フレームに溶接する。測定機としては、測定定盤の上にメタルマスクを載せ、例えばX方向およびY方向の2軸に沿って移動する顕微鏡付カメラ、レーザ干渉計およびスケールなどにより計測し、顕微鏡付カメラで捉えた開口位置を画像処理によって判定するタイプの2次元測長機もしくは3次元測長機が挙げられる。その後に、開口位置精度を、上記と同様の専用測定機で測定する(S105)。 Specifically, when the metal mask is welded to the frame (S104), the metal mask is pulled while measuring the opening position using a dedicated measuring machine, and the tensile amount of the four sides is finely adjusted. Weld to. As a measuring instrument, a metal mask is placed on a measurement surface plate, and measured with, for example, a camera with a microscope moving along two axes in the X direction and the Y direction, a laser interferometer and a scale, and captured by the camera with a microscope. A two-dimensional length measuring device or a three-dimensional length measuring device of a type that determines an opening position by image processing can be used. Thereafter, the opening position accuracy is measured with a dedicated measuring machine similar to the above (S105).
 このように、実測の場合、メタルマスクのフレームへの溶接工程(張設工程)と、その後の開口位置精度工程とが必要となる。このため、開口精度判定(S106)において、所望の精度が得られなかった場合には、フレームからメタルマスクを剥がし、フレームの溶接面を磨き、洗浄する。これらの工程は時間が掛かり、1日に1回の測定工程ができる程度である。このように、電鋳条件を設定し直す度に、メタルマスクをフレームから剥がす、磨く、洗浄する、といった工程を要する。 Thus, in the actual measurement, a welding process (stretching process) to the frame of the metal mask and a subsequent opening position accuracy process are required. For this reason, when the desired accuracy is not obtained in the opening accuracy determination (S106), the metal mask is peeled off from the frame, and the welded surface of the frame is polished and cleaned. These processes are time-consuming and can be performed once a day. In this way, every time the electroforming conditions are reset, a process of peeling, polishing, and cleaning the metal mask from the frame is required.
 これに対し、本実施の形態では、メタルマスクM0の厚み測定にはそれほど時間が掛からない。メタルマスクM0の厚みの測定は、マイクロメータあるいは段差計などの測定器を用いて容易に行うことができるのでプロセス時間を短縮化できる。このため、電鋳条件出し(図3)のために、1日に4枚程度のメタルマスクM0(n=1~4)を作製し、厚みを測定することはさほど難しくない。このように、厚み分布から計算で設計誤差を求めることで、フレーム110にメタルマスクM0を貼りつける前段階で、10回以上、場合によっては数10回の電鋳条件出し工程を繰り返すことが可能となる。そして、計算によって所望の精度が出ると判定されたメタルマスクM0のみ、最後に確認のためにフレームに溶接して精度を測定すればよい。したがって、電鋳条件出しの時間が大幅に短縮できる。精度をどこまで追い込むかの要求仕様によるが、場合によっては1カ月以上の期間の短縮も可能となる。 On the other hand, in the present embodiment, it does not take much time to measure the thickness of the metal mask M0. Since the thickness of the metal mask M0 can be easily measured using a measuring instrument such as a micrometer or a step meter, the process time can be shortened. For this reason, it is not difficult to produce about 4 metal masks M0 n (n = 1 to 4) per day and to measure the thickness in order to determine the electroforming conditions (FIG. 3). In this way, by calculating the design error from the thickness distribution, it is possible to repeat the electroforming condition setting process 10 times or more, and in some cases, several tens of times before the metal mask M0 is attached to the frame 110. It becomes. Only the metal mask M0 determined to have a desired accuracy by calculation may be finally welded to the frame for confirmation to measure the accuracy. Therefore, the time required for electroforming conditions can be greatly shortened. Depending on the required specifications for how much accuracy should be pursued, the period of one month or more can be shortened in some cases.
 加えて、メタルマスクM1をフレーム110へ溶接前に精度判定を行うことにより、出荷製品の歩留まりが向上する、というメリットがある。図17に、メタルマスクM1の精度判定を行ってからフレーム110へ溶接する場合の製造フローを示す。上述の工程により、メタルマスクM1を作製する際の設計条件(電鋳条件および開口位置設計)が決まると、その設計条件に基づいて複数のメタルマスクM1を作製することができる。但し、同じ設計条件でメタルマスクM1を作製しても、電鋳工程における条件ばらつき等により、所望の精度が出ない場合がある。このような場合を想定し、メタルマスクM1を作製(ステップS31)後、フレーム110への溶接(ステップS35)前に、メタルマスクM1の厚み分布を測定し(ステップS32)、設計誤差を計算によって求める(ステップS33)。そして、この設計誤差に基づく精度判定を行い(ステップS34)、所望の精度が得られている場合(ステップS34のY)には、フレーム溶接工程へ進む。一方、精度判定おいて所望の精度が得られなかった場合(ステップS34のN)には、再度メタルマスクM1を作製する工程へ戻る(メタルマスクM1を作製し直す)。 In addition, there is an advantage that the yield of shipped products is improved by performing accuracy judgment before welding the metal mask M1 to the frame 110. FIG. 17 shows a manufacturing flow in the case of welding to the frame 110 after determining the accuracy of the metal mask M1. If the design conditions (electroforming conditions and opening position design) for producing the metal mask M1 are determined by the above-described steps, a plurality of metal masks M1 can be produced based on the design conditions. However, even if the metal mask M1 is manufactured under the same design conditions, desired accuracy may not be obtained due to variations in conditions in the electroforming process. Assuming such a case, after manufacturing the metal mask M1 (step S31) and before welding to the frame 110 (step S35), the thickness distribution of the metal mask M1 is measured (step S32), and the design error is calculated. Obtained (step S33). Then, accuracy determination based on the design error is performed (step S34), and when a desired accuracy is obtained (Y in step S34), the process proceeds to the frame welding process. On the other hand, if the desired accuracy is not obtained in the accuracy determination (N in step S34), the process returns to the step of manufacturing the metal mask M1 again (the metal mask M1 is manufactured again).
 このように、メタルマスクM1の作製後、所望の精度が得られているもののみをフレーム110へ溶接することができる。この後、開口位置測定を行い(ステップS36)、精度確認を行う(ステップS37)。このようなフローで、蒸着用マスク1を作製することで、フレーム110への張設工程へ送るべきものかどうかの判定をすることができ、フレーム溶接後に精度が足らずに不良品となるマスク数を減らす事ができる。つまり、最終的な出荷製品の歩留りを向上することができる。 As described above, after the metal mask M1 is manufactured, only those having desired accuracy can be welded to the frame 110. Thereafter, the opening position is measured (step S36), and the accuracy is confirmed (step S37). By producing the deposition mask 1 in such a flow, it is possible to determine whether or not the deposition mask 1 should be sent to the frame 110, and the number of masks that become defective after the frame is welded with insufficient accuracy. Can be reduced. That is, the yield of the final shipment product can be improved.
 以下、本開示の他の実施の形態および変形例の蒸着用マスクについて説明する。尚、上記第1の実施の形態と同様の構成要素については同一の符号を付し、適宜説明を省略する。 Hereinafter, vapor deposition masks according to other embodiments and modifications of the present disclosure will be described. In addition, the same code | symbol is attached | subjected about the component similar to the said 1st Embodiment, and description is abbreviate | omitted suitably.
<第2の実施の形態>
 図18は、本開示の第2の実施形態に係る蒸着用マスクの製造の流れを表したものである。本実施の形態においても、上記第1の実施の形態の蒸着用マスク1の製造方法と同様、例えば次のようにして蒸着用マスクを作製する。即ち、まず、電鋳用マスクMf0を作製する(ステップS41)。次いで、作製した電鋳用マスクMf0を用いて、最適な電鋳条件を設定(あるいは調整)する(ステップS42)。次いで、設定された電鋳条件を用いて、メタルマスク(メタルマスクM0)を作製する(ステップS43)。次いで、メタルマスクM0を用いて、開口位置シフト量を算出する(ステップS44)。この後、算出した開口位置シフト量に基づいて、補正値(代表補正値)を設定する(ステップS45)。次いで、上記補正値が反映された電鋳用マスクMf1を作製する(ステップS46)。次いで、この電鋳用マスクMf1を用いて、電鋳により、メタルマスクM1を作製する(ステップS47)。このようにして作製したメタルマスク1をフレーム110へ溶接し(ステップS48)、最後に開口位置精度を確認する(ステップS49)。このようにして、蒸着用マスクを完成する。
<Second Embodiment>
FIG. 18 illustrates a flow of manufacturing an evaporation mask according to the second embodiment of the present disclosure. Also in the present embodiment, the vapor deposition mask is produced as follows, for example, in the same manner as in the method of manufacturing the vapor deposition mask 1 of the first embodiment. That is, first, an electroforming mask Mf0 is produced (step S41). Next, optimal electroforming conditions are set (or adjusted) using the produced electroforming mask Mf0 (step S42). Next, a metal mask (metal mask M0) is produced using the set electroforming conditions (step S43). Next, the opening position shift amount is calculated using the metal mask M0 (step S44). Thereafter, a correction value (representative correction value) is set based on the calculated opening position shift amount (step S45). Next, the electroforming mask Mf1 reflecting the correction value is produced (step S46). Next, a metal mask M1 is produced by electroforming using the electroforming mask Mf1 (step S47). The metal mask 1 thus manufactured is welded to the frame 110 (step S48), and finally the opening position accuracy is confirmed (step S49). In this way, a vapor deposition mask is completed.
 但し、本実施の形態では、以下の点において上記第1の実施の形態と異なっている。本実施の形態では、開口位置シフト量算出工程(S44)において、開口位置シフト量の傾向に基づき、メタルマスクM0を複数のエリアに区分けする。また、補正値設定工程(S45)では、そのようなエリア毎の開口位置シフト量に基づいて、各エリアにおける代表の補正値を設定する。 However, this embodiment is different from the first embodiment in the following points. In the present embodiment, in the opening position shift amount calculation step (S44), the metal mask M0 is divided into a plurality of areas based on the tendency of the opening position shift amount. In the correction value setting step (S45), a representative correction value in each area is set based on the opening position shift amount for each area.
 図19Aに、本実施の形態の測定ポイント(X方向0~32番,Y方向1~13番)と、エリア(A1~A5)を示す。図19Bは、メタルマスクM0の厚み分布に基づいて算出したX方向(長手方向)の開口位置シフト量の特性図である。なお、本実施の形態においても、厚み分布および開口位置シフト量は、X方向に沿った1次元モデルとして測定、計算を行っている。図19Aおよび図19Bの例では、Y方向1~13番の系列毎に、X方向に沿って33箇所(0~32番)において測定、計算を行った。 FIG. 19A shows measurement points (X direction 0 to 32, Y direction 1 to 13) and areas (A1 to A5) of the present embodiment. FIG. 19B is a characteristic diagram of the opening position shift amount in the X direction (longitudinal direction) calculated based on the thickness distribution of the metal mask M0. Also in the present embodiment, the thickness distribution and the opening position shift amount are measured and calculated as a one-dimensional model along the X direction. In the example of FIGS. 19A and 19B, measurement and calculation were performed at 33 locations (0 to 32) along the X direction for each series of 1 to 13 in the Y direction.
 図19Bに示した例では、系列6、7、8番において似た曲線となっている。つまり、これらの系列6,7,8番を含む部分の位置シフトは同じような傾向があると分かる。同様に、系列12番と13番も類似した位置シフトとなっている。このことは、マスク面内を、開口位置シフトの傾向に応じて、引張り方向(X方向)に沿って延在する複数のエリア(エリアA1~A5)に分割可能であることを示している。これは、メタルマスクM0の厚み分布がエリア毎に類似して生じることにある。例えば、上述したように、電鋳のめっき成長は母材上の中央部が遅くなる傾向がある。このため、マスク面内においてX方向(Y方向についても同様)の中央を対称軸とする線対称性を有する。そのため、X方向におけるマスク中央部に対称軸を置くと、それに対して線対称となる部分でのシフト量は似たものとなる。このような位置シフト傾向の類似性から、メタルマスクM0の面内を複数のエリアA1~A5として捉え、エリア別に補正を行うことができる。 In the example shown in FIG. 19B, the series 6, 7, and 8 are similar curves. In other words, it can be understood that the position shift of the portion including these series 6, 7, and 8 has the same tendency. Similarly, series 12 and 13 have similar position shifts. This indicates that the mask surface can be divided into a plurality of areas (areas A1 to A5) extending along the pulling direction (X direction) according to the tendency of the opening position shift. This is because the thickness distribution of the metal mask M0 is similar for each area. For example, as described above, the electroforming plating growth tends to be slow at the central portion on the base material. For this reason, it has line symmetry with the center in the X direction (the same applies to the Y direction) as the axis of symmetry in the mask plane. For this reason, when an axis of symmetry is placed at the center of the mask in the X direction, the amount of shift in a portion that is line symmetric with respect to the axis becomes similar. Due to the similarity of the position shift tendency, the in-plane of the metal mask M0 can be regarded as a plurality of areas A1 to A5, and correction can be performed for each area.
 ここでは、引張方向(X方向)に沿った1次元モデルを想定しているので、開口位置シフト量の傾向が類似する系列の組毎にエリア分け(エリアA1~A5)がなされている。具体的には、エリアA1が系列1,2番、エリアA2が系列3~5番、エリアA3が系列6~8番、エリアA4が系列9~11番、エリアA5が系列12,13番、をそれぞれ含む。 Here, since a one-dimensional model along the tensile direction (X direction) is assumed, area division (areas A1 to A5) is performed for each group of series having similar trends in the opening position shift amount. Specifically, area A1 is series 1, 2, area A2 is series 3-5, area A3 is series 6-8, area A4 is series 9-11, area A5 is series 12, 13, Respectively.
 このように、開口位置シフトの傾向が類似するエリアA1~A5を抽出した後、エリアA1~A5のそれぞれにおいて、代表の補正値を設定する。例えば、各エリア内において系列間の開口位置シフト量の平均をとり、この平均値を代表の補正値とすることができる。例えば、エリア1では、系列1番の開口位置シフト量と、系列2番の開口位置シフト量との平均値を、エリア1の代表の補正値とすることができる。このようにして、開口位置シフト量算出(S44)および補正値設定(S45)が行われる。また、設定された代表補正値をエリア毎に反映した開口位置設計により、電鋳用マスクMf1が作製される(S46)。なお、本実施の形態の他の工程(S41~S43,S47~S49)は、上記第1の実施の形態の工程(S11~S13,S17~S19)と同様である。 Thus, after extracting the areas A1 to A5 having similar opening position shift tendencies, representative correction values are set in each of the areas A1 to A5. For example, an average of the opening position shift amounts between sequences in each area can be taken, and this average value can be used as a representative correction value. For example, in area 1, the average value of the opening position shift amount of series 1 and the opening position shift amount of series 2 can be used as the representative correction value of area 1. Thus, opening position shift amount calculation (S44) and correction value setting (S45) are performed. Further, the electroforming mask Mf1 is manufactured by opening position design that reflects the set representative correction value for each area (S46). The other steps (S41 to S43, S47 to S49) of the present embodiment are the same as the steps (S11 to S13, S17 to S19) of the first embodiment.
 本実施の形態においても、メタルマスクM1の作製工程における開口位置設計の際に、開口位置シフト量を加味した補正を行うことにより、上記第1の実施の形態と同等の効果を得ることができる。 Also in the present embodiment, the effect equivalent to that of the first embodiment can be obtained by performing correction in consideration of the opening position shift amount in the opening position design in the manufacturing process of the metal mask M1. .
 また、本実施の形態では、上述のように、開口位置算出および補正値設定の際には、エリア分けを行って、エリア毎の代表の補正値を設定する。これにより、開口位置設計の際に、個々の開口毎に補正値を入れる必要がなくなり、エリア毎に代表の補正値を入れればよくなる。例えば画素数が800万以上となるディスプレイ向けの蒸着用マスクでは、開口数は800万以上となるが、本実施の形態のように、エリア別の補正が可能となることで、補正値の量を大幅に削減できる。また、実際には、電鋳ロット毎にある程度のばらつきが有るので、個々の開口毎に補正を行う場合よりも、エリア毎に行う場合の方が、実用性が高い。 In the present embodiment, as described above, when calculating the opening position and setting the correction value, the area is divided and a representative correction value for each area is set. This eliminates the need to enter a correction value for each individual opening when designing the opening position, and it is sufficient to enter a representative correction value for each area. For example, a vapor deposition mask for a display having 8 million pixels or more has a numerical aperture of 8 million or more. However, as in this embodiment, correction by area is possible, and the amount of correction value Can be greatly reduced. Further, in practice, there is a certain degree of variation for each electroforming lot, and therefore, practicality is higher when performing each area than when performing correction for each individual opening.
 なお、Y方向における開口位置シフトについても上記と同様の手法により、エリア分け、代表補正値設定を行うことができる。X方向とY方向とは、互いに独立に扱うことができ、別個に補正値を設定することができる。但し、ディスプレイの長手方向(X方向)における開口位置シフトの累積量が大きいことから、最大シフト量は長手方向に発生する場合が殆どである。その為、長手方向のみのシフト量を補正するだけでも十分な効果を得ることができる。 In addition, with respect to the opening position shift in the Y direction, area division and representative correction value setting can be performed by the same method as described above. The X direction and the Y direction can be handled independently of each other, and correction values can be set separately. However, since the accumulated amount of opening position shift in the longitudinal direction (X direction) of the display is large, the maximum shift amount is almost always generated in the longitudinal direction. Therefore, it is possible to obtain a sufficient effect only by correcting the shift amount only in the longitudinal direction.
<変形例1>
 上記第2の実施の形態の蒸着用マスクの製造方法では、エリア別に補正値設定を行う手法について述べたが、実際には、同じ電鋳条件で作製したメタルマスクであっても、厚み分布にはロッド毎のばらつきが生じる。特に、電鋳工程では、厚み分布がロット毎にばらつき易い。
<Modification 1>
In the method of manufacturing a deposition mask according to the second embodiment, the method for setting the correction value for each area has been described. However, even in the case of a metal mask manufactured under the same electroforming conditions, the thickness distribution is actually reduced. Varies from rod to rod. In particular, in the electroforming process, the thickness distribution tends to vary from lot to lot.
 そこで、本変形例では、上記第2の実施の形態と同様にしてエリア分けを行った後、同じ電鋳条件で作製した複数枚のメタルマスク間において対応するエリア(互いに同一のエリア)の開口位置シフト量の平均をとる。換言すると、全てのメタルマスクにおいてエリアの開口位置シフト量の平均をとる。以下、その一例について説明する。 Therefore, in the present modification, after the areas are divided in the same manner as in the second embodiment, the corresponding areas (the same area) are opened between the plurality of metal masks manufactured under the same electroforming conditions. Take the average of the position shift amount. In other words, the average aperture position shift amount of the area is taken for all the metal masks. Hereinafter, an example will be described.
 図20~図24に、同じ電鋳条件で作製した計5枚のメタルマスクM0(サンプルA~Eとする)の厚み分布に基づいて算出した開口位置シフト量を示す。このように、サンプルA~Eでは、系列毎あるいはエリア毎に概ね類似した傾向を有するものの、若干のばらつきがあることがわかる。 20 to 24 show opening position shift amounts calculated based on the thickness distribution of a total of five metal masks M0 (samples A to E) manufactured under the same electroforming conditions. In this manner, it can be seen that Samples A to E have a somewhat similar tendency for each series or area, but have some variation.
 これらの5枚のサンプルA~Eからエリア毎に平均をとったものを図25に示す。なお、ここでは、系列1,2の組(図19AのエリアA1に相当)、系列3~5,9~11の組(エリアA2,A4に相当)、系列6~8の組(エリアA3に相当)、および系列12,13の組(エリアA5に相当)の計4つのエリアで、それぞれ平均をとっている。詳細には、例えば系列1,2の組の平均値は、サンプルAの系列1,2の開口位置シフト量と、サンプルBの系列1,2の開口位置シフト量と、サンプルCの系列1,2の開口位置シフト量と、サンプルDの系列1,2の開口位置シフト量と、サンプルEの系列1,2の開口位置シフト量との平均値である。 FIG. 25 shows an average of these five samples A to E for each area. It should be noted that here, series 1 and 2 (corresponding to area A1 in FIG. 19A), series 3 to 5, 9 to 11 (corresponding to areas A2 and A4), and series 6 to 8 (corresponding to area A3). Equivalent), and a total of four areas of a set of series 12 and 13 (corresponding to area A5), respectively. Specifically, for example, the average value of the set of series 1 and 2 includes the opening position shift amount of series 1 and 2 of sample A, the opening position shift amount of series 1 and 2 of sample B, and the series 1 and 2 of sample C. 2 is the average value of the opening position shift amount of the sample D, the opening position shift amount of the series 1 and 2 of the sample D, and the opening position shift amount of the series 1 and 2 of the sample E.
 このようにして求めた複数枚のメタルマスクM0におけるエリア別平均値を、代表の補正値として、上記第2の実施の形態と同様、メタルマスクM1の設計工程にフィードバックする。これにより、上記第2の実施の形態と同等の効果を得ることができると共に、ロッド毎のばらつきも考慮した補正が可能となる。より高精度化を実現することができる。また、実際に開口位置設計補正を行う場合、電鋳用マスクMf1は1つであることから、本変形例のように複数枚のメタルマスクからエリア別に平均をとる手法が、最も実用性がある。 The average value for each area in the plurality of metal masks M0 obtained in this way is fed back to the design process of the metal mask M1 as a representative correction value, as in the second embodiment. As a result, the same effects as those of the second embodiment can be obtained, and correction in consideration of variation for each rod can be performed. Higher accuracy can be realized. Further, when the aperture position design correction is actually performed, since there is only one electroforming mask Mf1, the method of taking an average for each area from a plurality of metal masks as in this modification is most practical. .
(補正効果)
 図26~図30に、本変形例のサンプルA~Eの開口位置シフト量(各図の(A))と、実際に開口位置設計補正を行った後の位置シフト量(各図の(B))とについて示す。なお、(B)の補正後の分布は、(A)の特性図において、エリア毎に上述の手法により設定された1つの代表補正値を差し引いて得られた計算値である。また、各図には、位置シフト量の最大値(max)と、最小値(min)と、最大幅(X方向におけるシフト量の最大値:Range)とについても示す。サンプルA~Eの全てにおいて、補正後の特性図では、補正前よりも、最大値、最小値および最大幅のいずれもが半減している(あるいは軽減されている)。これらの結果は、上述した開口位置設計時の補正によって開口位置精度が向上することを示している。
(Correction effect)
26 to 30 show the opening position shift amount (A in each figure) of the samples A to E of this modification and the position shift amount after actually performing the opening position design correction ((B in each figure). )). The corrected distribution in (B) is a calculated value obtained by subtracting one representative correction value set by the above-described method for each area in the characteristic diagram in (A). Each figure also shows the maximum value (max), minimum value (min), and maximum width (maximum value of shift amount in the X direction: Range) of the position shift amount. In all the samples A to E, in the characteristic diagram after correction, all of the maximum value, the minimum value, and the maximum width are halved (or reduced) than before correction. These results show that the opening position accuracy is improved by the correction at the time of designing the opening position described above.
<変形例2>
 上記実施の形態等では、メタルマスクM0の厚み(厚み分布)に基づいて、開口位置シフト量を算出したが、開口位置シフト量の算出には、厚み以外に、他のパラメータを用いるようにしてもよい。図31の(A)に、メタルマスクM0の開口H0のイメージを示す。なお、実際には、X方向に4000個程度、Y方向に200個程度の開口H0が配されるが、ここでは、説明上、3×2=6個の開口H0(H0a,H0b)を示す。
<Modification 2>
In the above embodiment and the like, the opening position shift amount is calculated based on the thickness (thickness distribution) of the metal mask M0. However, in addition to the thickness, other parameters are used for calculating the opening position shift amount. Also good. FIG. 31A shows an image of the opening H0 of the metal mask M0. In practice, about 4000 openings H0 are arranged in the X direction and about 200 openings H0 in the Y direction, but here, 3 × 2 = 6 openings H0 (H0a, H0b) are shown for explanation. .
 上記第1の実施の形態と同様、1次元モデルとして、開口H0間においてX方向に沿って延在する部分(X1)を測定対象とすることができる。図31の(B)に示したように、中央の開口H0b付近の厚み(t2)は、その両側の開口H0aの付近の厚み(t1)よりも大きくなっている(t2>t1)。加えて、開口H0b付近では、厚みt2が大きいことに伴い、開口H0b間の細長い部分(梁121b)のY方向に沿った幅d2が、開口H0a間の梁121aの幅d1よりも広くなる。また、図31の(C)に示したように、その梁121bのX方向に沿った長さs2は、梁121aの長さs1よりも短くなる。これは、電鋳の性質に起因する。相対的に厚みの大きな部分は、梁121bの幅および長さのそれぞれが伸びにくい方向になる様に作用する。一方、相対的に厚みの小さい部分はその逆となり、伸びやすくなる。 As in the first embodiment, as a one-dimensional model, a portion (X1) extending along the X direction between the openings H0 can be measured. As shown in FIG. 31B, the thickness (t2) near the central opening H0b is larger than the thickness (t1) near the opening H0a on both sides (t2> t1). In addition, in the vicinity of the opening H0b, as the thickness t2 increases, the width d2 along the Y direction of the elongated portion (beam 121b) between the openings H0b becomes wider than the width d1 of the beam 121a between the openings H0a. Further, as shown in FIG. 31C, the length s2 of the beam 121b along the X direction is shorter than the length s1 of the beam 121a. This is due to the nature of electroforming. The relatively thick portion acts so that the width and length of the beam 121b are less likely to extend. On the other hand, the portion having a relatively small thickness becomes the opposite, and is easily stretched.
 本変形例では、上記の1次元モデル部分X1において、厚みt1,t2のみを考慮した場合(上記第1の実施の形態に相当:モデル1)、厚みt1,t2と幅d1,d2とを考慮した場合(モデル2)、あるいは厚みt1,t2と幅d1,d2と長さs1,s2を考慮した場合(モデル3)について説明する。モデル1は、部分X1において、厚みのみを考慮し、即ちX方向において開口部分の伸びと非開口部分の伸びとを区別しないものである(図32A)。モデル2は、部分X1において、厚みと幅とを考慮し、即ちX方向において開口部分の伸びと非開口部分の伸びとを区別しないものである(図32B)。モデル3は、部分X1において、厚みと幅と長さとを考慮し、即ちX方向において梁121a,121bのみが伸びることを想定したものである(図32C)。 In the present modification, when only the thicknesses t1 and t2 are considered in the one-dimensional model portion X1 (corresponding to the first embodiment: model 1), the thicknesses t1 and t2 and the widths d1 and d2 are considered. The case where the thicknesses t1, t2, the widths d1, d2, and the lengths s1, s2 are taken into account (model 3) will be described. In the model X1, only the thickness is considered in the part X1, that is, the extension of the opening part and the extension of the non-opening part are not distinguished in the X direction (FIG. 32A). The model 2 considers the thickness and width in the portion X1, that is, does not distinguish between the extension of the opening portion and the extension of the non-opening portion in the X direction (FIG. 32B). In the model 3, the thickness, width and length are considered in the portion X1, that is, only the beams 121a and 121b are assumed to extend in the X direction (FIG. 32C).
 上記の3種類のモデル1~3のそれぞれにおいて、実測値と計算値とを比較した。図33に、実測値(図33の(A))と、モデル1の計算値(図33の(B))とを示す。図34に、実測値(図34の(A))と、モデル2の計算値(図34の(B))とを示す。図35に、実測値(図35の(A))と、モデル3の計算値(図35の(B))とを示す。なお、実測値は、メタルマスクをフレームに張設した状態で開口位置を実際に測定したものである。また、モデル1~3の各計算値では、X方向における端部(1,15)での位置シフト量を0とした。これは、マスク外周部の開口位置を理想位置(設計位置)としてフレーム110に貼りついている状態を想定している。また、Y方向系列は計7つであり、各系列の測定箇所はX方向に15箇所とした。したがって、各図において曲線は計7本となっている。 Measured values were compared with calculated values in each of the above three types of models 1 to 3. FIG. 33 shows measured values (FIG. 33A) and model 1 calculated values (FIG. 33B). FIG. 34 shows measured values ((A) of FIG. 34) and calculated values of model 2 ((B) of FIG. 34). FIG. 35 shows measured values (FIG. 35A) and model 3 calculated values (FIG. 35B). Note that the actual measurement values are actual measurements of the opening position with the metal mask stretched on the frame. Further, in each calculated value of the models 1 to 3, the position shift amount at the end (1, 15) in the X direction was set to zero. This assumes a state where the opening position of the outer peripheral portion of the mask is attached to the frame 110 as an ideal position (design position). In addition, there were a total of 7 Y-direction series, and 15 measurement points in each series were set in the X direction. Accordingly, there are a total of seven curves in each figure.
 この結果、いずれのモデルの計算値も実測値と同様の傾向を有することがわかり、いずれのモデルであっても補正効果が得られることがわかる。特に、図34のモデル2の計算値が、最も実測値に近いこともわかった。即ち、厚みと幅とを考慮した場合に、より精度が得られることがわかった。また、引張方向(X方向)に対して垂直な方向(Y方向)の引張に関しては無視しても問題がないことがわかった。 As a result, it can be seen that the calculated value of any model has the same tendency as the actually measured value, and it can be seen that the correction effect can be obtained with any model. In particular, it was also found that the calculated value of model 2 in FIG. 34 is closest to the actually measured value. That is, it was found that more accuracy can be obtained when the thickness and width are taken into consideration. Further, it was found that there is no problem even if the tension in the direction (Y direction) perpendicular to the tension direction (X direction) is ignored.
<適用例>
 上記実施の形態および変形例において説明した蒸着用マスクの適用例について説明する。上記実施の形態の蒸着用マスクあるいは蒸着用マスクの製造方法は、例えば有機EL表示装置の製造工程に好適に用いることができる。
<Application example>
An application example of the vapor deposition mask described in the above embodiment and modifications will be described. The vapor deposition mask or the vapor deposition mask manufacturing method of the above embodiment can be suitably used, for example, in the manufacturing process of an organic EL display device.
 図36は、有機EL表示装置の製造の流れを表したものである。このように、有機EL表示装置は、第1電極形成工程(ステップS51)、有機層蒸着工程(ステップS52)、第2電極形成工程(ステップS53)および封止工程(ステップS54)を含む。これらのうち、有機層蒸着工程(S52)において、例えば有機電界発光層を蒸着形成する際に、上記実施の形態等の蒸着用マスクを使用することができる。 FIG. 36 shows the flow of manufacturing the organic EL display device. As described above, the organic EL display device includes the first electrode formation process (step S51), the organic layer deposition process (step S52), the second electrode formation process (step S53), and the sealing process (step S54). Among these, in the organic layer vapor deposition step (S52), for example, when the organic electroluminescent layer is formed by vapor deposition, the vapor deposition mask of the above-described embodiment or the like can be used.
 図37に、有機層蒸着工程のイメージを示す。このように、蒸着の際には、例えば蒸着装置内では、蒸着源13の上方において、蒸着用マスク1(フレーム110,メタルマスクM1)が基板11に密着された状態で一定速度で移動する。蒸着源13から有機材料(有機EL材料12)が、蒸気12aとなって拡散し、蒸着用マスク1を介して基板11へ付着する。 FIG. 37 shows an image of the organic layer deposition process. In this way, during vapor deposition, for example, in the vapor deposition apparatus, the vapor deposition mask 1 (frame 110, metal mask M1) moves at a constant speed above the vapor deposition source 13 while being in close contact with the substrate 11. The organic material (organic EL material 12) is diffused as vapor 12a from the vapor deposition source 13 and adheres to the substrate 11 through the vapor deposition mask 1.
 このように、有機EL表示装置の製造プロセスにおいて、上記実施の形態等の蒸着用マスクを用いることで、高精度な画素設計が可能となり、画素の高精細化などを実現可能となる。また、高寿命化および高輝度化も期待できる。 As described above, in the manufacturing process of the organic EL display device, by using the vapor deposition mask according to the above-described embodiment or the like, it is possible to design a pixel with high accuracy and to realize high definition of the pixel. In addition, longer life and higher brightness can be expected.
 以上、実施の形態、変形例および適用例について説明したが、本開示内容はこれらの実施の形態等に限定されず、種々の変形が可能である。例えば、上記実施の形態等では、開口位置シフト量を、メタルマスクの厚み等の分布に基づいて計算によって求める場合を例に挙げて説明したが、本開示はこれに限定されるものではない。例えば、メタルマスクを作製後、実際にフレームに溶接した状態で開口位置を測定してもよい。この場合、測定した開口位置シフト量に基づいて補正値を設定すればよい。ただし、上記実施の形態等において説明したように、計算によって開口位置シフト量を求める場合の方が、工程数、処理時間を大幅に削減できるため、望ましい。 As mentioned above, although embodiment, the modification, and the application example were demonstrated, this indication content is not limited to these embodiment etc., A various deformation | transformation is possible. For example, in the above-described embodiment and the like, the case where the opening position shift amount is obtained by calculation based on the distribution such as the thickness of the metal mask has been described as an example, but the present disclosure is not limited thereto. For example, the opening position may be measured in a state where the metal mask is actually welded to the frame after being manufactured. In this case, a correction value may be set based on the measured opening position shift amount. However, as described in the above embodiments and the like, it is preferable to obtain the opening position shift amount by calculation because the number of steps and processing time can be greatly reduced.
 また、上記実施の形態等では、メタルマスクを電鋳によって作製する場合を例に挙げて説明したが、メタルマスクをエッチングにより作製する場合にも、本開示内容は適用することができる。 In the above-described embodiment and the like, the case where the metal mask is manufactured by electroforming has been described as an example. However, the present disclosure can be applied to the case where the metal mask is manufactured by etching.
 更に、上記実施の形態等では、蒸着用マスクは、有機EL表示装置の製造過程で用いられる例について説明した。しかし本開示の蒸着用マスクは、有機材料に限られず、例えば金属材料、誘電体材料等の蒸着工程に適用されてもよい。あるいは、蒸着用途だけでなく、露光用あるいは印刷用のマスクなどであってもよく、高精度化が求められるマスクに広く適用することが可能である。 Furthermore, in the above-described embodiment and the like, the example in which the vapor deposition mask is used in the manufacturing process of the organic EL display device has been described. However, the vapor deposition mask of the present disclosure is not limited to an organic material, and may be applied to a vapor deposition process of a metal material, a dielectric material, or the like, for example. Alternatively, the mask may be used not only for vapor deposition but also for exposure or printing, and can be widely applied to masks that require high accuracy.
 また、上記実施の形態等において説明した効果は一例であり、他の効果であってもよいし、更に他の効果を含んでいてもよい。 Further, the effects described in the above embodiments and the like are examples, and other effects may be included or further effects may be included.
 本開示は以下のような構成もとることができる。
(1)
 蒸着材料の通過孔として複数の第1の開口を有する第1のマスクを形成し、
 前記第1のマスクをフレームに張設し、
 前記第1のマスクを形成する際、前記第1の開口の位置設計の際に、前記フレームへの張設時における開口位置シフト量を加味した補正を行う
 蒸着用マスクの製造方法。
(2)
 前記第1のマスクを形成する際に、
 複数の第2の開口を有する第2のマスクを用意し、
 前記第2のマスクを用いて前記開口位置シフト量を算出し、
 算出した開口位置シフト量に基づいて補正値を設定し、
 前記第1の開口の位置設計の際に、前記補正値を用いた補正を行う
 上記(1)に記載の蒸着用マスクの製造方法。
(3)
 前記第2のマスクの厚みの分布に基づいて、前記開口位置シフト量を算出する
 上記(2)に記載の蒸着用マスクの製造方法。
(4)
 前記フレーム張設時のマスク引っ張り方向のうちの第1の方向のみを考慮した1次元モデルを用いて、前記開口位置シフト量を算出する
 上記(3)に記載の蒸着用マスクの製造方法。
(5)
 前記第1および第2のマスクの面形状は矩形状であり、
 前記第1の方向は、前記矩形状の長手方向である
 上記(4)に記載の蒸着用マスクの製造方法。
(6)
 前記第2のマスクの前記第1の方向における両端部の前記開口位置シフト量を0(ゼロ)とする
 上記(4)または(5)に記載の蒸着用マスクの製造方法。
(7)
 前記第1のマスクを形成する際に、
 前記第2のマスクを、設計誤差が所定の閾値以下となるまで、プロセス条件を調整しつつ複数回にわたって形成し、
 前記設計誤差が前記閾値以下となるプロセス条件を、前記第1のマスクのプロセス条件とする
 上記(2)に記載の蒸着用マスクの製造方法。
(8)
 前記第1の方向に直交する第2の方向における第2の開口間の梁部分の、前記第2の方向に沿った幅を更に測定し、
 測定した前記厚みと前記幅とに基づいて、前記開口位置シフト量を算出する
 上記(3)に記載の蒸着用マスクの製造方法。
(9)
 前記梁部分の前記第1の方向に沿った長さを更に測定し、
 測定した前記厚みと前記幅と前記長さとに基づいて、前記開口位置シフト量を算出する
 上記(8)に記載の蒸着用マスクの製造方法。
(10)
 前記第1の開口の位置設計の際に、マスク引っ張り方向のうちの互いに直交する第1および第2の方向のそれぞれにおいて、前記開口位置シフト量を加味した補正を行う
 上記(1)~(9)のいずれかに記載の蒸着用マスクの製造方法。
(11)
 前記第1の開口の位置設計の際に、マスク引っ張り方向のうちの互いに直交する第1および第2の方向のうちのいずれか一方において、前記開口位置シフト量を加味した補正を行う
 上記(1)~(9)のいずれかに記載の蒸着用マスクの製造方法。
(12)
 前記補正値の設定の際には、前記第2のマスクの全開口のうちの選択的な第2の開口の位置シフト量を用いる
 上記(2)~(11)のいずれかに記載の蒸着用マスクの製造方法。
(13)
 前記第2のマスクを、それぞれにおいて前記開口位置シフト量の傾向が類似する複数のエリアに区分けし、
 前記第1の開口の位置設計の際に、前記エリア毎に設定された代表補正値を用いた補正を行う
 上記(2)~(12)のいずれかに記載の蒸着用マスクの製造方法。
(14)
 前記複数のエリアはそれぞれ、マスク引っ張り方向のうちの第1の方向に沿って延在すると共に、前記第1の方向に直交する第2の方向に沿って分割されている
 上記(13)に記載の蒸着用マスクの製造方法。
(15)
 前記代表補正値は、前記複数のエリアのそれぞれにおける前記開口位置シフト量の平均を用いて設定される
 上記(14)に記載の蒸着用マスクの製造方法。
(16)
 前記第2のマスクを複数形成し、
 前記代表補正値は、複数の前記第2のマスク間において対応するエリアの開口位置シフト量の平均を用いて設定される
 上記(14)に記載の蒸着用マスクの製造方法。
(17)
 前記第1および第2のマスクを電鋳により形成する
 上記(2)~(16)のいずれかに記載の蒸着用マスクの製造方法。
(18)
 前記第2のマスクを形成する際に使用されるマスクは、前記第1のマスクを形成する際に使用されるマスクよりも安価な材料により構成されている
 上記(2)~(16)のいずれかに記載の蒸着用マスクの製造方法。
(19)
 前記第1のマスクを形成する際にはガラス製のマスクが使用され、
 前記第2のマスクを形成する際にはフィルムマスクが使用される
 上記(18)に記載の蒸着用マスクの製造方法。
(20)
 前記第1および第2のマスクをエッチングにより形成する
 上記(2)~(19)のいずれかに記載の蒸着用マスクの製造方法。
(21)
 前記第1のマスクを形成する際に、
 複数の第2の開口を有する第2のマスクを用意し、
 前記第2のマスクをフレームに張設した状態で、前記開口位置シフト量を測定し、
 測定した開口位置シフト量に基づいて補正値を設定し、
 前記第1の開口の位置設計の際に、前記補正値を用いた補正を行う
 上記(1)に記載の蒸着用マスクの製造方法。
(22)
 蒸着用マスクを形成し、
 前記蒸着用マスクを用いて材料層をパターン形成し、
 前記蒸着用マスクを形成する際に、
 蒸着材料の通過孔として複数の第1の開口を有する第1のマスクを形成し、
 前記第1のマスクをフレームに張設し、かつ
 前記第1のマスクを、前記第1の開口の位置設計の際に、前記フレームへの張設時における開口位置シフト量を加味した補正を行う
 表示装置の製造方法。
(23)
 前記材料層は、有機電界発光層である
 上記(22)に記載の表示装置の製造方法。
The present disclosure can be configured as follows.
(1)
Forming a first mask having a plurality of first openings as passage holes for the vapor deposition material;
Stretching the first mask on the frame;
A method for manufacturing a vapor deposition mask, wherein, when forming the first mask, correction is performed in consideration of an opening position shift amount when the first opening is stretched to the frame when designing the position of the first opening.
(2)
When forming the first mask,
Preparing a second mask having a plurality of second openings;
Calculating the opening position shift amount using the second mask;
Set the correction value based on the calculated opening position shift amount,
The vapor deposition mask manufacturing method according to (1), wherein correction using the correction value is performed when designing the position of the first opening.
(3)
The method for manufacturing a vapor deposition mask according to (2), wherein the opening position shift amount is calculated based on a thickness distribution of the second mask.
(4)
The method for manufacturing an evaporation mask according to (3), wherein the opening position shift amount is calculated using a one-dimensional model considering only a first direction of the mask pulling direction when the frame is stretched.
(5)
The surface shape of the first and second masks is rectangular,
The said 1st direction is a manufacturing method of the mask for vapor deposition as described in said (4) which is the said rectangular-shaped longitudinal direction.
(6)
The method for manufacturing an evaporation mask according to (4) or (5), wherein the opening position shift amount at both ends of the second mask in the first direction is set to 0 (zero).
(7)
When forming the first mask,
The second mask is formed a plurality of times while adjusting process conditions until the design error becomes a predetermined threshold value or less,
The process for producing a vapor deposition mask according to (2) above, wherein a process condition in which the design error is equal to or less than the threshold is set as a process condition of the first mask.
(8)
Further measuring the width along the second direction of the beam portion between the second openings in a second direction orthogonal to the first direction;
The method of manufacturing a deposition mask according to (3), wherein the opening position shift amount is calculated based on the measured thickness and width.
(9)
Further measuring the length of the beam portion along the first direction;
The method for manufacturing a deposition mask according to (8), wherein the opening position shift amount is calculated based on the measured thickness, width, and length.
(10)
When designing the position of the first opening, correction is performed in consideration of the opening position shift amount in each of the first and second directions orthogonal to each other in the mask pulling direction. The manufacturing method of the mask for vapor deposition in any one of.
(11)
In designing the position of the first opening, correction is performed in consideration of the opening position shift amount in any one of the first and second directions orthogonal to each other in the mask pulling direction. ) To (9). A method for producing an evaporation mask according to any one of the above.
(12)
In the setting of the correction value, the position shift amount of the second opening which is selective among all the openings of the second mask is used. The vapor deposition according to any one of the above (2) to (11) Mask manufacturing method.
(13)
Dividing the second mask into a plurality of areas each having a similar tendency of the opening position shift amount;
The vapor deposition mask manufacturing method according to any one of (2) to (12), wherein correction is performed using a representative correction value set for each area when the position of the first opening is designed.
(14)
Each of the plurality of areas extends along a first direction of the mask pulling directions and is divided along a second direction orthogonal to the first direction. (13) Of manufacturing a mask for vapor deposition.
(15)
The said representative correction value is set using the average of the said opening position shift amount in each of these areas, The manufacturing method of the mask for vapor deposition as described in said (14).
(16)
Forming a plurality of the second masks;
The said representative correction value is set using the average of the opening position shift amount of the area corresponding between several said 2nd masks, The manufacturing method of the mask for vapor deposition as described in said (14).
(17)
The method for manufacturing an evaporation mask according to any one of (2) to (16), wherein the first and second masks are formed by electroforming.
(18)
The mask used when forming the second mask is made of a material less expensive than the mask used when forming the first mask. Any of the above (2) to (16) A method for producing a vapor deposition mask according to claim 1.
(19)
When forming the first mask, a glass mask is used,
A film mask is used when forming the second mask. The method for manufacturing a vapor deposition mask according to (18).
(20)
The method for manufacturing an evaporation mask according to any one of (2) to (19), wherein the first and second masks are formed by etching.
(21)
When forming the first mask,
Preparing a second mask having a plurality of second openings;
In a state where the second mask is stretched on the frame, the opening position shift amount is measured,
Set the correction value based on the measured opening position shift amount,
The vapor deposition mask manufacturing method according to (1), wherein correction using the correction value is performed when designing the position of the first opening.
(22)
Forming a deposition mask,
Patterning the material layer using the vapor deposition mask;
When forming the evaporation mask,
Forming a first mask having a plurality of first openings as passage holes for the vapor deposition material;
The first mask is stretched on the frame, and the first mask is corrected in consideration of the opening position shift amount when stretched to the frame when designing the position of the first opening. Manufacturing method of display device.
(23)
The method for manufacturing a display device according to (22), wherein the material layer is an organic electroluminescent layer.
 本出願は、日本国特許庁において2014年3月28日に出願された日本特許出願番号第2014-69045号を基礎として優先権を主張するものであり、この出願のすべての内容を参照によって本出願に援用する。 This application claims priority on the basis of Japanese Patent Application No. 2014-69045 filed on March 28, 2014 at the Japan Patent Office. The entire contents of this application are incorporated herein by reference. This is incorporated into the application.
 当業者であれば、設計上の要件や他の要因に応じて、種々の修正、コンビネーション、サブコンビネーション、および変更を想到し得るが、それらは添付の請求の範囲やその均等物の範囲に含まれるものであることが理解される。 Those skilled in the art will envision various modifications, combinations, subcombinations, and changes, depending on design requirements and other factors, which are within the scope of the appended claims and their equivalents. It is understood that

Claims (23)

  1.  蒸着材料の通過孔としての複数の第1の開口を有する第1のマスクを形成し、
     前記第1のマスクをフレームに張設し、
     前記第1のマスクを形成する際、前記第1の開口の位置設計の際に、前記フレームへの張設時における開口位置シフト量を加味した補正を行う
     蒸着用マスクの製造方法。
    Forming a first mask having a plurality of first openings as through holes for the vapor deposition material;
    Stretching the first mask on the frame;
    A method for manufacturing a vapor deposition mask, wherein, when forming the first mask, correction is performed in consideration of an opening position shift amount when the first opening is stretched to the frame when designing the position of the first opening.
  2.  前記第1のマスクを形成する際に、
     複数の第2の開口を有する第2のマスクを用意し、
     前記第2のマスクを用いて前記開口位置シフト量を算出し、
     算出した開口位置シフト量に基づいて補正値を設定し、
     前記第1の開口の位置設計の際に、前記補正値を用いた補正を行う
     請求項1に記載の蒸着用マスクの製造方法。
    When forming the first mask,
    Preparing a second mask having a plurality of second openings;
    Calculating the opening position shift amount using the second mask;
    Set the correction value based on the calculated opening position shift amount,
    The method for manufacturing an evaporation mask according to claim 1, wherein correction using the correction value is performed when designing the position of the first opening.
  3.  前記第2のマスクの厚みの分布に基づいて、前記開口位置シフト量を算出する
     請求項2に記載の蒸着用マスクの製造方法。
    The method for manufacturing an evaporation mask according to claim 2, wherein the opening position shift amount is calculated based on a thickness distribution of the second mask.
  4.  前記フレーム張設時のマスク引っ張り方向のうちの第1の方向のみを考慮した1次元モデルを用いて、前記開口位置シフト量を算出する
     請求項3に記載の蒸着用マスクの製造方法。
    The evaporation mask manufacturing method according to claim 3, wherein the opening position shift amount is calculated using a one-dimensional model considering only the first direction of the mask pulling direction when the frame is stretched.
  5.  前記第1および第2のマスクの面形状は矩形状であり、
     前記第1の方向は、前記矩形状の長手方向である
     請求項4に記載の蒸着用マスクの製造方法。
    The surface shape of the first and second masks is rectangular,
    The method for manufacturing a vapor deposition mask according to claim 4, wherein the first direction is a longitudinal direction of the rectangular shape.
  6.  前記第2のマスクの前記第1の方向における両端部の前記開口位置シフト量を0(ゼロ)とする
     請求項4に記載の蒸着用マスクの製造方法。
    The method for manufacturing an evaporation mask according to claim 4, wherein the opening position shift amount at both end portions in the first direction of the second mask is set to 0 (zero).
  7.  前記第1のマスクを形成する際に、
     前記第2のマスクを、設計誤差が所定の閾値以下となるまで、プロセス条件を調整しつつ複数回にわたって形成し、
     前記設計誤差が前記閾値以下となるプロセス条件を、前記第1のマスクのプロセス条件とする
     請求項2に記載の蒸着用マスクの製造方法。
    When forming the first mask,
    The second mask is formed a plurality of times while adjusting process conditions until the design error becomes a predetermined threshold value or less,
    The method for manufacturing an evaporation mask according to claim 2, wherein a process condition in which the design error is equal to or less than the threshold is set as a process condition of the first mask.
  8.  前記第1の方向に直交する第2の方向における第2の開口間の梁部分の、前記第2の方向に沿った幅を更に測定し、
     測定した前記厚みと前記幅とに基づいて、前記開口位置シフト量を算出する
     請求項3に記載の蒸着用マスクの製造方法。
    Further measuring the width along the second direction of the beam portion between the second openings in a second direction orthogonal to the first direction;
    The method for manufacturing an evaporation mask according to claim 3, wherein the opening position shift amount is calculated based on the measured thickness and width.
  9.  前記梁部分の前記第1の方向に沿った長さを更に測定し、
     測定した前記厚みと前記幅と前記長さとに基づいて、前記開口位置シフト量を算出する
     請求項8に記載の蒸着用マスクの製造方法。
    Further measuring the length of the beam portion along the first direction;
    The method for manufacturing an evaporation mask according to claim 8, wherein the opening position shift amount is calculated based on the measured thickness, width, and length.
  10.  前記第1の開口の位置設計の際に、マスク引っ張り方向のうちの互いに直交する第1および第2の方向のそれぞれにおいて、前記開口位置シフト量を加味した補正を行う
     請求項1に記載の蒸着用マスクの製造方法。
    2. The vapor deposition according to claim 1, wherein in designing the position of the first opening, correction is performed in consideration of the opening position shift amount in each of the first and second directions orthogonal to each other in the mask pulling direction. Manufacturing method for a mask.
  11.  前記第1の開口の位置設計の際に、マスク引っ張り方向のうちの互いに直交する第1および第2の方向のうちのいずれか一方において、前記開口位置シフト量を加味した補正を行う
     請求項1に記載の蒸着用マスクの製造方法。
    2. The position of the first opening is corrected in consideration of the opening position shift amount in any one of the first and second directions orthogonal to each other in the mask pulling direction. The manufacturing method of the mask for vapor deposition as described in any one of.
  12.  前記補正値の設定の際には、前記第2のマスクの全開口のうちの選択的な第2の開口の位置シフト量を用いる
     請求項2に記載の蒸着用マスクの製造方法。
    The method for manufacturing an evaporation mask according to claim 2, wherein when the correction value is set, a selective positional shift amount of the second opening among all the openings of the second mask is used.
  13.  前記第2のマスクを、それぞれにおいて前記開口位置シフト量の傾向が類似する複数のエリアに区分けし、
     前記第1の開口の位置設計の際に、前記エリア毎に設定された代表補正値を用いた補正を行う
     請求項2に記載の蒸着用マスクの製造方法。
    Dividing the second mask into a plurality of areas each having a similar tendency of the opening position shift amount;
    The method for manufacturing an evaporation mask according to claim 2, wherein correction is performed using a representative correction value set for each area when designing the position of the first opening.
  14.  前記複数のエリアはそれぞれ、マスク引っ張り方向のうちの第1の方向に沿って延在すると共に、前記第1の方向に直交する第2の方向に沿って分割されている
     請求項13に記載の蒸着用マスクの製造方法。
    The plurality of areas each extend along a first direction in a mask pulling direction and are divided along a second direction orthogonal to the first direction. A method for manufacturing a mask for vapor deposition.
  15.  前記代表補正値は、前記複数のエリアのそれぞれにおける前記開口位置シフト量の平均を用いて設定される
     請求項14に記載の蒸着用マスクの製造方法。
    The method for manufacturing an evaporation mask according to claim 14, wherein the representative correction value is set using an average of the opening position shift amounts in each of the plurality of areas.
  16.  前記第2のマスクを複数形成し、
     前記代表補正値は、複数の前記第2のマスク間において対応するエリアの開口位置シフト量の平均を用いて設定される
     請求項14に記載の蒸着用マスクの製造方法。
    Forming a plurality of the second masks;
    The method for manufacturing an evaporation mask according to claim 14, wherein the representative correction value is set using an average of opening position shift amounts of corresponding areas between the plurality of second masks.
  17.  前記第1および第2のマスクを電鋳により形成する
     請求項2に記載の蒸着用マスクの製造方法。
    The method for manufacturing a vapor deposition mask according to claim 2, wherein the first and second masks are formed by electroforming.
  18.  前記第2のマスクを形成する際に使用されるマスクは、前記第1のマスクを形成する際に使用されるマスクよりも安価な材料により構成されている
     請求項2に記載の蒸着用マスクの製造方法。
    The evaporation mask according to claim 2, wherein the mask used when forming the second mask is made of a material that is less expensive than the mask used when forming the first mask. Production method.
  19.  前記第1のマスクを形成する際にはガラス製のマスクが使用され、
     前記第2のマスクを形成する際にはフィルムマスクが使用される
     請求項18に記載の蒸着用マスクの製造方法。
    When forming the first mask, a glass mask is used,
    The method for manufacturing a vapor deposition mask according to claim 18, wherein a film mask is used when forming the second mask.
  20.  前記第1および第2のマスクをエッチングにより形成する
     請求項2に記載の蒸着用マスクの製造方法。
    The method for manufacturing a deposition mask according to claim 2, wherein the first and second masks are formed by etching.
  21.  前記第1のマスクを形成する際に、
     複数の第2の開口を有する第2のマスクを用意し、
     前記第2のマスクをフレームに張設した状態で、前記開口位置シフト量を測定し、
     測定した開口位置シフト量に基づいて補正値を設定し、
     前記第1の開口の位置設計の際に、前記補正値を用いた補正を行う
     請求項1に記載の蒸着用マスクの製造方法。
    When forming the first mask,
    Preparing a second mask having a plurality of second openings;
    In a state where the second mask is stretched on the frame, the opening position shift amount is measured,
    Set the correction value based on the measured opening position shift amount,
    The method for manufacturing an evaporation mask according to claim 1, wherein correction using the correction value is performed when designing the position of the first opening.
  22.  蒸着用マスクを形成し、
     前記蒸着用マスクを用いて材料層をパターン形成し、
     前記蒸着用マスクを形成する際に、
     蒸着材料の通過孔として複数の第1の開口を有する第1のマスクを形成し、
     前記第1のマスクをフレームに張設し、かつ
     前記第1のマスクを、前記第1の開口の位置設計の際に、前記フレームへの張設時における開口位置シフト量を加味した補正を行う
     表示装置の製造方法。
    Forming a deposition mask,
    Patterning the material layer using the vapor deposition mask;
    When forming the evaporation mask,
    Forming a first mask having a plurality of first openings as passage holes for the vapor deposition material;
    The first mask is stretched on the frame, and the first mask is corrected in consideration of the opening position shift amount when stretched to the frame when designing the position of the first opening. Manufacturing method of display device.
  23.  前記材料層は、有機電界発光層である
     請求項22に記載の表示装置の製造方法。
    The method for manufacturing a display device according to claim 22, wherein the material layer is an organic electroluminescent layer.
PCT/JP2015/056641 2014-03-28 2015-03-06 Method for manufacturing mask for use in vapor deposition, and method for manufacturing display device WO2015146544A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020167025009A KR102289109B1 (en) 2014-03-28 2015-03-06 Method for manufacturing mask for use in vapor deposition, and method for manufacturing display device
CN201580015439.4A CN106133182B (en) 2014-03-28 2015-03-06 The manufacturing method of exposure mask and the manufacturing method of display device is deposited

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-069045 2014-03-28
JP2014069045A JP2015190021A (en) 2014-03-28 2014-03-28 Vapor deposition mask producing method, and display device producing method

Publications (1)

Publication Number Publication Date
WO2015146544A1 true WO2015146544A1 (en) 2015-10-01

Family

ID=54195070

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/056641 WO2015146544A1 (en) 2014-03-28 2015-03-06 Method for manufacturing mask for use in vapor deposition, and method for manufacturing display device

Country Status (4)

Country Link
JP (1) JP2015190021A (en)
KR (1) KR102289109B1 (en)
CN (1) CN106133182B (en)
WO (1) WO2015146544A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106784408A (en) * 2017-01-23 2017-05-31 昆山国显光电有限公司 The manufacture method of array base palte
CN107946479A (en) * 2016-10-13 2018-04-20 三星显示有限公司 Mask assembly and the apparatus and method by using mask assembly manufacture display device
JP2020166029A (en) * 2019-03-28 2020-10-08 東レエンジニアリング株式会社 Mounting method and method of manufacturing image display device
CN112941580A (en) * 2020-12-07 2021-06-11 达运精密工业股份有限公司 Metal mask and method for manufacturing the same
US11674214B2 (en) * 2017-10-27 2023-06-13 Dai Nippon Printing Co., Ltd. Deposition mask and method of manufacturing deposition mask
EP4234754A1 (en) * 2022-02-24 2023-08-30 Samsung Display Co., Ltd. Method of manufacturing mask assembly

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6686549B2 (en) * 2016-03-07 2020-04-22 大日本印刷株式会社 Method for manufacturing vapor deposition mask device and vapor deposition mask device
JP6986916B2 (en) * 2017-10-04 2021-12-22 新東エスプレシジョン株式会社 Inspection equipment and inspection method
CN110079761A (en) * 2018-01-26 2019-08-02 张东晖 The manufacturing method of thin metal vapor deposition mask
WO2022034634A1 (en) * 2020-08-11 2022-02-17 堺ディスプレイプロダクト株式会社 Method for manufacturing film-forming mask

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004269968A (en) * 2003-03-10 2004-09-30 Sony Corp Mask for vapor deposition
JP2005179739A (en) * 2003-12-19 2005-07-07 Sony Corp Mask for vapor deposition, and its production method
JP2014105392A (en) * 2012-11-28 2014-06-09 Samsung Display Co Ltd Unit mask strip and method for producing organic light-emitting device using the same
JP2014146470A (en) * 2013-01-28 2014-08-14 V Technology Co Ltd Manufacturing method of vapor deposition mask, and laser beam machining device

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004006257A (en) 2002-04-26 2004-01-08 Tohoku Pioneer Corp Mask for vacuum deposition and organic el display panel manufactured by using it
KR101182439B1 (en) * 2010-01-11 2012-09-12 삼성디스플레이 주식회사 Mask frame assembly for thin layer deposition and manufacturing method of organic light emitting display device thereused
KR20120105292A (en) * 2011-03-15 2012-09-25 삼성디스플레이 주식회사 Deposition mask and method for manufacturing the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004269968A (en) * 2003-03-10 2004-09-30 Sony Corp Mask for vapor deposition
JP2005179739A (en) * 2003-12-19 2005-07-07 Sony Corp Mask for vapor deposition, and its production method
JP2014105392A (en) * 2012-11-28 2014-06-09 Samsung Display Co Ltd Unit mask strip and method for producing organic light-emitting device using the same
JP2014146470A (en) * 2013-01-28 2014-08-14 V Technology Co Ltd Manufacturing method of vapor deposition mask, and laser beam machining device

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107946479A (en) * 2016-10-13 2018-04-20 三星显示有限公司 Mask assembly and the apparatus and method by using mask assembly manufacture display device
CN106784408A (en) * 2017-01-23 2017-05-31 昆山国显光电有限公司 The manufacture method of array base palte
US11674214B2 (en) * 2017-10-27 2023-06-13 Dai Nippon Printing Co., Ltd. Deposition mask and method of manufacturing deposition mask
JP2020166029A (en) * 2019-03-28 2020-10-08 東レエンジニアリング株式会社 Mounting method and method of manufacturing image display device
JP7319070B2 (en) 2019-03-28 2023-08-01 東レエンジニアリング株式会社 Mounting method and image display device manufacturing method
CN112941580A (en) * 2020-12-07 2021-06-11 达运精密工业股份有限公司 Metal mask and method for manufacturing the same
CN112941580B (en) * 2020-12-07 2023-11-03 达运精密工业股份有限公司 Metal mask and method for manufacturing the same
EP4234754A1 (en) * 2022-02-24 2023-08-30 Samsung Display Co., Ltd. Method of manufacturing mask assembly

Also Published As

Publication number Publication date
CN106133182B (en) 2019-01-18
CN106133182A (en) 2016-11-16
JP2015190021A (en) 2015-11-02
KR102289109B1 (en) 2021-08-13
KR20160138956A (en) 2016-12-06

Similar Documents

Publication Publication Date Title
WO2015146544A1 (en) Method for manufacturing mask for use in vapor deposition, and method for manufacturing display device
KR101749435B1 (en) Metal plate, metal plate production method, and method for producing vapor deposition mask using metal plate
US20060110663A1 (en) Mask for depositing thin film of flat panel display and method of fabricating the mask
US20120234236A1 (en) Deposition Mask and Method of Manufacturing the Same
JP2005174843A (en) Deposition mask and its manufacturing method
JP6670469B2 (en) Deposition mask and deposition mask intermediate
WO2019043866A1 (en) Method for manufacturing film formation mask
TWI774702B (en) Evaporation mask
JP6376483B2 (en) Vapor deposition mask manufacturing method, vapor deposition mask device manufacturing method, and vapor deposition mask quality determination method
JP4604593B2 (en) Metal mask manufacturing method
CN110607497A (en) Mask assembly, deposition apparatus, and method of manufacturing display device using the deposition apparatus
JP2009009777A (en) Film forming mask
CN103668048A (en) Manufacture method of composite mask plate assembly
JP2006244746A (en) Mask structure, depositing method using the same, and method of manufacturing organic light-emitting element
JP4401040B2 (en) Evaporation mask
WO2016104207A1 (en) Vapor deposition mask and manufacturing method therefor
WO2018131474A1 (en) Vapor deposition mask, method for manufacturing vapor deposition mask device, and method for manufacturing vapor deposition mask
KR20230051717A (en) Vapor-deposition mask manufacturing method and vapor-deposition mask device manufacturing method
CN113608412B (en) Semiconductor device, manufacturing method thereof and electronic equipment
JP2005179739A (en) Mask for vapor deposition, and its production method
WO2024024658A1 (en) Metal mask and production method therefor
KR20200040644A (en) Mask and mask integrated frame
JP2019044257A (en) Method for manufacturing film deposition mask
JP6954343B2 (en) Vapor deposition mask
KR20190092840A (en) Producing method of frame

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15769082

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20167025009

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase
122 Ep: pct application non-entry in european phase

Ref document number: 15769082

Country of ref document: EP

Kind code of ref document: A1